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Ricci Curvature modulo Homotopy

by Joachim Lohkamp

§1 Introduction

In this paper we want to present some results concerning metrics of negative Ricci
curvature.

We will give some outline of the used arguments and describe relations between
different approaches:

In §2 we will give a sketch of a simple existence proof for metrics with Ric < 0 on
arbitrary closed manifolds, which is also motivated from our second approach to the
subject presented in §3 and discussed in §6.

This second one, which was originally discovered before that in §2, starts from
the technical (but also philosophical) fact that negative Ricci and scalar curvature
is local in nature: There is a metric g, on IR" with Ric(gn) < 0 on B,(0) and
In = 9Eua. Outside for n < 3.

A proof of this is indicated in §4 and we will use this and certain covering arguments
to check several existence theorems for metrics with Ric < 0 or § < 0 on arbitrary
manifolds.

Furthermore this method is strong enough to provide a framework for handling
problems like the structure of spaces of metrics with restricted curvature properties
and density results (cf. §3 and 5).

Finally we reformulate this using the language of h-principles in §6, which will
partially motivate the approach of §2 as mentioned above.

§2  Existence of negatively curved metrics

Thurston theory [T] implies that each closed three manifold M?® contains a link
L C M such that there are metrics gy, go with (M \ L, g1) is complete and hyperbolic
with finite volume resp. (M, g1) is a hyperbo- lic orbifold branched along L. Each
of these results can be used to prove the existence of a regular metric with Ric < 0
on M:

L.Z. Gao and S.T. Yau [GY] "closed” (M\ L, g1) such that the resulting Riemannian
manifold is M with a metric g with g = g, on M\ U,U > L a tubular neighborhood,
and Ric(g) < 0 on M. R. Brooks started in [B] from (M, g2) and smoothed the



singularities near L to get a metric g with g =g, on M\ U,U D L and Ric(g) < 0
on M.

It is unclear whether each manifold M™ n > 4 or non-compact M2 can admit a
similar hyperbolic structures. Due to this lack the results were not extended to a
broader class of manifolds.

On the other hand there are not really needed hyperbolic structure to get:
Theorem 2.1: Fach manifold M™,n > 3 admits a complete metric with Ric < 0.

This is done for closed M (the open case can be obtained by simpler approaches,
see below) starting from one of the following two results:

Theorem 2.2: Each open manifold admits a metric with negative sectional curve-
ture

cf. [Grl] or alternatively we can use cf. [L6] resp. Theorem (3.5.) below
Theorem 2.3: Fach open manifold admits a complete metric with Ric < 0.

Sketch of proof of (2.1.): Noting the last result (which proof is much simpler than
those of the other results presented in §3) we can restrict our attention to closed
M"n >4

We start with the following remark: Let B C M™ be a ball then B contains a closed
submanifold N*~? which admits a metric with Ric < 0 and which normal bundle
is trivial. This is easily done in case n = 4 using the embedding of a hyperbolic
surface in IR C IR'.

In dimension 5 we can use a result of Hirsch [H]: Each orientable closed three-
manifold (in particular hyperbolic ones) admits an embedding with trivial normal
bundle into IRS.

In higher dimensions we can use induction: S*~2,n > 6 admits a metric with Ric < 0
and we take the usual embedding S"~% — IR""! C IR"

Of course these metrics are not induced metrics coming from the embedding.

Now acc. (2.2.) resp. (2.3.) we have a metric with Ric < 0 on the open manifold
M \ N. Using conformal and warped product deformations we can get a warped
product metric on a tubular neighborhood U of N with U\ N =]0,r[xS! x N
equipped with gr + F? - gs: + gn for some strongly increasing F € C*([R, IR>°).
(10,7[x S, gr+ F*-gs:1) looks similar like the spreading open end of the pseudosphere
and we would be done if it was possible to "close”this with a metric with Gauf-
curvature k < 0. But this is impossible by Gaufi-Bonnet.
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On the other hand we are given the additional factor (N, gy) and this can be used
to avoid this problem: We can take a singular metric g,iny, With & < 0 on the disk
D such that the metric near the boundary looks like (J0,7[) x S, gr+ F?2 - gs:) with
{0} x §* = 8D(!). Now we can use Ric(gn) < 0 to smooth the singularities of gying.
getting a warped product metric with Ric < 0 on D x N and glue it to M\U. Thus
we have closed M again and it is equipped with a metric with Ric < 0. Details and
extensions are described in [L6)]. O

§3 A Different Approach

In this chapter we start to describe a completely different and new method of attack.
It turns out that this approach yields significantly stronger results and a deeper
insight into the behaviour of such metrics in a natural way. An interesting feature
is that (in conclusion, cf. §6 below) it also motivates the weaker approach of the
previous chapter.

Let us begin with summarizing the results obtained in this way:

I General Existence Theorems

Theorem 3.1: Each manifold M™, n > 3 admits a complete metric gy with
—a(n) < 7{gm) < —b(n) ,

for some constants a{n) > b(n) > 0 depending only on the dimension n.

Corollary 3.2: Each manifold M™,n > 3 admits a complete metric with constant
negative scalar curvaeture.

(3.2.) was proved before by T. Aubin [A] and J. Bland, M. Kalka [BK] in a different
more analytic way.

The next result is motivated from S. T. Yau’s theorem [Y] that each complete, non-
compact manifold with Ric > 0 has infinite volume: we get the following alternative
version of (3.1.):

Theorem 3.3: Each manifold M™, n > 3 admits a complete metric g, with r(g),) <
~1 and Vol(M", g),) < +0

(3.1.)-(3.3.) are proved in [L4] (cf. also [L1]).
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II Refined Existence Results

As a matter of fact closed manifolds of negative curvature cannot be embedded with
“small” codimension e.g. as hypersurfaces in Euclidean spaces. But we can find a
constant ¢(n) such that (for p.i. = proper and isometric):

Theorem 3.4: Let (M™, go),n > 3 be p.i. embedded into (N, g) and codim > c¢(n)
then there is a metric g, on M™ with Ric(g,) < 0 and a p.i. embedding of (M, g1)
into (N, g) which is isotopic to the embedding on (M, go) by p.i. embeddings and the
isotopy (and g, ) can be chosen lying inside any prescribed neighborhood of (M, g3)).
The same conclusions hold for immersions instead of embeddings.

Despite the fact that (3.4.) is proved in [L7] without return to Nash’s isometric
imbedding theory, this does not make to much sense without further knowledge of
¢(n): Indeed one can show that the codimension is of lower order than in Nash’s
general theory. (For some characterizations of ¢(n} cf. [L7].)

Our next result (cf. [L6)]) is simpler than (3.1.) or (3.3.). On the other hand it
contains some new information in the non compact case.

Theorem 3.5: Let (M™, go) be an open manifold, then there is a complete metric
g = €2/ - gy in the conformal class of gy with Ric(g) < 0

(Due to non-existence results for the Yamabe problem this cannot be refined to give
pinched Ricci or just scalar curvature.)

Up to now we have seen that there are no topological restrictions for the existence
of metric with Ric < 0. But a classical result of Bochner says: If (M, g) is closed,
Ric(g) < 0 then Isom(M, g) is finite.

This is a geometric obstruction, but the only one (cf. [L4]):

Theorem 3.6: Let M™, n > 3 be closed, G C Dif f(M) a subgroup, then:
G = Isom(M, g) for some metric g with Ric(g) < 0 <= G 1is finite.

It is quite easy to prove the same for surfaces M? with x(M) < 0.

III Flexibility Results
In this section‘we present results which play a central technical role.
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Theorem 3.7: For (M™,g0),n > 3, let S C M be a closed subset and U O S an
open neighborhood, and Ric(gy) £ 0 on U, then there is a metric g, on M with

(i) n=goon§
(ii) Ric(g)) <0 M\ S

As a simple application we get

Corollary 3.8: Let M™,n > 3 be compact with boundary B # 0 and gy any fized
metric on B, then there is a metric g on M with g = gy on B, Ric(g) < 0 on M
and each component of B is totally geodesic w.r.t. g.

The next theorem is the philosophical core of this approach and does make clear that
similar arguments can not work for positive curvatures due to the positive energy
theorem which implies non-existence of a metric looking like the one described now
in the positive case:

Theorem 3.9: On IR",n > 3 there is a metric g, with Ric(g,) < 0 on B,(0) and
gn = GEual. Outside.

Perhaps it is interesting to note that for each ¢ > 0 we can find a concrete metric
gn as in (3.9.) with Vol(B1(0),gn) < € which is also included in {3.12.) below. For
proofs cf. [L4).

IV Spaces of metrics

Due to results of Hitchin, Gromov, Lawson and Carr (c¢f. [LM]) we know that the
space of metrics with positive scalar curvature on a closed manifold M S™(M) can
be quite complicated:

S*(M) can be empty or m;(ST(M)) # 0.

There are no similar problems in the negative case: More generally denote by
Ric<®(M) the space of metrics g with 7(g) < a on M,a € IR. (S<* is defined
analogously)

Theorem 3.10: Ric<*(M) and S<*(M) are non-empty, non-convezr but contrac-
tible Fréchet-manifolds.
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And as an application we get using some elementary elliptic theory:

Corollary 3.11: The space of metrics of constant negative scalar curvature is con-
tractible

Next recall from Bishop’s comparison theorem that Ric”>*(M) cannot be dense in
the space of all metrics M(M) w.r.t. C%-topology: the CP~closure in M(M) is just
Ricz*(M). On the other hand Confarned i

Theorem 3.12: Ric<*(M),5<* are C%-dense in M(M) for each o € IR
Furthermore we have using some more analytic effort if gg is non—flat:

Theorem 3.13: Let (M", ga),n > 3 be Ricci flat resp. scalar flat, then go can be
approzimated by metrics in Ric<°(M)resp. S<°(M) w.r.t. C*-norms.

For proofs we refer to [L2], [L3] and [L3].

V On the proofs

The main ingredients for the proof of the results above are: the existence of a metric
gn in [R™,n > 3 with Ric(g,) < 0 on B1(0) and gn = ggu. Outside and a covering
arguments for arbitrary manifolds giving a "compatible” covering by negatively Ricci
curved balls like (B;(0), gn), which yields metrics with Ric < 0 on each manifold of
dimension > 3. We describe some details in the following two chapters.

8§84 Producing negative curvature

Roughly speaking the existence results of the previous chapter are obtained from
a suitable series of local deformations of some nearly arbitrary start metric. These
deformations turn the metric inside a ball into a (stronger) negatively Ricci curved
one and let it fixed outside.

The first step consists in constructing this local deformation in the flat case:

Proposition 4.1: On IR™ n > 3 there is a metric g, with r(g;) < 0 on B,(0) and
gn = Gpuq. Outside.



Our (sketch of) proof will present the simplest but not the most powerful construc-
tion. The latter ones are needed to prove the results concerning the various spaces
of metrics of §3, IV and we refer to [L4], [L3] (and [L5]) for these refined versions.

Proof: We start in dimension n = 3: It is simple to find a positive C®—function f
on IR with f = id on [R>! which is symmetric in § €]0, 1, i.e. f{r) = f(26—r) and
fulfills Ric(gm + f2- gs3) <0 on |26 —1,1[x 52

Now consider instead of the Euclidean metric the metric gr+ f2- gss on IR3\ Bs(0):
it does have two symmetries. A first one under reflections Rg along planes £ C IR?
with 0 € F and a second "imaginary” one along 8Bs{0) coming from the symmetry
of f in §, in particular 8B4(0) is totally geodesic. Now choose one plane E and
consider the quotient space of IR® \ Bs(0) under identification along 8Bs(0) via
Rgp. This is “canonically” attached with the differentiable structure of IR? (acc.
Milnor’s “smoothing of corners”) and the metric on this /R® is smooth outside the
geodesic curve v corresponding to 8 Bs(0)NE, has Ric < 0 on B,(0) and is Euclidean
outside.

The singularity along 7 can be smoothed (with Ric < 0) using warped product
techniques giving a regular metric g; as claimed.

The case n > 4 can be handled in the same way as described in §2 : We choose
a codim 2 submanifold ¥V C IR™ with trivial normal bundle and which admits a
metric with Ric < 0. Next we bend [R" \ N “outwards” giving Ric < O on B\ N
for some ball B C IR™ and subsequently we use the same method as in §2 to close
IR™ again and obtain the desired metric g, O

Now we will give some ideas of how to derive the following result which pfoof is
typical for many results of §3.

Proposition 4.2: Each manifold M™,n > 3 admits a complete metric gy with
—a(n) < r(gm) < —b(n) for constants a(n) > b(n) > 0 depending only on n.

Proof: It is almost trivial to get a metric on M such that exp, : Bo(0) —
exp,(B1oo(0)) is a diffeomorphism which is arbitrarily near w.r.t. C*-norms to an
isometry independent of p € M.

Indeed we presently assume M = ([R", ggy..)-

Consider a covering of IR™ by closed balls Bs(p;), p; € A C IR™ fulfilling the following
conditions:

(i) d(p.q) >3 forp# ge A
(i) #{p € A| z € Byo(p)} £ ¢(n),c(n) independent of z € IR™.

and define g(A,d, s) := [] exp(2- Fa, - (10 — d(p,id))) - ga

peEA

with g4 = ggua. on IR™\ UA Bi(p), 94 = f3(g;) on Bi(p) for fp(z) =z —p.
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Furthermore Fy, := s - exp(—d/idg), h € C*(IR,[0,1]),h =0 on IR2%6 h =1 on
IRS94,

One can find d, s > 0 such that —a < 7(g(A, d, s)) < —b is fulfilled in each point of
IR™ and each direction for constants ¢ > & > 0.

As noted above we can find a nearly flat metric g(M) on each manifold, furthermore
we can construct a covering fulfilling the same conditions on each of these manifolds
(a “Besicovitch covering”).

It is not hard to visualize that (almost) the same d, s > 0 and pinching constants
a > b > Ocan be obtained for the Ricci curvature of an analogously defined metric
g(A,d, s) on an arbitrary manifold starting from g(M). »

§5  Spaces of Metrics

The covering argument in §4 can be used to produce as many negative curvature
as is necessary to “hide” each metric of some compact family of metrics behind a
"veil” of negative Ricci curvature. Acc. results of Palais and Whitehead (cf. [P])
contractibility of a Fréchet-manifold F' and 7;(F) = 0,7 = 0,1, are equivalent.
Thus if we want to show contractibility we will try to extend each continuous map
f: 8§ — Ric<*(M) resp. S<*(M)

Hence we start with some extension F' : B™! — M(M) and then we shift into
Ric<*(M) resp. S<*(M) by simultaneous producing of negative Ricci resp. scalar
curvature on all of the Riemannian manifolds (M, F(z)),z € B™*.

In the case of scalar curvature this can be done using a more classical approach {cf.
[L2]) without usage of those methods of §4. It should give some good impression of
the more sophisticated case Ric<*(M), therefore we will include a short sketch of
that transparent argument:

Proposition 5.1: S<%(M) is contractible.

Proof: We will show that S<°(M) is path connected, m;(S<°(M)) =0 fori > 0 is
obtained analogously. ‘

Note that M™ and M™#S™ are diffeomorphic and take metric g1, g2 € S<°(M) and
g~ € §<O(8™).

Now for each pair A, 4 > 0 the connected sum M™#S™ can be formed such that the
resulting Riemannian manifold M(A, g, ¢;) is isometric to

(M™\ Bi(p), A*-gi)U(] =1, 1[xS™1, g(A, ,4))U(S™\ B1(g), 4?9~ ) forp € M, g € S™
fixed points, i = 1,2, ‘

“such that the “neck” | —1,1[{xS™"! connecting the two main points does have boun-
ded integral scalar curvature S, := [ S,dVol, independent of A, & and i.

8



Hence if we choose a large A or 4 then Sy, ) < 0. This is due to the simple fact
sz.g = mn—2 * Sg-

Thus start with (M, g;) and scale it by a large A. Next take the linear path from
(M™ A% . g)) to M(),u) for some u. If A was large enough all metrics along this
path have § < 0.

Now take a very large & and take the path M(A, (¢ 2+ (1 —1¢))  u-g1) (all these
metrics have § < 0).

Next connect ¢; and g, linearly (!), if & is large enough all Riemannian manifolds
M\ g, t-g1+ (1 —1t)-gg) will have § < 0.

Finally we works backwards for g, and obtain a path of metrics connecting g, and
g2 such that each term has § < 0.

Now we can find a continuous family of conformal deformations of these metrics
which yields a path inside of S<°(M). Details cf. [L2]. m]

Finally we will easily see that these spaces of metrics are " highly” non—convex. For
notational simplicity we restrict to S<O(M).

Lemma 5.2: For any g € S<%(M) and each ball B C M there is a diffeomorphism
o with p=id on M\ B and t-g+ (1 —t) ¢*(g) &€ S(M) for some t €]0,1].

Proof: Using scaling arguments it is enough to obtain a diffeomorphism ¢ : IR" —
IR™ with ¢ =1d on IR™\ B}(0) and ¢ ggya. + (1 ~ £)0*{(9Eua) & SSP(IR™) for some
t €]0,1[.

We take p with (¢, z) = (f(¢),z),(t,z) € R* x S*~! = [R"\ {0} for some diffeo-
morphism f : [R* — IR* with f = id on ]0, 5[U]3, +ool and f zd+i— onlg, &l
Now it is not hard to check using warped product formulas: 1 - grua. + 39" (9e )

SSO(IR™).

§6  h—principles

Here we want to describe some relations of those results presented in §3 and “homo-

topy principles” (abbr. h-principles) a concept first introduced in a broader context
by M. Gromov cf. [Grl], [Gr2].

We start with some definitions: Let 7 : X — M be a smooth fibration f over some
manifold M and denote be X* the space of x-jets of germs of smooth sections of 7
(z° = X) and the induced fibration over M by 7., 7, : X® — M.

A section ¢ of 7. is called holonomic if there is a section f of # which k—jet is .
A differential relation 7R of order x imposed on sections of 7 is just a subset R € X~
and a section f of 7 is called solution of R if its x-jet lies on R.




Finally let 7., denote the canonical projection 7xm : X* — X™ for 0 < m < &,
hence a holonomic section ¢ lying in R projects to a solution m, () of R.

The concept of h—principles relies on the (idea of) solving strategy to construct first
a (possibly non holonomic) section of X" lying in R and then to pass (inside of R)
to a holonomic one: denote by SolR the set of all solutions of R, C(R) the space
of all sections of X* lying in R and by J : SolR — C(R) the map Jc(p) = x—jet
of .

Definition 6.1: R fulfills the

(i) parametric h—-principle if J. is a weak homotopy equivalence.

(ii) h-principle for extension if for each subset K C M and each triple of open
neighborhoods K c Uy € Uy... C Us C M and each section wo € C(R N
71 (Us)) which is holonomic on U, there is a homotopy v; € C(RN 7~} (Us)),
t € [0,1] with g1 = g on U and p; holonomic on Us.

Definition 6.2: R satisfies the

(i) the h-principle C™-near a section f of m, m < r, if for each gy € C(R) with
Teo{wo) = f and each neighborhood U of f there is a homotopy ¢4, t € [0, 1]
with ¢ lying in RN 7w },(U ) such that ¢, is a holonomic section.

(ii) the C™-dense h—principle if it fulfills the h—principle is C™-near each section
of .

Now we specify X = the bundle of pointwise positive definite symmetric (2,0)
tensors and we consider differential relations ® C X? which simply restricts the
curvature of a section of 7 : X — M (which is just a metric), e.g.

R = {p € X?| Ric(p) <0} = Ric < 0.

Next we want to relate {(6.1.) and (6.2.) with those results of §3 concerning SolR.
Therefore we must have a look at C(R) and check the following simple result {cf.
also [Gr2], (4.5.1.)):

Lemma 6.3: The fibers of the fibrations Sec < a,Ric < a and S < « are non-
empty and contractible. The same holds in case “> a”.
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Proof: We have to show contractibility for the space of 2-jets of germs of metrics
near 0 € IR™ with Sec < « etc.

These curvature relations contain the first two derivatives of the metric. Now there
are two easily verified features:

For each 1-jet ¢, of metrics there is 2-jet @, with 72 1(p2) = ¢, and Sec(yp;) < a
etc., secondly the curvature depends linearly on the second derivatives.

This implies the fiber over each 1-jet ¢, is non-empty and convex, furthermore the
space of all 1-jets is contractible, hence the whole space is contractible. a

It a well-known results from elementary obstruction theory that fibrations with
contractible fibers always have a section and the space of sections is also (weakly)
contractible.

Corollary 6.4: C(Sec < a) etc. are (weakly) contractible

Hence we can reformulate (3.10.) (and (3.7.)) and with some additional but straight-
forward considerations (3.12.) and (3.13.) as

Theorem 6.5: On each manifold M™,n > 3 the differential relations Ric < ¢ and
S < a, fulfill the parametric and the C®~dense h-principle. Furthermore they fulfill
the h-principle of eztension and they are C*-dense near each Ricci flat resp. scalar
flat metric.

In contrast to (6.5.) we have a “converse” approach due to Gromov, cf. [Grl], [Gr2],
which starts from topology and arrives at geometry:

Theorem 6.8: Each open, diffeomorphism invariant differtial relation R on an
open meanifold fulfills the parametric h—principle.

It is obvious that Sec < a etc. are open and diffeomorphism invariant. Hence we
obtain from (6.3.):

Corollary 6.7: Sec < a resp. > « etc. fulfill the parametric h-principle on each
open manifolds and in particular each open manifold carries a meiric with Sec < a
as well as one with Sec > a.

Thus we are led to two (seemingly) opposite points of view :

(6.7.) is obtained from a general topological argument namely the h-principle for
open manifolds (6.6.). :

On the other hand (6.5.) is proved by geometric (and analytic) techniques and does
not rely on A-principles but imply them.
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Thus there arises the question concerning the purely geometric status of Ric < 0:

For instance the existence of a metric with Ric < 0 on a closed manifold should be
provable from some differential topological arguments resp. formal properties of the
inequality Ric < 0 substituting (at least some of) the concrete dlfferentlal geometry
contained e.g. in the approach described in §4.

This cannot work perfectly since Ric > G which at first sight should fulfill similar

formal conditions behaves completely different on closed and on open manifolds,
cf.(6.7).

But if one takes into account at least some geometric interpretation of Ric < 0 one
immediately gets approaches as in §2:

Here we made use of the possibility to bend (cf. [L6]) negative Ricci curvature
metrics, which turns out to be a non-trivial geometric property of Ric < 0.
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Metrics of Negative Ricci Curvature
by Joachim Lohkamp

0. Introduction

One of the most natural and important questions in Riemannian geometry is to des-
cribe the relation between curvature and global structure of the underlying manifold.
For instance complete manifolds of negative sectional curvature always are aspherical
and in the compact case their fundamental group can only contain abelian subgroup
which are infinite cyclic. Furthermore there was a general feeling that a (closed) ma-
nifold can not carry two metrics of different signed curvatures.

This is true for sectional curvature, but wrong for the scalar curvature S, since each
manifold M™ n > 3 admits a complete metric with § = —1, ¢f. Aubin [A] and Bland,
Kalka [BIK].

Hence the situation for Ricci curvature Ric, lying between sectional and scalar curva-
ture, seemed to be quite delicate.

Up to now the most general results concerning Ric < 0 were proved by Gao, Yau [GY]
and Brooks [Br] using Thurston’s theory of hyperbolic three manifolds:

Each closed three manifold admits a metric with Ric < 0. This obtained from the fact
that these manifolds carry hyperbolic metrics with certain singularities and Gao, Yau
resp. Brooks smoothed these singularities, to get a regular metric with Ric < 0. These
methods extend to three manifold of finite type and certain hyperbolic orbifolds.

In any case, the arguments start from an "almost regular " hyperbolic metric, which
existence is neither obvious nor true in general (in the non-compact or higher dimen-
sional case). Moreover this approach does not give any insight in the typical behaviour
of metrics with Ric < 0 since one is led to a very special metric.

In this article we approach negative Ricci curvature in a completely different and
conceptually new way which seems to be a more natural one which will be made
precise in [L2).



Actually we will prove the following results; in these notes where Ric(g) resp. r(g)
denotes the Ricci tensor resp. curvature of a smooth metric g:

Theorem A For each manifold M™, n > 3, there is a complete metric gpr with
—a(n) < r{gy) < =b(n), with constants a(n) > b(n) > 0 depending only on the
dimension n.

From this one gets almost immediately.

Corollary B Fach manifold M™, n > 3 admits a complete metric unth constant
negative scalar curvature.

This Corollary was proved before in a different way by Aubin [A] resp. Bland and
Kalka [BIK].

There is an interesting alternative general existence result to Theorem A : Recall from
Yau [Y] that each compiete manifold with non-negative Ricci curvature has infinite
volume:

Theorem C For each manifold M™, n > 3 there is a complete metric g,, with negative
Ricci curvatures (indeed with t(g,;) < ~1) and finite volume Vol(M, g),) < -+0o0.

Theorem A resp. C tells us that there are no topological obstructions for negative
Ricci curvature metrics. On the other hand a well-known result of Bochner (cf. [Ko])
asserts that the isometry group of a closed manifold with 7(g) < 0 is finite. We will
prove that this is the only ”geometric obstruction ":

Theorem D Let M™, n > 3 be a closed manifold, G C Diff(M) a subgroup, then:
G =Isom(M,g) for some metric g with r(g)<0 & G s finite

Next we turn to a cut-off or extension property which also extends Theorem C:

Theorem E Let S C M™ be a closed subset of a manifold M*,n >3 and U O §
an open neighborhood, gy any metric on U with 7(go) < 0 (resp. < 0), then there is a
metric g on M such that:

(i) g=go on S,
(i) r(g) < =1 on M\ U
(1) r(g) < 0 (resp. <0)on M

(iv) A" Vol(W, g) < Vol(W, go) £ An - Vol(W, g)
for each measurable subset W of M and a constant A, > 1 depending only on n.



As a simple application we get:

Corollary F Let be M", n > 3 a compact manifold with boundary OM # @ and gy any
fized metric on M, then there is a metric g on M with:

(i) 9= go on OM
(i) r(g) < 0 on M

(#4i) each component of OM is totally geodesic

The paper is organized as follows: after some preliminaries in §1, we will construct and
investigate deformations of foliations in §2. In §3 we prove the existence of metric g,
on [R™ with r(g;) < 0 on B1(0) and g;; = ggua. {(Euclidean metric) outside for n = 3.
In §4 and 5 we assume the existence of g, for [R*, n > 3 and deduce the other results
quoted above for n-dimensional manifolds. In §6 we get g, on [R*! using Theorem
E for n dimensions i.e. the proof is by induction. Finally we collect some elementary
technical results in an appendix.

Most of these results were announced in [L1].

There is also mentioned a result on the space of all metrics with r(g) < 0. Recently
the author proved much stronger results on this space of metric, they will appear in
[L2]. For another approach to the space of negative scalar curvature metrics cf. [L3].

1. Basic Deformations

In this chapter we perform some preliminary calculations and recall some useful defor-
mation techniques.

We start with warped products: Let (M™, gay) and (N™,gny) be two Riemannian
manifolds and f € C*® (M™, IR>%), then M x; N denotes the product manifold
M x N equipped with the metric g(f) := gm + f%- gv. The Ricci tensor Ric(g(f))
of g(f) is calculated as follows (cf. [B], 9.106.): (note that our sign convention for
A, Agy = trg, Hess,,, differs from [B])

Ric(g(f))(U, V) = Ric(gn)(U, V) = gn(U, V) [(é_.szjgl_’ sl VfJZ ||2) . W]



. Hessg,, f(dn(X),dn(Y))

Ric{g(f)(X,Y) = Ric(gn)(dn(X),dr(Y)) — 7

Ric(g(f))(U,X) =10

where U,V denote vertical vectors, X,Y are horizontal vectors and 7 is the canonical
projection onto M.

We will also make use of conformal deformations: Let (M™*! g} be a Riemannian
manifold of dimension m +1 > 3 and f € C=(M, R). We are interested in gf = €*/ - g
and its related operators Hessy,, A, and of course Ric(gy) : Again (and for the last
time) we cite from literature ([B], 1.J.): Let be F € C=(M, IR) and v € T,M then:

Hess, F(v,v) = HessgF(v,v) ~2-df(v) - dF(v) + df (VIF) - g(v,v)
Ay F=try Hessy F = e (AGF +(m —=1)-g(V9f, VIF))

Now let be r{g;)(v) =|| v ||~ - Ric(gs)(v, v) for v # 0 the Ricci curvature in direction
v,for some v with || v ||;= 1 then:

#or(gn)(v) = r(@)w) = (m = D)(| df(0) [P = | VIFII}) = ((m ~ 1) - Hessgf(v,v) + Agf)

In this chapter we make some specific assumption on (M™+! g):
M™~*! = [R™! and let £y = ¢,z,,...,Z, be the canonical cartesian coordinates and g
fulfills the following conditions for some & > 1.

(i) gpua.(v,v) < k- g(v,v)

(i) || g iles

9 Euel.

(r~+< K, in particular g(v,v) < k* - gpua.(v, V)

We adapt the usual notations : g;; = ¢ (a%.-' 32—1) , (¢9):=(gi;)~" and
=3 DY (a—gﬂ + %f;f— - %:}) and prove a simple technical

Lemma (1.1.) Let g be a metric which fulfills (i) and (i), then | T} |< ky for some
constant ky = ki(n, k).

Proof; | g™ |= Iﬁ%“— gif is some minor of (g;;). From (i) we get a constant k(1) =

k(1)(n, k) > 0 with | det(giF) |, ] %ﬂzﬂf |< k(1) and (i) implies | det(g;;) |> k(2), for some
constant k(2)(n,k) > 0, i.e.

r 69 r agir 391' j ) k(l)z
k< . j 1) <3 =: k1.
ThISY g™ (I Bz,-l+|6xj‘+|3xr| "3(n+1)k(2) o0

r=0




We consider some special conformal deformation of g which vary only with respect to
t-= zo: Define Fy, € C*(IR, IR2°) by Fy, = s-exp(—%) on IR* and Fy, =0 on [R<°
and fd,,(t, . ) = Fd’,(t)

Furthermore choose once and for all H € C*(IR,[0,1]) with H =0 on [R2', H =1 on
IR0 and H{(t) := H(1(t = b)),b> 0, > 0 and AZ € C=(R™*1,[0,1]) by hb(¢,...) =
Ho(t).

We consider g4, = exp(2: fs,) * g and gf}:: :=exp(2- Al f4,) - g for a metric g which
fulfills (i) and (ii).

Lemma(l.2.)
(1) For each b > 0 there is a do(b) > 0, such that for d > do(b) holds:
F® >00n0,b} fork=0,1,2,3.
(i) For each m > 0 and b > a > 0 there ezxists a do(m ) > do(b) such that for
every s > 0 holds: Fy, —m-F,, >0 on J0, b[and —m-Fy;, > s exp(~2
on [a, bf, if d > do(m, a,b)
(1i1) There is a constant o = a(e, b, k, D), such that for d > D and s € [0,1] holds:

185 - gllg,  (mvn<s-a

(iv) For each € > 0 there exists a D, such that for every d > D, and each s € [0, 1]
holds
I gd. -9lla.  (my<e

PEucl.

Proof: (i), (iii) and (iv) are easily checked from the definitions. Thus we only indicate
(ii): Fy,-m-Fy, =3 ((—%? + ‘f—;) -m: 5) -exp(—%) =: s ®y(t) - exp(—2)

The only quadratic term with respect to d in &y is ‘f—;. This term is positive, i.e. for
each ¢ €]0, a] there is a D(m, c¢) with ®&; > 1 on [¢, b[ if d > D(m,¢c)

Now let be d > do(b) (acc.(i)) i.e. Fy, > 0on]0, b[. Since F;,(0) = 0 we obtain:

Fy,(to) = f o4t < Fy ,(to) - to, i.e.Fy, —m - Fy, > 0 on]0, L].

Hence we choose do(mn, a, b) := maz{da(b), D(m, ymin{a, £})}, then for d > do(m, a,
b) holds:
Fy,—m-Fy, =5 -®4t) exp(—%) > s-exp(—2) onla,bfand " > 0" on]0,[. m



2. Deformation of Foliations

We start with an estimate of Ricci curvature of g4, (resp. gf;:f,) in terms of g and fg,.
Similar results (with similar rough dependence on the background metric g) hold for
analogous deformations of metrics on IR x M for a closed manifold M.

Let g be a metric on [R™*! which fulfills (i) and (ii) from §1 for some & > 1:

Proposition (2.1.) For each b > a > 0,¢ > 0 there are constants c,,cp > 0
which depend only on a, b, k and the dimension, such that for d > ¢y, s €]0,1] and
0#veT(IR xR") hold

(i) 955 =gonR\J0,b+e[xR"and || g5 ~glcz <s-

?RBuci.

with o =afe b k,n) >0
(i1) —s8-c1 < exp(2fas) - m(944)(v) —r(g)(v) <0 on ]0,8] x IR™
(1)) —s5-c; < exp(2fa,) - T(gas)(¥) = T{g)(v) < —s-e"%° on la,b] x [R™

(the upper estimates hold for each 3 > 0)

Proof: (i) does only collect definitions and (3.1.)(ii). Since r(g){) = r(g)() - v) for
each A # 0, we can assume that our v fulfills || v ||;= 1 we can now use the formula for
the conformal change of the Ricci curvatures from §1 to prove (ii) and (iii). We start
with the simple estimate for (| dfs,(v) |* — || V9 /s, [2) :

Ofd,e _
IV has B = 1l = 1222 ja = (R, PR <
d? 2d
s*- i eXP("T) -k (| dt |g= supp,=1 | d(v) |< suppy,,,, =+ | dt(v) |= k).

Hence (since s2 < s for s €]0,1]):

=52 k*d*/t* - exp(=2d/t) < =2 || V7 fu 3=l dfas(v) I} = || V° fus 13S0

Now we can turn to the term (n — 1) - Hess, f(v,v) + A, f, which estimate is more
complicated. -



Let v, be the geodesic with respect to g with 7,(0) = p and 4,(0) = v and 7 :
IR x [R™ — IR the canonical projec_tion and h, ;=71 o",.

Hessgfa,(v,v) = (fas0 1) (0) = (Fysomo 7,)'(0) = (Fgy0 h,)"(0) =
Fy (h(0)) - (A, (0))? + Fy0(he(0)) - A, (0)

Agfas =trgHess,fq, = ZFd,ﬂ'(p +ZFds ',)

=0 i=0
€o, - - - € denotes on orthonormal bases in T,IR™"! with respect to g. This yields :

(n—1)- Hessgfaalv,v) + Bgfaa =

f:;.,-« 1)(h,(0)) +Z (he(0)))) + Fiy - ((n = DA (0) + > k. (0))

=0 1=0
=: Fy,(n(p)) - Hi(g,v) + Fy,(n(p)) - Halg,)

Lemma (2.2.) There are constants cy,cf > 0 resp ¢c; < 0 andci > 0, which depend
only on n and k such that for each || v ||;= 1:

c; < Hi(g,v) <cf.

Proof: Note that 4.(0) = g(V97,v) = dn(v) = dt(v) and A,(0) = g(VIVZ,v) since
v, is a geodesic. Furthermore | dt(v) < v |12, < K> || v 1%, i e. | h,(0) |?°< k2.

Let be e, ... e an orthonormal bases (w.r.t. g) with eg = A+ 2 for some A € [k~ k],
then | A, (0) |2=] dr(A- &) [*> k72, i.e. k72 < (n—1)(h,(0))? +}:‘=0(h 0))? < 2nk?,
thus for

= k7%, cf = 2nk* . c7 < Hy(g,v) <cf.

Now we will show | Hy(g,v) |< C(k), L.e. ¢ = =C(k),cf =: +C(k) will fulfill the
claim. From &.(0) = g(V¢V97,v) and the Cauchy-Schwarz inequality it suffices to get
an estimate for || VIV ||,.

Let z,,...,Z, be the background standard Euclidean coordinates. Their induced deri-
vatives a: fulﬁll k<) & - |[< &, i.e. it is enough to control || Ve V97r llg -



Now let vg,..., v, be orthonormal bases in p w.r.t. gand v; =3 ¢ _ A Jka these A
fulfills | A;x |< k and we conclude:

d
|V 2 Vo 2= Zlgv o, ;) 2N AT 2 Vi, 5 I

=0 k=0

<2 kzzzl—gvgw —)l“rlg(V'gvr Va;%a )%

3=0 k=0

=2 kzzz | 5= (50:. )12+ | T% |?) < 2k%(n + 1)%k? k) from(3.1)0

j=0 k=0
This proof also implies the following statement which we note for later use (§6).

Corollary (from the proof above)(2.3.) Let be F € C*(R, R) with F/,F" > 0
and g a metric on [R™! = [R x IR™ which fulfill conditions (i) and (ii), then there are

constants oy, g > 0 depending only on n and k such that: (a;- F"' —ay- Flow <
AyF o)

Now we finish the
Proof of (2.1.): From (2.2.) and F‘E:) > 0 on )0, b] for k = 0, 1, 2, 3 we conclude

e - Fy (m(p)) + c5 - Fy,(n(p)) < (n = 1)~ Hessyfau(v,v) + Bgfa, <
cf - Fy,(n(p)) + cf - Fy ,(n(p))

We collect our results for d > do(] ?:— |, a,b) (cf. (1.2.)):

d2 d d 1 % +
t4

-3-2(n—1)-k*- -e"T-ci"-s-(z-2)t—3 d-e"t—c5 -

5. 2
(1) e
exp(2fas) - 7(9a,e) (V) = 7(g)(¥) £ ~ci - Fy(n(p)) = ¢7 - Fu,(n(p))
Since ¢; > 0 and ¢; < 0,we conclude from d > dy that the expression on the right
hand side is "< 0” on ]0, b{ X /R" and "< —s - exp(—$)" on [a. b[ xIR"
Now let be (t d) €]0,4] x IR2! and p, q € Z>% ‘:, exp(—%) < max{1,57} - ($)77 -
exp(—%) 4. P therefore we get

d?
coi= sup  (2An-1)-K*-—- 3
0,8[,d > 1 t jo,d>1 t



d
+ sup (cf -Ee"%), and we conclude

10,6[,d > 1

0 < ¢ < +00 and —s- ¢ is a lower bound for the left hand side of (1). Thus this
¢ and cp:=max{1l,do(] Z |,a,b)} fulfill our claimes (i) and (iii). O
1

Next we generalize these results to topologically (trivial) foliations by closed manifolds.
Let M™ be a closed manifold and g a fixed metric on IR x M™. M™ can be covered by
a finite collection of charts f; : V; - IR™ V; C M open, i = 1,...m such that there are
euclidean balls B; CC B; CC f;(V;) with M = f71(By)

Of course this also yields an atlas of IR x M: id x f; : IR x V; — IR x IR*. Choose
hi € C=(IR™,[0,1]), such that Ay = 1 on B;, h; = 0 on [R™\ B; and define &; := hiom,,
where 7, : IR x IR™ — [R"™ is the canonical projection.

Consider the metric g; := h; - (id x f;).(g) + (1 — k) - 9Buar.-

Note that g; depends on the particular choice of charts f; and functions h;. To empha-
size and clarify this we introduce a

Definition (2.4.) A set D = {(f;,V;, B;, B, hi),i = 1,...m} as above is called defor-
mation atlas of IR x M. If there are constants k; (which in case are chosen minimal)
such that gguq (v, v) < k?-gi(v,v) and || g; "CﬂaEu (R < k;, than k(D, g) := max{k;}
is called the deformation constant of g with respect to D.

Notice that (D, g) depends continously on the choice of g (w.r.t. uniform norms) and
that if F: (M,g) — (M, g') is isometric, than F : (M, e26°F . g) — (M', e o g) for
G € C=(M', [R) is also isometric. This makes (2.4.) useful for our deformation.

Let Fy, and H be as in §1 (before(1.2.)) then we define again f;,: Rx M — IR
by fa.(t,z) = Fa.(t) and hi(t,z) = H(}(¢t — b)). Furthermore we consider g4, :=
exp(2f4,) - g and gz:f, := exp(2hlfs,) - g for a g with deformation constant k(D, g) for
some deformation atlas D.

Proposition (2.5.) Forb > a > 0,¢ > 0 there are constants c¢;,¢c; > 0 depending
only on a, b, k(D, g) and dim M, such that for d > ¢y, 8 €]0,1[ and 0 # v € T(IRx M™)
the following claims hold:

(i) gf}:j =g on IR\]0,b+ e[xM"™ and

| (9:‘)3': = gille,, (< s-a with a=alebk(D,g),n) >0
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(1) =5 ¢y < e r(ga )W) —r(g)(v) <0 on ]0,b] x M™

(1) =8¢, < e2fdr . pr(gq (V) —r(g)(v) < =3 e"a on [a,b[x M™

(in: (i1) and (iii) the upper estimates hold for each s > 0)

Proof: (i) is again a reformulation of the definitions and(1.2). For (ii) and (iii) we use
(2.1.) and (2.4.), i.e. we use D and consider the metrics g;. Use (3.1.) for each g;:
g: fulfills gpua (v,v) < k*(D,g) - gi(v,v) and || g ez, (RS K(D, g) ie. we get
constants ¢;,c; > 0 depending only on £(D, g),e,b and n such that for d > ¢, and
0#vy; € TRt .

(i1); = s - e < ¥4 - r((gi)as) () = r(g:)(w) <O on ]0,8] x [R”

(i13); = 8- ¢ < €4 - 7((g:)as)(vi) — T(g:)(s) < =s-e"% on la,b] x [R"

From the remark after (2.4.) concerning conformal invariance we conclude that with
these constants ¢;, ¢; the claimed inequalities (ii) and (iii) are fulfilled for d > ¢, O

In applications we usually do not go into every detail as to define deformation charts
etc., this is to avoid to become to technical; we just indicate the scheme: if we want to
use (2.5.) for Ur(M)\ U.(M) where U denotes the tubular neighborhood (triviality is
assumed) of some closed hypersurface M C (N, g) then there are three steps: Define a
map F :]r, R} x M — Ug \ U, and take the pull-back metric F*(g), next extend this
metric using cut-off functions near r and R to some product metric on IR x M outside
of |r, R] x M and use (2.5.), finally take push-forwards and recall the remark after (2.4.)
to get the desired Ric—estimates on Ug \ U,.

3. Ric <0 on balls in three dimensions

Our first application of the techniques described in §1 and of the previous results is

Proposition (3.1.) There ezists a metric g5 on IR® with (g;) < 0 on By(0) and
93 = GEud. Outside

This is done in two steps: first we construct a somewhat analogous metric on S! x
S%#IR3 and then we get rid of the handle by a specific surgery.

Lemma (3.2.) Thereis a f € C°(IR, IR>°) with f = id on [R2! and
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(1) there is a § €)0,1[ such that f(r) = f(28 —r) i.e. fis symmetric w.r.t. §
(ii) Ric(gr+ f%-gs2) <0 on )26 —1,1[x5?

Proof: From §1 we know that Ric can be calculated as follows:

H

N 2
Ric(gn+ f* - gsa)(v,v) = = — L - (f?) resp. =-2- fT

for vertical v resp. horizontal v with || v ||= 1.

Such a f as claimed above can be constructed as follows (details are left to the reader).
Take any h € C®(IR, IR>°) with h =| id | on IRS"'UIR2!, h(r) = h(—r)and A, A" > 0
on]-1,1[, A" < 0,1 > A > 0on]0, 1[. Calculations similar to those indicated in (2.2.)
yield a ¢ > 0 such that f:= Z5h((c+ 1)t — ¢} and § := £ fulfil the claims. o.

Consider BE := B.(£3,0,0) C IR3,r > 0 and (cf. (4.2.)) the metric
90 :=gr+ f2(|| (£3,0,0) — idgs ||} - gs2 on By \ By = [6,3[x 2.
It is Euclidean on Bai \ B;’:, thus it can be extended on [R*\ Bf U B by 9 = 9pue.

Now we define
g1(d) == exp (2(H? - Fy1)(4= || (=3,0,0) —id [|) + 2(H] - Fa1)(4— | (+3,0,0) —id If)) - go

with b = 3+15% and € = 13%. Thus we are in standard situation to apply (2.4.): By \Bf
interpreted as a part [§,4[xS? of IRxS? and each of the two conformal deformations
yields a controllable perturbation of Euclidean metric (i.e. the deformation constants
stay bounded for each d > 1).

Thus we conclude from (2.4.): for d large enough 7(g:(d)) < 0 on Bf \ B and g;(d) =
GEuel. ON IR \ BI' U B;.

Next we identify 8B; with 8B; by restriction of i : IR® — IR3,i(z,y,2) := (—z,y, 2).
The resulting manifold is diffeomorphic to S* x S?#IR3 and it carries a canonical me-
tric g. g is smooth from (3.2.)(1).

The line segment from (-3 +6,0,0) to (3 —4,0,0) in [R? becomes (under this identifi-
cation} a closed geodesic v with trivial holonomy and length L > 0 which is isotopic to
the S? - factor and there is a neighborhood U of v in S! x S?#IR® such that Ric(g) < 0
on U.

Now we want to get rid of the handle. Thuslet be U,(y) C U be a tubular neighborhood
of width r > 0 (w.r.t to ). It was proved by Gao ([G], Prop.(2.5.)) that we can choose
® € C*(IR,[0,1]) with ® =1 on ] —o00,R], ® =0 on [r, +o0o[ such that for

ge := ®(L? cosh? dt? + dr? + sinh? rd©?) + (1 — ®)g on U,(7)
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Ric(gs) < 0 holds again for suitable 0 < R < r < 7.
This notation of ge is with respect to Fermi-Coordinates along v. We will prefer
another notation more adequate to solve our problems:

(Ur(7)\ 7, 98) = (S1x]0, R[xS?, (b )2 . g, + gg + sinh® r - gg1)

27

(with Lg,, (8') = Ly, (S') = 2m, " =" does only indicate a distinction between the
two S'-factors)

Now we will use the following non difficult Lemma of [L35] (which is also easily checked
by the reader) which generalizes similar results by Gao, Yau [GY] and Brooks [B].

Lemma (3.3.): Let be F, G € C=(]a,b[, R>®) for somea < b with ', F',G',G" > 0

on |a, b[, then there are constants p < a, (> 0 and f, g € C®(]p, b[, IR>°) with f,g > 0
and f* > 0 on]p,b[ and:

() f= F _J G near b
V= C - cosh(idg — p) 9= sinh(idg — p) near p

(i) Ric(f? gsi +9r+6° 9q) <0 on  S'x]p,b[xS!

Now we are ready to give
Proof: of (3.1.): Lemma (3.3.) gives us p < 0, ¢ > 0 and a metric go = ¢°- 951 + gr +
f2-gs: on S'x]p, R[xS* and with Ric(gg) < 0 such that for some small € > 0:

e fe sinh on JR—¢R|
9= sinh(idgr — p) ! | L-cosh(idg — p) on Jp,p+ €

i.e. S!x {p+¢€} x S* can be identified in a canonical isometric way with the boundary
of the following hyperbolic tube:

(Be(0) x S, ghyperbor. + (C - coshr)? - gs1) C IH? x §?

such that S x {p + ¢} x {€*} and 8B, x {e*} are identified.
This identification yields a smooth Ricmannian manifold which is diffeomorphic to IR3:
the boundary S§! x S! of the complement of a tubular neighborhood S* x B? of the
geodesic v in S! x S?#R® is identified by same identifications with the boundary of
B? x §! (c.f. Heegard - Splittings of S* x S% and S®, [H], §2).

Thus we obtain a metric g1 on IR® with Ric(g:) < 0 inside B UB; (using the previous
identifications) and g; = gpua. outside.
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Finally we use again (2.4.) for IR x S%. This time we interprete Byo(0) \ By(0) as
[1,10[xS? C IR x S? and obtain a d such that

ga{d) = exp(2Hg"15 + Fy1(10— || id ||)) - gy fulfills 7(g2(d)) < 0 on By,(0).

Scale go(d) by a constant to obtain (3.1.) )

4. Main Deformation

In this paragraph we cover a given manifold by balls and perform deformations (con-
structed from g7 ) on each them such that the Ricci curvature gets more and more
negative. Note that the covering is a Besicovitch type covering i.e. with controlled
intersecting numbers and that this is not only a trick to get pinching constants for Ric
but it is essential even to prove Ric < 0.

Since the whole proof works by induction we can assume the existence of a metric g
with Ric < 0 on B(0) and g, = ggua. on IR™\ B1(0) in dimension n. This was proved
for n = 3 in §3 and will be proved for n+ 1 in §6 using the results (that is in particular
Theorem E) of this and the next chapter.

Let AC IR beaset withO€ Aand || p—q|> 5 for p # q € A and choose for each
p € A an isometry f; on (IR", gpua.) With f5(p) = 0 and define g7 := f;(g,) on Bi(p)
for p € A and g; = ggua. €lsewhere.

Note that g clearly depends on the choice of the isometries f,. The effect of this
choice will be studied now:

Let be F: [R*\ {0} — [R>%x §™~! the well-known diffcomorphism F(z) = (|] z |, ﬂiﬂ)

Now choose a fixed deformation atlas D, on IR x S™! and consider g"(f, | p € A) :=
he-(gr+gsn-1)+(1=h.)-F.(gz) with k., € C*(R,[0,1]), b, = 1 on [RSOIYRZIHT b =

0 on [&,11 + r] for somer > 0

Lemma (4.1.) There is a constant k, > 1 with k, > k(Dn,9"(fo | p € A)) for each
A as described above.

Proof: It is enough to check (4.1.) for A = {0, p} with p € By3...(0)\ Ba(0). For each p
the set of possible isometries f, is compact (isomorphic to O(n)). Define f; = idp~ —p
and consider the following mapping @, which is continuous by definition of deformation
constants (cf.(3.4))
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Q- : O(n) x Bi34+-(0) \ B3(0) = R*°, Q.(f,p) := k(Dn, ¢"(idrn, f 0 f7))

O(n) x Bya+r(0)\ B3(0) and its image /m@, are compact. Thus we get an upper bound
kI of Im@Q,. O

Definition (4.2.) Let be (M",g) a Riemannian manifold without boundary and
assume ezistence of a complete manifold (M, g) with (M, g) C (M,3) in the Rieman-
nian sense. Furthermore assume that for each p € M holds :

exp, : Bioo+,(0) = M s a diffeomorphism with || exp,(3) — gp ||C’595100+P(0)S €

(9, denotes g | T,M) for some € > 0 resp. p > 0 which do not depend on p € M, than
(M™, g) is called (e,p) - (resp. for p =0 just (¢) -) manifold and g (€, p) - metric.

Remark (4.3.)

a) Let be (M, g) = (e, p)-manifold and é, j constants with e > &> 0 resp. e=é=0
and p > 0, then (M,)%-g) is (§,5) - manifold if ) is large enough. In particular
one can reduce to case p = 0.

b) For each § > 0 there is a € > 0 such that each (m, 0) - tensor field T,m =0, 1,2
on a (€8) - manifold fulfills:

(L =8 T [lcatzaoten <Il exp5(T) licz, (Booen < (14 8) | T lics(Boo(an)
(in particular || - |lc3(aeotr) and |l exp;(T)() llca(Boote)) are equivalent norms)

Our next (and last) preliminary result is a covering lemma which is a generalization of
the well known Besicovitch covering lemma on IR® (cf. [F], 2.8.). We will indicate a
proof in the Appendix.

Proposition (4.4.)

a) Let be (M™, g) a (1) - manifold, then for each r > 0 there are constants c(n, 7),
mo(n,r) € Z>° such that

(1) For each m > myg there is a set A = A(m,r) C M with dypag(a,b) > 5+
fora#babe A

(i) A = A(m,r) = {(Bs+-(a),m*- g) | a € A} is a (closed) covering of M and
splits into ¢ disjoint families B; unth

(m(a)amz ’ g) n (_BT«-(b),mz ’ g) = 0;
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if : Bsyr(a) and Bsi (b) belong to the same B;.

b) Let be M™ compact without boundary, G C Isom(M,g) a finite and non-trivial
subgroup,

F(G):={ze M| f(z) =z for somef e G\ {id}},
then there are constants
ro(M,9,G) (>3 for F(G)#0 and =0 for F(G)=40),

c(M,g,G), mo(M,g,G) € Z>° such that
(1) Foreachm > mg thereisa A = A (m,7) C M with G(A) = A, dmaga,b) >
5fora#be A andif F(G) # 0: distna(F(G),A) 2 1o

(it) A=A (m, M, g,G) = {(Bss+r(a),| a € A} is a (closed) covering of M and
splits into ¢ disjoint families B; with

(Bro+ro(a), m* - g) N (Broare(b), m? - g) = B if

Bsiro{a) and Bsy.(b) belong to the same B; 0
Now let be (M™,g) a (1, r)-manifold. We use the notations of (4.3.) and define for
B;:= {z € M| Bs+.(2) € B;} and A := |J B; the following metric on M:

Let be m > mg, B C A an arbitary subsetta.nd I, : T,M — IR",p € A alinear isometry
(in case (4.3.)b) with I;(;) ol,=Df,for f € G,p € A) and h € C*(IR,[0,1]) with
h=1on RSYS, b =0 on IRZY fixed: .

g(B,m,r,d,s) = H exp(2 - Hg,’f” - Fg4(10 + 1 — dim2.(p, 2))) - gainz € M with
PEB

, { R Ao (P, 2))(eXDF )u(12(97)) + (1 = A(dmag(p, 7)) -m? - gon | Ba(p)
g4 ‘= pEA

m2.g elsewhere

(expg‘z'-" denotes the exponential mapping w.r.t. m?-gin p € M)
Since A is locally finite g(B, m,r,d, s) is defined and in case (4.3.)b) it fulfills:
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f*(g(A,m,r d,3)) = g(A,m,r, d,s)for each f € G.

Now we arrive at one of the most important results:

Proposition (4.5.) There arem, 2 mq, dy, 81 > 0 (with dependences (my,d;, 81){n,r)
in case (4.9.)a), (my,dy,81)(M,g,G) in case (4.3)b)) such that for each d > dy, 57" >
s7! there exists a m > m, with m = m(d, s, n, v) resp. m(d, s, M, g, G)) such that

—c; < r(g(A,m,r,d,s)) < —cy

for constants ¢, > ¢y > 0 (with ¢; = ¢;(n,7,d,s) resp. ¢i(M,g,G,d,s))

We will present the proof in a moment, but we first derive Theorems A and C from
(4.3.):

Corollary (4.6.) There are constants a(n) > b(n) > 0 and for each manifold M™ n >
3 a complete metric g, which Ricci curvature fulfills:

—a(n) < r(g) < =b(n)

Proof: In the appendix (A 1) it is proved that each M™ admits a complete (e, p)-metric
for ¢ > 0, p > 0. Thus we can choose in (4.5.):

g=9(A,m,0,d, s ),a(n) =ci(n,0,dy, ) bn) =cn,0,d, s;) this metric fulfills
—a(n) < r(g) < —b(n)

0

Corollary (4.7.) Let be M™,n > 3 be a closed manifold, G C Diff(M) a finite
subgroup, then there is a metric g on M with r(g) < 0 and G = Isom(M, g).

Proof: Choose any G-invariant metric go on M, again for A large enough we can apply
(4.5.) to (M, A? - go) and we obtain a G-invariant metric g; with r(g;) < 0 on M, i.e.

G C Isom(M,g). Now one can perform a G-invariant perturbation of g; such that
the new metric g fulfills r(g) < 0 and G = Isom{M, g1). For such perturbations of ¢,
cf.[E] (8.3.). O

Proof of (4.5.): We start with some remarks concerning g4. Note that the situation
(4.4.) a) and b) are always discussed at the same time, we also adopt the notations of
(4.4.):
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There is a m® > my (mM(n,r) resp. mM(M,g,G)) such that for each m >
m,pe AcC M™

b(Dn, he - (gR + gsnm1) + (1= he) - Fu(L3 (exol™ %) (94)) < Kj + 1

This is clear from (4.2.) and (4.3.) b) since given ¢ > 0 and a compact K C R"
one can find a m > mo(m(n,r,¢, K) resp. m(M,g,G,¢,K)) aset A C M™ (asin
(5.4.)) and a second set A(m) C IR" (as before and in (5.1.)) such that for each
pPEM

* m3.g\»
” Ip(exPp g) (QA) gA (m) “C’

This also implies (with (5.4.)) for § > 0
there is a m® > m) with
m® = m@(n,r §) resp. m? (M, g,G,§) and

. (K)< €

sup | r(m?-g)(v) |< 6 and pn — 6 < r(ga)(v) < §
0#veTM

for m > m®@,v # 0 and a u, < 0 which depends only on n.
According to (4. 4.) for m > mgy each point of M is contained in at most c diffe-

rent balls Bygs-(a),a € A. Thus for each ¢ €]0,1[ we have from (1), (2.5.) and
(1.2.)(iii) and (1v) do, S0 > 0((dy, 50)(n, 7, €) resp. (do, $o)(M, g, G, €) such that for
d > do,s™' > 35" and each subset BC A:

F&(B) = [[ exp(2Fu, - Hon (10 + 7 = dmag(p,idy))) fulfills

pEB
G) | F3*(B) -1 ||C;:%(M)< €,, this implies 1 < F%*(B) < 2since e < 1

(i) —an < r(g(B,m,r,d,3))(v) < —f, for 0 # v € TByg(a),a € A and a,, >
B > 0 constants which depend only on n.

Define r(j) := r(g(U B;,m,r,d,s)); now we will calculate r(j + 1) from 7(j) by (2.5.),

in particular (g (A ‘m,7,d,3)) can be from r(g,) by induction.

We start with a metric on IR x S™! for m > mo;

9(k) = helgn + gsns) + (1 = ) F. - (I3(ezp™ ) (9(U, < By, d, 9)))
this will be examined by the fixed deformation atlas D, of IR x S™1.

According to (3)(i) we can make || F5*(A4) ~ 1 |lcz(a) arbitrary small (ie. < ¢€) by
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choosing suitable large do, 55°. Therefore we can assume (since k < c) using (1) that
k(Dn, 9(k)) < kI, + 2 for m > mg, d > do, s™* > 35 and each k.

Hence using (2.5.) and remark (4.4.) there is a do(= maz{cy, do}) and 3o(= min{1, 35})
such that for g(k) with a =1, b = 9,5 + r the following inequalities < £+ 1 > hold:

) —s-€e™  on U,ep,,, Bo+r \ Bos(a)
=5 ¢t £ F*(Byya) -k + 1)(v) = r(k)(v) << 0 on M\ |J Bg4r(a)
‘ a€8y4

According to (4.4.) Bgyr(a),a € A covers M, in particular

M \ UaeA BO.G(G) - UaEA BG-I-r \ BO,S(G')
Hence adding the inequalities < 1 > ~ < ¢ > (after multiplying < & > by (F&*({J B;))™}),

jzk
since § < 3 F&#(lJ) B;)"' < cand 1 < F3*(B) < 2 we obtain for v # 0,
k=1 izk
nu € T(M \ Uyea Bosla)) :
(*)  =—s-coc <r(c)(v) = FEH(A)T - r(0)(v) < 2=

i.e. since r{0) = r(ga) and using (2) we get:

—8C1C— lUp — 6 < T(g(Aﬁm, () d: 3))(V) < -"62‘4 + 6

for any § > 0,m > m¥(6),A = A(m) and d > dp,s”! > 55 note that dy and 3 are
independent of 4.

We choose § := £-£— and according to (3)(ii) we obtain on M for v # O0:

—d

—max{s-¢ - c+ tn+ 8%,::!,,} < r(g(A,m,r d,3))(v) < —min{

g-e¢
1 , Bn}

Hence we choose dy := do, 8; := §o,m; := m®(n,r 8) resp. mP(M,g,G,6&)) with

8o = 10—-‘;—&9 and for each d > dy, 57! > s7! (and § = ‘—f;_—d) there is a m > my with

—c; < r(g(A,m,7,d,8) < —cy
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emd 5. e
for ¢; = max{s-c1 - c+ pn + EE—, an}, 2 := min{£— F,}. O

5. Applications

The proof of (4.5.) implies most of Theorem E:
Proposition (5.1.): Let be S C M" a closed subset of a manifold M",n 23, UD S
an open neighborhoods, go any metric on U with r(gg) < 0 (resp. < 0), then there is a
metric g on M™ with:

(i) g=goon$S

(i) r(g) < =lon M\ U

(iii) m(g) < 0 (resp. <0) on M

(iw) A" - Vol(W, g) < Vol(W, go) < An - Vol(W, g)

for each measurable set W C M and a constant A, depending only on n.

Proof: We first assume that (M™, go) is a compact Riemannian submanifold of a com-
plete (1) - manifold (M7, §) with dist;(M \ U, S) > 50.

Denote {z ejf/.f | distz(z, W) < r} for some W C M by U.(W) and consider the sets
A(m,0) C (M, §) according to (5.4.)a)(ii) and the metrics

g(m,d, s) .= m™2%. g(A(m,0) N Uyy(M \ U), A(m, 0) N Upe(M\U), m,0,d, s)

For suitable large d, s~ and m we obtain from the proof of (4.5.) adding the inequalities
< 1> — < ¢ > (in the proof of (4.5.)) for all a € ANUyp(M\U): 7(g) < —co on M\
U and g = g on S, furthermore if m is large enough we get from (*) in that proof:
r(g) < 0on U.

For (iv) we note that obviously exists a constant [, > 1 such that I';!-Vol(W, ggua.) <
Vol(W,g3) < I - Vol(W, ggua.) for each measurable subset of IR", when g is defi-
ned as in the beginning of §5 and I, does not depend on the choice of A. Hence
9A(m,0) ON (M, 3) fulfills the analogous inequalities for I, := I, + 1 if m is chosen large
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enough. Finally g(4,m,0,d,s) differs from gaim0) by a conformal scaling function f
with 1 < f € 2° i.e. choose A, :=2°- ([, + 1).

[t remains to discuss the case where (M™", g) is not a compact Ricmannian submanifold
as above. '

But this can be reduced to this case by an exhaustion of M by manifolds of the above
type.

The new metrics will be defined by induction on the difference manifold of two elements
of that exhaustion sequence. Hence we do change the metric constructed before at most
two times. This also allows to prove (iv) in that case and using inductively larger scaling
factors we also get 7(g) < —const. < 0 the resulting limit metric on M \ U. 0.

(5.1.) implies Theorem D: take U = § = @ and any complete metric gy, with finite
volume:

Corollary (5.2.) Each manifold M™, n > 3 admits a complete metric g with 7(g) <
—1 and Vol(M, g) < +cc.

Furthermore we can deduce Corollary G from (5.1.):
Corollary (5.3.) Let be M™, n > 3 a compact manifold with boundary OM # 0 and
go any fized metric on OM, than there exists a metric g on M with:

(1) g = go on OM

(i1) r(g) <0 on M

(11i) each component of OM is totally geodesic.

Proof: Let be Ny, ... N,, components of M and U; disjoint neighborhoods of these N;
each of them diffeomorphic to ] —1,0] x N;. Now let be g; the restriction of gy to N; and
fi € C=(] = 1,1[, IR2!) a function with fi(r) = fi(=r), fi > 0 and f;(0) = min f; = 1.
The warped product formulas from §1 yield

i 7 2
Ric(gn + f? - g:)(v,v) = Ric(gi)(v,v) = & — (n - 2) (gu) ,
Ric(gr + 2 g:)(5,7) = —=(n = 1) Ric(v,v) =0
for vertical v, resp. horizontal 7 with || v [|=|| 7 [|= 1
From this we conclude: if f; (0) > 0 is large enough, then Ric(gr + f?- ;) < 0 on

] — 3¢, 3¢[x N; for each i and suitable small ¢ > 0. Now consider a metric § on M with
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§ = gr+ f2 - g; on the subset of U; diffeomorphic to | — 2¢,0] x N;. Now we apply
(5.1.) and get a metric g on M with r(g) < 0 and g = § near M. Furthermore from
f{(0) > 0 and £;(0) = 0 we conclude that (N;,g;) is totally geodesic. a

Finally we will briefly indicate a simple proof of Corollary B, which was proved in
different way with more analytic effort by Bland and Kalka [BIK] resp. Aubin [A]

Corollary (5.4.) FEach manifold M™, n > 3 admits a complete metric of constant
negative scalar curvature.

Proof: According to (4.6.) M™ admits a complete metric gy which scalar curvature
Sgu 18 bounded by two negative constants: —c < S,,, < —k, for some ¢ > k£ > 0. Now
we want to find a metric g = = -gm With §, = =1, i.e. u must be a positive solution
of the Yamabe equation (cf. [LP]):

_7'A9MU+SQM'u=_ua17=4%:_;’a=

p—

n—

&
(&)

But —c < §;,, < —k implies that % := ka1 resp. u® := ca=T are positive Sub - resp.
Supersolutions of this equation.

Thus we are left to use the usual standard procedure (cf. [K], §3) to get solutions u,
with 4~ < u, < u* on a sequence M, of compact manifold exhausting M.

Using C** a-priori-bounds on each u, from elliptic theory a subsequence of the u,
converges to a solution u defined on M. u fulfills = < u < u™, hence it is positive and
g = u™-7 - gj is complete. o

6. Ric<0 on B(0)cC [R""!

In this chapter we will conclude the existence of g7 on IR™!, n > 3 from Theorem E
for n-dimensional manifolds:

Proposition (6.1.): There is a metric g, on R n > 3 wth r(g;,,) < 0 on
B(0) and g7, = gpua. on R\ B;(0).

The proof of (6.1.) proceeds in two steps. We start with the construction of a certain
metric with Ric < 0on §' x §! x B™! C §' x §' x. [R*!. We write S! x §! x B™!
to distinguish the two S*-factors. We will use again the functions Fy(t) := exp(—%)
which turned out to be useful in §1 and §2 and define on S! x §! x By~ \ B}~!
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g(d, d) := (Fa(r = 2) + 1)? - g5 + exp(2F3(8 = 7)) - (931 + gruns.))
with 7 = r(f,¢,z) = dist((f,t, ), 5! x ! x {0}) =|| z lpguur» d» d > 0.
Proposition (6.2.) There are dy,dy > 0 with Ric(g(da, dg)) < 0 on 5! x §* x B3\ Bs
and Ric < 0 on the complement.

Proof; We first consider the second part of this metric:

§(d) == exp(2Fz(3 = 7)) - (952 + gBuar) =2 exp(2F3(3 = 7)) - g

Let be F : IR>® x §! x §»2 — §! x [R™! \ {0} the diffeomorphism defined by
F(r,e* z):= (¢*,r- ) and

g7 (d) = @ F™(exp(2F;(3 — 7)) - go) + (1 — ®) - (gr + 951 + gsn-2)

with & € C*®([R,[0,1]),® = 1 on [R<%5 U IR>% and gg, g5 and gs--2» the standard
metrics on these manifolds.

Now fix a deformation atlas D of (IR x (5! x §7~2), g¥(d)) and consider the metrics
(gF(d)ion Rx R, i=1,...k, cf §2. According to (1.2.)(iv) we can find for each
¢ > 0 a dp such that for d > dy a.nd gf =@ -F*(g.)+(1—®)-(gr + g5 + gs~-2) and
each i holds:

I (g7 (d)); = 9§ llcg

2 e ‘ Rn)( €.

Hence for suitable large do thereis a k > k(D,g F(d)) for all d > dy and we may assume
that dp is chosen such that for each d > dp : ezp(2F;(3 —r)) € [1,2] on [0, 6].
Using this we obtain:
(i) from (2.3.) and (1.2.)(ii) on ]2, 5] x IR™ Ay g Fy(r—2) > 0 for some do(k, ) > 0
since do can be chosen such that Fj (r —2), F (r —2) >0

(ii) acc. formula (*) in §2 (proof of (2.1.)) there are constants ¢;,c; > 0 depending
only on k and n such that for || 7 ||o=1:

exp(2F3(3 = 7)) - (97 (d))(?) < (=e1 - Ff +c2- F)(3 =)

] x §* x §™~2, since r(go) = 0 on this domain. Consequently for d>dy:
(v) £ (—% -Fg +c2-F;-)(3—7') on S' x St x By\ By for || 7 ||ge=1:
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-

Now we are ready to examine g(d,d) using warped product formulas (cf. §1): S!is
the warped fiber, 5'_1 x By \ By the base space. According to (i) we obtain for vertical
vectors v # 0 and d > dy:

RZC(g(do,d))(l/,U)= <0 on SIXSIXB[,\BQ

 Fy(r-2)+1 'gsl(u’y){<0 on S'x S'x B\ By

The situation for horizontal v # 0 is more complicated:
Let be 7 : S! x S x Bs\ By — S! x Bs\ B, the canonical projection as in §1, then we
have to show (cf. §2):

- Hessgg Fao(r —2)
Ric(gd))(dn(v), dm(v)) - —— 5337

(dm(v),dn(v)) < 0

From (ii) we have for v with go(dm(v), dn(v)) = 1:

-

(s)  Rie(3()(dr(v),dn(v) < (-5 Ff + - F)3—7)

. On the other hand using the transformation formulas for conformal deformations of

§1:
Hessy g Fao(r — 2)(dm(v),dn(v)) = Hessy, Fuy(r — 2)(dm(v), dm(v))

~2-dFy(3 = r)(dr(v)) - dFy,(r — 2)(dn(v)) + dF;(3 = r)(VS Fy,(r — 2))

Note that Hess,, Fy,(r—2) is positive semidefinite, since Fy,(r—2) is cylinder symmetric
OIZl(S1 x Bg\ B1,gs! + 9Eua.) With Fldo,F:O > 0.

The two remaining terms on the right hand side can be estimated as follows:
3 || Vo Fy(3 =) llg, - l| V% Fuo(r = 2) [lo. < cldo)- | Fg} (3 =)

Hence | Fy,(r —2) + 1 |> 1, Hessg, Fu,(r — 2) positive semidefinite and (**) imply:

1
Ric(g(do, d)(v,v) S (=% - F; +c2- F)(3 =) +c(do)- | F; | (3—7)

-~

Now (1.2.)(ii) (for b = 2.5 and a €]0, 1{ arbitrary and m > 2. "—‘%@) yields for this
inequality: L

For suitable large d > dy the right hand side is "< 0” on S'x S'x B3\ B and "< 0”
on 5! x S' x Bs \ Bs choose such a d and denote it (for simplicity) again by do, then
g(do, do) fulfills the claims. a
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The second step in the proof of (6.1.) consists in finding a suitable embedding of
St x §' x B{™Y:

This is exactly the point where the induction hypothesis, i.e. Theorem E (i.e. Prop.(5.1.))
for n-dimensional manifolds, enters. We get from (5.1.):

Corollory (6.3.)
a) On B} C IR™ there is a metric § with
(i) § = ggua. on By \ B}
(ii) Ric <0
(iii) BT contains a subset V isometric to
(8! x By, (Fip(r = 2) + 1) - g5t + gEuat)

b) on §' x B2 there is a metric § with Ric <0 and
§=exp(2F; (3—7)) - (951 + gBuat.) on S'x Bf~'\ B!

(6.2.) and (6.3.} imply

Lemma (6.4.) On 5! x [R" there is a metric gy with
(i) 9o =95 + 9gua. on S x IR™\ B}
(ii) Ric(go) <0 on S'x B’%‘

(iti) Ric(go) <0 on S!'x B}

Proof: Let be f: (V,g) = (S* x B!, (Fy(r —2) + 1) - gs1 + gpua.) an isometry,
then F = idg X f is also isometric (w.r.t. product metrics) and we consider the metric
§=(Fg(r—2)+1)%-gs: +§on S x §* x BF~'. This metric § equals

gz + (Fg(r = 2) +1)? - gs1 + ggua. (in particular it has Ric < 0) onS' x S* x Bs \ B,

g(do,do) (withRic<0) on 5'xS'x B3\ B, and
gst + 4§ (with Ric<0) on S'x S! x B,.

g§1+§ on SIXB;‘\V

95 + gewt. on S'x IR™\ B}
Define g¢":= S
F*(g) on S'xV
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and consider a diffeomorphism A : [R® — IR™ with A =id on IR"\ BT and hA(B%}) CC
— 2

f~YS! x B3\ B,) CC BY.

From the previous construction it is clear that g := (id; x h)*(g*) fulfills our claims.

a

Now we are ready to enter into the )

Proof: of (6.1.): Let be fn : S x [R® = S! x IR the m-fold covering fn.(e*, z) :=

(™ z) and fo : IR x IR™ = 5! x IR", fo(t,z) = (e¥, z).

We define g§* := f}.(g0), i.e.:

has Ric< 0 on S!'x B?

m? - gs + gpua. on S x IR™\ B
9 = > :
has Ric<0 on S'x B

g§* and go are locally isometric via fo.

Now be vm(t) := m(cost,sint,0,...0) € R™! a circle of radius m and length 27 - m.
We consider (for large m > 5) the diffeormorphism F,, : S' x B} — [R"*! onto
Im F,, = Uy(ym) with

F.(e* z1,...T,) = m(cost,sint,0,...0) + (T, - cost,z; - sint,zq,...Tn)

Now we are ready to define the most important metric

g(m) := h(r) - (Fm).(95") + (1 = R(T))gEua.

with 7 := dist(z,Vm), h € C*([R,[0,1]), h=1o0n R%?* h =0 on [R23

We will check now that exp(2 - Fy, - Hg:f(r —4)) - g(m) has Ric < 0 on Uy(ym) and is
Euclidean outside £J4(7m) for a suitable choice of m,d and s:

We can examine (S5 x [R™, exp(2Fq, - Hgl'f(r —4) - go) by (2.4.):

take M™ = St x S™!, R x M™ 2> [R>% x §' x §*! = 5! x [R™\ {0} and consider a
deformation atlas for IR x M™. It is clear from (2.4.): there are d;, sy such that for
d > d; (since 7(go) < 0) the following holds:

(exp(2Fum - HISr =~ 4)) - g0) 4 "
r(ex 50t o \T —4)) - 20-exp(~ gy
Pléld s * 11g]] 9o < _L‘i‘*ﬂl on S'x Bsg

and exp(2Fy,, - Hoy (T —4)) - go = go otherwise.
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On the other hand (2.4.) yields do > d; such that for each m > 5, d > do, s €]0, 1] :
r(exp(2Fy, Hg‘,’f(r —4)) - g(m)) < 0 on Us(¥m) \ Uss(¥m) (where g(m) is just the
Euclidean metric).

Now define T i(T1,.. . Zi, - Tns1) 7= (Z1,...,Ti + M,... Tny;) then T 5(g(m)) con-
verges compactly w.r.t. any C*¥-norm to ge := f2(g0), furthermore since

foo : (IR x IR™ exp(2Fy, - Hyt(r — 4)) - goo) — (8! x IR™, exp(2Fy, - Hy}(r — 4)) - go)

is a Riemannian covering we obtain from this and the rotational symmetry of g(m)
w.r.t. rotation of angle 2;" in the z; — z,-plane: for suitable large m:

r(exp(2Fy, - Hyt(r — 4)) - g(m)) < 0 on Usg(vm),

hence on Uy(vm)-

Now use again (2.4.) for IR x S™: take a point p with B1(p) C Us(¥m) and a ball Bg(p)
with Uy(vm) C Br(p) and take the diffeomorphism

f1=2,R[xS" > Brua(p) \ {p} ¢ R™, fl{t,z)=(R-t) - z+p.
Now consider the following metric g on IR x S*
g="h-(gr+gs) + (L =h)- f*(exp(2Fy, - Hy1(r —4)) - g(m))

for h € C=°(IR,[0,1]), h=1 on [RST'WRR% h=0o0n[-3,R-0,2].
(2.4.) yields D and § such that r(exp(2Fps H(fl'o’s) -9y <0on[-32R~-0,2] and
this implies

exp(2Fp,s - Hog (Il 2l = | p—id |})) - exp(2Fu,, - Hon(r = 4)) - g(m))

has Ric < 0 on Bg(p) and is Euclidean outside of Bg(p). O

Appendix
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In this appendix we indicate proofs of some elementary technical results used in parti-
cular in §4 and §5.
(Al:) Let be € > 0,7 > 0, then each manifold M admits a complete (¢, r)-metric.

Proof: Once given ¢,r and a closed Riemannian manifold (M, ¢) finds a large A > 1,
such that (M, A2 - g) is a (e, 7) manifold.
Thus we are left to prove the claim for non-compact M. Such M admits an exhaustion

A},'H:) M; (Mg := @) by countably many compact manifolds M; with OM; # §. Now
fix metrics g; on dM; and define a complete smooth metric g(i) on A(;[,-H \M; which is
isometric to (IRt x OM;, gr + g;) resp. ([R* x OMi41, gr + giv1) near the boundary.
We can choose A; > 1, such that (1131’;4-1 \M;, A2 g(3)) is a (§,7 + 1)-manifold. Finally
one has to glue these parts together and it is enough to find a ®; € C*(IR, [0, 1]) with
®; = 0 on RS, ®; = 1 on IR2% for some ¢; > 1 such that

(Rx OM;,ga+ (M- &, +(1—-®;)- A% ,)-g) isa (er)-manifold

But this is a easily done taking ®; = ®(T; - idg) for some fixed & € C*(IR, [0, 1]) with
® =1 on IR2! and asmall T'; > 0. a

(A2): There is an € = ¢(n,7) > 0 and a constant ¢(n, ) € Z>°, such that for each n-

dimensional (¢, 10 - 7)-manifold M, there exists a covering A = {Bs+.(p) |p € A}, AC
M by closed balls such that A splits into ¢(n,r) disjoint families B;,1 < j < ¢(n,7)
with

(l) B}Q.{.,-(G) N Blg+r(b) = @ for Bs.;.,.(a), Bs+,.(b) S BJ'

(ii) a € Bsyr(b) for a,b in A

Proof: We choose €(n,r) > 0 such that for each n-dimensional (¢, r)-manifold inj(M)
> 50 4+ 5 - r and the sectional curvature K fulfills £ € [-1,1]. Now let § C M be a
countable dense subset (S = {a; | i € Z2°) and B := {Bs..(p) | p € S}. We define a
map i : S — Z2° by i(ap) := 1 and:

Qny1) 1= 0 if an41 € U,v._:n Bsir(ai)
mH min{m | d(am, @ns1) > 20+ 27} U {n + 1} otherwise

and B; := {Bs+-(am) € B; | i(am) = j}, A:=U;5 B, A= {a € §]i(a) 2 1}

It is obvious from this definition, that B; N B; = @ for ¢ # j and that (i) and (ii) of
(A2) are fulfilled.
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Thus it remains to check that there is a constant ¢(n,r) independent of the (¢, 10 - 7)-
manifold M™ such that B; = @ for j > ¢ and that A is a covering of M.

Since inj(M) > 50 + 5 - r and K € [~1,1], we obtain from the comparison theorem
of Bishop: there are constants ki(n) > 0,ke(n,7) > 0 with ky < Voly(Ba(p)), k2 >
Volu(Baosar(p)) for each p € M and we define c(n, r) := 2.

Now assume Bs.,.(a) € B .41, then Bigir(a) N Byoyr(pi) # B for c different p; € 4,1 <
i < ¢, i.e. Ba(p;) C Bap+3r(a), this leads to a contradiction since:

(C + ].) . kl < Z VO[M(BQ(p,')) + VOZM(BQ(G))
= Volp (U B2(pi) U Ba(a)) < Volm(Baoya-(a)) < ke

Finally A is a covering, otherwise there would be a p € U := M \ | J ¢, Bs+-(a). But
A is a locally finite, i.e. U is open and there is a ¢ € SN U with Bs,.(q) € A and

——r.

p € Bs.,.(q) which contradicts our assumption. O

Finally we briefly indicate how to get the "G - invariant”version of (A2), where G
denotes a finite, non-trivial subgroup of Dif f(M) and M is a closed manifold:

Let F(G) = {2z e M| z= f(z)fora f e G\ {id}} and (U,,g) = {z € M |
disty(z, F(G)) < r}, then some elementary considerations using Fermi coordinates
yield:

(A3):There is a 1o = ro(M, g,G) > 5 and a mo(M, g,G), such that for m > mq
min{dma4(z, f(z)) |z € M\ Us,m?-g), f € G\ {id}} >3
This and the proof of (A2) are the main ingredients to get an analogous G-invariant

covering:

(A4): There are constants my > myp,c,my(M,9,G)c(M,g,G) € Z>° such that for
each m > m, there is a set A,, C (M \ U,,,m? - g) with G(A,,) = A, such that 4,
splits into ¢ disjoint families B; ,, with:

(l) BlO+ru(a) N BlO+ro(b)s if a,b € Bi,m

(ii) a & Bs(b), a,b€ An

(iii) M\ Uy C | Bs(a),M = | Bsiny(0)
a€Am a€Am

Mathematisches Institut, Universitdt Bonn, Germany
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The space of negative scalar curvature metrics

Joachim Lohkamp
Mathematisches Institut, Beringstrasse 4, W-5300 Bonn, Federal Republic of Germany

1 Introdqction

The topology of the space of positive scalar curvature metrics S * (M) on a closed
manifold M has been studied by Hitchin, Gromov, Lawson and Carr (cf. [LM, 1V,
§97) and it turned out that the topology of $* (M) is quite complicated; there are
manifolds M such that the ith homotopy group n,(S * (M)} is non-trivial for some
(probably arbitrarily great) i 2 0 and even the “moduli space” S * (M )/Diff(M) can
have infinitely many path components.

In this paper we will have a look at the natural counterpart: the topology of the
space of negative scalar curvature metrics S~ (M") on a closed manifold M" of
dimension n 2 3.

We will prove that S~ (M) (which always is non-empty by [A] resp. [KW]) is
always connected and aspherical:

Theorem 1 #;(S"(M))=0, i=0,1,2,....

By Theorem 1 using a general result of infinite dimensional topology due to Palais
and Whitehead (cf. [P, Theorem 15 and corollary]) we get a complete insight into
the topology of S~ (M)

Theorem 2 S~ (M) is contractible.

From this we get the same information for the space of metrics with constant
negative scalar curvature = — 1 denoted by S_,(M).

Corollary. S_,(M) is contractible.

Note that on the other hand .S~ (M) and S_,(M) are never convex (cf. [L1]).

2 Continuous extension

We are only concerned with closed C®-manifolds and C*-Riemannian metrics
defined on them. Once given a manifold M we fix some reference metric g, on
M and consider the space of all C*-metrics .# (M) on M equipped with the usual
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C~-topology which is the Fréchet topology defined by all the C*-norms |- |,
on M.| |« 1s defined with respect to g,, but the topology does not depend
on gy. '

Now let /3 §* — 87 (M) be a continuous map, we are looking for an extension
of fon B'"' = Bg(0) = R*!. S' = 3Bg(0), i.e. a continuous map F:B'*' —
S (M) with Flgi =f.

We start our construction of F by some trivial extension F, of f defined as
follows: Let go be any fixed metric on M and (x, t)e S'x [0, 6]/S'x {0} = B'*!
(polar coordinates) then we define

Fi(x, 0):= (1—1)go+1tf(x) onS'x[0,1]/S'x{0}

BT f(x) on S'x[1,6]/S x{0}.
Obviously F, is a continuous map with image lying in ./#(M). Our goal will be to
find deformations of F, inside of S'x [0, 5]/S'x {0} such that the image of the
deformed map lies in S ~(M).

3 Main deformation

Let N?,i =1, 2 be closed manifolds of dimension n = 3, p, € N; fixed base points,

g; and g; metrics on N;, g; with injectivity radius inj(N;, g;) > 5. Now we define for
4; 2 1 new metrics on N\ {p;} by

g(4i, 9is EE) = h(dif.gf(Pn idm)) - Gz, + (1 — h(dl?.gi(pia idNi))' Aiz 'g_f

he C*(R,[0,1]) withh=10on R33, h=0o0on R2% and G,,:= f¥(gr + gsn-1)
where f;,: Bs(p:)\{pi} — 10, S[ xS"~! is a diffeomorphism defined as follows: Fix
a linear isometry [;:(T, Ny, g;) = (IR", g.u.) and consider the usual poiar coordin-
ates on R™\{0}: P:R™\{0} » R>°x8""!, P(z)=(liz|,z/llz}|) and define
Sa.(2):= P(4;-(I;o(expp)~ '(z))) where expl! denotes the exponential map in p; for
the metric A7+ g;.

By definition ¢(N,\B,(p,)) and 6(N,\B,(p,)) equipped with these metrics
are isometric and can be identified by the orientation preserving isometry
i(A1, 42) i= f3,'ofy, yielding N, #;N, together with a smooth metric denoted
by

g(;~ls g1 E) #lg(;'Zs gz, _é;)

Now we specialize to N, = M, g, = gy (a fixed reference and base metric, with
inj(M, gu) > 5), g, = ¢ (varying metrics), 4, =4, p, =p and N, =S", g, = g*
(a fixed metric with inj(S", g*) > 5), g, = ¢, (a fixed negative scalar curvature
metric on S", A, = i, p; = 4.

From the construction above it is clear that there is a family of diffeomorphisms
F(A u):M — M#S5"with F(4, u) = id on M\ Bs(p) which can be chosen such that
the metrics G(g, 4 u) := F(A, W*(g(4 gu, 9) #1091 g%, 9,)) depend continu-
ously on 4 and p.

Now we are ready to define for Ao = 1, 4y = po = 1,(x,t)e B'*!
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Fa(Ao, to, > X, t):i=

( £(x) on Six [4,6]/S' x {0}
(=0 A5+ (1 —(@4—1) f(r on S'x[3,4]/S"x {0}
(3 — 1) G(f(x), Ao, po) + (1 —(3—1)43-f(x) onS§'x[2 3]/S'x{0}
G(f(x), 20, (2 — 1) *pty + (1 — (2 = 1)) * o) on S¥x [1,2]/8'x {0}
\ G(F(x. t), Ao, p1) on §'x [0, 1]/5' x {0}.

We claim

Proposition 1. There are Ag, po, iy Such thar (Fy(x,t):=)F2(Ao, to, g, x, 1) is
a continuous extension of f with

(i) Fa(x,t) =f(x) on S'x[4,6]/S'x {0}
(i) ¥ (M, Fy(x,t)) <0 on B+ (where (U, g):= [, S,dVol,).

Proof. The continuity of F,(x,t) and (i) follow directly from the construction
above. It remains to show (ii) for appropiate A, io, 41, Which is trivial on
S'x[3,61/S"x {0}.

The following estimates are easily checked noting # (U, 4%-g) = A"~ %+ £ (U, g),
4> 0 (B,(p) with respect to A2~ gu):

(1) there is a pp = 1, mdependent of A2 1, xe S’ such that

P (Ba(p), G(f(x) 4, ) < O for 2 g ,
(2) given k > 0 there is a A(k) = | such that for x e S*

F(M\Bs(p), 12 (k) f(x)) < —k .
(3) there is ¢ > 0, independent of A =1 and (x,t)e S'x[2,3], such that

F(Bs(p), 3— 1) G(f(x), A o) + (1 = (3 — 1)) A% flx)) < ¢
(4) given K >0 there is a u(K) =y, independent of A= 1 such that
F(Bs(p), G(F(x, t), A, u(K)) < — K for each (x, t)e B'*1,

Now we verify (ii) on S'x[0,3]/S'x {0} for uo as in (1), 4y : = A(2c), 4,
p(|m} + 1), where m: = maxgi+: S (M\Bs(p), A3* F.(x, t)): on

Sx[2,3]/8' x{0}: (M, (3 = t): G(f(x), ko, o) + (1 — (3 — 1))* 25 f(x))
= P Bs(p),...)+ P(M\Bs(p),...)< —c<0, by(2) and (3)

on
§Tx[1,23/8 % {0}: LM, G(f(x), 2o, 2 = Yy + (1 = (2 — 1)) 1)) < 0
by (1) and f(x)e S~ (M), on
Six [0, 11/S'x {0}: LM, G(F(x, t), Ag, 1))
S m+ F(Bs(p), G(F (x,1), 40, 1)) < — 1 by (4). =

4 Eigenvectors of the Conformal Laplacian

The scalar curvature S, transforms under conformal deformations g, = u*"~ 2+,
dim M = n 2 3, according to (cf. [K, (3.2)]:

n—1 g + 2

n—-2" " n=2

We are interested in the linear operator L, which is sometimes called “conformal
Laplacian™.

Lyu= —y-Adu+S;ru=5,w, y=4
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Recall from {K, 3.A], that the first eigenvalue 4,(g) of L, which fulfills

Alg) = inf f eIl Vu ||2+Sg-u2)dVg/j u?+dV, = inf J,(u),
ugC> (M), us2 0 M M
has a one dimensional eigenspace generated by a (unique) eigenvector v(g) e
C*(M) with v(g) > 0, max v(g) = 1.
For completness we will show the following hardly surprising fact, which is
hard to quote explicitly from literature:

Proposition 2 [f g, — g with respect to the C®-topology, then i,(g,) = A,(g) and
v(gn) — v(g) also with respect to the C®-topology.

Proof. From the definition of J,(u), we get for ¢ >0 some ny, such that:
(t —e)|J, W)} £ )| £ (1 + &)|J,a(u}] for n 2 ng and each u e C=(M)\{0}. This
implies Al'{g,,) — A,(g). Furthermore 0 < v(g,) £ 1, g, — ¢ in the C *-topology and
L,,v(g,) = A(gn)" v(g,) imply by standard elliptic theory [} v(g,) | c:_ < ¢, cx indepen-
dent of n. From 4,(g,) = 4,(g) and the Arzela—Ascoli-Theorem we obtain converg-
ing subsequences (by iteration) in | * ||, and we take the diagonal sequence of these
subsequences. This converges in C® to ve C*(M ), with L,0 = 4,(g)* 0, ¢ 2 0, max
5 =1 (from [K, 3.A], we conclude again ¢ > 0). But this ¢ has to be the unique
eigenvector v(g), which implies that a fortiori v(g,) converges. (I

5 Final deformation

Now we are ready to complete the proof of our theorem. Since & (M, F(x, 1)) <0,
(x,tye B!, we conclude from 4,(g) = inf J,(u): 4,(F3(x, t)) < 0 on B'*'. We define

f(x) . on S'x[5,6]/S'x {0}
Fix,t)={((5— t)'v(_f;(x) +(1 =5 =0)"2-f(x) onS'x[4, 5]/8' x {0}
v(Fy(x, t)n=2-Fy(x, t) on S'x [0, 4]/S! x {0}

and we claim :
Proposition 3. F is a continuous extension of f:S' — S~ (M) with F(B**!) = S~ (M).

Proof. Propositions 1 and 2 imply the continuity. Now we verify F(x, 1)e S~ (M)
On §'x 5, 6]/S' x {0} there is nothing to prove, on S x [4, 5]/5' x {0} we calcu-
late:

Srex (S =) 0(f(x) + (L = (5 =) = Lyn((5 = 1) v(f(x)) + (1 = (5= 1)))
=06 =0 A4 v(f(x) + Spm (1 =(5—-1)) <0
on S'x [0, 41/5 x {0} we obtain:
St V(F2(x, 1)) = Ly, g0(F2(x, 1)) = A (Fa(x, 1)) v(F2(x, 1)) < 0.
Since ( ... )* > 0, we conclude Sg(, , < 0. O

6 Constant scalar curvature

Finally we will show that S_,(M) is contractible (which implies
(S~ (M))=0,i=0,1,...), this can be deduced from:
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Proposition 4. There is a continuous map p:S~ (M) — S_ (M) with pjs_, ) = 1d.

Proof. Let ge S~ (M) and u a positive solution of the Yamabe equation
—y dgu+ S;ru= —u

We assert

(i) u is unique

(i) p(g):= u*"~2-g fulfills the claims.

(i) Let v be a second positive solution, u*"~2-g and v»*"~ 2.4 have scalar

curvature = — 1. write v = w-u for some w > 0, we C®(M). Then w fulfills the
Yamabe equation for g, = u*"~%-g:

—yrdgw—w=—w,

now assume w # 1: since o > 1 we get 4, w > 0 or the maximum of w or 4, w < 0
in the minimum of w, which yields a contradiction.

(il From (i) p;s_,an =id, so it remains to show g, — g in C® implies
u, = u in C*® (u,, u denote the solutions of the Yamabe equation of g,, g):
- K; <S,, < — K, for some K, > K, > 0 independent of n yields

0< K3 * <{min|S, 1) "* < u, < (max|S, ) *<Ki™"

Now using both bounds one can proceed as in Proposition 2 to get C*-
estimates independent of n. Again uniqueness of u as shown in (i) implies conver-
gence of u,. C

Now let H:S™(M)x[0,1] — S~ (M) be a contraction to a go€ S_(M), 1.e.
H(,0)=id, H(*, 1) = go. Consider pe His_, (aryx[0,1] = S_,(M). poH is con-
tinuous by Proposition 4 and po H(*,0);s_,an =id, po H(*, 1) = go € S_ (M), 1.e.
S_1(M) is contractible.
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Curvature h-principles

by Joachim Lohkamp

§ 1. Introduction

Let us start with the following intuitive question which will be subject of this paper: If g is
a metric on some manifold and fulfills certain geometric conditions, to what extend will g
be special in the set of all metrics ?

There are two obvious subquestions;

A. If g; and go fulfill the same condition, will g; and g, be more or less equal or if
not, does the space of these metrics have an interesting internal structure ?

B. If g is an arbitrary metric, can we find a metric ¢ fulfilling the condition which
shares at least some geometric properties with the “model metric” ¢ ?

We will give an answer in the cases where the conditions on g are as follows: r(g)(v) < a
resp. s(g) < a, @ € R, where r(g)(v) resp. s(g) denote the Ricci curvature in direction
v # 0 resp. the scalar curvature of g which is defined on some manifold M™ of dimension
n > 3. Usually it is assumed that M is closed, but that is only for practical not for principal
reasons, since the actual problems will arise locally.

Theorem A. The space of all metrics with r(g)(v) < a resp. s(g) < a denoted by Ric<*(M)
resp. S<%(M) is a contractible Fréchet-manifold.

Recall from [L2] and [L5] that these spaces are always non-empty and (highly) non-convex.
Hence we can solve problem A: There is “exactly” one typical metric up to homotopy.
Theorem B. Ric<*(M) and S<%(M) are dense in the space of all metrics M(M) with
respect to C° -topology and Hausdorff-topology.

(C° implies Hausdorff-density, but we present different arguments for philosophical reasons.
Theorem B (obviously) and Theorem D below also hold if “ < ” is exchanged by “ < ”.)
Thus (concerning question B ) we can prescribe the geometric shape of our manifold and
realize it in Ric<*(M) for arbitrarily strong negative o !

There are also local versions: let go be a metric on a manifold M™®, n >3, SC M a
closed subset, U O S an open neighborhood, then we have

Theorem C. If g1 is a second metricon M and go = g1 on M\ S and r(gi)(v) < «a (resp.
s(gi) < a ), then there is a continuous family of metrics g, t € (0,1) with r(g)(v) < «
(resp. s{g1) < )and gt = go = g1 on M\ U.

Theorem D. If r(g0)(v) < a (resp. s(go) < @ )on M\ S, then for each £ > 0 we can find
a metric g. on M with r(g.) < a (resp. s(g.) < a ), g =go on M\ U and

llge — gn”cga(M) <€

Notice that the Theorems fail for Ric®*(M) resp. S>%(M) (with « > 0 in Theorem A
and C). S”>%(M) usually has a complicated topology: i(S”*(M)) # 0 for certain i > 0
(cf. [LM]) and Ric”*(M) is never C?-dense in M(M) acc. Bishop’s comparison theorem.



There is some conceptual point of view, which can be recognized as an application as
well as a motivation of the preceding results. Namely the theory of & -principles (=
homotopy principles) for partial differential relations as introduced by M. Gromov (cf. [Grl]).
We roughly describe this notion (details, cf. [Grl] Chap. 1): A solution of a differential
(in)equality can be viewed as a section of some fibre bundle over the underlying manifold,
which & -jet fulfills this relation imposed on the % -jet bundle of jets of germs of sections.

Now we could start from a section of this k -jet bundle which pointwise fulfills the (in)equality
and try to get an actual solution from this “formal” solution by a path of sections in the & -jet
bundle consisting (at least) of “formal” solutions and the endpoint is a real solution.

More generally, we could embed the space of solutions into the space of formal solutions and
asked whether the first space is retract of the bigger one (with some deviation from [Grl]),
which reduces the problem to algebraic-topological obstruction theory.

If this is true we will say the relation fulfills the A -principle. This sounds fairly strange from
the point of view of general P.D.E.’s and one expects that the A -principle is not fulfilled
in all non-trivial cases. But indeed there are some important and geometrically significant
differential relations which obey the & -principle (cf. [Grl1], Chap. 1, for examples).

In this paper we get from our Theorems an unexpected new “class” of differential relations
which fulfill this principle:

Corollary E. r(g)(v) < a and s(g) < a considered as differential relations imposed on the
2-jet bundle of germs of metrics fulfill (all senseful forms of) h-principles.

There are some remarks in order: There are different versions of A -principles; here we get
the parametric and the C° -dense h -principle as well as the h -principle for extensions (cf. §
6 and [Grl] for these notions).

Next we give an outline of the paper: It is divided into three parts. The main part (part I =
§ 2-6) contains the proof of Theorems. Part II = § 7-8 resp. part IIl = § 9-10 are devoted
to the proof of some technical results used in part L

In § 2-3 we will obtain three results: the Hausdorff-density, the CO-density (using results
of part III) and certain deformations which will prepare the metric for our main construction
in § 4: Here we will produce negative (Ricci) curvature, i.e. deform the metric continuously
into some more negatively Ricci curved one. This is the philosophical core of Theorem A
and C which are obtained in § 5 and makes possible to derive the A -principles in § 6.

Part II contains a method to concentrate negative (sectional) curvature inside a ball of negative
Ricci curvature. In Part IIT we construct certain metrics on R™ used in § 2: In § 9 we refine
our construction presented in [L2] to get metrics on R®, n > 4. § 10 covers this construction
on R3.

Remarks.

1. In [L3] we gave a proof of contractibility of S<*(M) using completely different
(namely analytic) techniques. It should be helpful to study that paper before reading
this one, since it is very transparent and will be instructive to understand the main
problems.

LiAs {,!;{



2. The Hausdorff-density result was already announced in [L1], the other Theorems in
[L2] and [L3].

Part 1. Proof of Theorems
§ 2. Standard Deformations and Density

First we recall some results from [L2] often used in the current paper. Then we will give
proofs of our density results.

1. Let g some metric on R x M™, n > 2, M™ closed and eduipped with some fixed
reference metric gjs and assume that g fulfills

(i) (gr+9m)(v,v) < K? - g(v,v), v € T(Rx M)
(i) llglles < K

for some constant K > 0 and the C?3-norm of the iterated covariant derivative
w.rt. gr+gpy on Rx M denoted by ||||cs- Furthermore consider Fj, : R — R2?
for d,s > 0 defined by Fy,=0 on RS F,,(t) = s-exp(—d/t) on R2O.

Proposition (2.1) (cf. [L2]): For each b > a > 0 there is a constant ¢ > 0 depending only
on a,b, K, (M,gyp) and n such that for d > c andany s > 0, v # 0 :

orir(@mes)or-ran < {2, s 3 i

2. Next we will get Besicovitch type coverings not only on a fixed Riemannian manifold
(M, go) but on a compact family K C M(M) : There is a radius r(K) > 10 and

for each § > 0 some mg(6, K) such that for each m > mq there is a discrete s:ubset
mig

A(m,K) C M and a constant ¢(K) such that for each ¢ € K and 'expp
exponential map in p wot m?.g
(i) exp;,"z'g is a diffeomorphism of Bjggo.ra()(0) C (TpM,m?-g,) onto its image
*
and H (eJ\cp;,"‘2 9 ) (m?.g) —m?. g, < 6, independent of p € M

C?,,z.,,(Bloo-fﬂ(x)(U))
(and ¢ € K and m > mg )

(i) dmag4(a,b) > 10-r(K) for a # b € A(m, K)
(iii) U (Blo-rz(K)(a)’mzv'g) =M
a€A(m,K)

(iv) #{a € A(m, K)|(Bso.,2(k)(a),m? - g) 3 z} < e(K), independent of z € M, m >
mg and g € K.

The proof relies on some simple combinatorics and is contained in the Appendix of [L2].

3. Recall from [L2] that the various existence results of metrics with Ric < 0 were
sponsored from the following



Proposition (2.2) On R™, n > 3, there exists a metric g, )vith 7(gn) < 0 on B;(0) and
On = GEucl, outside.

This is enough to prove the Hausdorff-density (see below), but the C° -density will rely on
Proposition (2.3) For each € > 0 there exists a metric g, . on R*, n > 3 with r(g,.) <0
on B1(0),"gne = gEuci. outside and ||gne — gEucl. ||Cgsw‘ Ry < &

The proof is presented in part IIL

4. Combining 1.-3. we can recall the construction of metrics with Ric < 0 of [L2]
in a presentation designed for density as well as for contractibility results: Hence
let K C M(M) be compact and go € K, then we can define for each subset
B C A(m,K) (from 2.):

(1 - h(dmz-go (ps z““{))) ’ (exp;n .go)‘(I;(gn,e)) + h(dmz-go(p: td)) -m? . go
G(QO:gn,saB;IBam) = on Bg(p),p € B

m? - gy elsewhere

with A € C®(R,[0,1]) with A = 1 on RZMS, A = 0 on RS and Iz =
{Ip|p € B} where I, is some linear isometry I, : T,M — R". From this we get
the central metrics (r € (0,50 - r2(K)[) :

g(gﬂygu,EvB$IB$myra d,-S) = H exp (2Hr ' Fd.s(z +r - dmz-go(p:idM)))'G(go’gﬂ,e:BaIBtm)
pEB

with H,(id) = H(id ~ r) for some H € C*(R,[0,1]) and H =0 on R2M H =1
on R=SLS
Proposition (2.4) (cf. [L2]): There are dy,sq > 0 (depending on € ) such that for
each d > dy, s~ > 30'1 there is a mo(K,gne,d,s) such that for each m 2>
mo, r(9(g0,9n,e, B, Ip,m,7,d,3)) < —c forsome c = ¢(d,s) > 0 independent of K,

c>0 in (i) (¢ = 0 in (ii)) if one of the following conditions is fulfilled:
i) KCc M(M),B=AmK),g € K,r = R(K) :=20-r*K), or

(i) K C Ric<®(M), B C A(m,K), g0 € K and r € [0, R(K)].

5. (2.3) and (2.4) almost immediately imply

Corollary (2.5) Ric<®(M) and therefore S<*(M) are C°-dense subsets of M(M) for
each a € R.

Proof: Let go € M(M) any prescribed metric and é§ > 0 given. Then we can find from
(2.3) (and (9.1)) some suitable small ¢ > 0 and large m such that:

1 é
Wa(yo,gn,e,fi(m, {90}),14,m) — 90 <3

Con(M)



Furthermore acc. (2.4) we can find for each > 0 a small s > 0 such that for m >
mo({go},gn,g,do,s) :

@ 1< I exp(Hrp)) Fios(2+ RB({g0}) = dmago(pidn))) <147
pE€A(m,{g0}) ’

(i) 7‘(-"%:- : g(gorgn.hA(ma {90})!114’va({90})!dov‘g))(u) < —c: m2’ 4 5& 0.

Hence for suitable small 7 > 0 we have

< 4.
Con (M)

1
|25 -0, A, 501), Ly, Rl {0y o 5) =

Furthermore the smaller é > 0 is chosen the stronger negative gets the upper bound in (ii).
O

This argument easily extends to the following local version:

Corollary (2.6): Ler go be a metric on M, v(g9) < a on M\ S for some closed subset
S C M, UDS an open neighborhood and € > 0 given, then we can find a metric g, on
M with r(g.) <o on M and g. = g0 on M\ U and “g,—go[|cg°(M) < €.

For the proof one roughly takes U N A(m,{go}) instead of A(m,{go}) and argues as in
(2.5), to get the precise argument (which also works in the non-compact case by exhaustings)
combine Theorem E of [L2] and its proof with (2.5).

The interesting fact is that (2.3) is not needed to prove the following weaker approximation
result:

Proposition (2.7} Ric<*(M) and S<°(M) are dense in M(M) w.r.t. Hausdorff-topology
for each o € R.

Recall that the Hausdorff-distance dy between two metric spaces M, M> is defined as
dg(My, M;) = Infimum for all metric spaces M and isometric embeddings f; : M; - M
of

inf {f;(M;) C ¢ — neighborhood of f;(M;), i,j =1,2}.

£

Now use the following lemma which obviously implies (2.7) for closed M from (2.4) (i).
In the non-compact case one adds some exhausting argument.

Lemma (2.8)
(i) Let be g some metric on M, f € C®(M,R2°), then we can find for each ¢ > 0
a §(diam(M, g),e) > 0 such that for supf < &, g1 = e/ and g, = g fulfill
dg((M,1),(M,2)) < e.

(i) Let be g and gp, metrics with Inj(M,g) > R > 5-r > 0 and such that for
each pair (R,r) there are finitely many balls (By(pi),g), » > 0, p; € Ip, with
disty(B,(pi), Br(pj)) > R for p; # p; and diamy, (B,(pi),g) < c¢-r for some
c=c(M,g) > 2 with g1 = g2 on M\ B:(pi). Then there exists for each € > 0
some constant p > 0 depending only onlM,g,c and ¢, such that for < p and
9 =GRy 92 = g dg((M, 1), (M, 92)) < e.



Proof: In both cases we can use explicit embeddings into (R x M,gr + (k- g1 + (1 — k) - 92))
for some h € C*(R,[0,1]) with A =1 on RS®, h =0 on R2%® If h = h(§) resp. h(p)

and a = o(6) resp. a(p) are chosen suitable (namely: o? = (€2 — 1) - diam(M, g)* resp.

o =B2+2-B-(r+2) diam(M,g) for f =3 .c-p-((x +2)-diam(M,g) +1) asis

obtained from simple calculations) we can take fi(z) = (0,z), f2(z) = (3¢, 2) and check

that the f; are isometric (in the sense of metric spaces) and a — 0 for 6 resp. p — 0.

(1) is quite obvious,
(i) relies on the fact that the distance between two points on (M, gr,) converges to the
distance on (M, g) if p > 0 is tending to zero. Details are left to the reader.

Hence: in (i) and (ii): dg(fi((M,q1)), f2((M,g2))) < 4a — 0.
O

The philosophy of these approximation theorems is that metrics in Ric<*(M) can be
crumpled (cf. also “bendings” in [LA4]) such that even positively curved metrics can be
approximated. It is worth to recall that the Ricci curvature gets the negativer the better
we approximate.

On the other hand it is clear from Bishop’s comparison theorem that metrics in Ric”*(M)
cannot be “uncrumpled” to approximate negatively curved ones.

§ 3 Nest-Building

Here we will prepare given metrics with Ric < 0 to “produce” negative Ricci curvature
namely we will build some kind of nest.

Proposition (3.1) Let 7 : S* — Ric<%(B) a continuous family of metrics on some
n -dimensional ball B and p € B. Then for each R > 0 we can find a homotopy
Tg : [0,1] x ¥ — Ric<%(B) with:

(i) Tr(0,z) = r(z) on B for each z € S¥ and Tg(t,z) = 7(z) on a suitable
neighborhood of 0B

(ii) there are A,r > 0 and a continuous family of isometries I, I, : (B.(p), Tr(1,z)) —
(Br(0), A=2(R3{gnyp.))) with I(p) = 0 such that r- A > R and B.(p) C B. (
h, denotes the homotety hx{z) = A-z on R" ).

(In other words the deformation yields Ric < 0 - metrics on B such that B contains (after
scaling by A? ) an arbitrarily large hyperbolic ball.)

The proof is based on two main ideas:

1. Choose suitable coordinates near p and use the linearity of curvatures of g in the
second derivatives of g. This mainly uses a method due to L.Z. Gao invented in [G]
and yields (3.1) without estimates on the radius of the desired hyperbolic ball.

2. Therefore we make a subsequent deformation (“‘concentration negative curvature”
cf. part II) starting from an arbitrarily small hyperbolic ball B, (0) C H", and get
for any R > 0 a continuous family g¢, 0 <t <1 on B, (0)



(i) Ric(g) < 0 on B, (0)
(i) go = ghyp On B, (0) and g; = ga,,. near 9B,,(0)
(iii) (B,A? - g1) is isometric to (Br(0),gnyp.) for some ball B C B (0).

Details are presented in part II = § 7 and 8. Thus we are left to make precise the first point:
Here we mainly have to check the following simple '

Lemma (3.2) Ler F : S¥ — M(M™) a continuous map, gy some reference metric on M
and p € M, then there is a radius ro = ro(p,gm, F(S¥)) such that there are defined n
functions z; : (Br,(p),gp) — R with z; depending continuously on z € S* (for fixed F
) such that:

(i) zi(p) =0 for each ¢ € Sk and i =1,---,n

Gi) g7 = F(z) (5% 3% ) = &ij for each = € S* in p

(ifi) S5 = 0 in p. 1 < 4,5,k < n for each z € S*.

(In other words there are defined geodesic coordinates for each metric F(z) on By, (p)
depending continuously on z. )

Proof: Let U be any coordinate neighborhood, y; : U — R, 1 £ : £ n coordinate

functions with y;(p) = 0 and (Bgr(p),gm) C U, then there is a rp €]0, R[ such that

zi = yi+ 5 5 I (z)yiyx are coordinates with z;(p) = 0 on (B, (p),gn) for each z. Here
Tk

I‘{k(z) denotes the Christoffel-symbol w.r.t. metric F(z) and the coordinates y;.
Denote by G5 = g, 2% ), then Gjj fulills 522 = 0 in p for each z € 5%, 1 <

1,7,k < n (as is easily checked).

Thus we are left to make linear transformations (which depend continuously on z ) of these
coordinates to alter G7; to a diagonal matrix (namely the identity matrix). This is possible due
to the fact that G7; is positive definite and symmetric. These coordinates fulfill the claims.

O
Now we can combine this with the calculations of Gao in [G], to get:
Lemma (3.3) Let 7 : S* — Ric<®(B) continuous, B C R™ an open ball, p € B. Then we
can find a homotopy T : [0,1] x S¥ — Ric<%(B) with

(i) T(0,z) =7(z) on B and T(t,z) = r(z) on a suitable neighborhood of 3B.

(ii) there exists some ro = ro(7(S*)) > 0 such that (B,,(p),T(1,z)) is isometric to
B,,(0) C H", the isometry depending continuously on z.

Proof: Using (3.2) we can look at the push-forward metrics P(z) of 7(z) w.r.t the
coordinates z; = z;(z) constructed in (3.2) on B, (p). Now take some Euclidean ball
B,(0) C R™ constructed in the image of (z;,---,z,) forall z and notice that the Cartesian
coordinates are geodesic coordinates in 0 € B;(0) for each metric P(z).

Therefore we can use the estimates of Prop. (2.5) and its proof in [G] to conclude completely
analogously:



We can find some R; < R €]0, §[ and a cut-off function ¥ € C*°(B,(0),[0,1]) with
Y =1 on Bpg,(0) and ¥ =0 on B,(0)\ Bg,(0), R1, R, and ¥ independent of z, such
that for each ¢t € [0,1] and z € S* Ric({t % - gnyp. + (1 —t) - ¥ - P(z)) <0 on B,(0).
Finally we take the pull-back metrics w.r.t. the coordinate charts (zy,---,z,) and obtain
the desired homotopy.

O

§ 4 Producing Negative Curvature

The key ingredient in our proof of Theorems A and C is

Propeosition (4.1) Let g be any metricon By(0) C R*, n > 3 with r(g) < 0 and R > 0, then
we find some r €]0, %[ independent of R and m > % and a continuous family g1, 0 <t <1
of metrics on B1(0) with r(g:) < 0 and

(i) g0 =g on By(0) and g, = g on By(0) \ B-}(O)

(i) g1 = ¢ on By(0)\ B,(0) and on B,(0) :
1 .
91 = —5exp (2HR - F44(2+ R — dm2,4(0,idp,(q)))) - G(g, gn, {0}, To, m).
Here we can use (3.1), (2.1) and (2.4) (ii) which obviously imply that (4.1) can be reduced to

Lemma (4.2) There exists an R > 3 such that (Bg(0), gnyp) can continuously be deformed
by some family gi,t € [0,1] with go = gnyp., gt = ghyp on Bgr(0) \ Br_1(0) and
Ric(g:t) < 0, g1 = g for the following metric g

g = gr+ f% - gsn-1 on Bg(0)\ Bi(0) = [L,R[xS™! for some f €
C*®(R21,R2%), f=id on [1,2], f =sink on [R~1,R[ and f" >0,

g = gn on B1(0) = [0,1] x S*1/{0} x $"~!
Proof: Let us start with some implication for f € C*(R>% R>%) which is trivially deduced
from [B]:
(*)  f2id, f' 21, & > ¢ > 0 implies r(gr + figsn1) < —c.
Now take some fi € C®(R>®,R>®) with f; = id on ]0,12], f, 2 1, f, > 0 on
R>0, 9:‘:- > k on[14, 18] and f; = sinh on RZE-! for some suitable large R = R(k) > 20.
Thus we get: R.ic(gn+(t-sinh+(1 —t)‘fk)z'g_gn—l) < 0 for each ¢t € [0,1] and on
R>% x S™=1. Next consider

exp (2H - s - exp (-—t—f—s-)) (gr+ fE-gsn-1) on RS x §°1
grR+ 12 gsa-1 on [0,5[xS"!

alk,s,d) = {

with H € C®(R,[0,1]), H =1 on RS!3 H =0 on R2!,
Acc. (2.1) we can find some do > 0 such that foreach d > dy and s > 0 :

Ric(exp (2H - s - exp(—d/t-5)) - gEacl.) < 0

8



on R>%\ [15,16] x S™~1,

This and (*) yield for each d > dy and s > 0 we can find some ko = ko{d,s) > 0 such
that Ric(g(k,d,s)) <0 on R>® x S"~1 k> ko on [0,12JURZ', On [14,16] x S™2% we
recall from the formulas for conformal deformations [B] (1.159 d) it is enough to note:

Hess(gR + fi - gsn-2)(exp (=d/t — 8))(v,v) > Hess(gEua)(exp (—d/t = 5))(v, )

which is clear from [L2] (3.1), since obviously (7o 7‘,) (0) > (ro+,)"(0), (mo 'n,)

(m 0,)'(0), where 7 is projection on R, 4% and v, are geodesics w.r.t. gp + f7 - gs.._:
resp. geua. With 75(0) = 4,(0) = ».

Now consider for t;,t; € [0,1] the following continuous family g(¢,¢;) of metrics on
B12(0) C R™ : g(t1,t2) := t1 - gpual. + (1 — t1) - T} (gn), with Ty, := idge +t2- 10 - ¢ for
some fixed ¢ € R® with [lel|,, ~= 1. Combine our previous result (again) with (2.1) to
get: There are d > do, 5 > 0, £ > ko such that

k. 35.d) = 9@,3,3) on R212 x gn-1
G(t1,t2,%,5,d) := {exp (2H -5-exp (=dft = 5)) - g(t1,t2) on ]0,12[xS""!

fulfills Ric(G(t1,t2,%,5,d)) <0 on R>® x §™! for (t1,t2) € {0} x [0,1]U[0,1] x {1}.
Finally we patch together all these deformation on Bg(0) for R = R(k) as above:

((gr + (5t~ fg+ (1= 5t) sinh)?- ggnr, € [0,1]

9(k,5(t - 3) - 3,d), _ te (53]

gt = { G(I =95 (t_ 3) 1’5’312)’ te [%’%]

G(0,1-5- (1= 3 E5,3), te (3.4]
k,{1-5(t—4))-3,d on Bgr By(0

\ {g( ( (t 93) o-n) B,(0) A )}’ te [%’1]

a

Remark (4.3): Here we will mention a different approach: Let us assume the existence
of metrics g(g,k) on R™, n > 3 with |lg(¢, k) — gpuarllcr < &, 9(g,k) = gEua. oOR
R" \ B1(0) and Ric(g(e,n)) < 0 for each £,k,n > 0.

If we choose & = 2 and a suitable ¢ > 0 it seems as if we do not need to ‘‘concentrate
curvature” since the above argument applies in the same way to B,.(0) for small enough
e > 0.

But there is a drawback: r cannot be estimated from below, hence we get no lower bound
for € > 0 and this destroys the argument of the proof of contractibility on Ric<*(M) in
§ 5 below. :

On the other hand we can preserve the philosophy of “concentration” using g¢(e, k) as
follows: produce iteratively disjoint balls “(B1(0), g(, k)" for some possibly small but
fixed ¢ > 0. Scale the balls to get place enough to produce as many balls as are necesary
to hide ¢ - g, + (1 —¢) - grua. behind a Ric < 0 — veil consisting of these balls, i.e. we
can deform gg,q. into g, in Ric<®(M) analogously as in (4.2) above. Subsequently (for
t = 1 ) we can work backwards and remove these auxiliary balls and arrive at the same
metric as in (4.1).



Of course we should say that the existence of g(e, k) is a non-trivial (but doubtless solvable)
problem on itself. Therefore it is left to the taste of the reader which is the better or nicer
way: In this paper we perform the concentrating argument.

§ 5 Contractibility of Ric<*(M)

Ric<*(M) resp. S<*(M) are open subsets of M(M) w.r.t. C* -topology. Hence they
are Fréchet-manifolds. Acc. a version of Whitehead’s second homotopy theorem due to Palais
(cf. [P], Theorem 15 and Corollary) contractibility of Fréchet-manifolds and the vanishing of
all homotopy groups are equivalent conditions.

Therefore we start with any map f : S¥ — Ric<*(M) and construct an extension, i.e. a map
F : B¥! o Ric<*(M) with F = f on @B*! = g%,

This problem can be reduced to the case a = 0 as follows: Assume a > 0 and take any
extension F : B¥*! — M(M) of f. Scale F by a large constant and join for each z €
Sk, f(z) and ¢*- F(z) linearly. This yields a map F : B¥*1U S* x [0,1]/ ~— Ric<*(M)
if ¢ is chosen large enough ( ~ means identification of 9B**! = S* and S* x {0}
which yields again B*¥+1 ). Hence we get our desired extension by some reparametrizations.
Thus the result is trivial for « > 0. Next assume « < 0 and presume contractibility of
Ric<®(M) : Start with f: S¥ — Ric<*(M) C Ric<°(M). Thus we can find an extension
F: B¥1 _, Ric<°(M). But now we can use the same scaling argument as above (for some
small ¢ >0 ) to get F: B¥! — Ric<®*(M). Hence it is enough to prove

Proposition (5.1) Each continuous map f : S¥ — Ric<®(M) admits some continuous
extension F : B¥! — Ric<o(M).

Proof: Let BY¥+! = B5(0) C R*!, S* = 3B5(0) and F, : B¥*! - M(M) the following
trivial extension: Fix some metric gy € M(M) and define for z = r-z, z € ¥, r € [0,1]:

_fQ@=-7)-g+7 f(z), z€ Bi(0)
filz)= {f(z) on Bs(0)\ Bi(0)

Now (4.1) and (2.4) will be used to shift /; into Ric<"(M) :

[ - 9(Fi(2), 9, A(m, 1 (Bo(0)) ), Laym, B Fi (Ba(0)) ). d, 5)
on B3(0)
Fy(z) = 4 3 9(1(@),gm, A(m, Fi (BalD)) ), Tam, (1211~ 2) 2403 12l (F (B:(0))).d,5)
on Ba(O)\Bz(O)
€ Ric<®(M) on B4(0)\ B3(0), seebelow
| f(z) on Bs(0)\ B4(0)

The definition on B4(0) \ B3(0) is acc. (4.1):

Use it on each ball Bs(p) C M, p € A(m, R (32(0))) for f(z) € Ric<®(M) : Notice
that F5(z) = f(z) on Bs(p) \ Bs(p) C M for z € 3B3(0) c B*¥*! and join Fy(z) with
f(z) acc. (4.1). Finally we have F3(z) € Ric<’(M) on Bs(0) \ B4(0) by definition and
using (2.4) we can assume d,s and m chosen such that Ric(F3(z)) < 0 on Bj;(0).

a
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Again (cf. (2.6)) the corresponding local (one dimensional) version is easily obtained from
partial coverings:

Corollary (5.2): Let go and g, be metrics on M with r(g;) < a and g9 = g1 outside some
closed subset S,U O S an open neighborhood, then we can find a continuous path g joining
go and gy with r(g;) < @ and gy = go = g1 on M\ U for each t.

Some extensions (5.3): 1.The same arguments work for scalar curvature, i.e. the contractibil-
ity of S<*(M) can be derived along exactly the same lines. On the other hand this result
was proved in [L3] in a much shorter analytic way. This should emphasize the importance
of a (currently missing) strong analytic theory for Ricci curvature.

2. Let G C Diff(M) be a finite subgroup, then the proof above can be performed in a
G -invariant way and yields: Ric<*(M) N Sg(M) is contractible,

with Sg(M) := {glg = f*(9), f € G} = set of G -invariant metrics for G # {id}

and Sgay(M) := {glg = f*(9) = f =id} = set of asymmetric metrics.

3. The above arguments can be adapted to the space Ric™*(M) N Ric<%(M), i.e. those
" metrics ¢ whose Ricci curvature is pinched by « and 0 (a < r(g) < 0) :

Ric>*(M) N Ric<®(M) is contractible (but not C°-dense in M(M) ).

One can probably show the contractibility of Ric>*(M) N Ric<?(M) for some a < § < 0

with large quotient 7 > ¢(n), on the other hand for § — 1 there definitely occur additional
problems, since even the existence of such metrics does not hold in general.

§ 6 Curvature A -principles

As indicated in the introduction differential relations which fulfill the & -principle can be
understood from solvability problems in algebraic topology. This unusual behaviour of
analytic inequalities turns out to occur for Ric < & and S < a.

We start with some general remarks and notations: Let us denote for some smooth fibration
7 :X — M, X* the space of k-jets of germs of smooth sections of 7 and 7 : X*¥ - M
the induced fibration.

A holonomic section ¢ of 7 is a section of m; which is k-jet of some section f of .

A subset R C X* is called differential relation and a section of = is called a solution of
R if its k-jet belongs to R.

Definition (6.1) Denote by Sol(R) resp. C(R) all solutions of R resp. all sections of =y
lying in R (= formal solutions) and Ji : Sol(R) — C(R), Ji(f) = k-jet of f. R fulfills
the (parametric) h-principle, if Ji is a weak homotopy equivalence.

In particular if R fulfills the & -principle, then each formal solution can be deformed to
‘some solution (and the path also consists of formal solutions). Sometimes it is of interest to
preserve some properties of the prescribed formal solutions:

Definition (6.2) R fulfills the C®-dense h-principle if for any section f of = and any
wo € C(R) with mi(wo) = f we can find a family of sections o1 € C(R), t € [0,1] with:

(1) ¢ is holonomic
(i) ¢ liesin RN r;I(U ) for some prescribed neighborhood U of f.

11



Obviously restricting conditions on the curvature can be considered as differential relations
imposed on the space of 2-jets of germs of metrics.

It is quite easy to analyze the spaces C(R) for R = 2-jets which (formally) fulfill curvature
< a (resp. > a ) (cf. [Gr2]):

Lemma (6.3) The space C(R) is weakly contractible and non-empty.

Hence we see from Theorem A, since each map between (weakly) contractible spaces is a
weak homotopy equivalence.

Corollary (6.4) Ric < a and S < «a fulfill the (paramerric) h -principle.

On the other hand there are manifolds which do not admit a metric with negative sectional
resp. positive scalar curvature. Hence Sec < 0, Sec > 0, Ric > 0 and S > 0 do not fulfill
the h -principle acc. (6.3) on these manifolds.

But there is a striking result of Gromov [Gr2] which makes clear that these curvature relations
are less restrictive in the non-compact (but non-complete) case:

Propaosition (6.5) On any open manifold all the above relations R fulfill the (parametric)
h -principle.

The philosophical difference between (6.4), which also holds for closed manifolds and (6.5) is
the “local” nature of Ric < a resp. § < o which makes possible to compensate the positive
curvature arising from deformations (cf. proof of (5.1)) used to obtain m;(Ric<*(M)) = 0.
In the open case these unpleasant by-products can be shifted to “infinity”, which allows to
prove (and believe) (6.5).

Next we will come to a problem which even more makes use of the local nature of Ric <
and S < a, namely the C°-dense A -principle: Sec < 0, Sec > 0, Ric > 0 and § > 0
do not fulfill this A -principle: Indeed standard arguments like Bishop’s comparison theorem
prevent e.g. Ric > 0-metrics to approximate a negatively curved one, this is true for open
and closed manifold. On the other hand we get

Proposition (6.6) Ric < a and S < « fulfill the C°-dense h -principle.

Proof: Let gy be any metric on M,U any open neighborhood of go in I'(@*T*M)
equipped with usual C°-vector bundle topology. Furthermore let wo be a section of R
(ie. wo € C(R) ) with wo(pg) = go and consider its projection ¢g = m21(o) into the
1-jet bundle. Acc. Theorem B we can find some g € Sol(R) with ¢ € U and we take

s = (1—38) - do + s 1jet (g), w-hog. W ir convex,

It is easy to find for each (single) 1-jet 7; of a germ of a metric near some point p € M a
2-jet jp with m231(j2) = j1 and j2 € R.

This is due to the linearity of Ric and S in the second derivatives of the metric, which also
implies that the space of these 2-jets form a convex set.

In particular we can find for each s € [0,1] and each p € M a j(s,p) € R with
79,1(j2(8,p)) = 1,. Indeed we can assume j;(s,p) to depend continuously on the parameters
since elementary obstruction theory implies the existence of global sections of fiber bundles
with contractible (namely convex) fibers. Finally we take ¥; = (1 —t)- @+t 72(0,p) and
W, = (1 —t)-j2(1,p) +t - 2-jet (g) which also belong to C(R) due to the linearity in the
second derivatives. Combine the paths to get the claim.
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a

Remark (6.7). We have omitted the so-called h -principle for extensions which can be
checked in the same way. We refer to [Grl], Chap. 1 for these notions and leave their
verification to the reader.

Part II Concentrating Negative Curvature

In the next two chapters we will present a technique to obtain those nests used as start
metrics for producing negative curvature in part I This cannot work in dimension n = 2
acc. GauB-Bonnet.

§ 7 Bending of curves in Ric < 0

Effective deformations, as used in our context cannot be obtained by general analytic argu-
ments. Therefore we will start with deformations leading stepwise to additional symmetrics.
These structures can be used to perform concrete (inductive) constructions.

We will often come across the following situation: we are given an open set U/, a small
open neighborhood V' of U and a continuous family g¢, ¢ € [0,1] of metrics defined on
U which fulfill the following conditions:

(i) gt =g0 on V forall t €[0,]1]

(i) Ric(g:) < 0 (resp. < 0)on U forall t € [0,1].
In this situation we will just say:
gt isa Ric £ 0 (resp. < 0 )-family defined on U (and fixed on V ).
Notice that a Ric < 0-family g; on U (fixed on V ) with Ric(gp) < 0 on U can easily be
deformed into a Ric < 0-family g, on U fixed on V and Gy = go on cf. [L2] § 2. This
will be used here and in § 8 without further comments.
Now let us start from a circle v € H®, n > 3. We will bend a tube around 4 making it
geodesic preserving Ric < 0 :
Proposition (7.1) Let B;3,(0) CH", n >3, ¥ C 0B,(0),(r > 0) a plane closed circle, then
we can find a Ric < 0-family g:, on Bs.(0) fixed on Bs3.(0) \ B2, (0) with

() go = gnyp. on Bz (0),

(i) g1 = L% - cosh®r - gg1 + gg + sinh®r - ggn—2 for some L > 0 on a small tube
U= 5!x[0,Ry[xS""%/ ~ around ~ (in particular v is geodesic).
The presented proof relies on a (relative) stabilization process for curves which already are

geodesic. The geodesic curvature of v above will be handled as perturbation which can be
overcome if we use the process in a suitable way.

We start again from Gao’s deformation already used in § 3 to deform gyyp restricted to a tube
V C B (0) CH", V = 81 x B3,(0) C S'xR™! of v(= S! x {0}), p €]0, %[ as follows:

Lemma (7.2) For each ¢ > 0 there is a Ric < O-family g on V with g« = gnyp.
on S' x B;,(0) fixed on S x B;,(0) \ B2,(0) and ||g: —goHCoh < € such that g1 =

13



2
n—1

(Co +c1-T1+cC2 Z .7:;")) +gs1 +gR+r2 + ggn-2 ON St x BaR(O) forsome R G]O, ‘:-[and
~

some suitable constc;nts co,c2 > 0, 7 € R.

(7.2) clarifies our problem: Namely the presence of c; - 1 which corresponds to the

(unchanged) geodesic curvature of 4. The proof of (7.2) is again easily obtained from [G].
QOur actual bending starts with the base metric ggyq.. The following result will be useful:

n-1
Lemma (7.3): Let f =co+c1-T14+c3- 3, z° defined on B3p(0) C R*™!

i=1
(i.e. Hess (gEucl.)f = 2¢3 - gEucl.), then there is an € > 0 such that for each metric g on
B3p(0) with ||g = gEnailley, < €
Hess(g) f(v,v) > c2 - gEucl. (¥, ¥).
Moreover there exist constants k(n), e(n) > 0 depending only on the dimension n such that
if € € [0,e(n)[:
[Hess(g){c1 - z1)(v, v)| < |e1] - k(n) - gEuar. (v, ) - €.
Proof: We can consider each monomial separately (since Hess is a linear operator)
1. Hess(cp) = 0 inany case, thus look at ¢;-z; : Hess(g)(c; - z1) = (¢1 - 1 07,)" (0) =
“ep - (m1(w))"(0) = (where m; denotes the first projection R® — R, v, is the
geodesic w.rt. g with 4,(0) = v) = ¢ - (Vv ¥ m), since 7, is geodesic.
Now a simple calculation (cf [L2], § 2) yields (for some constant k, > 0 )

l9(Vy Vm1,v)| < k- EI il - gEwa. (v, v).

IJ,
For e(n) small enough we can conclude from ||g — gEyal. "01 < & with
e € [0,e(n)[: II‘" < kn - ¢, hence define k(n) := ky - Tc',. and obtain

[Hess(g)(c1 - 21)(v, )| < lot] - K(n) - gBua (1) - €.

2. Now look at c; - 77 :

Hess(g)(cz - 2¥) = ¢z - ((ﬂ'i 0 "Yv)z) "(0) =

=262+ ((ri07%,)'(0))" + 22 - (mi 0 1)(0) - (mi 0 1)"(0) 2
> 2¢; - g(Vmi, v)° — 2¢3|mi 0 7, (0)} - |(n) - gEuar.(v,v) - €] 2
> 2 - |dmi(v))? —c2 - ky(n) - € - g(v,v), forsome ki(n) >0, (R fixed).
3. Now add the monomials to get for some constant k2(n) > 0 Hess{(g)f(v,v) =
2c2 * gguat. (v, v) = (la] + e2l}k2(n) - ggua.(v,v) - €.
4
We examine a special deformation of the base metric ggyq. :

Lemma (7.4) For each ¢ €]0, &[ there exists a h = h, € C®(R,[0,1]) with h = 0 on
RSOUR22R h =1 on [§, R] such that for each s € [0,1] :

(1) HQR +(r+s-h '1'2)2 * §§n-2 = GEucl. < k-s for some constant k > 0

| teact, (Bar(0))
independent of s and e.

G) (h-r?)" 20, 0 < (h-r?) < 4r on [0,R]
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( h is only used to prevent the metric from getting singular in 0, the interesting part is s- 7% )
Proof: Define some function F € C*°(R>? R2%) with the following propertics: F(r) = 2r

on RZ%, F =0 near 0, F' > 0, F(r) < 4r, fF(T)df' = (%)2 and choose A(r) =
0

4 (%)2 —j‘F(r)a‘r) and some fixed #; € C*(R,[0,1]) with A; =1 on RSR %, =0

on R22R and define h :=h - &y, h fulfills (ii) by definition, thus we are left to prove (i):

“9R+ T+S'h‘T2)2'gSn-i—gEd[ =
’ C:E“. (Bsr(0)

|(2shr® + s*h?r%) S"“’“c1 (Bm(o)) A
sup |2shr| + sup |s? - h%r 2| + sup|2sh| + sup|2s2h? - 7| + sup |2sh'r| + sup|2s?h'r?|
( sup = supremum on [0,3.1_2] ) < k-s, for some k > 0, since |h| < 1, [M'r] <S4R (we
can assume R < 1 ) and A; is fixed.
a
Later on we will use some scaling by M? and perturbation of ¢ therefore we combine (7.3)
and (7.4) as follows (note 7 = (22 + .- + mﬁ)% ):

n—-1 2
Corollary (7.5): gf.e,M = (ﬂ'co+ﬁ"$1+ﬂ' 3 I'?) -gsr + gr + (7‘+8°h,,-r2)2'
1=1
gsn-2 defines for each € > 0, M > 1, B €]%,2( a continuous family of metrics (in s ) with
(B gie.M =g of(7.2) for s=0 or s € [0,1] and r > 2R

(i) r(gﬁc'M) < _'E% on S x B3g(0) for s € [0,s0] and each ¢ E]O,-‘g-[ for some
suitable small sy = so(M,co,c1,¢2) > 0 and some ¢ = ¢(cp,c1,¢2) > 0 with
7(go,e,1) < —6C ( so, T independent of € )

Proof: (*) r(gn + (r + .s;h,rz)2 -gsn-z) <0 on [0,R] x S™2,

since (r + sher?) > 1, (r+sher?)” > 0 (cf. [B] (9.106)).
n—1

Now let us abbreviate gr+ (r + s - he - 72)%-gga-a by G(s,¢) and B-cot+ -zt Y T
i=1

by Pg{co,%,7%) or often just by P.

ok —

" 16(s:) = gmncilleg,, ((gaR]xsm-2) 2, ©

as is easily seen from the definition. (*), (**) and (7.4) imply (7.5) as follows:

From (7.3) we get on B3g(0) :

c 1
(***) Hess(G(s,€))(P)(v, ¥) 2 375 * 9ual (4, ¥) = 5 Hess(gguct. )(P)
for each s € [0,sq], € €]0, £[ and suitable s, = 3o (%, ﬂy) > 0.

Thus the submersion formulas (cf. [B] 9.106) for the Riemannian submersion =
(St x B3gr(0), P? - gs1 + G(s,€)). = (B3r(0),G(s,€)) imply for vertical resp. horizontal

v # 0 (,; = dw(u)/ndw(u)u)
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(680 (0) = (Gls, () - =N 1

Q < r(G(s,e))(dn(v)) - IH"”("‘;“ 1B 1,y

c c

< H(Gls, Ndr () = 3207 €~y

(i) holds for s € {0,s4], (i) holds for s € [0,s¢] for some small sq €]0,s,] such that

Ir(G(s,€))(dn(v))] < 345 acc. (**)if dn(v) € T(Bsr(0)\ B_?(O)). For this so the same
conclusion holds on Bp(0) since r(G(s,¢)) (dw(v)) <0 acc. (*) and Hess fulfills (***).

g

Thus we can start from some metric P? - gg: + G(s,¢) and we will use the new base metric

G(s,¢€) to perform deformations of the S'-metric: we define for ¢; =0 and § €]0, %] for
some ro €]0,Z[ (and In = logarithm):

co + on R>T
Bt { o

on (6, 7o)

d+#; r?2  on [0,4]

¢ and (afterwards) d are chosen (uniquely) such that F”"l" 5 gets continuous. Furthermore
there are some mq(co, #7) > 0 and §(m) > 0 such that for m > mq and 6 €]0,6(m)) :
de>0, (x) 24 - 6 < -l _lanodl < 96, .1 and FY; > d.

Now it is completely elementary to find smooth functions Fm sur B €]0, g-[ such that:

@) FM, = FM, outside of 16 — 4,6 + p[Ulro — p, o + ul,

(ii) FM5+;1>F 5“>FM5 on R>?, F:“‘g“>F"M on R\ {6,ro}

(i) If ro is small (which can always be assumed) and mg is large enough (both
depending on u ) then: co—p<FM5p; c— Il o d <y p

m

Lemma (7.6): Additionally we can choose Fn, 5, such that:
Hes(Glo, ) (Pl )0 2 { et e S)( i) on oo e
Proof: Let f be a smooth radially symmetric function on R", r(z) = ||z|| the Euclidean
distance from O, then we get for v with ||v]|g(, ) =1 : for the radial function F' on R.
Hess(G(s,e)}(f)(v,v) = Hess(G(s,€))(F or)(v,v)
= F'(r(=)) - ((r o %) (0))" + F'(r(=)) - (r 0 )" (0),
where v, denotes the geodesic w.r.t. G(s,e) with 4,(0) = v. From (7.4) (ii) we immediately

get (ro+,)"(0) > 0. On the other hand we get from (*): for each x €0, 2[ we can find a
smoothing with F-.¥ > F'M s on R\ {§,} and

m.bu

m6 {(c 'I'"') on Jro — u, 7m0 + f
T+ 2) on ]§—p,6+
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which implies (7.6).
Lemma (7.7): On B,,(0)\ Bg(0), for s €]0,1[ and m = X we have:

r((c__ r .rin,-)z g5 +G(3,5)) (v) S ~5—

Proof: The Ricci curvature will be estimated for the three eigenspaces corresponding to
R: (1), S*:(2) resp. S™2:(3). Abbreviate: F=c— Ll G=r+s.r%:

W~ -(n-2 G <-F -G, since G" 20
@~ (-2 & F<-F-F F osince F, G20

" — '2 ! 1 "
(3) —%—+(n—3)-1-1——gl)--%--%5—%-, since G' > 1, FF>0
Thus using co—p < F < co+p, F'=-LInr+1), F'= -5, ' =1+2s-r, G" =2-5
we get:

£+ 8

(1) < Ixr _ 235 <« 3 23 < _T

— co—p r+ari — Ir
= —Z(Inr+1) . (1+42er)
@ = Co‘-# - lcn+.u r+aré < ( SL Im‘-i- 1)) < -3
-2 L]

@) =5 s

]
n—1
Next scale (S1 x Bgr(0), (co +ezrtepr Y xf) -gs1 + gr + 12 'gsn—z) by some con-
1=1

stant M > 0 and consider S x Bp(0), B as well as the Euclidean coordinates w.r.t. the

n—1 2

new metric, i.e. S x Bp(0) equipped with M?. (00 +E -t L z‘f) -g$t + gEucl.-
i=1

Now we take the geodesic curvature of 4 corresponding to ¢; - z; into account:

Lemma (7.8) There are some large M and small sq > 0 such that for each s €]0, so], 6 €
10,6(5)0, €0, ¢ € [0,1] -

r((% -z + F(-’vt))z "gst + G(s,s)) <0

with F(s,t) =t Fj_‘sp +(1—1t)- (co+ fFr-r2).

Proof: We use again the formulas for Riemannian submersions = : S! x Bg(0) — Bg(0) in
[B]. 9.106 to calculate this Ricci curvature for vertical resp. horizontal v # 0 with ||v]| =1
resp. ||dr(v)]| = 1 and get:

- A(G(3,))( S 21+ F (s, t))
(1) e 21%0 for vertical v

(2) r(G(s,e))(dn(v))

_ Hess(G(s, e);% T1+F(st ))(dx(v),dx(v))

gy , for horizontal w.
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Now we can substitute F in the numerators by ¢ (c - '—_I_g_u) +(1=t)-(co + fr - %)
and get this way (acc. (7.6)) the following upper estimates of (1) and (2):

tl'a.t:t:les(e -z,)|
F(a,t)?

1) <2-t
and (7.7)

—22l.t. s~ (1 —t)gfgr for M > My(cy, R), using (7.5)

<t- (2n- |°(‘c':.(:;§’ - "'2'1 -s) <0 for M > M, independent of s

(2) S t- (2139-38(_%r})(&'f:’)(ﬁdr@))' _ '4-[’7) + (1 _ t) . T(G(S,E))(dﬂ'(l/))

Hess( P(co, 5,73 ) ) (dx(v),(dx(v)))
_(1 - t) ' -?zl-}-l‘"(s,f}
2lcy| - k(n)-k-s .9) [
<t- ——]=-(1=-t) -— <
o ( (co—p)-M  4r E=8 3z =0

using (7.3), (7.7) and (7.5) (where F can be considered as P(co,O, ﬁg’) with
perturbated co (for some § )) for M > M,, M; > M, independent of s.

a

Summarizing we obtain the

Proof of (7.1): For some large M and if s > 0, 4 and § > 0 are small enough, then
F(s,1) + 9 does have a minimum zo € Bg(0), ie. S! x {z} is geodesic and we
can find a S!-equivariant isotopy ¢ : S! x Bgr(0) — S! x Bg(0) with i; = id near
S x 8BR(0), 10 = id and i1(S? x {0}) = S! x {20} such that the pull back metrics via i
yield the final deformation necessary to make v geodesic (namely for 23 ).
To get the desired formal structure on a tube U around v, again we use Gao’s deformation
which gives a deformationto U = (S x [0, Ro[xS™~%, L? - cos h?r - gs1 + gr -+ sin A?r - ggn-1)
for some small Ry > 0 which completes the proof.

a

§ 8 Expanding tubes

In § 7 we have bent our metric such that v became geodesic. This additional symmetry
makes our problem much simpler and accessible for some induction scheme. The latter one
uses the following remark:

R", n > 3 contains a closed embedded hypersurface N"~! C R"™ which admits a (non
induced) metric gy with Ric(gy) < 0 and there exists a p € N such that (Bz(p),gn) is
isometric to (B3(0),ggua.) C R :

Namely for n = 3 : take a large flat torus 7% and for n > 4 use Theorem E of [L2] which
says that each manifold of dimension > 3 admits such a metric. Thus take e.g. S"~! C R".
The normal bundle v of N C R"™ is always trivial and we take the following metric on
v = R x N (which has Ric < 0 ): gr + cosh?r - gy. Now identify ] — 5,5[xN C v
with some tube U around N C R™ and assume N C U C Bg(0) ¢ H". Using induction
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(Theorem C in dimension n ) we can deform the hyperbolic metric on B3g(0) continuously
(letting it fixed outside Bg(0) ) such that all metric have Ric < 0 and the final metric gy
fulfills: gf = gr+cos h’r-gny on U =|—5,5[x N. The existence of gy comes from Theorem
E in [L2]. In dimension n 4 1 we will use this, start from (7.1) and can easily deduce:
Lemma (8.1) There is a Ric < 0-family g; on S' x Bp(0) C S! x R®, n > 3 fixed near
S! x 8Bgp(0) and

(i) go = cos R’r . go1 + Ghyp.

(i) g1 = f2 g5 + gr + cosh®r - gy on S'x]| —4,4[xN for some f € C*(R,R>?)
with f(r) = f(=1), " > 0.
These preparations make possible to handle with all dimensions > 3 by the same method,
cf. (8.3) and we will get:
Lemma (8.2) For large m > 1 we can find a Ric < 0-family g on S x[~3,3]x N*™1, N
as above for n+1 > 4, resp. on S! x[0,3] x S! for N = S! and with radial identification
of S* x {0} in dimension 3, with:
(i) go = f% gs1 + gr + cosh*r - gy on S'x] - 3,3[xN
go = cos h%r - gg1 + gr +sin A%r - g1 on S1x]0,3[x S?

(ii) g1 = go near S' x {-3,3} x N resp. S' x {3} x S!

(ili) g1 = R*- —,—cmnl';'"' - gst + gr + -—;——’i",‘:’:"" -gs1 on “S'IX]O,-%R[X.S'1 resp.
g1 = R?. _p_y_exmmr (gs1 + gN) + gr on Slx]ﬁ,“;{i[xN.
This immediately implies:
Proof of (3.1) For dim = 3 (8.2) obviously implies (3.1). For dim > 4 we recall from
[BN] that g; (in (iii)) is hyperbolic with curvature = —m. Furthermore the domain contains
a ball of radius > ;}f‘-, which proves the claim.
0

The proof of (8.2) relies on the following “expanding of tubes”, which is the heart of the
concentration argument.

Proposition (8.3) Let gy = a®-r-ggi +gr+02-72-gy, a, B > 0 be defined on S*x)0,r[xN,
then we can find for each pair v1 > «, 72 > B a Ric < 0-family g; fixed near S* x {r} x N
such that:

© g =ofr’gs:+gr+pi-ri-gn for some a1 € [, 1), Bt € [B,72] on S'x]0,e[xN

(i) i =4 -r*-gs1 +gr+3 -2 - gy on S'x]0,e[x N, for some suitable € > 0.

We will use an auxiliary

Lemma (8.4) For each k € 2>° there is a function ¢ = ¢y € C”(R,RZ?) with ¢ =0
on R\]5,a[, > 0 on 15, a[ for some a > 6 with |p| < 1lid| and: lk:\’,' 7 < lk'i'  in
those points where ¢ # 0

for & €]0,1[, As 1= 6/(6+1).

19



Proof: Let p, ps € C*°(R>?,R2%) ( a > 6 defined below) with p > 0 on |5,5+ 15[, pa > 0

3 ta2
on Ja — 55,a and p resp. ps = 0 elsewhere, such that a(s) := [ { [ p(tl)dtl)dtg

-0 -0

+oo [ oo
and B(s):= [ (f pa(tl)dtl)dtg fulfill «(5.5) = g3y - 5.5, Bla—3) = g7 (a - 3).

3 12}
Then we have: a (resp. B )is linear with o’ > 0 on R>%! (resp. f' < 0 on R<*~%
), a > F-}_Tidn (resp. < ﬁTidR ) on R>>% (resp. on ]0,5.5[ ) and 8 > ;—_{—Tidn (resp.
< gi7idr ) on R<2=% (resp. on R>*~% ). Thus we can find exactly one p €]5.5,a — 3
with a(p) = B(p) and we can choose a such that o(p) = A(p) = {. Take h := min {a, 8}
and note A < -;15 -id and equality precisely holds in p (on R>° ). Take the interval I around

p where h > ﬁ_—l-id and define our desired ¢ as a C'° -smoothing of h with:
(i ¢ =h on R\ I
(ii) Llﬁ-id<<p<h and ¢" < 0 on I.

. . . . . . . 1480t
Finally we briefly check (8.4): namely the claim is obviously equivalent to i <

t—k- 55 p(t) for ¢" >0 (“>"for ¢ <0 )andis the same as (k+1)-¢ < ¢
resp. “ > “for " > 0 resp. *“ < “ which is true from our definitions.
O

Proof of (8.3) It is enough to check (8.3) for a = 8= v =1, r = a+ 5 and prove the
existence of some vy, = (1+17), n > 0 such that (8.3) works. This is due to the scale-
invariant and (essentially) symmetric (w.r.t. S! and N ) situation: any arbitrarily large 2
can be obtained by iteration as vz = (1 4 7)™ subsequently one exchanges rdles of v; and
~2, details are left to the reader.

First of all ch(f2 g5t + gr + g° -gN) < 0 is equivalent to three inequalities:
M F+(r-2)L 20,

@ Fr+n-2F-Z>0

" ! 2 1 [
B L+m-3(L) +5-L20
f =1id, g = id do obviously fulfill (1)-(3). We perturbate f and g acc. (8.4):
Consider f5:= f—(n—2)-As ¢, g5:=g+6-p, § € [0,8)], ¢ = pn—2 for some & €]0, 1[.
If 6 is sn:nall e’nough f,su, gs 1”'111ﬁ11 (1)-(3): (2) and (3) are clear from the fact that for small
§>0: {fz%ﬁ-zfq, %z%ﬁ-zﬁ- with |es| arbitrarily small for small § > 0 on |5, q
(1) is obtained from (8.4):

fs 9% _ =(n=2 X¢" 6"
f5+(n—2)g_’id-—(n—2)-)\5-cp id+6-¢

and (1) - (3) > 2¢ > 0 for 6§ = 8y on some small interval |p — g, p + ¢[C]J[. This is used

in our main deformation:

Define F, € C*(R,R) by F, := p-h-idg+ (1 —k)-idg for some h € C*(R,|0,1])

with A =0 on R2P*¢, h =1 on REP~¢. Obviously F, — id on Rt w.r.t global C*-

norms for ¢ — 1. Hence acc. (1)-(3): R.ic(f}o ~gs1 +grn + (Fu -950)2 -gN) < 0 for each

+(n—2) >0
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u=1+n, n¢&[0,m0], no > 0 small enough pg := 1 + ng. Thus take

g im Titss 951 + IR+ hpgy 9N> te [0,3]
T R gs R+ (Flamiyw - 96) 9N, tE [3,1]

and notice that
gt=r20g51 +gR+ﬁtz-r2-gN on Slx]0,4[xN

with s =1 on [0,1], Br=(1+(2t—1)-1) on t € [,1].
O
We can easily deduce (8.2) from this expanding deformation:

Proof of (8.2) To apply the preceding technique we perform some appropriate deformations:
1. We take a Ric < 0-family G; fixed near S! x {r} x N defined on Sx]0,r[xN with
Go = g1, 51 as in (71) and:

Gt = ff-gs1 +gr+ g% gy on S'x]0,e[xN for some & > 0, fi, gt €
C*®(R,R), fi,g¢ > 0 on R>%, f,,g, > 0 on R2® and g,(0) > 1 for n =

H i

3, fi;90 20 fi=c-id, g1 =d-id for some ¢,d > 0 near 0.

This family G: is obtained as follows: in dimension n = 3 we can use those “methods to
smooth singularities” as in [L4], which already implies the existence of G; as above. It is
not hard to adjust that construction to give the complete family Gy, details are left to the
reader. In dimension n > 4 we can easily find f; € C*®(]c,r[,R>?), : = 1,2 for some
¢ <0 with f{ >0, f{ >0 and

_[f _fcosh on  [f,7]
fl_{a-(id—c) ’ fa= B-(id=c) on le, £l
In particular we get Ric(f?-gs: + gr + f¢ - gnv) < 0. Thus define
G =@t F+(1-21) - f1)? 951 +gr + (2t - cosh+(1 —2t) - o) - gy, t€[0,3]
| D(f2. 2, 11
t(f] gS‘+gR+f2 .gN)a te [za ]
where Dyt € [5,1] is an isotopy of S x Rx N with Dy =id and
(S,p,I) for p>
(3,P+P0,I) for p <

Di(s.p,2) = {

- R RTNE ]

for some pg = po(t) < 0 with po(3) = 0, po(1) = c.

2. Thus we start from G; to perform the desired “concentrating of curvature” by expanding
of G1. We take the Ric < O-family of (8.3): ¢+ on S!'x]0,e[xN with go = G; and
=7t ga+gr+7% r* gy on S'x]0,5[xN, for some § = 8(v1,72) €]0,%{ and
arbitrarily large 7, 72.

3. Next we obtain from G; and g; a Ric < 0-family A; of regular metrics defined on
S' x B,(0) for n = 3 resp. on S'x] —~5,5[xN for n > 4 with

hy = cosh®r . g1 + gr + sinh®r - gg1 resp. f%-gg + gr + cosh®r- gy for t =0 and for
t € [0,1] on a neighborhood of S' x 8B,(0) resp. S' x {—p,p} x N such that for some
suitable small z > 0 and prescribed ~;,42 > 1:

hi=f* 9o +9r+9% gn
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with
f= 7 - id _ [72-id on ]4,N|
“lm-g §= v2-& resp. id+c on ]0,§[ resp. ]—¢ g

forn>4resp. n=3, f® 4% >0 k=012 c>0.

This is checked as follows: all the metrics G; and g, are of the form f2-gs1 + gr+ g% - gn
on S'x]0,u[xN for u small enough. :
Thus take F,G € C®([0,u[,R>?) with FB) G® > 0, k¥ = 0,1,2 and F =
{f C - {9 on J§,ul

8 9(§) resp. g(§) +id—§ on ]0,4[ resp. 1§ —9(§). 4l
for n > 4 resp. n = 3.
It is obvious that F' and G can be chosen depending continuously on Gy resp. g for
varying ¢ and yield our k¢ (The domain |4 — g(§), &[ is changed into ]0, £[ by pull-back
arguments). Furthermore we can assume for n > 4, that h; is symmetric w.r.t. reflections
along S* x {0} x M.
4. Notice again the important fact that the metric of (8.3) is scale-invariant, i.e. after scaling
we can assume g to be arbitrarily large. We take u := 10R.

5. Thus we are left to deform h; (defined on S! x B,(0) resp. S'x]— u,u{xN) into
our claimed metric:

Consider f as extended on R<# by f=+;-4 on R and notice that we can find a very
large v1 = 11(R) and some F € C®(] — p, u[,R>?), p < —3R with:

71-id near p=10-R
F={ R-exp(id+p) on ]R,4-R]|
R-cosh(id+p) on |p,p+2R[

and F', F" >0, for some small § > 0. That is also true for ¢ (72 =) and n > 4, and
yields G = F. Combinetoget H,:=(t- F + (1 —t)- f)*-gs1+gr+(t- G + (1 = t) - 9)-gn
on ]p,p+ 2R[ which “extends by reflection” to |2p — 2R, p{ to our desired Ric £ 0-family
deforming A;, into the claimed metric of (8.2) (up to pull-back) in dimension n > 4.

In dimension 3 we will take sinh instead of cosh :

oo >0 . _ 72'id near p
Take G € C=(Jp,p+2R[,R>°) with G = {sinh(id+P) on |p,p+2R|

This time we will get metrics on S!x]p,p+2R[xS? but again pull-back to S!x]0,2R[xS!
yields the desired deformation.
O

Part II1. Approximation of flat metrics

Here we will construct metrics g, on R™, n > 3 with Ric(ga.) < 0 on By(0), gne =
gEucl. outside and |lgn . — gEudl. “03 LRy <E In dimension n > 4 this is a refinement of
our inductive construction in [L2]. For n = 3 we adapt this idea to singular metrics which
are smoothed by a “mild” procedure. Thus we begin for expository purpose with n > 4
(and presume n = 3 ).
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§ 9 Scale-invariance of C°

We will use the folowing simple scale-invariance of C? -norms (which was also mentioned
and used in previous chapters) which is easily checked:

Lemma (9.1) Let g1,92 be two (2,0)-tensors (e.g. metrics) on a manifold M, gy some
fixed reference metric and A > 0, then

lgs = g2llca, cary = [|A* - 91 = A2 -92“6“;,,,M(M)

We will assume Theorem D in dimension n > 3 to prove it as well as Theorem B in
dimension n + 1.

Denote by g(s,d,c?) the following metric on S! x T x B\ B! c §'x ' x R*-1

2
gL (s,d,i) = L% (Fhoa(r —2)+1)" g5 +exp (2F,‘;(3 - 7')) ' (93-" + Q'Eucl.)
for s,d,d >0, L > 1 and F,4(r) := s -exp(—d/r) on R>%, F,;, =0 on RS?, r =
r(t1,2) = llollgaa, (t53) € ST xS xR*-L. |
Acc. [L2], § 6 we can find dg,% > 1 and sp > 0 such that for d > dj, ffz c%, s €]0, sol:
r(gL(s,d,J)) <0 and “< 0” on S! x 3 x B;"‘l \F;wl.

Furthermore we obviously have for suitably large d(s), d(s) (for C3 = Co 1 492 +950a (S L% T x B!
< :

)

31 2 n-1
O o) - (w2
In particular we can compare the metric g(L) on the tube T 5 of radius 5 in R™ around a

plane circle of some large radius £ with gz (s,d(s)) = L2 (Fy4(r — 2) + 1)2 - gst + 9Euel.

(length S! w.r.t gs: =1 ): For each ¢ > 0 we can find s; €]0,s0[, Lo > 0 such that

@ lo(2) = 92(5, d(sDllos s gy < €

for s €]0,s1[, L > Lo (where g(L) is meant to be the pull-back of the Euclidean metric via
some Fermi coordinate map S! x Bs — Trs ). We obtain from Theorem D (for r{g) <0
) in dimension n and (2):

Corollary (9.2) For each ¢ > 0 we can find some sq > 0 such that for each s €]0, so[ there
is a circle v C R* and a metric g, on R® with: (i) Ric(g.) <0, (ii) [|ge — 9Eucl.llce < &
(iii) ge is isometric to gr(s,d(s)) on Tp s(vy) and g. = gguq. outside some ball B,(0).

Next we use the n-dimensional Theorem D to get a metric with Ric < 0 C%-near to
gt + 9. on S' x By,(0) : Take

gL (s,d(s), g(s)) on ?1 xTrs\Tr2

9=19 %o+ L? *gst on _51 X Tpz
1
g5 + ge on § x B2y (0) \ Tps

where gpo is a prolongation defined on Tp3; with |gpro — (951-+ gEuc)lee <
€, Ric(gpro) < 0 and gpro = exp (2F3‘2{3—r)) . (_q?l +9Eud.) on Tp3\ T which
is possible for s small enough acc. (1).
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Again we can find a large plane circle [y C R®*! (of length M ) such that the metric on
the tube of radius 2p Uys around T'ps gets CP-near to the product metric M2 - gg1 + gEual.
on 5' x By,(0) via Fermi coordinates.

This time we take the Riemannian coverings of g to aPproximatc this metric w.r.t. C° (since
g is no warped product): namely we consider fi : 5 x B,(0) — 3 x B,,(0) defined by
fe(e®,z) = (e'*,z). Thus we can consider for integer M f},(g) on S* x By,(0) and
acc. (6.5) in [L.2] we can “embed” (S x B2,(0), fi(g)) as Uy into R™1.

Again from {L2], § 6 we can find a C? -small deformation of some ball containing Uy to
get after scaling:

Corollary (93): On R", n > 4we can find a metric g, with Ric(gn.) < 0 on
BI(O): Gn,e = gEua. On R" \ B](O) and ”gn.e —gEucL”C" <eE.

O

It is interesting to iterate this argument, i.e. choose an exhausting sequence of balls in R™; this
yields metrics g(n,e) on R™ with Ric (g(n,¢)) <0 on R", |lg(n,€) — gEua.|lc® < € and
llg(n,€) — gEua.|lcx < c(k) for some finite c(k) > 0. Now notice that C° is scale invariant
(cf. (9.1)) but the higher derivatives decrease acc. m~*F if we scale by m?, ie. we get:

Corollary (9.4): The flat metric gg,g. on R™ can be C% -approximated by metrics in .
Ric<%(R™).

a

Recall that gg,q. cannot even be C°-approximated by metrics in Sec<"(R"), they always
have infinite distance t0 ggycl. -

§ 10 Mutual Regularization

We want to prove the existence of g3 on R3 along the lines described in § 9. But obviously
we cannot start with a metric g, on R? acc. GauB-Bonnet. On the other hand we can find
analogous metrics, singular in only one point, and the additional idea consists in using the
negative (sectional = Ricci) curvature of the one of the two perpendicular planes to smooth
the singularity of the other one. More precisely we can find for each ¢ > 0 a metric g, on
R? (regular outside of the origin) with:

(i) Ric(ge) < 0 on B1(0) and g, = ggua. on R%\ B2(0)

sinh? r

(i) 9. = gr + 22%L - g5 on B(0) for some suitable o > 1

(iii) |lge — 9Ewallcy, ) < €
Using this metric we can perform the complete construction of § 9 and get:
Lemma (10.1): For each ¢ > 0 there is a metric g(g) on | — 5,5[xS! x S with:

(i) Ric(g(e)) <0 on ] —4,4[x 8! x S and g(e) = gr + 951 + g5 outside

i) llg(e) — (gr + 951 + 95 )llow < €
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(a+8-7) gs +gn+72-r2-g§: on S! x Bi(3,0)
72'7'2'93:+gn+(a+/3-r)2-g§1 on Bl(—3,0)>«<§1

(iii) g(€) = {

for some «,f3,v > 0.

( S} denotes the S' -fiber in the base-disk Bi(p) = [0,1[xS5? ).

O
Thus we are left to smooth those singularities of (iii) to some regular Ric < 0-metric. If
we do not need C° -estimates we can apply the techniques of [L2] and [L4] and easily get a
smooth Ric<o-metric with properties (i) and (ii), which is of some use on its own in [L4]. By
the way we also obtain a new existence proof of metrics on R* with Ric < 0 on B;(0) which
are Euclidean outside and it is the first one which completely avoids any kind of surgery.

But we also want to preserve the small C?-deviation from the product metric (as in (ii)).
Therefore we will use the following refinement of (iii) which is obtained from nearly the
same construction carried out more carefully. We give an outline below and note that a
generalization appears in [L6].

(iii) * for some v < 1 near 1:

,(E) = {((1—3(1—7))+(1—7)-r)2-951 +gr+77 7% gs; on S' x Bu(3,0)

72 or?gs +gr+((1=3(1=7)+(1=7) )’ gg on By(-3,0)x T

Now it is easy to derive

Corollary (10.2): On R® we can find for each ¢ > 0 a regular metric g3 with Ric (g3.) <
0 on B](O), g3, = JEuc. ON Rs\Bl(O) and ”93,5 _.fi’Eut:l.“C"J < €.

Proof; We will smooth g(¢) to a metric f% - gs1 + gr + ¢° -gsy with Ric <0, i.e. with
§rgz0 448 £20 L4520 T

1-31-v)+(1—-%)r ¥-r on R2!
f={ : g={

const. (> 1 —3(1 —7~)) r on |0, ¢]

and f" = —g¢" > 0 on ]§,1[. Now notice the trivial but essential fact: f(1) < g(1). This
implies that for small 6 > 0, f and g can be chosen such that the quotients in the above
inequalities, which contain f dominate those of ¢ and yield Ric < 0, furthermore the new
metric is C?-near to the old one.

Finally we take the “usual” arguments of § 9 to smoothly embed | — 5,5{x 5! x S? into
R® and get the claim.

O

Remark (10.3): To put things into some perspective we mention that additional symmetries
sharpen the results (cf. [L6]): In (10.1) we only took into account two singular curves related
to the two S -factors, but if we identify the two boundary components of | — 35, 5[x.S! x S?
to get T3 we can also introduce a singularity along the new S!-factor. Then we can form
a metric analogous to (10.1) + (iii)*, but this time we get (using the argument of (10.2)) a
natural C -approximation (!) of gga; on T2 by metrics of Ric<?(T3).
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To get an idea of how to obtain those special value for a,f,v (of (10.1) (iii)) in (iii) * we
present (a sketch) of a suitable modification of that construction on T2 just mentioned:
Consider | — 5,5(xS! with S§! = [—1,1}/{—1,1} and cut out one of the following pieces
PE . Pt .= {(a:,y) €] —3,5[xS! |yl < @ (= +3)}, QY :=]—5,5(xS'\ P}, a>0
small. P;, Q analogously start at (3,0), now identify 8Q} acc. (z,y) ~ (z,—y) and
again analogously @5/ ~ .
This yields two cylinders C¥ which have exactly one interior singular point at (£3,0), 0CF
does also have a singularity but this will be “cut-off” finally and will be ignored here Next
imitate the construction of § 9 resp. (10.1) and build some metric on ]- 5,5[x S x Kh using
CZ . the metric “along” | —5,5{xS! x {0} resp. | —5,5[x{0} x S is defined by some
identification with C} resp. C;.
Now this metric already looks like that of (10.1) (iii) *, at least near the segments |2, 3[x {0} x
{0} resp. ] —3,-2(x{0} x {0} of By(%3,0). But one has to “wind up” (that is in effect
scaling S, which destroys higher C* -estimates) the S' -factors to make this metric radially
symmetric on Bj(+3,0). Finally if « > 0 is small enough we can slightly bend those
cylinder-metrics to ensure Ric < 0 which yields (10.1) + (iii) *.
For details concerning these methods we refer to the more thorough exposition in [L6].

O
We conclude with a concrete conjecture suggested from all these results

Conjecture (10.4): Let (M™,gp), n > 3 be a manifold, B C M a ball, then there is a
metric g; and a C -continuous path g, t € [0,1] on M with:

@) r(g:)(v) < r(g0)(v) on B, t >0
(i) gt = go on M\ B

(10.4) (which is very likely to hold) implies resp. simplifies the Theorems of this paper as well
as of [L2]. Furthermore it yields many new resuits like “Universal C* -dense & - pnnc1plcs"
for lower Ricci curvature approximations.
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Negative Bending of Open Manifolds

Joachim Lohkamp
Max-Planck-Institut fur Mathematik, Gottfried-Claren-Str. 26, 5300 Bonn 3, Germany

§1 Introduction

In this paper we will have a new look on general existence theorems for metrics with neg-
ative Ricci curvature, which is motivated from several related results. We will mention
the most significant ones:

1)} A general feeling expresses that bending of metric yields (or preserves) negative
curvature iff we bend outwards. Bending is used as an intuitive collective noun for -
deformations which e.g. enlarge or smaller the metric near some boundary. (Think of
the growth of spheres in hyperbolic relative to Euclidean space.)

The if part will be supported by a simple construction of complete metrics of Ric < 0
on each open manifold, but we will disprove the only if part: namely we also find bendings
"inwards” for Ric < 0, which yields existence results for closed manifolds.

2) The "classical” existence proof for metrics with negative scalar curvature 5 < 0
on closed manifolds (cf. [A], [KW]) starts from some metric with negative integral scalar
curvature, and the integral condition suffices to find conformal deformations to get a
metric with S < 0.

The metrics constructed here concentrate a huge amount of negative Ricci curvature
in one small ball (which is the basic way to ensure analogously negative "integral” Ricci
curvature). And indeed a "far-reaching” conformal diffusion yields Ric < 0 on the whole
manifold.

3) In [L1] we already gave a series of existence theorems for Ric < 0 by some
"covering” by local deformations which had to be made compatible.

This major technical problem disappears in this paper and we get a much shorter
and new argument for general existence results.

4) In [L3] we proved by geometric arguments that Ric < 0 fulfills so-called A-
principles, 1.e. the partial differential inequality Ric < 0 "blows down” to a simple
algebraic inequality.
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This means that the geometric content of Ric < 0 is much smaller than expected.

Moreover h-principles (cf. [Gr]) are usually obtained by much less differential ge-
ometry and this led to the problem how to minimize the geometric effort to get the
existence of metrics with Ric < 0 (cf. [L4]).

This originally motivated this paper, despite the fact that "bending of Ric < 0” still
contains some amount of geometry.

Now we formally state the main theorems, which are obtained by "negative bend-
ings” becoming clear in the course of the paper.

Theorem 1 Let M™, n > 2 be an open manifold, go an arbitrary metric on M, then
we can find a smooth function f with:

g= e2f . go 8 a complete metric with Ric(g) < 0.

Notice that this cannot be refined to give pinched Ricci (or just scalar) curvature in
each conformal class according to non-existence results of Ni [N} (cf. also [AM]).

While Theorem 1 1s obtained using bending "outwards” we additionally use bending
"inwards” to get:

Theorem 2 Each closed manifold M™,n > 3 admits a metric with Ric < 0.

This can be localized:

Theorem 3 On R™,n > 3 there exists o metric g, with Ric(gn) < 0 on B,(0) and
gn = gEucl. 0utside.

Finally we give an outline of the paper: In §2 we construct conformal deformations of
any prescribed metric on open manifolds leading to Ric < 0. In principle the conformal
factor can be calculated explicitly. The next two chapters are devoted to perform a re-
fined construction on the (open) complement of certain lower dimensional submanifolds
of closed manifolds to obtain in addition a suitable structure near the boundary.

This is used in §5 in dimension n > 4 : Here we close these manifolds again and get
Theorems 2 and 3.

An extra argument is needed to get Theorem 2 in dimension 3 (§6), it also uses some
results of [L3]. Thus the previous methods are not as adequate in this situation as in
higher dimensions. But the general philosophy remains, therefore we include a sketch of
proof in this case.

Finally in §7 we will briefly compare the proof of contractibility of the spaces of
metrics with S < 0, [L2] resp. with Ric < 0, [L3] in light of the present constructions.



Negative Bending of Open Manifolds 3

§2 Conformal bending

A striking differential topological (!) result of Gromov (cf. [Gr]) implies that each open
manifold admits a metric with negative (as well as one with positive) sectional curvature.
But these metrics are not complete.

Indeed there are known obstruction to get complete negative sectional as well as
positive scalar curvature metrics in dimension n > 3 resp. n > 5 (cf. [GL]).

Therefore there is no hope to find global "outward bendings” for Sec < 0 as are now
presented for Ric < 0 by conformal changes on some arbitrary open manifold M" of
dimension n > 2 :

Proposition 2.1 Let gg be any metric on M™", then there ezists a f € C°(M,R) such
that g = €2/ - go is complete and Ric(g) < 0.

Proof. Let be M,(JLOJ,,.H D M,, M, = §) an exhaustion of M by compact manifolds with
smooth boundaries and choose for an increasing sequence c, of real numbers a function
F € C°(M,R) with F = ¢, near M, and ¢, < F < cny1 on Mp 1\ M. If the ¢, are
chosen suitably then g = ¢2F - gg is complete, hence we can assume go to be complete.

Now using paracompactness of M we find a locally finite covering of balls B;,7 =
1,2,..., together with diffeomorphisms f; : Bg(0) — B;,(Bs(0) C R") with | J; fi( B4(0)) =
M and fi(B(0)) C fi+1(B4(0)\Bz(0)) hence |J; fi(B4(0)\B2(0)) = M and we define
for d;,8; > 0,1 2> 1:

9(0) := g, g(r) := [ exp(2- F}) - g0, g(00) := [ exp(2- ) - o
i<n i -

with i = s; - exp(=d/5 = | £ (2)) - BT ) for = with [If7(2)]) < 5 and Fy =0
otherwise. '

|[-]| denotes the Euclidean norm on Bg(0),% € C°°(R, [0, 1]) with h=0on RS\ A =
1 on R22,

Using lemma (2.2) below we can find for each n > 1 a d,, > 0 such that (for fixed,
di,3i > 0,i <n,if n > 1) and each(!) s, > 0:

exp(2- F) - r(g(n))(v) — lalal)frd - (g(n = D)) -
< {0 on fu(Bs(O\B(0))
—Sp-€"9 on ‘fn(B‘i(O')\BZ(O))!

where g(n — 1)(v,v) = 1. Thus starting from n = 1 we get by induction d;,s; > 0 for

each i > 1 such that r(g(n)) < 0 on (J;<, fil Ba(0)\ B2(0)))\ fn(B2(0)). This yields

r(g(c0)) < 0, since B, N K = § for each compact K C M and n = n(K) large enough.
Furthermore ¢(d;, s; |1 < c0) is conformal to gy with a pointwise conformal factor > 1.

Hence it is complete.

B
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Lemma 2.2 Let go be any metric on N x R for some closed manifold N, then there
ezists a do > 0 such that for alld > dy, s > 0:

- g0)(v) — (g0 )(v) < {(ls ce—d ZZ xﬂ?i,l]m]

for v € T(N x R),||¥|lgo =1 and (z,t}) € N x R.

The elementary proof of this technical lemma also appeared in [L1](3.5) (in o differ-
ent contexzt) for n > 3, but the (simplified) calculations also apply to n > 2. Hence to be
short we omit further details.

d
t

exp(2-s- e"%) -r(exp(2-s-e”

O

§3 Opening of Manifolds

To prove the existence of metrics with Ric < 0 on closed manifolds of dimension n > 4
we first notice.

Lemma 3.1 R", n > 4 contains a closed manifold N2 with trivial normal bundle and
which admits a metric with Ric < 0.

Proof. n = 4 : Each closed orientable surface F admits an embedding in R® and hence in
R*. In this situation the normal bundle is trivial since F C R? is a hypersurface, which
always fulfills this condition. Thus take a surface of genus 2, this admits a hyperbolic
metric.

n =5 : Again each closed orientable three manifold N* admits an embedding in R®
with trivial normal bundle (cf. [H], Cor. 4). Thus take some orientable hyperbolic three
manifold or alternatively take S* C R® and use the existence of a Ric < 0-metric on $3
(cf. §6).

n > 6 : We can use induction: In §5 we will prove that each N"~2 admits a metric
with Ric < 0, thus we take S*~2 C R™.

a

Now the proof of Theorem 2 (and 3) proceeds as follows: we choose a ball B C
M",n > 4 and N"~%? C B acc. the previous Lemma and consider M\N. This an
open manifold and admits a metric with Ric < 0 acc. (2.1). Next (in §3-5) we use the
conditions on N to bend M\N to get a Riemannian structure with Ric < 0 which has
M as natural metric completion.

Thus let M™,n > 4 be an arbitrary manifold, B C M™ a ball and N*~%2 C B asin
(3.1), denote by V, W open tubular neighborhoods of N with V. ¢ W ¢ W C B. We
will introduce a second bending (additionally to (2.1)), this time for standardization of
the boundary structure.
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Proposition 3.2 Let gy be a metric on M\N with Ric(go) < 0. Then there is a metric
g on M\N with ¢ = go on M\W, 1Ric(g) < 0 on W\N and such that (V\N,g) is
isometric to (J0,1[xS! x N, gr + ﬂ—mér—*'-p—)-

— ~gs1 + k% - gN), where gn i3 a metric with
Ric(gn) < 0,m € Z>%p >0, 2> 0.

Proof. Using the triviality of the normal bundle of N we get a diffeomorphism ¢ from
] = 2,12[x S x N into B\N with ¢(]0,12[xS? x N) = W\N and $(]3,12(xS' x N) —
V\N and which admits a continuous extension with ({12} x S! x N) = N.

Thus take the following metric on R>™2 x §! x N :

g1=h-9(go)+(1—h) - (gr + 951 +gn)

for some h € C=(R, [0,1]) with ~ = 0 on R23, A =1 on R=?; acc. (2.2) we get a dy such
that for s > 0, v € T(R x S! x N),|lv|lg, =1, (t,2,z) ERx S' x N

exp(2-s- e~ F) r(exp(2-s- e~ ) g1)(¥) = (g1 )(v)
0 on]0,1] x S' x N
—s-e"9% on[1,10[xS! x N

Hence for s large enough we get r(exp(2-s - e_i‘n) +q1)(v) < 0 on ]0,10[xS! x N and
(]5,10[x S x N, exp(2-3-e‘ica')~g1) is isometric to (Ja, B[x S'x N, gr+F?*-(gs1 +gn)) (via
some isometry ¢ = (@R,idgixn); @R is uniquely determined) for some a < a+5 < 8
and F € C*®(]e, B[, R>?) with F', F" > 0 (obtained by rescaling R) :

namely F' > 0 is independent of scaling R and F" > 0 is clear from the warped product
formula (cf. [B]):

0 > Ric(gr + F? - (g5t +gn))v,v) = —(n = 1)- FTH - gr(v, v), for v tangent (i.e.
horizontal) to R).

We can assume maxr(gy) = -1, then there are (acc. (4.1)(i) below) f,g €
C*(Je, B[, R>?) with Ric(gr + f? - 951 +9* - gn) <0 and f = g = F near a, f(t) =
w resp. g = k£ > 0 on |8 —1,8( for somem € Z>% « > 0, ¢ €la, 3 — 1[. Now
define a diffeomorphism ¢ :] — 2,12[—] — 2,10[ with ¢ = id on ] — 2, 1[, ¢(]2, 12() =]5, 10]
and @R o ¢ is linear on |3, 12[ with g0 ¢(]3,12[) =]8 -1, B[. Now we are ready to define
gp 1= {(99 o (¢,1ds1xn))*(gm +f2ﬂ'15rsl +9%-gn) on]2,12[xS' x N

(d,idsixn)"(exp(2:8-e~7 ) g1) on]—22[xS'x N

In particular g2 = g1 on ] —2,1] x S x N and Ric(g2) < 0 on ]0,12[xS! x N. Thus

define the push-forward metric g := #.(gz). It is easily checked that g fulfills the claim.
a
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§4 Smoothings and Warpings

This chapter is a service-center for deformations used in §3 as well as in §5 to smooth sin-
gularities. They are done using certain warped product arguments. This also generalizes
results in [GY} and [Br], cf. (5.3) below.

Thus we consider (Ja,b[xS' x N"=2 gg + f* - gs1 + g* - gn) for some f,g €
C*(]a, b, R>?). If maxr(gn) = —1, then r(gr + f° - gs1 + g% - gn) < 0 is easily seen to
be equivalent to the following three inequalities (1) - (3):

[AY] I ' 7 " 1 ] ' 17
(n=3)- 2l 4 £+ L.250,(n-2)-L+L>0,(n-2)L-£+L 50

Proposition 4.1
(i) Let F = G € C*(Ja,b[,R>?) be with F', F" > 0 then there are f,g € C*(Ja,b[,R”?)
with Ric(gr + f* - gs: + 9% - gn) < 0 and for some m € Z7% x> 0:
F(t G(t
70 = {Gmme=a 1 90 ={ O e

= K near b, for some c €la, b

(ii) Let F = %,a > 1,G =m > 0be defined on |0,ro[ for some ro > 0. Then there are
frg € C=(Ip,ro[, R>®) for some p < 0 with Ric(gr + f*-gs1 + ¢° - gn) <0 and for
some £ > 0

sinh ¢ m near ry
flt) = {sinh(t -p) g(t) = { K mear p

Proof. We construct f,g which fulfill the "boundary conditions” and (1) - (3) glueing
together functions defined on disjoint intervals: we will use the following simple obser-
vation: '

(*) I fi, f2 € C=(la, 7, R>?) fulfill fi(8) = f2(B) for some B €la,v[,0 < f] < f3,
and f{', f3 > 0 (resp. > 0) then there is a function A € C®(Ja,v[,R”°) with A = f;
resp. f, near « resp. vy and h' > 0,h"” > 0 (resp. A" > 0).

) \
g(t)

7(t)
[}
P

) (i)

v

v

Fe
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(i) We choose & := G(b) + 1, then we can find a ¢ with ¢ = G on |a,b— 3¢f,g = x on
[b—¢€,b,g' >0o0nla,b—¢,g" > 0on]a,b— 2¢ for some small ¢ > 0,10 ¢ < |b—af.
For m large enough (say > mg) we can find a ¢, €)b — 4¢,b — 3¢[ such that there

sinh m{tm—Cm) __
—_—n = F(

is exactly one tm €lcm,b — 3¢[ such that tm) and near t, : 0 <

Fx) « (ﬁi_“_l_‘__”_‘#‘_:_".ml)(n),n =1,2

Now we use (*) to get a function fn, € C*(Ja,b[,R>°) with f!,, fir > 0and fm = F
near a, fm = L'"—‘—m:—_c'“-)- on Jb— 3¢, b[. Thus for each m > myq (3) is fulfilled on ]a, b
for fm and g.) (‘7) and (3) are fulfilled on ]a b — 3el.

Furthermore |9—| |3—| < & and ?;L m? %m > mon }b— 3¢, b

Hence (2) is fulfilled on |a, b for m? > (n — 2) - &.

Finally to get (1) we notice |"-'g‘—'| < |"—g§3| on )b — e — 24, b[ for some small § > 0 and
|ﬂgi| > k' on |b— 3¢,b— ¢ - §[, thus (1) is fulfilled on |b — 3¢, b] for each m > mq with
m- K& > k.

Hence define f = fm,c = ¢y for some m > max{mo, &,(n —2)- sk} + 1.

b o> 1,G = m > 0 on |0,r[ which (obviously) fulfill (1)

-(3). For vy > 0 deﬁne a function Gy € C®(Jty,ro[,R>?) with t; = =2 + 22 and
Gy=7v-(t—F)+monlt,,2[,G,=mon ], rfand G, >Oon] 2, 2[ If7> 0is
small enough G-, can be defined such that F' and G, fulfill again (1) - (3) on |0, ro|.
Fix such a v > 0 and G.. Now we define a function f € C®(]t, — 3,70, R>?) with
ff>00nlty—3,r, f" >00n]ty — 1,7 and

(i

f(t) smht on ] 7'0[
smh(t ~(ty = 3)) on ]t —3,t, —3 +46] for small § €]0, £
sinh m{t—{t, —3)) }

» 10

Next we consider g(x,m) := max{G-,
For each m € Z”° we can find a k = x(m) € Z>° such that there is a unique
tm Elty,0[ with Gy(tnm) = 222 m(i'g';)(t":’)) and G, > (2izh m,(:(;()t"-sl))' in t,,. Since

()" of both functions is non negative we can find, using (*) twice, a function g, €
C(Jt4 — 3,r0[, R>?) with g},,9% >0 and g, > 0 on Jt, — 3+ §,7[ and

x(m)

C;’.1r on ]0 7‘0[
gm(t) = { BmhmU—(29) o1 34 36,8
Km on Jty = 3,ty — 3+ 6] for some suitable Ky > 0

Now we will choose a large m such that f and g, fulfill (1) - (3):

(1) is always fulfilled. (2) and (3) are fulfilled on ]ty — 3,2, — 3 + 36[UJty — 1,7o][.
Since &u > m, Eﬂl =m? on |t;, —3+26,t, — }[ for large m and f' > 0 on |ty — 3,ro[ we
find (3) fulﬁlled on Jt, — 3 + 26,2y — 3| for these m. Finally % > —c for some ¢ > 0,

hence (n — 2) + L > 0 for great m, which yields (2).

Hence we choose these f and g = gm, £ = £, for some large m.
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§5 Closing of Manifolds

We reformulate (2.1) and (3.2) in our context for closed M™,n > 4and N*~2 ¢ B C M™
and a metric gy on N with Ric(gn) < 0. We obtain metrics on M\ N with Ric < 0 and
some nice behaviour near the boundary:

Corollary 5.1
(i) M™\N""? admits a metric g with Ric < 0 and there is a tube V of N such that V\N
s 2
is isometric to (]0,1[xS! x N, gr + ginh_mirte) . go 4+ c? - gN), for some ¢, p,m > 0.

() R™"\N""% n > 4(B = B;(0)) admits a metric g with Ric(g) < 0 on W\N,(W C
By(0)),9 = gpucl. on R*"\W and there is a tube V of N such that V\N is isometric

to (]0,1[xS! x N,gr + M ~gs1 + c® - gn) for some c,p,m > 0.

m

Now we will "bend inward” = "close” M™\N resp. R*\\V to get a metric with
Ric < 0 on M resp. on B;{0) C R" using the following

Closing Lemma 5.2 For each pair m, R > 0 there is a metric g(m, R) on S x N with
Ric < 0 and a subset Dg x N canonically isometric to
(Br(0) x Nn_zaghyp. +c?m? - gn) C (H’, ghyp.) X (Nn_z, ctm? . gn).

We prove (5.2) in a moment, but we first derive the
Proof of Theorem 2 and 3: Scale the metric g of (5.1)(i) resp. (ii) by m2. Now the
tubular neighborhood V\N is isometric to
(Jmp,m+ mp{XSl X N, gr +sinh®r - gs1 +c*migy) = (Bm+m-p(0)\Bmp(0) x N, Shyp. T
2m2gN1
Thus choose in (5.2) R = m+m - p and glue (5% x N\Dg x N, g(m, R)) and M"\N
resp. R*\V along their (isometric) boundaries.

c

This yields M™ equipped with a metric Ric < 0.

On R" we obtain a metric §, which fulfills Ric(§,) < 0 on W and §n = ggycl. on
R™\W. Now we consider as in (2.1) a diffeomorphism f : Bg(0) — B,(0) with f(Bs(0)) =
B1(0} and f(B3(0)) C W and define g(s,d) = exp(2 - s - exp(—d/5 — || f7H(2)]]) - h
(IF=2(2)ID) - §» on B1(0),(= §n otherwise) for suitable d > 0 and small s > 0 we have
r(g(s,d)) < 0 on B(0), g(s,d) = ggy. outside. Thus take g, = g(s, d).

a

Proof of (5.2): Consider Bp(0) C H? and a compact, convex geodesic polygon P
with Byp(0) C P and a second copy P'. Now we glue P and P’ along their common
boundary and obtain S$? with a singular hyperbolic metric ¢~ : there are only finitely
many singularities (corresponding to the vertices of P). Near the singular points the
metric can be written w.r.t. polar coordinates:
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([0,r{x S, dr* + ﬂ‘a}—';-idez) for some a > 1. Take ro < £ and start with (5% x
N,g=+c*m? - gn):

We may assume that B, (pi) N Br(p;) = 0 for p; # p; € S?, now we will smooth
the metric on B, (pi) x N as follows:

L
glue P and P

P

Bar(®) Cc PC H? MMV
) x N

acc. (4.1)(i1) we can find a p < 0 and f,g € C*(]p, ro[, R>?) with:
Ric(gr + f2 - gs1 + g% - gn) <0 on Jp,ro[xS! x N and:

_ [ uinhr _[em >0 nearr
f = . y § = .
sinh(r — p) k>0 nearp

This is a smooth metric identical to g(m,R) near dB,(pi) x N and we substitute
([0,ro[x S x N,dr? + ’"‘h 8O- J6?) by ([6,7[xS! x N,gr + f* - gt + g° - gn) and get
a smooth metric with Rxc < 0 on S? x N which contains a set ca.nomca.lly isometric to
(Br(0) x N’ghyp + c?m?. “gN)-

a

Remark 5.3

1. R. Brooks proved in [Br] that each hyperbolic orbifold of order > 12 admits a metric
with Ric < 0 using estimates on the width of tubes around the singular set. The
proof above also extends this to arbitrary orders and without using such estimates.

2. The argument above can be used to prolongate arbitrary Ric < 0 metrics defined on
a subset to the whole manifold.
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§6 Closed three manifolds

The only closed codimension 2 submanifold of a three manifold is S!, hence we cannot
argue as in the higher dimensional case where we have used that the corresponding
submanifold admits a metric with Ric < 0. On the other hand closed three manifold
are subject to Thurston’s hyperbolic Dehn surgery and this was already used to derive

Proposition 6.1 Each closed three manifold admits a metric with Ric < 0.

Namely Gao and Yau [GY] resp. Brooks [B] pointed out that each of these manifolds
admits a hyperbolic metric which is regular outside some closed curves and they man-
aged to smooth these singularities to get metrics with Ric < 0. Moreover the author
gave an elementary proof in [L1] (but at least if we are only interested in (6.1) it is fairly
lengthy).

For these reasons we will restrict to an outline of a short proof of (6.1), but the
reader (familiar with [L1] and [L3]) will easily fill in the details.

. The proof starts with some outward bending as before, the problem occurs if we try
to close the manifold: here we mainly use two constructions of [L3].

Step 1: The proof of (3.2) also includes the following result for a three manifold M
and S! x B.(0) C B C M, B aball, S! x B.(0) a (trivial) solid torus:
Lemma 6.2 M\S! x B.(0) and S! x B,(0) admit metrics g1, g2 with:

(i) gi=gr+ 7> 7% (gsn + gst) on ]1,2[xS' x S! = neck of the boundary,
for some possibly large v > 0.

(i3) Ric(gi) < O elsewhere

Step 2: We would like to glue M\S' x B.(0) and S! x B.(0), but these metrics
do not fit together. We can reduce this problem arbitrarily well: here we will use a
(non-obvious) warped product argument of [L3], §8: '

Lemma 6.3 For each € > 0 there is an a = a(e) > 3 and a metric g, on ]1,a[xS! x S!
with
(i) Ric (g.) <0
(ii)g. = [ R+ 72 (951 +951) on]1,2x5! x §!
£ gﬂ!+52.r2.(gsl -|-g51) on]a_]_’a[xslxsl

After minor modifications this can be reformulated in a more convenient way:
"near the boundary” g. looks like gr + (1 +¢-7)? - (951 + g51) on |]1,2[xS? x S! and
we can make € > 0 arbitrarily small. .
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Step 3: On | — 2,2[xS! x S' we can easily find (cf. {L3] ) a metric g~ which is a
product metric near the boundary and has Ric < 0 otherwise.

Step 4: This can be used to link M\S' x B.(0) and S! x B.(0) : Take some h €
C*(R,[0,1]) with A =0 on R\[-1—26,1+26],A=1o0n [~1 - 6,1+ 6] for some small
8 > 0 (fixed). Consider g(¢) = h- g~ + (1 — k) g as defined on ] — 2,2[x 5! x S* (g, is
defined on | — 2, —1[ by obvious reflection). Using (2.2) we can deform g(e) to have Ric
< 0 if ¢ is small enough.

This implies (6.1) and also as in the higher dimensional cases:

Corollary 6.4 On R® there is a metric g3 with Ric(gs) < 0 on B1(0) and g5 = ggua.
outside.

87 Concluding Remarks

In the case of scalar curvature it is possible to deform any given metric on a closed

manifold M™,n > 3 inside a ball into some metric with negative integral scalar curvature

S = [ §,dVol, < 0, and this can be refined to show that the space of metrics with S < 0
M

is contractible (cf. [L2]).

It is easily seen that a conformal change using the first eigenfunction of the conformal
Laplacian yields a metric with S < 0 and adding some standard elliptic theory this
implies:

Theorem ([L2]): The space of metrics with S < 0 is contractible.

Now look at Ric < 0 : We can change the point of view and interprete our presented
constructions as deformations of arbitrary metrics inside a ball giving some metric which
can be deformed by conformal change into some metric with Ric < 0.

Thus we are led to believe in a similar philosophy as above: If the ”integral” or
"average” Ricci curvature is negative we can make some standard (e.g. conformal) de-
formation leading to a Ric < 0-metric. This is additionally supported by the following
result which would be provable along the argument of [L2] if we had a useful notion of
average for Ric.

Theorem ([L3]): The space of meirics with Ric < 0 is contractible.

But at this point we have to note that the proof in [L3] follows different lines: namely
due to the (current) lack of a sharp and senseful measure for that average of Ric we have
to produce negative Ricci curvature directly by some subtle (but concrete) procedure,
which allows to avoid the intermediate use of metrics which only have a kind of averaged
negative Ricci curvature.
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