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Abstract. We study grassmannian classic geometries in the spirit of the previous paper. The interrelation
between a (pseudo-)riemannian projective classic geometry and the conformal structure on its absolute is
explained.

1. Introduction

It was illustrated in [AGr1] that the grassmannian GrK(k, V ) constitutes a natural habitat for basic
geometrical objects of the classic geometry in PKV . The grassmannian consists of two complementary
parts: Gr0K(k, V ), formed by nondegenerate subspaces, and the absolute.

A tangent vector at a nondegenerate point p is a linear map t : p → p⊥ and tr(t∗
1
t2) defines a

hermitian metric on Gr0K(k, V ). It seems, however, that there may exist a more adequate way to deal
with the geometry on grassmannians. The characteristic polynomial char(t∗

1
t2), or simply the product

t∗
1
t2 itself, can be taken in place of the hermitian metric. We can also take tangent vectors t1, t2 at

distinct points. In the latter case, tr(t∗
1
t2) looks like a mixture of the usual hermitian structure and

parallel displacement; see the formula (3.1), for example.
The product t∗

1
t2 partially survives at a degenerate point p. Denote Vq := q⊥/q, where q stands for

the kernel of the hermitian form on p. The points on the absolute with the same q form a fibre of a
certain bundle and the product t∗

1
t2 is defined for tangent vectors to such fibre because Vq is naturally

equipped with a nondegenerate hermitian form. In particular, we obtain a hermitian metric on the
fibre. Surprisingly, this hermitian metric provides the conformal (or conformal contact) structure on the
absolute SV of PKV . In other words, the conformal structure is exactly what remains from the metric
when we arrive at the absolute.

2. Tangent structure and stratification

Let V be an n-dimensional K-vector space equipped with a nondegenerate hermitian form 〈−,−〉,
where K = R or K = C. The grassmannian GrK(k, V ) of k-dimensional K-vector subspaces in V can be
described as follows. Take and fix a K-vector space P such that dimK P = k. Denote by

M :=
{
p ∈ LinK(P, V ) | Ker p = 0

}

the open subset of all monomorphisms in the K-vector space LinK(P, V ). The group GLK P acts from
the right on LinK(P, V ) and on M . The grassmannian GrK(k, V ) is simply the quotient space

GrK(k, V ) := M/GLKP, π : M → M/GLKP.
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We will not distinguish between the notation of points in GrK(k, V ) and of their representatives in M .
Moreover, we will frequently write p in place of the image pP and p⊥, in place of the orthogonal (pP )⊥

to that image: in practice, it is impossible to confuse a map and its image. For example, V/p will denote
V/pP . So, our notation and convention are similar to those used in [AGr1].

The tangent space Tp M is commonly identified with LinK(P, V ) as follows. Given ϕ : P → V ,
for small ε, the curve c(ε) := p + εϕ lives in M and ϕ is identified with ċ(0). We use a slightly different
identification Tp M = LinK(p, V ) where p takes the place of P . In this way, t ∈ LinK(p, V ) is interpreted

as the tangent vector ċ(0), where c(ε) := (1+εt̃)p and t̃ ∈ LinK(V, V ) extends t. Note that t ∈ LinK(p, V )

is tangent at p to the orbit pGLK P if and only if tp ⊂ p since in this case (1 + εt̃)p = pg for small ε
and suitable g ∈ GLK P . Therefore, we can write Tp GrK(k, V ) = LinK(p, V/p).

2.1. Remark. Fix a linear subspace w ⊂ V . Denote by GrK(k,w, V ) ⊂ GrK(k, V ) the space of all
k-dimensional subspaces in V included in w. The identification GrK(k,w, V ) ≃ GrK(k,w) provides the
equality Tp GrK(k,w, V ) = LinK(p,w/p) ⊂ LinK(p, V/p).

Dually, let GrK(k, V, q) ⊂ GrK(k, V ) denote the space of all k-dimensional subspaces in V containing q,
where q ⊂ V is a d-dimensional subspace. We will show that Tp GrK(k, V, q) = LinK(p/q, V/p) for all
p ∈ GrK(k, V, q).

P 0−−−−→ P0

p

y p0

y

V 0−−−−→ V/q

P 0−−−−→ P0

p

y p0

y

p 0−−−−→ p0

t

y t0

y

V 0−−−−→ V/q

The identification i : GrK(k, V, q) → GrK(k − d, V/q) can be for-
mally described as follows. Fix an epimorphism 0 : P → P0. The same
symbol denotes the canonical map 0 : V → V/q. We can think of
every p ∈ GrK(k, V, q) as of a linear map p : P → V that sends the
kernel of 0 : P → P0 onto q. So, i : p 7→ p0, where p0 : P0 → V/q is

induced by p in the commutative diagram on the left.
Fix some p ∈ GrK(k, V, q). A given linear map t : p → V satisfying tq ⊂ q induces

a linear map t0 : p0 → V/q in the commutative diagram on the right, where 0 : p → p0 is
induced by 0 : V → V/q. Fix some t and the induced t0. The curves c(ε) := (1V + εt̃)p ∈ M

and c0(ε) := (1V/q + εt̃0)p0 ∈ M0 have tangent vectors ċ(0) = t and ċ0(0) = t0, where t̃ : V → V

and t̃0 : V/q → V/q are extensions of t and t0. Since tq ⊂ q, the map c(ε) : P → V sends the
kernel of 0 : P → P0 into q. For small ε, it sends that kernel onto q because c(0) = p. It is easy
to infer from the above diagrams that i : c(ε) 7→ c0(ε). In other words, i sends the tangent vector
t ∈ Tp GrK(k, V, q) ⊂ LinK(p, V/p) corresponding to t to the tangent vector t0 ∈ Tp0

GrK(k − d, V/q) =
LinK(p/q, V/p) corresponding to t0. Since the t0’s list all linear maps of the form p/q → V/q, we obtain
Tp GrK(k, V, q) = LinK(p/q, V/p) ⊂ LinK(p, V/p) �

There is a stratification

GrK(k, V ) =
⊔

d

Grd
K(k, V ), Grd

K(k, V ) :=
{
p ∈ GrK(k, V ) | dimK(p ∩ p⊥) = d

}
.

The subspaces of a given signature form an UV -orbit. Therefore, every strata is the disjoint union of a
finite number of such orbits, hence, a manifold. Associating to each p the kernel of the hermitian form
on p, we get the U V -equivariant fibre bundle

πd : Grd
K(k, V ) → Grd

K(d, V ), πd : p 7→ p ∩ p⊥.

The fibre π−1

d (q) can be naturally identified with Gr0K(k−d, Vq), where Vq := q⊥/q is equipped with a nat-

ural nondegenerate hermitian form and dimK Vq = n−2d. By Remark 2.1, Tp π−1

d (q) = LinK(p/q, q⊥/p)

for all p ∈ π−1

d (q) because Gr0K(k − d, Vq) is open in GrK(k − d, Vq).

Let p ∈ π−1

d (q). Clearly, q = p∩ p⊥, q⊥ = p+ p⊥, and Vq = p0 ⊕ p⊥
0

, where p0 := p/q and p⊥
0

= p⊥/q.

Denote by π′[p0] and π[p0] the corresponding orthogonal projectors. We have Tp π−1

d (q) = LinK(p0, p
⊥

0
).
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Being extended by zero, a tangent vector t0 : p0 → p⊥
0

can be viewed as a linear map t : Vq → Vq.
We found it reasonable to interpret every linear map t : Vq → Vq as a footless tangent vector: composed
with the projectors, i.e., observed from p0, the map t becomes tp0

:= π[p0]tπ
′[p0], a usual tangent vector

to π−1

d (q) at p0.

In the case of d = 1, the map π1 shows how the generic part Gr1K(k, V )
of the absolute of the grassmannian GrK(k, V ) is fibred over the absolute
SV = Gr1K(1, V ) of the projective classic geometry PKV = GrK(1, V ).
Fibres are easy to visualize: they correspond to subspaces ‘rotating’
about their common unidimensional kernel, hence, forming a grassman-
nian. If k = 2, each fibre carries the structure of a projective classic
geometry.

2.2. Remark. Let K = R. The tangent space to the absolute
SV has the form Tq SV = LinK(q, Vq). Indeed, take u ∈ V such that
SV ⊂ PKV is locally given by the equation f(x) = 0 in a neighbourhood

of q, where f(x) :=
〈x, x〉

〈x, u〉〈u, x〉
. Let t : q → V/q be a tangent vector to PKV at q and let t̃ : V → V be

a lift of t. Then t is tangent to SV if and only if tf = 0, i.e.,

d

dε

∣∣∣
ε=0

〈q + εt̃q, q + εt̃q〉

〈q + εt̃q, u〉〈u, q + εt̃q〉
=

2Re〈t̃q, q〉

〈q, u〉〈u, q〉
=

2Re〈tq, q〉

〈q, u〉〈u, q〉
= 0.

(In the formula, 0 6= q ∈ V , 〈q, q〉 = 0, is an element representing the subspace q.) Thus, the bundle
π1 : Gr1R(k, V ) → Gr1R(1, V ) is the grassmannization of the tangent bundle of SV .

Let K = C. The above calculus shows that Tq S V =
{
t : q → V/q | Re〈tq, q〉 = 0

}
. Hence,

we get a CR-distribution LinK(q, Vq) ⊂ Tq S V , i.e., a contact structure on the absolute. The bundle

π1 : Gr1C(k, V ) → Gr1C(1, V ) is the grassmannization of this distribution �

The case of d > 1 deals with a ‘degenerate’ part of the absolute in the grassmannian. The bundle
πd : Grd

K(k, V ) → Grd
K(d, V ) is no longer the grassmannization of the tangent bundle of Grd

K(d, V )
(considering, say, the real case). Nevertheless, the bundle indicates a distinguished distribution whose
geometric nature would be interesting to dwell on.

3. Product, metric, and conformal structures

Consider a fibre π−1

d (q) of the bundle πd : Grd
K(k, V ) → Grd

K(d, V ). Let t1, t2 : Vq → Vq be two

footless tangent vectors to this fibre, where Vq := q⊥/q. The footless vectors, the composition with
projectors (i.e., the possibility to observe a vector from a point), and the product t∗

1
t2 constitute the

main geometric structure on π−1

d (q) (t∗
1

stands for the adjoint to t1). Let us see what can we derive
from the main structure.

Take d = 0, p ∈ Gr0K(k, V ), and t1, t2 ∈ Tp GrK(k, V ) = LinK(p, p⊥) ⊂ LinK(V, V ). Then the equality

〈t1, t2〉 := tr(t∗
1
t2)

defines the (hermitian) metric on Tp GrK(k, V ). Many examples with k = 1 were dealt with in [AGr1].
One can introduce a more subtle structure by considering the coefficients char(t∗

1
t2) ∈ K

k−d of the
characteristic polynomial of t∗

1
t2. In this way, we obtain [AGr2] geometric characteristics of the geodesic

determined by a tangent vector t such as the invariant det(t∗t)/ trk−d(t∗t).
Actually, we do not need the hermitian metric to measure distance. Let p1, p2 ∈ Gr0K(k, V ) and let

t ∈ LinK(p1, p
⊥

1
) ⊂ LinK(V, V ) be a nonnull tangent vector at p1. We observe t at p2 and then observe
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the result back at p1 thus obtaining a new tangent vector t′ at p1. The change suffered by t′ reflects how
p1, p2, and t are related. For example, take k = 1. If t is tangent to the projective line joining p1 and p2,
then1 t′ = ta2(p1, p2)t. If t is orthogonal to the projective line, then t′ = ta(p1, p2)t. Analogously, given
points p1, p2, p3 and a tangent vector t at p1, a similar procedure of successive observations leads to a new
tangent vector t′ at p1. Again, t′ reflects the relation between p1, p2, p3 and t. In particular, if p1, p2, p3

lie in the riemannian part of a complex projective line, i.e., the triangle ∆(p1, p2, p3) is C-plane, and t
is tangent to this line, then t′ = t2

12
t2
23

t2
31

exp
(
2iArea ∆(p1, p2, p3)

)
t, where tij := ta(pi, pj).

The variations involving the product are endless. For example, the product t∗
1
t2 of ti ∈ LinK(pi, p

⊥

i ) ⊂
LinK(V, V ), i = 1, 2, makes sense for distinct points p1, p2 ∈ Gr0K(k, V ). In particular, the hermitian
metric is defined for tangent vectors at different points. In the case of k = 1, this can be interpreted
as follows. We take the horizontal-vertical decomposition t2 = h + v of t2 [AGr1, Section 5] where h
and v are respectively tangent and orthogonal to the projective line joining p1 and p2. Then we make
separately the parallel displacement of h and v along the geodesic from p2 to p1 obtaining the vectors
h′ and v′. It follows from [AGr1, Corollary 5.7] that

(3.1) tr(t∗
1
t2) =

〈
t1, ta(p1, p2)h

′ +
√

ta(p1, p2)v
′
〉
.

Thus, for k = 1, the hermitian product of tangent vectors at different points can be interpreted in the
terms of the usual hermitian structure and parallel displacement.

In the global picture composed of the pseudo-riemannian pieces in Gr0K(k, V ) and of the absolute,
the main geometric structure ties everything together. Tangent vectors to a point in one piece are
observable from the points in the other pieces and we can take the product of tangent vectors at points
in different pieces. This global picture also involves the geometry on the absolute.

We always found it curious and even a little bit mysterious the relation between the real hyper-
bolic structure on the ball and the conformal structure on its boundary. In other words, why do the
corresponding groups coincide? It follows some explanation.

Let K = R. By Remark 2.2, the bundle π1 : Gr1R(2, V ) → Gr1R(1, V ) is the projectivized tangent
bundle of the absolute SV = Gr1R(1, V ) ⊂ PRV . Every fibre π−1

1
(q) ≃ PRVq carries the structure of a

classic projective geometry. The bundle π1 : Gr1R(2, V ) → S V with fibres equipped with such geometry
is the conformal structure on SV .

3.2. Example. Take K = R and signature + · · ·+−. The real hyperbolic space H
n−1

R
is the negative

part of PRV and its ideal boundary, the absolute, is the sphere SV ≃ S
n−2. Every fibre PRVq ≃ P

n−3

R
of

the conformal structure carries the positive definite constant curvature metric. The distances in a fibre
are nothing but the angles of the standard2 conformal structure on SV �

For k > 2, the geometry on the grassmannization Gr1R(k, V ) → Gr1R(1, V ) of the tangent bundle of the
absolute (see Remark 2.2) is related to the case of k = 2 in the same way as are related the grassmannian
and the projective classic geometries.

Let K = C. By Remark 2.2, the bundle π1 : Gr1C(2, V ) → Gr1C(1, V ) is the projectivization of the CR-
distribution on the absolute SV = Gr1C(1, V ) ⊂ PCV . Every fibre π−1

1
(q) ≃ PCVq carries the structure

of a classic projective geometry. The bundle π1 : Gr1C(2, V ) → S V with fibres equipped with such
geometry is the conformal contact structure on SV .

1When p1 and p2 live in a same riemannian piece of Gr0
K
(1, V ), the tance ta(p1, p2) provides the distance between

p1 and p2 [AGr1, Section 3]. Otherwise, the tance provides the distance or angle between the basic geometrical objects

corresponding to p1 and p2.
2If one wishes to deal with angles varying in [0, 2π], then the projectivization should be taken with respect to R+, from

the very beginning.
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3.3. Example. Take K = C and signature + · · · + −. The complex hyperbolic space H
n−1

C
is the

negative part of PCV and its ideal boundary, the absolute, is the sphere SV ≃ S
2n−3. Every fibre

PRVq ≃ P
n−3

C
of the conformal contact structure carries the Fubini-Study metric. The distances in a

fibre are the angles between complex directions �

The CR-structure is sometimes taken as analogous to the conformal one. The above shows that they
are of distinct nature. Of course, the CR-structure underlies the conformal contact one. For a trivial
reason, they coincide when n = 3.

Note that any classic projective geometry can play the role of conformal structure. In particular,
the conformal structure can possess its own absolute and so on . . .

3.4. Comments and questions. The algebraic formulae dealing with geometrical quantities work
as well for points in distinct pieces of Gr0K(k, V ). In the global picture, a given formula uses to alter its
geometrical sense when the points involved are taken in the other pieces. In this respect, it is interesting
to understand if there is an explicit geometrical interpretation of the main structure in the terms of the
usual (pseudo-)riemannian concepts for k > 2.

The bundle πd : Grd
K(k, V ) → Grd

K(d, V ) might admit a canonical connection. If so, what is its explicit
description?
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