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ROOTED TREE MAPS AND THE KAWASHIMA RELATIONS FOR
MULTIPLE ZETA VALUES

HENRIK BACHMANN AND TATSUSHI TANAKA

Abstract. Recently, inspired by the Connes-Kreimer Hopf algebra of rooted trees,

the second named author introduced rooted tree maps as a family of linear maps

on the noncommutative polynomial algebra in two letters. These give a class of

relations among multiple zeta values, which are known to be a subclass of the so-

called linear part of the Kawashima relations. In this paper we show the opposite

implication, that is the linear part of the Kawashima relations is implied by the

relations coming from rooted tree maps.

1. Introduction

Rooted tree maps were introduced in [T] and they assign to a rooted tree a linear

map on the space H = Q〈x, y〉 of noncommutative polynomials in x and y. One

application of these maps is that any admissible word evaluated at a rooted tree map

gives a Q-linear relation between multiple zeta values. To prove this result, one shows

that these type of relations follow from a special case, the linear part, of the so called

Kawashima relations.

The purpose of this note is to show, that the rooted tree maps relations are actually

equivalent to the linear part of the Kawashima relations.

For k1 ≥ 2, k2, . . . , kr ≥ 1 the multiple zeta values are defined by

(1.1) ζ(k1, . . . , kr) =
∑

m1>···>mr>0

1

mk1
1 . . .mkr

r

.

To state the Kawashima relations we need to introduce some notations. Denote by

H1 = Q + Hy the subspace of words in H, which end in y. The space H1 is spanned

by the monomials zk1 . . . zkr with k1, . . . , kr ≥ 1, where zk = xk−1y. On H1 one can

define recursively the harmonic product ∗ by 1 ∗ w = w ∗ 1 = w and

zk1v ∗ zk2w = zk1(v ∗ zk2w) + zk2(zk1v ∗ w) + zk1+k2(v ∗ w)
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for k1, k2 ≥ 1 and v, w ∈ H1. Let H0 = Q + xHy ⊂ H be the subspace of admissi-

ble words and define the Q-linear map Z : H0 → R on a monomial w = zk1 . . . zkr
by Z(w) = ζ(k1, . . . , kr). Equipped with the harmonic product ∗ both H1 and H0

are commutative Q-algebras and it is a well-known fact, that Z is an algebra homo-

morphism from H0 to the algebra of multiple zeta values. Define the automorphism

ϕ ∈ Aut(H) (with respect to the concatenation) on the generators by ϕ(x) = x + y

and ϕ(y) = −y and define for words v, w ∈ H1 the operator zpv ~ zqw = zp+q(v ∗ w).

With this the Kawashima relations can be stated as follows:

Theorem 1.1. ([K, Corollary 5.4]) For all v, w ∈ Hy and m ≥ 1 we have

(1.2)
∑

i+j=m
i,j≥1

Z(ϕ(v)~ yi)Z(ϕ(w)~ yj) = Z(ϕ(v ∗ w)~ ym) .

It is expected that Theorem 1.1 give all Q-linear relations between multiple zeta values

after evaluating the product on the left-hand side by the shuffle product formula,

whose definition we will omit here. Moreover numerical experiment suggest, that the

two cases m = 1, 2 are enough to obtain all linear relations.

Rooted tree maps assign to a rooted tree a linear map on the space H. Evaluated at

any admissible word these give also relations between multiple zeta values. Denoting

by H̃d≥1 ⊂ End(H) the space of all rooted tree maps of non-zero degree (see Section

2 for precise definitions), we have the following result proven in [T].

Theorem 1.2. ([T, Theorem 1.3]) For any rooted tree map f ∈ H̃d≥1 we have

f(H0) ⊂ kerZ.

The main result of this work is the following.

Theorem 1.3. The rooted tree maps relations are equivalent to the linear part of the

Kawashima relations, i.e. Theorem 1.2 implies the m = 1 case of Theorem 1.1.

Let Rk be the number of linearly independent rooted tree maps relations (Theorem

1.2) among multiple zeta values in weight k (the number k1 + · · · + kr in (1.1)) and

denote by Ck the conjectured number of all linearly independent relations of multiple

zeta values in weight k. For small k these are given by

k 2 3 4 5 6 7 8 9 10 11 12 13

Rk 0 1 2 5 10 23 46 98 200 413 838 1713

Ck 0 1 3 6 14 29 60 123 249 503 1012 2032
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2. Rooted tree maps

A rooted tree is as a finite graph which is connected, has no cycles, and has a distin-

guished vertex called the root. We draw rooted trees with the root on top and we just

consider rooted trees with no plane structure, which means that we for example do

not distinguish between and . A product (given by the disjoint union) of rooted

trees will be called a (rooted) forest and by H we denote the Q-algebra of forests

generated by all trees. The unit of H, given by the empty forest, will be denoted by

I. Since we just consider trees without plane structure the algebra H is commutative.

Due to the work of Connes and Kreimer ([CK]) the space H has the structure of a

Hopf algebra. To define the coproduct on H we first define the linear map B+ on H,

which connects all roots of the trees in a forest to a new root. For example we have

B+ ( ) = . Clearly for every tree t ∈ H there exists a unique forest ft ∈ H with

t = B+(ft), which is just given by removing the root of t. The coproduct on H can

then be defined recursively for a tree t ∈ H by

∆(t) = t⊗ I + (id⊗B+) ◦∆(ft)

and for a forest f = gh with g, h ∈ H multiplicatively by ∆(f) = ∆(g)∆(h) and

∆(I) = I⊗ I. For example we have

∆( ) = ⊗ I + ⊗ + 2 ⊗ + I⊗ .

In [T] the second named author uses the coproduct ∆ to assign to a forest f ∈ H a

Q-linear map on the space H = Q〈x, y〉, called a rooted tree map, by the following:

Definition 2.1. For any non-empty forest f ∈ H, we define a Q-linear map on H,

also denoted by f , recursively: For a word w ∈ H and a letter u ∈ {x, y} we set

(2.1) f(wu) := M(∆(f)(w ⊗ u)) ,

where M(w1⊗w2) = w1w2 denotes the multiplication on H. This reduces the calcula-

tion to f(u) for a letter u ∈ {x, y}, which is defined by the following:

i) If f = , then f(x) := xy and f(y) := −xy.

ii) For a tree t = B+(f) we set t(u) := RyRx+2yR
−1
y f(u), where Rv is the linear map

given by Rv(w) = wv (v, w ∈ H).
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iii) If f = gh is a forest with g, h 6= I, then f(u) := g(h(u)).

The rooted tree map of the empty forest I is given by the identity.

By H̃ ⊂ End(H) we denote the space spanned by all rooted tree maps and by H̃d the

space spanned by rooted tree maps of degree d (number of vertices). Note that for

any f ∈ H̃d with d ≥ 1 we have f(1) = 0, which follows by induction on the degree of

f from (2.1) with w = 1. In [BT] it was shown that the derivation ∂n on H, defined

for n ≥ 1 by ∂n(x) = x(x+y)n−1y and ∂n(y) = −x(x+y)n−1y can be written in terms

of rooted tree maps. In particular the rooted tree map = ∂1 is a derivation, which

will be used for various calculations in the remaining parts of this work.

3. The space F

Denote by Hd ⊂ H the subspace spanned by all rooted forests of degree d. In this

section we will consider a subspace of Hd defined recursively by F1 = Q · and for

d ≥ 2 by

Fd = B+ (Fd−1) + Fd−1 .

For example for d = 2, 3, 4 the Fd are given by

F2 = Q + Q , F3 = Q + Q + Q + Q ,

F4 = Q + Q + Q + Q + Q + Q + Q + Q .

Notice that the space F =
⊕

d≥1Fd ⊂ H is a subspace of H, but not a subalgebra

since for example ∈ F2 but /∈ F4. By definition we have dimQFd = 2d−1. Denote

by F̃d ⊂ End(H) the space spanned by all rooted tree maps corresponding to the

rooted trees in Fd and set F̃ =
⊕

d≥1 F̃d ⊂ H̃. The main goal of this section is to

prove the following.

Theorem 3.1. We have an isomorphism of Q-vector spaces

Θ : F̃ −→ xHy

f 7−→ f(x) .

Before we can prove Theorem 3.1 at the end of this section, we need to introduce

some notation and prove some Lemma. Define the 2n−1×2n-matrix An by A1 = (1 1)

and for n ≥ 2 recursively by

An :=

(
An−1 E2n−2 0

0 E2n−2 An−1

)
=:
(
A(1)

n | A(2)
n

)
,
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where En denotes the n× n identity matrix. The matrices A
(j)
n are both 2n−1 × 2n−1

square matrices. Denote for d ≥ 2 by wd ∈ (H0
d)

2d−2
the vector of all 2d−2 monomials

in H0 of degree d, ordered in lexicographical order (x < y) from the top to the bottom.

For example we have for d = 2, 3, 4

w2 =
(
xy
)
, w3 =

(
x2y

xy2

)
, w4 =


x3y

x2y2

xyxy

xy3

 .

For a rooted forest f ∈ H we denote by f(wd) ∈ (H0)2
d−2

the component-wise evalu-

ation of the rooted tree map f on the entries of wd.

In the following we denote for v, w ∈ H by Rv and Lv the linear maps given by

Rv(w) = wv and Lv(w) = vw.

Lemma 3.2. For all d ≥ 2 we have (wd) ≡ Ad−1wd+1 mod 2.

Proof. We prove this statement by induction on d. For d = 2 this follows immediately,

since (w2) = ( (xy)) = (xyy−xxy) and A1w3 = (xxy+xyy). By definition of wd one

can check that

(3.1) wd =

(
Lx(wd−1)

LxyL
−1
x (wd−1)

)
=


Lx2(xw′d−2)

Lx2(yw′d−2)

Lxy(xw
′
d−2)

Lxy(yw
′
d−2)

 ,

where we write w′d−2 := L−1x (wd−2). Using that is a derivation with (x) = xy and

(y) = −xy yields

(Lx(wd−1)) = (x2w′d−1) = (x)xw′d−1 + x (x)w′d−1 + x2 (w′d−1)

= Lxy(wd−1) + Lx2(Ly + )(w′d−1)
(3.2)

and

(LxyL
−1
x (wd−1)) = (xyw′d−1) = (x)yw′d−1 + x (y)w′d−1 + xy (w′d−1)

≡ Lxy(Ly + )(w′d−1) + Lx2(yw′d−1) mod 2 .
(3.3)

Now by assumption we have

Ad−2wd ≡ (wd−1) = (xw′d−1) = Lxy(w
′
d−1) + Lx (w′d−1) mod 2 .

This together with (3.2) and (3.3) yields

(Lx(wd−1)) ≡ Ad−2(Lx(wd)) + Lxy(wd−1) mod 2 ,
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(LxyL
−1
x (wd−1)) ≡ Ad−2(LxyL

−1
x (wd)) + Lx2Ly(w

′
d−1) mod 2 .

This concludes the statement in the Lemma, since by definition of Ad−1 and (3.1) the

right-hand side gives the entries of Ad−1wd+1 . �

Define for d ≥ 1 the 2d × 2d−1-matrices

E (1)d =


1 0 . . . 0

0 0
...

0 1
...

0 0
......

. . .
...... 1

0 . . . . . . 0

 , E (2)d =


0 0 . . . 0

1 0
...

0 0
...

0 1
......

. . .
...... 0

0 . . . . . . 1

 .

Lemma 3.3. We have for all d ≥ 2

(3.4) wd+1 = E (2)d−1Rywd + E (1)d−1RxyR
−1
y wd .

Proof. This follows from the fact that if one orders the monomials m
(d)
∗ in xHy of

degree d lexicographically by m
(d)
1 < m

(d)
2 < · · · < m

(d)

2d−2 , then m
(d+1)
2j−1 = RxyRy−1m

(d)
j

and m
(d+1)
2j = Rym

(d)
j for j = 1, . . . , 2d−2. �

Define on H the anti-automorphism τ by τ(x) = y and τ(y) = x. Clearly we have

τ(xHy) = xHy which we can use to define for d ≥ 1 the unique permutation matrix

Td ∈M2d−2(Z) satisfying

Tdwd = τ(wd) .

Lemma 3.4. We have for all d ≥ 2

(3.5) det
(
Ad−1E (2)d−1

)
≡ 1 mod 2 .

Proof. By Lemma 3.2 and 3.3 we have

(wd) ≡ Ad−1wd+1 mod 2

= Ad−1E (2)d−1Ry(wd) + Ad−1E (1)d−1RxyR
−1
y (wd) .

(3.6)

Since for all w ∈ H we have (τ(wy)) = xyτ(w) +x (τ(w)) and τ( (wy)) = xτ( (w))−
xy(τ(w)) the operators and τ commute modulo 2. Together with the definition of

the matrix Td, Lemma 3.2, τLx = Ryτ and τLxy = Rxyτ we get

Td (wd) = (τ(wd)) ≡ τ( (wd)) ≡ τ(Ad−1wd+1)

= τ
(
A

(1)
d−1Lx(wd) + A

(2)
d−1LxyL

−1
x (wd)

)
= A

(1)
d−1TdRy(wd) + A

(2)
d−1TdRxyR

−1
y (wd) mod 2 .

Since the entries in the first summand of this expression end all in y2 and the entries of

the second expression end all in xy, we get by (3.6) the identities Ad−1E (2)d−1 ≡ TdA
(1)
d−1Td
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mod 2 and Ad−1E (1)d−1 ≡ TdA
(2)
d−1Td mod 2. Since A

(1)
d−1 is an upper triangle matrix

with 1 on the diagonal we have det(A
(1)
d−1) = 1 which together with det(Td)

2 = 1 gives

(3.5). �

Now define for d ≥ 1 the matrices Bd ∈M2d−1(Z) by B1 = (1) and for d ≥ 2 by

Bd =

(
Bd−1(E (1)d−1)

t

Bd−1Ad−1

)
.

Notice that Bd−1(E (1)d−1)
t is just Bd−1 with zero columns added at the even places, i.e.

if Bd−1 = (b1, . . . , b2d−2) then Bd−1(E (2)d−1)
t = (b1, 0, b2, 0, . . . , b2d−2 , 0).

Lemma 3.5. For all d ≥ 1 we have det (Bd) ≡ 1 mod 2.

Proof. With the matrix Ed := (E (1)d | E
(2)
d ) ∈M2d−1(Z) one checks that

BdEd =

(
Bd−1 0

Bd−1Ad−1E (1)d−1 Bd−1Ad−1E (2)d−1

)
.

The result now follows inductively together with Lemma 3.4. �

Before we can finally prove Theorem 3.1 we will now give the connection of the map

Θ : F → xHy given by f 7→ f(x) and the matrix Bd. For this we define the vector

fd ∈ F2d−1

d by f1 = ( ) and

fd =

(
B+(fd−1)

fd−1

)
.

So in particular fd contains all generators of Fd. By fd(x) ∈ (xHy)2
d−1

we will denote

the vectors obtained by evaluating all entries at x.

Lemma 3.6. For all d ≥ 1 we have fd(x) ≡ Bdwd+1 mod 2.

Proof. We will again use induction on d. For d = 1 the statement can be checked

easily. Now for d ≥ 2 we get by assumption, the definition of rooted tree maps and

Lemma 3.2

fd(x) =

(
B+(fd−1)(x)

fd−1(x)

)
≡

(
RyRxR

−1
y fd−1(x)

fd−1(x)

)

≡

(
Bd−1RyRxR

−1
y wd

Bd−1 (wd)

)
≡

(
Bd−1RyRxR

−1
y (wd)

Bd−1Ad−1wd

)
mod 2 .

Together with Bd−1RyRxR
−1
y (wd) = Bd−1(E (1)d−1)

twd+1, which follows from the lexico-

graphical ordering of the wd, we obtain the desired result. �
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Proof of Theorem 3.1. That Θ is an isomorphism follows now directly from Lemma

3.2 and 3.6, which imply that every monomial in xHy of degree d+ 1 can be written

as some f(x) with f ∈ Fd. Therefore the map Θ is surjective on the degree graded

parts Fd and (xHy)d+1, which both have dimension 2d−1. �

4. Kawashima relations

In this section we want to give the proof of Theorem 1.3, i.e. that the rooted tree

map relations imply the linear part of the Kawashima relation. Recall that with the

automorphism ϕ ∈ Aut(H) defined by ϕ(x) = x+ y and ϕ(y) = −y the linear part of

the Kawashima relations, i.e. the m = 1 case in Theorem 1.1, states that

(4.1) ϕ(v ∗ w)~ y = Lxϕ(v ∗ w) ∈ kerZ

for any w, v ∈ Hy. In [T] it was shown, that the rooted tree maps relations follow

from the linear part of the Kawashima relations (see proof of [T, Corollary 4.7]), i.e.

we have in particular

{f(w) | f ∈ F̃ , w ∈ H0} ⊂ Lxϕ(Hy ∗ Hy) .

We will now show that also the opposite inclusion holds.

Theorem 4.1. We have

Lxϕ(Hy ∗ Hy) ⊂ {f(w) | f ∈ F̃ , w ∈ H0} .

Proof. Due to Lemma 4.2 in [T] we know that

(1− τ)(xHy) ⊂ Lxϕ(Hy ∗ Hy) .

So we have (1− τ)(xHy) = τ(1− τ)(xHy) ⊂ τLxϕ(Hy ∗ Hy) and hence

Lxϕ(Hy ∗ Hy) = ((1− τ) + τ)Lxϕ(Hy ∗ Hy) ⊂ (1− τ)(xHy) + τLxϕ(Hy ∗ Hy)

⊂ τLxϕ(Hy ∗ Hy) .

The opposite inclusion τLxϕ(Hy ∗ Hy) ⊂ Lxϕ(Hy ∗ Hy) was shown in the proof of

Corollary 4.7 in [T] and therefore we have

(4.2) Lxϕ(Hy ∗ Hy) = τLxϕ(Hy ∗ Hy) .

Following [T] we define χx := τLxϕ. Due to Corollary 4.5. in [T] there exist for any

f ∈ F̃ a w ∈ Hy such that

(4.3) fχx = χxHw ,
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where Hw(v) = w ∗ v for w, v ∈ Hy. The element w is uniquely determined by

w = χ−1x f(y). Since we have for any rooted tree map f ∈ F̃ that f(y) = −f(x), we

get −χx(w) = f(x). In Theorem 3.1 we proved that the map Θ : F → xHy with

f 7→ f(x) is an isomorphism and hence for an arbitrary w ∈ Hy the rooted tree map

f = −Θ−1(χx(w)) ∈ F satisfies (4.3).

Now let w, v be arbitrary elements in Hy. To proof the statement of the theorem we

want to show that we can find a rooted tree map f ∈ F̃ and a u ∈ H0, such that

Lxϕ(w ∗ v) = f(u). Because of (4.2) it suffices to show that we can find such an f

and u with τLxϕ(w ∗ v) = χxHw(v) = f(u) = fχx(χ−1x u). By the above discussion

we can choose u = χx(v) and f = −Θ−1(χx(w)). �

Remark 4.2. The space F is a proper subset of H, since ∈ H but /∈ F . Due

to Theorem 4.1 all rooted tree maps relations are already obtained by considering just

the rooted trees in F , that is the space F̃ . Due to numerical experiments we actually

expect that the space F̃ is the whole space H̃, i.e. the recursively defined elements at

the beginning of Section 3 might give a basis of the space of rooted tree maps and in

particular dimQ H̃d = 2d−1. Since the number of rooted tree maps in degree d is larger

than 2d−1 for d ≥ 4, this would give linear relations between rooted tree maps. For

example we expect that we have for all w ∈ H

(w) = 2 (w) + (w)− (w)− (w) .
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