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Abstract — Using K-theory we prove in this paper that, if 7n_ < 4 are two natural numbers
satisfying m—- + my. + 1 # 2° for any i and m~ = 5,6 or 7(mod8), then m_,m,;m_,m, are
the multiplicities of principal curvatures of an isoparametric hypersurface with g = 4 in the unit
sphere S™*! if and only if my. + m~ + 1 is divisible by §(m-). Moreover, if m_, my;m_, my.

are the multiplicities of an isoparametric hypersurface with ¢ = 4 and m_ = 3(mod8), then

m4 + m— + 1 is either divisible by 6('2') or equal to 2* for some i € N, where n = 2(m4 +m-)

and §(m) is an integral function satisfying that §(m + 8k) = 2**4(m) and

m|1]2]3]4]5]6]7]8
3(m) |1|2|4|4|8|8]|8]8

§1. Introduction

A hypersurface in the unit sphere S7*! is called isoparametric if it has constant
principal curvatures, that is, the eigenvalues of the shape operator are constant.
E.Cartan [Ca] classified first isoparametric hypersurfaces with 1, 2 or 3 distinct
principal curvatures. A remarkable theorem of Miinzner [Mu] says that the number
g of distinct principal curvatures of an isoparametric hypersurface in $**! must be
1,2, 3, 4 or 6. If g is even, by [Mu] the multiplicities of the ¢ principal curvatures
satisfy that m; = m3 = --+ = my_; and my = my = --- = my. We denote by
my for my and m_ for my. The dimension and its mulitiplicities are related by
the formula 2n = g(m_ + m.y) and the homology of the focal manifolds and the
hypersurface depend only on the multiplicitics m4 and m_.

In [F-2], the author proved that any isoparametric hypersurface with g = 6 is
either diffeomorphic to % x §%/Qs or homeomorphic to the normal sphere bundle
of an embedding of the quadric X5(2) in S'3(even true for Dupin hypersurface),
where Qg C 5% is the quaternionic subgroup. Moreover, by a correspondence
with Mark Mahowald, in the latter case the hypersurface is actually homotopy
equivalent to the homogencous space Ga/T?, where T? is a maximal torus in Go.

The case of g = 4 is completely different and delicated. By using the orthogonal
representations of Clifford algebra, Ferus-Karcher-Miinzner [FKM] constructed in-
finite many nonhomogeneous isoparametric hypersurfaces with ¢ = 4. To remind
the reader, let us recall the simple construction. As usual we use CI%™t1 to
denote the Clifford algebra spanned by 1,ep,---,e,,. For any nontrivial (n + 2)-
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dimensional orthogonal representation of CI®™+! ey ... e, give rise matrices

Py, -, Py satisfying that Pf =TI and F;P; = —P;F; for i # j. Define
f(@) = (z,2)* = 2512 (Pi(x), 2)?, = € ™2,

The function f maps the unit sphere to [—1, 1] and satisfies the Cartan-Miinzner
equations, i.e, ||df||? and the Laplacian A f are both functions of f. By [Mu][FKM],
for a regular value ¢ € [—1,1], the hypersurface M = f~!(c) defines an isopara-
metric hypersurface with four distinct principal curvatures and multiplicities m,
5 —m; m, 3 —m. Its scalar curvature is constant and equal to n? —4n. Notice that
all irreducible representations of C1%™*! have the same dimension 2§(m) where
8(m), m > 1 is an integral function satisfying that 6(m + 8k) = 2%*§(m) and

m|1|2|3[4|516|7]|8
S(m) |1|2|4|4,8 888

Therefore (n+2) must be a multiple of 26(m). We refer to [FKM] for more details.
Some hypersurfaces constructed above are even nonhomogeneous up to homotopy
however its topology are quite nicely understood [W]. The author proved generally
that isoparametric hypersurfaces are iterated sphere bundles in many cases [F1].
As posed by S.T. Yau in [Ya], it is a wide open problem in classical differential
geometry to classify all nonhomogenous isoparametric hypersurfaces in the unit
sphere with g = 4. To achieve this, the first important step is to study which pairs
of natural numbers can be realized as the multiplicities of principal curvatures of
isoparametric hypersurfaces.

The first progress to this question was achieved by Abresch in [Ab]. He obtains
the following interesting result:

Theorem(Abresch [Ab]) Given an isoparametric hypersurface in S™*! with g =
4, then the pair (m_,my)-w.r.g. we may assume that m_ < m, - satisfies one of
the following conditions below
4A my +m_ + 1 is divisible by 2¥: =min{27(2° > m_,0 € N}.
4B1 m_ s a power of 2 , and 2m_ divides my + 1.
4B2 m_ is a power of 2, and 3m_ = 2(m4 + 1).

Each condition corresponds to a topological different kind of examples.

Throughout the rest of this paper we assume that m_ < my. A direct corollary
from the calculations in [Ab] is that in the situations 4B1 and 4B2, m_ must be
among {1, 2,4, 8}[Ta]. Compare with the constructions in [FKM| mentioned above
it follows that every pair m,,m. where m_ = 1,2,4, 8 satisfying 4B1 is indeed
realizable as the multiplicities of an isoparametric hypersurface. For the family
4B2, by [F-1], only the pairs (2,2) and (4,5) can be realized as the multiplicities
of isoparametric hypersurfaces. Notice that (m_,m..) are the multiplicities of an
isoparamertric hypersurface if m_ +my + 1 is divisible by é(m_).

In this paper I am going to show the following theorem, we should like to remind



the reader that n = m_ 4+ m.. there.

Theorem A: Let m_,my be the multiplicities of an isoparametric hypersurface
with g = 4 in S+, Suppose that m_ +my +1 # 2 for anyi. Thenm_+my+1
is divisible by §(m_) if m_ = 5,6,7(mod8) and m_ +my +1 is divisible by —@;)-
if m_ = 3(mod8).

Compare this with [FKM] we have the following immediately corollary:

Corollary B: If m. = 5,6,7(mod8) and m_ +my + 1 # 2° for any i. Then
m_,my4 are the multiplicities of an isoparametric hypersurface with g = 4 in §2"+!
if and only if m_ +m,. + 1 is divisible by §(m_).

Applying this result to equifocal hypersurface in rank one symmetric spaces in
the sense of [TT] we have the following theorem. The proof follows immediately
from Theorem A and 7.1.

Corollay C: If m_ = 5,6(mod8) and m_+m_,+1 # 2 for anyi. Thenm_,m
are the multiplicities of an equifocal hypersurface with g = 2 in CP" (HP"™ ) if and
only if m_ +my + 1 is divisible by §(m_).

The idea to show Theorem A is the following:

Let M be an isoparametric hypersurface in $?"*! with ¢ = 4 and Fi being the
focal manifolds corresponding to the maximum and minimal principal curvatures
respectively. Following [Ab], the hypersurface M as well as Fy are all invariant
under the antipodal involution. We obtain the quotient manifolds M and Fy in
RpP2nt+l

Let 4 denote the normal bundles of the focal manifolds Fy. dimyy = my + 1.
If m_ = 3,5,6,7(mod8), we can show first that the restriction of v4 on a n-

dimensional skeleton F( ™) is stable equivalent to 2k€ for an even 2k where £ is the
restriction on F of the Hopf line bundle over RP?"+!, As the total Stiefel- Whitney
class w(y;) = (1 4+ w)™*! where w € HY(F,,Zs) is the restriction of the generator
of H!(RP?*1,Z,), we can conclude that 2k > n + 1. Notice that 2k¢ admits a
complex structure and so we may regard it as kn where 7 is the complexification of
§. For dimension reasoning, we can write kn = {kn— (k- [3] -1} +(k—[3] - 1)

where {kn — (k — [3] — 1)} is the complex vector bundle over F_(;l) of dimension
(3] + 1 and stable equivalent to kn. By n = m, +m. and dimy, = my +1 we
obtain that the pullback of {kn — (k —[5] — 1)} to M has at least m_ + 1 linearly
independent sections. Consider now the tensor bundle kn ® n — M x RP™-,
by Becker [Be] this complex bundle admits a nowhere zero section. Then we use

the Adams operations in Zs-equivariant K-theory to show that k is divisible by
m_ +1
2= 11,

Let E;(1 < i < 4) denote the four focal distributions and recall that p}y; =



E; @ ¢!. Notice the following very crucial relations for the focal distributions:
TM=E &E oF; & E,.

Moreover, there exist involutions T; : M — M such that T7'E; = E; and T9E, =

E4. By using K-theory once again we prove that 2(n+1) = 4k(mod2"2;l). Combine
the above we can conclude Theorem A.

We remark that the current methods does not work for Dupin hypersurface in
sphere form, basically because it is unknown if the hypersurface and focal manifolds
are invariant under the antipodal involution. In concluding this section, we should
like to pose an open question, namely, if m,,m_;mo,m_ are the multiplicities of
a Dupin hypersurface in space form, what condition is satisfied by my and m_?

The organization of this paper is as the follows: In §2 we give a very brief
review to some necessary facts on isoparametric hypersurfaces. In §3 and §4, we
develop the K-theory and K O-theory for isoparametric hypersurfaces in RP?7+!
with g = 4, this constitutes the main tool used in the proof. In §5 we use Adams
operation to show the divisiblity property of & mentioned above. In §6 we give the
proof of Theorem A. In §7 we apply our Theorem A to equifocal hypersurfaces in
rank one symmetric spaces.

The present work was motivated by a program with G.Thorbergsson. I would
like to express my sincere thanks to him for many enlightening discussions. I thank
Brian Smyth for pointing out some English mistakes and Max-Planck Institute for
Mathematics at Bonn for its hospitality during the preparation of this paper.

§2. A Brief Rieview on Isoparametric Hypersurfaces

In this section we present some properties about isoparametric hypersurfaces in
spheres needed in the subsequent arguments. We refer to [Ab] and [Mu] for more
details.

Definition 2.1: Let M C S™tY(1) be a codimension 1 Riemannian submanifold
in the unit sphere and <7 stand for the convariant derivelive of o connection on
the sphere. Choose a unit normal vector field v of M, we define the shape operator
A, : TM = TM on the tangent bundle of M by

Ay(e) = ve(v),Ve € T, M,

The eigenvalues of A, is called the principal curvatures of M. We say that M is
isoparametric if and only if all its principal curvatures are constant.

Notations: g := #{ distinct principal curvatures cot¢; of M}.
E; C TM : distribution of the curvature cotg;.
m; := dimkE; the multiplicity of the curvature colg;.



By Codazzi-Gauss equations we have
iw
b = d(M) + ;(modZw)

and m; = m;42, where ¢(M) is a constant depending only on M.

Let pry, : M — M, p — ezppwv denote the projection maps along the normal
geodesics.
(): fwé¢ {¢i:1< 1< g} + Zm, then pry, is a diffcomorphism and the parallel
surface M, is also isoparametric with curvature cot{¢; — w) on d{pr,(E;)}. These
give a family of isoparametric hypersurfaces diffeomorphic to each other.

(i): If w = ¢i(modZr), then E; = kerd{ pr,} and M, is a focal manifold of
dimension n — m;. The fibres of pr, are the integral surfaces of the distribution
E;. This gives a sphere bundle S™ — M — My,.

For an isoparametric hypersurface M, we can choose an ¢ and define a function
f: 8™ 5 R by setting f(p) = cos{g(w — ¢)} for p € M,. We can extend
this function to R**2 by f(z) = |z|9 - f(&[) This gives a function satisfying the
Cartan-Miinzner’s equations:

lgradf|* = g*|z[*~* (1)
Af = 59%(m1 —ma)ls|?~?  (2)

where my, my are the multiplicities of M which satisfies that n = Z(m; + my).
Moreover, by [Mu], the converse also holds. We call a function satisfying these
equations an isoparametric function.

Proposition 2.2(Miinzner): M C S"*! is isoparametric if and only if there
erists a smooth function f : R*? o R satisfying the Cartan-Miinzner equations
such that M = f|5.,.(0).

f maps $™*! to [—1,1] and the regular values are (—1,1). There are exactly two
focal manifolds Fy = f~!(%1). Let By = f~!(£[0,1]). Thus we have immediately
that S**! = B, U B_ and B. is a disk bundle of dimension my + 1 over the focal

manifold Fy with boundary M. Obviously B.. is exactly the normal bundle of Fy.
in S7tL

The homology of isoparametric hypersurface and its focal manifolds can be pre-
sented in terms of the multiplicities my and mn_ [Mu]. In particular, if g = 4 and
the focal manifolds are all orientable, the result shows that Fy has the same ho-
mology as the product of two spheres. As the author proved in [F1], in many cases
one of the focal manifold is homeomorphic to a sphere bundle. When g is even,
the focal manifolds and the hypersurface M are all invariant under the antipodal
map [Ab]. The reason is simply that the isoparametric function f determining M
is an even function. This gives corresponding data in RP**! and a bundle decom-
position. For brevity we use still the same notation to stand for the hypersurface



and its focal manifolds in RP**!, If g = 4 and let E;(1 < i < 4} denote the four
principal distributions in RP**! and let p; : M — F;(F; = F;;2)} be the projections
along normal geodesics which are sphere bundles. Notice that p} By = FE; @' if 1
is odd, and p}B_ = E; @€' if i is even. Obviously TM =E, 6 E, ®E; © L.

By [Ab], there exist periodic two diffecomorphisms T; : M — M such that TyE; =
Es and T3 E, = E4. Moreover, p; o1y = p3 and pz o Ty = py. By [Ab] one has
actually the following

Proposition 2.3 T;* : H*(M,Z;) & H*(M, Zy) is the identity for i =1 and 2.

If T; inducing the identity on the integral cohomology ring, we point out that the
Pontryagin classes of all focal distributions must be zero. In fact, if E; (1 <1 < 4)
are the distributions of a hypersurface in sphere. Then TVE; @ E, @ T5E; & E;
is stably trivial. One can check easily that both of TYE, @ E; and T5E; @ Ep
must have trivial Pontryagin classes. This implies that the Pontryagin classes
P;(E,) = Pi(E;) =0 for s > 1 provided TT = T3 = d.

It is an interesting question to investigate the charateristic classes(e.g: Pontrya-
gin class) of the focal distributions. Compare with the examples in [FKM] we
point out that:

Proposition 2.4, There is an tsoparametric hypersurface M with the smaller
multiplicity m such that i*EL € I?(’)(S"‘)(E‘ Z and Zg by m = 0(rod4) and
1,2(mod8)) is a generator, where E. is a focal distribution and 1 : S™ - M
represents a generator of ny,(M) = Z.

Consequently, px(E4) = (2k—1)lgcd(k+1,2)z if m = 4k, where z € H* (M, Z)
Z is a generator.

§3. K-theory of Isoparametric Hypersurfaces in RP?"+!

Let M C RP?"*! denote an isoparametric hypersurface with four distinct prin-
cipal curvatures and Fi(k € {£1} = {+}) being the two focal manifolds. Let my,
denote the multiplicities of the principal curvatures. Recall that n = (m; +m_1).
Let v denote the normal bundle of Fy in RP?"+1. By [Ab] [F1], the necessary and
sufficient conditions for my and m_ being the multiplicities of principal curvatures
of an isoparametric hypersurface have been obtained if min(my,m_;) < 8. Thus
throughout the following sections we may assume that min(mg,m_x) > 9. Ap-
plying [Ab] we have 24|2(n + 1). Morcover, in this situation both focal manifolds
and its normal bundles in RP?"*! are spin. The cohomology ring of F, and M
are as the follows[Ab]:

Theorem 3.0.{Abresch)

H*(M,Zy) & ZoJw, x5y, z-)/{w" T = 0,22 =0,22 = ( nn:_l ) z_wm™t},
where degw = 1, degzy = m_ and degz_ = .

H*(Fy) = the subalgebra generated by w and zg. Moreover,



Squw = w(l + w);

Sqzy = x4 +w" Py

Sqz_ =z_(1 +w)"* +w™p_;

where By are two appropriate elements in Zo[w)/(w™T!).

Let p» denote the mod 2 reduction and @ € H%(Fyy, Z) = Z, denote a generator.
By using universal coefficients theorem it is standard to check that

Z if my, is odd.
H™ (Foy, ) = { Z®Zy if my is even
Therefore one can choose z; above is in the image of pg of an integral class in
H™-k(Fy,Z). Obvious pa(¢) = w?. Thus pg(a"_;L) =w" ' #0and pg(a'r%-_]) =0.
In other words, in the graded ring H*(F1, Z) we have T # 0. By Poincaré dual-
ity there is a primitive element z € H*(M, Z) so that po(z) = v, {zz2_}[M] =1
and 22 = 0. In the graded ring H*(M,Z), 2 = Ri(a,x) where Ri(a,b) isa a
certain polynomial so that degree in b is less than 2. Let

GR = Z[a’$+’x—]/{2a = 0,.’53: = Ri(a,z4)}

denote a graded ring where deg zx = m_; and deg @ = 2. It is not hard to check
that

Proposition 3.1 The ring H*(M, Z) is generated by ¢, x4, x_ and z. H*(Fy,Z)
is a direct sumnmand of H* (M, Z) generated by a,x_j and z. Moreover,
(i). H(M,Z) 2 GR* ifi #n,n+my,n+m_ and 2n.
(i) HH(M,Z) 2GR ®Z if i = n,n+my,n+m. and 2n. The final factor is
generated by z,zx.,,zx_ end zx x_ respectively.

Let 77 be the complexification of the Hopf line bundle over F, and M (iﬁ.g, the
restriction of the standard Hopf bundle over RP?™1). Let z = — 1 € K(Fy),
K(M) and K(RP?™1). If X is a closed manifold, we use P : X — S4m¥X o
denote the pinch map and £ € K(5%) = Z denote a generator.

Let E — X denote a principal Spin(n + 1)-bundle. Spin(n) acts freely on E.
Let P(E) denote the orbits space. Notice that P(E) can be identified with the
sphere bundle of E associated with the standard representation. Let £ denote the
principal Spin(n) bundle £ — P(E}). When n = 0(mod2), let A, € R(Spin(n))
denote one of the irreducible spin representation. This representation gives rise
an associated vector bundle E xa + 2 o P(E), where 2" = oS is the Radon-
Hurewicz number. Let y € K(P(E)) denote the stable class of the vector bundle
above. By Bott[Bo), the restriction of y at the fibre S™ is a generator of K(SM ~Z.
Applying Leray-Hirsch type theorem(c.f: Dold[Do]) it follows that K(P(E)) is a
free K{X)-module with generator 1 and y.



If m_g is even, applying the construction above to the sphere bundle p_j : M —
F_; we obtain immediately that K(M) is a free K(F_;)-module generated by 1
and y. In general we have the following

Theorem 3.2 Let m_y be an even. Then
(i) K(F_x) = Z® ZQEEJ generated as amodule by 2 = P'(£) and z.

(i) KM= Z3o Z22=—_1 & Zzli—’ generated as amodule by y, z,yz,z and Ty.
(iii) K (F) = Z®Z2£!-_1 62222__1 as a direct summand of K (M) by the map Dr-

Proof: First of all, recall K (RP?H1) & Zyn generated by x which has filtration
2. The first Chern class ¢;j{z) = a # 0. Thus £ € K(F4) is nonzero and in the
Atiyah-Hirzebruch spectral sequence(abbreviated as AHSS) for K (Flik), the term
[Eg'_2 = H?(Fy4,Z) survives to Ey. This implies that d,(a) = 0 for each r. The
derivative property of differential applies to conclude that d,(a) = 0, Vi > 1.
Recall m_j is even. By 3.1 sz*l(Fk, Z) = 0 for 25 < n and therefore if 1 < "T_I,
a' survives to Ey, in the AHSS for K(F}).

By [AH], rankK(F}) is equal to the sum of even dimensional Betti numbers. For
an odd j, H7(F},Z) is nonzero only if j = n and j = dim Fy. At these dimensions,
the groups are both Z. Thus the term z € H™-*(F;, Z) = E, "% ™~* survives to
Eoo. This proves E)™ = EP"P Vp < n—1. We claim more generally the AHSS for
K (Fy) collapses. It is enough to prove the differential d, : E»~"~1 — E +r—{nr)
vanishes for each r. Let z € By ™! = H"(F;,Z) = Z be a generator. Notice
z(mod2) = w™. Let r be the smallest natural number so that d.(z) # 0. Then
there is an j € N so that d.(z) = zxa?. Apply themod 2 reduction to both sides
we get d,(w™) = zxw?, here d, is a differential in the AHSS for K(Fy,Zs). Recall
that for a CW-complex X, there is a spectral sequence with Ey-terms as H* (X, Z5)
and strong converge to K(X,Z) := K(X ARP?)(c.f: [H]). Now d.(w") = 0 by
derivative property of differential and so we get a contradiction. Thus the AHSS
collapses and the graded rings @G K (Fi) and H®*"(F}, Z) are isomorphic. Notice
in the former ring, :z:ka.D;—1 #0, o T # 0.

Let a € K(F}) be a class so that

ch(a) = z + higher terms.

Then z € GoK(Fy) = Zg is a generator, « € Gp,_ K(Fy) = H™-+(F, L) = ZB L,
generates the free part. Notice £? = 2z. Consequently = and oz span a subgroup
of K(Fy) of order at least 2"~!. Compare the order of the torsion summand we
obtain that torK(Fy) = 222!-_1_ &) 2222—_1 is generated by z and az. Therefore

—

K(F) 2282 00 ®Z s

By the Mayer-Vietoris exact sequence

Yapl e —
PR (M) - K RPH ) = g

(iL l_il_k) =

K(RPY™1) 5% K(Fy) @ K(F-)



it follows that the exponent of torK (M) is 2%, As we pointed out prior to the
theorem, K (M) = K(F_)[1,y] and so torK(M) = G®G, where G = tor K (F_;).
Thus G is of order at least 2"7". On the other hand, by Atiyah-Hirzebruch spectral
sequence for K(F_;) we obtain readily that tor K(F_;) is generated by z and its
order is at most 2°7. Thus G & Z‘le—_l and K(F_y) ¥ZoG=Za Z2l5_1. It is
obvious to check z is a generator of the free part. This proves (i} and (ii).

Apply the Mayer-Vietoris sequence again (iii) follows. &

Fix a CW-complex structure on Fy and M. Let Fé") and M denote the n-
skeleton of Fi. and M respectively. By the proof above it is readily to see that the
restriction of z in K (Fé")) and K(M{™) generates a cyclic group of order 2",

Corollary 3.3: =z generates a cyclic groups of order 2*T in RJ(FL’;)) and
K (M™) respectively.

§4.Real K-theory of Isoparametric Hypersurfaces in RP?"+!

This section is going to deal with the real K-theory of the focal manifolds and the
hypersurface. We adopt the same notation in §3. Recall that for any CW complex
X, there is a Atiyah-Hirzebruch spectral sequence with E, -terms and F-terms
are: -

Ep? = HP(X; KO9(x))
Epg = G,K0" (X)) = KO, (x)/ROLTI(X)

where 1?6:()() = Ker {I?an(X) - KO" (Xp‘l)}. The periodic property implies
that the differentials d?9+8 = ¢P9 : EP9 — EP+74=7+l The differentials dy and
ds may be presented in terms of primary Steenrod operations as the following:

dy 8 = Sq% . HP(X;Z) - HPY2(X, Zs)

dh ™! =S¢ HP(X;Z2) — HP*(X, Zy)
d5 %% = §,5¢% . HP(X;Z9) - HPT3(X,Z)
db? =0 if g # 0, -1, —2(rnod8)

where 6, is the Bockstein coboundary operator. We use & : KO*(X) = K*(X)
and p : K*(X) = KO*(X) to denote the complexification and realization ho-
momorphism. Recall pe = 2 and ep(z) = z + =%, where z* is the conjugate of
zT.

Let T'(x) denote the Thom complex of 4, which is homeomorphic to RP# L /F_,.
We have a Thom isomorphism ¢ : KO*(Fy) & KO*(RP2**1/F_}). For clarity we
consider the following four cases by my = 0,1,2,3(mod8). Let £ = £ -1 €
KO(Fyi), KO(M), where ¢ is the Hopf real line bundle. Notice ¢(n) = a-lif
n = —1(mod8). By Theorem 3.2 and the following commutative diagram



———— ‘! —_——
KORP™1) % KO(F)
le le
—~ ! —
KRP7™1) X EK(F)
we obtain readily l
Lemma 4.0 Imii is cyclic and of order at least 2% for k = £1.

Let E — X denote a principal Spin(n + 1)-bundle as in §3 and P(E) denote
the orbits space of the obvious free Spin(n) action on E. Recall P(E) = S(V),
where S(V) = E x, §" is the associated sphere bundle of E with respect to the
standard representation. Let E denote the principal Spin(n) bundle E — P(E).
If n = 0(mod4). The spin representations Ay €-RO(Spin(n)) gives an associated
vector bundle £ x 5 + R P(E), where 2" = a,, is the Radon-Hurewicz number.
In particular, if n = 8k + 8 and 8k + 4, ap = 24543 and a, = 2%+2 respectively.
Let y € KO(IP(E)) denote the stable class of the vector bundle above.

By Quillen[Qu], the nonzero Stiefel-Whitney classes of y are those of degree 2"
and 2% — 2! for r < i < h, where r = 0,2 by n = 0(1mod8) and n = 4(mod8). In
particular, w;(y) = 0if 1 < j < 28-L,

If min{mg,m_x} > 9, the bundle ~, is spin of dimension my + 1. n = mi +
mog = —1{modB). When my = 0(mod4), by the prior construction we have an
y € KO(M).

Theorem 4.1. Let my = 0(mod8). Then

(1) KO(Fy) = Zoyny generated by «.

(31) KOM) 2 Z @& Zosiny ® Zosn) generated by y,x and zy. Moreover, the
homomorphism p__, : KO(F.x) = KO(M) is an isomorphism.

Proof: Recall first that m_; = 7(mod8). By Proposition 3.1 we obtain
(1) For p = 1,2(mod8), BEy™" = HP(F,Zy) is generated by wP and wP~™-kzy
whenever p > m_y.
(2) For p = 0(mod4), B} P = HP(Fy,Z) is generated by a5,
(3) For other p, the Ep-terms are identically zero.

We claim that w?~™-*z; € B does not survive to Eq if p = 1,2(mod8).

If p = 1(mod8), notice Sg?(wP~™-*zy) = wP~™-*F2g; (mod w”*+?) as ( P= -k )

2
= 1(mod 2). Therefore w?~™-*zy ¢ B'™" = ker ds.
p-m_r+1

If p = 2(mod8), d3(wP™™-*zE) = a2 Tlzp # 0 and so wP ™-kzy ¢
Ep™”. This shows that EJ'™? is at most of order 2 when p = 0,1,2,4(mod
8) so that p < n, and zero otherwise. Therefore |I?_(’)(Fk)| < 2% where
d(n) :=#{p=0,1,2,4(mod 8);p < n}.

Notice ¢(n) = ”T'"l and so by 4.0 I?é(Fk) = Zyeny and generated by z. (i)
follows.

By Bott[Bo], KO(M) is a free KO(Fy)-module with basis 1 and y. Thus
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KO(M) = z@zz¢(n)ez§¢(",. By AHSS as above it is casy to check that tor K (F_g)
is of order at most 22¢(m), Applying 4.0 and the Mayer-Vietoris sequence

KORP™) o KO(Fy) & KO(F_) » KO(M) - KOYRP™1) =0

it follows that I%(F_k) = Z ® Zysn) ® Zysny and the homomorphism p!_k :
I?E)(F_k) — KO(M) is an isomorphism. This proves (ii). &

Theorem 4.2 Let my = 3(mod8). Then

(i) I?T)(M) 2 2B Los(n)DLopnyDLa®Zy generated by y, z, yz, y) and yg, , where
y1 and yo are two order 2 classes with filtrations 2my. + m_g and 2me +m_p — 1
respectively. Moreover, the homomorphism py : KO(Fy) — KO(M) is injective
onto the direct summand Z @ Z,sn) ® Zogs(n)-

(it) KO(F_;) = Zipo(n) B Z3 @ Ly and imp* . i3 a direct summand of KO(M).

Proof: By AHSS for KO(F_;) as above one can check readily that B ™7 & Z,
if p=0,1,2,4(mod8) and p < n presented by w® and af by p = 1,2(mod8) and
p = 0, 4(mod8). All other Eq terms vanish except Ef"? where p = dim F_j and
dim F_; — 1. Now we show the last two terms survive in E,. Consider the Thom
isomorphism

KO(F_t) = KO(T(y_x ®€%)) = KO (RP*™/F).

Notice that the terms Ej’ 7 correspond to EZ"+1’—2"-4 and E372"3 respectively in

the AHSS of KO (RP2"+1/F,). By [Fu], KO (RP?*!) = Z, @& Z, contributed
by w?"*! and a” of the E, terms. It is easy to see that the natural homomorphism

I?_é_g(]RP%_H /Fy) - I'{“a_‘q(RP?n-i-l)

is surjective. Combine these we obtain readily that z_zw™ and :E..kaaz—l survive
to Eo. It is easy to check the others Ey-terms survive to E. This proves that
(E4,ds) collapses and so the order of KO(F_) is equal to 2¢(M)+2,

Claim KO(F.;) & imi*, @ I%_a(Fk) and the exponent of I?é“a(Fk) is 2.

Consider the exact sequence
— LE—— — —
KO®P™) =% RO(F_y) » KO (RP¥™1/F_,) » KO' (RP™1) = 0.

Note the Thom isomorphism KO (RP?/F_,) = KO (T(w)) = KO (Fy).
Consequently there is an extension

0 — imi*, — KO(F_x) » KO (Fy)
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which splits. Otherwise, there is an z € I?@(F_k) so that z = 2z. Thus the
Stiefel-Whitney class w; (z) = 0 and we reach a contradiction.

Obviously K ~3(F}) is torsion free and so the composition po ¢ : I?Z)_s(Fk) -
@_3(Fk) is zero. Therefore 21?6_3(}7';;) = 0 and the claim follows.

Similarly, the AHSS argument shows easily |[torKO(Fy)| < 22¢("). Consider the
exact sequence

— F — P s —_—
KO®RP™1) 2 KO(F,) - KO (RP*/F) » KO (RP™1) =0

and the Thom isomorphism KO (RP?1/F) = KO (T(y_x)) & KO~*(F_s).
We claim that KO (F_) 2 Z,s). Combine 4.0 this implies imi}, & Z,gm and
there is an extension

Zsiny = KO(Fy) = Z @ Zosia).-

It is readily to verify that this extension splits and so I??)(Fk) = LD Loy R Los(ny-
Notice that KO~ (F_;) fits in the exact sequence

——3

— '-l N e ——— . ’
RO RPN 25 KO (Fy) = KO (RPP F_,) 5 KO (RP*™) = Z,0 Z,.

1

It is easy to show that j is surjective and I?él(Fk) >~ KO "(RP™/F_4) is of
order at most 4 by AHSS. Thus I?-(‘)‘A(F_k) = imi’, is cyclic. By the AHSS for
1?6_4(F..k) it follows that the nontrivial [E4-terms are ]Ef,""p—"‘ = 7, presented by
wP and a¥ if p = 5,6(mod8) and p = 0(mod4) respectively for p < n.

Compare with the AHSS of K(RP?**!) via the inclusion map i_y : F_; —
RP?7t1 it is easy to check that all of these Ey-terms survive to E, in other words,
the spectral sequence (E4, d4) collapses. Thus 1?5_4 (F_g) = imi’ | = Zos(n). This
proves that f’(‘é(Fk) 7@ Losn) B Lgs(n).

Apply 4.0 again we obtain easily that imi* | is either Zogm) or Zys(n)+1. On the
other hand, the Mayer-Vietoris sequence argument implies easily that I?Z)(M ) =
Z D Zysin) D Loy ®G where G = Zoy @ Zy or Zy by imi’ |, = Zogny OF Zosiny41
respectively. If the latter case happens, then one of z_;w" and a:_ka“T“l must
be killed in the AHSS for KO(M). It is not difficult to see this is impossible by
inspecting the AHSS. Thus imi* |, & Z,4) and so I?O(M) 2 LD Losn) D Loy(n) ®
Zo @ Zg. This completes the proof. &

Theorem 4.3 Let my = 1(mod8). Then

(i) KO(Fy) & Zys(n) generated by z.

(1i) I?(’)(F_k) 72O Loy(n) B Lo ® Zg. Moreover, the two Zy-summands are gen-

erated by y) and y2 corresponding to z_i and w_gw in the graded ring respectively.
The free part is generated by P*(€), where £ € KO(S?™"+¥7m-k) 2 7, is a generator.
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(i) p' - I?T)(F ) = KO(M) is an isomorphism.
Proof: Consider the AHSS for K O(Fk) The only nontrivial E, terms are as the
follows: oy
If p = O(mod4), E™" = HP(Fy,Z) is gencrated by a¥ (and zpa— 2 ifp >
m_g). If p=1,2(mod8), EY™? = HP(F,Z,) is generated by w?(and z,wP ™~* if
p > m_g). Notice that
S@? (zpwP™ %) = ppwP ™=+ (modw?t?)  if p = 1(mod8),
SqQ(:Bkw"’"" '="2) = gpwP ™% (modw?*?)  if p = 2(mod8),
qu(a:ka 7 ) = zpwP~ ™= 2(modwPt?)  if p = O(mod8),
BSq*(zra T ) #0 if p = 4(rnod8)
We assert therefore that :ckap_ 7= and zpw’™ M-k do not survive to E, for every
p. Thus the order of KO(F}) is at most 2¢("). By 4.0 (i) follows.

ASSERTION:  In the AHSS for KO(F_y), m_kap_‘;n and z_zwP~™ do not
survive to Ey for p > my + 2, where p = 0(mod4) and 1,2(mod8) respectively.
z_j; and z_zw contribute to E.

The proof of the first half can be verified just same as above which shows that
the torsion of KO(F_g) is of order at most 2¢("+2,

To show z_j and x_gw survive, notice first the differential d, : EP~7—P+—1
Ep—P vanishes for each 7 if p = my and my, + L. In fact, 577?77 is generated

by wP~" or a ®3" for these p, this can be verified via comparing with the AHSS of
Rp2n+l

Next we have to prove the differentials d, : EP~? — EPY"—P="+1 for p = my, or
my + 1 vanish. For this, note first d, = 0 for » = 2 and 3. To complete the proof,
it is enough to show }5)”“*"”"+1 Epim=P=r+l if p > 4. Similar as in the proof
of 4.3, we consider the Thom 1som0rplnsm

KO®RP™1 [Fy) = KO(T(v_1))= KOYT (y-x @ €)) = KO'(F_y).

Note that Eb—*+! corresponds to Byt ~*t* in the AHSS of KO(RP2*!/F),
here v = m_y -+ 2. Comparing with the AHSS of KO(RP2"!) via the projection
map RP?+! — RP?¥1/F, the proof of the assertion follows.

Consequently, K O(F & — pt) is of order 2¢() 2 We claim the following exact
sequence splits

— - —

0 — KO(s2™+m-r)y 2y RO(F_4) 25 KO(F_ — pt) = 0



Consider the commutative diagram:

KO(F_) D KO(Smetm-r)
Je lLe
R(F) 2 K(S2mtmory

Note € above is surjective. Let z € KO(S2m+m-¢) be a generator. Applying the
Hirzebruch-Riemann-Roch theorem we conclude that P(P'e(2)) = ¢(z) and thus
P : K(F_g) — K(S¥™tm-k) is surjective since A(F_y) = 1( sigF-x = 0).
particular, the exact sequence splits. Thus KO(F._g) & KO(F_; —pt)® Z.

Let X denote the restriction of the sphere bundle M — Fj at its 2-skeleton,
where we may assume the 2-skeleton of F}, is an embedded RP2. Thus X has the
homotopy type of RP? x 8™k as this sphere bundle is spin. The AHSS argument
above shows that the restriction

torKO(M) - KO(X) 2 2,0 Z, 0 Z

is surjective. Thus torf?f)(M ) contains at least three nontrivial direct summand.
Notice the exponent of tor KO(M) is at least 2#(") l)y 4.0. On the other hand,
by the Mayer-Vietoris sequence we obtain that P o K O(F_x) » KO(M) is
surjective. Thus |tor KO(M)| < 2¢("+2. Thercfore KO(M ) 2D Lop(n)DLy® L.
By the Mayer-Vietoris exact sequence once again we have K KO(M) = I?@(F_k) ¥
Z @ Zos(n) D Lo @ Zo. This proves (ii) and (iii). &

The proof of the above theorems implies also the following

Corollary 4.4 Let T : M — M 1is a diffeomorphisin inducing identity on the
Zy-cohomology ring. If my = 1,3(mod8), then T*(z) = z, T*(y1) = y1 and
T*(y2) = y2.

Finally let us consider the case of my = 2(mod8).

Theorem 4.5 Let my = 2(mod8). Then

(i) I%(Fk) = Zosn) B Z generated by z and P*(£).

(ii) KO(F_y) = Zosin) DLy ® Loy ® Ly ® Zy with gencrators z,y1,y2,ys ond ys.

(111} @(M) 2L BLs(n) DLy® LB Ly D L. impl,, are both direct summands.

Proof: Note first that dim F) = 4@0&'8). As in 4.1, by considering the
differentials dy and d3 it follows that KO(Fy) contains the torsion of order at
most Zqsn). Compare with (4.0) it follows that torKO(Fg) = Z,¢n). Thereby
%(Fk) = Z ® Z,4(») where the free part corresponds to the top dimensional cell.
This proves (i).

To prove (ii), note that z_gwP~™* and :J:,kuqt do not survive to Ey if p #
my, mg + 2, my + 1 — 1 or my + n. For the rest several terms, we assert that
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_ASSERTION T_k,T_ka,Z_;w" and :z:_kaﬂ_;1 survive to Eo in the AHSS for
KO(F_g). Moreover, the latter two terms have filtrations my +n and mg +n — 1
respectively.

Obviously the four terms do survive to E4. The differentials d, : JEZ,’."“_’""’"‘1 -
EP~P where p = my, or mg+2 and r > 4 are both identically zero since E5~" "7 +r=l
is either 0 or generated by wP~"(or a';_r) and the differential d, in the spectral

—— 1
sequence for KO (RP?*) =Z @ Z, is zero for r > 4.

Next we consider the differential d, : EP™P — EP+"~P=r+l Notice that the
terms IE;’_""1 = 0 except i = my, mg+1 and my+n. Morcover, BT+~ ms -+ o
Z. Thus d, : EP~P — EP =P+ ig zero for p = my or my + 2 and so z_; and
T_ia survive to Fo.

To show the last two terms survive, we need only to prove that d, : Eb—P=

. n=1
EPt1=P=T does not hit z_w™ and z_ga 7 for each r wherep=my+n—r—1
or my, +n —r. Under the Thom isomorphism

KO(F_) = KO(T(y-x ®¢%) = KO (RP™/Fy),

n= o2
z_yw™ and z_ga"T correspond to w?™*+! and o™ in the AHSS for KO~ (RP"+! /Fy,).

By [Fu] w?**! and o™ survive in the AHSS for I%_ZLIEPQ”H) = Zo® Lo ® Zo.
This proves the assertion. Consequently the order of KO(F_y) is 2¢(m)+4,
Consider the exact sequence:

.
KORP™ ) =5 KO(F_,) » KO (RP™ 1 /F_,) » KO' (RP?™1) = 0.

By 4.0 and comparing the AHSS of KO(M) with KO(F_y) it is not hard to show

that #mi®, = Zosm. Thus KO (RP?H /F_) = KO (T(w)) 2 KO~(Fy) =

KO ?(pt) ® 1?6—2(17;;) is of order 16. As in the proof of 4.2 once can check easily

the extension above splits and so KO(F_y) = imi' | ® KO’ (RP?" Y /F_y).

Now we are going to show that KO~%(F;) = Z;® Z2® Z2® Z4. Recall for each
CW complex, there is a long exact sequence(c.f: [Bo])

L KO'(X) = KON (x) 5 B (x) 2 KO (x)
Consider the following exact commutative diagram:

KO-3(RP™+1) 5 K-2RP™) B CORPM)
Vi L L
KO-%F) 5  K2*F) 5  KOF)
Notice the homomorphism i!k at the right square are both surjective to the tor-
sion part, Zyswm). By [Fu], K-2(RP?+) L KO(RP?**) is a multiple two
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homomorphism. So the restriction of py : I?:Z(Fk) — KO(F;) on the torsion sum-
mand is also a multiple two map. Therefore at the bottom line, ime = 26 -1,

. . . = =2
Compose with the realization homomorphism p : K—2(F}) - KO (F};) we have

p(2#M)~1g) = 0 if 28071 > KO=2(F,) |. Thus pe = 0 and so 2KO~2(F}) = 0 if
n > 8. This proves that KO—2(F,) ¥ Zo @ Zo® Zo and KO 4(F) X Zo D Zo @
Z2® Z,. This proves (ii). By the Mayer-Vietoris exact sequence one can conclude
(iii) readily. This completes the proof. &

similarly we have
Corollary 4.6 Let T : M — M 13 a diffeornorphism inducing identity on the
Zo-cohomology ring. If my = 2(mod8), then T*(z) =z, T*(y;) = y; for 1 <1 < 4.

5. Geometric Dimensions

Recall that the geometric dimension of a stable bundle V over a connect com-
plex, denoted g. dim V, is the minimum fibre dimension of all vector bundles stable
equivalent to V. In this section, let X denote a connected n-dimensional CW com-
plex with 7 (X) = Z4. Let £ be the unique nontrivial real line bundle over X and
z = g(§) — 1. We are addressed to discuss the g.dimkz for k£ € N motivated by
studying the multiplicities of isoparametric hypersurfaces in sphere. The ques-
tion itself has also some interests even in the case of X = RP"™, this is exactly
the generalized vector field problem arised by Atiyah-Bott-Shapiro[ABS]. It has
other application in differential topology, e.g, the immersion problem of RP" in
Euclidean space of minimum dimension. Some important tools in algebraic topol-
ogy were applied to attack it. Among them, perhaps the most successful method
update is to use the BP-homology theory[Da]. We will use Adams operations in
equivariant K-theory to prove the following result which plays a key role in the
proof of theorem A.

Theorem 5.1 Let X be a n-dimensional CW-complex with m(X) = Zo and
E = ke(£). Assume n = —1(mod8). Suppose that
(i). z =¢€(€) —1 € K(X) generates a cyclic subgroup of order 290",
(ii). The total Stiefel-Whitney class w(E) = (1+w)™*! where w € HY (X, Z2) = Zy
is a generator and w" # 0.
(iti). E has 2m + (2k — n — 1) linearly independent sections.
Then vo(k) > m — 1 if m = 1(mod2) and vp(k) > m — 2 if mn = 0(mod2).

Notice that (iii) above is equivalent to saying ¢g.dimg £ < n+ 1 — 2m. Let us
recall a result of Becker[Be] which says if E — X is a real vector bundle and has
! linearly independent sections, then E® ¢ — X x RP'~! admits a nowhere zero
section, where £ is the Hopf line bundle ¢ — RP*~!. For our E in 5.1, by (ii)
we obtain immediately that 2k > n+ 1. Let r = [}] and By = E— (k-7 —1).
For the dimension reasoning Fy is also a virtual complex vector bundle. By (iii)
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Ey possesses 2m linearly independent sections. Thus p(FEp) ® £ and so Ep @ £(€)
admits a nonzero section. For the sake of siple, in the rest let us consider Fy
instead of E. Notice that the Gysin exact sequence

0 K~ HX x RP?™ 1) 2y K-Y(S(E®e(€))) -5 KAE®¢e(€)) = 0

splits exact.

Let t = X x C =X denote the trivial complex line bundle with a nontrivial
involution (z,z) — (z,—z). We regard X as a trivial Z; space. Notice ¢ gives an
element in the equivariant K -group Kz,(X) = K(X)® R(Z,), where R(Z5) is the
complex representation ring of Zy. We write Et for £ ® . Observe that

X x RP?™-1 = S(mt)/Z,,
S(E®e()) = S(mt) xx S(Et)/Zs,
E®ce(€) = S(mt) xx Et/Z,,
where S(mt) x x S(Et) is the following pullback bundle:

S(mt) xx S(Et) — S(Et)

P Ly
S(mt) -0 X

Under this identification, the exact sequence above may be identified with the
exact sequence

0 = K7} (S(mt)) 2 Kz} (S(mt) xx S(Bt)) < K2, (S(mt) xx Et) -0

which fits into the following commutative diagram(**):

Kz, (X)  — Kz, (S(Bt) — K3 (Et)
.lv1l’] l lﬂ,l
§
K72 (S(mt)) T Kz)(S(mt) xx S(E)) D K§,(S(mt) xx Et)
1é 18 16
!
Kz, (mt xx Et) N K3.(mt) - Kg (mtxx S(Et)) 2 Kz (mt x x Et)
i L L
K3,(Bt) 2, K3 (X) LN K$_(S(E1))

Obviously all homomorphisms in the above diagram commute with the Adams
operation ¥P(p € N} since they are induced by maps. For a bundle F' based
on X, let Ur € K(F) denote its Thom class. Recall that the Bott canibalistic
charateristic class p,(F) € K(X) is defined by the identity:

Y (Ur) = pp(F)UF.
For a line bundle L, pp(L) = 1+ L* + -+ +(L*)P~".
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Conventions: For every G-complez vector bundle E based on a connected com-
plez X, S(E) always stands for the sphere bundle and Ug for the Thom class,
where G is a compact Lie group.

(i) Vb € K&(X) and Yu = aUgp € KG(E) = K§(X), a € Kj;,(X), define
bu:= (ba)Ug € KL(E).

(i) ¥b € KL(X) and Yu € KL(S(E)), define ub := ur'b € KL(S(E)) where
7 : S(E) = X is the projection.

Let @, = 9P — p,(Et). With those conventions in mind, it is easy to see that ¢,
is natural with respect to maps in the diagram(**). Obviously we have

Lemma 5.2 Let (U,u) € K3, (mt) x K{;(S(mt) x x S(Et)) satisfying 61u = p'U.
If there is an b € K3 (X) such that ¥?(b) = b, p € N, and du = 7 (aUg). Then
there is an « € K7 (S(mt)) such that p,(u) = p'(a).

Now let us turn back to the circumstance in 5.1. Let s : X x RP™~1
S(E ® €(€)) is a section. s gives rise an equivariant section to the sphere bundle
S(mt) xx S(Et) — S(mt). For an a € Kz, (S(tnt)) as in 5.2, notice & = &'
P(e) = s'gy() = @p(s'). By 5.2

wp(u) = p'(a) = p p(s'u) = pp(p'B),
where 8 = s*u € Kz—zl(S(mt)). Applying §; to this equality we get & pp(u) =
P'o10p(0) = p(b1u) = p'o,(U) and so
P(@p(U) = 819,(B)) = 0.

Let A and B € Kzoz(X) be the unique classes so that AUy, = U € K2, (mt)
and 6,0 = B - Ume. Let p(1) 1= pp(mt) — pp(Et). Notice that @,(0) = ©,(1)0,
V8 € K2,(X). Thus we have

¢p(1)(A = B) - Upy € im{p* : K[zjz(mt xx Et) = ng(mt)}.

Note that B - Un, € ker{r* : K3, (mt) = K{ (X)}.
Inserting the Thom isomorphism, the left below corner of the diagram (**) gives
a commutative diagram

KYX)®R(Zy) ' KO%X)® R(Zy)
b Aymt 3 A_imi
KYX)®R(Z;) 25 K9X)® R(Zy)
where A_jmt and A_; Et are the K-theoretical Euler classes of 't and Et respec-
tively.

This proves
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Lemma 5.3 ¢,(1){(A — B) = 0(rnodA_1 Et), A_ymt(B) = 0. Moreover, B does
not depend on the integer p € N.

Proof of Theorem 5.1: Let r = [Z]. Notice that the Euler classes A_;(mt) =

(1 ~¢)™ and A_;(Et) = ((:t_jii_)?‘)_fr . Set X =1—-¢(§) and T =1—¢t. Then
X? =2X and X"+ = 0. we have therefore

A(Bt) = FEXOE — ( )t‘X‘T”‘l‘

Inserting the relation #2 = 1, i.e, T? = 2T we obtain that
A (B =T 4+ XT7 YT, ( ’: )

Let exr = Yioy f ) Notice that X7T™ € K(X) ® R(Z;) is of order two
since 2XT" = X7 = 0. So we may regard ¢ - as amod 2 number. We claim
¢k = 0(mod2). In fact, by w(E) = (1 + w)2™+1) = (1 + w)?* (modw?"+1) we get

that
ok \ _ [ 2r+1)\ oo
(%)z( 0 )1f2z§2(7+1)—1.

— & r+1 — or+l —
€k r = ;} ( ; ) = 2" (mod2) =0
and so A_j(Et) = T Set A = T7~™+! ¢ KJ (X} which corresponds to an
U € K3 (mt) under the Thom isomorphism. We claim that there is an u €
K7.1(S(mt) x x S(Et)) satisfying 5.2.

To show this, notice that Et is the pullback of a bundle over RP™ by the clas-
sifying map f : X — RP" for the universal cover of X and ¥*(e} = e if p is
odd, Ve € KZOZ(RP"). We may regard ¢ as a line bundle over RP" as well and let
U® € K2, (mt) denote the class corresponds to 77~ € KJ (RP™). Obviously
U= f* U8 By the commutative diagram (**)} wherc X = RP™ and A_;{mt)- A =
T+ € im(A_1(Et)) it follows that there exists an u° € K{;(S(mt) Xppr S(EL))
satisfying 5.2. By naturality u = f*u° is the desired element.

Therefore, by 5.3, for p odd there exists an B € ker{T™ : K (X} = K3 (X)}
independent of p € N such that

0p(L)(A = B) = 0(modA_; (Et)) (5.4)

Thus

Notice that pz(mt) = (1 + + t2)™ and p3(Et) = %%Jf—l In the localized
ring K3,(X) ® Z3), one can check readily that

p3(Ety =% k (—t)*Xi(3 _ T)r+1—i

=grtl 4 3r+1 T4 =3 'i {1- _-|~3";_"‘_ T}3—(’°—"1)X.
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p3(mt) = 3™ 4+ =507
‘,03(1) -~ (3m - 3r+1) + 3r+12_3m,{ _ 1—§k {l _ 1+3L~;r—1 T}3_k+r+1X.
This implies that @3(1)T = 1_23 TX.
Similarly we have
p—1(mt) = (—1)™t™ and
p-1(Bt) = (=1)T 1+l ()
Therefore
p-1(1) = (1)1 + (1™l (),
Notice that Tt = —T. We obtain ¢_; (1)T = T(1 — £(£)*) = 0 as k = 0(mod2).
Note that r is odd. @_1(1) = 0 and ¢_1(1) = —(2 — T) by m = 0{mod2) and
m = 1(mod2) respectively. Therefore
a(1)A = 27~py(T) = 27~y
p-1(4) =0.
By 5.4, there is an
Be idez—zl(SOnt)) &® Z(3) = ker{T™ : KZOZ(X) ® Z(S) — KZOQ(X) ® Z(a)}
such that .
w3(1)A = ¢3(1)B(modT™*!)
w_1(1)A = ¢_1(1)B = 0(modT"!).
Let B =a+ bX + (a+ BX)T, then

o 1{B)=%x(2-TYHa+bX) = O(mOdTT"'l)

if m = —1(mod2) and s0 ¢ = 0, (2 — T)bX = O(modT"+!). Thus bX = 0. As
B € ker T™ and so oT™*! + BXT™+! = 0. This shows that « = 0 and 8 = 2""™¢
for an ¢ € Z. Recall
03(B) = @3(27~™cXT) = 27~ mHlzd X T
Thus we have
03(A) — pa(B) = 27™(1 — 20) 125 XT = 0(modT™ ).

This implies then 1/2(1"”23'd } > m.

In other words, if m is odd, then m < va(k) + 1 and so vo(k) > m — 1.

For m even, we consider mn — 1 instead of m and can conclude that 5(k) > m—2.
This proves the theorem.

§ 6. Proof of Theorem A

Now we are ready to prove theorem A advertised in §1. Recall that Fi(k = %)
are the focal manifolds of an isoparametric hypersurface M in RP?**! and E;
for 1 < ¢ <€ 4 are the focal distributions as §2. Let -; i1s the normal bundle of
F,, in RP?"*! whose codimension is my + 1. Again p;, : M — F} stands for the
projection. Let F,E") be the n-skeleton of a triangulation of Fy. By 4.1, 4.2, 4.3 and
4.5 the image of [y4] € KO(F,) at H)(Fin)) must be kz for some k € N since the
terms other than Z.4(, have very high filtrations(exist only if m_ = 3, 5(mod8)).
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By [ADb], the total Stiefel-whitney class of v, is (1 + w)"*!. Thus k& = 0(mod2)
and k > n+ 1 as n = —1(mod8) as we assumed at the very beginning. Note that
E1 © 1 = pi(y4+). Let X := M be the n-skeleton. Thus k¢ — X has at least
(k —n —1) 4+ (m- + 1} linearly independent sections by dim

E; = my. Applying 5.1 we obtain vy(k) > [m'2+1] if [""2"'1] = 1(mod 2) and
k) > [251] — 1 i [255] = 0(mod 2)

Now let us consider y-. If m_ = 7(mod8), by 4.1 there are integers {,a,b € N so
that y_ = lz 4+ ay + byz € KO(F_). Recall that p* (y_) = Ex ®1 and T7E; = Ey,
T'E, = Ej, where T; is as §2. Now [E,| = kz and so T7([E]) = kz. Thus
E\0 E;® T E, ® T{Ey = TM gives an equation

2kt + [Bp] + T4 [Ea) = 2(n + 1)z € KO(M).

Assume that T3(y) = 8y + iz + jzy. Obviously the cocfficient § must be =1.
Inserting into the equation above we have

(2(k+1)+(a+2bYi}z+a(1+8)y+{b(148) +{a+2b)j }zy = 2(n+1)z € KO(M)  (6.1)

In particular, a(1+68) = 0 and b(148)+(a+2b)7 is divisible by 2¢(*), By Quillen[Qu]
the Stiefel-Whitney classes ws(y) = 0if 1 < s < 21552 and so ws(Tx{y)) = 0.
Recall that my > m_ > 9 and my = O(mod8). Thus dimF_ = 2m. +m_ <
2l=51=2 and so w(y) = 1. One can check then readily w(zy) = 1. Thus w(iz) = 1.
This implies that i is divisible by 2% > n + 1, where 7y is the minimal number
satisfying this inequality. Similarly, by w{y—) = 1 we obtain that ! is divisible by
20 > n + 1 too. The equation (6.1) shows also that

2k + 1) + (a + 2b)i = 2(n + 1)(rnod2®(™).

m_+1 . .

Thus 2(n+1) is divisible by mz’n{Q[ T 2'0}. This implies that either n+1 = 2t
m_—1

7]

or n + 1 is divisible by 217, Notice that §(m_) = 2"
case of m_ = 7(mod 8).

The proof of other cases are similar, except one should note that, in case of
m— = 3,5(mod8), Ty [E;] + [E1] is also equal to 2kz by corollary 4.4 and 4.6. This
completes the proof.de

. This proves the

§7. Equifocal Hypersurfaces in Rank one Symmetric Spaces

In recent years, various generalized concept of isoparametric hypersurfaces in
ambient spaces other than space forms have been greatly studied. Among them
perhaps the equifocal hypersurfaces in symmetric spaces are the most natural one.
An important property for the hypersurface is that cvery geodesic in the ambient
space normal to the hypersurface is closed of constant length { and containing 2g
focal points. The number g is a natural generalization of the number of distinct
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principal curvatures. By using Hopf fibrations $?"*! — CP™ and §%*+3 5 HP"
we can lift an equifocal hypersurface to an isoparametric hypersurface in the sphere
and the length of normal geodesic is 2I. Using Miinzner’s remarkable theorem it
follows that the number g must be among {1,2,3} if the ambient space is CP"
and HP". The multiplicities of the hypersurface are the same as those of the
isoparametric hypersurface in the sphere and therefore our theorem A can be
applied to settle the problem on the multiplicities of isoparametric hypersurfaces in
CP"™ and HP". For equifocal hypersurface in the Cayley plane, we need some extra
argument to conclude the multiplicities. Through some work with G.Thorbergsson
we actually know that g must be either 1 or 2 in this case.

First let us give some examples of equifocal hypersurfaces in CP" and HP™ along
the line of [FKM].

Proposition 7.1 (1): If m_ = 2,3,4,5(rnod8) or 6(rnod8), m_ > 1. Then for
any k > 1 so that my = ké(m_) —m_ —1 > 1, there exists an equifocal hypersur-
face in CP™-+™+ with g = 2 and multiplicities m_,my;m_,my.

(i1): If m_ = 0,x1(mod8) and m_ > 1. Then for an cven 2k > 1 and my =
2k§{(m_) —m_ — 1 > 1, there ezists an equifocal hypersurface in CP™- ™+ with
g = 2 and multiplicities m_,my;m_,m4.

(iii); If m_ = 3,4,5(mod8), m_ > 1. Then for any k 2 1 so that my =

m_+my—1

kd(m_) —m_ — 1 > 1, there ezists an equifocal hypersurface in HP =7 — with
g = 2 and multiplicities m_,my;m_,my.

(iv): If m_ = £2(mod8), m_ > 1. Then for any k > 1 so that my = 2ké{(m_) —

m_+m—1

m._ — 1 > 1, there ezxists an equifocal hypersurface in HP— 7 — with g=2and
maultiplicities m_, m;m_,my.

(v): If m_ = 0,%+1(mod8), m_ > 1. Then for any k > 1 so that my =
m_+mi—l

4ké(m_) —m_ — 1 > 1, there ezists an equifocal hypersurface in HP — 2
with ¢ = 2 and multiplicities m_,m,.;m_,my.

Proof: Notice the relations among the Clifford algebras CI9™m+8 = C10m g
R(2%*) for k,m > 1 and
m 1 2 3 4 5 6 7 8
ci> |[ReR | R(2) | C(2) | H(2) | H(2) & H(2) | H(4) | C(8) | R(16)

Thus, if m = 8 + 2, 8 + 3, 8 + 4, 8 + 5, 8 + 6, CI®%™*! have irreducible
complex representations of C-dimensions 24+1, 24i+2 9442 9%i43 554 94i+3 e

spectively. Let eg,- -, e, denote an orthogonal basis of (R™*!, —z2 — ... — 12))
and keg, - -, key, gives m + 1 complex matrixes Py, -, P, € U(n). We define an

isoparametric function
F(z) = (z,2)* = 22 2(Pi(a), 2)?, = € C.
The restriction F|gzn—1 : S2*~! — [~1, 1] satisfies the Cartan-Miinzner equations
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and so for each regular value ¢ € (=1, 1), the hypersurface F~!(c) is isoparamet-
ric[FKM]. Notice that F(e’z) = F(z) and so F~!(¢) is invariant under the stan-
dard circle action on the sphere. This gives an equifocal hypersurface in CP"~1,
The proof of (i) follows.

To show (ii), we need only to complexify the standard irreducible representaions.
This produces the extra factor 2 in (ii). The others are similar. This completes
the proof. &

Recall an equifocal hypersurface with multiplicities mny,m2 also must be a S™1-
bundle over a focal manifold M, as well as a S™2-bundle over another focal man-
ifold M5. The following result settle the multiplicities problem for euifocal hyper-
surface in Cayley plane separately since we can not reduce this case to the similar
problem in sphere via the Hopf fibration.

Theorem 7.2. Let M C QP(2) be an equifocal hypersurface with multiplicities
my < mg. Suppose that all of the focal manifolds are orientable. Then either
(m1,mq) = (7,15), M is diffeomorphic to §'°, and the number of focal points on
each normal geodesic is equal to 2 or (my,my) = (4,7), M is a S*-bundle over
homotopy 11-sphere as well as ¢ S7-bundle over HP?.

Proof: Let S, 5] and S; denote the sequences {m,mo,u = my +mg,u+m;,u-+
mag, 2u, - -}, {my,u,u + m,2u,---} and {my,u,u +my,2u, -} M; and M, will
denote the two corresponding focal manifolds. The coefficients of every homology
or cohomology groups will be the rational. The proof is divided into the following
steps.

Step I. 7,15 € S.

Let P = P(QP(2), M x p) denote the path space consists of all paths from p to
M in QP(2), p is not a focal point. Consider the Leray-Serre cohomology spectral
sequence (LSSS) of the fibration QQP(2) - P — M. Notice that the rational
cohomology groups of QQP(2) occur only in the dimensions {0,7,22,---}. By [T-
T} the reduced cohomology groups of the path space /” occur nontrivially only in
the dimensions in the sequence S. The argument is to compare this fact with the
spectral sequence.

If the differential dg : E‘g"" - Eg’o vanishes, then the term Eg’7 survives in the
oco-term and so 7 € S. Also the term Eg & H'S(M) survives and therefore
15 € S. If dg is nontrivial, then this means that ES’O is nonzero. By Poincaré
duality, H7(M) is nontrivial and it survives in the co-term. Thus 7 € S and
EST = Hng) is of rank at least 1. The differential dg : Ey” — E3>° = 0 and so
E87 = Eg’ . Thus 15 € S. This completes the step L.

By step I above it follows that m; # mo.

Step II. 2 < m; < mgy < 6 can not happen.
Consider the fibration QQP(2) = P, = P(QP(2),M, x p) - M, and its Leray
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Serre spectral sequence. Note dim M; = 15—n; < 13. The LSSS argument shows
easily that HI(M) =2 Qifq=0o0r ¢ <6 and q € S,.

In particular, Eg"’ﬂ - Eg’"”*“ = H-4 (M) =0ifT—u#0sinceT—u<2<
mo. Either Eg" 27 gurvives and so mg -+ 7 € 8y or u = 7. In either cases, note that
H8(M,) = H™™™ (M) 2 Q. Thus E§’7 2 Q which survives in the co-term. This
shows that 15 € S,.

Ifmg+7€ 8 and uw # 7, then u +m, = 7. Comparing with the relations
15 € Sa(i.e, 15 = ku or ku + mg,) we conclude that either u|15 or 22 = (k + 2)u.
Therefore u = 5, (mny,m9) = (2,3) or u = 11, (my, ma} = (5, 6).

The cases u = 7 and 15 = ku or ku 4+ mgy are impossible.

For the two possibilities above, the dimensions of the focal manifolds are 12,13
and 9, 10. In the first case, the Euler numbers x(M) = 0, x(M;) = 0. H5(My) =0
by an analogous spectral sequence for the path space P, = P(QP(2), M2 xp). Thus
x(M3) is even since dim M, = 12. In the second case, x(M) = 0, x(M3) = 0 and
x(M)) is even since the intersection form of M is skew symmetric by dimM; = 10.
Note x(QP(2)) = 3. This contradicts with the following identity of the Euler
numbers

X(QP(2)) — x(My) = x(M2) +x(M} = 0.
This completes the step 11

Step IIL 2 < m,; <6 and mg > 6 implics (my,ma) = (4,7).

Notice dim My = 15 — my and H*(M;) = 0 if ¥ # 0 and < 6 by the spectral
sequence as before. By the duality it follows casily that M; has the rational
homotopy type of S'5~™i (In fact it is a homotopy sphere). M; is a manifold of
dimension 15 — my < 8. For ¢ < 6, HY(M3) = Q only if ¢ = 0 or ¢ = m;. By
duality it follows that Mj is either homological equivalent to CP(2) or HP(2).
These implies m; = 2 or 4 and my = 11 or 7 respectively. Notice that the
hypersurface M are sphere bundles over the two focal manifolds. In the former
case, M is a S!-bundle over CP(2) as well as a S%-bundle over S!3. Obvious it
is impossible since they have different homology groups. In the latter case, M is
a S7-bundle over a homological HP(2) as well as a S%-bundle over a homotopy
11-sphere. It is easy to check the focal manifold with the homology of HP? is
actually diffeomorphic to HP2. The proof for step 111 is completed.

Combining the steps I, IT and III, if m; > 1, then either (m,,m2) = (4,7) or
mg > my > 7 and thus m; = 7 by step 1. Furthermore, the latter case implies
that either mg = 8 or 15. If my = 8, the Euler number x(M;) = 2 and x(M) =
x(Mz2) = 0. This contradicts with the Euler number formula as above. Thus
(my,mg) = (7,15) if we can exclude the cases of mn; = 1.

Step IV. m; # 1.
Suppose not, dimM, = 14 and dimMy; = 15 — my < 14, The formula 3 =
x(QP(2)) = x{(M;) + x(M,) shows that my must be odd since y(M;) must be

24



even for the intersection form of M is even type. There are only four cases, (1,1),
(1,3), (1,5) or (1,7) by step I. (1,1) and (1,5) are impossible since otherwise, the
dimension of M, is either 14 or 10, the Euler number of Ms is therefore even for
the same reasoning. To exclude the cases (1,3) and (1,7), notice that the middle
dimensional homology group of M; is zero in either cases. Thus the Buler number
is even again. This contradicts with the above identity again. This completes Step
Iv.

Combining these steps it follows that (m;,mg) = (7,15) or (4, 7) as we mentioned
above and consequently M = S5 or a sphere bundle over HP?. Notice that, in the
former case, there is a free action of the dihedral group By, on M. By Milnor[Mi}
it is possible only if g = 1 and then By, = Z,, where 2g is the number of focal
points on normal geodesic.

This completes the proof. &

Remark One can generalize the concept of equifocal hypersurface in symmetric
spaces to hypersurfaces in Blaschke manifolds. The same result presented above
holds for hypersurfaces in Blaschke manifolds modeled on QP?.
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