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1. Introduction

The concept of Hodge algebras was introduced by C. DeConcini, D. Eisenbud, and C.
Procesi [3] in order to unify and extend a large amount of information about specific alge-
bras such as the coordinate rings of Grassmannians, flag manifolds, Schubert varieties,
determinantal and Pfaffian varieties, varities of complexes, and varieties of minimal degree.
It generalizes the straightening formula of invariant theory, which allows to determine
many features of the algebras by a relatively simple combinatorial study of their generators
and relations. See e.g. [1], [2], [7], [8] for recent developments in the theory of Hodge
algebras.

This paper will deal with two open questions on the structure of Hodge algebras.

The first question is whether the straightening relations give a presentation of the
Hodge algebra. This question has an affirmative answer in the graded case [3]. We shall
see that in general, this is not true even for the class of ordinal Hodge algebras (algebras
with straightening laws). We construct examples which show that there is no general rule

for the presentation of Hodge algebras.
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The second question is when an algebra over a field k has a Hodge algebra structure.
In [6] T. Hibi has proven that graded algebras generated over k by elements of positive
degree always have a Hodge algebra structure. According to [3], a necessary condition for
the existence of Hodge algebra structures is that the irreducible components of the spec-
trum of the algebra contain a common rational point. For zero—dimensional algebras, this
condition is also sufficient. In fact, the zero—dimensional Hodge algebras are exactly the
zero—dimensional local algebras. In general, the aforementioned condition is far from being
sufficient. We shall see that the spectrum of an one—dimensional Hodge algebra must have

a rational point which is a set—theoretic complete intersection.

ACKNOWLEDGEMENT. The author is grateful to W. Bruns who read the first draft of

this paper and gave many useful suggestions.

2. Presentation of Hodge algebras
We first recall some conventions from the theory of Hodge algebras.

Let H be a finite set. A monomialon H is an element of N , where N denotes
the set of non—negative integers. Let M and N be monomials, then their product MN is
defined by MN(x) = M(x) + N(x) for all x€ H. We say that N divides M if
N(x) { M(x) for all x € H, and in this case, we define the quotient monomial M/N by
M/N(x) = M(x) — N(x) . The supporiof M is the set supp(M) = {x € H | M(x) # 0} .

An ideal of monomialson H is aset IC N such that if M € I, then MN € I for
any monomial N . A monomial M is called standard with respect to I if ME€I. A
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generator of I is an element of I which is not divisible by any other element of I.If A
is a commutative ring and if there is an injection ¢: H—— A, then to each monomial M
on H we may associate the element ¢(M) = ]Tqé(x)M(x)

H with ¢(H) and M with ¢(M).

of A. We will usually identify

Let R be a commutative ring with identity and A a commutative R—algebra. Let
H be a finite poset with an injection ¢: H—— A, and I anideal of monomials on H.

DEFINITION. A is called a Hodge algebra generated by H and governed by I if the
following conditions are satisfied:

(H1) A is a free R—module admitting the set of standard monomials as a basis.
(H2) If N isageneratorof / and N = 2riMi (1 # 0) is the unique expression of
N in A as a linear combination of distinct standard monomials, then for each
x € supp(N) and for each M, there is an element y € supp(M,) with y < x (Such linear

combinations are called the straightening relationsof A ).

In particular, if I is the ideal generated by the products of the pairs of incomparable
elements of H, A is called an ordinal Hodge algebra (or an algebra with straightening

law).

We refer the reader to [3] for various interesting properties and examples of Hodge
algebras. In the following, if A is assumed to be a Hodge algebra, then H always denotes

the generating poset and I is the ideal of non—standard monomials.

The above definition naturally leads to the question that the straightening relations
give a presentation of the Hodge algebra. DeConcini, Eisenbud and Procesi have given an

affirmative answer to this question for graded Hodge algebras [3, Proposition 1.1]. The
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main point of their proof is that one can define a weight for every monomial M on H
such that if M is non—standard and if one chooses any genmerator N dividing M and
replaces N by the right side of its straightening relation, then M is expressed as a linear
combination of monomials of strictly greater weight. If any of the resulting monomials is
non—standard, one repeats this process. In the graded case this process must terminate

because there are only finitely many monomials of a given degree.

In general, the replacing process can be infinite and one would obtain an infinite
sequence of non—standard monomials with increasing weight. Such a sequence converges to
zero in the HA—adic topology, which is separated by [3, Corollary 3.5]. Therefore, a
non—standard monomial is likely to be zero if it can not be expressed as a linear
combination of standard monomials via the straightening relations. This has led the author

to the following counter—example to the above question.
EXAMPLE 2.1. Let A be the algebra
k[xy:z] = k[X,Y,2]/(X? - XYZ,Y? - XYZ,X3 X%Y XY Y° 2%

where k is an arbitrary field. Let H be the poset

S

2 , and z2 . Then the standard

Let I be the ideal of monomials on H generated by X2 , ¥
monomials with respect to I are z, x, y, Xz, yz, xyz . If these monomials are not linearly

independent in A , there exists a relation



az + bx + ¢y + dxz + eyz + Ixy =
AZ? + B(X2 — XYZ) + C(Y? — XYZ) + DX® + EX?Y + FXY? + GY® ,

where a,b,c,d,e,f€k and A, B,C,D,E, F, G € k[X,Y,Z] . By comparing the coeffi-
cients of both sides of the relation, we immediately obtain a=b=c=d=e=1=0, a
contradiction. Thus, the standard monomials with respect to I are linearly independent.
Since there are the straightening relations x_2 = Xyz, y2 = xyz , and 22 = (0 for the gene-
rators x2 , y2 , and z2 of I and since all the other monomials of I vanish in A , we see

that A is a Hodge algebra whose straightening relations do not give a presentation.

It is claimed in [4, Theorem 3.4] that the straightening relations give a presentation
for ordinal Hodge algebras. But this is not correct. We will construct below an ordinal
Hodge algebra A whose straightening relations do not give a presentation for A . Note
that the associated poset is not so simple as in the above example.

EXAMPLE 2.2. Let A be the algebra

k[x,3,2,t,0,v] = k[X,Y,2,T,U,V] /(XZ-UZ,YZ-VZ,XYZ,UV-XYT) .

Let H be the poset




Let I denote the ideal of monomials on H generated by the products xz, yz, uv of pairs
of incomparable elements. Then the standard monomials with respect to I are the mono-

m_n I m_n r m_n.cr
ts, zZ vit,

m.ia.lsxyuts,xyu m,0

27 u™" . If these monomials are linearly depen-

dent, there exists a relation
M+ Dy T My Ny, I MmN mMe N
Y (8 XY U + b XPYIV 4 ¢ ZPUM +d 2TV =
D(XZ — UZ) + E(YZ — VZ) + FXYZ + G(UV — XYT)

where a__,b_ ,c_,d €k[T] and D,E, F, GEk[X,Y,ZUV,T] . Write

G =G’ + ZG" with G’ € kx[X,Y,U,V,T] . We can see that
Y (ap, XYRUT + b XPYUV) = G/ (UV - XYT) .

Since the left term does not contain any summand divisible by UV , is easy to verify that

G’ = 0. Therefore a .=b =0 foral mn,r and
Y (2™ U™ + d__Z™1V®) = D(X-U) + E(Y-V) + FXY + G"(UV-XYT) .
Since
(X—U,Y-V,XY,UV-XYT) = (X-U,Y~V,XY,UV) = (X-U,Y,V) n (X,Y~V,U)

(X=U,Y,V)nk[Z,U,V] = Vk{Z,U,V]
(X,Y-V,U)nk[Z,U,V] = Uk[Z,U,V] ,



we have

(X-U,Y-V,XY,UV-XYT)nk [2,U,V] = UVk[Z,U,V] .

Hence ¢ = dmn =0 forall m and n, a contradiction. We have proven that the stan-
dard monomials with respect to I are linearly independent. Now we are going to show
that every monomial of I can be expressed as a linear combination of standard mono-
mials. By definition, I consists of monomials of the form xzM, yzM, uvM , where M can
be any monomials on H. First, using the relations xyz=0, xzv=zuv=xyzt=0,
X"z = u"z , we can easily represent xzM as a monomial whose support is contained in the
set {z,u,t} . But such a monomial is standard. Similarly we can also represent yzM as a
standard monomial whose support is contained in {z,v,y} and uvM as a standard mono-
mial whose support is contained either in {x,y,u,t} orin {x,y,v,t} . So we can conlcude

that A is an ordinal Hodge algebra, whose straightening relations xz=uz, yz=vz,

uz = xyt do not give a representation for A .

Now, one may ask whether the straightening relations plus the vanishing non—
standard monomials give a presentation for the Hodge algebra A. If dim(A) =0, the

answer is affirmative.

PROPOSITION 2.3. Let A be a zero—dimensional Hodge algebra. Then the straightening

relations and the vanishing non—standard monomsials give a presentation for A .

Proof. If one applies the aforementioned replacing process only to non—vanishing non-
—standard monomials, then it must terminate because there are only a finite number of

non—vanishing monomials on H.



The following example shows that there is no general rule for the presentation of
Hodge algebras, i.e. beside the straightening relations one may need another relations of

arbitrary forms.

EXAMPLE 2.4. Let a denote the ideal

(XZ-UZ+XTF-UTF, YZ-VZ+YTF-VTF, XYZ+XYTF, UV-XYT)

of the polynomial ring k[X,Y,Z,T,U,V] , where F is an arbitrary polynomial of k[T] .
Let B be the algebra

k [x,y,z,t,u,v] =k [X,Y,Z,T,U,V] /G *

Let H be the poset given in Example 2.2. We claim that B is an ordinal Hodge algebra.

Since there are the straightening relations

xz = uz—xtf+utf
yz = vz—ytf+vtf

uv = xyt ,

where f denotes the image of F in B, we need only to show that the standard mono-
mials form a basis for the k—vector space B . First, we notice that there is a natural
transformation € from B to the ordinal Hodge algebra A of Example 2.2 which is given
by the map
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X—iX, y——y, z+—rz—tf t—t, ur—u, v—v .

Let M be any standard monomial on H (supp(M) is a chain in H). Write M = t'N,
20 and t € supp(N). Then

e(t™N) = t'N + ¢F g

for some element g € A . We notice that t™N can not be eliminated by any term of the

expression of (i

g as a linear combination of standard monomials. Since the standard
monomials form a basis for the k—vector space A4 , from the above formula for (M) we
can deduce that the elements e(M) are linearly independent. It is obvious that any
standard monomial can be expressed as a linear combination of the elements (M) . Hence
the set of the elements (M) also form a basis for the k—vector space A . Thus, the

standard monomials must form a basis for the k—vector space B.

3. The existence of Hodge algebra structures

The definition of Hodge algebras is so broad that one may well believe that every fini-
tely generated algebra over a field is 2 Hodge algebra in some way. T. Hibi has confirmed
this first for affine semigroup rings [5] and then for graded algebras [6]. In general, this

is not true because of the following simple reason.

LEMMA 3.1. Let A be a Hodge algebra over o field k . Then A satisfies the condition:

(*) The srreducible components of Spec(A) contain a common rational point.
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Proof Let P= HA.Then P is a prime ideal because A/P~k by the definition of
Hodge algebras. Further, NPt =0 by [3, Corollary 5.3]. By Krull’s Intersection Theo-
rem, NP" is the intersection of all primary components of the zero ideal of A which are

contained in P . Hence we can conclude that all associated ideals of A are contained in

P.

One may ask whether condition (%) is also sufficient for the existence of Hodge alge-
bra structures. If dim(A) = 0, the answer is affirmative. In this case, condition (*) simply

means that A is a local ring.

PROPOSITION 3.2. Let A be a zero—dimensional local algebra over o field k. Then A
has ¢ Hodge algebra structure.

Proof. We go by induction on the length {A) . Let P be the maximal ideal of A . Note
that the zero ideal of A is a P—primary ideal. If {A)=1, then A=k and there is
nothing to prove. If {A) > 1, we can find an element x € P such that 0:x = P. Since
xA is a P—primary ideal, A/xA satisfies the assumption of the theorem again. Therefore
we may assume that A/xA is a Hodge algebra generated by a finite poset K and
governed by an ideal J of monomials on K. Let H denote the poset {x} UK where the
order is induced from the order of K and x is smaller than any element of K. Let I
denote the ideal of monomials on H generated by J and all monomials of the form xM .
Weembed K in A by mapping K to a fixed set of pre—images of elements of K . Since
every element of xA can be uniquely written in the form ax, a € k, the set of standard
monomials with respect to I forms a basis for A . Further,if N is a generatorof I, N

ig either a generator of J or N =xy for some y € H. In the first case, the straightening
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relation for N is derived from the straightening relation for N in A/xA by adding some
term ax which depends on the embedding of K in A . In the second case, xy = 0 is the

straightening relation for N .

H dim(A) > 0, condition (*) is no longer sufficient for the existence of a Hodge alge-
bra structure. We shall see that if A is an one—dimensional Hodge algebra over a field k,
then P:= HA is a set—theoretic complete intersection. We start with the following result
which generalizes [3, Proposition 1.2 (b)].

LEMMA 3.3. Let A be a Hodge algebra generated by a poset H and governed by an ideal
I of monomials. Let J be an ideal of monomials such that if M€ J and M=) M, is
the unigue ezpression of M as a linear combination of distinct standard monomials,
M, €J forall i. Then A/JA is a Hodge algebra generated by H and governed by IU J,
where H 13 embedded in A/JA by the natural epimorphism from A to A/JA .

Proof Let N be an arbitrary generator of JUJ.If N€J, N=0 in A/JA. If
N € J, then N is a generator of I and there is a straightening relation N = z riMi in
A. Tt is easily seen that N =)rM,, M, €J, is the straightening relation of N in
A/JA . Similarly, every monomial of IU J can be expressed as a linear combination of
distinct standard monomials in A/JA . Thus, to show that A/JA is a Hodge algebra
generated by H and governed by IU J, we need only to show that the standard mono-
mials with respect to 7U J are linearly independent in A/JA . Suppose tha_t there exists a
non—trivial relation ZSiNi € JA between standard monomials N, g J. Since every ele-
ment of JA is a linear combination of standard monomials in J, there is a linear
combination ZriMi of standard monomials M. € J such that XsiNi = z .M, . Hence

we obtain a non—trivial relation between standard monomials with respect to I in A, a

contradiction.
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COROLLARY 3.4. Let A be a Hodge algebra generated by a poset H and governed by an
ideal I. Let x be a minimal element of H. Then the following statements hold for any
positive integer n:

(i) A/x"A is a Hodge algebra generated by H and governed by the ideal of monomials
generated by I and Xt

(%) A/(O:xn) i3 a Hodge algebra generaied by H and governed by the ideal of monomials

generated by I and the monomials contained in 0:x" .

Proof If N is any generator of I with x € supp(N), then N must be zero because
there is no element of H strictly smaller than x . Thus, for any standard monomial M,
x"M is either a standard monomial or zero. Now, let f be an arbitrary element of A and
= 2 riMi is the expression of f as a linear combination of distinct standard monomials.
Then x%f = E ringi , ngi # 0, is the expression of x°f as a linear combination of
distinct standard monomials. As a consequence, the assumption of Lemma 3.3 is satisfied
for the ideal of monomials generated by x® . Further, if x™f = 0, we must have ngi =0
for all i . Thus, the ideal 0:x” is generated by the monomials contained in it, and the

ideal of these monomials satisfies the assumption of Lemma 3.3.

THEOREM 3.5. Let A be an one—dimensional Hodge algebra over a field. Then P = HA
i3 the radical of a principal ideal of A .

Proof. We will go by induction on the number of elements of H. Let x be a minimal
element of H. Then A/xA is a Hodge algebra by Corollary 3.4 (i). By the induction hy-
pothesis, P/xA is the radical of a principal ideal. Therefore P is the radical of a principal
ideal if x is nilpotent. If x 1is not nilpotent, let n be a positive integer such that

0:x® = 0:x®t1 . Then x®4n (0:x®) = 0 and 0:x" is the intersection of all primary com-
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ponents of the zero ideal of A whose associated prime ideals do not contain x . Thus, x"

is a non—zerodivisor modulo 0:x®. By a two—fold application of Corollary 3.4,
A/(0:x™) + x™A is a zero—dimensional Hodge algebra. Hence (0:x")+ x"A must be a
P—-primary ideal by Lemma 3.1. On the other hand, since A/xA is a Hodge algebra, using
the induction hypothesis we may assume that there is an element y € P such that (x,y)
is a P—primary ideal. Let m be a positive integer such that y™ € (0:x™) + x"4 . Then

I and

(x",y™) is a P—primary ideal, too. Write y™ =2 + ax" for some elements z € 0:x
a€A.Put u=x"+z.Since X"z € x"A N (0:x") =0, we have x? € uA . From this it

follows that y2m € uAd . Hence ud D (x2n,y2m) is a P—primary ideal.

COROLLARY 3.6. Let A be a two—dimensional Hodge algebra over a field. Then

P = HA is g set—theoretic complete intersection if A is a domain.

Proof. Let x be a minimal element of H. Then dim(A/xA4)=1 and A/xA is a Hodge

algebra by Corollary 3.4. By Theorem 3.5, P/xA is a set—theoretic complete intersection
of A.

REMARK. C. Weibel [9] [10] has described the locus of set—theoretic complete inter-
section points of affine varieties. He has shown that for an affine curve over an algebrai-
cally closed field, this locus is countable or the whole curve itself [9] and that every maxi-
mal ideal of a finitely generated algebra over an algebraic extension of a finite field is

always a set—theoretic complete intersection [10].

We now construct an algebra which satisfies condition (*) of Lemma 3.1 but which

has no Hodge algebra structure.

EXAMPLE 3.7. Let B be a polynomial ring of more than two variables over an algebrai-
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cally closed field of characteristic zero. Then one can find a prime ideal ¢ of B with
dim(B/q) =1 and a maximal ideal pJ ¢ of B such that p/q is not a set—theoretic
complete intersection of B/q (see [9]). Let g1+, C p be another prime ideals of B with
dim(B/gq,) = dim(Bfg,) =1 such that ¢, is not contained in any prime ideal
p" )(gq), p"#¥p.Put a=gNg Ng,. Then P=p/a is not a set—theoretic com-
plete intersection of the algebra A = B/a . Since P is the only maximal ideal of A which
contains all associated prime ideals of A, there is no Hodge algebra structure on A by

Lemma 3.1 and Theorem 3.5.

The ideal P = HA is always a set—theoretic complete intersection if A is a graded
Hodge algebra. The same also holds if A is an ordinal Hodge algebra [3, Theorem 6.3].

Therefore it is reasonable to raise the following question.
QUESTION. Is HA a set—theoretic complete intersection for any Hodge algebra A ?

We do not know, even in the case dim(A) = 1, whether the existence of a maximal
ideal P such that A/P=k, P contains all associated prime ideals of A and P isa
set—theoretic complete intersection is sufficient for the existence of a Hodge algebra struc-
ture on A . One may hope to use the inductive method to lift a Hodge algebra structure on
A/xA to A as Hibi [6] has done in the graded case. In particular, following the proof of
Proposition 3.2, one can reduce the lifting problem to the case in which x is a non—zero

divisor.
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