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Shifting and Embeddability of Simplicial Complexes

K.S.SARKARIA

We'll take up the notions occuring in the title of this talk! In the
arabic order, from right to Ieft.

§1. Simplicial complexes.
Simplicial ~et ]{: finite set whose members, called its simplices, are

themselves finite sets. The members of the simplices of K are called J{'s
vertices. In the important case when ]( is closed with respect to ~, then
it is called a .!implicial complex.

However we remark that one of the morals of this talk is going to
be that it is sometimes useful to also consider simplicial sets which are
closed under some partial orders other than inclusion.

Realization,,: If ]( has N vertices, then by thinking of these as the
canonical basis vectors of RN, and of each simplex as the relatively open
convex hull of its vertices, one obtains a subspace of RN, which too will
be denoted K.

§2. Embeddability.
The notion of embeddability of an n-complex in m-space (or rn-sphere)

can be preeised (e.g.) in the following four ways, depending on what one
means by an embedding e : ]{" C-+ Rm.

(1) LINEAR EMBEDDABILITY: In case some linear map e : RN -+

Rm happens to be one-one on the realization K, then we will say that e
is a linear embedding of ]( in Rm.

(2) PIECEWISE LINEAR EMBEDDABILITY of J{ in Rm: this
means that for some r, the rth derived of [{ embeds linearly in Rm .

Here, the derived K 1 of any 8implieial complex (or even set) ]{ i8
the simplicial complex whose simplices are sets of nonempty simplices
of [( which are totally ordered lUlder c. By mapping each vertex of
](' (a simplex of ]() to its barycentre, oue gets the linear barycentric
embedding of K' onto K.

(3) TOPOLOGICAL EMBEDDABILITY: weakest notion in which
one only requires e : ]{n C-+ Rm to be continuous.
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(4) CONVEX EMBEDDABILITY: strongest notion which requires
that e(I(n) occurs as a set of faces within the Schlegel diagram of an
(m + 1)-dimensional simplicial polytope.

Relationships between these and other notions of embeddability is a
subject by itself. For example - joint recent work with Ulrich Brehm
which disproves a conjecture of Grünbaum - one has

Theorem 1. FOT each n ~ 2 there i" an n.complex which embeds
piecewise linearly, but not linearly, in R2n.

§3. Some history.
Before taking up the last (= first) notion we'll give some motivation

for introducing it.
For the case n = 1, m = 2 (wheo, by virtue of a theorem of Steinitz,

the above 4 notions of embeddability happen to coincide) of planar
graphs 1(1 ~ R2 , various interesting theorems are known, e.g. the
following oue which settled a celebrated conjecture.

Theorem (Kempe-Heawood-...-Heesch-Appel-Haken). ]/ complex ](1

embed" in R2 , then there exists a function X : vert(I() -+ S, card(S) = 4,
such that x(a) ~ X(b) whenever {a, b} is al-simplex 0/ ](.

At the moment the complete proof of this result is somewhat opaque,
hut at least the starting point is transparent enough. It is the following
important observation which goes back to !(empe and Heawood, and
which at once (resp. with a little more effort) gives a weaker version of
the above theorem with card(S) = 6 (resp. = 5).

11(1 '-+ R2 ===> 11 (I() < 3 . la (I() I
Here li(I() denotes the number of i-dimensional faces (= simplices)

of I{.
We will from now on use the generic term Heawood Inequality to mean

any necessary numerical condition on the face vectors of any dass of
embeddable simplicial complexes.

The nation of shifting has turned out to be very useful for establishing
such inequalities, and also results related to the following graph planarity
criterion which appeared in print in 1930.

It is interesting to note that in the years immediately after its pub
lication, the feeling was widespread, that now a proof of the four color
theorem was imminent! It is ironie, in view of this optimism, that there
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still does not seem to be any direct praof of even fl < 3· Ja as a corollary
of this criterion !1

Theorem (Pontrjagin-Kuratowski-Frink-P.A.Smith ... ). A graph is
planar i/ and only i/ it does not contain any homeomorph 0/ the graphs

T l = 1T
4
1

or ".2 ".2v va 'va,

I. e., there are only two minimally nonplanar graph", 'VIZ. the8e graphs
Tl.

Here, and below, a) denotes the j -skeleton 0/ an i-simplex, and the
join of disjoint copies of complexes J( and L is denoted K . L.

We will use the generic term K uratowski Theorem for any result co
relating, in a similar way, the absence of some finite list of forbidden
configurations wi th embeddabili ty.

§4. Shifting.
A total order on the set of vertices induces a product partial order on

all sets of a given cardinality. A set J( of simplices will be called shifted
if it is closed with respect to these partial orders.

Shijting usually means any operation

J( "-"Jo .6.(J()

which associates to each set !( of simplices (on a totally ordered set of
vertices) a shifted set .6.(J{) having the same face vector.

Such combinatorially defined operations were first considered by Erdös
and Rado. A different algebraical procedure, called exterior 3hijting,
was later introduced by I(alai. We postpone the definition of I(alai's
operation to §6 below, where we'll in fact introduce a much more general
operation.

Theorenl 2. 1/ ](n embed" topologically in Rm, n ~ m ~ 2n, then

fn(J{) < (m - n + 2) . fn-l(J().

Restricting the discussion of the proof to the double-dimensional and
most important case m = 2n, let me point out that the starting point
(and also one of the reasons for conjecturing this Heawood Inequality in
1987 or so) is the following easy observation:
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Any Jhijted complex ~, with !n(~) > (n + 2) . !n-l (~), containJ
/T2n+2
v n .

To see the above, note that the number of n-simplices containing any
fixed vertex is less than the the number of (n - 1)-simplices. So, thanks
to the given inequality, ~ must contain an n-simplex not containing any
of the first n + 2 vertices. Being shifted, all simplices less than it, or
its faces, in the product partial order, are also in ~. They provide us
with the required subcomplex.

This observation already finishes the proof ofTheorem 2 for the sllifted
case because one has

Theorem (Van Kampen - Flores). The n-8keleton 0/ a (2n + 2)
8implex, or more generally any 0/ the /ollowing 7l"(n + 1) I(uratowski
n-complexes Tn,

doeJ not embed in R2n. Likewi8e, any a~ . T a- 1 with r + 2s = m + 1,
doe8 not embed in Rm.

However the proof of Theorem 2 for the general case is much deeper
and longer and needs :

(i) some characteristic class theory of free Z2-complexes wmch
enters into van Kampen's proof of above result, and

(ii) a generalization of exterior shifting wmch preserves free group
actions.

We'll say something about both these theories in §§5 and 6 below.

Using this method we have in fact a forbidden configuration result
which has Theorem 2 as an immediate corollary.

Theorenl 3. 1/ K embedJ topologically in Rm, then it.9 exterior 3hijt

~([() doeJ not contain any O'~ • a;~l with r +2s = m + 1.

As against I(uratowski's criterion, this result has the advantage that
a Heawood inequality does follow direct1y from it, but we won't call
Theorem 3 a I(uratowski Theorem because there is no chance of anything
resembling a converse:

Examples. (a) ~(U2 = O'~ • O'~ . O'~) contains the non-planar 0'5 .0'5.
(b) ~(0'5 .0'5) is planar.
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In fact the above two assertions are true for any of the aforementioned
usual shifting operations.

§5. Van Kampen Theory.
The following definition extends easily to all (or at least all finite)

groups G but we'll confine ourselves to the case G = Z2 which suffices
for applications to embeddability.

Deleted join" K",. For any simplicial complex choose two (Le. one
for each element of Z2) disjoint copies: 1(, the positive copy, and I<,
the negative copy. The process of changing the sign of a vertex from
positive to negative or conversely will be called conjugation, and denoted
by overlining. We define

K", = {aUB: 0 E /(,8 E /(,0 n8 = 0},

and equip this simplicial complex with the free simplicial Z2-action given
by conjugation.

This construction, which associates to each simplicial complex a free
Z2-simplicial complex, has the following important multiplicative prop
erty with respect to joins.

I(I< . L )'" ~ /('" . L '" I

This shows e.g. that the deleted join of the closed simplex with N
vertices coincides with the the N -fold join

Note that U is a maximal or, in Milnor's terminology, univerJal free
Z2-"implicial complex on N vertex-pairs. Geometrically, U = UN - 1 is
an octahedral Jphere of dimension N - 1.

The equivariant (i.e., since we are working with Z2, symmetrie or
skewsymmetrie) cohomology classes of Urestriet to the characterütic
cla33eJ of any free Z2-subcomplex E ~ U, E = E.

Sinee the equivariant eohomology of U eoineides with the (possibly
twisted) eohomology of its orbit spaee, and since the latter happens to
be a projective spaee for the case G = Z2 under consideration, one needs
to consider just one eharacteristie dass in each dimension k, and this
will be denoted by Ok, or just 0, if k is understood.
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We recall that if field coefficients F are heing used, then these dasses
o are zero, unless char(F) = 2 (when of course one also has symmetry
= skewsymmetry).

Theorem (Van I(ampen). A complex K embeds in Rm (or sm) only
ij th e (m + 1)th charact eristic cla.s" 0 0 f it" delet ed join 1(* IS ze ro.

The proof of this result of 1932 is (now) not hard at all:
Any embedding of K in Rm induces a continuous Z2-map, from the

deleted join, into the complement in Rm
. Rm of the diagonal. Eut this

complement has the Z2-homotopy type of an antipodal m-sphere, so its
(m + 1)th characteristic dass, and thus also its pull-back in the deleted
join, must be zero.

If integer coefficients are being used, as e.g. in the strictly double di
mensional result stated below, then we'll use the distinguishing notation
ofor these characteristic dasses. We recall that ök is a lift of the mod
2 dass Ok, and is symmetrie or skewsymmetric depending on the parity
of k.

Theorem (Van I(ampen-Wu~Shapiro). The vani~hingj Ö = Oj of the
(2n + 1)th integral characterntic cla~"J of the deleted join K * 0/ Kn,
i" al"o sufficient for the piecewise-linear embeddability 0/ ](n in R2

n j
provided n f. 2.

The key points, of the proof of the above result, were already in van
I(ampen's paper of 1932, but the argument was completed only in the
mid-1950's.

The case n = 2 is open, but it appears likely that Freedman's methods
would imply at least the topological embeddability of such a 1(2 in R4 .

The above theorem is very satisfying because it gives a purely com
binatorial characterization j viz. CI = 0, for the embeddability of any ](n

in the double dimensional space R2n .

It is doubly so, in view of the fact that the obvious attempt to gener
alize Kuratowski 's criterion to higher dimensions fails:

For each n 2:: 2j there exiBt, be~ide~ the 11'"(n + 1) K uratow~ki n
complexes T n j infinitely many non-homeomorphic ](n jSj which tOD are
minimally non-embeddable in R2 n.

However the use of deleted joins led me to a niee unifonn cbaracteri
zation of the 11'"(n + 1) I(uratowski n-complexes Tn, which showed that
they remain important for n 2:: 2.
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Theorem (8). A simplicial n-complex ](", n =f. 2, is critieally non
embeddable in R2n iJ and only iJ its deleted join K .. is a homogenously
(2n + 1)-dime~ional pseudomaniJold, and this happens iJ and only iJ
Kn is i"omorphic to a Kuratowski n-complex T".

Here, by critically non-embeddable in R2n we mean that, for any pair
of points {x, y}, belonging to disjoint simpliees of K" , one ean choose, for
each {x I , y'} suffieiently near {x, y}, a eontinuous map ex' y' : J(n -+ R2 n ,

depending continuously on {x', y/}, and having just one double point,
namely {x', y/}.

Note that the second half of the above theorem is a purely combi
natorial c1assmcation.This generalizes, but becomes somewhat more in
volved, and still hasn't been worked out in fuH, if one only demands that
K .. be any , Le. not necessarily (2n + 1)-dimensional, pseudomanifold.
For example

(RPi)., the deleted join oJ the 6·vertex real projective plane, IS an
antipodal 12-vertex 4·"phere.

Likewise
(CP~)., the deleted join oJ the 9-vertex complex projective plane, IS

an antipodal 18-vertex 7-sphere.
It seems in fact that, whenever J(. is a pseudomanifold, then it fiust

necessarily be an antipodal sphere.

§6. Equivariant shifting theory.
The following definitions also extend easily to all (or at least all finite)

groups G, but onee again, we'll confine ourselves to the case G = Z2,
and work with a universal free Z2-simplicial complex U.

Since a simplex a of the octahedral sphere U contains at most one
member of each vertex pair, it follows that if we fix a total ordering oi
tbe N vertex-pairs {VI, VI }, ... , { vN, V N }, then each a E U gets equipped
with an induced total ordering of its vertices.

Type lai 0/ a "implex a EU. By this we mean the function,

Q: {1,2, ... ,card(a)} -+ Z2,

determined by the factorization of a into alternately positive and nega
tive faces under the aforementioned total ordering.

Note that the set Uer C U of simplices of a fixed type Q' thus has a
naturallexicographic order, a.s weH as a natural product partial order.
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A simplicial subset of U will be ealled type-shijted if it is closed with
respect to the aforementioned product partial orders in each type.

The objeet of this section is to define an operation E ...,... ß(E) com
muting with conjugation, whieh associates to each simplieial subset
E ~ U a type-shifted simplieial set ß(E) ~ U, and whieh preserves
the number of simpliees in each type.

This operation will generalize KaIai's shifting operation: in ease E =
!( has all vertiees positive, ß(!() will coincide with the exterior shijt of
!(.

Just as for exterior shifting, the operation depends on the ehoiee of
some field F which is big, i.e. has transeendence degree at least N over
some subfield.

Let L(U) denote the F-veetor space spanned by the (always ordered
as above) simplices of U.

As against exterior shifting, in whieh the next step would be to identify
such a veetor spaee with the underlying vector spaee of an exterior F
algebra generated by the vertices, we will identify our L(U) with the
underlying space of an algebra which is not sign commutative.

Star algebra (.0, *). By this we mean the assoeiative F-algebra with
unity, generated by the 2N vertices, subject to the relations

v *w = -w *V, v *w = -w *v, v* w = -w * v, v* w = -w*v,

for all positive vertices v and w.
Beeause of the bilinearity of *, note that the relations

x * y = -y * x, x *y = -y *x, x* y = -y* x, x*y = -y*x,

are valid even when the letters x and y denote any elements of fh, the
subspace spanned by the positive verti~es.

The grading 0/ .0 will be by type: one has the required

with Q * ß obtained by juxtaposing the sequences of group elements a
and ß.

Definition of E ...,... ß(E) : The /ollowing construction can be .!um
marized by .!aying that the graded canonieal basis E ~ U, 0/ the graded
F-vector space L(E) spanned by E, is going to be replaced by a lexico·
graphically first graded generic basis ß(E) :
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Choose, for the subspace [h of L(U), a new ordered basis Xl, ... , XN,

related to the positive vertices by

Xj = L(ej)i . Vi,

i

where the N field elements ej are algebraically independent over some
subfield of F. The new vertices will be from these x/s and their con
jugates: thus we are actually going to construct 6..(E) as a simplicial
subset of the octahedral sphere Ux on the N totally ordered letter-pairs
{Xl, Xi}, ... , {XN, XN}, but of course this identifies with the original oc
tahedral sphere U = Uv in the obvious way.

Notice that any word in these letters determines, by *-multiplying its
letters in order, a homogenous element of n of the same type as the
word. So, thinking of L(E) as a quotient vector space of L(U) in the
obvious way, it also determines a homogenous element of L(E).

These elements obviously constitute a graded spanning set of L(E),
but certainly not a basis. For example, if a letter repeats, even with a
change of overlining, the element determined is zero. And more gener
ally, if we perrnute and change the overlining of the individualietters in
such a way that the type remains same, then the element is unchanged
upto sign.

To obtain a basis from this spanning set we now "eive these words ala
Eratosthenes: in each type cross out words which (as elements of L(E))
depend linearlyon the lexicograprncally preceding words: what remains
is a set of words with letters strictly increasing, and is the required
generic graded basis 6..(E) of the graded vector space L(E). It remains
only to check the following.

6..( E) i" type."hijted.

ProoE. Since the N elements ej of the field F are algebraically inde·
pendent over a subfield, the symmetrie gro'Up EN of all permutations of
these field elements identifies with a subgroup of the group Aut(F) of
all field automorpmsms of F.

Furthermore, each element of Aut(F) identifies with a graded Fp-linear
algebra automorphism of n which commutes with conjugation. Here Fp
denotes the minimal (01' characteristic) subfield of F, p = char(F).

Next, note that such a graded algebra automorphism, which arises
from an element of ~N, i.e. from apermutation of the field elements ej,
involves the corresponding permutation of the positive letters x j.
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So it follows, by using a shuffie permutation which throws a strictly
increasing word a of a certain type, onto another strictly increasing word
() of the same type, which is bigger than it in the product partial order,
that a could have been seived out in the above process, only if () too was
seived out. q.e.d.

Remark. Though we have'nt developed this viewpoint here, it is quite
useful also to 'visualize' the shifting process, a la §1, by thinking of the
positive vertices v as the canonical basis vectors of FN, and thus the
positive letters x aß points on the moment curve (t, t2 , . •. ,tN ) of FN .

For the proof of Theorem 3 we develop further properties of equiv
ariant shifting. These allow, if the conclusion of this theorem were not
valid, the construction of an equivariant cochain map,

C(!(... ) ~ C((a; . a~~l)"')'

which images 02n+1 of !(... to that of (a;' a;~l ).... But this is not possible
because the former is zero since !{ embeds topologically in Rm, while
the latter is not since (a; .a;~ 1 )... is an antipodal (m + 1)-sphere.

Bibliograpbical note. The classification theorem for n-complexes crit
ically non-embeddable in R2

n is given in [5].
Complete proofs of the three theorems announced in this talk will be

given in [1] and [6]. The latter paper will also discuss the very interesting
connection between Theorem 3, some unpublished work of I<:alai, and
McMullen's g-conjecture for simplicial spheres.

These and other related topics also constitute the subject matter of
Chapters IV (on "Linear Embeddabili ty") and V (on "Heawood Inequal
ities") of [7], a book under preparation.

Grünbaum's conjecture occurs on the first page of [3]. Exterior shifting
was introduced in [4]. The seminal ideas of Van I(ampen Theory were
introduced in [8], see also Flores [2].
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