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Abstract - Using K-theory we prove in this paper that, if m_ :$: m+ are two natural numbers
satisfying m_ + m+ + 1 '# 2i for any i and m_ = 5,6 or 7(mod8), then m-,m+jm_,m+ are
the multiplicities of principal curvatures of an isoparametrie hypersurface with 9 = 4 in the unit
sphere sn+1 if and on1y if m+ + m_ + 1 is divisible by o(m_). Moreover, if m_, m+i m_, m+
are the multiplicities of an isoparametrie hypersurface with 9 = 4 and m_ = 3(modS), then

m+ + m_ + 1 is either divisible by 6(~_) cr equal to 2i for some i E N, where n = 2(m+ + m_)

and o(m) is an integral function satisfying that e5(m + 8k) = 24k o(m) and

§l. Introduction

A hypersurface in the unit sphere sn+l is callcel isoparametric if it has constant
principal curvatures, that is, thc eigcnvalues of the shapc operator are constant.
E.Cartan [Ca] classified first isoparametrie hypersurfaces with 1, 2 or 3 distinct
principal curvatures. A rernarkable theorem of Münzner [Mu] says that the number
9 of distinct principal curvatures of an isoparametric hypersurface in sn+l must be
1, 2, 3, 4 or 6. Ir 9 is cven, by [Mu] the multiplicities of thc 9 principal curvatures
satisfy that ml = rn3 = ... = fTLg-I anel 1'TL'2 = m4 = ... = m g . We denote by
m+ for rnl and rn_ for m2. Thc dimension and its IlllI1tiplicities are related by
the fonuula 2n = g(rn_ + 771,+) allel the hOlllOlogy of the focal manifolds and the
hypersurface depend only on the multiplicitics rn+ anel 171,_.

In [F-2], thc author proved that any isoparalnetric hypersurface with 9 = 6 is
either diffeonlOrphic to S3 x S3/Qs or hOlucomorphic to thc nonna! sphere bundle
of an Clnbedding of the quadric X5 (2) in S13(even true for Dupin hypersurface),
where ~ C S3 is thc quaternionic subgrollp. Moreover, by a correspondence
with Mark Mahowald, in the latter case thc hypersurface is actually homotopy
equivalent to the homogeneous·space G2/T2, where T 2 is a Inaximal torus in G2.

The case of 9 = 4 is cOlupletely different allel elelicateel. By using the orthogonal
representations of Clifford algebra, Ferus-Karcher-Müllzner [FKM] constructed in­
finite many nonhomogeneous isopararuetric hypersurfaces with 9 = 4. Ta remind
the reader, let us recall the simple construction. As usual we use ClO,m+l to
denote thc Clifford algebra spanned by 1, eo , ' .. ,em . For auy nontrivial (n + 2)-

1Partially supportcd by: Ma.x-Planck Institut für ~\!Iathematik
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dimensional orthogonal representation of ClO,m+l , eo,"', em give rise matrices
po,·", Pm satisfying that pl = land PiPj = -PjPi for i =I- j. Define

f(x) = (x, x? - 2 Ei~o{Pi(X), x)2, X E JR71+2.

The fnuction f maps the unit sphere to [-1, 1] and satisfies the Cartan-Münzner
equations , i.e, IIdfll2 and the Laplacian 11/ are both functions of /. By [Mu][FKM),
for a regular value c E [-1, 1]' the hypersurfacc M = /-1 (c) clefines an isopara­
metrie hypersurface with foul' distinct principal curvaturcs and multiplicities m,
~ - m; m, ~ - m. I ts scalar curvature is const.aut and equal to n2 - 4n. Notice that
all irreducible representations of GlO,m+l" have the same diIlIension 28(m) where
8(m), m ;::: 1 is an integral function satisfying that 5(m + 8k) = 24k 5(m) and

12345 6 7 8

Therefore (n+2) lUlLSt be a IllUltipIe of 28(r7l). We refer to [FKM] for more details.
Some hypersurfaces constructed above are even nonhoIllogeneous up to homotopy
however its topology are quite nieely understood [W]. The author proved generally
that isoparametric hypersurfaces are iterated sphere bundlcs in ITlany cases [F1].
As posed by S.T. Ya.u in [Ya] , it is a wide open probICIu in classical differential
geometry to cla...,sify all nonhomogenous isoparametric hypersurfaces in the unit
sphere with 9 = 4. To achieve this, the first importaut step is to study which pairs
of natural numbers cau bc realizcd as the multiplieities of principal eurvatures of
isoparametrie hypersurfaces.

The first progress to this question was achievcd by Abrcseh in [Ab]. He obtains
the following interesting result:

Theorem(Abreseh [Ab]) Given an isopararnctric hypersur/ace in 8 71+1 with 9 =
4, then the pair (m_, rn+)-w.r.g. we may assume that 1T"_ :::; rn+- satis/ies one 0/
the /ollowing conditions below
4A m+ + m_ + 1 is divisible by 2k

: =min{217 1217 > rn_, a E N}.
4Bl m_ is apower 0/2 , and 2m_ divides 11"+ + 1.
4B2 m_ is apower 0/2, and 3m_ = 2(m+ + 1).
Each condition corresponds to a topological different kind oJ examples.

Throughout the rest of this paper we assumc that m_ ::; 1H+. A direet corollary
from the eaIcuIations in [Ab] is that in the situa.tioIlB 4Bl and 4B2, rn_ must be
among {I, 2, 4, 8} [Ta]. COIupare with the eonstruetioIlB in [FKM] mentioned above
it follows that every pair m+, rn_ where m_ = 1,2,4,8 satisfying 4Bl is indeed
realizable as the lllultiplicities of an isoparametrie hypersurface. For the family
4B2, by [F-1], onIy the pairs (2,2) and (4,5) can be realized as the nluitiplicities
of isoparaIuetrie hypersurfaees. Notice that (77"_, m+) are the multiplicities of an
isoparamertric hypersurface if m_ + m+ + 1 is divisible by o(1n_).

In this paper I am going to show the following theorenl, we should like to remind
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thc reader that n = m_ + m+ there.

Theorem A: Let m_, m+ be the mtJltiplicities oj an isoparametrie hyperstJrjace
with 9 = 4 in s2n+l. StJppose tllat m_ +m+ + 1 :I 2i jor any i. Then m_ +m+ + 1

is divisible by eS (m_) ij m_ = 5, 6, 7(mooS) and m_ + m+ + 1 is divisible by o(n;_ )
ij m_ = 3(mod8).

COInpare this with [FKM] we have the following iUlInediately corollary:

Corollary B: 1j 7n_ = 5,6, 7(1nod8) and 7n_ + 7n+ + 1 :I 2i jor any i. Then
1n_, m+ are the multiplicities oJ an isopammetric hyperstirface with 9 = 4 in s2n+l

iJ and only iJ m_ + 1n+ + 1 is divisible by eS (1n_ ).

Applying this rcsult to equifocal hypersurface in rank Olle sYlnmetric spaces in
the sense of [TT] we have the following theorem. The proof follows immediately
from Theorem A and 7.1.

Corollay C: 1Jm- = 5,6(mod8) andm_+n~++I-=1-2i for anyi. Thenm_,m+
are the multiplicities of an equifocal hypersu1jace with 9 = 2 in cpn (lHIPn ) if and

only if m_ + rn+ + 1 is divisible by eS(m_).

The idea to show Theorem A is the following:
Let M be an isoparametrie hypersurface in s2n+l with 9 = 4 and F± being the

focal manifolds corresponding to the Inaximum and luinimal principal curvatures
respectively. Following [Ab], the hypersurfaee M as weIl aB F± are all invariant
under the antipodal involution. We obtain thc quotient lllanifolds M and F± in
JRP2n+l.

Let i± denote the normal bundles of the foeal manifolds F±. dilll,± = m± + 1.
Ir rn_ = 3,5,6, 7(rnod8), we can show first. that thc restrietion of r+ on a n-

dimensional skeleton F~n) is stable equivalent to 2k~ for an even 2k where eis the
restrietion on F+ of the Hopf line bundle over IItP2n+1. As the total Stiefel-Whitney
dass w(,+) = (1 + w)n+l where w E Hl(F+, 1.2) is the restrietion of the generator
of H 1(JRP2n+l, Z2), we cau conelude that 2k ~ n + 1. Noticc that 2ke admits a
eomplex structure and so we Inay regard it aB k1] where 1] is the complexification of
e. For dimension reasoning, we can write k1] = {k1] - (k - [~] - In + (k - [~] - 1)

where {k7] - (k - [~] - In is thc complex vector bundle over Ft~) of dimension
[~] + 1 and stable equivalent to k1]. By n = 171+ + 7n~ alld diln,+ = m+ + 1 we
obtain that the pullback of {k7] - (k - [~] -I)} to M has at least m_ + llinearly
independent sections. Consider now the tensor bundle k1] (0 1} ~ M(n) x IRPm- ,
by Bccker [Be] this complex bundle admits a nowhere zero section. Then we use
the Adams operations in Zz-equivariant K -thcory to show that k is divisible by
2[m-;+1]_1.

Let ~ (1 < i < 4) denote the foul' focal distributions and reeall that Pi,i =
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~ Ei) cl. Notice the following very crucial relations for thc focal distributions:

Moreover, there exist involutions Ti : M -t M such that TilEl = 1E:l and T2~ =
n-lIB4. By Hsing K -theory onee again we prove that 2(n+1) = 4k(mod2 -2- ). Combine

the above we can eonclude Theorem A.

We remark that the eurrent methods eloes not work for Dupin hypersurface in
sphere form, basieally because it is unknown if thc hypersllrface and foealluanifolds
are invariant under thc antipodal involution. In concluding this seetion, we should
like to pose an open question, naIuely, if m+, 711,_ j m+, m_ are tlLe multiplicities of
a Dtipin hypersurface in space form, what condition is satisfied by m+ and m_ 'i

The organization of this paper is as the follows: In §2 we give a very brief
review to some necessary facts on isoparametrie hypersurfaces. In §3 and §4, we
develop the K-theory and KO-theory for isoparaIuetric hypersurfaces in JRP2n+1

with 9 = 4, this constitutes the Inain tool useel in the proof. In §5 we use Adams
operation to show thc divisiblity property of k mcntioned above. In §6 we give the
proof of Theorem A. In §7 we apply our Theormu A to cquifocal hypersurfaces in
rank oue symnlCtric spaces.

Thc present work was luotivatcd by a progralu with G.Thorbergsson. I would
like to express IllY sincere thanks to hirn for Inany enlightening discussions. I thank
Brian Sluyth for pointing out same English mistakes anel Max-Planck Institute for
Mathematics at Bann for its hospitality during the prep;uation of this paper.

§2. ABrief Rieview on Isoparametrie Hypersurfaces

In this section we present some properties about isoparmuetric hypersurfaees in
spheres needed in the subsequent arguments. We refer to [Ab] anel [Mn] for more
details.

Definition 2.1: Let M c 8 n+1(1) be a codirnension 1 Riemannian stibmanifold
in the unit sphere and \l stand for the convarümt deri1Jative of (J, connection on
the sphere. Choose a unit normal vector field v of M, we define the shape operator
A v : TM -t TM on the tangent btindle of M by

The eigenvalues of A v is called the principal curvatures of M. We say that M is
isoparametric if and only if all its principal ctirvatures are constant.

Notations: 9 := #{ distinct principal eurvatures cotcPi of M}.

~ c TM: distribution of the curvature cotcPi'
mi := dimE; the rnultiplieity of the eurvature cotcPi.
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By Codazzi-Gauss equations we have

t1r
<Pi = </>(M) + -(7TlodZ1r)

9

and mi = 7ni+2, where </>(M) is a constant depending only on M.

Let prw : M ---t M w , p ---t exppwv dcnote thc projcetion maps along the normal
geodesics.
(i): If w i {<Pi : 1 :::; i :::; g} + Z1r, then prw iH CL diffcOlllorphism and thc parallel
surface M w is also isoparametric with curvaturc cot(</>i - w) on d{prw(IEd}. These
give a fanlily of isoparalnetric hypersurfaces diffeolllOrphic tü each other.

(ii): If w = <Pi(7nodZ1r), then ~ = kerd{ p1'w} and M w is a focal manifold of
dinlension n - mi. The fibres of prw are the integral surfaces of the distribution
lEi. This gives a sphere bundle smi ---t M ---t M rPi •

For an isüparalnetric hypersurface M, we CUll choose an </>k and dofine a functiün
f : sn+1 ---t IR by setting f (P) = cos{g (w - <Pd} für p E M w . We call extend
this function to Jin+2 by f(x) = Ixl9 . f( lil). This gives a function satisfying the
Cartan-M ünzner's equations:

Igradfl2 = g21x1 2g- 2 (1)
6.j = !g2(ml - m2)lxI9- 2 (2)

where ml, m2 are the nutltiplicities of M which satisfies that n = ~(ml + m2)'

Moreover, by [Mu], the convcrse also holds. We caU a function satisfying these
equations an isoparametrie functiou.

Proposition 2.2(Münzuer): M C sn+l is isoparametric if and anly if there
exists a smoath junction j : JR11+2 ---t IR satisJying tlle Cartan-Miinzner eqtiations

stich that M = fls~+l (0).

j Inaps sn+l to [-1, I] and the regular valucs are (-1,1). There are exactly two
focal manifolds F± = j-l(±I). Let B± = j-l(±[O,l]). Thus we have immediately
that sn+1 = B+ U B_ and B± is a disk bundlc of dimcnsion m± + lover the focal
Inanifold F± with boundary M. Obviously B± is exactly thc normal bundle of F±
in sn+1 .

The hOIllOlogy of isoparametrie hypersurfacc and its focal lnanifolds can be pre­
sented in terms of the multiplicities m+ and 7n_ [Mn]. In particular, if 9 = 4 and
the focal manifolds are all orientable, the result shows that F± has the same ho­
nlology as the product of two spheres. As thc a.uthor proved in [Fl], in many cases
oue of the foeal lnanifold is hOlneomorphic to a sphcrc bundle. When 9 is even,
the focal Inanifolds and the hypersurface Mare all invariant under the antipodal
map [Ab]. The reason is simply that the isoparametric function j dctermining M
is an even function. This gives corresponding data in IRPn+1 and a bundle decom­
position. For brevity we nse still the salne notation to stand for thc hypersurfacc

5



and its focal Inanifolds in JRPn+l. If 9 =;: 4 allel let ~ (1 :::s; i :::s; 4) denote the four
principal distributions in lRPn+1 and let Pi : M ---+ Fi(Fi = Fi +2 ) be the projections
along nonual geoclesics which are sphere bUlldles. Notice tImt piB+ = lEi EB cl if i
is odd, and piB_ = ~ EB cl if i is even. Obviously TM = !EI EB JE.2 EB lE:3 EB IB4.
By [Ab], there exist pcriodic two diffeomorphisms Ti : M ---+ M such that TtIEI =
lE:l anel T2~ = F4. Moreover, PI 0 Tl = P3 and 1)2 0 T2 = P4. By [Ab] one has
actually the following

Proposition 2.3 Tt : H* (M, Z2) ---+ H* (M, Z2) is the identity Jor i = 1 and 2.

IfTi inducing thc identity on the integral cohomology ring, we point out that the
Pontryagin classes of all foeal distributions IUUSt be zero. In fact, if ~ (1 ~ i ~ 4)
are the distributions of a hypersurface in sphere. Then TtlEl EB JEI EB Ti~ EB ~
is stably trivial. One cau check easily that both of TiIEI EB JEI and T2~ EB ~
must have trivial Pontryagin classes. This implies that the Pontryagin dasses
Pi(lEd = Pi(~) = 0 for i ~ 1 provided Ti =Ti = id.

It is an interesting question to investigate the charateristic dasses(e.g: Pontrya­
gin dass) of the focal distributions. Compare with the examples in [FKM] we
point out that:

Proposition 2.4. There is an isoparametrie hypersHrJace M with the smaller
multiplicity m such that i* E+ E KO (sm) (9!i Z aud 1.2 by rn = 0(rnod4) and
1,2(modB)) is a generator, where E+ is a Joeal distribution and i : sm ---+ M
represents a generator oJ 1rm (M) ~ Z.

Consequently, Pk(E+) = (2k-1)!gcd(k+1, 2)x if1n = 4k, where x E H 4k (M,Z) ~
Z is a generator.

§3. K-theory of Isoparametrie Hypersurfaces in lR.P2n+1

Let M C JRP2n+ I denote an isoparametrie hypersllrface with foul' distinct prin­
cipal curvatures and Fk(k E {±1} = {±}) being thc two focal manifolds. Let mk
denote the multiplici ties of the principal curvatures. Recall that n = (11t I + m_ d.
Let rk denote the normal bundle of Fk in lRP2n+l . By [Ab] [F1], the necessary and
sufficient conditions for m+ and m_ being the multiplicities of principal curvatures
of an isopararnetric hypersurface have been obtained if 7nin(mk' rn-k) ~ 8. Thus
throughout the following sections we mayassurne that rnin(rnk, 7n-k) ~ 9. Ap­
plying [Ab] we have 24 12(n + 1). Moreover, in this situation both foeal Iuanifolds
and its normal bundles in lRP2n+1 are spin. The cohomology ring of Fk and M
are as tbc follows[Ab]:

Theorem 3.0.(Abresch)

H* (M Z2) !:::J! Z2[W X+ x ]/{wn+l = 0 x 2 = 0 x 2 = ( n + 1 ) x wm+}, - ,,- ,'+ 1 - m+ - ,

where degw = 1, deg,x+ = m_ and degx_ = 7H+.

H*(Fk ) = the subalgebm genemted by wand Xk. Moreover,
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Sqw = w(l + w);
Sqx - x + wm_ß .+ - + +,
Sqx_ = x_(1 + W)71+1 + Wm+ß_;
where ß± are two appropriate elements in Z2[wJ/(w71+1

).

Let P2 denote the mod 2 reduetion and a E H 2(F±k1 Z) ~ Z2 denote a generator.
By llsing universal coefficicnts theorem it is standard to check tImt

if mk is odel.
if mk is cvcn

Therefore Olle can choose Xk above is in thc iJuagc of P2 of an integral dass in
2 n-l I 1!±.!

Hm-k (Fk' Z). Obvious P2(a) = w . Thus p2(a-:l-) = w71
- =I 0 and fJ2(a---r) = O.

n-I
In other words, in thc graded ring H*(F±k, Z) we have a-:l- =I O. By Poincare dual-
ity there is a primitivc elemcnt z E H 71 (M, '1..) so that P2(z) = w 71 , {zx+x_ }[M] = 1
alld z2 = O. In thc graded ring H*(M, Z), xi = Rk(a, Xk) where Rk(a, b) is a a
certain polynomial so that degree in b is less than 2. Let

denote a graded ring where deg Xk = m_k and deg a = 2. It is not harel to check
that

Proposition 3.1 The ring H*(M, Z) is genernted by a, X+, x_ and z. H*(Fk , Z)
is a direct summand oJ H* (M, Z) genemted by a, X-k und z. Moreover,
(i). Hi(M, Z) ~ GRi ij i f:. n, n + m+, n + 7n_ and 2n.
(ii). Hi(M, Z) ~ GRi EB Z iJ i = n, n + m+, n + rn_ a1Hl 2n. The final factor is
genemted by z, zx+, zx_ and zx+x_ respectively.

Let 11 be the cOIuplexification of the Hopf line bundlc over Fk and M(Le, the
restrietion of the standard Hopf bundle over IRP2n+1). Let x = 17 - 1 E K (Fk ),

K(M) and K(IRP2n+l). If X is a doscd lllanifold, wc nse P : X -t sdimX to
denote the pineh luap and eE K (S2j ) ~ Z denote a generator.

Let E ---+ X denote a prineipal Spin(n + l)-bundlc. Spin(n) aets freely on E.
Let P(E) denote thc orbits space. Notice that P(E) can be identified with the
sphere bundle of E associated with the standard represcntation. Let E denote the
principal Spin(n) bundle E ---+ IP(E). Whcn n = O(mod2), let ~+ E R(Spin(n))
denote one of the irredueible spin representation. This representation gives rise
an associated veetor bundle E x.o.+ l!Jh ---+ IP(E), where 2h = a.~ is the Radon­
Hurewicz nUluber. Let y E K(IP(E)) denote thc stable dass of the vector bundle
above. By Bott[Bo], the restriction of y at the fibre sn is a generator of K(sn) ~ Z.
Applying Leray-Hirsch type theorem(c. f: Dold[Da]) it follows tImt K (IP(E)) is a
free K(X)-lllodule with generator 1 and y.
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If m_k is even, applying the construction above to thc sphere bundle P-k : M --7

F_ k we obtain immediately that K(M) is a free K(F_k)-lnodule generated by 1
and y. In general we have the following

Theorem 3.2 Let m_k be an even. Then- ,
(i) K(F_ k ) ~ Z EB Z n-l generated as amod'Ule by z = P'(i) and x.

2----r

(ii) K(M) ~ Z3 EB Z n-l EB Z n-l generatcd as amod'Ule by y, z, yz, x and xy.
2---,-- 2 ---,--

(iii) K(Fk) ~ ZffiZ n-l EBZ n-l as a direct summand 01 K(M) by the map Pk'
2---,-- 2----r

Proof: First of aU, reeaU K(IRP2n+l) ~ Z211 generated by x which has filtration
2. The first Chern dass q(x) = a #- O. Thus x E K(F±k) is nonzero and in the
Atiyah-Hirzebruch spectral sequence(abbreviated a.." AHSS) for K(F±k), the term
~,-2 = H2(F±k, Z) survives to Eoo . This iInplies that dr(a) = 0 for each r. The
derivative property of differential applies to condude that d,(a i ) = 0, Vi 2::: 1.
Recall m_k is even. By 3.1 H 2j-l (Fb Z) = 0 for 2j ~ 11, and thcreforc if i ~ n21,

ai survives to Eoo in the AHSS for K(Fk ).

By {AH}, rankK(Fk ) is equal to the sum of even dimensional Betti numbers. For
an odd j, Hj (Fk , Z) is nonzero only if j = 11, a.nd j = el iln Fk . At these dimensions,
the groups are both Z. Thus the term Xk E Hm-k (Fk , Z) = IE;n_k>-m_ k survives to
E oo . This proves E~'-P = Eg;-P, Vp ::; n -1. We claim more generally the AHSS for
K(Fk ) collapses. It is enough to prove the differential dr : E:!,-n-l --7 E~+r,-(n+r)

vanishes for each r. Let z E IE;,-H-l = HH(Fk, Z) ~ Z be a generator. Notiee
z(mod2) = WH. Let r be the smallest natural numbcl' so that dr(z) #- 0. Then
there is an JEN so that d,.(z) = Xkaj. Apply thenlod 2 reduction to both sides
we get dr(wn) = Xkw2j, here dr is a differential in the AHSS for K(Fk, Z2)' Recall
that for a CW-eOInplex X, there is a spectral sequence with ~-terms as H* (X, Z2)
and strong eonverge to K(X,Z2) := K(X 1\ IRP2 )(c.f: [RJ). Now dr(wn ) = 0 by
derivative property of differential allel so we get a cont.radictioll. TllllS the AHSS
coUapses and the graeled rings EBGqK(Fk) allel Heven(Fk' Z) are isomorphie. Notice

n-l n-l
in the fornler ring, Xka-2- #- 0, a-r #- O.

Let Q:' E K (Fk) be a class so that

ch(a) = Xk + lligher tenns.

Then x E G2K(Fk ) s:' Z2 is a generator, Q:' E Gm_kK(Fk ) ~ Hm-k (Fk' Z) ~ Z EBZ2
generates the free part. Notice x 2 = 2x. COBsequently x and ax span a subgroup
of K(Fk) of order at least 2n- 1. Compare the oreIer of the torsion sUlnmand we
obtain that torK(Fk) ~ Z n-l ffi Z n-l is generateel by x allel ax. Therefore

2---,-- 2---'--

K(Fk) ~ Z EB Z n~l EB Z n-l.
2----r 2---'--

By the Mayer-Vietoris exact sequenee

K(IRP2n+1 ) (i~~Ic) K(Fk) EB K(F_k) P~+P~k K(M) --7 Kl(IR1~2n+l) ~ Z
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- n-l
it follows that the exponent of torK (M) is 2-2-. As we pointed out prior to the
theoreIu, K(M) ~ K(F_k)[l, y] and so torK(M) ~ GEBG, where G = torK(F_k ).

n-l
Thus G is of order at lea..~t 2-2-. On the other hand, by Atiyah-Hirzebruch spectral
sequence für K(F_k) we obtain readily that torK(F_k) is generated by x and its

n-l -
order is at most 2-2-. Thus G ~ Z n-l and K(F_d ~ Z EB G ~ Z EB Z n-l. It is

2---r- 2---r-
obvious to check z is a generator of the free part. This proves (i) and (ii).

Apply the Mayer-Victoris sequence again (iii) folIows...

Fix a CW-cOIuplex structure on Fk and M. Let F~71) and M{u) denote the n­
skeleton of Fk and M respectively. By thc proof above it is readily to see that the
restrietion of x in K (F~71)) and K (M(n)) generatcs a cydic group of order 2n 21 .

Corollary 3.3: x generates a cyclic groups oJ order 2
n

2
1

in K(F~~) and

K(M(n)) respectively.

§4.Real K-theory of Isoparametrie Hypersurfaces in JRP2n+l

This section is going to deal with the real K-theory of thc focal manifolds and the
hypersurface. We adopt the same notation in §3. Recall that for any CW complex
X, there is a Atiyah-Hirzebruch spectral sequence with E.2 -terms and Eoo-terms
are:

~,q = jjP(X; Koq(*))

Eg;q = GpKCt+q(X) = KO:+q(X)/Ko:~i(X)

where KO;(X) = Ke7' {KOn(X) -r KOn(XP-l)}. The periodic property implies

that the differentials ~,q+8 = d~,q : Ef,q ---+ Ef+r,q-r+l, The differentials d2 and

d3 may bc presented in terms of primary Steellrod operations as the following:

d~·-8t = Sq2 : HP(X; Z) ---+ HP+2(X, Z2)
d~,-8t-l = Sq2: HP(Xj'Z2) ---+ HP+2(X,Z2)
d~,-8t-2 = 02 Sq2 : HP(X; Z2) ---+ HP+3(X, Z)
d~,q = 0 if q i- 0, -1, -2(rnod8)

where 02 is the Bockstein coboundary operator. We usc € : KO*(X) ---+ K*(X)
and p : K*(X) ---+ KO*(X) to denote the cOIuplexification and realizatiün ho­
momorphism. Recall pE: = 2 and €p(x) = X + x*, where x* is the conjugate of
x.

Let T (lk) denote thc Thom cOIuplex of lk whieh is hOlIlcOlllorphic to JRP2n+1 / F-k.

We have a ThOIU iSülllürphism q; : KO*(Fk ) ~ J<O*(JRP27t+l / F_ k ). Für clarity we

consider the following foul' cases by mk == 0,l,2,3(7nod8). Let x = ~ - 1 E
KO(F±k), KO(M), where € is the Hopf real line bundlc. Not.iec cjJ(n) = n;-l if
n = -1(mod8). By Thcorenl 3.2 and the following cOlluuutative diagraul
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KO(IR.P2n+l)

+c
K (IR.P 2n+1 )

~ KO(Fd
+c

·1

~ K(Fk)
we obtain readily
Lemma 4.0 Imi~ is cyclic and of order at least 2n~1 for k = ±1.

Let E -t X denote a principal Spin(n + 1)-bundlc (l..'3 in §3 and I?(E) denote
the orbits space of thc obvious free Spin(n) action Oll E. Recall I?(E) = S(V),
where S(V) = E x p sn is the associatcd sphere bundle of E with respect to the
standard representation. Let E denote the principal Spin(n) bUlldle E --+ IF(E).
Ir n = 0(mod4). The spin representations ß± E-RO(Spin(n)) gives an associated
vector bundle E x ß+ R2h --+ IF(E), where 2h = an is the Radon-Hurewicz number.
In particular, if n = Bk + B anel Bk + 4, an = 24k+3 auel an = 24k+2 respectively.
Let Y E KO(IF(E)) denote the stable dass of the vector bllndle above.

By Quillen(Qu], thc llonzero Stiefel-Whituey classes of y are those of degree 2h

and 2h - 2i for r :::; i :::; h, where r = 0,2 by n = O(71lod8) and n = 4(mod8). In
particular, Wj(Y) = 0 if 1 :::; j < 2h - l .

Ir min{mk, m-k} ;::: 9, the bundle lk is spin of dimension 7nk + 1. n = mk +
m_k = -1(mod8). When mk == 0(1nod4) , by the prior construction we have an
y E KO(M).

Theorem 4.1. Let 1Hk == 0(mod8). Then
(i) KO(Fk) ~ Z2,p(n) generated by x.

(ii) KO(M) ~ Z EB Z2~(n) EB Z2~(n) generated by y,:c and xy. Moreover, the
homomorphism P~k : KO(F_k ) --+ KO(M) is an iSOm017Jhism.

Proof: Recall first that m_k == 7(mod8). By Proposition 3.1 we obtain
(1) For p == 1, 2(mod8), ~,-P ~ HP(Fk , Z2) is gellerat.cd by wand wp-m-kXk

whenever p ;::: m_k.
(2) For P = O(mod4), ~.-P ~ HP(Fk' Z) is generatecl by a~.

(3) For other P, the ~-tenlls are identically zero.
We claim that W-m-kXk E ~,-p does not survive to IE4 if p == 1, 2(mod8).

Ifp == 1(mod8), noticc Sq2(wp - m - kxk) = uY'-m_,+2';k(mod wp+2) as ( P - :;-k )
== 1(7nod 2). Therefore wp-m-kXk t/:. IE;'-P = kerd2·

p-m_k+l

Ir p = 2(mod8) , d3(wP-m-kxk) = a 2 +IXk #- 0 and so wp-m-kXk t/:.
~.-p. This shows that E4'-P is at most of order 2 when p 0,1,2, 4(mod
8) so that p :::; n, and zero otherwise. Therefore IKO(Fk)1 :::; 2if!(n) , where
<jJ(n) := # {p = 0,1,2, 4(ulod 8); p :::; n}.

Notice 4J(n) = n;! and so by 4.0 KQ(Fk ) ~ Z2~(n) and generated by x. (i)
folIows.

By Bott[BoL KO(M) is a free KO(Fk)-lllodule with basis 1 and y. Thus
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KO(M) ~ ZEBZ24'(n)EBZ~4'{n). By AHSS as above it is ea....,y to check that torK(F_k )

is of order at most 22lP(n). Applying 4.0 and t.he Maycr-Vietoris sequence

it .follows that KO(F_k) ~ Z EB Z2~(n) ffi Z2~(n) anel the homOlnorphism P~k

KO(F_k) -+ KO(M) is an isomorphism. This provcs (ii) ...

Theorem 4.2 Let mk = 3(mod8). Then

(i) KO(M) ~ ZEBZ2~(n)EBZ2,,6{n)ffiZ2ffiZ2generated by y, x, yx, Yl and Y2, , where
Yl and Y2 are two order 2 classes with filtrations 271lk + 7n_k and 2mk + m_k - 1
respectively. Moreover, the homomorphism Pk : KO(Fk ) -+ KO(M) is injective
onto the direct summand Z EB Z24'(n) ffi Z24'(n).

(ii) KO(F_k) S;f ZZ4'(ll) EB Z2 ffi Z2 and imp~k is a direct summand 01 KO(M).
Proof: By AHSS for KO(F_k) as above oue can check readily timt IE.~,-P ~ 1:2

if p = 0,1,2, 4(mod8) and p ::; n presented by 'lJßJ anel a ~ by p = 1,2(modS) and
p = 0, 4(mod8). All other ~ terms vanish except IE~'-P where p = diInF_k and
dinlF_k -1. Now we show the last two terms survive in Eoo . Consider the Thom
isonlorphism

Notice that the terms ~,-P correspond to lE~n+l,-2n-4 and E~~2n-3 rcspectively in

the AHSS of K 0 -3 (IRPZn+1 / Fk)' BY [Fu], K 0 -3 (IRP2n+ 1 ) ~ Z2 EB Zz contributed
by w2n+1 and an of thc Eoo terms. It is easy to see timt the natural hOlIlomorphism

n-l
is surjective. Combine these we obtain readily that X_kWn and X_ka-2- survive
to Eoo . It is easy to check the others lE.i-terrns survivc t.o E oo . This proves that
(IF.t , d4) collapses and so the order of K 0 (F-k) is eq11a.l t.o 2lP (n )+2.

- --3 --3
Claim KO(F_k) ~ i1ni~k ffi KO (Fk) and the exponent 01 KO (Fk ) is 2.

Consider the exact sequence

·1

KO(IRP2n+1 ) ~ KO(F_ k ) -+ K0
1

(IRP2n+1 /F_k) -+ K0
1
(RP2n+1

) = O.

-1 -1 --3
Note the Thom isomorphiBm KO (IRP2n+l/F_k) = KO (T(,k)) ~ KO (Fk ).

Consequently there is an extension

- --3o-7 imi~k -7 KO(F_k) -+ KO (Fk)
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which splits. Otherwise, there is an z E KO(F_k) so timt x = 2z. Thus the
Stiefel-Whitney class Wl (x) = 0 and we reach a contradiction.

--3
Obviously K-3 (Fk) is torsion free and so the composition po e : KO (Fk)--+

--3 --3
KO (Fk) is zero. Therefore 2KO (Fk) = 0 and the claim follows.

Similarly, the AHSS argulnent shows easily ItorKO(Fk)l ::; 22q,(n). Consider the

exact sequence

KO(JRP2n+l) -.1r KO(Fk ) -+ KO
I
(IRP2H+1 / Fk) -+ K0

1
(IIu:'2n+l) = 0

-1 -1
and the ThOIn isomorphisIll KO (JRP2n+I / Fk ) = ](0 (T(,-k)) ~ KO- 4 (F_k)'

We clainl that KO -4 (F-k) ~ Z2,,(n). Combine 4.0 this iIllplies i7ni~ ~ Z2<P(n) and
there is an extension

Z2~(n) -+ KO(Fk) --t Z EB Z2<p(n).

It is readily to verify that this extension splits aud so ](O(Fk ) ~ ZEBZ2"(n)EBZ2~(n).

Notice that KO-4 (F_ k ) fits in the exact sequence

KO -4 (IRP 2n+l) ~ /(0- 4 (F_ k) ---7 KO -3 (IRP2n+l / F_ k ) -Ä KO -3 (JRp2n+l) ~ Z2 Efl Z 2.

-1 --3
It is easy to show tImt j is surjective and KO (Fk) ~ KO (IRP2n+I / F_ k ) is of

--4
order at luost 4 by AHSS. Thus KO (F_ k ) ~ imi~k is cyclic. By the AHSS for

KO-
4
(F_k) it follows that thc nontrivial IB4-terlllB are IE~,-p-4 S! Z2 presented by

wP and a! if p = 5,6(mod8) and p = O(mod4) respectively for p ::; n.

Compare with the AHSS of K(IRP2n+I ) via the indusion map i-k : F-k --t

JRP2n+l it is easy to check that all of these IB4-tcrms survivc to Eoo , in other words,
--4

the spectral sequence (lE4, d4) collapses. Thus KO (F_ k) ~ imi~k ~ Z2~(n). This

proves that KO(Fk ) ~ Z EB Z2~(n) EB Z2~(n).

Apply 4.0 again we obtain easily that imi~k is eithcr Z2~(n) 01' Z2<P(n)+1. On the

other hand, the Mayer-Vietoris sequence argllluent implics eaBily that KO(M) ~
Z EEl Z2<P(n) EEl Z2<P{n) EEl G where G = Z2 EEl Z2 01' Z2 by imi~k = Z2~(n) 01' Z2<P(n)+1

n-1
respectively. Ir the latter CaBe happens, then one of X_kWn and X_ka-2- luust
be killed in the AHSS for KO(M). It is not difficult to see this is impossible by

inspecting the AHSS. Thus imi~k ~ Z2t$>(n) alld so KO(M) ~ Z EB Z2<,6(n) EEl Z2,,(n) EEl
Z2 EEl Z2· This completes the proof. "-

Theorem 4.3 Let T71k = 1(mod8). Then
(i) KO(Fk ) ~ Z2<P(n) generated by x.

(ii) K 0 (F-k) ~ Z EB Z2~(n) EEl Z2 EB Z2. M oreover, the two Z2-summands are gen­
emted by Yl and Y2 corresponding to X-k and X-kW in the graded 1'ing respectively.
The free part is genera ted by P* (i), where i E !(0 (s'2mk+m_ k) ~ Z is a genemtor.
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if p = 1(mod8),
if p = 2(mod8),

if p = 0(mod8),

(iii) P~k : KO(F_k) --7 KO(M) is an isomorphisrn.

Proof: Consider the AHSS for KO(Fk ); Thc only llontrivial ~ tenns are as the
folIows:

p-m_k

If p = o(mod4) , Ei'-P ~ HP(Fk, Z) is gellcrated by a~ (auel Xka-2- if p ;:::
m-k)' If P = 1, 2(mod8), ~,-p ~ HP(Fkl Z2) is generatcd by wP(anel XkwP-m-k if
p ;::: m-k)' Notice that

Sq2 (Xk wp- m- k) = XkWp-m-k+2(modwP+2)
Sq2(XkWp-nLJ.~2) = XkWp-m-J. (modwp+2)

p-m_k
Sq2(Xka-2-) = Xk wP- m-J.+2(modwp+2)

p-m_k

ßSq2(Xka-2-) # 0 if p = 4(rnod8)
p-m_k

We assert therefore that Xka-2- and XkWIJ-m-k do not survive to Eoo for every
p. Thus tbe order of KO(Fk) is at most 2<P(n). By 4.0 (i) folIows.

- p-m"
ASSERTION: In the AHSS for KO(F_ k ), x_ka:l and X_kWp-mk do not

survive to Eoo for p ;::: mk + 2, wherc p == 0(1nod4) alld 1,2(rnod8) rcspectively.
X-k and X-kw contribute to Eoo .

Thc proof of the first half can be vcrified jllst sarne aB above which shows that
tbe torsion of K 0 (F-k) is of order at most 2<P(n)+2.

To show. X-k and x_kw.survive, notice first the differenti:~c.!r :r!!f~r,-p+r-l --7

Ef'-P vanlshes for each r If p = mk and mk + 1. In fact, ~ ' p+ 113 generated

by wp- r or a er for these p, this can be verified via cOluparing with the AHSS of
JRP2n+l.

Next we have to prove tbc differentials dr : Ef'-P --7 E~+r,-p-r+l for p = mk or
mk + 1 vanish. For this, note first dr = 0 for l' = 2 a.lld 3. To complete the proof,
it is enough to show Ef+r,-p-r+l = ~+r,-p-r+l if 7' ;::: 4. Sinlilar as in thc proof
of 4.3, we consider the Thom isomorphism

Note that E:,-i+l corresponds to ~+v,-i+l+V in thc AHSS of KO(lRP2n+1/ Ft ),

here v = m_k + 2. COlnparing with thc AHSS of KO(RP2n+l) via the projection
map JRP2n+l --7 JRP2n+l / Fk the proof of thc assertion folIows.

Consequcntly, KO(F_k - pt) is of order 2<P(71)+2. Wc claiIll the following exact
sequence splits
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Consider the COllullutativc diagrarn:

KO(F_ k ) ~ Ko(s2mk +m- k )

.}C .}C
K(F_ k ) ~ K(s2mk +m- k )

Note c above is surjective. Let z E Ko(s2mk+TIt-k) be a generator. Applying the
Hirzebruch-Riemann-Roch theoreIn we conclude that p! (p! c(z )) = e(z) and thus
~ : K(F_ k ) ~ K(S2m k +m-k ) is surjectiv~nce A(F_!L= 1( sigF_k = 0). In
particular, the exact sequence splits. ThtlB KO(F_ k ) ~ KO(F_k - pt) EB Z.

Let X denote thc restrietion of the sphere bundle M -7 Fk at its 2-skeleton,
where we may asslllue thc 2-skelcton of Fk is an embcdded IItP2 . Thus X has the
honlotopy type of IRP2 X smk as this sphere bundle is spin. The AHSS argument
above shows that the restriet ion

is surjeetive. Thus torKO(M) contains at least three llontrivial dircct summand.
Notice the exponent of torKO(M) is at least 2<p(n) by 4.0. On thc other hand,
by the Mayer-Vietoris sequence we obtain that P~k : KO(F_ k ) ~ KO(M) is

surjective. Thus ItorKO(M)1 ::; 24J(n)+2. Thercfore KO(M) ~ ZE9Z2~(n)E9Z2EElZ2'

By the Mayer-Vietoris exact sequcnce once again we have KO(M) S;:' KO(F_k) ~
z EB Z2~(n) EB Z2 EB Z2. This proves (ii) alld (iii) ....

Thc proof of thc above theorems implics also the following

Corollary 4.4 Let T : M -7 M is a diffeomorphism indticing identity on the
Z2-cohomology ring. 1/7nk = 1,3(mod8), then T*(x) = x, T*(yd = YI and

T*(Y2) = Y2·

Finally let us consider the case of mk = 2(1nod8).
Theorem 4.5 Let mk = 2(mod8). Then
(i) KO(Fk ) ~ Z2~(n) EEl Z generated by x and P* (f.).
(ii) KO(F-k) ~ Z2~(n) EB 1.2 EB Z2 E9 Z2 E9 Z2 with generators x, Yl, Y2, Y3 and Y4·
(iii) KO(M) ~ Z EBZ2oP (n) EBZ2EB Z2EBZ2EBZ2. i7nP±k are both direct summands.
Proof: Note first that dirn Fk = 4i!::od8). As in 4.1, by considering the

differentials d2 and d3 it follows that KO(Fk ) contains the torsion of order at
most Z24'(n). COInpare with (4.0) it follows tlmt torI(O(Fk ) ~ Z2~(n). Thereby
KO(Fk ) ~ Z EB Z2oP (n) whcrc the frce part corrcsponds to the top dinlensional cello
This provcs (i).

To prove (ii), note that X_kWp-mh and X-klL P-:;k do not survive to IB:t if p #­
mk, mk + 2, mk + 11. - 1 or rnk + n. For thc rest sevcral tenns, we assert that
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n-1
ASSERTION x-k, x_ka, X_kWn and X_ka-2- survive to E oo in the AHSS fOT

KO(F_k ). MoreoveT, the latter two terms have filtrations mk + 11, and mk + n - 1
respectively.

Obviously the four ternls do survive to ~. The differentials dr : Ef-r,-p+r-l -t

Ef'-P where p = mk Ol' 7nk+2 and r ~ 4 are both identically zero since ~-r,-p+r-I

is either 0 or generated by wP-r (or aT ) anel the differential dr in the spectral
--1

sequence for KO (RP2n+l) = Z EI) Z2 is zero for 7' ~ 4.

Next we consider thc differential dr : Ef'-P -t Ef+r,-p-r+I. Notice that thc
terms lE~,-i+l = 0 except i = ffik, mk+ 1 and mk+ n . Morcover, ~k+n,-mk-n+l ~
Z. Thus dr : Ef'-P -7 Ef!+r,-p-r+l is zero for 1) = 7nk 01' 7nk + 2 and so X-k and
x_ka survive to E oo .

To show the last two terms survive, wc need only to prove that d,. : Ef,-p-l -7
n-1

Ef+r,-p-r does not hit X_kWn and X_ka-2- for each r where p = mk + n - r - 1

or mk + n - r. Under the Thom isomorphism

X_k Wn and x_ka n 21 correspond to w2n+1 and a H in thc AHSS for K 0 -2 (JRP2n+l / Fk ).

By [Pu] w2n+1 anel an survive in the AHSS for Ko-p2n+l) ~ Z2 EI) Z2 EI) Z2.
This proves the assertion. Consequently the order of KO(F_ k ) is 2rP (n)+4.

Consider the exact sequence:

·1

KO(lltP2n+I )~ KO(F_k) -7 K0
1
(JRP2n+l / F_k ) -7 KO

I
(JRP2n+l) = O.

By 4.0 and cOluparing the AHSS of KO(M) with KO(F_ k ) it is not hard to show
-1 -1

that imi~k ~ Z216 (n). Thus KO (JRP2n+1 / F-d ~ KO (T(,k)) ~ KO- 2 (Fk ) =
--2

KO-2 (pt) EI) KO (Fk ) is of order 16. As in the proof of 4.2 one can check easily
- -1

the extension above splits and so KO(F_k ) = i7ni~k EI) KO (JRP2n+I/F_ k ).

Now wo are going to show that K 0 - 2(Fk ) ~ Z2 EB Z2 EI) Z2 EB Z2. Recall for each
CW cOlnplex, there is a long exact sequence(c.f: [BoD

... KO
i
(X) -7 KO

i
-

I
(X) ~ K i - 1(X) -4 KO

i+ I (X)

Consider the following exact cOlnmutative diagram:

Notice the homomorphism i~ at the l'ight square are bot.h surjective to the tor­

sion part, Z2~(1l)' By [Fu], K-2(IRP2n+1 ) -4 KO(IRP 2n+1 ) is a rnultiple two
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hOIDOlllorphism. So thc restrietion ofp! : K-2(Fk ) ---7 KO(Fk ) Oll the torsion sum­
mand is also a multiple two map. Therefore at the bottom line, imc = 2tP(n)-l x .

Compose with the realization hmllmllorphisIll fJ : K-'2(Fk ) ---7 KO-
2
(Fk) we have

p(2tP(n)-lx) = 0 if 2tP(n)-1 ~I KO-2(Fk) I. ThllS pe = 0 alld so 2KO-2(Fk ) = 0 if

11 ~ 8. This proves that KO-2(Fk) ~ Z2 EB Z2 EB Z2 alld KO-2(Fk ) ~ Z2 EB Z2 EB
Z2 EB Z2. This proves (ii). By the Mayer-Vietol'is exact seqllence one can conclude
(iii) readily. This completes the proof. ..

similarly we havc
Corollary 4.6 Let T : M -+ M 18 a diffeomorphism inducing identity on the

Z2-cohomology ring. Ifrnk = 2(mod8) , then T*(x) = :I:, T*(Yi) = Yi for 1 ~ i ~ 4.

5. Geometrie Dimensions

Recall that the geometrie dimension of a stable blllldle V over a eonlleet eOID­
plex, delloted g. dirn V, is the minimum fibre dimension of all vector bundles stable
equivalent to V. In this section, let X denote a connceted n-dimensional CW com­
plex with 1rl (X) ~ Z2. Let ( be thc ullique llontrivial realline bundle over X and
x = e(~) - 1. We are addressed to diseuss thc g. dim kx for k E N nlOtivated by
studying thc multiplicities of isoparametric Itypcrsurfaccs in spltere. Thc ques­
tiOIl itself has also SOIne interests even in the case of X = lllPn , this is exactly
the generalized veetor field problenl arised by Atiyah-Bot.t-Shapiro[ABS]. It has
other application in differential topology, e.g, the immersion problem of lRPn in
Euclidcan space of mininlUlll dimension. Some iInportant tools in algebraic topol­
ogy were applied to attaek it. Among theIn, pcrhaps the IllOSt successful method
update is to use the BP-hOInology theory[Da]. We will usc Adanls operations in
equivariant K-theory to prove the following rcsult whieh plays a key role in the
proof of theorem A.

Theorem 5.1 Let X be an-dimensional GW-complex with 1rI(X) ~ Z2 and
E = ke((). Assume n = -1(rnod8). Suppose tltat
(i). x = e(() - 1 E K(X) genemtes a cyclic suugroup of order 2tP(n).
(ii). The total Stiefel- Whitney dass w(E) = (1 +w)71+ 1 where w E H 1 (X, Z2) ~ Z2
is a genemtor and wn =I- O.
(iii). E has 2m + (2k - n - 1) linearly independent sections.
Then v2(k) ~ m - 1 if 7n = 1(rnod2) and v2(k) ~ rn - 2 if rn = O(mod2).

Notice that (iii) above is equivalent to saying g. dinlR E ::; n + 1 - 2m. Let us
recall a result of Becker[Be] whieh says if E ---7 X is areal vectol' bundle and has
I linearly independent sections, then E 0 € ---7 X X IRP l - 1 admits a nowhere zero
section, where ( is the Hopf line bundle € ---7 IRPl- 1 • For our E in 5.1, by (ii)
we obtaill ilnIDediately that 2k ~ n + 1. Let r = [~] and Eo = E - (k - r - 1).
For the dimension reasoning Eo is also a virtllal cOIuplex vector bundle. By (iii)
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Eo possesses 2m linearly independent sections. ThllS p(Eo) 0 ~ (Lud so E o0 t:(~)

adnlits a nonzero section. For the sake of simple, in thc rest let us consider Eo
instcad of E. Notice t.hat the Gysin exact sequence

splits exact.

Let t = X x C -+X denote the trivial complex liue bundle with a nontrivial
involution (x, z) -+ (x, -z). We regard X as a trivial Zz space. Notice t gives an
element in the equivariant K -group Kz'l(X) ~ K(X) 0 R(Zz), where R(Z2) is the
complex representation ring of Z2. We write Et for E 0 t. Observe that

X x IR.PZm- 1 ~ S(mt)jZzl
S(E ® €(~)) ~ S(rnt) Xx S(Et)/Zz,
E ® €(~) ~ S(mt) Xx Et/Z2,

where S(rnt) Xx S(Et) is the following pullback bundlc:

S(rnt) Xx S(Et)
4.- p ,

S(7nt)

~ S(Et)
4.- ]J

~ X

Under this identificatioll, the exact sequence above lllay be identified with the
exact sequence

which fits into the following cOlumutative diagram(**):

l(-l(X) ~ l(i:(S(Et)) ~ K~'J(Et)Z'J
../.. 1[.1 -1- ../.. 'TrI

I J
J(i:(S(mt)) ~ Ki:(S(rnt) Xx S(Et)) ~ K~'J(S(rnt) Xx Et)

../.. 61 ../.. 51 ../.. 61

K~'J(mt Xx Et)
pi

J(~'J(mt)
pi

Kt.(mt Xx S(Et))
J

K:L(mt Xx Et)--=--...t --=--...t ~

.J,. 'TrI ../.. 'TrI -1- 'TrI
I pi

K~'J(Et) ~ K~/X) --=--...t K~/S(Et))

Obviously all hOluOlllorphisms in the abovc diagram conuuute with thc Adams
operation 'l/JP(p E N) since they are induced by IllaPS. For a bundle F based
on X, let UF E K(F) denote its Tholli cIass. Recall that thc Bott canibalistic
charateristic dass pp(F) E K(X) is defined by the identity:

'!f;P(UF) = pp(F)UF'

For a line b1.mdle L, pp(L) = 1 + L* + .... +(L*)p-l.
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Conventions: For every G-complex vecto1' bundle E based on a connected com­
plex X, S(E) always stands for the sphere bundle and UE for the Thom dass,
where G is a compact Lie group.
(i) Vb E Kc(X) and Vu = aUE E Kc(E) ~ Ka(X), a E K;.JX), define
bu:= (ba)UE E Kc(E).
(ii) Vb E Kb(X) and Vu E Kb(S(E)), define nb := 7t7f!b E Ka(S(E)) where
7f : S(E) ~ X is the projection.

Let epp = 'ljJP - pp(Et). With those conventions in lnind, it is easy to see that epp
is natural with respect to maps in the diagram(**). Obvious1y wc have

Lemma 5.2 Let (U, 'lL) E K~2(mt) X K Z2
1(S(rnt) Xx S(Et)) satisfying 0lU = p!U.

1f there is an b E K~2(X) such that 'ljJP(b) = b, p E N, und ou = 7f!(aUEd. Then
there is an a E K Z2

1(S(rnt)) such that epp(u) = p!(a).

Now let us turn back to thc cirClullstallce in 5.1. Let s : X X IRP2m- 1 ~

S(E @ c:(~)) is a section. s gives rise an equivariant section to the splIere bundle
S(mt) Xx S(Et) -7 S(mt). For an Q' E K Z2

1(S(nd)) as in 5.2, notice a = s!
p!(a) = s!fPp(u) = epp(s!n). By 5.2

epp(u) = p!(a) = P*'Pp(s!u) = 'Pp(r/ß),

where ß = s*u E KZ2
1(S(mt)). Applying 01 to this equality we get 01 epp(u)

p!Ol epp(ß) = epp(Ol U) = p!epp(U) and so

p!(epp(U) - 01'PIJ(ß)) = O.

Let A anel B E K~2(X) be the unique classes so that A . Umt = U E K~2(mt)

and 01ß = B . Umt . Let 'Pp(l) := pp(mt) - pp(Et). Notice that epp(8) = epp(1)8,
V8 E K~2(X). Thus we have

fPp(l)(A - B) . Umt E im{p· : K~2(1nt Xx Et) -7 K~2(1nt)}.

Note that B· Umt E ker{7f* : 1(~2(mt) -7 K~2(X)}.

Inserting the Tham isomorphisffi, the 1eft below corner of the diagranl (**) gives
a cOlumutative diagraIu

KO(X) @ R(Z2)
-!- A-lmt

KO(X) @ R(Z2)

.LlEt
---+

>'-lEt
---+

KO(X) ® R(Z2)
-!- A_11nt

KO(X) 0 R(Z2)

where A-lmt and A_1Et are the K-theoretical Euler cla..'isCS of rnt and Et respec­
tively.

This proves
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Lemma 5.3 tpp(l)(A - B) = O(7nodA_IEt), A_17nt(B) = O. Moreover, B does
not depend on the integer p E N.

Proof of Theorem 5.1: Let r = [~]. Notice that the Euler classes )..-1 (mt) =

(1 - t)m and )..-1 (Et) = N~t)1€J;tl . Set X = 1 - c(~) and T = 1 - t. Then

X 2 = 2X and X r+ 1 = O. we have therefore

\ (Et) = (T+Xt)-~ = ~~ (k) tixiTr+l-i
"'-1 Tk-r-l L.n=1 i .

Inserting the relation t 2 = 1, i.e, T 2 = 2T we obtain that

.LI (Et) = T r +I+ XTr L:r=I ( ~ ).

Let fk,r = L:i=l ( ~ ). Notice that XT r E K(X} 0 R(Z2} is of order two

since 2XTr = Xr+1T = O. So we may regard f.k,r as amod 2 number. We claim
f.k,T = O(mod2). In fact, by w(E) = (1 + w)2(r+l) = (1 + w)2k(rnodw2(r+l)) wo get
that

Thus
r+l ( + 1 )

f.k,r ==?= r i == 2
r
+

1
(rnod2) == 0

l=O

and so )..-1 (Et) = T r +1. Set A = T r - m +1 E K~2(X) which corresponds to an
U E K~2(mt) under the Thom isomorphiHIn. We claim that there is an 1L E

K Z21(S(mt) Xx S(Et)) satisfying 5.2.
To show this, notice that Et is the pullback of a bundle over IRPn by tbe clas­

sifying lllap j : X -+ IRPn for the universal cover of X and 'ljJP (e) = e if p is
odd, Ve E K~2(lllPn). We luay regard t as a line bundle over IRPn as weIl and let
UO E K~3(mt) denote the class corresponds to T r- tn+1 E K~:;z(IRPn). Obviously
U = j*U . By the commutative diagram (**) where X = IFtPn and )..-1 (mt)· A =
T r+1 E irn(A~dEt)) it follows that there cxists an uD E K z21(S(mt) XRpn S(Et))
satisfying 5.2. By naturality u = j*uo is thc desired element.

Therefore, by 5.3, for p odd there exists an B E kcr{Ttn : K~2(X) -+ K~:;z(X)}

independent of p E N such timt

tpp(l)(A - B) = O(rnodA_l (Et)) (5.4)

N · I () ( 2)tn d (E) (i+e(()L+t
2

)kotlce t }at P3 mt = 1 + t + t an P3 t = (l+l+p)k-r-l'

ring K2
2
(X) 0 Z(3)1 one can check readily timt

P3(Et) = L: ( ~ ) (_t)iXi(3 - T)'+l-i

= 3T+1 + 1-3;+1 T + l_~k {I _ 1±3k;r-l T}3-(k-r-l) X.
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P3(mt) = 3m + l_~m T
ep3(1) = (3m - 3r + l ) + 3r+12-3mT _ l-~k {1 _ l+:lk.~r-l T}3- k+r +1X.

This iInplies that CP3 (1)T = l-tq

T X .
Silnilarly we have
p_t{mt) = (-1)mtm and
p_dEt) = (-1)T+ltr+1c:(e)k

Therefore
cp-I(1) = (-1)mtm {1 + (_1)m+rtr+m+1c;(e)k}.
Notice that Tt = -T. We obtain CfJ-I (1)T = T(1 - c;(e)k) = 0 as k = 0(mod2).

Note that r is odd. cp_d1) = 0 and cp_d1) = -(2 - T) by m = 0(mod2) and
m = 1(mod2) respcctivelY. Therefore

CP3(1)A = 2r- mCfJ3(T) = 2r - m I-tc T X
CP-I (A) = O.

By 5.4, there is an

B E imoKi,} (S(rnt)) 0 Z(3) ~ ker{Tm
: K~2(X) 0 Z(3) --+ K~2(X) 0 Z(3)}

such that
CfJ3(1)A == CfJ3(1)B(modTr+1)
cp_t(1)A == ep-l (1)B == O(modTr +I ).

Let B = a + bX + (0 + ßX)T, then

CfJ-l (B) = ±(2 - T)(a + bX) == o(rnodT'+1 )

if m = -1(mod2) allel so a = 0, (2 - T)bX == O(rnodTr+l). Thus bX = O. As
B E kerTm and so aTJll+I + ßXTJll+1 == O. This shows timt a = 0 and ß = 2r - m c
for an c E Z. Recall

CfJ3(B) = CfJ3(2r- mcXT) = 2r-m+lcl-23k XT.
Thus we have

ep3(A) - CP3(B) = 2r - m(1- 2c) l-il.: XT == O(7nodTr+1).

This implies then V2e-.t1.l )~ 7n.
In other words, if m is odd, then m $ v2(k) + 1 and so v2(k) ~ 7n - l.
For m cven, we consider m -1 instead of m and can concludc that v2(k) 2:: m- 2.

This proves thc thcoreul.

§ 6. Proof of Theorem A

Now we are ready to prove theorem A advertised in §1. Recall that Fk(k = ±)
are the focal Inanifolds of an isoparametrie hypersurface M in JRP2n+l and ~
for 1 $ i :::; 4 are the focal distributions as §2. Let rk is the nonnal bundle of
Fk in JRP2n+l whose codiInension is mk + 1. Again Pk : M --+ Fk stands for the

projection. Let F~n) be the n-skeleton of a triangulation of Fk • By 4.1,4.2, 4.3 and

4.5 the iInage of (r+] E KO(F+) at KO(F,i.n)) must be kx for some k E N since the
terms other than Z2~(n) have very high filtrations(exist only if rn_ = 3, 5(mod8)).
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By {Ab], the total Stiefel-whitney dass of 1'+ is (1 + wr~+I. Thus k = O(mod2)
and k ;::: n + 1 as n = -1(mod8) as we assmlled at t.he vcry beginning. Note that
lEl EB 1 = P+ (1'+). Let X := M(n) be the n-skeleton. Thus k~ -T X has at least
(k - n - 1) + (m_ + 1) linearly independent sections by dirn
EI = m+. Applying 5.1 we obtain v2(k) ;::: [m_z+l] if [TTL2+I] = 1(11l0d 2) and
v2(k) ~ [m_z+l] - 1 if [m_z+l] = O(rnod 2).

Now let us consider '1_' If rn_ = 7(mod8), by 4.1 tohere a.re intcgers l, a, bEN so
that r- = Lx + ay + byx E KO(F_). Recall that p: ('1-) = ~ €B 1 and T2'IEz = Et,
TtIEI = 1EJ, where Ti is as §2. Now [lEI] = kx and so Tt([IEd) = kx. Thus
EI EB B7, €B Tt EI EB TJ~ ~ TM gives an equation

2kx + [IEz] + T2'[IEz] = 2(n + l)x E KO(M).

Assume that T2' (y) = oy + ix + jxy. Obviously the cocfficient 0 must be ±1.
Inserting into the equation above we have

{2(k+l)+(a+2b)i}x+a(1+o)y+{b(1+o)+(a+2b)j}xy = 2(n+1)x E KO(M) (6.1)

In particular, a(l+o) = 0 and b(1+o)+(a+2b)j is divisible by 21J(71). By Quillen[Qu]

the Stiefel-Whitney dasses ws(y) = 0 if 1 ::; s < 2[;±J-z and so ws(T.J(y)) = O.
Recall that m+ ~ m_ ~ 9 and m+ = O(1nod8). Thus dirnF_ = 2m+ + m_ <
2[;±J-z and so w(y) = 1. One can check thon readily w(xy) = 1. Thus w(ix) = 1.
This implies that i is divisible by 2io ~ n + 1, where io is thc nlinirnal number
satisfying this incquality. Sinlilarly, by w( '1-) = 1 we obtain that 1 is divisible by
2io ~ n + 1 too. The equation (6.1) shows also that

2(k + l) + (a + 2b)i = 2(n + 1)(7nod21J(n)).

Thus 2(n+ 1) is divisible by min{2[m-;+1 J, 2io }. This iluplies that either n +1 = 2io
m -1 m -1

01' n + 1 is divisible by 2[~1. Notice that o(m_) = 2[~1. This proves the
case of rn_ = 7(11lOd 8).

The proof of other cases are similar, except oue should note that, in case of
m_ = 3, 5(mod8), Tt[IEd + [lEt] is also equal to 2kx by corollary 4.4 and 4.6. This
cOIupletes the proof."

§7. Equifoeal Hypersurfaces in Rank one Symmetrie Spaces

In reeent years, various generalized concept of isoparametric hypersurfaces in
ambient spaees other than space fonus havc been grcatly studicd. Arnong them
perhaps the equifocal hypersurfaces in symluetric spaces are the 1l10St natural one.
An important property for the hypersurface is that every gcodesic in thc arnbient
spaee normal to the hypersurface is closed of constant length land containing 29

focal points. The number 9 is a natural generalization of the Iltunber of distinct

21



principal curvatures. By using Hopf fibrations s2n+l ---+ an and s4n+3 --t IHIPn
we cau lift an equifocal hypersurface to an isoparametrie hypersllrface in the sphere
and the length of nonnal geodesic is 21. Using Münzner's remarkablc theormll it
follows that the number 9 nlust be aInong {1, 2, 3} if thc ambicnt space is cpn

and IHIPn . Thc nlultiplicitics of thc hypcrsurface are the sarne as those of the
isoparaInetric hypersurface in the sphere anel therefore our theorenl A can be
applied to settle the problenl on the lnultiplicities of isoparametrie hypersurfaces in
cpn and IHIPn. For equifocal hypersurface in the Cayley plane, we need some extra
argument to conc1ude thc multiplicities. Through SOlne work with G.Thorbergsson
we actually know that 9 IUUSt be either 1 01' 2 in this casc.

First let HS give some examples of equifocal hypersllrfaccs in an and IHIPn along
thc line of [FKM].

Proposition 7.1 (i): 1J m_ = 2,3,4, 5(rnod8) or 6(rnod8), rn_ ~ 1. Then Jor
any k ~ 1 so that m+ = k8(rn_) - m_ - 1 ~ 1, there exists an equiJocal hyperstir­
face in cpm - +m+ with 9 = 2 and multiplicities m_, 171.+; rn_ , 771+.

(ii): 1J m_ = 0, ±1(rnod8) and m_ ~ 1. Then J07' an cven 2k 2:: 1 and m+ =
2kö(m_) - m_ - 1 2:: 1, there exists an equifocal hypersurJace in cpm- +m+ with

9 = 2 and multiplicities rn_, 771.+; rn_, m+.
(iii): 1f m_ = 3,4, 5(r7l.odS), m_ 2:: 1. Then for' any k 2:: 1 so that m+ =

m_+m+-l
kö (m_) - m_ - 1 ~ 1, there exists an equifocal hypersurface in IffiP 2 with

9 = 2 and m ultiplicities m_, m+ j m_ ,m+.
(iv): 1J m_ = ±2(mod8), m_ 2:: 1. Then for any k 2:: 1 so that :rn+ = 2k8(m_) -

In_+m±-l
m_ - 1 ~ 1, there exists an equifocal hypersurface in IHlP 2 with 9 = 2 and
multiplicities m_, m+; rn_ , m+.
(v): 1f m_ = 0, ±l(rnodS), m_ 2:: 1. Then f07' any k > 1 so that m+ =

m_+m±-l
4kö (m_) - m_ - 1 2:: 1, there exists an equifocal hyperstirface in IHIP 2

with 9 = 2 and m tiltiplicitics m _, m+; m_ , 1H+.

Cl ,m IR E9 IR IR(2) IHI(2) E9 IHI(2)

Proof: Notice the relations among the Clifford algebr<-l..'3 ClO,m+8k = ClO,m 0
IR(24k

) for k, m 2:: 1 and

m 1 2 5

Thus, if m = Si + 2, Si + 3, Si + 4, 8i + 5, Si + 6, ClO,m+l have irreducible
complex representations of Cdimensions 241+1 , 241+2 , 241+2 , 241+3 and 241+3 re­
spectively. Let eo,'" ,ern denote an orthogonal basis of (IRm +1 , -x6 - ... - x~)

and keo,'" ,kem gives rn + 1 complcx matrixes Po,'" ,Pm E U(n). We define an
isoparametrie function

F(x) = (x, x)2 - 2 E~O(Pi(X), x)2, x E cn.
The restrietion F I52n-1 : s2n-l ---+ [-1, 1] satisfies the Cartan-Münzner equations
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and so for eaeh regular value c E (-1, 1), the hypersurfaee p- l (c) is isoparamet­
ric[FKM]. Notiee that P(eiOx) = P(x) and so P- l (c) is invariant under the stan­
dard circle action on the sphere. This gives an equifocal hypersurface in cpn-l.
The proof of (i) follows.

To show (ii), we need only to complexify the standard irreduciblc representaions.
This prodlIces the extra factor 2 in (ii). Thc ot.hcrs are similar. This eOlipletes
the proof...

Recall an equifocal hypersurfaee with multiplieities rnl, m2 also must be a gml_
bundle over a foeal manifold MI as weIl a.', a sm2-bundle over another focallnan­
ifold M 2 . The following result settle the multiplieitics problCln for euifocal hyper­
surface in Cayley plane separately since we can not reduce this ca.."e to the similar
problem in sphere via the Hopf fibration.

Theorem 7.2. Let M C QP(2) be an eq11.ijocal hypcrsurjaee with multiplicities
ml :::; m2. Suppose that ail oj the joeal manijolds are orientable. Then either
(ml,rn2) = (7,15), M is diJJeomorphic to S15, and the number oj joeal points on
each nonnal geodesie is equal to 2 or (ml,rn2) = (4,7), M is a S4-btindle over
homotopy II-sphere as weil as a S7 -bundle over IHIP2.

Proof: Let S, SI and S2 denote the sequences {mI, rn2, U = rnl +rn2, u+ml, u+
m212u,,,·},{ml,u,u+ml,2u,···} and {rTL2,u,u+rH2,2u,"'}' MI and M2 will
denote the two eorresponding focal manifolds. The cocfficients of cvery homology
or cohomology groups will be thc rational. The proof is divided iuto the following
steps.

Step I. 7, 15 E S.
Let P = P(QP(2), M x p) denote the path space consists of all paths from p to
M in QP(2), p is not a focal point. Consider the Leray-Serre cohomology spectral
sequence (LSSS) of the fibration !1QP(2) ~ P ~ M. Notice that the rational
cohOlnology groups of !1QP(2) occur only in the dimensions {O, 7, 22,"'}' By [T­
T] the reduced cohomology groups of the path space P occur nontrivially only in
the dimensions in the sequence S. The argument is to cOInpare this fact with the
spectral sequence.

Ir the differential dg : E~,7 ~ E~'o vanishes, thcn the term E~,7 survives in the
oo-tcrm and so 7 E S. Also the tenn E~5,O ~ H 15 (M) survivcs and therefore
15 E S. If ds is nontrivial, then this Ineans that ~,o is nonzero. By Poincare
duality, H7 (M) is nontrivial and it survivcs in thc oo-tenll. Thus 7 E Sand
~,7 ~ H8~M) is of rank at least 1. The differential ds : E:,7 ~ E~6,O = °and so
E~_l ~ E~' . Thus 15 E S. This completes thc step I.

By step I above it follows that ml f; m2.

Step 11. 2 ::; rnl ::; rn2 ::; 6 can not happen.
Consider the fibration !1QP(2) ~ PI = P(QP(2), MI x p) ~ MI and its Leray
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Serre spectral sequence. Note dirn MI = 15 - rni ::; 13. Thc L8SS a.rgument shows
easily that Hq(M) ~ Q if q = 0 or q ::; 6 and q E 52.

In particular, E~2,7 ~ E;l2+8,O ~ H7- u (Mt} = 0 if 7 - tL :r 0 since 7 - u ::; 2 <
m2. Either E~2,7 survives a.nd so m2 + 7 E 82 or 'lL = 7. In either cases, note that
H8(Mt} ~ H 7-m

l (Mt} ~ Q. Thus .e:,7 ~ Q which survives in thc oo-term. This

shows that 15 E 52.
Ir rn2 + 7 E 52 allel 'lL :r 7, then 'U + rnt = 7. Comparing with the relations

15 E 5 2(i.e, 15 = ku 01' ku + m2,) we eonclude that either ul15 01' 22 = (k + 2)u.
Therefore u = 5, (rnl,rn2) = (2,3) or u = 11, (mI, r(2) = (5,6).

The eases 'U = 7 and 15 = ku or ku + m2 are iInpossible.
For the two possibilities above, the dimensions of the focal Inanifolds are 12,13

and 9,10. In the first ease, the Euler numbcrs X(M) = 0, X(Mt} = O. H 6 (M2) = 0
by an analogous spectral sequenee for the path spaee P2 = P(QP(2), M2 xp). Thus
X(M2 ) is even sinee diInM2 = 12. In the second ca..<;;e, X(M) = 0, X(M2 ) = 0 and
X(MI) is even since the interseetion form of MI is skcw synuuetrie by dimMl = 10.
Note X(QP(2)) 3. This eontradicts with thc following identity of the Euler
numbers

X(QP(2)) - X(MI) - X(M2 ) + X(M) = O.

This eomplctes the step H.

Step 111. 2 ::; ffit ::; 6 anel m2 2:: 6 ilnplics (mt, 7712) = (4, 7).
Notiee dimMt = 15 - 7nt and H*(M1) = 0 if * :r 0 and ::; 6 by the spectral
sequence as before. By thc duality it follows ca...,ily that MI has the rational
homotopy type of 5 15- m1 (lu fact it is a homotopy sphere). M2 is a rnanifold of
dimension 15 - m2 ::; 8. For q ::; 6, Hq(M2) = Q only if q = 0 01' q = rnl. By
duality it follows that M2 is either homologieal equivalent to CP(2) 01' lHLP(2).
These implies ml = 2 01' 4 and rn2 = 11 01' 7 respectively. Notice that the
hypersurface Mare sphere bundles over thc two focal manifolds. In thc former
case, M is a Sll-bundle ovcr CP(2) as weIl a.s a S2-bunclle over 5 13 . Obvious it
is inlpossible since thcy have different homology groups. In the latter case, M is
a S7 -bundle over a homological lHLP(2) as weil as a S4-bllndle over a homotopy
11-sphere. It is easy to check the focal manifold with the hOIllology of IHIP2 is
actually diffcomorphic to IHIP2 . Thc proof for step 111 is eomplcteel.

Cmubining the steps I, 11 and 111, if ml > 1, thcn cither (mi, rn2) = (4,7) 01'

m2 > rnl 2:: 7 and thus ml = 7 by step I. Fllrthcrmorc, the latter case ilnplies
that cither m2 = 8 01' 15. Ir m2 = 8, thc Euler nUluber X(Mt} = 2 and X(M) =
X(M2) = O. This contradiets with the Ellier number formula as above. Thus
(mt, m2) = (7,15) if we cau exclude the eases of 1nl = 1.

Step IV. rnl :r 1.
Suppose not, dirn MI = 14 and dilll M 2 = 15 - 1n2 ::; 14. The formlIla 3 =
X(QP(2)) = X(Mt} + X(M2 ) shows that rn2 nmst be odel since X(MI) lUllSt be
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even for the intersection form of MI is cvan type. Thorc are only foul' cases, (1,1),
(1,3), (1,5) or (1,7) by step I. (1,1) and (1,5) are ilupossible since otherwise, the
dimension of M 2 is either 14 01' 10, the Euler number of M2 is therefore even for
the salne reasoning. To exclude the cases (1,3) and (1,7), notice that the Iuiddle
dimensional homology group of M 2 is zero in either cases. Thus the Euler number
is even again. This contradicts with the above identity again. This eOInpletes Step
IV.

Combining these steps it follows that (m1, m2) = (7, 15) 01' (4, 7) as we mentioned
above and consequently M = 5 15 or a sphere bundle over IHLP2 . Notiec that, in the
former ease, there is a free action of the dihedral group ID29 on M. By Milnor[Mi]
it is possible only if 9 = 1 and then IIJl..?9 = Z2, where 2g is the number of foeal
points on normal geodesie.

This eompletes the proof. ..

Remark One ean gcneralize the eoneept of cquifocal hypersurface in symmetrie
spaces to hypersurfaees in Blaschke manifolds. The HaIne result presented above
hülds für hypersurfaces in Blaschke Inanifülds IllOdelcd on QP2 .
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