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ON THE CONJECTURE OF BIRCH AND SWINNERTON-DYER

FOR AN ELLIPTIC CURVE OF RANK 3
Joe P. Buhler, Benedict H. Gross and Don B, Zagier

The object of this note is to verify the conjecture of

Birch and Swinnerton-Dyer numerically (to high accuracy) for the

elliptic curve
3
(1) E: vy = 4x - 28x + 25,

The conductor of E is 5077, which is apparently the smallest
conductor for a curve of rank 3 over Q. Since previous accurate
numerical verifications were done for modular curves of rank 0

or 1, and these can now be confirmed theoretically [2], [41],

it seemed desirable to test a curve havineg a larger rank.

We assume some familiarity with the theory of elliptic curves;

good‘references.are [3] and ([S5].

1. The canonical height function

One of the main ingredients in the Birch-Swinnerton-Dyer
formula is the regulator, i.e. the determinant of the matrix
expressing the canonical height pairing on E(Q)® R with respect

to a Z-basis of E(Q)/E(D) In this section we describe

tors °
how to calculate the canonical height of a point £ € E(Q)
We first recall the definition. The global minimal model

for E has the form

(2) yz +y = xa -7x +6 ,

obtained by replacing vy by 2y+1 in (1) and dividing by 4. If

PEE(Q) ,- then the naive height of P is defined as




(3) h(P) = log max ( |al,b) , x(P) =g, b>0, (a,b) =1

{here it does not matter whether we use model (1} or (2) for E,

as the x-coordinates are the same); the canonical height is the

unique quadratic form ﬁ on E(Q)®@ R such that ﬁ(P)-h(P) is

bounded, and the canonical height pairing is the associated
bilinear form <P,P'> = -(RA(P+p')-R(P)-R(P')) . The definition
of R immediately implies the formula ﬁ(P) =1im n_zh(nP) , but

n->o
this is not convenient for calculations. A formula which is usable is

(4) ﬁ(P) = log b + F(x(P)) ,

where b denotes the denominator of x(P}) as in (3) and F(x)

is the real-valued function defined by

(s) F(x) = loglx| + § 4109z,
n=0
4 3 2
1. 14 50 . 49 x B x xn+14xn-50xn+49
Z = - ' = ‘ =
n EE‘ i:- ig- 0 n+1 4% -28x2+25%p
Near =0 the first two terfns in (5) become infinite, but we

can combihe them to obtain

(6) F(x) = -}log (x? 414x% = 50x + 49) + E14"“‘1 logz_

n=
a formula which now makes sense for all x . Note that the formula
relating X1 to X, is the formula relating x(2P) to x{(P)
for P€E, so that X, =x(2nP) . In particular, X, ae3 = 1.946...
for nz1, where e, <e, <e, denote the roots of the polynomial
4x3-28x+25, so z, lies between 1 and 1.328... and log L
between 0 and 0.284... . Therefore the series in (5) or (6)

converges very rapidly and we can calculate 3(P) to any desired
degree of accuracy.

Formula (4) 1s the specialization to our case of a general
recipe of Tate [6] for computing heights; indeed, F(x{(P}) |is

Tate's formula for the



infinite component of <(P,P> while yb(b) logE; (é prime) gives 
the p-component of the canonical height (even for the prime p=5077
of bad reduction, since the fibre of the Néron model éf p ‘is A

' irreducible). However, Tate's result, although quoted in the
literature, has not yet been published, so we give a direct proof
of (4) in our case. By virtue of the definition, it will suffice
to show that the expression on the right-hand side of (4) differs
by a bounded amount from h{(P) and is multiplied by 4 if P |is
replaced by 2P, By the formula already cited, replacihg P by
2P replaces x(P) =a/b by x(2P) =a*/b*, where '

3 2

a* = a?+14a°p? -50ab> +49b% , b* = 4a? -28a%b? +25ab3 .

We claim that b* is the exact denominator of x(2P) . Indeed,
an elementary c&lculation with g.c.d.'s shows that ({a*,b*) =1

for any integers a,b with (a,b) =1 unless a=s92b (mod 5077),
in which case 5077|(a*,b*) . But this cannot happen here since
4x3-28x+25 = 4(x—92)2(x+184) ;5077(20x-1227) would be divisible
by 5077 but not by 50772 if x were =92 (mod 5077) and hence
could not be a square. (This is an elementary restatement of the

fact that the Néron model at 5077 has only one component.) On the

e z
- “n+1 " “n+l

other hand, replacing P by 2P replaces S by

in (5), so

F(x(2P)) 4701

log [x(2P) | + log z

IH=~18
o

n+1
n

log |x(2P)| + 4 (F(x) -log |x|-47" logz,)

( x = x(P) )

4 F(x) - log (4x? -28x3 +25)

n

4 (F(x(P)) +logb) - logb®,

proving the first assertion. As to the difference of h and E,



X

al -

we can write (3) as h(P) =logb + log max ( %T ;1) , so
R(P) - h(P) = F(x) - log max ( |x| , 1) (x=x(P)).

If x ze3 =1.94..,. is in the right-hand component of E(R) , then
the same is true for all X, (n20) , so 1 SZn §1.328... for all
n in (5) and therefore

0 s F(x) - logx s Ez;“""‘ log(1.328...) = 0.0947...

n=0

The other component e, sXx Se2 of E(R) is compact and we easily
find the minimum and maximum of F(x) ~logmax(|x|,1) there to be
0.4006... and 1.205... (obtained for x=e, and x =-1,
respectively; see Filgure 1) . Hénce in all cases we have
(7) h(P) s h(P) s h(P) + 1.205...
This completes the proof of '3). We remark that the difference

between the naive and canonical heights on elliptic curves has
been studied by several‘authors (cf. [7] and the literature cited
there) but that the inequaligy {7) is much sharper than the one
obtained by specializing their results; suggesting that some

improvements 1n the general case may still be possible.

Figure 1. The Ffunctions F(x) and log max ( [x|, 1)




2, The Mordell-Weil group and the regulator

Let Np (p #5077) denote the cardinality of E(Z/pZ), i.e.
.1 plus the number of solutions of (2} in integers modulo p . Then

|E(Q) must divide Np for all p; since N, =5 and N, =7

2 3
it follows that E(Q) 1is free abelian. We claim that it is of

tors|

rank 3, generated by the three points

PO = (0,2) , P1 = (1,0) , P2 = (2,0)

It follows from equation (7) that these are the only points with
canonical height less than 1, since h(P) s?(P) 51- implies

lél Se, bse and hence (since b is always a sqguare) b=1,
a€{-2,-1,0,1,2}; of these five candidates, only a=0,1,2 lead
to points with ﬁ(P) <1 . On the other hand, one sees by a
2-descent that Pyr Py+ P, generate E(Q)/2E{(D) , which is of
rank 3 over Z/2Z . These two facts and the fact that E(Q) is
torsion-free imply by the usual proof of the Mordell-Weil theorem
(cf. any text on elliptic curves) that E(Q) = ZP

+ZP +ZP2 as

0 1
claimed., Using the algorithm of §1 we can calculate the entries

of the matrix

.9909... =.2365... =.2764...

A = (<pP,,P.>) = ~.2365... .6682... .0333...
137 0si,js2

-.2764... .0333... .7670...

to any desired accuracy. The regulator is the determinant of

this matrix:

(8) R = det A = .417143558758383969817119544618093...

As an 1illustration, we have given the representations of P
as nOP0 +n1P1 +n2P2 and the naive and canonical heights of P for 18

integral points P €E(Q) in Table 1; the canonical heights can be



computed either by the algorithm of §1 or as

Cne has of course also the negatives =P =

(X;“Y"1) =.

-nOPO—n1P1-

t
(nunlnzj A (nunlnz) e

n2P2

with the same heights. The large number of 36 integral points seems

‘to be typical of curves with a high rank relative to their conductor.

x y ny n, n, R (p) h(P)
—Z O 0 -1 -1 7 1.50152454 1.098461229
-2 3 (W § 1 1. 246357201 673147143
-1 3 -1 o -1 1.20308110 QL OOAV0000
W] = 1 U W YOOI O O0000000
i 0 O 1 0 L HGBZ0O517 O 00000000
2 O 0 2 1  TOTOAIETS LOTE14718
2 I3 1 1 O 1.18592770 1.09861229
o b e S B | 1. 446773483 1.38529436
a8 21 1 -1 0 2.1Z229820 D.07944154
11 35 -1 -1 "1 2.AT91HT62 2978952
14 ol 4] 2 Q 2 HT2B2068 263905733
21 5 ! o -2 TL0LE1T7E42 JI.04452244
i 22 -2 o -1 R RS R D2.61091791
52 374 1 -1 2 TLRLLETRER 3.99124372
P B?& @ 2 1 4, 578T6%01 4, SI259949
L4 24 -2 v 1 S.92640586 S5.07481074
406 8180 0] 2 2 6. QUTER815 C b, OOHET316
Ble 23709 1 -1 6. 7050052 LH.T0441435
Table 1. Integral points on E
Y
6t

Figure 2.
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3. The Eeriod

The group E(IR) has two connected components. Let

W = 23fl be a Neron differential on E over Z, and |w| the
associated measure on E(IR). Define the period @ by
N N M ol
E(IR) E(IRY

If we write (0.1) in the form y2 = H(Xael)(x—ez)(x—ea) with

e1< 82-(6

arithmetic-geometric mean. This is defined on two positive real

3> We may calculate this period integral using Gauss'

arguments x and y by M(x,y) = lim x_ = lim y_, where
« by e D e 1
- - . n’n - . .
Xg T X Yg T Yy X 4q F 5> Y41 © /xnyn. We‘flnd (Gauss) :
Q = & [m %; = 2T - 2T
(9) ey M(/ea-el,/eg—ez) M(2.22689...,0938503...)

= 4,151687983086933049884175683507286...

4, The L-series

The L-series for E over @ 1is given by an Euler product
which converges in the right half plane Re(s) > 3/2:.

L(E,s) = (1#5077"5)"% JT (1-a p S+pt"2%5)"L - § an™S
p#5077 P n=

where ap (p#5077) equals p+1-Np with Np as in §2. We have

Ms) = 8¥2omTineinEs) = [EG v ay
0

where N=5077 and f(t) = § anez"mT (t€€, Im(t) >0). The
n=1
Weil-Taniyama conjecture asserts that £{(r) 1s a cusp form of

weight 2 and level N =conductor of E. This could be checked

by a finite computation, but we have not carried it out (the space



of cusp forms of weight 2 and level 5077 has dimension over 400)

and will simply assume its trgth (thus this note could more properly
be described as a simultaneous numerical verification of the Birch-
Swinnerton-Dyer and Weil-Taniyama conjectures). Then £f(1) satisfies

the functional equation £(-1/Nt) = erf(r) and the analytic

continuation and functional equation of LI(E,s) follow:
(10) M) = [ EED (v -y ay = - a(2es)
1 ‘

In particular, the order of L(E,s} at s=1 1is odd and the rth
derivative (r 21 odd) 1is given by

AT (1)

2 Jw £ (log I ay
1
(11)

2 ] a J e-—21lny//ﬁ
n .
n=1 1

If A(s) vanishes to order =2r at s

(log y)r dy.

1, then integrating

(11) once by parts gives

© a .
i 0 = B0y <o [ e,
VN n=1 /N
where
- L [T e r-1dy (rz1)
S DR Jl e " (logy) ;

The series (12) is rapidly convercent, because Gr(x) ~ xTe™® as

x o, sO 1t can be used to compute L(r)(1) if we have a good
algorithm to compute G,(x) .

The function Gl(x) is the familiar exponential integral
IT e” Y %}, which can be calculated for small x (x<3) by the
power series
n-1

_ 1 (-1) n - , tant
Gl(x) =log -y ¥ ngl S X (Y Euler's constan )

o3

and for large x (x>2) by the continued fraction expansion



Taking 250 terms of the series in (12 ) gives L'{(1)~0 to 13
decimal places. But this implies that L'(1) =0 exactly, since
the main result of [2] implies that L'(1) is a simple multiple of

the heilght of some rational point on E ("Heegner point") and, as

we have seen, E <contains no rational points of very small non-zero

height. Since L(s) has odd order, we have ordg-qL(s) 23
In general, the functions Gr(x) satisfy Go(x) = e"X,

G'(x) = ~ 1 G (x), so
T X r-1

G (x) = P (log ) + } £:%l-— X"
r r * n=l n n!

for some polynomial Pr of degree r. To determine Pr’ we use

the integral representation:

= — — > N
(13) Gp(x) 771 X = ds any ¢ 0

1 JC+lm r(s) .-s
l‘l

Cc-1im s

(To prove (13 ), we observe that the right hand side satisfies
the same recursive differential equations as GP(X) and tends
to zero as x - «.}) Shift the path of integration in (13 )

then ;
to the left;kthe residue at s = -n gives the term

(-1 T%"/n"n!  and the residue at s = 0 gives Pr(log %).

Hence

o
-— where I'(l%s) = ] y_s



Since by Euler-Maclaurin

o (-1)" n
log T(l+s) = - ys + ) ——rg(n)s |,
= n
we find, for r = 3, the expansion
2
o1 1 3 1 (3)
G000 = F(log Z-y)7 + Tm (log = -y) - by
o« n-1 n
. (-1) X
3
n=1 n n!

which converges for all x. Using this we find the value

1im E&ELE% = 2 ? iﬂ G (_Zlﬂn)
s+l (s-1) S A

(14)
R#]1,7318%99001193006887919750851

u51ng the terms for n = 600 (the error made in breaking off the -x
series here can be estimated using (12 ) and the formulas Gai(x)~x =3¢
and la,l| sd(n)//m, where d{(n)  is the number of divisors of n ).

The results of the computations described in this section are

summarized in Table 2.

2mn 21n 21m Da 27m

nooa G (7=—) G (/_) 2{ G-—J 2§:$G§TET)

1 1 1.93741992 2.26675143 3.87483985 4,53350286

2 -2 1.32687953 .98498602 1.22108079 2,56353082

3 -3 1.00056041 . 54955613 -.78004003 1.46441856

4 2 .78875755 .34359041 .00871752 1.80800897

5 -4 .63840821 .22972608 -1.01273562 1.44044725

6 6 . 52596620 16064962 .03919678 1.76174648

7 -4 .43894007 . 11604939 -.46244901 1.62911861

8 0 .36992797 .08592813 -.46244901 1.62911861

9 6 31419941 .06487957 -.04351647 1.71562470
10 8 .26856035 ,04977090 .38618010 1.79525814
50 =22 .00231086 .00005681 ~.00236637 1.73179489
100 22 © .00001521 .00000013 .00001335 1.73185001
250 48 .00000000 .00000000 .00000000 1.73184990

Table 2. Computation of L'(1) and L"(1)



5.

The conjecture

The conjecture of Birch and Swinnerton-Dyer predicts that

ord__,L(E,s) = rank(E) = 3 ‘and that

. L(E,s)
lim ———4~3 = §Q +R -+ Card (lll)
s+*1 (s-1)

|]| is the(conjecturally finite) Tate-Shafarevich group

over Q. [Bguations (8) and (9) give

e
o)
1

1.7318493900119300689791975085060154...

which agrees with the right-hand side of (14) withinthe accuracy of

our computations in §3. This strongly suggests that the conjecture

is true and that ||| = (1). We have checked, via a 2-descent (cf.

that the 2-primary component of ||| is trivial.
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