CONFORMAL QUATERNIONIC CONTACT CURVATURE AND THE LOCAL

SPHERE THEOREM

STEFAN IVANOV AND DIMITER VASSILEV

ABSTRACT. A curvature-type tensor invariant called quaternionic contact (qc) conformal curvature
is defined on a qc manifolds in terms of the curvature and torsion of the Biquard connection. The
discovered tensor is similar to the Weyl conformal curvature in Riemannian geometry and to the
Chern-Moser invariant in CR geometry. It is shown that a qc manifold is locally qc conformal
to the standard flat qc structure on the quaternionic Heisenberg group, or equivalently, to the
standard 3-sasakian structure on the sphere if and only if the qc conformal curvature vanishes.
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A quaternionic contact (qc) structure introduced in [Biql, Big2] appears naturally as the con-
formal boundary at infinity of the quaternionic hyperbolic space. Such structures are also relevant
for the quaternionic contact Yamabe problem which is naturally connected with the extremals and
the best constant in an associated Sobolev-type embedding on the quaternionic Heisenberg group
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A qc structure on a real (4n+3)-dimensional manifold M is a codimension three distribution H
locally given as the kernel of 1-form 1 = (1, 72,713) with values in R? and the three 2-forms dn;| g
are the fundamental 2-forms of a quaternionic structure on H, i.e., there exists a Riemannian metric
g on H and three local almost complex structures I; on H satisfying the commutation relations of
the imaginary quaternions, I1IoIs = —1, such that, dn;|g = 2¢(1;.,.) . The 1-form 7 is determined
up to a conformal factor and the action of SO(3) on R3, and therefore H is equipped with a
conformal class [g] of Riemannian metrics and a 2-sphere bundle of almost complex structures, the
quaternionic bundle Q. The 2-sphere bundle of one forms determines uniquely the associated metric
and a conformal change of the metric is equivalent to a conformal change of the one forms. To
every metric in the fixed conformal class one can associate a linear connection V preserving the qc
structure, see [ ], which we shall call the Biquard connection.

The transformations preserving a given quaternionic contact structure 7, i.e. 7 = u¥n for a
positive smooth function g and a SO(3) matrix ¥ with smooth functions as entries, are called
quaternionic contact conformal (qc conformal for short) transformations.

Examples of QC manifolds are given in | , , , D1]. In particular, any totally umbilic
hypersurface of a quaternionic Kéhler or hyperKéhler manifold carries such a structure [ l. A
basic example is provided by any 3-Sasakian manifold which can be defined as a (4n+ 3)-dimensional
Riemannian manifold whose Riemannian cone is a hyperKahler manifold. It was shown in | ]
that the torsion endomorphism of the Biquard connection is the obstruction for a given qgc-structure
to be locally 3-Sasakian, up to a multiplication with a constant factor and a SO(3)-matrix.

The quaternionic Heisenberg group G (H) with its "standard” left-invariant qc structure is the
unique (up to a SO(3)-action) example of a qc structure with flat Biquard connection [ ]. As
a manifold G (H) = H" x Im H, while the group multiplication is given by

(¢ W) = (¢o,wo)o(q,w) = (g0 + qw + wo + 21Im g, 7),
where ¢, ¢, € H" and w,w, € ImH. The standard flat quaternionic contact structure is defined by
the left-invariant quaternionic contact form @ = (01, ©,, O3) = 2 (dw — ¢ -d7 + dq - q),
where . denotes the quaternion multiplication.

The aim of this paper is to find a tensor invariant characterizing locally the qc structures which
are quaternionic contact conformally equivalent to the flat qc-structure. With this goal in mind, we
describe a curvature-type tensor W4¢ defined in terms of the curvature and torsion of the Biquard
connection by (4.14), whose form is similar to the Weyl conformal curvature in Riemannian geometry
(see e.g. [E]) and to the Chern-Moser invariant in CR geometry | ], see also [W]. We call Wa°
the quaternionic contact conformal curvature, gc conformal curvature for short. The main purpose
of this article is to prove the following two facts.

Theorem 1.1. The qc conformal curvature W9°¢ is invariant under quaternionic contact conformal
transformations.

Theorem 1.2. A qc structure on a (4n+3)-dimensional smooth manifold is locally quaternionic
contact conformal to the standard flat qc structure on the quaternionic Heisenberg group G (H) if
and only if the qc conformal curvature vanishes, W9¢ = 0.

The quaternionic Cayley transform establishes a conformal quaternionic contact automorphism
between the standard 3-Sasaki structure on the quaternionic sphere S*"*3 and the standard qc
structure on G (H) [ ]. As a consequence of Theorem 1.2 and the fact that quaternionic Cayley
transform is a quaternionic contact conformal equivalence between the 3-sasakian structure on the
sphere and the flat qc structure on G (H), we obtain

Corollary 1.3. A gc manifold is locally quaternionic contact conformal to the quaternionic sphere
S4nt3 if and only if the qc conformal curvature vanishes, W3¢ = 0.

We note that for locally 3-Sasakian manifolds a curvature invariant under quaternionic contact
conformal transformations preserving the 3-Sasakian condition is defined in [AK] and it is shown
that its vanishing is equivalent the structure to be locally isometric to the 3-Sasaki structure on the
sphere.
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Our investigations are close to the classical approach used by H.Weyl, see e.g. [E], while | 1,
[W] and [AK] followed the Cartan method of equivalence.

Organization of the paper. The paper relies heavily on the notion of Biquard connection
introduced in [ ] and the properties of its torsion and curvature discovered in | ]. In order
to make the present paper self-contained, in Section 2 we give a review of the notion of a quaternionic
contact structure and collect formulas and results from | | and | | that will be used in the
subsequent sections.

Convention 1.4. We use the following conventions:
a) We shall use X,Y,Z,U to denote horizontal vector fields, i.e. XY, Z, U € H;

b) {e1,...,ean} denotes an orthonormal basis of the horizontal space H;
¢) The summation convention over repeated vectors from the basis {e1,...,esn} will be used. For
example, for a (0,4)-tensor P, the formula k = P(ep, €q, €q,€p) means
4n
k= Z Plep, €a,€q,€p);
a,b=1

d) The triple (i, j, k) denotes any cyclic permutation of (1,2,3). In particular, any equation involving
1,7,k holds for any such permutation.

e) s and t will be any numbers from the set {1,2,3}, s,t € {1,2,3}.

f) We shall denote with Vh the horizontal gradient of the function h, while dh means as usual the
differential of the function h, or the full gradient of h.

Acknowledgements The research was done during the visit of S.Ivanov in the Max-Plank-
Institut fir Mathematics, Bonn and the final draft of the paper was prepared with both authors
residing at MPIM, Bonn. The authors thank MPIM, Bonn for providing the support and an excellent
research environment. S.I. is a Senior Associate to the Abdus Salam ICTP. The authors also like
to acknowledge The National Academies for the financial support, and University of Sofia and
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in the writing of the paper.

2. QUATERNIONIC CONTACT MANIFOLDS

In this section we will briefly review the basic notions of quaternionic contact geometry and recall
some results from | | and | ]

For the purposes of this paper, a quaternionic contact (QC) manifold (M,g,Q) is a 4n + 3
dimensional manifold M with a codimension three distribution H equipped with a metric g and an
Sp(n)Sp(1) structure, i.e., we have

i) a 2-sphere bundle Q over M of almost complex structures I, : H — H, I? = -1,
satisfying the commutation relations of the imaginary quaternions Iyl = —I>I; = I3 and
Q={alh +bly+cl3: a®> +b>+ % =1};

ii) H is locally the kernel of a 1-form 1 = (11,72, 73) with values in R? satisfying the compati-
bility condition 2¢(IsX,Y) = dns(X,Y).

A QC manifold (M,g,Q) is called quaternionic contact conformal ( gc-conformal for short) to
(M,g,Q) if g € [¢g]. In that case, if 7] is a corresponding associated one-form with complex structures
I, we have 7 = pu W for some ¥ € SO(3) and a positive function g. In particular, starting with
a QC manifold (M, n) and defining 7 = pn we obtain a QC manifold (M, 7) gc-conformal to the
original one.

On a quaternionic contact manifold there exists a canonical connection defined in | ] when
the dimension (4n + 3) > 7, and in [D] in the 7-dimensional case.
Theorem 2.1. | | Let (M,g,Q) be a quaternionic contact manifold of dimension 4n +3 > 7

and a fized metric g on H in the conformal class [g]. Then there exists a unique connection V with
torsion T on M*"*3 and a unique supplementary subspace V to H in TM, such that:
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i) V preserves the decomposition H®V and the Sp(n)Sp(1)-structure on H, Vg = 0,VQ C Q;
i) for X,Y € H, one has T(X,Y) = —[X,Y]y;
iii) for & € V, the endomorphism T'(€,.) g of H lies in (sp(n) ® sp(1))* C so(4n);

We shall call the above connection the Bigquard connection. Biquard | | also described the
supplementary subspace V', namely, locally V is generated by vector fields {£1, &2, &3}, such that
(2.1) Ns(Ek) = Osks (Esadns) g =0, (§sadni) g = —(§padns) a-

The vector fields &1, &2, &3 are called Reeb vector fields or fundamental vector fields.

If the dimension of M is seven, the conditions (2.1) do not always hold. Duchemin shows in
[D] that if we assume, in addition, the existence of Reeb vector fields as in (2.1), then Theorem 2.1
holds. Henceforth, by a qc structure in dimension 7 we shall mean a qc structure satisfying (2.1).

Notice that equations (2.1) are invariant under the natural SO(3) action. Using the triple of Reeb
vector fields we extend g to a metric on M by requiring span{&1,&2,&3} =V L H and ¢(&s,&k) = sk
The extended metric does not depend on the action of SO(3) on V, but it changes in an obvious
manner if 7 is multiplied by a conformal factor. Clearly, the Biquard connection preserves the
extended metric on T'M, Vg = 0. We shall also extend the quternionic structure by setting Iy = 0.
The fundamental 2-forms wy of the quaternionic structure @ are defined by

(22) QUJS‘H = dns\Ha gJWS = 0, § eV.
Due to (2.2), the torsion restricted to H has the form
(2.3) T(X,Y) =-[X,Y]jy = 201 (X, Y)&1 + 2w2 (X, Y)E2 + 2w3(X, V) &s.

The properties of the Biquard connection are encoded in the properties of the torsion endomorphism
Te = T(E,.) : H— H, £ € V. Recall that any endomorphism ¥ of H can be decomposed
with respect to the quaternionic structure (Q,g) uniquely into Sp(n)-invariant parts as follows
U=yttt ¢+== 4 U~ - 4 ¥~—+  where U+ commutes with all three I;, ¥*~~ commutes
with I; and anti-commutes with the others two and etc. The two Sp(n)Sp(1)-invariant components
are given by

(2.4) \1/[3] =yttt \I/[,l] =TT LUt LT

Denoting the corresponding (0,2) tensor via g by the same letter one sees that the Sp(n)Sp(1)-

invariant components are the projections on the eigenspaces of the Casimir operator

(2.5) t=nLohL + Lol + I

corresponding, respectively, to the eigenvalues 3 and —1, see | ]. If n = 1 then the space of

symmetric endomorphisms commuting with all I;,i = 1,2, 3 is 1-dimensional, i.e. the [3]-component

2

of any symmetric endomorphism W on H is proportional to the identity, W3 = %I dig-

Decomposing the endomorphism T¢ € (sp(n) + sp(1))+ into symmetric part TgO and skew-

symmetric part be, Te = Tg + be, we summarize the description of the torsion due to O. Biquard in
the following Proposition.

Proposition 2.2. | | The torsion T¢ is completely trace-free,
trTe =g (Te(eq),eq) =0, trTeol =g(Te(eq),le,) =0, I€Q.
The symmetric part of the torsion has the properties:
0 _ 0 Oy—— __ 0_4— 04— 0_— 0——+ _ 04— —
Te Is = —IT¢ IQTE2+ = LT - LT, = LT, + LT, = LT, .

The skew-symmetric part can be represented as follows be, = I;u,where u is a traceless symmetric
(1,1)-tensor on H which commutes with Iy, I5, I5.
If n =1 then u vanishes identically, uw = 0 and the torsion is a symmetric tensor, Te = Tgo.

The sp(1)-connection 1-forms are defined by VI; = —a; ® I + oy, ® I, or equivalently determined
with V& = —a; @ & + ax @ §;. The vanishing of the sp(1)-connection 1-forms on H is equivalent
to the vanishing of the torsion endomorphism of the Biquard connection [ ]
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2.1. The Ricci type tensors. Let R = [V, V]—=V[ | be the curvature tensor of V. We shall denote
the curvature tensor of type (0,4) by the same letter, R(A, B,C, D) := g(R(A, B)C, D), A,B,C,D €
I'(TM). The Ricci tensor and the scalar curvature Scal of the Biquard connection, called gc-Ricci
tensor and gc-sacalr curvature, respectively, are defined by

Ric(X,Y) = R(eq, X,Y, e,), Scal = Ric(eq,eq) = Rep, €q,€q,€p).
The curvature of the Biquard connection admits also several horizontal traces, defined in | ] by
dnps(X,Y) = R(X,Y, eq, Iseq), 4n7s(X,Y) = R(eq, Iseq, X, Y), 4nls(X,Y) = R(eq, X, Y, Ise,).
The sp(1)-part of R is determined by the Ricci 2-forms by

(2.6) R(A,B,&.&) = 206(A,B),  A,BeT(TM).

According to | | the Ricci tensor restricted to H is a symmetric tensor. If the trace-free part of
the qc-Ricci tensor is zero we call the quaternionic structure a ge-Einstein manifold | . Ttis
shown in | | that the trace part of these Ricci type contractions is proportional to the qe-scalar

curvature and the trace-free part of ps, 75, (s vanish for exactly when the manifold is gc-Einstein
(see also Theorem 2.4 below).

With the help of the operator 1 we introduced in [ ] two Sp(n)Sp(1)-invariant trace-free
symmetric 2-tensors T°, U on H as follows
(2.7) X, Y)Y g(TO L + T2 L + TL )X, Y), UX,Y) ™ guX,v).

The tensor T° belongs to the [-1]-eigenspace while U is in the [3]-eigenspace of the operator {, i.e.,
they have the properties:

(2.8) TY(X,Y)+ T (L X, ,Y) + T*(I.X,LY) + T°(I3X,[3Y) = 0,
(2.9) UX,Y)-ULX, 1Y) -U(lLX,LY)-U(3X,I5Y) =0.
Applying Proposition 2.2 and equation (2.8), we obtain the following
Proposition 2.3. The torsion components of the symmetric part of torsion endomorphism of Bi-
quard connection satisfy the relations
(2.10) ATO(&, I,X,Y) =T X,Y) - T°(I,X, 1.Y).
It is shown in | ] that all horizontal Ricci type contractions of the curvature of the Biquard
connection can be expressed in terms of the torsion of the Biquard connection. With slight mod-

ification based on Proposition 2.3 we collect some facts from | , Theorem 1.3, Theorem 3.12,
Corollary 3.14 and Proposition 4.3] in the next

Theorem 2.4. | ] On a (4n + 3)-dimensional QC manifold, n > 1 mthe next formulas hold
Rie(X,Y) = (2n+2)T(X,Y) + (4n + 10)U(X,Y) + S4C§lg(X, Y)
1 Scal
S(X,LY) = —=|T°X,Y) + T(I,X,L,Y)| —2U(X,Y) - —————g(X,Y
P LY) = =5 [TOXY) + TLX, LY)] = 2U(X,Y) = o2 g(X,Y),
o on+27 4 0 Scal
R(XLY) =~ [T (X,Y) + T°(I,X, ISY)} S YY)
_ 2n+1_, 1.0 2n+1 Scal
(X, LY) = in T(X,Y)+ 4nT (I, X,I,Y)+ UX,Y)+ 716n(n+2)g(X7Y)
Scal
T(&,85) = —mﬁk —[&:&ln Scal = —8n(n+2)g(T'(&1,€2).&3)
T(&,&5,X) = —pr(LiX, &) = —pr(1; X, ;)
X (Scal 1
pi(X, &) = (Seal) + 5 (=pi(&Gy Ik X) + pj (&, LX) + pr(&ir 1, X)) -

S 32n(n+2) 2
For n =1 the above formulas hold with U = 0.
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In particular, the gc-FEinstein condition is equivalent to the vanishing of the torsion endomorphism
of the Biquard connection. If Scal # 0 the latter holds exactly when the qc-structure is 3-sasakian
up to a multiplication by a constant and an SO(3)-matriz with smooth entries.

We derive from [[ ], Theorem 4.8]

Proposition 2.5. | | On a qc manifold the following formula holds

(n—1)(2n+1)

(211) (2= D(Ve ) ea, X) +2n + DVe U)(ew X) = 0=y

d(Scal)(X) = 0.

2.2. Quaternionic Heisenberg group and the quaternionic Cayley transform. Since our
goal is to classify quaternionic contact manifolds locally conformal to the quaternionic Heisenberg
group we recall briefly its definition together with the definition of the quaternionic Cayley transform
as described in [ , Section 5.2]. As a manifold the quaternionic Heisenberg group of topological
dimension 4n+ 3 is G (H) = H" x ImH. The group law is given by  (¢’,w’) = (go,ws) 0 (q,w) =
(@ + ¢,w + wo + 2 1Im g, q), where ¢, ¢, € H” and w,w, € ImH. We can identify the group
G (H) with the boundary ¥ of a Siegel domain in H* x H, ¥ = {(¢/,p/) e H" xH : Rp' = |¢|*}.
The Siegel domain ¥ carries a natural group structure and the map (q,w) — (¢, |¢|> —w) € ¥ is an
isomorphism between G (H) and X.

On the group G (H), the standard contact form, written as a purely imaginary quaternion valued

form, is given by 20 = (dw — ¢q-dg + dq -q), where - denotes the quaternion multiplication,
0, = % dr — z*dt* + t%dz® — 2%dy* + y*dz*
(2.12) 0, = % dy — y°dt® + z2%dz® + tdy® — z°dz®
0, = % dz — 2%dt* — y®dz® + x%dy® + t%dz*.
Since dp = ¢-dg + dgq -§ — dw, under the identification of G (H) with ¥ we also have
20 = —dp’ + 2d¢ - 7.

The left invariant flat connection on G (H) coincidies with the Biquard connection of the gc man-
ifold (G (H), ©) and, conversely, any qc¢ manifold with flat Biquard connection is locally isomorphic
to G (H) [ ]

The Cayley transform is the map € : S +— ¥ from the sphere S = {|¢|? + |p|* = 1} C H" x H
minus a point to the Heisenberg group X, with € defined by

(¢,p) = ¢ ((q,p)),

¢ =0+p) e, P = (0+p " (1-p)
and with an inverse map (¢,p) = C~! (q’,p’)) given by

g = 20+p)"d, p=(00-p)A+p)""
The unit sphere S carries a natural qc structure 7 =dq-q + dp-p — ¢q-dg— p-dp which has zero
torsion and is 3-Sasakian up to a constant factor. In [ ] it was noted that the Cayley transform
is a quaternionic contact conformal diffeomorphism between the quaternionic Heisenberg group with
its standard quaternionic contact structure © and S\ {(—1,0)} with the structure 7
_ ] -
A(Cin) N = ————= 0O,

/
where A = % is a unit quaternion.

3. CURVATURE AND THE BIANCHI IDENTITIES

Recall that an orthonormal frame
{e1,e2 = Lie1,e3 = Irer,eq = Ize1 ..., €an = I3€4n-3,&1,62,83}
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is a qc-normal frame (at a point) if the connection 1-forms of the Biquard connection vanish (at that
point). Lemma 4.5 in | | asserts that a qe-normal frame exists at each point of a QC manifold.
In general, to verify any Sp(n)Sp(1)-invariant tensor identity at a point it is sufficient to check it
in a gc-normal frame at that point. Further, we work in a qc-normal frame.
Let b(A, B, C) denote the Bianchi projector,

(3.1) b(A,B,C):= Y {(VAT)(B,O)+T(T(A,B),C)}, A,B,C € T(TM),
(A,B,C)

where Z( A,B,C) denotes the cyclic sum over the three tangent vectors. With this notation the first
Bianchi identity reads as follows

(3.2) 3 {R(A,B,O,D)} - g(b(A,B,O),D) A,B,C,D e I(TM).
(A,B,C)

Theorem 3.1. On a QC manifold the curvature of the Biquard connection satisfies the equalities:

w

(33) R(X,Y,Z,V)-R(ZV,X,Y)=2)_ [ws (X, V)U(L,Z,V) — ws(Z, V)U(LX, Y)]
s=1

3
= [ws (X, Z)TO(€s, Y, V) 4ws (Y, VITO(Es, Z, X )—ws (Y, Z)TO(E,X, V) —ws (X, V)T (Es, Z, Y)} .

s=1
(34) 3R(X,Y,Z,V)—R(LX,LY,Z,V)— R(ILX,1,Y,Z,V) — R(IsX,I5Y, Z, V)
= 2[g(¥, 2)TO(X, V) + g(X, V)T(Z,Y) = g(2, X)T*(Y,V) = g(V, ) T°(Z, X)

3
-2} [ws(Y, Z)TO(X, I,V) + wo(X, V)T(Z, 1Y) — ws(Z, X)T(Y, I,V) — w,(V, Y)T°(Z, ISX)}

s=1

Scal

mws(X, Y)(AJS(Z, V):| ;

3
+y {2%()(, Y) (TO(Z, LV)-T"(1,Z, V)) 8wy (Z, V)U(L,X,Y)—

(3.:5) R(§,X.,Y,2) = —(VxU)LY, Z) + wi(X,Y)pr(L; Z, &) — wi(X,Y)p;(L; Z, &)
= [TV T2, X) + (T T2, 10| + 7 [(V2T0) (1, X) + (V2T X))
—wi(X, 2)pi(LY, &) +wi(X, Z)pi (LY, &) — wi(Y, Z)pr(Li X, &) + wi (Y, Z)pi (L X, &)

(3.6) R(& &5, X,Y) = (Ve U)X, Y) = (Vg U)(LiX,Y)

[T XY) + (Ve TNX 1Y) + 3 [(Ve T Y) + (Ve T(X, 1Y)
— (T (1Y,60) = oo 6 X V) = T X, (6o V) + P60 V)T X o).

where the Ricci 2-forms are given by

3(2n + 1)pi(&, X) = i(VJO) [(eas X) = 3(Liea, [X) | = (Ve,U)(X, €a)

2n+1

Tonm 1 2)" el

(3.7) (2n+1)(2n — 1)

16n(n + 2)
FHVe T 0+ 1)(ew, X) + 3(Tiea, TX)] + 200+ 1)(Ve, U)(X, ).

32n+ 1)pi(I X, &) = —=3(2n+ 1)p;(I; X, &) — X (Scal)
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Proof. The first Bianchi identity (3.2) yields [ ]

(3.8) R(A,B,C,D)— R(C,D,A,B) = % g(b(A,B,C),D) + % g(b(B,C, D), A)

— % g(b(A,C, D), B) — % (b(A,B,D),C), A,B,C,DeTl(TM).

With the help of Proposition 2.2 and equation (2.3) the identity (3.3) follows.
Recall the following equality | , Lemma 3.8]

(3.9) R(X,Y,LZ,IV) = R(X,Y, Z,V) — 2p;(X,Y)w;(Z,V) — 2px(X, Y)wi(Z, V).

Taking into account (3.3) and (3.9), the properties of the torsion listed in Propositions 2.2 and 2.3,
together with equations (2.8), (2.9) and (2.10) we find

40 (X, YVYU(I; Z,V) + 4w (X, YU (ILZ, V) — 4wj(Z, VU (L; X,Y) — 4w (Z, VU (I}, X,Y)
+2[g(V. )T (& LX, V) + (X, VIT*(6, LZ,Y) = g(Z, X)T*(gi, LY. V) = g(V.Y)T° (&, LZ, X))

+2 |:wi(Y7 Z)To(glv Xu V) + wl(X7 V)To(é-h ZJ Y) - wl(X7 Z)To(é-iu Yu V) - wi(YJ V)To(glu Z7X):|

- % {wj(y, Z)(TO(X, LV) = TY(LX, V) ) +wp(Y, 2) (TO(X LV) + TY(LI.X, I, V))}
- % {wj(X, V)(TO(Y, L,Z) — T(LY, I, Z) ) +wp(X, V) (TO(Y 1.Z) + T(LLY, I Z))}

+ % {wj(X Z) (TO(Y LV) - T(LY, IkV)) +wi(X, 2) (TO(Y, LV) + TO(LY, IjV))}
41 S wi (. (TO (X,1;Z) — T°(I; X, IkZ)) +wp(Y, V) (TO(X, 1.Z) + T°(I, X, IjZ))]

Now, equality (3.4) follows from (3.10) and Theorem 2.4.
Invoking (3.1) and applying (2.3) and Theorem 2.4 we have

(3.11) b(&, X,Y,Z) = —(VxT)(&,Y,Z2) + (VyT)(&, X, Z)
+ 2w (X, Y)pr(1;Z, &) — 2w (X, Y)p; (1; Z, ).

A substitution of (3.11) in (3.8) implies (3.5).
If we take the trace in (3.5) and apply the sixth formula in Theorem 2.4 we come to

1 1 1
(3.12) npi(&§i, X) = g(VeQTO) (ea, X) — (Liea, I; X)] — 3Pe(Li X, &) = 5pi(LiX, &)
Summing (3.12) and the last formula in Theorem 2.4, we obtain
1 1 0 X (Scal)
(313) (e Vil X) + 50X, &) = 5(Ve, T (eas X) = (Tiea, X)) + STCEIE

The second Bianchi identity

(3.14) 3 {(VAR)(B,O,D,E) + R(T(A, B),C,D,E)} ~0
(A,B,C)

and (2.3) give

3
(3.15) 3 [(VXR)(Y, ZV,W)+23 wi(X,Y)R(, Z,V, W)} —0.
(X,Y,Z) s=1
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We obtain (3.15) and (2.3) that

(3.16) (Ve,R)(X,Y, Z,eq) — (Vx Ric)(Y, Z) + (Vy Ric)(X, Z)
- 22[ (&,Y, Z, 1,X) — R(£5, X, Z, 1Y) 4 wy(X, Y)Ric(&, Z) = 0.

Letting X = e,,Y = Le, in (3.15) we find
(3.17) (Ve ,R)Iieq, Z,V,W) + 20(Vz7;)(V, W)
+22n—1)R(&,Z,V,W) +2R(&;, I Z,V,W) — 2R(&, ; Z,V,W) = 0.

After taking the trace in (3.17) and applying the formulas in Theorem 2.4 we come to

(3.18)  (2n —1)pi(&:, X) — 2pi(Ix X, &) =

—% (Ve, T (ea, X) 4+ (Ve, T (Lieq, LX) | — (Ve,U)(X, €q) +

Now, (3.13) and (3.18) yield (3.7).
Finally, from (3.1) and an application of (2.3) and Proposition 2.4 we verify that (3.6) holds. O

2n—1

mX(Scal).

As consequence of Theorem 3.1 we obtain the next important Proposition.

Proposition 3.2. A QC manifold is locally isomorphic to the quaternionic Heisenberg group exactly
when the curvature of the Biquard connection restricted to H vanishes, R, = 0.

Proof. Taking into account [ , Proposition 4.11], in order to see the claim it is sufficient to show
that the (full) curvature tensor vanishes. From R, = 0 we can conclude, cf. [ , Proposition 4.2,
Proposition 4.3, Theorem 4.9], that the vertical distribution V' is involutive and

(319) pt\H = Tt‘H = Ct‘H = Pt(§= )|H = Ct(§7 )|H = Tt(§7 )|H = RZC(é-a )| - T(gsu ) =

Applying (3.19) to (3.5) and (3.6) allows us to conclude R(¢,X,Y,Z) = R(§;,§;,X,Y) = 0.
Furthermore, (2.6) yields R(X,Y,¢.&) = 2p4(X,Y) = 0, R(X,&&.6;) = 2pr(X,€) = 0, and
AnR(Ex &, 6.65) = Snpp(€a €1) = 2R(Ex €1, ea, Ixea) = 0, which ends the proof. 0

4. QUATERNIONIC CONTACT CONFORMAL CURVATURE. PROOF OF THEOREM 1.1

In this section we define the quaternionic contact conformal curvature and prove Theorem 1.1.

4.1. Conformal transformations. A conformal quaternionic contact transformation between two
quaternionic contact manifold is a diffeomorphism ® which satisfies ®*n = p ¥ - 7 for some positive
smooth function g and some matrix ¥ € SO(3) with smooth functions as entries, where n =
(m1,m2,n3)! is considered as an element of R®. The Biquard connection does not change under
rotations, i.e., the Biquard connection of ¥ -7 and n coincides. Hence, studying qc conformal
transformations we may consider only transformations ®*n = u 7.

We recall the formulas for the conformal change of the corresponding Biquard connections from
[ ]. Let h be a positive smooth function on a QC manifold (M, n). Let 7 = 5= be a conformal
deformation of the QC structure 7. We will denote the objects related to 77 by over-lining the same
object corresponding ton. Thus, dn = —# dh An + %dm g= %g.

The new triple {&1,&2,&3}, determined by the conditions (2.1) defining the Reeb vector fields, is
& = 2h& + I,Vh. The horizontal sub-Laplacian and the norm of the horizontal gradient are
defined respectively by Ah = tr};(Vdh) = Vdh(ea,ea), [Vh]* = dh(eq)dh(eq). The Biquard
connections V and V are connected by a (1,2) tensor S,

(4.1) VaB =V 4B+ S4B, A,BeT(TM).
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Condition (2.3) yields g(SxY, Z) —g(Sy X, Z) = —h~' 32%_, wi(X,Y)dh(I,Z), while V§ = 0 implies
9(SxY,Z)+ g(SxZ,Y) = —h~1dh(X)g(Y, Z). The last two equations determine g(SxY, Z),

3
(42) g(SxY,2) = —(2h) " {dn(X)g(Y, Z) = > dh(I,X)w,(Y, Z)
3 B 3
+dh(Y)g(Z, X)+ Y dh(1Y)ws(Z,X) — dh(2)g(X,Y) + Y dh(I,Z)ws(X,Y)}.

s=1 s=1

Using Theorem 2.1 we obtain after some calculations

(43) 9(Te, X,Y) = 2hg(Te, X, Y) — g(S¢, X, Y)
= —Vdh(X,,Y) 4+ b= (dh(IsX)dh(I,Y) — dh(I,X)dh(I5Y)).

The identity d? = 0 yields Vdh(X,Y) — Vdh(Y, X) = —dh(T(X,Y)). Applying (2.3), we have

3
(4.4) Vdh(X,Y) = [Vdh] [sym)] (X,Y) - Z dh(&s)ws(X,Y),

s=1

where [.](sym] denotes the symmetric part of the corresponding (0,2)-tensor. Decomposing (4.3) into
[3] and [-1] parts according to (2.4), using the properties of the torsion tensor T¢, and (2.7) we come
to the next transformation formula | ]

(45)  g(S:X,Y) = —i [ — Vdh(X,LY) + Vdh(I; X,Y) — Vdh(I; X, I,Y) + Vdh(I X, ij)]

— (2n)! [dh(IkX)dh(IjY) — dh(I; X)dh(IyY) + dh(L; X)dh(Y) — dh(X)dh(IiY)}

+ ﬁ (=Ah+ 207 VA*) wi(X,Y) — dh(&)w; (X,Y) + dh(&))wi(X,Y).

4.2. Quaternionic contact conformal curvature. Let (M,g,Q) be a (4n+3)-dimensional QC
manifold. We consider the symmetric (0,2) tensor L defined on H by the equality

(4.6) L(X,Y)= ( Ric_y) +

1 .
(@n +5) el

1 1
An+1) 32n(n+2)80alg)(X’Y)
Scal

mg(XvY)a

1
= 5TO(X,Y) +U(X,Y) +

where Ric;_y) is the [-1]-part of the Ricci tensor and Ricys)jo) is the trace-free [3]-part of Ric and we
use the identities in Theorem 2.4 to obtain the second equality.
Let us denote the trace-free part of L with L, hence

1
(4.7) Lo = ———Ric;_y +

. 1y
nt 1) Ricpgjo) = §T + U,

1
2(2n+5)

We employ the notation for the Kulkarni-Nomizu product of two (not necessarily symmetric)
tensors, for example,

(wWs®OL)(X,Y,Z,V) :=ws(X, Z)L(Y,V)4ws (Y, VL(X, Z)—ws (Y, Z) L(X,V)—ws(X,V)L(Y, Z).
We also note explicitly that following usual conventions we have

LL(X,Y)=g(I,LX,Y) = —L(X,LY).
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Now, define the (0,4) tensor WR on H as follows

3
(48) WR(X,Y,Z,V)=R(X,Y,Z,V)+ (g O L)X, Y, Z,V) + Y (ws ® LL)(X,Y,Z,V)

s=1

- % 3 wilX,Y) {L(Z, LV) = L(LZ, V) + LU; Z,,V) — L(Is Z, IjV)}
(4,4,k)
3 1 3
=Y w2, V) [L(X, LY) - L(I.X, Y)] + 5 (trL) D we(X,Y)ws(Z, V),
s=1 n s=1
where Z(i,j,k) denotes the cyclic sum.
A substitution of (4.6) and (4.7) in (4.8), invoking also (2.8) and (2.9), gives

3
(49) WR(X,Y,Z,V)=R(X,Y,Z,V)+ (g ® Lo)(X,Y, Z,V) + Z(ws O I;Lo)(X,Y,Z,V)

= % > {TZ,LV) =T 2,V) | + (2, V) { T(X, 1Y) = T°(,X, V)~ 4U (X, LY) }
% [(g®9)(X7Y7 2, V) + i((ws O ws)(X,Y, Z, V) + dws(X,Y)ws(Z, V))]

s=1
Proposition 4.1. The tensor W R is completely trace-free, i.e.
Ric(WR) = ps(WR) = 7,(WR) = (,(WR) = 0.
Proof. Proposition 2.3, (2.8), (2.9) and (4.6) imply the following identities
1
(410)  T°(6,LX.Y) =3 [L(X, Y) - L(LX, ISY)}
1 1
(4.11) UX)Y) = 1 [L(X, Y)+ L(L X, 1Y)+ L(I,X,LY) + L(I3X,I3Y) — —tr Lg(X,Y)
n
1
(412)  T(& X,Y) = =3 [LLX,Y) + L(X, LY)] + U(LX,Y)

- —%L(IiX, ) - %L(X, Ly) - iL(IkX, Ly)+ EL(IjX, LY) — —(tr L) (1, X, Y).

4n
After a substitution of (4.10) and (4.11) in the first four equations of Theorem 2.4 we derive
2 3
Ric(X,Y) = 2220 L g(X, V)
11
L ;L L(X,Y) + g [L(IZ-X, LY) + L(I; X, I;Y) + L{I,X, IkY)}
1
pi(XY) = L(X,LY) = L(LX,Y) = -trLwi(X,Y)
n
1
(4.13) 7i(X,Y) = —=tr Lw;(X,Y)
n
n+2
— [L(IZ-X, Y) = L(X, LY) + L(IuX, [;Y) — L(I; X, IkY)}
2n —1
GX,Y) = Z—tr Lui(X,Y)
n
3 8n +3 1
2 (LX,Y) - LIX,LY) + — | L(IX, Y —LI-X,IY}.
r 2 nrx ) - PR )+ DX, Y) - LX)
Taking the corresponding traces in (4.8), using also (4.13), we can verify the claim. O

Comparing (4.9) with (3.4) we obtain the next Proposition.
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Proposition 4.2. On a QC manifold the [-1]-part with respect to the first two arguments of the
tensor W R vanishes identically,

3
1
WR_ (XY, Z,V) =~ [BWR(X, Y,Z,V) =Y WR(.X,LY,Z V)} =0.
=1

4

The [3]-part with respect to the first two arguments of the tensor W R is determined completely by
the torsion and the scalar curvature as follows

3
1
(414) Wy (X,Y,Z,V) = ] {WR(X, Y.Z,V)+ Y WR(LX,LY,Z. V)}

s=1
3 3
ﬂR(X Y, Z,V) + ;R(ISX,I Y, Z,V) } - %le (Z,V) [TO(X, LY) - T°(I, X, Y)}
Scal 3

m[( 9)(X,)Y, Z)V) +;ws®ws X,Y,Z,V)}

3
+(gO U)X, Y, Z,V)+ > (we® LU)X,Y,Z,V).
1

Definition 4.3. We denote the [3]-part of the tensor W R described in (4.14) by W, W° := W Ry3

and call it the quaternionic contact conformal curvature.
4.3. Proof of Theorem 1.1. The relevance of W R is partially justified by the following Theorem.
Theorem 4.4. The tensor W R is invariant under qc conformal transformations, i.e. if
7= (2h) "y then  WR;=WR,,
for any smooth positive function h and any SO(3)-matriz V.

Proof. After a long computation based on (4.1), (4.2), (4.5), and a suitable computer program the
relation between the curvature tensors R and R was computed by I.Minchev [M] and presented to us
in 10 pages. After a careful study of the structure of the equation we put the output in the following
form

(4.15) 2hg(R(X,Y)Z,V) — g(R(X,Y)Z,V)
=—gOM(X,Y,Z,V)— Zws M)(X,Y,Z,V)

+ % > wilX, V)| M(Z,LV) = M(LZ, V) + M(LZ,LV) = M(LZ, 1,V
(138)

—g(Z,V) [M(X, Y) - M(Y, X)} + iws(Z, V) [M(X, LY) — M(Y, ISX)}
s=1

3

1 1

— (M) les (X, Y)wu(ZV) + 5 (;ﬁ) M; [wj(X, Y)wi(Z,V) — wi(X, Y )w; (Z, V)} ,
5= 575

where the (0,2) tensor M is given by

3
1 1 1 ,
(416) M(X,Y) =5 (th(X, Y)- o [dh(X)dh(Y) + ;:1 dh(1,X)dh(LY) + 59(X,Y)|dh] ])
and trM = M (eq, €q), Ms = M(eq, Ise,) are its traces. Using (4.16) and (4.4), we obtain

(4.17) trM = (2h)~! (Ah —(n+ z)h—1|dh|2), M, = —2nh='dh(,).
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After taking the traces in (4.15), using (4.16) and the fact that the [3]-component (Vdh)s of Vdh
on H is symmetric, we obtain

2n + 3 Scal
o Mo S

The Sp(n)Sp(1)-invariant, [-1] and [3], parts of (4.18) are

(4.18) Ric — Ric = 4(n + 1) Mgy, + 6M3 + — Scal = 8(n + 2)trM.

_2n+5 2n+3

(4.19) (% — Ric)[_l] =(n+ 1)M[5ym][_1], (% — RiC)[g,] =3 Mz + o (tr M) g.
The identities in Theorem 2.4, equations (4.18) and (4.19) yield
1 S 1 S 2n + 3 -
4.20) M, = | ———=Ric_ ——Ricpg) — Scalg
(4:20) Misymy (4(n+ D T 30 1 5) B T Sy 2y 2n 5 9>
1 1 2n+3
— | ——=Ric— —— Ricpg) — Scal
(4(n O 50 15 B T Banm 2y 2n 4 5) g)
11— — Scal 1 Scal
= |=T0 — g - |=1° T AL
[2 Ut S 2) g} [2 Ut S 2) g}

Now, from (4.16) and (4.4) we obtain

3
(4.21) M(X,Y) = M[sym](Xﬂ Y) - %Zdh(ﬁs)ws(X, Y).

s=1

Substituting (4.20) in (4.21), inserting the obtained equality in (4.15), and using (4.17) completes
the proof of Theorem 4.4. O

At this point, a combination of Theorem 4.4 and Proposition 4.2 ends the proof of Theorem 1.1
as well.

5. CONVERSE PROBLEM. PROOF OF THEOREM 1.2

Suppose W9¢ = 0, hence W R = 0 by Proposition 4.2. In order to prove Theorem 1.2 we search for
a conformal factor such that after a conformal transformation using this factor the new qc structure
has Biquard connection which is flat when restricted to the common horizontal space H. After we
achieve this task we can invoke Proposition 3.2 and conclude that the given structure is locally qc
conformally flat. With this considerations in mind, it is then sufficient to find (locally) a solution h
of equation (4.21) with M[,,) = —L. In fact, a substitution of (4.21) in (4.15) and an application
of the condition W9 = 0 = WR allows us to see that the qc structure 7 = %n has flat Biquard
connection.

Let us consider the following overdetermined system of partial differential equations with respect
to an unknown function u

3
(5.1) Vdu(X,Y) = —du(X)du(Y)+ > [du(IsX)du(IsY) — du(&)ws(X,Y)

s=1

1
+ 39XVl — L(X,Y)

(5.2) Vdu(X,&) =B(X,&) — L(X, Lidu) + %du(IiX)|Vu|2
— du(X)du(&) — du(L; X)du(§r) + du(lp X )du(§;)
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(5.3) Vdu(&, &) = —B(&, &) + B(lidu, &) + iIVUI4 — (du(&))* + (du(&;))? + (du(&))?,
Scal

B4)  Vdul.6) = (&) + Bllidu, &) 2u(E)ulSs) — 1o idul6)
(5.5)  Vdu(en&) = —B(6n &) + B(Lidu, &) — 2du(€)du(€y) + %du@)-

Here the tensor L is given by (4.6), while the tensors B(X,¢;) and B(&;,&;) do not depend on the
unknown function v and will be determined later in (5.10) and (5.24), respectively. If we make the
substitution

2u = Inh, 2hdu = dh, Vdh = 2hVdu + 4hdu ® du,

in (4.16) we recognize that (4.21) transforms into (5.1). Therefore, it is sufficient to show that the
system (5.1)-(5.5) admits (locally) a smooth solution.

The integrability conditions for the above considered over-determined system are furnished by
the Ricci identity

(5.6) V2du(A, B,C)—V?du(B, A,C) = —R(A, B, C,du) —Vdu((T(A, B),C), A,B,C €T(TM).

Since (5.6) is Sp(n)Sp(1)-invariant it is sufficient to check it in a gqe-normal frame.

The proof of Theorem 1.2 will be achieved by considering all possible cases of (5.6). It will be
presented as a sequel of subsections, which occupy the rest of this section. Let us remind that the
goal is to show that the vanishing of the qc conformal tensor W2¢ implies the validity of (5.6) which
guaranties the existence of a local smooth solution to the system (5.1)-(5.5).

5.1. Case 1, A, B,C € H. Integrability condition (5.9).
When we consider equation (5.6) on H it takes the form

(5.7) V2du(Z,X,Y) - V?du(X,Z,Y) = —R(Z, X,Y, du)

—2w1(Z, X)Vdu(&1,Y) — 2wa(Z, X)Vdu(£2,Y) — 2ws(Z, X)Vdu(&s,Y),
where we have used (2.3). The identity d?u = 0 gives
(5.8) Vdu(X,&,) - Vdu(&,, X)) = du(T (€, X)) = T(&, X, du)

After we take a covariant derivative of (5.1) along Z € H, substitute the derivatives from (5.1) and
(5.2), then anti-commute the covariant derivatives, substitute the result in (5.7) and use (4.8) with
W R = 0 we obtain, after some standard calculations, that the integrability condition in this case is

(5'9) (VZL)(X7 Y) - (VXL)(Z7 Y)
3
= 3 [wa(Z VIB(X, &) - w, (X, Y)B(Z,€,) + 2, (2, X)B(Y, &) .
s=1

For example, we check below that the term involving wi(Z, X) is 2B(Y,&;1). Indeed, the coefficient
of wi(Z,X) in (5.7) is calculated to be

- % [L(Y, V) — L(I,Y, Vu) + L(LY, 3Vu) — L(13Y, IQVu)] + % du(1,Y)
—2Vdu(&1,Y) + du(lLY)|Vul* — 2du(é1)du(Y) — 2du(&3)du(1oY) + 2du(&)du(13Y)
— _% {TO(Y, LVu) -T°(L,Y, Vu)} + % du(IY)+2L(Y, 1 Vu) +2du(T(&1,Y)) + 2B(Y, &1)

_ _% [TO(Y, LVu) — T(1LY, vu)] +TY, [Vu) +2U (Y, 1 Vu) + 2 [dU(TO(&, Y))+U(LY, V“)}
+2B(Y,&1) = 2B(Y, &),

where we used (5.8), (4.6) and the properties of the torsion described in (2.8),(2.9) and Proposi-
tion 2.3.
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At this point we determine the tensors B(X, ¢;). Thus, we take the traces in (5.9) which give the

next sequence of equalities
(Ve L)Tieq, ;X)) = (Adn+ 1)B([; X, &) — B(L; X, &) — B(Ik X, &)

3
(5.10) >_B(LX.&) =
y 1
220 +1)

where the second equality in (5.10) is precisely equivalent to (2.11).
We turn to a useful technical

3
> (Ve L)(Isea, I,X)

s=1

1
4n —1

[(Vxctr L= (Ve,L)(ea X)] =

wl

B(X,&) = [(VGQL)(IZ-ea, X)+ %((VGQL)(%, LX) — Vi xtr L)}

Lemma 5.1. The condition (5.9) is equivalent to
(VZL)(X7Y)_(VXL)(Z7Y):O mod g9,wW1,w2,ws.
Proof. The condition of the lemma implies
3

> [ (Z Y )B(X, &) — wi (X, V)B(Z,6) + 20,(Z, X)B(Y, &)

s=1
for some tensors C(X), B(X,¢,) due to the vanishing of the cyclic sum }_ , v, [(V2zL)(X,Y)
(VxL)(Z,Y)] = 0. Taking traces in (5.11) we obtain

(Ve L)Tieq, ;X) = (dn + 1)B(I; X, &) — B(L; X, &) — B(Ik X, &) + C(I; X)

3
(Ve,L)(ea, X) = Vxtr L =Y (=3B(LX, &) + (4n — 1)O(X))

s=1
3 3
> (Ve L)(Isea, LX) = > (4n — 1)B.(I.X, &) + C(I.X)
s=1 s=1

The last two equalities together with (2.11) and its consequences (5.10) yield

3
(5.12) (4n —1)’C(X) +3>_ C(I.X) =0.
s=1
Solving the linear sistem (5.12), we see ((4n — 1)* + 3*)C(X) = 0. Hence, C(X) = 0.
Proposition 5.2. If W = 0 then the condition (5.9) holds.
Proof. Suppose W€ = 0, use (3.16) and apply (4.8) to calculate

(513) (Ve R)(X,Y,Z,e0) = —(VyL)(X, Z) + (VxL)(Y, 2)

3
+3 [(VISyL)(X, 1.2) = (Vi.xL)(Y,I,Z) + (V1.zL)(X, LY) — (V1.zL)(I.X, Y)} mod g, ws.

s=1
Substituting (4.10), (4.11) in (3.5) we come to

3
(5.14) -23° [R(gs, Y, Z,I,X) — R(&, X, Z, ISY)}

s=1

=3 [(Vir X 1.2) = (Vix L)Y, L.2) + (Viy L)LX, Z) = (Vi,x L) (LY, 2)]

s=1

+

N W

S [(Tv DX, 2) — (Tx L)Y, 2) + (Vy D(LX.1L,Z) = (VX D)LY 1.2)] mod g,

s=1
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The second Bianchi identity gives 3y y ) Vxpi(Y,Z) =0 mod g,w,. Use (4.13) to see

3
(5.15) 3((VyD)(X,2) = (VxL)(Y,2)) + > (Vv D(LX, L.Z) = (VX D)LY, 1,Z))

s=1

3
+Z[(V;SZL)(X, LY) — (V12 L)X, Y)} —0 mod g,ws.
s=1
A substitution of (5.13), (5.14), (5.15) and (4.13) in (3.16) shows, after some standard calculations,
the following identity

3
(5:16) (4n+3)[(VyL)(X, 2) = (VxD)(Y 2)] + 3| (Vv DX, 2) = (Vi,xL)(LY. 2)]
3
w2y [(VYL)(ISX, LZ)—(V1.x L)Y, I,Z)+V 1.y L)(X, [,.Z)—(Vx L)(Y, ISZ)} —0 mod g,ws.

s=1

Taking the [3]-component with respect to X,Y in (5.16) yields

3
(5.17) (VyL)(X,2) ~ (VxL)(Y. 2)+ {(VISYL)(ISX, Z)— (Vi.xL)(LY, Z)} —0 mod g,ws.
A substitution of (5.17) in (5.16) gives
3
(5:18) 20 |(VyD)(X, 2) = (Vx L)Y, 2)| + Y [(Viy D)X, 1,Z) = (Vx L)LY, 1,Z)]
s=1
3
+(VyL)(X,Z) — (VxL)(Y, Z) + Z[(VyL)(ISX, 1,Z) — (VixL)(Y, ISZ)} =0 mod g,ws.
s=1

Taking the [-1]-component with respect to X, Z of (5.18), calculated with the help of (5.17), yields
3
(5.19) (6n = D)[(VyL)(X, 2) = (VxL)(Y, 2)| + 4 (Vv DX, 1,2) = (Vx D)LY, [,7)

s=1
— @0+ 1) Y [(Vy DX L.2) = (Vix L)Y, LZ)| =0 mod g,w,.
s=1
The equations (5.18) and (5.19) lead to

3
(VyL)(X,Z) = (VxD)(Y,Z) + 3 [(Vy D)X, 1,2) = (Vix L)Y, LZ)| = 0 mod g,w,.

s=1

The latter and (5.18) imply
(5.20) (2n — 1) [(VyL)(X, Z)— (VxL)(Y,Z)| =0 mod g,w,
and Lemma 5.1 completes the proof of (5.9). O

5.2. Case 2, A,Be€ H, C €V. Integrability condition (5.23).
In this case (5.6) turns into
(5.21) V2du(Z,X,&) — Vidu(X,Z,&) = —R(Z, X, &, du) — Vdu(T(Z, X), &) =
— 2wi(Z, X)Vdu({z, 51) — 2Wj(Z, X)Vdu(gj, 51) — 2wk(Z, X)Vdu({k, 51),
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after using (2.3) and (2.6). Taking a covariant derivative of (5.2) along Z € H, substituting in the
obtained equality (5.1) and (5.2), and anti-commuting the covariant derivatives we see
(5:22) V*du(Z, X,&) = Vidu(X, Z,&) = (VZB)(X, &) — (VxB)(Z,&)

+ other terms comming from the wuse of (5.1) and (5.2).

Substitute (5.22) into (5.21) use (5.9) proved in Proposition 5.2, also (5.3), (5.4), (5.5) and the
second equation in (4.13) to get after some calculations that (5.21) is equivalent to

3
(5.23)  (V/B)(X.&) — (VxB)(Z,&) — L(Z LL(X)) + L(X, [L(Z)) = 3 2B(&,, &)ws(Z, X),

s=1
which is the integrability condition in this case. The functions B(Es, &) are uniquely determined by
1
(5.24) B(§, &) = o (Ve B)(Useas &) + Licas &) LLieas Lser) .
Proposition 5.3. If W1 = 0 then the condition (5.23) holds.

Proof. To prove the assertion it is sufficient to show that the left hand side of (5.23) vanishes
mod ws. Differentiating (5.9) and taking the corresponding traces yields

(5.25) (V2 1e L)(X,Y) = (V2 xL)(Iiea,Y) = —(VyB)(X, &) — 2(VxB)(Y, &)
+ (Vi B)(X, &) +2(VixB)(Y, &) — (Vi,yB)(X, &) — 2(Vi, xB)(Y, &)

(5.26) (V2 xL)(Liea,Y) = (V2, yL)(Lica, X) = (VxB)(Y,&) — (VyB)(X, &)
+ (Vi vyB)(X, &) — (VixB)(Y, &) — (Vv B)(X, &) + (Vi xB)(Y, &) mod  ws
(5.27) (V?X,ea L)(ITie,,Y) = (dn+1)(VxB)(Y, &) — (VxB) (1Y, &) + (VxB)(L;Y, &) mod ws
(5.28) —VX nytr L+(Vi ., L)(ea, [;Y) = 3(VxB)(Y,&) = 3(VxB) (1Y, &) + 3(VxB)(L;Y, & ).
From equalities (5.26) and (5.27) we obtain
(5:29) [V, = V2 x| Lo, Y) + [V2, 3 = V3, | L(Liea, X)
— In[(VxB)(Y,&) — (VyB)(X,&)
~ [(VxB)1Y, &) + (Viy B)(X, &) — (VyB) (1 X, &) = (V1,xB)(Y, &)]
+ [(VxB)LY. &) + (ViyB)(X, &) — (VyB)(;X, &) = (VixB)(Y.6)|  mod w,.
On the other hand, the Ricci identities
(5.30) {v%m - vgmx} L(Iiea,Y) = —R(X, ea, Y, e5) Les, [iea) — 4nCi(X, ea) L(Y, €q)
2(Ve, L)(X,Y) = 2(Ve, L) ([ X, Y) + 2(Ve, L) ([; X, Y)
and the first Bianchi identity (3.2) imply
(5.31) [vﬁm - vga,X}L(Iiea, Y) + [vgay - v;ea} L(Iiea, X) =
—2[(Ve, L)X, V) = (Ve D)(X, 1Y) + 2| (Ve L) (I;X,Y) = (Ve, L)(X, I;Y)
+2T(&,Y, e)L(X,eq) —2T(&;,Y, e0) L(Ik X, €q) + 2T (&, Y, €0) L(1; X, €4)

— 2T (&, X, eq)L(Y,eq) + 2T (&5, X, ea) L(ILY, eq) — 2T (&k, X, eq) L(1;Y, €4)
— R(X,Y, eq,ep)L(ep, Iieq) — An[Gi(X, ea)L(Y, €q) — Gi(Y, e0) L(X, e4)] mod  ws.
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The second equality in (4.13) and a suitable contraction in the second Bianchi identity give the next

two equations valid mod wy
(Ve, L)(X. 1Y) — (Ve, L)1, X,Y) = (Ve, pi)(X. Y)

(
(5.32) = (Vxpr) (&, Y) = (Vype)(&, X) — pr(T(&5, X), Y) + pr(T(§5,Y), X)
. (ngL)(X, IjY) - (kaL)(Iij Y) = (kapj)(Xv Y)

)

= (Vxpj) (&, Y) = (Vypi) (&, X) — pi (T &k, X), Y) + p; (T(&k, Y), X).

A substitution of (4.10), (4.11) in equations (3.7), together with a use of (5.9) and an application
of (5.10) give the next
Lemma 5.4. We have the following formulas for the Ricci 2-forms
pr(&i, X) = B(X, §;) — B(Ie X, &) pi(&r, X) = =B(X,§;) — B(Li X, &)
(5.33) 1
pi(X, &) = ~ 5, drL)(X) + B(LX, &)

When we take the covariant derivative of (5.33), substitute the obtained equalities together with
(5.31), (5.32), in (5.29) we derive the formula

(5:30) (4n+2)[(VxB)(Y,&) — (VyB)(X,&)] + [(Vi,xB) ;Y. &) — (Vi,yB) (X, &)]
+ [(VixB) Y &) — (Vi BB X&) = FX,Y) mod w,,
where the (0,2)-tensor F' is defined by
(5.35) F(X,Y)=—R(X,Y,eq es)Lley, liea) — 4n [Q(X, ea)L(Y, ea) — Gi(Y, ea) L(X, ea)}
2T(6, Y, ea) L(X, ea) — 2T(&, Y, ea) LUk X, €a) + 2T(€x, Vi ea) L X, €4)
—2T(&, X, ea)L(Y,eq) + 2T (&5, X, ea) L(ILY, €q) — 2T (€, X, ea) L(L;Y, €4)
(

(
+ 05(T(&r, X),Y) = pi (T (&, V), X) + pi (T (&k, 1;X), 1;Y) = pi (T (&, I;Y'), I; X)
_pk(T(£j= )7 )+pk( (§j7 )7 ) ( (gjvlkX)vlkY)""_pk( (gjvlkY)JIkX)'

Solving for (VxB)(Y,&;) — (VyB)(X, &) we obtain
(5.36) 16n(n+1)(2n+1)[VxB)(Y,&) - (VyB)(X, &)

= (8n2+8n+ 1)F(X,Y) + F(LX,LY) — (2n+ 1) [F(Ijx, LY) + F(I, X, IkY)} mod  w,.
The condition W7 = 0 and (4.8) give

(5.37) —R(X,Y,eq,ep)L(Lieq,ep) =4L(X, eq)L(Y, Lie,) — 2L(X, eq) L(1;Y, €4)
4 2L(LX, ea) L(Y, e0) + 2L(X, ea) L(LY, Inea) — 2L(IuX, ) L(Y, Ijca)

—2L(X, ea) L(ILY, Ijeq) + 2L(I; X, ea) L(Y, Iyey) — tr L [L(X, LY) - L(LX,Y)|.

Using (4.13), we get

(5.38) —4n|G(X,eq)L(Y,eq) — Gi(Y,eq) L(X, ea)} =—(8n+3)L(X,e,)L(Y, Lies)

C}.’)

+ 30X, e L(LY, e0) — %L(IiX, o) L(Y, eq) — %L(X, e) LY, Inea) + %L(IkX, ) L(Y, Ijea)

[\

+ §L(X7 eo)L(ILY, Iieq) — %L(IjX, eq)L(Y, Ie,) + 1trL[L(X, LY)-L(L;X,Y)|.
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From (5.37) and (5.38) we have

(5.39) = R(X,Y,ca e0)L(lica, &) = 4n[G(X, €) LY, €0) = (Y, €a) L(X, €4)|
=—(8n—1)L(X,e.)L(Y, Lie,)— %L(X, ea)L(L;Y eq)+ %L(IiX, ea)L(Y,eq)+ gL(X, eqa)L(L;Y, Ize,)
- gL(IkX, ea)L(Y, Lieq) — gL(X7 ea) L(ILY, Iieq) + gL(IjX, ea) L(Y, Ieq)

21 (trL) [L(X, LY) — L(LX, Y)]

n

— —(8n — 1)L(X, ea)L(Y, Lie,) — 21 (trL) [L(X7 LY) - L(I X, Y)}

n
+ % L(Y, ea) L(Ii X, ) — L(X, ea) L(L;Y, ea)} - g[L(Y, ea)L(L; X, Ivea) — L(X, ea) L(I,Y, Ikea)}
+ g [L(Y, ea) LULX, Iieq) — L(X, ea) L(ILY, Ijea)] :
Since p; is a (1,1)-form with respect to I, see Proposition 2.4, we have
pi (T (&, 1;X), ;Y') = pj(ea, Y )T (&, I; X, €a) = pj(ea, Y )T (&, 1; X, Ijea).
Thus, using (4.13) we obtain the next sequence of equalities
(5.40)  p; (T (&, X),Y) + pj (T (&, 1; X), I;Y) — pr(T (&5, X), Y) = pi(T(&5, 16 X), 1Y)
- [L(ea, LY) - L(Ijeq,Y) — %terj(ea, Y)] [T(gk, X, eq) + T(Ex, I; X, Ijea)}

- [L(ea, LY) — L(Ixea,Y) — %terk(ea, Y)] [T(gj, X, eq) + T(&;, I X, Ikea)}

(541)  pj(T(&k, X),Y) + pi (T (&, 1; X), I;Y) — pi(T(&5, X), Y) = pr(T(&5, 1 X), 1Y)
—9T(€1, X, ea) L(Y, €q) + 2T(&;, X, ea) LY, €q) — 2T(€x, X, €a) L(I; Y, €4)
= L{eas V) [T(60 X, Ljew) = T(. LXK, 00) = T( X Inea) + T(€5, X, €0) = 27(6, X, e0)]
+ Lea, I;Y) [T(gk, LX, Liea) — T(Er X, ea)| — L(ea, IY) | T(&), I X, Inea) — T(&;, X, ea)}
- %tr L[ —T(r, X, I;Y) + T(&, X, Y) - T(&, X, Y) + T(&;, X, Iky)] .

The first line in (5.41) is equal to

1 1
(5.42) o-tr LL(LX,Y) + 5L(Y.eq) [5L(X, Lica) — L(IiX, ea) + LI X, Iyea) — L(Iu X, Ijea)} :

The second line in (5.41) is equal to

1
(5.43) -trL [L(IkX, LY) - L(I; X, IkY)} +L(X, eq) [L(Iky, Liea) — LY, Ikea)}
— L X, ea) L(LY, Liea) — L(Iu X, ea) LULY, Lica).

The third line in (5.41) is equal to

1
(5.44) —o-trlL [L(IkX, LY) - L(L;X, YY) — L(X,LY) + L(I X, Y)] .
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A substitution of (5.42), (5.43) and (5.44) in (5.41) gives

(5.45)  pj(T(&k, X),Y) + pi (T (&, 1; X), I;Y) — pi(T(&5, X), Y) = pr(T(&5, 1k X), 1Y)
- QT(&, X7 ea)L(Y7 ea) + 2T(£j7 Xu ea)L(Ikya ea) - 2T(§k7 X7 ea)L(ijv ea)

1 1
= oo tr LL(X,LY) + 5 L(Y,e,) [5L(X, Liea) — L(LX, e0) + L(I; X, Irea) — L(Iu X, L)
n
+L(X, eq) [L(IkY, Iiea) — L(I,Y, Ikea)} — L(I; X, ea) L(L;Y, Tiea) — L(Iu X, ea) LY, Tiey).

The last four lines in (5.35) equal the skew symmetric sum of (5.45), which is equal to
1
(5:46) = 5L(X, ea)L(Y, Iica) = 5 | L(YV: ea) L(LX, €a) = L(X, ea) L(LY: €0)]

+ g [L(Y, ea)L(I; X, Inea) — L(X, ea) L(I,Y, Ikea)} - g [L(Y, ea) LU X, Iieq) — L(X, ea) L(I1Y, Ijea)}

+ %trL [L(X, LY) - L(L;X, Y)] —2L(I; X, ea) LY, Lieq) — 2L(I1X, ea) (1Y, Lica).
A substitution of (5.39) and (5.46) in (5.35) yields
(5.47) F(X,Y) = —42n+1)L(X, ea) L(Y, Liea)—2L(1; X, ea) L(LY, Lica)—2L(Iu X, ea) L(L,Y, Liea).
Inserting (5.47) in (5.36) completes the proof of (5.23). O

5.3. Case 3, A€V, B,C € H. Integrability condition(5.49).
In this case (5.6) reads

(5.48) V2du(&, X,Y) — V2du(X,&,Y) + Vdu(T(&,X),Y) = —R(&, X, Y, du).
The identities below can be used to see that the integrability condition (5.48) reduces to

(5.49)  (Ve, L)(X,Y) + (VxB)(Y, &) + L(Y, LL(X)) + L(T (&, X),Y) + g(T'(&, Y), L(X))

3
— ZIB%(&,&)%(X, Y), t=1,2,3.

s=1

Notice that (5.23) is the skew-symmetric part of (5.49).

We turn to the proof of the fact the vanishing of W% implies the validity of (5.49). When we take
a covariant derivative along a Reeb vector field of (5.1) and a covariant derivative along a horizontal
direction of (5.2), use (5.2), (5.1), (5.3), (5.4), (5.5), (5.8), we see that the left hand-side of (5.48)
equals

(5.50) VZdu(& X,Y) — V2du(X,&,Y) + Vdu(T (¢, X),Y)

= du(Y) |B(I; X, &) — 41 d(tr L)(X)| +du(L;Y) [B([; X, &) + B(X, &)

+ du(LY) B[k X, &) — B(X, &;)] + g(X, Y)B(du, &)
— Wy (X, Y)B(Izdu, 51) — Wj (X, Y)B(IJ du, 51) — Wk (X, Y)B(Ikdu, 51)
— du(X)B(Y, &) + du(LX)B(LY, &) + du(L; X)B(LY, &) + du(1,X)B(IY, &)

1 1 1 1
+ 7 (Vx L)Y idu) = 2V L)LY, du) = 2(Vx D)LY, Ldu) + 2 (Vx L)(1;Y, Tdu)

= (Ve, L)(X,)Y) —(VxB)(Y,&) + L(X, LLY) = T(&, X, LY) = T(&,Y, LX)
+ Wi(Xv Y)B(§17 51) + wj(Xv Y)B(§17 5]) + wk(Xv Y)B(gla gk)

On the other hand, a substitution of (4.10) and (4.11) in (3.5), and an application of (5.33) together
with the already proven (5.9) and (5.23), shows after a long standard calculations the following
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equality
(5:51) R(E, X,Y, Z) = B Z,6)w; (X, ) + B Z, &) (X, V)

- Y. 2) [BUX,6) = -durL)(X)] - y(%, 2) [BIX.6) + B, X. &)

+ (Y, 2) [BX, &) — BULX, &)] + 9(X, Z)B(Y; &) — wi(X, Z)B(LY, &)

—wj(X, Z)B(L;Y, &) — wi(X, Z)B(IkY. &) — g(X,Y)B(Z,&) + B(LiZ, &)wi (X, Y)
[V DY 2) — (VDY 12) + (VDY 1,2) ~ (Vx DI, 17)]

In the derivation of the above equation we used the next formulas comming from (5.10)

(5.52) (Vea. L)(Lieq, X) = (4n + 1)B(X, &) — B(Ie X, &) + B(L; X, &)
(5.53) (Ve L)(ea, X) = =3B(1; X, &) — 3B(1; X, &;) — 3B(Ix X, &) + d(trL)(X).

Substituting equations (5.51), with Z = du, and (5.50) in (5.48), we obtain (5.49).
In the proof of the integrability condition we shall use the following

Lemma 5.5. For the vertical part of the Ricci 2-forms we have the equalities
1
pil& &) = g5 (tr L)* —B(&;,&5) — B, &x)

(5.54) 1 .
pil&i, &) = -d(tr L)(&) +B(&. &), pil&, &) = -d(tr L)(&) — B(&, &)

Proof. From the formula for the curvature (3.6) and Proposition 2.2 it follows

4nPi (517 6/@) = (vea pj)(Ijeau gk) + T(é-“ €a, eb)T(&W €b, Iiea) - T(glu €p, Iiea)T(§k7 €a, eb)
4’]’ij (57,7 gk) = _(Veapj)(lieau gk) + T(glu €a, eb)T(£k7 €b, Ijea) - T(glu €a, Ijeb)T(é-ku €b, ea)'

Lemma 5.4 allows us to compute the divergences

(Veapi)Ikea, &) = —(VaB)Irea, &) — (Ve B)(Ijeq,&5)
(Veupi)liea, &) = —(Ve,B)(ea, &) — (Ve B)(Liea, §).

After a calculation in which we use the integrability condition (5.23), the preceding paragraphs
imply the first equation of (5.54). For the calculation of p;(&;, &) we use again (5.23) to obtain

(VBQB)(IZ'EG, §k) = —L(L-ea, Ikeb)L(ea, eb) + 4713(&, gk)

Setting s =i, Y = I, X in (5.57), using (4.13), (4.4) with respect to the function tr L, together with
Lemma 5.4 we obtain

(5:55) [(Ve, L(X, X) + (VxB)(X,&)| + |(Ve, LULX, LX) + (Vi,xB) (L X, &)] =

— pilea, X)|T (&, ;i X, eq) — T(&, X, Lieg) |-
Take the trace in (5.55) and use the properties of the torsion listed in Proposition 2.2 to conclude
(5.56) 2[(Fe,B)(ev, &) + dtrL)(&)] = 2pi(ear @)U (eas ) = 0,

which implies the formula for p;(&;, &) after a short computation.
Finally, with the help of p;(&, &) + p;(&, ) = 15 n+2)§k(Scal) =&(trL), of. [
Proposition 4.4], we also obtain the formula for p;(§;,&;). O

Proposition 5.6. If W1 = 0 then the condition (5.49) holds.
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Proof. Tt is sufficient to consider only the symmetric part of (5.49) since its skew-symmetric part is
the already established (5.23).
Letting A=¢;,B=X,C=Y,D =e,, E = I;e, in the second Bianchi identity (3.14) we obtain

(5.57)  (Veps)(X,Y) = (Vxps) (&, V) + (Vy ps) (s X)

3
+ps(T(6, X),Y) = ps(T(6:, ), X) + 2 wi(X,Y)ps(&,&)-

t=1
Setting s = 7,Y = I; X in (5.57), using (4.13), Lemma 5.4, Lemma 5.5 and (5.23), we calculate

(5.58) |(Ve, L(X, X) + (VxB)(X,&)| + | (Ve, LILX, LX) + (Vi,xB)(L X, &) =
pileas X[ T, X, Tiea) = (&, [ X, a)| + [(VxB)I X, &) = (Vi xB) (X, &)] - 2/ X *B(&;, &)
= 2L(X7 Ikea)L(IjX7 ea) + Pj (em X) [T(§17 X7 Ijea) - (fi, IjX7 ea) .

Similarly, when we take s = k,Y = I} X in (5.57), use (4.13), Lemma 5.4, Lemma 5.5 and (5.23) it
follows

(5:59) [(Ve, L(X, X) + (VxB)(X, &)| + | (Ve, LUK, [k X) + (V1 xB) (I X, &) =
pileas X)[T(6 X, Trea) = T(&i. 1o X, ea)| = [(VXB)IX. &) = (VixB)(X.§)| + 21X PB(; &)
= 2L(IuX, Liea) L(X, €a) + pr(ea; X) [T(gi, X, Inea) — T, 1 X, €0)] -
Finally, replace X with ;X in (5.59), subtract the obtained equality from (5.58) and add the result
to (5.55) to obtain
(5.60) 2{(V5iL(X,X) + (VxB)(X, @)} = 2L(X, Iyea) L, X, eq) — 2L(I; X, Ijea) L(I; X, €,)
= pileas X) [T(& X, e0) = T(&, X, iea)| + pi(ea X) [ T(6 X, Tiea) = T(& [; X, e0)|
+ ooy IX) [T(60, [ X, €0) = T(&, LiX, Lie,)|.

Now, using (4.12) and the second equality in (4.13) applied to (5.60) concludes, after some standard
calculations, the proof of (5.49). O

5.4. Cases 4 and 5, A, B € V,C € H. Integrability conditions (5.66), (5.64) and (5.61).
Case 4, ¢;,§;, €V, Y € H. In this case (5.6) reads

(5.61) V2du(&,&5,Y) — V3du(€;,&,Y) = —R(&,&5,Y, du) — Vdu(T(&,&5),Y).

Working as in the previous case, using (5.3),(5.4), (5.5), substituting (4.10), (4.11) (4.13) into (3.6),
one gets, after long standard calculations applying the already proven (5.9), (5.23) and (5.49), that
(5.61) is equivalent to

(562) (V&B)(X7 5]) - (VEJB)(X7 51) = L(X7 Ijea)B(eaagi) - L(X I'ea) (emfj)
- L(eaa X)pk(jieav 51) - T(gla Xa GQ)B(EG, gj) + T(gja Xa ea) (eaa 51) (tTL) (Xv gk)
= [2L(X, Ijed) + T(¢;, X, ea)}B(ea,&)— [2L(X, Liea) + T(&, X, €a) B(ea,gj)—k%(trL)B(X, ).

where we used Lemma 5.4 to derive the second equality.
Case 5., X € H, ¢&;,& € V. In this case (5.6) becomes

(5.63) V2du(X, &, &) — Vidu(&, X, &) = —R(X, &, &5, du) + Vdu(T (&, X), &) =
2du(&) pr(X, &) — 2du(&r)pi(X, &) + T'(&i, X, eq) Vdu(eq, &5).



CONFORMAL QUATERNIONIC CONTACT CURVATURE AND THE LOCAL SPHERE THEOREM

With a similar calculations as in the previous cases, we see that (5.63) is equivalent to
(5.64)  (Ve,B)(X, &) + (VxB)(&i, &)
1
- 2L(Xa Ijea)]B(eav 51) + T(S’U Xa ea)B(ea; gj) - %t’l”L B(X7 gk) = 0
Case b, X € H, ¢;,§ € V. In this case (5.6) reads
(565) VQdU(Xa gja gj) - v2du(§ja Xa gj) = _R(X7 gja gjv du) + Vdu(T(gja X)v §J) =
2du(§l)pk (XJ 5]) - 2du(€k)pz (X7 5]) + T(é-]a X7 ea)Vdu(eaa 6])

and (5.65) is equivalent to
(5.66) (Ve,B)(X,&) + (VxB)(&,&) — 2B(ea, §)L(X, Ljea) + T(§5, X, ea)Blea,§;) = 0.
Proposition 5.7. If W9 = 0 then the conditions 5.66, 5.0/ and 5.61 hold.

Proof. Differentiating the already proven (5.23) and taking the corresponding traces we get
(5.67) (Vi.e.B)(Tiea, &) + 2(Vx L) (eq, ) L(Liea, Iier) = 4n(V xB) (&, &)

(5.68) (Ve, xB)(Liea, &) = (VE, 1,6, B)X, &) = 2(Ve, L)(X, Tiea) L(Li€n, €a)

= 2(Ve, L) (Liev; ea) L(X, Lrea) = 2(VxB) (&, &) = 2(VixB) (&, &) + 2V xB) (& &)
Subtracting (5.68) from (5.67) we obtain
(5.69) |Vi., — vng}B(Iiea,gt) + (V2 1,0 B) (X, &) +2(Ve, L) (Liey, a) L(X, Tre,)

+2[(VxL)(ear ) = (Vo, L)(X, e0) | L(Tien, Trea)
=202n - )(VxB) (&, &) + 2(VrxB)(&5, &) — 2(V1, xB) (&, &)
A use of the Ricci identities and (2.6) shows
(5.70) Ve, = V2, x|B(lica, &)
= —R(X, eq, Liea, ep)B(en, &) — R(X, €a,&i, §s)B(Lieq, ) — 2ws(X, ea)(ngB)(Iiea,fi)
= —4nG(X,, eqa)B(€a; &) — 20k(X, €a)B(Liea, &) + 20;(X, €a)B(Lieq, &k)
+2(Ve,B)(X, &) = 2(Ve, B)(1e X, &) + 2(Ve, B) (1 X, &)

(5.71) (V2, 1,e,B)(X,&) =
— 5 [Rtew Tica X, e1)Bler, €) + Rea Tiew & EJB(X, &) + 8n(V B)(X, &)
= —27’LT1'(X, ea)B)(ea, 51) - 4n(v§1B)(Xa gl)
Next we apply the already established (5.9) and use the condition L(e,, Ise,) = 0 to get
(5.72) [(VXL)(ea, ey) — (Ve, L)(X, )| L(Lien, Liea)
= —3B(eq,&)L(X, Liea) + 3B(ea, &) L(IL X, Lieq) — 3B(ea, &) L(I; X, Liea).
(5.73) (Ve,L)(Liep, eq)L(X, Leg)
= (4n + 1)B(eq, &) L(X, Liea) — Blea, §)L(X, Ijeq) — Blea, §) L(X, Ixeq).
When we substitute (5.73), (5.72), (5.71), (5.70) in (5.69) we obtain
(5.74) (1 20)[(VeB)(X, &) + (VxB)(&: &)] — | (Ve,B) kX, &) + (Vi xB)(& &)

+ [(VeB) (X, &) + (V1 xB) (&, &)] = Diag(X),

23



24 STEFAN IVANOV AND DIMITER VASSILEV

where D;;,(X) is defined by

(5.75) Dijn(X) = [ani(X, ea) + n7i(X, eq) — (4n — 2)L(X, Iiea)}las(ea, &)

_ [pk(X, Liea) + 3L(IL X, Liea) — L(X, Ijea)]]Ba(ea, &)

+ pj(X7 Iiea) + 3L(IJX7 Iiea) + L(X7 Ikea) B(eau gk)

We also need the next Lemma, showing the symmetry of the vertical tensors B.
Lemma 5.8. The quantities B(&;,€;) are symmetric,

B(&s, &) =B(&, &), s,t=1,2,3.
Proof. From (5.24) we obtain

(5.76) B(6 &)~ B(G, &) = 7

n

(Ve,B)(Liea, &) = (Ve, B)(Lea &)

On the other hand, (5.10) imply

(5.77) 2(2n+1)(4n - 1) [B(LX, &) — B(; X, &)]
= (4n+1) [(VBGL)(Iieea 1 X) — (Ve, L) (Ijee,, IiX)} +2(Ve, L)(Inea, X).

Substitute (5.77) into (5.76) to get

(5.78) 8n(2n+1)(dn — 1)[B(&. &) — B, &)]
:(4n+1){(v2 L)(Liee,, Liey) — (V2 L)(Ijeea,lieb)] +2(V2 . L)(Irea, ep).

€b,€a €b,€a €b,€a

We calculate using (5.9) and (5.76) that

(5:79) (V2 o, L)(Ikea, ) = (4 + 1)(Ve, B) eas &) + (Ve B) Lica, &) — (Ve, B)(Ijea, &)
= (4n+ 1)(Ve,B)(ea, &) + 40 [B(&:, &) — B, &)

The Ricci identities, the symmetry of L and (4.13) imply

€b,€a

= (j(ew, €a)L(eq, Lien) — Ci(ew, €a)L(eq, Ljen) + 2ws(ep, eq) (Ve L) (Ijeq, Iiey) = 2V, tr L.

(5:80) (V2 o, D)Fiee, iew) = (V2, . L)(Ijee,, Tiey)|

Substitute (5.80) and (5.79) in (5.78) and apply (5.56) to conclude

8n(4n? +n —1) {B(&,ﬁj) - B(ﬁp&)] = (4n+1) [Vﬁk“‘L + (Ve,B)(€a,&k)| = 0.

O

The second Bianchi identity (3.14) taken with respect to A =¢;, B =¢;,C =X,D =e,, E = e,

and the formulas described in Theorem 2.4 yield

(5'81) (V&pS)(gjv X) - (ngps)(&,X) + (VXpS)(§i7§j)
tr L

= pS(T(§i7 X)7§J) - pS(T(é-]aX)ng) + ps(eunX)pk(Iiea'é-i) + Tps(é-k:aX)
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Setting successively s = 1,2,3 in (5.81), using (5.8) with respect to the function ¢r L and applying
Lemma 5.4 and Lemma 5.5, we obtain after some calculations

(Ve B X, ) — (Ve B)LX, &) — [(VaB)(X, &) + (VxB) (&) | = ain(X)
(VeB)U;X,6) — (Ve B)IX, &) = [(VeB)X, &) + (VxB)(&6)| = Bun(X)
(VeB)(1X, &) - (Ve B) (I X, &)] + [(VeB)(X. &) + (VxB) (€ &

(5.82) }
+[(Ve, BX, &) + (TxB)(E, )] = in(X

where
ik (X) = piea; &)T (&5, X, ea) — pilea, &)1 (6, X, €a) — pi(€a, X)pr(liea, &)
+ %d(tr L)(ea)T(gja Xa ea) - %pl(glﬁX)
61’_]’1@ (X) = pPj (eau gl)T(é-]? X7 ea) — Py (ea7 gj)T(gia X7 ea) — Py (ea7 X)pk(lieaa 61)

5.83 !
(5.83) - %d(tr L)(ea)T(&, X, ea) — upﬂ (€, X)

Yijk (X) = pr€a,&)T (&5, X, eq) — prl€a,&)T (& X, eq) — pk(eaaX)pk(I €a,&i)

+ 412(t7° L)d(tr L)(X) — ﬂpk(&m X)

Now we can solve the system consisting of (5.75) and (5.82). Indeed, (5.75) and Lemma 5.8 imply
(5:80) (1-20)[[(VeB)(X.&) + (VxB)(E &) + (Ve B)(X, &) + (VxB)(. )]
(VeB)I:X, &) — (Ve B) (X, &)] + (Ve B) (X, &) + (V1,xB) (6. &)
- {(ngB)(IiX7 &) + (Vi xB)(&k, 53)} = D193(X) + D231 (X).

The last identity in (5.82) and (5.84) yields

(5:85) 2n|(VeB) (I X, &) — (Ve B)(LX, &)| + [(VaB)(L X, &) + (Vi,xB)(&r, &)]
- [(VEkB)(Iin &)+ (inXB)(fk,gj)} = Djji(X) + Daz1 (X) + (2n — 1)7i(X).

The first two equalities in (5.82) together with (5.85) lead to

(5:86) 2(n+1)[(VeB)(IhX,&) — (Ve,B) (X, &)] + (Ve BNL X, &) — (Ve B) (X, &)| +
(Ve B)LX, &) — (Ve B)LX, &)| = Aiju(X),

where

(5.87) Aiji(X) = Diji(X) + Djii (X) + (2n — 1)7ij5 (X) + @iji(£;X) — Bijr(LiX).

Consequently, we derive easily that

(5.88) 2(n+2)(2n+ 1) |(Ve,B)(Ix X, &) — (Ve B)(Ix X, &)
= (2n + 3) A (X) — Aji(X) — Agij (X).
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The second equality in (4.13) together with (4.12) and Lemma 5.4 applied to (5.83) and (5.75), after
standard calculations, give

(5.89) ik (I;X) — Bijr(L;X) = %L(X, €a) [B(L-ea,éi) + B(Ljea,&5) + B(Ikea,ék)}
n %L(L-X, ca) [ — Blea,&) — 3B(Inea, &) — 2B (I eq, gk)]
+ %L(Ijx, ea) [3B(Ikea, &) — Blea, &) + 2B(Iica, gk)]

+ %L(IkX, €a) [ —5B(Ijeq,&) + 5B(Ieq,&5) — B(ea,fk)} + 23 (tr L) B(I X, &)

(590) 7is(X) == 5
5

= 210X ) [Blica &) + Bllyea &) = SLULX, €0) [BlIiea. &)~ BlIicwsy)]

tr L) B(IkX, gk)

(5.91)  Dij(X) + Djii(X) + (2n = D)yizu(X) = 2n: 1L(X, €a) [B(Iiea,&) + B(Ijea,@)}

L(LX, €0) | = (2n+ 1) Blea, &) + (2n+3) Bliea, &) + 8B(Ljea, &)

+

)
1
4
+ %L(IjX, ca) [ — (2n+ 3) B(Ijea, &) — (2n + 1) Blea, &) — 8B(I;ea, gk)}
1—-10n

+

LI X, ¢) [ BT ear&) — B(Liea,&))]
+ ﬁ (trL) [(1 —2)B(LX, &) + (1 — 2n)B([; X, &) + 8n B[ X, gk)} :
A substitution of (5.89), (5.90) and (5.91) in (5.87) shows

(5:92) Ae(X) = 2 (0r L) (1= 20) BULX. ) + (1 - 20) B, X.&) + (80+ 6) BLX. )
+ iL(X, eq) [(2n+ 3) B(Liea, &) + (2n+ 3) B(Ijeq, &) + 2B(Ikea, &k)]

+ - L(I;iX,eq.) [— (2n+ 3) B(ea, &) + (2n — 3) B(Ixeq, &) + 4B (Leq, &)

+

N N

L(I; X, eq) [— (2n — 3) B(Ixeq, &) — (2n + 3) Bleq, &) — 4B(1ieq, &)

1
+ ZL(IkX’ €q) [— (10n +9) B(Ijeq, &) + (10n + 9) B(Lie4,&;) — 2B(eq, k)]
Plugging (5.92) in (5.88) and using (4.12) we obtain

(6:93) (VeB)(X,6) - (Ve B)IeX,&) = —(rL) B(LX, &)

+ [2LULX, Lea) + (& 11X, €0) | Blea, €) — [2LULX, Liew) + T(6 11X, €0) | Blea, €).

Hence, (5.62) follows. Substituting (5.62) in the first equality of (5.82) we obtain (5.64). Inserting
(5.64) in (5.74) we see (5.65). O

5.5. Case 6, A, B,C € V. Integrability conditions (5.95) and (5.97).
Case 64, &k, &, & € V. In this case the Ricci identity (5.6) becomes

(5.94) V2du(&k, &, &) — Vidu(&i, &k, &) = —R(&k, &, &, du) — Vdu(T (6, &), &)
= 2du(&)pr (&, &) — 2du(Er) pi(Er, &) + pj(Ikea, &) Vdu(eq, &) + %ﬁ” LVdu(&;,&;).
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After some calculations we see that (5.94) is equivalent to

(Ve B)(&5, k) — (Ve B) (&), &) + B(Ikea, §5)B(ea, &) — B(Liea, &) B(ea, Ek)
- pi(Ikeav gk)B(eaa 51) + Pk (Iieaa &)B(eaa gk) — Pj (Ikeaa gk)B(eav 5])

+ % trLB(&;, &) — trLB(&k, &) — 2trLB(E;, &) | = 0.

Using Lemma 5.4 and the above equation shows that the integrability condition in this case is

(595) (VeB)(En&) - (Ve B &) =5

n

(tr L) B(&, &) — 2B(&;,&5) + B(Ek &x)]

+ 2B(€a, gi)B(Ijeav §k) + B(eav &)B(Ikeaa 5]) + B(Iieav gk)B(eav 5])

Case 6y, &, &;,&; € V. Here, equation (5.6) reads
(5.96) V2du(&x, &5, &) — VEdu(E), &, &) = —R(Ex, &5, &5y du) — Vdu(T (€, &), &)
= 2du(&)pr (&, &) — 2du(e)pi(€r, &) — pillkea; &) Vdu(ea, &) —
A small calculation shows that (5.96) is equivalent to
(5.97) (Ve B) (&, &) — (Ve B)(&. &)
= —B(Ikea,&;)B(ea; &) + 3B(Lj€a, &) B(ea, &) + %(“’ L)B(&,&;) = 0.

Proposition 5.9. If W9¢ =0 then the conditions 5.95, 5.97 hold.

n

Proof. Differentiate (5.64) and take the corresponding trace to get

(5.98) (V2 &B)Ixea, &) + (V2, 1,6.B)(&i &) =
2(Ve, L) (Ixen, Ljea)B(ea, &) + 2L(Ikep, Liea)(Ve,B)(ea, &)
- (VebT)(£i7 Ikreb7 ea)B(eau 5]) - T(§i7 Ikebu ea)(vebB)(eau 5])
+ %d(tr L)(eqa)B(Ixeq, k) + %(tr L)(Ve,B)(Ukea, &k)-
On the other hand, the Ricci identities, (5.24), (2.6) and (4.13) yield
(5.99) (V2. 1. B) (&, &)) = —4n(Ve, B)(&, &) + 4(tr L)B(E;, &) — 4(tr L)B(&:, &)

(5.100) (VZ, ¢,B)(Irea, &) = (VE, ¢, B)(Ixea, &) + 4G (&is ea)Blea, &
—2pi(€a, &) B(Ikea; &k) + 2pk(€a, &) B(Ikea, &) + T €as €6)(Ve, B) (Ikea, &)
=4n(Ve,B)(&5, &) — 2(Ve, L)(ea, ) (L(Ljea; Inen) + 4nCi(&i, €a)Blea, &)
- 2pi(ea7 gi)B(Ikeau gk) + 2pk(eau gi)B(Ikeaa 61) + T(é-“ €a, eb)(vebB)(Ikem gj)
Substituting (5.99) and (5.100) in (5.98) we come to
(5.101) 4n[(VeB)(&, &) — (Ve B)(&, &)
= 2(Ve, L) (Ties, Ljea)B(ea, &) + 2| (Ve B)(ea, &) + (Ve, L) e, €a) | L{Tuen, Ljea)
- B(eav 5]) {4an(§lv 6,1) + (VebT)(§i7 Ikeba ea)} + [2Pi(ea, gz) + %d(tr L)(ea)} B(Ikeaa gk)
— 201 (Ca, 6)B(Ikeas &) + T (s Lica, 0) [ (Ve, B) €0, &) = (Ve B (e, )]

+ 5 (0 L)(Ve,B) (e, &) — 4(tr DB(E;, &) + A(tr L)B(&, €)
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With the help of (5.51), the symmetry of L, and the divergence formulas (5.52) and (5.53) we find

(5.102)  4nCx (&, eq) = (An+ 1)B(Ikeq, &) — Blea, &;) + B(Lieq, &) + id(tTL)(IjeG)

1
~1 [VL(eb, Leg, Ikeb) + VL(eb, €as Ijeb) + VL(eb, Ireq, Iieb) + VL(eb, Iieq, eb)] .
It follows from (4.12) that
1
4

1 1
+ Z(VebL)(Iieb, Ieq) — Rd(trL)(Ijea).

1 3
(5.103) (Ve,T)(&, ke, eq) = Z(VebL)(Ijeb, €a) — Z(VebL)(Ikeb, Lieg) + =(Ve, L) (e, Lieg)

Adding the last two equations we see
AnCi(&;,eq) + (Ve, T)(E;, Ien, e,) = 4nB(Ipeqa&i) — 4nB(lieq&y)-
5.2

Using in (5.101) the above identity, Lemma 5.4, (5.49), (5.23), together with L(eyp, Isep) = 0, a long
calculation gives

An(Ve,B) (&, &) — 4n(Ve,B) (&, &) = —4(trL)B(&5, &) + 2(trL)B(&, &) + 2(trL) B(&, &k)
8nB(ljeq, k) Bleq, &) +AnB(eq, &) B(Ikeq, &) + AnB(lieq, &) Bleq, &;).

Hence (5.95) is proven.
The other integrability condition in this case, (5.97), can be obtained similarly using (5.66) and
the Ricci identities. O

The proof of Theorem 1.1 is complete.
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