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Geometry of free products, cycloidal groups and. polynomial maps

by
Ravi S. Kulkarni *

§ 1 Introduction. (1.1) Let r = ﬁiEIri be a free product of

groups and ¢ a subgroup of TI. By Kurosh's theorem
¢ =F = ﬁiEI(ﬁjEJi’ij) where F 1is a free subgroup and oij's

are conjugate to subgroups of ri’ ier, jeJ,. The rank of F

i
is a welldefined invariant of ¢ as a subgroup of TI. We shall say

that ¢ is a C -—subgroup if the rank of F is r.

(1.2) The notion of a co-subgroup generalizes the notion of a

cycloidal subgroup of genus O introduced by Petersson in the

context of the modular group (= Z,* Z,), cf. [10], [11].

2
In the more general context of fuchsian groups we shall introduce

the notions of a cycloidal group and its cycloidal and t-cycloidal

subgroups. First, by abuse of the classical terminology, let us
mean by a fuchsian group any properly distontinuous, orientation-

preserving group of homeomorphisms of :Rz. (These are precisely

the discrete groups of isometries of the Euclidean plane or the
hyperbolic plane., The ones acting on the hyperbolic plane are
classically known as fuchsian groups, cf. [2], [15].) If T is
a fuchsian group then r\@RZ is a surface and the orbit map

2

R® —> I‘\l?.2 is a branched covering. We eall T a cycloidal group

if r\nz = R2

. It is not difficult to see that a cycloidal group
is a countable product of finite cyclic groups, and conversely any
such product can be realized as a cycloidal group uniquely upto

topological equivalence.

+ Supported by the Max-Planck-Institut fiir Mathematik, Bonn,
Germany, and the NSF grant MCS 83-01614



This implies in particular that for a subgroup of finite index in

a free product of finitely many finite cyclic groups the rank of
its free part decomposes into finer intrihsic invariants arising
from the genus and the number of ends of the corresponding branched

covering surface.

(1.3) A subgroup of a cycloidal group is called a cycloidal sub-

group if it is cycloidal in its own right as a fuchsian group.
One easily sees, cf. §2, that a subgroup ¢ of a cycloidal group
I' is cycloidal « ¢ . is generated by elements of finite order o ¢

is a co-subgroup of I in the sense of (1.1).

(1.4) Let T be a finitely generated cycloidal group and ¢ a

subgroup of I’ of finite index. Then @ynz is an orientable sur-

face of finite type - say, with t ends and genus g. Then we call

¢ a t-cycloidal subg;ougi'of r. Clearly a t-cycloidal subgroup

is cycloidal iff t=1 and g=0.

(1.5) The connection of cycloidal groups with polynomial maps
arises as follows. Let p: €C —> € be a polynomial map.

Then 4 = {z € | p'(z) = o} is called its singular set and

8 = p(s) 1is called its branch set. Let B8 = {x,,...,x.}. For each
Yi4 € p-1(xi) let dij be the order of the zero of p(z) - x; =0,

at Yi4e Let my = z.c.m.j{dij}, and my = mi/dij'.

#« 1In this terminology, a cycloidal subgroup in the sense of

Petersson [10] is precisely a 1-cycloidal subgroup of the modular

group.



Then by the theory of universal branched coverings one gets an

embedding of t in ﬁimm of index equal to the degree

1'jm‘“1j 1

of p.

‘Conversely let I be a finitely generated cycloidal group and
¢ a cycloidal subgroup of finite index 4 in T. Then
0\1!2 2, I‘\;I!2 is a d-sheeted branched covering. Identify
I‘\l!2 = 112 with € in some way, and pull back the complex struc-
ture on $QR2 via p. From the fact that p is a proper map it
follows from elementary complex analysis that ¢\@R2 is biholomor-

phic to € and p is a polynomial map of degree Ad.

More generally, proper holomorphic maps among Riemann surfaces
are connected with the finite-index inclusions among fuchsian groups
in the above manner. For example, a natural generalization of a
polynomial map is a meromorphic function on a closed Riemann surface
with a single pole. Such functions were especially studied by Weier-
strass at the end of the 19th century. These precisely correspond
to 1-cycloidal subgroups of finite index in finitely generated
cycloidal groups. Also arbitrary meromorphic functions on a closed
Riemann surface correspond to t-cycloidal subgroups, t = 1,2,..

of finite index in finitely generated cycloidal aroups.

It may be remarked that conversely the finite-index inclusions

among fuchsian groups lead to a classification of the topological

types of proper holomorphic maps among Riemann surfaces.



(1.6) The interconnections noted above suggest that the combi-
natorial theory of free products would have implications in fuch-
sian groups and thereon in the topological genesis of the global
aspects of the classical theory of a complex variable, apd conver-
sely the latter discipline would rendef some "geometric" insight
in the former. For example, Kurosh's theorem provides an elemen-
tary viewpoint on fuchsian groups which appears to be absent in
the standard literature on this subject, and conversely the group-
theoretic investigations on the modular groop substantially extend
to large classes of free prodocts of groups. And indeed the rank
of the free part of a subgroup of a free product has a close ana-
logy with the genus of a branched covering surface. The number of
ends of a covering eurface, however, refleot additional arithmetic

properties which are not apriori evident.
Now we briefly describe the results in this paper.

(1.7) A realization theorem. Let T = f k
i=1 n1

Zm . Then ¢ can be- realized as a 1-cycloidal subgroup of T iff
a ,

it admits a finite-index embedding in T.

_ ' L
and ¢ = Fz *ﬁu=1

For the conditions on his, m&s aod g ensuring a finite-
index embedding of ¢ in T see (3.2).'If g = 0, such an embed-
ding corresponds to a polynomial map and from this viewpoint an
equivalent result is due to Thom [13]. However when g = 0, any
finite-index inclusion of ¢ in I is automatically 1-cycloida1

so this result already follows from theorem 1 of [6]. In case T



is the modular group, the above theorem, stated in a different
language, is due to Millington [8). The full theorem would also
follow from theorem 2 of [6] and (5.2) of [1]. The proof presented
here is different from the Thom's indicated proof in [13] for the
special case g = 0, or the algebraic methodg of [1] or [8].
Actually it is quite elementary. We simply do the "1-dimensional”
construction in our proof of the extension of Kurosh's theorem in
(6] moré carefully so that its "2-dimensional" thickening, cf. [6],
(A1.1) is a coméact orientable surface with one boundary component.
The same method may be used to give geometric proofs of some of

the algebraic results in [1].

(1.8) Extensions of some work of Rosenberger and Zieschang

In [12], [14] these authors have studied free products of cyclic
groups by the Njelsen method. In [12], (cf. also [14] prop. 4.4)
Rosenberger obtains a nice criterion for a subgroup ¢ of

r = ﬁ1212m to be of finite index when mi's are primes and $

is generat;; by elements of finite order. He asks if the primality
condition may be dropped. When ¢ is interpreted as a cycloidal
subgroup one can recover Rosenberger's criterion, cf. (4.1), from
the thickened diagram for ¢, and this does not use the primality
condition. In [14], theorem 4.6 Zieschang proves that there are
infinitely many subgroups of finite index in T iﬁiﬂ1zm P my 202,
n > 2 which are generated by elements of finite order.:;or the
modular group, in a different language, this result is due to
Petersson [10].-These results are special cases on C,-subgroups

of essentially arbitrary free products, cf. 14.2).



(1.9) Normal subgroups A normal C,-subgroup of infinite index

can exist only when r = 0 or =, Normal Co—subgroups have a simple

description, cf. (5.2), which implies that in T = Irgl <=,

29Ty -
there are‘only finitely many normal C —subgroups. For 2 <r < »
and ri's finitely generated, T = ﬁin1 i admits only finitely many
normal Cr-sﬁbgroups. Moreover the quotients by normal Cr-subqroups;
2 <r < o, in any free product have a faithful integral represen-
tation of degree r — this shews that‘there are only finitely.
many isomorphism-types ofvthese quotients, cf. (5.8).k(There is a
clear analogy between thesevresults and’the famous results of‘
Schwarz and Hurwitz on the finiteness of the automorphism group
of a elosed Riemann surface of genus > 2.) As for r = 1, an arbi-
trary free product I admits infinitely many normal C1-subgroups
iff there is a surjective morphism, cf. (2.4), of T onto
Zz * Zz .

The case of t-cycloidal normal subgroups of finitely’generated

cycloidal groups has deeper arithmetic aspects. The number of

1-~cycloidal normal subgroups of ﬁi=1z if is finite ; if mi's

11 1)
the number of divisors of a natural number k. The latter statement

are pairwise coprime this number is d(m where d(k) denotes
generalizes Newman's theorem 3 in [9] for the modular group.

A much deeper Newman - Greenberg theorem, cf{[él,[3], agserts that
the number of t-cycloidal normal subgroups of the modular group is
finite for all t. This theorem extends verbatim to ﬁi-1 m. if

mi 8 are pairwise coprime, cf. (6.3); and if mi s are no:'pair-'
wise coprime and T ¥ Z,* %, there exist ;nfinitely meny values

of t, for each of which.there exist infinitely many normal t-cycloi-

dal subgroups, cf. (6.4).



(1.10) Some of the "1-dimensional" considerations in this paper
extend to graph-amalgamated products as well. But such extensions
are seldom verbatim and they also present some new phenomena.

We shall take them up in a later publication.



§ 2 Preliminaries

(2.1) Let r = 1§ with |ry/< e and ¢ <T. Then ¢ is a

i1’y
Co-subgroup of I iff it is a generated by elements of finite order.
This is clear from the Kurosh's theorem, since the free part

of ¢ is also its homomorphic image.
]

(2.2) piagrams (cf. (6], § 4). Let r =8 _.r and (x;,x) a
connected CW-complex with w1(xi,xi) = Ty. Attach a copy Ii of
the unit interval [o,1] to X; by identifying o with x,, thus
obtaining a space X,. Then I, ¢ X, is called the edge of X,.

Let X be the space obtained from U by identifying the

ier®s
end-points 1's of all the edges to a single point +# which serves
as the base-point of X. Equip X with the CWetopology w-r-t-iifs
i.e. a subset A in X is closed iff A N ii is closed for all

i € I. Then w,(X; ) = I'. The diagram corresponding to X, 1is

(2.2.1) @,___

It is also denoted by xr . The diagram for a k-fold connected
i
cover of X, is

(2.2.2) 5 }. k edges.

A diagram for X is obtained from those in (2.2.1) by identifying
the end~points 1's which becomes a base-point again denoted by +.
A diagram for a d-fold connected cover of X is obtained from the
various building blocks shown in (2.2.2) by appropriately identi-

fying the end-points of the edges. We shall denote the diagram for

X by xr and the diagram corresponding to a connected cover of X



corresponding to a subgroup ¢ of T by X,. We have a canonical
projection p: xQ _—> xr. Although this is 6hly a symbolic represen-
tation of a covering space, the consideration of lifting paths from
xr to xo are exactly the same as in the corresponding actual
covering spaces. Let Y° be the space obtained from x’ by pinching
each of the circles to apoint. Then Y° may be considered as a
graph. Its vertices are p-1(*) together Qith the images of the
circles in xo, and its edges are just the images of the edges in

Xo- In X, as well as Y, we fix a base-point, denoted by ¥,
lying over +. An application of the Van Kampen theorem to x0

yields a proof of Kurosh's theorem, and F = 11(Y°,;). So

(2.3) ¢ is a C, -subgroup iff Y, is a tree.

(2.4) Let ¢4 Ty —> G, be homomorphisms, i € I. Then they induce
. p def _ def

¢: T 'ﬁiEIri > G ﬁiEIGi‘ We call such ¢ or {cpi}ieI

a morphism of free products. For H < G we have canonical maps

X, -1 —> Xy. If each ¢, is surjective it is clear from the
=1

second isomorphism theorem for groups that the induced maps on the

diagrams X _,

¢ (H)
obvious sense.

—>'X%, are "isomorphisms" of the diagrams in the

(2.5) Thickened diagrams (cf. [6], (A1.1))
Let I'= ﬁielzm be a countable free product of finite cyclic
i

groups. If |I| = « we may take I = Z . in this case we slightly

change the definition of X as follows: we take xP as the space

r

obtained from RU Uiezi by identifying the end-point of the

r
- i
edge of X, to 1 €ER.

i
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The purpose of this change is that we now always have a proper
1-1 continuous map of xI. into :IR2 . Such a map is a homeomorphism

of xr onto its image. Now fill in each circle in X by the

r
disk it bounds in JR2 » and "thicken" each edge and the copy of R,

cf. [6], (A1.1), thus obtaining a thickened d'ibagram X .. Then

r
X . is a surface with boundary. It is compact when |I| < =, and
in any case int X = ]R2 . Int X , may be taken as the base of the

universal branched cover :IR2 —_—> I‘\]R2 , thus realizing I as a

cycloidal group.

(2.6) Let T be as in (2.5) and ¢ <T. Then thickening X, to

X ° appropriately we obtain an orientable surface with boundary.
Also p: Xo —> X, extends to a projection, again shown by

joH] XKQ _—> xcr. The free part of ¢ given by ‘the Kurosh's theorem
is generated by the handles and ends of int x¢ . So ¢ 1is generated
by elements of finite order iff int X

one end, i.e. int )KQ = ]R2 s 1.e ¢ is a cycloidal subgroup.

¢ is of genus o and has only

Thus, in view of (2.1), we get:

(2.7) Let T be a cycloidal group and ¢ < I'. Then ¢ is a

cycloidal subgroup of r iff it is a C.-subgroup of T.



§ 3 A proof of the realization theorem (1.7}

{(3.1) Incase T = z2» 222

We shall henceforth assume T # mz * zz .

it is easy to estabtish the theorem.

(3.2) We recall for r, ¢ as in (1.7) a set of necessary and suffi-
cient conditions for the existence of finite-index embedding of ¢
in T, compare [6] theorem 2.

a) Each m, divides some n,.

L 1
u=1 mu

- L - 2g01/i5, X L - x4} = a

B) {z
ny
is a positive integer
Y) Let m, = 1. By reindexiag if necessary assume that my,..m,
is a maximal set of distinct m&s and each mq occurs bq

times, q = 1,2...%. Let

Then the diophantine system

k

xi=1xiq = bq f 4 q = 1,2.0-2
(3.2.1) Xiq = o if m.q*ni
L :
quoﬁiq?iq = 4, 1i=1,2...k

has a solution for xiq's in non-negative integers.

(3.3) Let Xiq = xgq be a solution of (3.2.1) in non-negative

integers. Then it is possible to construct a connected diagram



o
from xiq copies of

(3.3.1) ‘ } njl_/mq edges ,

i=12...k , g=0,1...2 "covering" xr,

corresponds to a subgroup of I of index d,and = ¢ , cf. the

and any such diagram

proof of theorem 2 of {6]. We shall now do this construction more
carefully so that the thickened diagram would be a compact orien-

table surface with precisely one boundary component.

(3.4) It would be convenient to call the, thickening of an edge as

an arm - so the thickening of the diagram in (3.3.1) is a disk with

arms and we call it a block of level i. Note that xxr = a closed

disk. Pix an orientation on X and axxr . This induces orien-

T
tations in the diagrams in (3.3.1), their thickenings and on the
boundaries of these thickenings. The ith arm of x(r has two
oriented boundary arcs “i'“i . lying in axcr which are connected
by an oriented circular arc Bi cf. (3.4.1),

(3.4.1)

So



(3.4.2) axr =a, # 81 » a; *a, #... “)'c.
Also the ith arm meets the i+1-st arm (i counted mod k) along
an arc as shown in (3.4.1),

l.xO

g=0"iq ° This is the number of blocks of level {.

(3.5) Let r; =1I
(3.6) Now we start constructing X,. Take the r, blocks of level
1. Start

connecting the arms of the r, blocks of level 2 to those of the
blocks of level 1 so as to reduce the number of components as quick-
ly as feasible. (While connecting arms we énsure that a 1lift of

a joins a 1ift of az.). We continue this process with the blocks

b -

of level(s) 2,3... until we are left with exactly one component.
thice that at every stage in this process upto this point we get

a complex = a closed disk. For definiteness suppose s is the
integer s.t. the final complex obtained sofar, say D, ¢ has either
exactly used all the blocks of level s-1 ,or else has also used
some of the arms of the blocks of level s. Now we have to connect
’to ano the remaining arms of the blocks of level s. An elementary
observation in the'topology of surfaces is that if we have an orien-
table connected surface M with one boundary component we can
attach the arms of any finite number of disks with arms to 3M so
as to obtain an orientabie surface with <2 boundary components.

So we attach the remaining arms of the blocks of level s suitably

so that we obtain an orientable surface M.. with <2 Dboundary

components. There are two cases:



Case 1, 8 < k and aMs is connected.Then continue the pro-

cess described above with blocks of level s+1.

Case 2, Mg has two components. Then necessarily s < k for
otherwise M, corresponds to a X, and so ¢ would have the free

part of odd rank which is not the case. Now we make the

Claim: The arcs of aMs along which the arms of the blocks
of (s+1)-st 1level are to be connected cannot.. all lie on a single

component.

Assuming the claim let us complete the proof. If each of the
blocks of level s+1 has only one arm we attach them at appropriate
places to aMs thus obtaining Ms+1' Now aMs+1 has two Qomponents
and s+1 < k, and we continue the process. On the other hand sup-
pose that some block of level s+1 has >2 arms. Using the claim
we can attach one of these arms to one component of aMs and the
second arm to the other component, thus obtaining an orientable sur-
face with a connected. boundary. Now we can attach the remaining arms
of the blocks of level s+1 suitably so that we obtain Mg with
< 2 boundary components. By the argument at the beginning of case 2

in the final stage Mk must have only one houndary component.

This would finish the proof modulo the claim.

(3.7) Proof of the claim in (3-6) Notice that each of the arcs

“1'81 '“i' cf. (3.4.1), has 4 1lifts “ii'aﬂ#'°i. along the

boundaries of the blocks of level i. (Here » takes d values but

the specific indexing is not relevant). A component of JM_, is



then of the form

(3.7.1) 01*81.ai*c2’ .o Ggy O 01*81*... n\.,..ur...c;* o

where o0 indicates a place at which an arm of a block of level

s+1 is to be attached. Now if all these d places lie on a single
component, (3.7.1) shows that all the lifts. “1{'51*'“1* also lie
in the same component. But that would mean that aM is connected

which is contrary to our hypothesis.

This finishes the proof of the claim and of (1.7).

(3.8) Remark: A purely combinatorial-group-theoretic proof of
(1.7) - which, first of all involves the combinatorial-group-theo-
retic definitions of the genus and ends of a subgroup of a cycloid

group - may be fashioned on [8], [1] and [6] .

(3.9) Remark: For the case g=0, (1.7) implies the following
"high-school-math" fact. Let 8 = {x1""”‘k}’ be aset of k distinct
complex numbers and suppose of B. Let d = zjiﬁdij i=1,2...k

be k partitions of d. Then there exists a monic polynomial

p(z) of degree d{ without constant term and branch set 8 such

that
d

= - i j
p(z) - x; = My(z-y;y) )

for suitable yijeﬂ: e L =1,2,...,k iff

1y -y
d(k=1) = L, r, + 1 =0



Moreover if this condition is satisfied then there are only finitely
many polynomials of this type.



§ 4 Extensions of some results of Rosenberger+ and 21eschang+

(4.1) Let I = 31:1"1' ry = <xi>=zmi, U= x...x,, and ¢ a
subgroup of T generated by elements of finite arder. Rosenberger
cf. [12], (2.15) has given the following criterion for ¢ to be a
subgroup of finite index in T assuming that mis are primes .
His proof is by the Nielsen method and he asksg if the primality

hypothesis may be dropped. Such indeed is thé case.

Theorem (Rosenberger's criterion) Let I', ¢, u be as above.
Then ¢ has finite index in T iff there exists a positive inte-

ger m such that u™ € ¢. Moreover if m happens to be the least

positive integer such that u™ € ¢ then (r:¢) =m,

Proof Construct X, so that taking a base-point in I,

u may be represented by axxr . If there does not exist a positive
integer m such that u™ € ¢ then ¢ clearly has infinite index.
So suppose that there exists such m and in fact it is the least
positive such integer. This means that (GX(P)m lifts to a loop
in X,. Of course this 1lift must lie in a)l(r . By minimality of
m and since axx. is a 1-manifold it follows that this lift is a
component of 88.. But int xx.- ]Rz 80 since ‘a:x. is a closed
curve, xx.- a closed disk, in particular it is compact. Hence ¢
has finite index and

+ I am thankful to Rosenberger and Zieschang for communicating to

me their results.



(F:¢) = deg p'int x, = deg plam‘b =m. q.e.d.

(4.2) Zieschang's theorem 4.6 in [14] which is mentioned in (1.8)

is a special case of the following.

Theorem. Let T = T #T #T % ..
i) Assume that each of I‘1 and T, has a subdroup of finite
index >2. Then T has infinitely many C,-and C,-subgroups of
finite index.
ii) Assume that 'y (resp. rz) has a subgroup of finite index
> 2 (resp. >3) or that each of the ri' i=1,2,3 has a subgroup
of index >2. Then T has infinitely many C_-subgroups of finite

index, r = 0,1,2,¢.. .

Proof. It is easy to construct appropriate diagrams as in the

special case mentioned in (A1.4) of [6]. g.e.d.



§ 5 Normal C -subgroups

(5.1) Proposition. Let T = ﬁieIri and ¢ a normal Cr-subgroup

of infinite index, then r = 0 or =.

Proof. Indeed G = I'/¢ acts simply transitively on p—1(*)

and carries circuits into circuits. Also each edge has one vertex

1

in p '(#). So if there existsone simple circuit in Y, there

exist infinitely many distinct simple circuits. gqg,e.d.

(5.2) Theorem. Normal Co-subgroups are precisely the kernels of

the morphisms of free products, cf. (2.4).

3
Proof. Let ¢ be a normal sugbroup of I = “1exr1' and

p: x° —> xr be the canonical projection of the associated diagrams.

1

The components of p (X. ) are permuted by . I'/¢ so they corres-

Ty

pond to mutually isomorphic regular covering spaces 2 —> X

ij i

which correspond to the same normal subgroup, say 8 v of ry-
Write Gi = I'i/ei and ¢4 [y —> G1 the canonical projections
defining a morphism ¢:['—> G dgf ﬁiEIci' Clearly ker ¢ < ¢.

Now suppose that ¢ is also a Co-subgroup: We assgsert that

ker ¢ = ¢. Indeed let x € ¢, x ¥ e. Write x as a word xq... x,
where each x4 ¥ e and the consecutive xis ‘belong to different
factors of TI. Suppose if possible that ¢(x) ¥ e. Notice that if
some ¢,(x;) = e then x, € ¢ and since ¢ 1is normal the word

X' obtained from x by deleting x4 1is still in ¢ and

9(x') ¥ e. So by changing notation if necessary we may assume that
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wi(xi)lf e for 1=1,2,..,n. If x, € Iy, this means that a loop

in xr representing x4 does not 1ift to a loop in any component

of p (X, ). Let a; be a loop based at

r
3 ;
representing X4 Then the loop o = a va,* .. wa, represents x .

Since X € ¢, « lifts to a loop . & in X, based at’ #. Let a be
the image of e in YQ. Then o is a certaincircuit in the graph

Y,. Now a = 31*52*.. ';n where ;i is a certain 1ift of ay.

;i in Y, is an arc joining
two distinct points of p-1(*). This shows that no edge of a is

Since ¢(x;) # e, the image ;i of

immediately traversed back. But since ¢ is assumed to be a
co-subgroup, Y’ is a tree. So this is impossible. This contradic-

tion shows that we must have p(x) = e. SO ¢ = ker ¢.

Conversely suppose that ¢ = ker ¢ where ¢ is a morphism

of the free products T = f —Gc=1 G; defined by the

1exfi 1€1%1
homomorphisms ¢, : Iy —> Gy. Let H be the identity subgroup

of G. By the remark in (2.4) we see that the diagrams X and

L ]

Xy are isomorphic. But X, 1is just the diagram for the "univer-

H

sal cover" of xG. So YH and hence Yo are trees. So ¢ is

a normal co-subgroup; g.e.d.

(5.3) Corollary. Let I = ﬁ:—1ri' Iri' < »,"Let v(G) denote

the number of distinct normal subgroups of G. Then the number of
n - n -

normal C -subgroups of I is 1,_,v(l;). Among them LimqV(Ty)

n+l are of finite index.

Proof. The first assertion is clear from (5.2). Now note that
a normal Co-subgroup of finite index must correspond to a morphism

¢ = {°i} where at most one im ¢4 ¥ e.



So the number of proper normal Co-snbgroups of finite index is
zi{v(ri)-1}. Together with I itself their count is ziv(ri)-n+1.

g.e.d.

(5.4) Corollary Let T = ﬂ1:1zmi . Let d(k) denote the number
of divisors of a positive integer k. Then the number of normal

Among them N am

cycloidal subgroups of T |is n?_.d(m Ziaq

1=1d(my). il

n+1 are of finite index.

(5.5) Now we pass on to the study of normal cr-subgroups,
l<r<=.Let r=%_r and ¢<r sothat ¢ ~ r o
[ ]
(ﬁjEJi.ij } where ’ijs are subgroups of I‘i whose conjugates lie
*
in ¢. Write d1j = (ri: °1j)‘ Then {dij}jEJi is a well-defined
collection of positive integers (possibly infinite), associated to

¢ as a subgroup of T. We shall use this notation below,

(5.6) Lemma. Let T = T #T #Tq% ... #T where each ry is fini-
tely generated. Fix a non-negative integer r. Then there are only
finitely many Cr-subgroups of finite index in T satisfying

either one of the following conditions

a) d1j > 2 for j € J, and d2j >3 for jE€J,
or

8) a4

lv

2 i=1,2,3, j € Ji'

+ Here we assume that there are no dummy oij's s e in the free

product expression.
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Proof. Let ¢ be a C_-subgroup of finite index d, and
d-I.d4,. ‘ M

= i : n .
L, = |Jil + _TTiT_l - Then in Y, there are d+ I,_,ry Vvertices

and dn edges, so

= - 4y _ o N '
r = rank w,(Y,) = d(n-1) Ligq¥y T 1

Y=

We have always r; < d. If a) (resp. B)) is satisfied then

So
r 3.% + 1 , (resp. r 3_% +1).

Hence the index of C,.-subgroups satisfying® a) or B8) 1is boundec
by 6r-1. Since ri's are assumed to be finitely generated it

follows that the number of such Cr—subgroups is finite, q.e.d.

(5.7) Theorem Let T = ﬁ1:1ri where ri's are finitely generate

a) For 2 <r < » there are only finitely many normal
Cr-subgroups.
b) For r = 1, the number of normal C1-subgroups is ©

or =, It is o 4iff there exists a surjective morphism of free

products T _.»zzzc zzne*e*... .



Proof. By (5.1) the subgroups under consideration are auto-

matically of finite index. So the dij's . c£. (5.5), are all finite.

Moreover for a normal subgroup dij's depend only on 1i - say,

dij = di' So (5.6) takes care of the cases where either for two

distinct indices 1i,,i d; 22 and d;, > 3, or for three
2

2l
1
i 2 2. The remaining cases, therefore, are

distinct values of 1, 4

precisely

a) all but at most one di' say 61, are 1,

and

b) two of the d4;'s, say d, and d, are 2, and the

remaining di's are 1.

In case a) we have r; = |J,| =4 for i > 2 but then
r=1-r, >0 implies that r = 0. But we assumed r > 1—a

contradiction.*

In case b) we clearly have a morphism
Iy #T,% ... = Z *Z,%es.. and ¢ has the form A ' (3)
~where ¢ is a normal subgroup of Zo% Zone *... .

° and xsb are isomorphic. But it is easy to see that

YE is homotopic to a circle, so this case occurs only if r = 1.

So by (2.4) X

Conversely if there exists a morphism ) as above one easily

constructs infinitely many normal C,-subgroups. g.e.d.

*

In fact in case a), d = d1 = 1 also.



(5.8) Theorem Let 2 < r < ., Then thekquotients by normal
C,-subgroups of free products are finitegroups having a faithful
integral representation of rank r. In particular, there are only

finitely many isomorphism-types of such quotients.

Proof. Let T = “iEIri and ¢ a normal-cr-subgroup. As

dgf

remarked in (5.1), then G r/e is finjte. Let p: XQ -—> X

r
be the projection of the diagrams. Then G acts on x¢ and so also

on Y,. Note that G acts simply transitively on p-1(*). Since

1

every edge has an end-point in p '(#) it follows that G does

not fix any edge of Yo' In other words the action is pseudo-free

in the sense defined in [4]. Now since the Euler characteristic

of Y, is negative it follows, cf. [4], (3.1), that the induced
action on H'(YO,Z) « 2% is faithful. This proves the first
assertion of the theorem. The second is well-known, cf.[4], (9.2.1)

g.e.d.

(5.9) Remark. Iet T be a finitely generated cycloidal group. It is inte-
resting to compare the behavior of the rank of the free part with
the genus of a normal subgroup of TI. The genus of a normal sub-
group of infinite index is © or «. (The proof is similar to
(5.1)). From the available information on finite-group-actions on
closed surfaces, cf;[sl, § 4, one sees that.the number of normal
subgroups of I of finite genus #¥ 1 is finite. The number of
normal subgroups of genus 1 is © or «; it is = iff I has a

surjective homomorphism onto Z,e Zy, Zyw By oOFX Z, *» Z,,



This behavior of the genus should be contrasted with the
behavior of t = the number of ends which has an arithmetic flavor.

We study this in the next section.

(5.10) Remark. (5.8) gives a rather crude upper bound for the
degree of a faithful integral representation of a finite group.
For example, if a group of order d is generated by two elements
X,y, say x of order 2 and y of order 3 then it is a quotient
of the modular group and has a faithful integral representation
of degree 5.% + 1 . A slightly better bound is obtained if one
knows also that xy has order k > 7 then the degree may be
chosen to be < 2 + % - %. This follows from the fact that such a
group acts on a closed orientable surface M of genus g > 2 so

the induced action on H1 (M;Z) = Z2g is faithful. This oberser-

vation goes back to Hurwitz, cf. [4].



§ 6 Normal t-cycloidal subgroups

(6.1) In this section we extend some results of Newman [9] and
Greenberg (3] on the modular group to general finitely generated
cycloidal groups. Newman's theorem 3 of [9] classifies normal
1-cycloidal subgroups of the modular group - there are in all 4 in
number. A much deeper result of Newman [9] is that there are only
finitely many t-cycloidal subgroups of the modular group for t < 11
—a condition which was later removed by Greenberg [3].

(6.2) Theorem. Let T = ﬁi:.lzz > 2. Then it has only finitely

mi' my

many normal 1-cycloidal subgroups. If mi's are pairwise coprime
then their number is niz1d(mi) where d(k) denotes the number

of divisors of a natural number k.

Proof. Let ¢ be a normal 1-cycloidal subgroup. Then G = T/¢

acts on }X¢ which is a compact orientable surface with one boundar

component. Also G preserves orientation of }Kﬁ. Pinching mxo
to a point one may consider G as acting on a closed orientable

surface preserving orientation and fixing a point. Such a group is
known to be necessarily cyclic. In other words G must be a finite

cyclic quotient of . The assertions are now clear. g.e.d.

- kN
(6.3) Theorem. Let T ﬁiﬂzmj.
Then for each t = 1,2 ... there are only finitely many normal

’mi's > 2 and pairwise coprime.

t-cycloidal subgroups of T.



For the proof, first a group-theoretic Lemma.

(6.4) Lemma Let G be a finite group generated by n elements.
Let g be an element of G of order N and t = |G|/N. The
maximal normal subgroup of G contained in <g> has index

< tn+1.

Proof. Let H be the maximal normal subgroup contained in
<g> and {x1,..,xn} a set of generators of G. Set

n
= -1
H1 = <g> N ig1 X;<9> x; .

1

Clearly H < H; and H; has index < t"*1. We show that H = H,.

Notice that Hi = <gr> for some integer r, and since

gr € xi <g>xz we can write gr = xigsx;1 for some integer s.

But grf, gs have the same order. So as subgroups of <g> we have

1

<gt> = x1<gs>xI = <g5%>.

So

-1 r 1 ‘s - r, o
xil-l1x1 = X,<gT>X, = X;<g X <g > H1,

Hence also xz1H1x1 = H1. Since this holds for all xi's and every

element of G 1is a word in xi's it follows that H1 is normal

in Go SO H bl H1. qoeodo



(6.5) Proof of (6.3) Let ¢ be a normal t~cycloidal subgroup of

dgf

I of index 4 and 1let G r/¢. Let x be a generator of

i
Zmi and construct X, so that taking a base-point in axzr ’

g = Xq...X, is represented by a)xr . Let X;0 9 be the images
of Xx; , g in G. If g has order N, and d = |G| = (T:¢) then
clearly 4 = N:t. If H is the maximél normal subgroup contained
in <g> then by (6.4) H has index f_tn’H. Let o, denote the
automorphism of H induced by the conjugation by x € G.

m
Then we have axi =1 = °x1 o “szo tes0 axn .

Since H 1is cyclic, Aut H is abelian. So since mi's are assu-
med to be pairwise coprime we see that uxi =1 for i=1,2.. n,
i.e. H 1is actually central in G.

Let H = Z, and |G/HB| = i. So Hes»G —> G/H represents an
extension which may be regarded as an element of HZ(G/H;zk) , cf.
[7] ch. 4. Write k = a-m where all and (in,z) = 1,

The coefficient map 2z, —> Z, induces a map Hz(G/H;Zk) —_

HZ(G/H;ZZm) which corresponds to a map of the extensions

1 —> H'-'ﬂk > G —> G/H —> 1
H
N
Vv
1 —> Zm FT:?""G1 —> G/H —> 1.

(Since (m,2) = 1 the bottom line splits, cf.[7] ch.4. § 10.)

So one has surjective maps [ —> G —>> G, =»> Z_ .

dgf

Now clearly m < m,...m

M , say . So

d = |G| = k- |[G/H| = a.met < Me? ;Mt““"”
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i.e. the index of ¢ is bounded. So there are only finitely many

t-cycloidal subgroups for each t = 1,2,.. . g.e.d.

(6.5) Theor;em. Let T = zm1'zm2* . th ' (m1,m2) > 1, and
r +z2*kzz . Then there are infinitely many values of t for each

of which there are infinitely many t—cycloidal.subgroups.

Proof. Let p be aprime divisor of (m1,m2). First consider
the case p > 3. We have an obvious morphism of free products,

cf. (2.4),

zm1*zm2* ceot zmn —> Zpizp* e #,, ®e,

So by the commert in (2.4) applied to their thickenings it suffices
to prove the assertion for Zp* zp . SO we just take T = r,=T,,
Ty = <X>eZ,T) =<y>=Z,. Let

vpawn=uvw=e>

A = <u,v,w| uP

= 4p,p,N
denote a triangle group. So fixing N > 3 we ensure that this group

is infinite. Consider: the homomorphisms

At T —> A , B.t. A(x) =u , A(Y) =v,
(6.4.1)

s A —»> Zp ¢ 8.t. ufu) # e‘# u(v) , u(uv) = e

Let ¢ be any torsion-free normal subgroup of finite index in A
80 that ¢ < ker u. As is well-known there exist infinitely many
such subgroups. Let

-1

¢ =2"' and c 98f

r/eca/e.



If x,y,z denote the images of Xx,y,z degf Xy in G then 2z has
order N (since @ is torsion-free). If |G| = N-t we see that
¢ is a t-cycloidal normal subgroup of T. For this t we now
produce infinitely many t-cycloidal normal subgroups.

Let g be a prime = 1(p), q4N. There exist infinitely many such
primes by the well-known Dirichlet's theorem.and.its extensions.
The significance of such primes is t‘hat for any power q" there
exists an automorphism of order p of Z q’ . If we fix a generator
a of Zqz such an automorphism will have the form a —> a®
where rP = 1 (q”) { 1 (ql) . Now by construction there is a
surjective homomorphism G —» zzp . Let G act on ZJ. via Zp
in this way and consider the semidirect product

H dgf Z A G = <a,x,y,z>

q

where the relations include

(6.4.1)

az = za .

A calculation shows that x, = ax has order  p. Also Y1 =Y

has order p, and since z commutes with a, and g4N the ele-
ment zZy = Xy, = axy = a.z-1 has order »q"-N. Also z1N = aN
is a generator of an . So H 1is generated by two elements Xq1Y9q

both of order p such that their product z, has order q"-N .

Moreover |H| = g*{G| = q*N.t . 1f 6:r —> H s.t. 8(¥) =X, ,
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o(y) = Y, we see that ker & is a normal t-cycloidal subgroup of
index q"-N-t . Since there are infinitely many choices for each
of gq,2 and t we have shown that for each of the infinitely many

values of t there are infinitely many normal t-cycloidal subgroups.

It remains to consider the case when p.= 2 but T & 222 * zz2 .
There are two subcases:
i) I‘=Za* Eb*""' wvhere a=zbz0(2) and ab>4 ;

ii) I‘=Zz* Zz* Zz*..'

As before we reduce to

i)' r = Ea* Eb , where a:zbz=z0(2) and ab>4 ;

| ] -
ii)'r = ZZ* ZZ* Zz .

Subcase i)' Consider Ea = <x> , Zb = <y> and
A, = A =<uvw|ua=vb=wN=uvw=e>-NZ4
1 a'b,N rvae 4 .

Note that A1 is infinite. Consider the homomorphisms

A: T —> A1 y 8.t. Alx) =u, Aly) = v .
bt a, —> &, s.t. p(u) # e # p(v), u(uv) = e .

Now start with a normal torsion-free subgroup ®, of A, of

1 1
finite index, such that 01 is contained in ‘ker p . The argument

proceeds exactly as before.

Subcase ii)°’ Let Xq1X,, Xy be a set of generators of .T ,
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each of order 2, and consider a "quadrilateral" group

| 2 .2 .2 N
¥ = <uj,uy,ug,y,|uy = u; = uy =u, =uuuu, =e>, N22.

Note again that Y is infinite. Consider the homomorphisms

A s>V s.t. A(xi) = ui » i-= 1'2'3 ’

B Y—> zzzs.t. u(u1) # e, u(u3)’= u(u4) = e .

Now start with a normal torsion-free subgroup ¢ of ¥ of finite
index and contained in ker pu . Hereafter the argument proceeds

essentially as before and may be left to the reader.

This completes the proof. qg.e.d.

(6.5) Remark: The above argument breaks down for TI'w zz *z,

precisely at the point that A is finite for all N . Indeed

2,2,N ,
it is easy to see that the only normal subgroups ¢ of T ,

e# ¢ #I' , are of finite even index. Moreover for any even intege
2k there exists precisely one normal subgroup of index 2k ; it

is «Z and is 2-cycloidal.
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