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One of the fundamental problems in the study of a concrete (closed) subscheme of a
given (smooth) scheme X is the computation of its fundamental class in terms of given
generators of the Chow ring of X.

The decisive role in the method described in the present paper plays the diagonal of the
ambient scheme or, more precisely, its class in the corresponding Chow group of a fibre
product.? As a matter of fact the class of a diagonal has already been used in intersection
theory to the computation of fundamental classes ([F2]). In the situation of loc.cit., there
is a vector bundle on the product of Flag bundles endowed with a section vanishing
precisely on the diagonal. The top Chern class of this bundle is represented by the so
called " top double Schubert polynomial” in the Chern roots of tautological vector bundles
on the two Flag bundles. By applying divided differences to this polynomial, the author
gets in loc.cit. polynomials representing the classes of other (i.e. higher dimensional)
degeneracy loci in the product of flag bundles. (This generalizes a classical procedure
discovered in the beginning of the seventies independently by Bernstein-Gelfand-Gelfand
and Demazure: starting from the class of the point and applying divided differences one
gets the class of a curve, then - the class of a surface etc.)

The procedure given below is of different nature. By using a desingularization of the
subscheme whose class we want to compute and the diagonal of the ambient scheme,
we replace the original problem by the one of computing the image of the class of the
diagonal under an appropriate Gysin map. Moreover, since not always the diagonal is
represented as the scheme of zeros of a section of a vector bundle (this seems to happen,
e.g., for Flag bundles for other classical groups than SL,), we give a recipe allowing to
calculate the class of the diagonal of the fibre product with the help of Gysin maps.

We illustrate a uselfulness of the latter result on the example of Lagrangian and
orthogonal Grassmannian and Flag bundles; the so obtained formulas are crucial for our
study of the classes of degeneracy loci in [P-R)].

The results of this preprint will appear as parts of two separate publications. Proposi-
tion 1 and Theorem 2 will be published in Section 5 of the paper: P. Pragacz, Symmetric
polynomials and divided differences in formulas of intersection theory; to appear in ”Pa-
rameter Spaces”, Banach Center Publications 36 (1996). Theorems 6 and 8 will be

1 The results of this paper have been obtained by the author during his recent stay at the Max-
Planck-Institut fiir Mathematik. The author gratefully thanks the MPIfM for a generous hospitality.

2 A discovery of this method is inspired by the construction used in the proof of the main formula in
the paper by G. Kempf and D. Laksov [K-L].
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published in the paper: P. Pragacz and J. Ratajski, Formulas for Lagrangian and or-
thogonal degeneracy loci; the Q) - polynomials approach; to appear in Compositio Math.
(1996).

The author thanks A. Lascoux and J.-Y. Thibon for valuable comments about @’-
and é—polynomials.

We start with some recollection on intersection theory (see [F1] for details). Recall
that if D C X is a (closed) subscheme then [D] € A.(X) is the class of the fundamental
cycle associated with D, ie., if D =D, U...U D, is a minimal decomposition into
irreducible components then

[D] = i, (length Op p,)[Dil,

where Op p; is the local ring of D along D;. Recall also that if f: X — Y is a proper
morphism then it induces a morphism of abelian groups f. : A,(X) — A,(Y) such
that f.[V] = deg(f[v)[f(V)] if dim f(V) = dimV and 0 - otherwise. In particular,
if f establishes a birational isomorphism of V and f(V) then f.[V] = [f(V)]. If X
and Y are nonsingular then a morphism f : X — Y induces a ring homomorphism
frAYY) o AY(X).

Let S be a smooth scheme (over a field) and let 7 : X — S be a smooth morphism of
schemes. Suppose that D C X is a (closed) subscheme whose class is to be computed.
Let p: Z — S be a proper smooth morphism and « : Z — D - a proper birational map
of S-schemes. Consider a commutative diagram:

A = X xgX

Tlxa

X x5 2 7z

—

P2
I
D o X — S

Here p; and pp are the projections, the section ¢ (of p2) equals id xg @ and A is the
diagonal in the fibre product X xg X.

Proposition 1. Suppose that the class of the diagonal A in A*(X x5 X) 13 [A] =
Stpri(zi) - pry(yi) where pri : X Xg X — X are the projections and z;,y; € A*(X).
Then, in A*(X),

[D] = ai- (x* po @ (mi).

.
1

Proof. By the assumption [D] = a.([Z]). Since o = pyo0, we have a.([Z]) = (p1)«[0(Z))].
Now, the key observation is that, in the scheme-theoretic sense, one has the equality
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o(Z) = (1 x a)7!(A). Since A = X is smooth, this implies [0(Z)] = (1 x a)*([A]) (see
Lemma 9 in [K-L]). We then have:

D] = (p1)+ (1(2)]) = (). (1 x )" ([A)))
=(MWW*ZMmmmm)

(Zpl “py(a’ yt)))
—Zmz' (P1)s Py (Ji))

- S p e

where the last equality follows from the above fibre product diagram and [F1, Proposition
1.7]. O

The next result shows how one can compute the fundamental class of the diagonal
[A] € A*(X x5 X).
Theorem 2. Let S be as above and m : X — S be a proper smooth morphism such that
n* makes A*(X) a free A*(S)-module; A*(X) = Baca AT (S)-aq, where ap € A" (X) and
A*(X) = ®peaA*(S)-bg, where bg € A™#(X). Suppose that for any o there 15 a unique
B = o such that ng+me = dim X~dim S and 7y (aa-bar) # 0 (assume m,(aq -bo ) = 1).
Moreover, denoting by pr; : X X, X = X (i = 1,2) the projections, suppose that the
homomorphism A*(X)® 4.5 AY(X) = A*(X x; X), defined by g@h r+ pri(g) - pri(h),
13 an 1somorphism. Then

(i) The class of the diagonal A in X x; X equals [A] = Ea,ﬂ dapta ® bg, where,
for any a,B, dap = Pag({mi(ax - br)}) for some polynomial Pop € Z{{z,2}].

(1) The following conditions are cquivalent:

a) One has m(aq - bg') = ba,p, the Kronecker delta.

b) The class of the diagonal A C X x; X equals [A] =>4 8 @by

Proof. Denote by § : X - X x, X, ¢’ : X = X x, X (the Cartesian product) the
diagonal embeddings and by 4 the morphism 7 x, 7 : X x; X — S. For ¢g,h € A*(X)
we have

m(g ) =7 ((#) (g x 1) =7 (8 (9@ ) = 7.4 (8" (g R)) = ([A] (98 1)),

where all the equalities follow from the theory in [F1, Chap.8|, taking into account, for
the second one, the commutative diagram

X xgX — X x X
AN

N\ g
~ /
X
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and, for the third one, the equality 7 = v 0 6. Hence, writing [A] = > du.b, ® a,, we
get

Te(aa - bg) = 7 ([A] - (e ®bg) = (7s @ 74) ( Z duvby @ ay) - (2o ® bﬂ))

(*) = dpyma(by - aa) - mlay - bp).

(i) By the assumption and (*) we get

(**) dap =mu(bor -ap) = D dumi(a, b)) m(b, - ag).
nFa,v#Ep

where the degree of d,,, € A*(S) such that m.(a, - bo') - mu(by, - ag) # 0 and p # « or
v # f3, is smaller than the degree of dyg. The assertion now follows by induction on the
degree of dag.

(ii) a) = b) : By virtue of a), Equation (**) now reads m,(by ' ag’) = dog and
immediately implies b).

b) = a} : Without loss of generality we can assume that A is endowed with a linear
ordering < compatible with codimension, i.e. 14, < Ngy, = a1 < @z, mg, < Mmg, =>
By < B2 and such that a; < a2 = «a) < ). The rows and columns of the matrices below
are ordered using the ordering <. Write 4,8 = m.(aq - bg). By virtue of b), Equation
(*) gives us the following system of equations:

Tof = E,u Toplu' s,

where a, 8 € A. Note that the antidiagonal of the matrix M := (zag)as,gea is indexed
by {(a,a’)|a € A}. The assumption implies that this antidiagonal consists of units.
Moreover, because of dimension reasons and the assumption again, we know that the
entries above the diagonal are zero. Let P be the permutation matrix corresponding to
the bijection a@ — a' of A. The above system of equations is rewritten in the matrix
form as:

MP =MP -MP.

Then MP as a (lower) triangular matrix with the units on the diagonal, must be the
identity matrix. Hence M = P~! and this implies a). O

Remark 3. A standard situation when the theorem can be applied is when 7 : X — §
is a Zariski locally trivial fibration and {aq}, {bg} restrict to bases of the Chow ring of
a fiber F which are dual under the Poincaré duality map : (a,b) = [ a-b.

Example 4. a) Let 7 : G = GYE) - X be the Grassmannian bundle parametrizing
g-quotients of of a vector bundle F of rank n on X. Write r = n — q. Let

0oR—oE;g—>Q—=0

be the tautological exact sequence of vector bundles on G. It is easy to see the diagonal in
G1 X x G2 , where G, = G2 = G, is given (in the scheme-theoretic sense) by the vanishing
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of the entries of a matrix of the homomorphism Rg, — Eg, = Eg, = Qg,. Hence, by
the theorem and a formula for the top Chern class of the tensor product (see [L]), we
have that 7, (s7(Q)- s3(RY)) = &1, for partitions I,J C (r)? *, where J is the partition
whose Ferrers’ diagram complements the one of J™ in the rectangle (¢)".* Equivalently,
T (s1(Q) - s(ryajs(=R)) = 61,5. This is coherent with a well-known description of the
Gysin map associated with .

b) Let now 7 : FI(E) - X be the Flag bundle parametrizing the complete flags of
(sub)bundles of E. In a similar way, using the calculation of the class of the diagonal
from [F2, Proposition 7.5] via the top Chern class of a suitable vector bundle, one reproves
the following equality from [L-S]. For permutations u,v € Sy,

T (GF(A) Guw(—@n, —Ca-1,... ,—a1)) = bpuy.

where &,(A) is the Schubert polynomial (see loc.cit. where this polynomial is denoted
by X,(A)) associated with the permutation y and the sequence of the Chern roots
A=(ay,...,an) of E.

We pass now to the situation where the diagonal seems not to be the zero subscheme
of a section of a vector bundle; we will investigate Lagrangian Grassmannian- and Flag
bundles parametrizing respectively top dimensional Lagrangian subspaces and flags of
Lagrangian subbundles of successive ranks 1,2,... ,n of a vector bundle V of rank 2n
endowed with a nondegenerate symplectic form. For what concerns the notation and
elementary properties of these schemes, we refer the reader to [P-R].

We need also from loc.cit. the Q-polynomials - a family of symmetric polynomials
invented and studied in loc.cit.. Let us recall briefly their definition and give a Pieri-
type theorem for them. For more about the properties of é-polynomia.ls, we refer the
reader to loc.cit..

Let X = (z1,22,...) be a sequence of independent variables. Denote by X, the sub-
sequence (z1,... ,zn). We set @;(X,,) to be the :-th elementary symmetric polynomial
e;(Xy,) in X,. Given two nonnegative integers i, j we define

j
Qi,;(Xn) = Qi(Xn)Q5(Xa) + 22(_1)in+p(Xn)Qj—p (Xn).
r=1
Finally, for any (i.e. not necessary strict) partition I = (¢4 =2 2 2 ... 2 i 2 0),
with even k (by putting 7 = 0 if necessary), we set Q1(X,) to be the Pfaffian of the
antisymmetric matrix with é,-p,,-q (X») on the (p,q)-place, 1 < p< g< k.
Invoking the raising operators R;; ([Mcd, L.1]) the above definition is rewritten

~ l—-R,'j

Qr(Xa) = H 1+ R;;

EI(X"J),

3 All the notions (as well as the notation) concerning partitions follow here [P-R].

4Given a vector bundle F and a partition [ = (3} 2 -+ 2 i 2 0), we denote by s;(F) the Schur
polynomsial equal to Det [3‘p“P+q(E)]1<p,q<k' where 3;(F) is the i-th complete symmetric polynomial
applied to the Chern roots of . i
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where e;(X,) is the product of the elementary symmetric polynomials in X,, associated
with the parts of I.

Lemma 5. Let I = (iy,...,1x) be a strict partition of length k. Then

Qr(Xn) - @r(Xn) =D 2mm NG (X,),

where the sum is over all partitions (i.e. not necessary strict) J O I such that |J| = |I|+r
and J/I is a horizontal strip. Moreover, m(I,r;J) = card{]l < p < k| jp41 < 1ip < Jp}
or, equivalently, it is ezpressed as the number of connected components of the strip J/1
not meeting the first column.

Proof. Let after [L-L-T], Q}(Xy; q) denote the Hall-Littlewood polynomial @;(Y; q) (see
[Mcd, III]) where the alphabet Y is equal to X,,/(1 — ¢) (in the sense of A-rings). Using
raising operators R;; ([Mcd, I.1]}, we have

Q1 (Xn;q) = [J(1 — qRij) ™ s1(Xn).

i<j
Specialize ¢ = —1 and invoke the well known Jacobi-Trudi formula (see, e.g., [Mcd, 1.3]):

3I(Xn) = H(l - Rii)hI(Xﬂ):

1<

where hj(X,) is the product of complete homogeneous polynomials in X, associated
with the parts of I. We have

1— Ry
Qr(Xm—-1) =] - +R} hi(X,).
i<j Y

Therefore, denoting by w the Young duality-involution we get é 1(Xa) = w(Q(Xn; —1)).
The required assertion now follows by an appropriate specialization of the Pieri-type
formula for Hall-Littlewood polynomials ([Mcd, II1.3.(3.8)]). O

We now state the following “orthogonality” theorem. Given a vector bundle E and a
partition I, we denote by @;FE the polynomial @(X,) with e;(X,) replaced by ¢;(E).

Theorem 6. For w: LG,V — X and any strict partitions I,J (C pn),
T (QIRY - QuRY) =61 5,y

Here, R is the tautological (sub)bundle on LG,V and § . is the Kronecker delta.

Proof. Let X, = (z1,-..,Z») be a sequence of variables. We know, after [P-R, Proposition
5.8]° that 7, is induced by the operator V = 05 7=7. . 1) : Z[X0] = Z[Xn).

5 A correction: the Chernroots ¢y, ... ,gn of RY should be replaced, in the formula of the proposition,
by the ones of R.
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We show that the operator V satisfies the following formula for any strict partitions
I,J (C pn): » "
v(Qr(Xy) Qu(XY)) = br,pn-

Observe that for the degree reasons V(é; - éj) =0 for [I| +|J| < n(n +1)/2 (here and
in the rest of the proof, @[ = éI(X,\:)) Also, because of the universality of the formula
for m. (see [loc.cit., Theorem 5.10}), we know by [loc.cit., Lemma 2.3] and Theorem 2
that for 7|+ |J| = n(n+ 1)/2, V(Qr- Q) = 0 unless J = pn I, when v(Qr-Qs)=1.

So it remains to show that for |I| + |J| > n(n +1)/2, v(Q; - QJ) = 0. The proof is by

double induction whose first parameter is /() and the second one is i; where | = ()
(i.e. the shortest part of I).

Assume first that 7 = (i) and use a Pieri-type formula from Lemma 5. A general
partition J' indexing the R.H.S of the formula in Lemma 5 stems from J by adding a
horizontal strip of length 7. Since |J| +¢ > n(n + 1)/2, the only possibility for getting

V(Qy) # 0 is the following one (use [loc.cit., Theorem 5.10]): there exist two equal
parts p in J' such that after factorizing Qp P from Qr ([loc.cit., Proposition 4.3]) we
obtain Qpn (recall that Qp p is a scalar wr.t. V). But I(J) <I(J)+ 1 <n+1, so after
factorization the length of the so-obtained partition is not greater than n — 1, i.e. this
partition is not p,.

To perform the induction step write I’ = (21,...,4;—1) and r = 1; where we assume
that [ = {(I) > 2. Using the Pieri-type formula again, we have:

Qr@s=(Qr-Q.)Q,=D_ 2" MQu)Qs = Qr(QrQr)—()_ 2" M Qu)-Q,

M M
=Qy - (E om(LriN) ) — (Z om(I' M) G300+ 0.
N M

Here M runs over all partitions different from I which contain I’ with M/I' being
a horizontal strip of length r. Observe that either {(M) < I(I) or (M) = I(I) but
my < 1; = r, so we can apply the induction assumption to M. The partitions M and N
can have equal parts; if so, using the factorization property, we write:

QM:Qm,m""'QPnPc'QMl and QN=Qq1,q1"--'Qqhq:'QNn

where M;, Ny are strict partitions and p; > ... > ps, ¢1 > ... > q; are positive integers.
Using the induction assumption or because of the degree reasons we see that the only
possibility to get in the first sum a summand (corresponding to N') which is not anihilated
by V is: after adding to J a horizontal strip of length r and factorizing all pairs of equal
rows, we obtain the partition N3 = p, \ I'. Similarly, the only possibility to get in the
second sum a summand (corresponding to M) which is not anihilated by ¥ is: after
adding to I’ a horizontal strip of length r and factorizing all pairs of equal rows, we
obtain the partition My, = p, N J.

Therefore to conclude the proof it is sufficient to define, for a fixed pair of strict
partitions I, J and fixed positive integers r and p. : py > ... > p,, a bijection between
the sets of partitions:
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N ={ N|N > J; N/Jis a horizontal strip of length r; N has exactly s parts occuring

twice, equal to p.; after subtraction from N the parts p. one obtains p,, \ I’}
and

M= { M | M D I'; M/I is a horizontal strip of length r; M has exactly s parts occuring
twice, equal to p.; after subtraction from M the parts p. one obtains p, \ J}
which preserves the cardinality of the connected components of the strip, not meeting

the first column (compare the Pieri-type formula used).

In order to define the bijection ® : A/ — M we first invoke the diagramatic presen-
tation of the p,-complementary partition from [P]: for example n = 9, I = (9,6,3,2),

po~ T =(8,7,5,4,1),

Fig.l

o O 0

o O 0 O

o 0 O © O

o 0 0 ©C e e

O O 0O © & & @
C 0O @& & & o & &
* ®© & & & & & & @

0

o o

(the collection of “e” gives the shifted diagram of I (appropriately placed); the collection

of “o” gives the shifted diagram of py ~ I). The map & : N = M is defined as

follows. Having an element N € A, i.e. a strict partition J with an added horizontal

strip of length r, eg. J = (9,6,3,2),r = 5,N = (9,8,3,3,2),s =1, p. : 3 ( and
I'=(7,6,5,4,3,1) ):

® ®
e o &®
e o o
Fig.2 ® o 0 0 0 0 B
e & o o o & ¢ o o

we remove the s bottom rows in all pairs of equal rows (in the example, the third row)

and place the shift of the so-obtained diagram as in Fig.1 to get the diagram ﬁ, say. In
our example we get the diagram in Fig.3 :

Fig.3 Fig.4

®®......
® ® & & & @ & o o
o o

© o o

o o o o

© o0 0 0

0O 00 O0@®®

0O 0o o0 @eee
@@ ® e o 0 o0
® & & & & & © o o
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(We know, by the definition of A, that if we would also remove from N the remaining
parts of lengths p. then the resulting partition will be p,, \ I’. We preserve these parts,
however, because we need them for the construction of ®(N).) Then we construct the
complement of the so-obtained diagram in p,. In our example, using “o” to visualize
the complementary diagram we get the diagram in Fig.4. By reshifting the so-obtained
complementary diagram plus the same horizontal strip (now added to this complementary
diagram) - call it ®(N),, and inserting s rows of lengths p., we get the needed partition
®(N). Observe that :

1) Since at the last stage we have inserted rows of lengths p., ®(N) consists of the
diagram I’ with an added horizontal strip of length r.

2) ®(N) has exactly s parts occuring twice, equal to p. (apart from the parts inserted at
the last stage, the remaining s parts are the rows whose the rightmost boxes are precisely
the lowest boxes of the rows of length p. in N).

3) After removing from ®(N) the 2s parts equal to p., we get p, \ J (this is the same
as the removing from ®(N), the s parts equal to p. - but ®(N), minus s parts equal to
p. complements precisely J in p,).

Therefore ®(N) € M. Also, the cardinality of the connected components of the strip
not meeting the first column is preserved by ®. In our example, we obtain

®
o ® @
0o 0o ©
0O 0 0 0
Fig.5 © 0o 0 0 0
O 0 0 0 0 0o &
0O 0 0 0 0 0 0o &

ie. ®(N)=(8,7,5,4,3,3,1).

Let us now define, by reversing the roles of J and I’, the map ¥ : M — N. If we
define, by a complete analogy to the above, the partitions M and ¥(M )y, then we have
N = ¥(M)o and ®(N)o = M; and clearly ¥ 0 ® = idy and ® o ¥ = ida.

This proves the orthogonality theorem. O

The theorem, combined with Theorem 2, gives a transparent proof of the key Propo-
sition 2.5 in [P-R).

Corollary 7. Let 7: LFI(V) = X be the flag bundle parametrizing flags of 1sotropic
subbundles of V of successive ranks 1,2,... ,n. Let A= (a;,...,a,) be the sequence of
the Chern roots of the tautological flag on LFI(V). Then for strict partitions I,J C p,
and p,v € S, one has

7 (@1(4) - @pons(A) - Bu(A) - Gru(=~an, —anos. o ya1)) = 61,5 Sy

Proof. The assertion follows from Theorem 6, the following factorization:

r: LFI(V) =5 LG,V - X,
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where w is the Flag bundle FI(R) — LG,V parametrizing complete flags of the tauto-
logical bundle R on LG,V , and Example 4 b). O

Similar results (and their proofs) hold for vector bundles endowed with orthogonal
forms. Set Pr(E) := 27'()Q[(E) for a vector bundle E and a partition I. Denote by
m: 0G,V — X (resp. OG,,)V — X and OGV — X) the Grassmannians parametrizing
isotropic subbundles of rank n of a bundle V of rank 2n 4 1 (resp. 2n) endowed with a
nondegenerate orthogonal form.® One has the following result.

Theorem 8. (i) For m : OG,V — X (dimV = 2n 4 1) and any strict partitions
1,7 (C pn), L
w(PIRY - ByRY) = 61, 1.

(11) For = : OG,V — X (resp. OG,)V — X ), and any strict partitions I, J (C pn—1),
m(PiRY - PyRY) = 81 po_\ -

Here, R is the tautological (sub)bundle on the corresponding orthogonal Grassmannian
and ¢, 13 the Kronecker delta.

An obvious analog of Corollary 7 is left, in this case, to the interested reader.
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