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Abstract

It is determined under which conditions a probability distribution on a finite set can occur

as the outcome distribution of a quantum-mechanical von Neumann measurement with post-

selection, given that the scalar product between the initial and the final state is known as well

as the success probability of the postselection. An intermediate von Neumann measurement

can enhance transition probabilities between states such that the error probability shrinks by

a factor of up to 2.

1 Introduction

The following observation was made in [Fri10]: upon subjecting any quantum system to the proce-
dure,

(a) prepation of some initial state |ψ〉,

(b) application of a dichotomic von Neumann measurement q,

(c) postselection1 with respect to some final state |φ〉 such that 〈ψ|φ〉 = 0,

the usual rules of quantum mechanics imply that the two outcomes of q both necessarily occur with
a conditional probability of 1/2. This is easiest to see on the level of amplitudes, where it follows
from

0 = 〈ψ|φ〉 = 〈ψ|q|φ〉 + 〈ψ|(1 − q)|φ〉,
so that the two probabilities for measuring q = 1 or q = 0 are given by, respectively,

P (q = 1) =
|〈ψ|q|φ〉|2

|〈ψ|q|φ〉|2 + |〈ψ|(1 − q)|φ〉|2 =
1

2
, P (q = 0) =

|〈ψ|(1 − q)|φ〉|2
|〈ψ|q|φ〉|2 + |〈ψ|(1 − q)|φ〉|2 =

1

2
.

Intuitively, this means that a dichotomic von Neumann measurement with postselection which is
orthogonal to the inital state is guaranteed to be a perfectly unbiased random number generator.

1For an introduction to quantum mechanics with postselection and the counterintuitive effects it gives rise too,
see e.g. [AV07].
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So when 〈ψ|φ〉 = 0, there is only a single probability distribution over the outcomes which can
arise for an intermediate dichotomic von Neumann measurement. Now the obvious question is, how
does this generalize? What if the measurement has n outcomes instead of just 2? What if |φ〉 is
not orthogonal to |ψ〉? These are the kind of questions to be answered here.

Note that these questions are of interest in the foundations of quantum mechanics, since they
are of the form “under which conditions is it possible to find a quantum-mechanical model for a
given set of probabilities?”.

Synopsis. Section 2 derives some elementary mathematical results about vectors in C
n. The main

result about probability distributions for von Neumann measurements with postselection follows in
section 3. Then section 4 discusses some particular special cases of this result and determines to
what extent transition probabilities between quantum states can be enhanced by a von Neumann
measurement. Finally, section 5 briefly concludes.

Acknowledgements. I would like to thank Andreas Winter for an invitation to visit the Centre
for Quantum Technologies, where this research has been conducted. I am indebted to Reinhard
Werner for stimulating questions during a talk. Finally, this work would not have been possible
without the excellent research conditions within the IMPRS graduate program at the Max Planck
Institute and the invaluable advice provided by my supervisor Matilde Marcolli.

2 Mathematical Preliminaries

We will later need a solution to the following elementary mathematical problem:

Question: Given n non-negative real numbers x1, . . . , xn, is it possible to find complex
numbers z1, . . . , zn such that |zk| = xk and

∑

k zk = 0?

We will see soon that this question can easily be reduced to the following proposition, where now
the requirement

∑

k zk = 0 has been replaced by the condition
∑

k zk = 1.

Proposition 2.1. For given x1, . . . , xn ∈ R≥0, there exist z1, . . . , zn ∈ C with

|zk| = xk,

n
∑

k=1

zk = 1

if and only if the inequalities

xk ≤ 1 +

n
∑

j=1

j 6=k

xj ,

n
∑

j=1

xj ≥ 1 (1)

hold.

Proof. The necessity of (1) is a direct consequence of the triangle inequality. The burden of the
proof lies in showing that these inequalities are sufficient to guarantee the existence of a solution
for the zk. For this, it can be assumed without loss of generality that all the xk are strictly positive.

Now we apply induction on n. In the case n = 1, the inequalities state that x1 ≤ 1, and
x1 ≥ 1, so that x1 = 1, which is what is required. For the induction step, given x1, . . . , xn+1

2



which satisfy (1), it can be assumed that these numbers are ordered such that x1 ≤ . . . ≤ xn+1.
Then up to an irrelevant global phase, it is enough to find z1, . . . , zn ∈ C such that |zk| = xk and
∑n

k=1 zk = y for some freely chosen y ∈ [|1 − xn+1|, 1 + xn+1], for these are the values of |1− zn+1|
which can be attained by choosing the argument of zn+1 with |zn+1| = xn+1 appropriately. Using
a rescaled version of the induction assumption, this can be done if and only if

xk ≤ y +

n
∑

j=1

j 6=k

xj ,

n
∑

j=1

xj ≥ y

By the assumed ordering of the xk, the first inequality holds if and only if y ≥ xn−
∑n−1

j=1 xj . Taking
all conditions on y together, the number y has to lie in the interval [|1 − xn+1|, 1 + xn+1], as well

as in the interval [xn −∑n−1
j=1 xj ,

∑n
j=1 xj ], and also y has to be positive. Therefore, the problem

can be solved if and only if these two intervals have a non-empty intersection on the positive real
axis. The intervals intersect if and only if the lower endpoint of any one interval is not above the
upper endpoint of the other interval; in the present case,

|1 − xn+1| ≤
n
∑

j=1

xj , xn −
n−1
∑

j=1

xj ≤ 1 + xn+1.

Now the first inequality holds by the assumption (1), while the validity of the second inequality
already follows from the assumed ordering xn ≤ xn+1. By

∑n
j=1 xj > 0, the intervals even intersect

on the positive real axis, so that a consistent choice for y is possible. This finishes the proof.

Corollary 2.2. Given non-negative real numbers x1, . . . , xn, there exist complex numbers z1, . . . , zn

with

|zk| = xk,

n
∑

k=1

zk = 0

if and only if the inequalities

xk ≤
n
∑

j=1

j 6=k

xj (2)

hold.

Proof. If all xk vanish, there is nothing to prove. If there is some k with xk > 0, then it suffices to
find zj ’s for j 6= k with

|zj| = xj , j 6= k,

n
∑

j=1

j 6=k

zj = xk.

This is possible due to proposition 2.1 rescaled by a factor of x−1
k .

Lemma 2.3. Given z ∈ Cn, there exist ψ, φ ∈ Cn+2 with

|ψ|2 = 1 = |φ|2, ψkφk =

{

zk for k = 1, . . . , n
0 for k = n+ 1, n+ 2
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if and only if the inequality
n
∑

k=1

|zk| ≤ 1 (3)

holds.

Proof. The necessity of (3) follows from the Cauchy-Schwarz inequality evaluated on ψ and φ′,
where φ′ ∈ Cn+2 is defined by the requirements that firstly, |φ′k| = |φk|, and that secondly, the
argument of φ′k is such that ψkφ

′
k = |zk| ∈ R≥0. For the sufficiency of (3), choose any complex

square root
√
zk for each zk and consider the two vectors

ψk =











√
zk for k = 1, . . . , n

√

1 −
∑n

j=1 |zj | for k = n+ 1

0 for k = n+ 2

, φk =











√
zk for k = 1, . . . , n
0 for k = n+ 1

√

1 −
∑n

j=1 |zj | for k = n+ 2
.

3 Von Neumann measurements with postselection

Suppose now that we have our quantum system prepared in some initial state |ψ〉, apply a von Neu-
mann measurement of some observable E having finite spectrum with distinct eigenvalues λ1, . . . , λn

and spectral projectors E1, . . . , En,

E =

n
∑

k=1

λkEk

and postselect with respect to some final state |φ〉. Under these conditions, the probability—
conditional with respect to successful postselection—of getting the outcome λk for the measurement
of E is given by (see e.g. [AV07])

P (k) =
|〈ψ|Ek|φ〉|2

∑n
j=1 |〈ψ|Ej |φ〉|2

, (4)

where the normalization factor

S ≡
n
∑

j=1

|〈ψ|Ej |φ〉|2

stands for the (unconditional) probability of successful postselection. Without loss of generality,
we will label the outcomes by 1, . . . , n instead of the eigenvalues λ1, . . . , λn as the labels for mea-
surement outcomes; this is entirely for notational convenience only.

Question 3.1. Given the transition amplitude A = |〈ψ|φ〉|, which probability distributions P (·)
on {1, . . . , n} can occur in this way for which values of the success probability S?

Note that it is no loss of generality to ask this question only for pure states, since a mixed state
can always be purified by adding an ancilla to the system with which it is entangled. Furthermore,
just like the quantities P (k) and S, the transition amplitude A also has an operational interpretation
as the success probability of a kind of “postselection”, namely postselection in the case when the
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intermediate measurement is not present. Therefore, one may think of all the quantities P (k), S
and A as given in terms of experimental data, and the question then is whether it is possible to find
a quantum-mechanical model reproducing these particular values, without specifying the Hilbert
space dimension or anything else in advance.

The case A = 0, n = 2 and S 6= 0 of this question has been treated in section 2 of [Fri10],
where it was found that, surprisingly, the only possibility is given by P (1) = P (2) = 1/2. Using
the elementary mathematical results derived in the previous section, we are now ready to answer
this question in complete generality.

Theorem 3.2. A given P (·) with given A and S can occur in this way if and only if the following

inequalities hold:

√

P (k) ≤ A√
S

+
∑

j 6=k

√

P (j),
A√
S

≤
n
∑

k=1

√

P (k) ≤ 1√
S

(5)

Proof. The main idea here is to use the completeness relation
∑

k Ek = 1 in order to obtain an
identity for amplitudes

〈ψ|φ〉 =

n
∑

k=1

〈ψ|Ek|φ〉

and then translate this into conditions on the probabilities (4). To this end, we can apply 2.2 to

zk = 〈ψ|Ek|φ〉, k = 1, . . . , n, zn+1 = −〈ψ|φ〉.

Then upon setting xk ≡
√

P (k)S = |〈ψ|Ek|φ〉| for k = 1, . . . , n, and defining xn+1 = A, it follows
that the first inequalities of (5) are necessary, as well as the first inequality of the second formula.
In the case that the Ek are rank-one projectors—so that they define an orthonormal basis of the
Hilbert space—the remaining inequality is implied by lemma 2.3 applied to z1, . . . , zn. In general,
we can choose an orthonormal basis {|j〉}j in which all the Ek are diagonal, and apply an argument
analogous to the proof of lemma 2.3 as follows:

n
∑

k=1

|zk| =

n
∑

k=1

|〈ψ|Ek|φ〉| ≤
∑

j

|〈ψ|j〉〈j|φ〉|.

Now let |φ′〉 be the vector which has the components 〈j|φ′〉 such that 〈ψ|j〉〈j|φ′〉 = |〈ψ|j〉〈j|φ〉|. It
follows that

n
∑

k=1

|zk| ≤
∑

j

〈ψ|j〉〈j|φ′〉 = 〈ψ|φ′〉 ≤ 1,

as was to be shown.
To see that the inequalities (5) taken together are also sufficient for the existence of a quantum-

mechanical model, we again set xk to be given by the square roots of the unnormalized prob-
abilities as xk ≡

√

P (k)S for k = 1, . . . , n, and again define xn+1 = A. Then again by 2.2,

some corresponding zk’s with
∑n+1

k=1 zk = 0 can now assumed to be given, and they also satisfy
∑n

k=1 |zk| =
∑n

k=1 xn ≤ 1 by the assumption (5). Now one can use lemma 2.3 to obtain the states
on Cn+2 which are given by

|ψ〉 =
n+2
∑

k=1

ψk|k〉, |φ〉 =
n+2
∑

k=1

φk|k〉
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in conjunction with Ek = |k〉〈k| for k = 1, . . . , n. The remaining two rank-one projections

|n+ 1〉〈n+ 1|, |n+ 2〉〈n+ 2|

can be added to any one or two of the Ek, so that one obtains a complete set of projectors.
Then

√

P (k)S = |〈ψ|Ek|φ〉| and A = |〈ψ|φ〉| both hold by construction. The requirement S =
∑n

k=1 |〈ψ|Ek|φ〉|2 is automatic by normalization of the probability distribution P (·).

It is possible to rewrite the inequalities (5) in a slightly more convenient form. Since the first
inequality holds for all k if and only if it holds for that k for which P (k) is largest, it is enough to
require

2
√

max
k

P (k) ≤ A√
S

+

n
∑

k=1

√

P (k)

Now using the definitions of “moments”

M∞ ≡ max
k

P (k), M1/2 ≡
n
∑

k=1

√

P (k) (6)

we can see that the inequalities (5) are in fact equivalent to

2
√

M∞ −M1/2 ≤ A√
S

≤M1/2 ≤ 1√
S

(7)

so that the dependence on the distribution P (·) is only through the dependence on the quantities
M∞ and M1/2.

Remark 3.3. (a) The proof of the theorem shows that it is sufficient to employ Hilbert spaces of
dimension at most n+2. It is unclear whether the conditions (5) also guarantee the existence
of a quantum-mechanical model using a Hilbert space of dimension n or n+ 1.

(b) One can also reformulate (5) in terms of the min-entropy and the Rényi 1/2-entropy

H1/2 = 2 logM1/2, H∞ = − logM∞

where it means that

2 log
(

2e−H∞/2 − eH1/2/2
)

≤ log
A2

S
≤ H1/2 ≤ log

1

S

Intuitively, the last inequality in this chain means that the more information one wants to
obtain about the postselected ensemble, the lower the optimal probability for conducting a
successful measurement with postselection is going to be. And by the second inequality in
the chain, higher information gain for given success probability also implies lower transition
amplitude from |ψ〉 to |φ〉.

4 Discussion

Let us now look at some specific cases of this result.
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1 2

3

Figure 1: The quantum-mechanical region for A = 0 (orthogonal postselection), n = 3, and arbi-
trary success probability S (ternary plot).

Case A = 0, S arbitrary. This was studied for n = 2 in [Fri10]. As long as we allow the success
probability S to be arbitrarily small, all that remains are the inequalities

√

P (k) ≤
∑

j 6=k

√

P (j) (8)

For n = 2, this reads
√

P (1) ≤
√

P (2) and
√

P (2) ≤
√

P (1), implying that P (1) = P (2) = 1/2.
Hence a dichotomic measurement with postselection which is orthogonal to the initial state is
guaranteed to be a perfectly unbiased random number generator. Generally, the

√

P (k) which
satisfy (8) lie in the convex cone spanned by the rays of the form

√

P (k) = δkl + δkm

for some pair of indices l 6= m. The n = 3 case is illustrated in figure 1; one obtains a circular
region in probability space, due to the fact that its boundary is then given by quadratic equations.
Just as it should due to the result for the n = 2 case, this region intersects with any side of the
triangle in exactly the middle of that side.

Case A 6= 0, S arbitrary. Here, it is possible for any P (·) to find some appropriately small
success probability S such that all inequalities in (7) hold, so no constraints abound. This is one
reason why it is important to always consider S as an additional parameter.

Case n = 2, general. Here, the two probability values P (1) and P (2) determine each other
uniquely, so let us write P (1) = p and P (2) = 1 − p. Then the inequalities are

∣

∣

√
p−

√

1 − p
∣

∣ ≤ A√
S

≤ √
p+

√

1 − p ≤ 1√
S

(9)

The projection of this into the p-S-plane, where only the last inequality is relevant, is shown in
figure 2. For fixed S, some sections of the quantum region are graphed in figure 3. The first two
inequalities of (9) define the upper and lower boundary curves in this case, while the third inequality
ledas to vertical cuts whenever S > 1/2.
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S

p0

1

0 1

Figure 2: For n = 2, the possible quantum-mechanical success probabilities as a function of p.

A

p
0

1

0 1

(a) S = 1/3.

A

p
0

1

0 1

(b) S = 1/2.

A

p
0

1

0 1

(c) S = 2/(2 +
√

3) ≈ 0.536.

Figure 3: Again n = 2. These plots show the quantum-mechanical region for (A, p) for some values
of S. For bigger S than those shown, according to figure 2, the region rapidly shrinks down to the
p = 0 and p = 1 lines.
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The A-S-region. How does the transition amplitude relate in general to the probability of suc-
cessful postselection? To study this, it is best to consider the inequalities in the form (7). Figure 10
shows an illustration of the following proposition.

Proposition 4.1. For a given number of outcomes n, a pair of values (A,S) can appear in quantum

theory if and only if

A2

n
≤ S ≤ A2 + 1

2
(10)

Proof. Again it is first shown that these inequalities are necessary. Since M1/2 ≤ √
n, the second

inequality in (7) implies that
A2 ≤ nS.

Now consider the expression

A2

S
+

1

S

(7)

≥ 4M∞ + 2M2
1/2 − 4

√

M∞M1/2 = 2
[

M∞ + (M1/2 −
√

M∞)2
]

and assume without loss of generality that P (n) = maxk P (k), so that

A2

S
+

1

S
≥ 2



P (n) +

(

n−1
∑

k=1

√

P (k)

)2


 ≥ 2

[

P (n) +

n−1
∑

k=1

P (k)

]

= 2,

as was to be shown.
For checking sufficiency of (10), consider first the case that S ≤ A2. Then since 2

√
M∞ −M1/2

can at most be 1, it follows that the first inequality of (7) holds automatically. Now the possible
values for M1/2 are given by the closed interval [1,

√
n], so that it is possible to find some value for

M1/2 in this interval which also satisfies (7) whenever 1√
S
≥ 1, which holds trivially, and A√

S
≤ √

n,

which is true by assumption.

It remains to prove sufficiency when A2 ≤ S ≤ A2+1
2 . Here, it is in fact enough to consider

probability distributions P (·) supported on two elements, which brings us effectively down to the
dichotomic case n = 2 from equation (9). By A√

S
≤ 1, the middle inequality is automatic, so one

only needs to take care of the remaining two. A direct calculation finally shows that when solving
the equation

√
p+

√
1 − p =

√
S for p, then the equation

∣

∣

√
p−

√

1 − p
∣

∣ =
A√
S

holds for the maximal allowed amplitude A =
√

2S − 1.

This result 4.1 states in particular that transition probabilities between quantum states can be
enhanced by an appropriate intermediate von Neumann measurement, the outcome of which can
be discarded. This constitutes a (rather weak) kind of measurement-based quantum control. (10)
shows that when using such a procedure, the error probability—i.e. the probability that the desired
transition does not happen—can be reduced by a factor of up to 2.
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S

A2
0

1

0 1

1
n

1
2

Figure 4: The quantum region of transition probabilities: A2 is the transition probability without
measurement, while S is the transition probability with n-ary von Neumann measurement. All
points above the dashed line S = A2 represent a measurement-enhanced transition probability.

5 Conclusion

In this paper, we have determined when a probability distribution over a finite number of mea-
surement outcomes can appear for some quantum-mechanical postselected ensemble, given that the
transition amplitude between the initial and final states is known, as well as the success probabil-
ity of the postselection. The ensuing conditions are inequalities which depend on the probability
distribution only through its Rényi 1/2-entropy and its min-entropy.

Finally, it was found that a von Neumann measurement can enhance the transition probability
between the initial and the final state. The maximal enhancement is independent of the number of
outcomes and is such that the error probability decreases by a factor of 2.
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