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ON ALGEBRAIC CURVES A(x)−B(y) = 0 OF GENUS ZERO

F. PAKOVICH

Abstract. Using a geometric approach involving two-dimensional orbifolds,

we provide lower bounds for the genus of an irreducible algebraic curve of

the form EA,B : A(x) − B(y) = 0, where A,B ∈ C(z). We also investigate
“series” of curves EA,B of genus zero, where by a series we mean a family with

the “same” A. Our main result states that for a given rational function A a

sequence of rational functions Bi, such that degBi → ∞ and all the curves
A(x) − Bi(y) = 0 are irreducible and have genus zero, exists if and only if

there exist a compact Riemann surface R of genus 0 or 1 and a Galois covering

f : R→ CP1 such that f = A ◦ p for some p : R→ CP1.

1. Introduction

The problem of classification of irreducible algebraic curves of genus zero having
the form

(1) EA,B : A(x)−B(y) = 0,

where A and B are complex polynomials, has several motivations. First, curves of
genus zero have special Diophantine properties. Namely, by the Siegel theorem, if
an irreducible algebraic curve C with rational coefficients has infinitely many in-
teger points, then C is of genus zero with at most two points at infinity. More
general, by the Faltings theorem, if C has infinitely many rational points, then
g(EA,B) ≤ 1. Therefore, since many interesting Diophantine equations have the
form A(x) = B(y), where A,B are polynomials with rational coefficients, the prob-
lem of description of curves EA,B of genus zero is important for the number theory
(see e.g. [5], [3], [10]).

On the other hand, for polynomials A and B with arbitrary complex coefficients
the equality g(EA,B) = 0 holds if and only if there exist C,D ∈ C(z) satisfying the
functional equation

(2) A ◦ C = B ◦D.

Since equation (2) describes situations in which a rational function can be decom-
posed into a composition of rational functions in two different ways, this equation
plays a central role in the theory of functional decompositions of rational func-
tions. Furthermore, functional equation (2) where C and D are allowed to be
entire functions reduces to the case C,D ∈ C(z) (see [2], [15]). Thus, the problem
of description of curves EA,B of genus zero naturally appears also in the complex
analysis (see e. g. [5], [14], [15], [17]).
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2 F. PAKOVICH

Having in mind possible applications to equation (2) in rational functions, in this
paper we will allow A and B to be arbitrary rational functions meaning by the curve
EA,B the expression obtained by equating to zero the numerator of A(x) − B(y).
Notice that the curve EA,B may turn out reducible. In this case its analysis is more
complicated and has a different flavor (see e.g. [8]), so below we always will assume
that considered curves EA,B are irreducible.

For polynomial A and B the classification of curves E(A,B) of genus zero with
one point at infinity follows from the so-called “second Ritt theorem” ([22]) about
polynomial solutions of (2). Namely, any such a curve has either the form

(3) xn − ysRn(y) = 0,

where R is an arbitrary polynomial and GCD(s, n) = 1, or the form

(4) Tn(x)− Tm(y) = 0,

where Tn, Tm are Chebyshev polynomials and GCD(n,m) = 1. The classification
of polynomial curves E(A,B) of genus zero with at most two points at infinity was
obtained in the paper of Bilu and Tichy [3], which continued the line of researches
started by Fried (see [5], [6], [7]). In this case, in addition to the above curves we
have the following possibilities:

(5) x2 − (1− y2)S2(y) = 0,

where S is an arbitrary polynomial,

(6) T2n(x) + T2m(y) = 0,

where GCD(n,m) = 1, and

(7) (3x4 − 4x3)− (y2 − 1)3 = 0.

Finally, the classification obtained in [3] can be extended to the case where A and
B are allowed to be Laurent polynomials (see [14]). In this case, to the list above
one has to add the possibility for R in (3) to be a Laurent polynomial, and the
curve

(8) Tn(x)− 1

2

(
ym +

1

ym

)
= 0,

where GCD(n,m) = 1. Notice also that an explicit classification of curves (1) of
genus one with one point at infinity for polynomial A and B was obtained by Avanzi
and Zannier in [1]. The above results essentially exhaust the list of general results
concerning the problem of description of curves EA,B of small genus.

All the curves EA,B of genus zero listed above, except for (7), obviously share
the following feature: in fact they are “series” of curves with the “same” A. We
formalize this observation as follows. Say that a rational function A is a basis of
series of curves of genus zero if there exists a sequence of rational functions Bi
such that degBi → ∞ and all the curves A(x) − Bi(y) = 0 are irreducible and
have genus zero. Clearly, a description of all bases of series is an important step in
understanding of the general problem, and the main goal of the paper is to provide
such a description in geometric terms. Our main result is the following statement.

Theorem 1.1. A rational function A is a basis of series of curves of genus zero if
and only if there exist a compact Riemann surface R of genus 0 or 1 and a Galois
covering f : R→ CP1 such that f = A ◦ p for some p : R→ CP1.
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Thus, the set of possible bases of series splits into two classes. Elements of the
first class are “compositional left factor” of well known Galois coverings of CP1

by CP1 calculated for the first time by Klein ([9]). In particular, up to the change
A→ µ1◦A◦µ2, where µ1 and µ2 are Möbius transformations, besides the functions

(9) zn, Tn,
1

2

(
zn +

1

zn

)
, n ≥ 1,

this class contains only a finite number of functions, which can be calculated ex-
plicitly. For instance, the polynomial 3x4 − 4x3 appearing in (7) is an example of
such a function, implying that curve (7) in fact also belongs to a series of curves
of genus zero (see Section 5 below). Typical representatives of the second class,
consisting of rational compositional left factors of Galois coverings of CP1 by T, are
Lattès functions (see e.g. [12]), but other possibilities also exist.

The approach of the papers [1], [3], [14] to the calculation of g(EA,B) is based
on the formula, given in [7], which expresses g(EA,B) through the ramifications of
A and B. Namely, if c1, c2, . . . cr is a union of critical values of A and B, and
fi,1, fi,2, ..., fi,ui

(resp. gi,1, gi,2, ..., gi,vi) is a collection of local degrees of A (resp.
B) at the points of A−1{ci} (resp. B−1{ci}), then g(EA,B) may be calculated as
follows:

(10) 2− 2g(EA,B) =

r∑
i=1

ui∑
j1=1

vi∑
j2=1

GCD(fi,j1gi,j2)− (r − 2)degA degB.

However, the direct analysis of this formula is quite difficult already in the above
cases, and the further progress requires even more cumbersome considerations.
Furthermore, although (10) provides restrictions on possible ramifications of A
and B, it does not ensure that rational functions with such ramifications actually
exist. Notice that the problem of existence of a rational function with a prescribed
ramification is a part of the so-called Hurwitz existence problem and is widely open
(see e. g. the recent papers [19], [13], [20], [21]).

In this paper we propose a new approach to the problem, based on techniques
introduced in the recent paper [18] concerning rational solutions of the functional
equation A◦X = X ◦B. This approach permits to obtain restrictions on a possible
ramification of a basis of series A in geometric terms, and to show that for any
A obeying these restrictions a sequence of Bi as above actually exists. The paper
is organized as follows. In the second section we recall basic facts about two-
dimensional orbifolds and some results from the papers [14], [18]. In the third
section we provide low bounds for the genus of EA,B . In the fourth section we
prove Theorem 1.1. Finally, in the fifth section we consider an example illustrating
methods and results of the article.

2. Fiber products, orbifolds, and Galois coverings

A pair O = (R, ν) consisting of a Riemann surface R and a ramification function
ν : R → N which takes the value ν(z) = 1 except at isolated points is called an
orbifold. The Euler characteristic of an orbifold O = (R, ν) is defined by the formula

(11) χ(O) = χ(R) +
∑
z∈R

(
1

ν(z)
− 1

)
,
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where χ(R) is the Euler characteristic of R. If R1, R2 are Riemann surfaces provided
with ramification functions ν1, ν2 and f : R1 → R2 is a holomorphic branched
covering map, then f is called a covering map f : O1 → O2 between orbifolds
O1 = (R1, ν1) and O2 = (R2, ν2) if for any z ∈ R1 the equality

(12) ν2(f(z)) = ν1(z)deg zf

holds, where deg zf denotes the local degree of f at the point z. If for any z ∈ R1

instead of equality (12) a weaker condition

(13) ν2(f(z)) | ν1(z)deg zf

holds, then f is called a holomorphic map f : O1 → O2 between orbifolds O1 and
O2.

A universal covering of an orbifold O is a covering map between orbifolds

θO : Õ→ O such that R̃ is simply connected and ν̃(z) ≡ 1. If θO is such a map, then

there exists a group ΓO of conformal automorphisms of R̃ such that the equality

θO(z1) = θO(z2) holds for z1, z2 ∈ R̃ if and only if z1 = σ(z2) for some σ ∈ ΓO. A

universal covering exists and is unique up to a conformal isomorphism of R̃, unless
O is the Riemann sphere with one ramified point, or O is the Riemann sphere with
two ramified points z1, z2 such that ν(z1) 6= ν(z2). Abusing notation we will use

the symbol Õ both for the orbifold and for the Riemann surface R̃. Covering maps
between orbiofolds lift to isomorphisms between their universal coverings. More
generally, the following proposition holds (see [18], Proposition 3.1).

Proposition 2.1. Let f : O1 → O2 be a holomorphic map between orbifolds. Then

for any choice of θO1
and θO2

there exist a holomorphic map F : Õ1 → Õ2 and a
homomorphism ϕ : ΓO1 → ΓO2 such that diagram

(14)

Õ1
F−−−−→ Õ2yθO1

yθO2

O1
f−−−−→ O2

is commutative and for any σ ∈ ΓO1
the equality

(15) F ◦ σ = ϕ(σ) ◦ F

holds. The map F is defined by θO1
, θO2

, and f uniquely up to a transforma-
tion F → g ◦ F, where g ∈ ΓO2

. In other direction, for any holomorphic map

F : Õ1 → Õ2 which satisfies (15) for some homomorphism ϕ : ΓO1 → ΓO2 there
exists a uniquely defined holomorphic map between orbifolds f : O1 → O2 such that
diagram (14) is commutative. The holomorphic map F is an isomorphism if and
only if f is a covering map between orbifolds. �

If f : O1 → O2 is a covering map between orbifolds with compact support, then
the Riemann-Hurwitz formula implies that

(16) χ(O1) = dχ(O2),

where d = deg f . For holomorphic maps the following statement is true (see [18],
Proposition 3.2).
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Proposition 2.2. Let f : O1 → O2 be a holomorphic map between orbifolds with
compact support. Then

(17) χ(O1) ≤ χ(O2) deg f

and the equality holds if and only if f : O1 → O2 is a covering map between
orbifolds. �

Let R1, R2 be Riemann surfaces, and f : R1 → R2 a holomorphic branched
covering map. Assume that R2 is provided with ramification function ν2. In order
to define a ramification function ν1 on R1 so that f would be a holomorphic map
between orbifolds O1 = (R1, ν1) and O2 = (R2, ν2) we must satisfy condition (13),
and it is easy to see that for any z ∈ R1 a minimal possible value for ν1(z) is defined
by the equality

(18) ν2(f(z)) = ν1(z)GCD(deg zf, ν2(f(z)).

In case if (18) is satisfied for any z ∈ R1 we say that f is a minimal holomorphic
map between orbifolds O1 = (R1, ν1) and O2 = (R2, ν2).

With each holomorphic function f : R1 → R2 between compact Riemann

surfaces one can associate in a natural way two orbifolds O
f
1 = (R1, ν

f
1 ) and

O
f
2 = (R2, ν

f
2 ), setting νf2 (z) equal to the least common multiple of local degrees of

f at the points of the preimage f−1{z}, and

νf1 (z) = νf2 (f(z))/deg zf.

By construction, f is a covering map between orbifolds f : O
f
1 → O

f
2 . Furthermore,

since the composition f ◦ θ
O

f
1

: Õf1 → O
f
2 is a covering map between orbifolds, it

follows from the uniqueness of the universal covering that

(19) θ
O

f
2

= f ◦ θ
O

f
1
.

For rational functions A and B irreducible components of E(A,B) correspond to
irreducible components of the fiber product of A and B. In particular, if E(A,B) is

an irreducible curve and Ẽ(A,B) is its desingularization, then there exist holomor-

phic functions p, q : Ẽ(A,B)→ CP1 such that

(20) A ◦ p = B ◦ q,
and

(21) degA = deg q, degB = deg p

(see [14], Theorem 2.2 and Proposition 2.4). Furthermore, the functions A,B, p, q
possess “good” properties with respect to the associated orbifolds defined above.
Namely, the following statement holds (see [18], Theorem 4.2 and Lemma 2.1).

Theorem 2.1. Let A, B be rational functions such that the curve E(A,B) is ir-
reducible, and p, q holomorphic functions such that equalities (20) and (21) hold.
Then the commutative diagram

O
q
1

p−−−−→ OA1yq yA
O
q
2

B−−−−→ OA2

consists of minimal holomorphic maps between orbifolds.
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Of coarse, vertical arrows in the above diagram are covering maps simply by
definition. The meaning of the theorem is that the branching of q and A to a
certain extent defines the branching of p and B. For example, Theorem 2.1 applied
to the functional equation

A ◦X = X ◦B,
where A,X,B are rational functions such that EA,X is irreducible, implies that
χ(OX2 ) ≥ 0 (see [18]). For a rational function A the condition χ(OA2 ) ≥ 0 is quite
restrictive, and in fact is equivalent to the condition from Theorem 1.1. We discuss
it in the rest of the section.

If O = (CP1, ν) is an orbifold such that χ(O) = 0, then (11) implies that the
collection of ramification indices of O is either (2, 2, 2, 2), or one of the following

triples (3, 3, 3), (2, 4, 4), (2, 3, 6). For all such orbifolds Õ = C. Furthermore, the
group ΓO is generated by translations of C by elements of some lattice L ⊂ C of rank
two and the transformation z → εz, where ε is nth root of unity with n equal to
2,3,4, or 6, such that εL = L. For the collection of ramification indices (2, 2, 2, 2) the
complex structure of C/L may be arbitrary and the function θO is the corresponding
Weierstrass function ℘(z). On the other hand, for the collections (2, 4, 4), (2, 3, 6),
(3, 3, 3) this structure is rigid and arises from the tiling of C by squares, equilateral
triangles, or alternately colored equilateral triangles, respectively. Accordingly, the
functions θO are Galois coverings of CP1 by C and may be written in terms of the
corresponding Weierstrass functions as ℘2(z), ℘′(z), and ℘′2(z).

Similarly, if χ(O) > 0, then the collection of ramification indices of O is either
(n, n) for some n ≥ 2, or (2, 2, n) for some n ≥ 2, or one of the following triples
(2, 3, 3), (2, 3, 4), (2, 3, 5). In fact, formula (11) also allows O to be a non-ramified
sphere or one of two orbifolds without universal covering. However, for any rational
function A both orbifolds OA1 , OA2 have a universal covering (see [18], Lemma 4.2),
and OA2 cannot be non-ramified. Thus, if O = OA2 for some rational function A,
then the collection of ramification indices of O belongs to the above list. For such

collections, Õ = CP1, and the group ΓO is a finite subgroup of the automorphism
group of CP1. Namely, to orbifolds with the collections of ramification indices
(n, n), (2, 2, n), (2, 3, 3), (2, 3, 4), and (2, 3, 5) correspond the groups Cn, D2n, A4,
S4, and A5. The corresponding functions θO are Galois coverings of CP1 by CP1

and have degrees n, 2n, 12, 24, and 60 (see e.g. [9]).
Rational functions A with χ(OA2 ) ≥ 0 and Galois coverings of the sphere are

related as follows.

Lemma 2.1. Let A be a rational function. Then χ(OA2 ) > 0 if and only if there

exists a Galois covering f : CP1 → CP1 such that Of2 = OA2 and f = A◦p for some
p : CP1 → CP1. Similarly, χ(OA2 ) = 0 if and only if there exist a complex torus T
and a Galois covering f : T → CP1 such that O

f
2 = OA2 and f = A ◦ p for some

p : T→ CP1.

Proof. In order to prove “if” part we only must show that if R is a compact Riemann

surface of genus 0 or 1 and f : R → CP1 is a Galois covering, then χ(Of2 ) > 0 or

χ(Of2 ) = 0, correspondingly. Let Γ be an automorphism group of R such that f
coincides with the quotient map R→ R/Γ. For any branch point zi, 1 ≤ i ≤ r, of f
there exists a number di such that f−1{zi} consists of exactly |G|/di points, and at
each of these points the multiplicity of f equals di. Applying the Riemann-Hurwitz
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formula, we see that

2g(R)− 2 = −2|G|+
r∑
i=1

|G|
di

(di − 1) ,

and hence

(22) χ(Of2 ) = 2 +

r∑
i=1

(
1

di
− 1

)
=

2− 2g(R)

|G|
,

implying the statement.
Assume now that χ(OA2 ) ≥ 0, and consider the normalization of A, that is a

Galois covering f : R → CP1 of the lowest possible degree such that f = A ◦ p
for some p : R → CP1. It is known that for such a covering O

f
2 = OA2 . Therefore,

keeping the above notation and using formula (22), we see that if χ(OA2 ) > 0 (resp.
χ(OA2 ) = 0), then g(R) = 0 (resp. g(R) = 1). �

Notice that if χ(OA2 ) = 0, then, since CP1 is simply connected, the function f
from Lemma 2.1 is a universal covering of OA2 and the equality f = A ◦ p reduces
to equality (19).

3. Lower bound for genus of EA,B

In this section we show that, unless χ(OA2 ) ≥ 0, the genus of g(EA,B) tends to
infinity as degB(z) tends to infinity. More precisely, the following statement holds.

Theorem 3.1. Let A be a rational function of degree n such that χ(OA2 ) < 0.
Then for any rational function B of degree m such that the curve EA,B is irreducible
the inequality

(23) g(EA,B) >
m− 84n+ 168

168

holds.

Proof. First of all, observe that if f : R→ CP1 is a holomorphic function of degree
n on the Riemann surface R of genus g, then

(24) χ(Of2 ) > 4− 4g − 2n.

Indeed, it follows from the definition that

χ(Of2 ) > χ(R)− c(f),

where c(f) denotes the number of branch points of f. On the other hand, since the
number c(f) is less than or equal to the number of points z ∈ R where deg zf > 1,
the Riemann-Hurwitz formula

χ(R) = χ(CP1)n−
∑
z∈R

(deg zf − 1)

implies that

c(f) ≤ χ(CP1)n− χ(R).

Thus,

χ(Of2 ) > 2χ(R)− χ(CP1)n,

implying (24).
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Let now p, q : Ẽ(A,B)→ CP1 be holomorphic functions such that (20) and (21)
hold. Since B : O

q
2 → OA2 is a minimal holomorphic map between orbifolds by

Theorem 2.1, it follows from Proposition 2.2 that

(25) χ(Oq2) ≤ mχ(OA2 ).

On the other hand, (11) implies that if χ(O) < 0, then in fact

(26) χ(O) ≤ − 1

42

(where the equality attains for the collection of ramification indices (2, 3, 7)). There-
fore, if χ(OA2 ) < 0, then (26) and (24) imply the inequality

4− 4g − 2n < −m
42

which in its turn implies (23). �

4. Proof of Theorem 1.1

It follows from Theorem 3.1 and Lemma 2.1 that we only must show that if
χ(OA2 ) ≥ 0, then A is a basis of series. Assume first that χ(OA2 ) = 0. Then the
universal covering of OA2 is C, and the group ΓOA

2
is generated by translations of C

by elements of some lattice L =< ω1, ω2 > and the transformation z → εz, where
ε is an nth root of unity with n equal to 2,3,4, or 6, such that εL = L. This implies
that for any integer m ≥ 2 the map F : z → mz satisfies condition (15) for the
homomorphism ϕ : ΓOA

2
→ ΓOA

2
defined on the generators of ΓOA

2
by the equalities

(27) ϕ(z + ω1) = z +mω1, ϕ(z + ω1) = z +mω1, ϕ(εz) = εz.

Therefore, by Proposition 2.1, there exists a rational functions Rm of degree m such
that

θOA
2

(mz) = Rm ◦ θOA
2
.

Furthermore, it follows from (16) that χ(OA1 ) = 0, implying that the group ΓOA
1

is

generated by translations by elements of some sublattice L̃ of L and the transfor-
mation z → εlz for some l ≥ 1. Thus, homomorphism (27) satisfies the condition

(28) ϕ(ΓOA
1

) = ΓOA
1

and hence there exists a rational function Sm of degree m such that

θOA
1

(mz) = Sm ◦ θOA
1
.

Since

(29) θOA
2

= A ◦ θOA
1
,

it follows now from the equalities

θOA
2

(mz) = Rm ◦ θOA
2

= Rm ◦A ◦ θOA
1

and

θOA
2

(mz) = A ◦ θOA
1

(mz) = A ◦ Sm ◦ θOA
1
,

that

A ◦ Sm = Rm ◦A.
Thus, whenever the curve A(x) − Rm(y) = 0 is irreducible, it has genus zero.
Since E(A,B) is irreducible whenever the degrees of A and B are coprime (see [14],
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Proposition 3.1), taking any sequence mi → ∞ whose elements are coprime with
degA, we obtain a sequence A(x)−Rmi(y) = 0 of irreducible curves of genus zero.

In the case χ(OA2 ) > 0 the proof is similar with appropriate modifications. First
observe that in order to prove the theorem it is enough to show that for any A with
χ(OA2 ) > 0 there exists a single pair of rational functions S and R such that

(30) A ◦ S = R ◦A
and GCD(degR,degA) = 1. Really, (30) implies that

A ◦ S◦l = R◦l ◦A.
Therefore, since GCD(degR◦l,degA) = 1, the sequence A(x)−R◦l(y) = 0 consists
of irreducible curves of genus zero. Further, in order to show the existence of such
a pairs for any A with χ(OA2 ) > 0 it is enough to show that for any group Γ from
the list Cn, D2n, A4, S4, A5 there exists a rational function F of degree corpime
with |Γ| which is Γ-equivariant, that is satisfies the equality

(31) F ◦ σ = σ ◦ F
for any σ ∈ Γ. Indeed, condition (31) means that the corresponding homomorphism

in (15) satisfies ϕ(σ) = σ for any σ ∈ Γ, implying that ϕ(Γ̃) = Γ̃ for any subgroup

Γ̃ of Γ. Since, by Lemma 2.1, ΓOA
2

= Γ for some group Γ from the list, we conlude
as above that

(32) θOA
2
◦ F = R ◦ θOA

2
, θOA

1
◦ F = S ◦ θOA

1

for some rational functions S and R such that (30) holds. Moreover, in fact it is
enough to consider only the groups A4, S4, and A5, since if ΓOA

2
= Cn, then up

to the change f → µ1 ◦ f ◦ µ2, where µ1, µ2 are Möbius transformations, A = zm

for some m | n, and hence (3) already provides a necessary series of irreducible
curves of genus zero. Similarly, if ΓOA

2
= Dn, then without loss of generality we

may assume that either A = Tm or

A =
1

2

(
zm +

1

zm

)
for some m | n (see e.g. Appendix of [16]), and hence the statement of the lemma
follows from equalities (4) and (8).

Finally, since A4 ⊂ S4 ⊂ A5, it is enough to find a single A5-equivariant function
whose order is coprime with 60, and as such a function we can take for example
the function

(33) F =
z11 + 66z6 − 11z

−11z10 − 66z5 + 1

of degree 11, constructed in the paper [4].

5. Example

Consider the rational function A = 3z4 − 4z3 appearing in (7). The critical
values of this function are 0,−1,∞. The preimage of 0 consists of a critical point 0,
whose multiplicity is 3, and the point 4/3. The preimage of −1 consists of a critical

point 1, whose multiplicity is 2, and the points − 1
3 ± i

√
3
2 . Finally, the preimage of

∞ consists of a single point ∞, whose multiplicity is 4. Thus,

νA2 (−1) = 2, νA2 (0) = 3, νA2 (∞) = 4,
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and the value of νA2 at any other point equals 1. Correspondingly,

νA1

(
−1

3
+ i

√
3

2

)
= νA1

(
−1

3
− i
√

3

2

)
= 2, νA1

(
4

3

)
= 3,

and

χ(OA2 ) =
1

12
, χ(OA1 ) =

1

3
.

The Galois covering f from Lemma 2.1 has the group S4. Fix the generators of
S4 as

z → iz, z → z + i

z − i
and write f = θOA

2
in the form

f = − (z8 + 14z4 + 1)3

108z4(z4 − 1)4
.

The critical values of f normalized in such a way are 0,−1,∞, and the equality
f = A ◦ p from Lemma 2.1 holds for the function

p = θOA
1

=

(
1
6 (1 + i)z2 − i

3z + 1
6 (1− i)

) (
z4 + 2 z3 + 2 z2 − 2 z + 1

)
(z2 + 1) (z + 1) (z − 1) z

.

As an S4-invariant function of degree corpime with degA = 4 we can take
function (33). However, we also can take the function of lesser degree

F =
−z5 + 5z

5z4 − 1

obtained from the invariant form

x5y − xy5

by the method of [4]. For such F the functions R and S from equalities (32) are

R =
z2
(
z3 − 240 z2 + 19200 z − 512000

)
1048576 + 625 z4 + 16000 z3 + 153600 z2 + 655360 z

and

S =
z2
(
3 z3 − 10 z2 + 20 z − 40

)
32− 20 z3 + 15 z4

.

Thus, we obtain a family of irreducible curves of genus zero

(3x4 − 4x3)−

(
y2
(
y3 − 240 y2 + 19200 y − 512000

)
1048576 + 625 y4 + 16000 y3 + 153600 y2 + 655360 y

)◦k
= 0,

having the parametrizations

x =

(
t2
(
3 t3 − 10 t2 + 20 t− 40

)
32− 20 t3 + 15 t4

)◦k
, y = 3t4 − 4t3.
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