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Abstract

We develop algebro-combinatorial tools for computing the Thom
polynomials for the Morin singularities Ai(−) (i ≥ 0). The main tool

is the function F
(i)
r defined as a combination of Schur functions with

certain numerical specializations of Schur polynomials as their coeffi-
cients. We show that the Thom polynomial T Ai for the singularity Ai

(any i) associated with maps (C•, 0) → (C•+k, 0), with any parameter
k ≥ 0, under the assumption that Σj = ∅ for all j ≥ 2, is given by

F
(i)
k+1. Equivalently, this says that “the 1-part” of T Ai equals F

(i)
k+1.

We investigate 2 examples when T Ai apart from its 1-part consists
also of the 2-part being a single Schur function with some multiplicity.
Our computations combine the characterization of Thom polynomials
via the “method of restriction equations” of Rimanyi et al. with the
techniques of (super) Schur functions.

1 Introduction

The global behavior of singularities is governed by their Thom polynomials
(cf. [33], [14], [1], [10], [30]). Knowing the Thom polynomial of a singularity
η, denoted T η, one can compute the cohomology class represented by the
η-points of a map.

In the present paper, following a series of papers by Rimanyi et al. [31],
[29], [30], [6], [2], we study the Thom polynomials for the singularities Ai

associated with maps (C•, 0) → (C•+k, 0) with parameter k ≥ 0.
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Ankara), and by the Humboldt Stiftung (during the stay at the MPIM in Bonn).

1



The way of obtaining the thought Thom polynomial is through the so-
lution of a system of linear equations, which is fine when we want to find
one concrete Thom polynomial, say, for a fixed k. However, if we want to
find the Thom polynomials for a series of singularities, associated with maps
(C•, 0) → (C•+k, 0) with k as a parameter, we have to solve simultaneously a
countable family of systems of linear equations. We do it here for the restric-
tion equations for the above mentioned singularities. Instead of using Chern
monomial expansions (as the authors of previous papers constantly did), we
use Schur function expansions. This puts a more transparent structure on
computations of Thom polynomials.

Another feature of using the Schur function expansions for Thom poly-
nomials is that all the coefficients are nonnegative. This has been recently
proved by A. Weber and the author in [28].

To be more precise, we use here (the specializations of) supersymmetric
Schur functions, also called super-S-functions or Schur functions in difference
of alphabets together with their three basic properties: vanishing, cancella-
tion and factorization, (cf. [3], [18], [23], [27], [19], [7], and [16]). These
functions contain resultants among themselves. Their geometric significance
was illuminated in the 80’s in the author’s study of polynomials supported
on degeneracy loci (cf. [22]). In fact, in the present paper and in [26], we
use the point of view of that article to some extent. We know by the Thom-
Damon theorem that T Ai is a Z-linear combination of Schur functions in
TX∗−f∗(TY ∗). Given a positive integer h, we shall say that a Z-linear
combination

∑

I

αISI

is an h-combination if for any partition I appearing nontrivially the fol-
lowing condition (∗)h holds1: I contains the rectangle partition

(k + h, . . . , k + h)

(h times), but it does not contain the larger Young diagram

(k + h+ 1, . . . , k + h+ 1)

(h + 1 times). For example, a 1-combination consists of Schur functions
containing a single row (k + 1) but not containing (k + 2, k + 2); a 2-
combination consists of Schur functions containing (k + 2, k + 2) but not
containing (k + 3, k + 3, k + 3) etc. (An h-combination, with the argu-
ment “TX∗−f∗(TY ∗)”, is a typical universal polynomial supported on the
(•−h)th degeneracy locus of the derivative morphism of the tangent vector
bundles.) Since the singularity Ai is of Thom-Boardman type Σ1, we have

1We say that one partition is contained in another if this holds for their Young diagrams
(cf. [16]).
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by [23, Theorem 10] (based on the structure of the P-ideal of the singularity
Σ1) that all partitions in the Schur expansion of T Ai contain a single row
(k + 1). For a fixed h, let us consider the sum of all Schur functions ap-
pearing nontrivially in T Ai (multiplied by their coefficients) corresponding
to partitions satisfying (∗)h. This h-combination will be called the h-part of
T Ai . Of course, T Ai is a sum of its h-parts.

The main body of the paper is devoted to study the 1-part of the Thom
polynomial for the singularities Ai associated with maps (C•, 0) → (C•+k, 0)
with parameter k ≥ 0. We introduce, via its Schur function expansion, the
basic functions F (A,−) and F (i). Using the properties of these functions
(Proposition 10 and Corollary 11), we show (Theorem 12) that it gives the
Thom polynomial for Ai when Σj = ∅ for all j ≥ 2. Equivalently, it says
that the 1-part of the Thom polynomial for a generic singularity Ai is equal

to F
(i)
k+1. For k = 0, this polynomial was given in [21] but in the Chern

monomial basis.
With the help of F (1) and F (2), we reprove the formulas of Thom [33]

and Ronga [32] for A1, A2 and for any parameter k ≥ 0.
We give also computations of two Thom polynomials having apart from

their 1-parts also the nontrivial 2-parts (consisting of single Schur functions
with certain multiplicities). We first reprove the result of Gaffney [8] for A4

and k = 0. This was also done by Rimanyi [29] – our approach uses Schur
functions. Then we do the computations for A3 and k = 1; this, in turn,
can be considered as an introduction to the general case A3 (any k) in [26].

In our calculations we use extensively the functorial λ-ring approach to
symmetric functions developed mainly in Lascoux’s book [16].

Main results of the present paper were announced in [24].
Inspired by the present article, [24], [25], and [26], Ozer Ozturk [20]

computed the Thom polynomials for A4 and k = 2, 3.

2 Recollections on Thom polynomials

Our main reference for this section is [30]. We start with recalling what we
shall mean by a “singularity”. Let k ≥ 0 be a fixed integer. By singularity
we shall mean an equivalence class of stable germs (C•, 0) → (C•+k, 0),
where • ∈ N, under the equivalence generated by right-left equivalence (i.e.
analytic reparametrizations of the source and target) and suspension.

We recall2 that the Thom polynomial T η of a singularity η is a polynomial
in the formal variables c1, c2, . . . that after the substitution

ci = ci(f
∗TY − TX) = [c(f ∗TY )/c(TX)]i , (1)

for a general map f : X → Y between complex analytic manifolds, evaluates
the Poincaré dual of [V η(f)], where V η(f) is the cycle carried by the closure

2This statement is usually called the Thom-Damon theorem [33], [4].
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of the set
{x ∈ X : the singularity of f at x is η} . (2)

By codimension of a singularity η, codim(η), we shall mean codimX(V η(f))
for such an f . The concept of the polynomial T η comes from Thom’s fun-
damental paper [33]. For a detailed discussion of the existence of Thom
polynomials, see, e.g., [1]. Thom polynomials associated with group actions
were studied by Kazarian in [10], [11].

According to Mather’s classification, singularities are in one-to-one cor-
respondence with finite dimensional C-algebras. We shall use the following
notation:

– Ai (of Thom-Boardman type Σ1i) will stand for the stable germs with
local algebra C[[x]]/(xi+1), i ≥ 0;

– I2,2 (of Thom-Boardman type Σ2) for stable germs with local algebra
C[[x, y]]/(xy, x2 + y2) ;

– III2,2 (of Thom-Boardman type Σ2) for stable germs with local algebra
C[[x, y]]/(xy, x2, y2) (here k ≥ 1).

In the present article, the computations of Thom polynomials shall use
the method which stems from a sequence of papers by Rimanyi et al. [31],
[29], [30], [6], [2]. We sketch briefly this approach, refering the interested
reader for more details to these papers, the main references being the last
three mentioned items.

Let k ≥ 0 be a fixed integer, and let η : (C•, 0) → (C•+k, 0) be a stable
singularity with a prototype κ : (Cn, 0) → (Cn+k, 0). The maximal compact
subgroup of the right-left symmetry group

Aut κ = {(ϕ,ψ) ∈ Diff(Cn, 0) × Diff(Cn+k, 0) : ψ ◦ κ ◦ ϕ−1 = κ} (3)

of κ will be denoted by Gη . Even if Autκ is much too large to be a finite
dimensional Lie group, the concept of its maximal compact subgroup (up to
conjugacy) can be defined in a sensible way (cf. [9] and [34]). In fact, Gη can
be chosen so that the images of its projections to the factors Diff(Cn, 0) and
Diff(Cn+k, 0) are linear. Its representations via the projections on the source
Cn and the target Cn+k will be denoted by λ1(η) and λ2(η). The vector
bundles associated with the universal principal Gη-bundle EGη → BGη

using the representations λ1(η) and λ2(η) will be called E ′
η and Eη. The

total Chern class of the singularity η is defined in H ∗(BGη;Z) by

c(η) :=
c(Eη)

c(E′
η)
. (4)

The Euler class of η is defined in H2 codim(η)(BGη;Z) by

e(η) := e(E ′
η) . (5)
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Sometimes it will be convenient not to work with the whole maximal
compact subgroup Gη but with its suitable subgroup; this subgroup should
be, however, as “close” to Gη as possible (cf. [30], p. 502). We shall denote
this subgroup by the same symbol Gη.

In the following theorem we collect information from [30], Theorem 2.4
and [6], Theorem 3.5, needed for the calculations in the present paper.

Theorem 1 Suppose, for a singularity η, that the Euler classes of all sin-
gularities of smaller codimension than codim(η), are not zero-divisors 3.
Then we have
(i) if ξ 6= η and codim(ξ) ≤ codim(η), then T η(c(ξ)) = 0;
(ii) T η(c(η)) = e(η).
This system of equations (taken for all such ξ’s) determines the Thom poly-
nomial T η in a unique way.

To use this method of determining the Thom polynomials for singulari-
ties, one needs their classification, see, e.g., [5].

To effectively use Theorem 1 we need to study the maximal compact
subgroups of singularities. We recall the following recipe from [30] pp. 505–
507. Let η be a singularity whose prototype is κ : (Cn, 0) → (Cn+k, 0). The
germ κ is the miniversal unfolding of another germ β : (Cm, 0) → (Cm+k, 0)
with dβ = 0. The group Gη is a subgroup of the maximal compact subgroup
of the algebraic automorphism group of the local algebra Qη of η times the
unitary group U(k−d), where d is the difference between the minimal number
of relations and the number of generators of Qη. With β well chosen, Gη

acts as right-left symmetry group on β with representations µ1 and µ2. The
representations λ1 and λ2 are

λ1 = µ1 ⊕ µV and λ2 = µ2 ⊕ µV , (6)

where µV is the representation of Gη on the unfolding space V = Cn−m

given, for α ∈ V and (ϕ,ψ) ∈ Gη, by

(ϕ,ψ) α = ψ ◦ α ◦ ϕ−1 . (7)

For example, for the singularity of type Ai: (C•, 0) → (C•+k, 0), we have
GAi

= U(1) × U(k) with

µ1 = ρ1, µ2 = ρi+1
1 ⊕ ρk, µV = ⊕i

j=2 ρ
j
1 ⊕⊕i

j=1(ρk ⊗ ρ−1
1 ) , (8)

where ρj denotes the standard representation of the unitary group U(j).
Hence we obtain assertion (i) of the following

3This is the so-called “Euler condition” (loc.cit.).
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Proposition 2 (i) Let η = Ai; for any k, writing x and y1,. . . , yk for the
Chern roots of the universal bundles on BU(1) and BU(k),

c(Ai) =
1 + (i+ 1)x

1 + x

k
∏

j=1

(1 + yj) , (9)

e(Ai) = i! xi
k

∏

j=1

(ix− yj) · · · (2x− yj)(x− yj) . (10)

(ii) Let η = I2,2. Denote by H the extension of U(1)×U(1) by Z/2Z (“the
group generated by multiplication on the coordinates and their exchange”).
For k = 0 we have Gη = H. Hence, for the purpose of our computations
we can use Gη = U(1) × U(1). Writing x1, x2 for the Chern roots of the
universal bundles on two copies of BU(1),

c(I2,2) =
(1 + 2x1)(1 + 2x2)

(1 + x1)(1 + x2)
. (11)

(iii) Let η = III2,2; for k = 1, Gη = U(2), and writing x1, x2 for the Chern
roots of the universal bundles on BU(2), we have

c(III2,2) =
(1+2x1)(1+2x2)(1+x1+x2)

(1+x1)(1+x2)
. (12)

(Assertions (ii) and (iii) are obtained, in a standard way, following the in-
structions of [30], Sect. 4. Assertion (ii) is proved in [30, pp. 506–507],
whereas assertion (iii) stems from [2, p. 65].)

3 Recollections on Schur functions

In this section, we collect needed notions related to symmetric functions.
We adopt a functorial point of view of [16]. Namely, given a commutative
ring, we treat symmetric functions as operators acting on the ring. We shall
give here only a very brief summary of the corresponding material from our
previous paper [25].

For m ∈ N, by “an alphabet Am” we shall mean an alphabet A =
(a1, . . . , am) (of cardinalitym); ditto for Bn = (b1, . . . , bn), Yk = (y1, . . . , yk),
and X2 = (x1, x2).

Definition 3 Given two alphabets A, B, the complete functions Si(A−B)
are defined by the generating series (with z an extra variable):

∑

Si(A−B)zi =
∏

b∈B

(1−bz)/
∏

a∈A

(1−az) . (13)
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Convention 4 We shall often identify an alphabet A = {a1, . . . , am} with
the sum a1 + · · · + am and perform usual algebraic operations on such el-
ements. For example, Ab will denote the alphabet (a1b, . . . , amb). We will
give priority to the algebraic notation over the set-theoretic one.

Definition 5 Given a partition4 I = (0 ≤ i1 ≤ i2 ≤ . . . ≤ is) ∈ Ns, and
alphabets A and B, the Schur function SI(A−B) is

SI(A−B) :=
∣

∣

∣
Sip+p−q(A−B)

∣

∣

∣

1≤p,q≤s
. (14)

These functions are often called supersymmetric Schur functions or Schur
functions in difference of alphabets. Their properties were studied, among
others, in [3], [18], [23], [27], [19], [7], and [16]. From the last item, we borrow
a use of increasing “French” partitions and the determinant of the form
(14) evaluating a Schur function. We shall use the the simplified notation
i1i2 · · · is for a partition (i1, . . . , is).

We have the following cancellation property:

SI((A + C) − (B + C)) = SI(A − B) . (15)

We identify partitions with their Young diagrams, as is customary.
We record the following property (loc.cit.), justifying the notational re-

mark from the end of Section 2; for a partition I,

SI(A−B) = (−1)|I|SJ(B−A) = SJ(B∗−A
∗) , (16)

where J is the conjugate partition of I (i.e. the consecutive rows of J are
equal to the corresponding columns of I), and A

∗ denotes the alphabet
{−a1,−a2, . . .}.

Fix two positive integers m and n. We shall say that a partition I =
(0 < i1 ≤ i2 ≤ · · · ≤ is) is contained in the (m,n)-hook if either s ≤ m, or
s > m and is−m ≤ n. Pictorially, this means that the Young diagram of I
is contained in the “tickened” hook:

-�

6

?

n

m

We record the following vanishing property. Given alphabets A and B of
cardinalities m and n, if a partition I is not contained in the (m,n)-hook,
then (loc.cit.):

SI(A − B) = 0 . (17)

4We identify partitions with their Young diagrams, as is customary.
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In the present paper by a symmetric function, we shall mean a Z-linear
combination of the operators SI(−).

We shall use the following convention from [17].

Convention 6 We may need to specialize a letter to 4, but this must not
be confused with taking four copies of 1. To allow one, nevertheless, spe-
cializing a letter to an (integer, or even complex) number r inside a sym-
metric function, without introducing intermediate variables, we write r
for this specialization. Boxes have to be treated as single variables. For
example, Si(2) =

(i+1
2

)

but Si( 2 ) = 2i. A similar remark applies to
Z-linear combinations of variables. We have S2(X2) = x2

1+x1x2+x2
2 but

S2( x1+x2 ) = x2
1+2x1x2+x2

2.

Definition 7 Given two alphabets A,B, we define their resultant:

R(A,B) :=
∏

a∈A, b∈B

(a−b) . (18)

For example, Eq. (10) can be rewritten as

e(Ai) = R
(

x+ 2x + · · · + ix ,Yk + (i+1)x
)

.

We have (cf. [16])

R(Am,Bn) = S(nm)(A−B) =
∑

I

SI(A)S(nm)/I(−B) , (19)

where the sum is over all partitions I ⊂ (nm).
When a partition is contained in the (m,n)-hook and at the same time it

contains the rectangle (nm), then we have the following factorization prop-
erty (loc.cit.): for partitions I = (i1, . . . , im) and J = (j1, . . . , js),

S(j1,...,js,i1+n,...,im+n)(Am − Bn) = SI(A) R(A,B) SJ(−B) . (20)

Rather than the Chern classes

ci(f
∗TY − TX) = [f ∗c(TY )/c(TX)]i ,

we shall use Segre classes Si of the virtual bundle TX∗ − f∗(TY ∗), i.e.
complete symmetric functions Si(A − B) for the alphabets of the Chern
roots A,B of TX∗ and TY ∗.

In the present paper, it will be more handy to use, instead of k, a
“shifted” parameter

r := k + 1 . (21)
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Sometimes, we shall write η(r) for the singularity η : (C•, 0) → (C•+r−1, 0),
and denote the Thom polynomial of η(r) by T η

r – to emphasize the depen-
dence of both items on r.

Note that in our notation, the Thom polynomial for the singularity A1(r)
for r ≥ 1, is: T A1

r = Sr, instead of ck+1 as in the papers in the References.
In general, a Thom polynomial in terms of the ci’s (in those papers) will be
written here as a linear combination of Schur functions obtained by changing
each ci to Si and expanding in the Schur function basis. Another example
is the Thom polynomial for A2(1): c21 + c2 rewritten in our notation as
T A2

1 = S11 + 2S2.

Recall (from the Introduction) that the h-part of T Ai
r is the sum of all

Schur functions appearing nontrivially in T Ai
r (multiplied by their coeffi-

cients) such that the corresponding partitions satisfy the following condi-
tion: I contains the rectangle partition

(

(r+h−1)h
)

, but it does not contain
the larger Young diagram

(

(r+h)h+1
)

. The polynomial T Ai
r is a sum of its

h-parts, h = 1, 2, . . ..

4 Functions F (A,−) and F
(i)
r

We now pass to the following function F which will give rise to the 1-part

of T Ai
r , i.e. to the function F

(i)
r that will be studied in this section. Fix

positive integers m and n. For an alphabet A of cardinality m, we define

F (A,−) :=
∑

I

SI(A)Sn−im,...,n−i1,n+|I|(−) , (22)

where the sum is over partitions I = (i1 ≤ i2 ≤ · · · ≤ im ≤ n), i.e. over
I ⊂ (nm).

Lemma 8 For a variable x and an alphabet B of cardinality n,

F (A, x− B) = R(x+ Ax,B) . (23)

Proof. For a fixed partition I = (i1 ≤ i2 ≤ · · · ≤ im ≤ n), it follows from
the factorization property (20) that

Sn−im,...,n−i1,n+|I|(x− B) = S(nm)/I(−B) R(x,B) x|I| .

Hence, using SI(Ax) = SI(A)x|I|, Eq. (19) and Eq. (18), we have

F (A, x− B) =
∑

I

SI(A)S(nm)/I(−B) R(x,B) x|I|

=
∑

I

SI(Ax) S(nm)/I(−B) R(x,B)

= R(Ax,B) R(x,B) = R(x+ Ax,B) .
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The lemma has been proved. 2

The following function F
(i)
r will be basic for computing the Thom poly-

nomials for Ai (i ≥ 1). We set

F (i)
r (−) :=

∑

J

SJ( 2 + 3 + · · · + i )Sr−ji−1,...,r−j1,r+|J |(−) , (24)

where the sum is over partitions J ⊂ (ri−1), and for i = 1 we understand

F
(1)
r (−) = Sr(−).

Example 9 We have

F (2)
r =

∑

j≤r

Sj( 2 )Sr−j,r+j =
∑

j≤r

2jSr−j,r+j ;

F (3)
r =

∑

j1≤j2≤r

Sj1,j2( 2 + 3 )Sr−j2,r−j1,r+j1+j2 ;

in particular,

F
(3)
1 = S111 + 5S12 + 6S3

and
F

(3)
2 = S222 + 5S123 + 6S114 + 19S24 + 30S15 + 36S6;

F (4)
r =

∑

j1≤j2≤j3≤r

Sj1,j2,j3( 2 + 3 + 4 )Sr−j3,r−j2,r−j1,r+j1+j2+j3 ;

in particular,

F
(4)
1 = S1111 + 9S112 + 26S13 + 24S4

and

F
(4)
2 =S2222 + 9S1223 + 26S1124 + 24S1115 + 55S224 + 210S125 + 216S116

+ 391S26 + 555S17 + 507S8 ;

F
(i)
1 =

∑

j≤i−1

S1j ( 2 + 3 + · · · + i )S1i−j−1 ,j+1 .

In the following, we shall tacitly assume that x, x1, x2, and Br are
variables (though many results remain valid without this assumption).

The following result gives the key algebraic property of F
(i)
r .
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Proposition 10 We have

F (i)
r (x− Br) = R(x+ 2x + 3x + · · · + ix ,Br) . (25)

Proof. The assertion follows from Lemma 8 with m = i − 1, n = r, and
A = 2 + 3 + · · · + i . 2

Corollary 11 Fix an integer i ≥ 1.
(i) For an integer p ≤ i, we have

F (i)
r (x− Br−1 − px ) = 0 . (26)

(ii) Moreover, we have

F (i)
r (x−Br−1− (i+1)x ) = R(x+ 2x + 3x + · · ·+ ix ,Br−1+ (i+1)x ) . (27)

Proof. Substituting in Eq. (25):

Br = Br−1 + px

for p ≤ i, and, respectively,

Br = Br−1 + (i+1)x ,

we get the assertions. 2

5 Towards Thom polynomials for Ai(r)

In the following theorem, we shall consider maps f : X → Y with degenera-
cies.

Theorem 12 Suppose that Σj(f) = ∅ for j ≥ 2 5. Then, for any r ≥ 1, we
have

T Ai
r = F (i)

r . (28)

Proof. By the assumption Σj(f) = ∅ for j ≥ 2, the Euler condition (needed
in Theorem 1) is satisfied here for any i ≥ 0 and r ≥ 1. The equations
characterizing T Ai

r in the sense of Theorem 1 are, for p ≤ i,

P (x− Br−1 − px ) = 0 , (29)

and additionally

P (x−Br−1− (i+1)x ) = R(x+ 2x + 3x + · · ·+ ix ,Br−1+ (i+1)x ) . (30)

It follows from Corollary 11 that P = F
(i)
r satisfies these equations. The

theorem has been proved. 2

5This says that the kernel of the derivative map df : TX → f∗TY of f is a line bundle.
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Corollary 13 For any singularity Ai(r), the first part of its Thom polyno-

mial is equal to F
(i)
r .

In the special case r = 1, Porteous [21] gave an expression for the Thom
polynomial from the theorem in terms of the Chern monomial basis (see also
[15]).

The function F
(i)
r gives also Thom polynomials for A1, A2 (any r) for a

general map f : X → Y .

Theorem 14 ([33], [32]) The polynomials Sr and
∑

j≤r 2jSr−j,r+j are
Thom polynomials for the singularities A1(r) and A2(r).

Proof. Since only A0 has smaller codimension than A1, and only A0, A1 are
of smaller codimension than A2, the Euler conditions hold, and the equations
from Theorem 1 characterizing these Thom polynomials are:

P (−Br−1) = 0, P (x− Br−1 − 2x ) = R(x,Br−1+ 2x ) (31)

for A1, and

P (−Br−1) = P (x− Br−1 − 2x ) = 0,

P (x−Br−1 − 3x ) = R(x+ 2x ,Br−1+ 3x )
(32)

for A2. Hence the assertion follows from Corollary 11. 2

6 Two examples

In the present section, we show two (relatively simple) examples of Schur
function expansions of Thom polynomials for Ai, where two h-parts appear.
The method used will be applied in [26] to more complicated singularities.
Recall that the Thom polynomial T Ai

r is a sum of its h-parts, the 1-part

being F
(i)
r . To get the correct Thom polynomial, one must add to F

(i)
r the

h-parts of T Ai
r for h = 2, 3, . . ..

Let us discuss first A4 for r = 1 (its codimension is 4). Then the singu-
larities 6= A4, whose codimension is ≤ codim(A4) are: A0, A1, A2, A3, I2,2.
The Thom polynomial6 is

T A4

1 = S1111 + 9S112 + 26S13 + 24S4 + 10S22 . (33)

We have
F

(4)
1 = S1111 + 9S112 + 26S13 + 24S4 . (34)

6This Thom polynomial was originally computed by Gaffney in [8] via the desingu-
larization method. Its alternative derivation via solving equations imposed by the above
singularities was done by Rimanyi in [29]). Both authors used Chern monomial expan-
sions.
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By Corollary 11, this function satisfies the following equations imposed by
A0, A1, A2, A3, A4:

F
(4)
1 (0) = F

(4)
1 (x− 2x ) = F

(4)
1 (x− 3x ) = F

(4)
1 (x− 4x ) = 0 , (35)

F
(4)
1 (x− 5x ) = R(x+ 2x + 3x + 4x , 5x ) . (36)

However, F
(4)
1 does not satisfy the vanishing imposed by I2,2. Namely, we

have

F
(4)
1 (X2 − 2x1 − 2x2 ) = (−10)x1x2(x1 − 2x2)(x2 − 2x1) . (37)

To see this, invoke Proposition 10:

F
(4)
1 (x− B1) = R(x+ 2x + 3x + 4x ,B1) . (38)

Substituting to the LHS of Eq. (37) x1 = 0, we get by this proposition

F
(4)
1 (x2 − 2x2 ) = R(x2 + 2x2 + 3x2 + 4x2 , 2x2 ) = 0 ,

and substituting x1 = 2x2,

F
(4)
1 (x2 − 2x1 ) = R(x2 + 2x2 + 3x2 + 4x2 , 2x1 )

= R(x2 + 2x2 + 3x2 + 4x2 , 4x2 ) = 0 .

Therefore x1x2(x1 − 2x2)(x2 − 2x2) divides this LHS.
To compute the resulting factor we use the specialization x1 = x2 = 1.

We then have x1x2(x1 − 2x2)(x2 − 2x2) = 1, and S1111 = 28, S112 = −4,
S13 = −1, S4 = 1. Hence the factor is

F
(4)
1 = 1 · 28 + 9 · 4 + 26 · (−1) + 24 · 1 = −10 , (39)

and Eq. (37) is now proved.
On the other hand, the Schur function S22 satisfies Eqs. (35) and Eq. (36)

with its RHS replaced by zero:

S22(0) = S22(x− 2x ) = · · · = S22(x− 5x ) = 0

because the partition 22 is not contained in the (1, 1)-hook. Moreover, we
have

S22(X2 − 2x1 − 2x2 ) = R(X2, 2x1 + 2x2 ) = x1x2(x1 − 2x2)(x2 − 2x2) .
(40)

Combining Eq. (37) with Eq. (40), the desired expression (33) follows.
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We now pass to the second example: A3 and r = 2. The Thom polyno-
mial in this case was computed originally by Rimanyi [30]. We shall now give
its Schur function expansion. (It is easy to see that the Thom polynomial

for A3 and r = 1 is just equal to F
(3)
1 .)

Since the singularities 6= A3, whose codimension is ≤ codim(A3) are:
A0, A1, A2 and III2,2 (cf. [5]), Theorem 1 yields the following equations
characterizing T A3

2 , where b is a variable:

P (−b) = P (x− b− 2x ) = P (x− b− 3x ) = 0 , (41)

P (x− b− 4x ) = R(x+ 2x + 3x , b+ 4x ) (42)

P (X2 − D) = 0 . (43)

By Corollary 11, the first four equations are satisfied by the function F
(3)
2 .

However F
(3)
2 does not satisfy the last vanishing, imposed by III2,2. We

shall “modify” F
(3)
2 in order to obtain the Thom polynomial for A3(2).

We claim that this Thom polynomial is equal to

S222 + 5S123 + 6S114 + 19S24 + 30S15 + 36S6 + 5S33 , (44)

and it differs from its 1-part F
(3)
2 by 5S33 which is its 2-part. Indeed, arguing

similarly as in the previous example we have

F
(3)
2 (X2−D) = (−5)(x1x2)

2(x1−2x2)(x2−2x1) = R(X2,D) = S33(X2−D) .

On the other hand, the Schur function S33 satisfies Eqs. (41) and Eq. (42)
with its RHS replaced by zero:

S33(0) = S33(x− b− 2x ) = · · · = S33(x− b− 5x ) = 0

because the partition 33 is not contained in the (1, 2)-hook.
Moreover, we have

S33(X2 − D) = R(X2,D) = (x1x2)
2(x1 − 2x2)(x2 − 2x2) . (45)

Summing up, we get that the Thom polynomial for A3(2) has Schur
function expansion (44) indeed.

In [26] we shall give a parametric Schur function expansion of the Thom
polynomials for the singularities A3(r) with parameter r ≥ 1.

Remark 15 Let rank(T Ai
r ) be the largest h such that there exists a nontriv-

ial h-part in T Ai
r . By the results of the present paper we have rank(T Ai

r ) = 1
for i = 1, 2 and any r, rank(T A3

1 ) = 1, rank(T A3

2 ) = 2, and rank(T A4

1 ) = 2.
Moreover, it follows from [25] that rank(T A3

r ) = 2 for r ≥ 2, from [30] and
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[28] that rank(T A4

2 ) = 2, and from [20] that rank(T A4

r ) = 3 for r = 3, 4.
Since codim(Ai(r)) = ir, for i ≥ 2 and r ≥ 1 we clearly have

rank(T Ai
r ) ≤ i− 1.

This invariant (also for other singularities) will be discussed in a subsequent
paper.
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Note After the appearance of the first version [24] of the present paper, we
received a letter from Kazarian [12] informing us that he has found another
formula for T Ai

r in Theorem 12 (cf. [13]). His expression is a Z-linear com-
bination of monomials in Chern classes and involves some operators. The
procedure of [12] allows one to restore the Thom polynomial not uniquely
but modulo a certain ideal, whereas our expression does it in a unique way.
We stress that by virtue of the positivity conjecture (in 2005), it was our
goal to present T Ai

r as a positive combination of Schur functions with precise
algebraic expressions for the coefficients.
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