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On Affine Hypersurfaces with Parallel Nullity

Katsumi Nomizu (*) and Barbara Opozda (**)

Affine differential geometry for hypersurfaces in the classical sense of
Blaschke is based on the hypothesis that the given hypersurface is nondegen-
erate (quote from [B, p.104]: Fiir parabolisch gekriimmte Flachen (” Torsen”,
LN — M? =0) versagt die Grundform.). In relative geometry (for example,
see [S]) and in the study of affine immersions [N-P1], [N-P2], the nonde-
generacy condition is often important, although a few results (for example,
Berwald’stheorem [N-P2], Radon’s theorem [O]) have been established under
a somewhat weaker assumption on the rank of the fundamental form h.

In this paper, we examine a general condition weaker than nondegen-
eracy under which geometry of a given hypersurface can be reduced to the
classical situation. We start with an immersion f : M™ — R"*!. For an
arbitrary choice of a transversal vector field €, consider the condition that
the kernel of h be parallel relative to the connection V induced by €. It
turns out that this condition is independent of a choice of £. Under this
condition of parallel nullity and under a completeness assumption which is
also intrinsic, we shall show that f is globally a cylinder immersion of the
form M™ = M™ x L, f = f1 X fo, where f; : M™ — R™*1 is a nondegenerate
hypersurface, L is a leaf of T, and f is a connection-preserving map of L
of T° onto R*~", where R™*! and R"™" are affine subspaces in R™*! which
are mutually transversal. Such a representation is unique up to an equiaffine
transformation. Thus the geometry of M™ is completely determined by that
of a profile nondegenerate hypersurface M7 in R™? which is itself uniquely
determined up to equiaffine equivalence. For later applications we include
additional information on transversal vector fields.
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research award at Technische Universitat Berlin and Max-Planck- Institut
fur Mathematik, Bonn.

(**) The work of the second author is supported by an Alexander von Hum-
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1. Preliminaries.

Let f : M™ — R"*! be a connected hypersurface immersed in the affine
space R™"*! provided with a fixed determinant function (volume element).
Around each point of M" let £ be an arbitrarily chosen transversal vector
field. As usual, we write

(1) Dx fo(Y) = fu(VxY) + R(X,Y)
and
(II) Dx¢ =—fu(SX) + r(X)E,

where X,Y are vector fields on M",V is the induced connection on M™, h
the affine fundamental form, S the shape operator, and 7 the transvesal
connection form, all depending on the chosen €. The following lemma is
standard.

Lemma 1. If we change ¢ to another transversal vector field £ = (f.Z4¢€)/),
where Z is a certain vector field on M™ and )\ a positive function, then the
induced connection, the affine fundamental form, the transversal connection
form, and the shape operator change as follows:

(1) k= Ah;
(2) VxY =VxY - h(X,Y)Z,
(3) 7T =7 +n—d(logl),

where 7 is the 1-form such that n(X) = h(X, Z) for all X;

(4) SX =[SX —VxZ+1(X)Z + h(X,2)Z)/ .

By virtue of (1) we see that the rank of k at a point z is the same as
that of h at z. We call it the rank of f at z. We also see that the null space
{X : h(X,Y)=0for all Y} at z is the same as the null space of & at z. This
null space of h is denoted by T°(z). We shall say that T° is parallel relative
to V if, for any curve from z to y, parallel translation along the curve maps
T%(z) onto T%°(y). In this case, the dimension of T°(z) remains constant
on M™. In general, it is known that a differentiable distribution, say T?, is
parallel if and only if for any vector field Y € T° we have VxY € T? for
every vector field X.



Lemma 2. The condition that T° is parallel relative to V is independent of
a choice of transversal vector field.

Proof. Suppose T° is parallel relative to V. For any curve z,,0 < ¢t < 1,
and for any V-parallel Y; € T°, we have by (2)

Vth =VY, - h(Xt,Yt)Z =V.Y, =0,

where X is the tangent vector field of z;. Thus Y} is V-parallel. This means
that T° is V-parallel.

From now on, we assume that our hypersurface satisfies the condition
of parallel nullity (that is, T° is parallel relative to V). The distribution
T being parallel, it is integrable and totally geodesic. We say that T° is
complete if each leaf L of T° is complete relative to V, that is, every V-
geodesic in L extends infinitely for its affine parameter. In this regard we
have

Lemma 3. On each leaf L of T° the induced connection V is the same for
any choice of €. In particular, the property that T° is complete is independent
of a choice of €.

Proof. If XY are vector fields on L, then we have VxY = VxY -
h(X,Y)Z = VxY. Thus two connections V and V coincide on L.

From (I), we easily get

Lemma 4. For every leaf L of T°, f(L) is a totally geodesic submanifold in
R If T? is complete, then f(L) is an entire affine subspace of dimension
s = dim T°; f actually gives a connection-preserving diffeomorphism of L
onto the affine subspace f(L). Moreover, for two distinct leaves L1 and L,
of T°, f(L1) and f(L,) are affine subspaces which are D-parallel in R™+!.

Remark 1. If the connection V induced by some transversal vector field £
is complete and if T° is parallel, then T? is complete.

Remark 2. If an affine hypersurface f : M™ — R™*! has the property that
Vh = 0 for some choice of transversal vector field, then it obviously satisfies
the condition of parallel nullity.

Remark 3. For an affine hypersurface f : M™® — R"*! the Gauss equation
implies that for each point £ € M™ we have

TO(.'B) C Nx,yeT,(Mmr) ker R(X,Y).

The two subspaces coincide if the rank of S is > 1 or if rank A = 1 and
R #0. If they coincide at every point and if VR = 0, then T° is parallel.
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We add the following facts for later use. Assume that two transversal
vector fields € and ¢ coincide mod T, that is, £ = £ + f.(Z), where Z € T°.
Then from Lemma 1 we see that

h=handT=r7

S =S mod T° and ¥V = V mod T°,

that is, VxY — VxY € T? for all vecotr fields X,Y. Now using these facts
it is easy to establish the following.

Lemma 5. Assume that ¢ = £ mod T°. Then we have

(5) k= Vh,

(6) R =R modT°,

that is, R(X, Y)W — R(X,Y)W € T° for all X,Y,W.
Moreover, if £ satisfies ST® C T°, then

(7 VS = VS mod T°,
(8) VR =VR mod T°.

2. Global cylinder representation of a hypersurface M"

We now prove the following theorem.

Theorem. Let f : M™ — R"*! be a connected hypersurface such that its
affine fundamental form h has parallel kernel T°. Assume that T° is complete.
Then we can express f : M™® — R"'! as follows: M™ = M" x L,f =
fi X fo, where fi : M™ — R™! is a connected nondegenerate hypersurface
and fy is a connection-preserving map of a leaf L of T° onto R"~", and
Rntl = R™1 x R™". Such a representation is unique up to an equiaffine
transformation of R™*! so that a nondegenerate profile hypersurface M” is
determined uniquely up to an equiaffine transformation of R™11,

Proof. Let zo be an arbitrary but fixed point of M™. For the leaf Lg
through zo of Ty, f(Lo) is an entire affine subspace of dimension s = n —r
through o = f(z9) in R™*!. Call it R*. For any point p € R"*! we denote
by R’(p) the s-dimensional affine subspace through p which is parallel to
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R®. Again from Lemma 4 we know that if £ € M™, then the image by f
of the leaf L through z coincides with R*’(f(z)). Let us choose an affine
subspace of dimension r + 1, say, R™*! through f(z¢) which is transversal to
R°. Again, for any point p in R**! the (r + 1)-dimensional affine subspace
through p and parallel to R™*! will be denoted by R"*!(p). The mapping
f : M™ — R"! is then transversal to R™!. In fact, for any z € M"
such that p = f(z) € R™! we have T,(R"*!) = T,(R*) + f.(T(M")),
because f.(Ty(M™)) contains R*(p) = f(L), where L is the leaf of T through
z. By a well known theorem (for example, see [H|, p.22]), it follows that
M" = {z € M": f(z) € R} is an r-dimensional submanifold of M". We
see that the restriction of f : M™ — R™! to M" gives rise to a hypersurface
fi : MT — R™!: we shall show that M7 is connected in a moment. In the
case where the original immersion f : M™ — R™*! is an imbedding, we may
think of M" as the intersection of M"™ with R™t!,

Now we define a one-to-one map ® : M" — M" x L; as follows. We
consider o = f(z¢) as the origin of R**!, R*, and R"*!, whenever we need a
reference point in each of these affine spaces. Now for any £ € M", we define

®(z) = (y,2) € M" x Lo,

where y, z are determined as follows. Consider p = f(z). For the leaf L(z)
of T? through z, f(L(z)) is the affine subspace R*(p), which meets R™*! at
a certain unique point, say, ¢. Since f maps one-to-one on L(z), there is
a unique point y € L(z) C M™ such that f(y) = ¢. This means y € M".
On the other hand, the vector from ¢ to p is parallel to the vector from o
to z, where z is a certain uniquely determined point of R*. It is now easy
to find the inverse map M”™ x L — M™" of ®. Since & is differentiable, the
existence of the projection M"™ — MT" shows that M" is connected. So we
get a cylinder representation of M™ with a profile hypersurface M".

We have still to prove the uniqueness of such a representation. For this
purpose we use the following lemma in analytic geometry which is easy to
prove.

Lemma 5. Let R® be a fixed affine subspace of the affine space R"*!.
Suppose R™' and B! are two affine subspaces that are transversal to
map F of R™*! onto R as follows: for each point = € M™1 let R*(z)
denote the affine subspace through z that is parallel to R*. We let T be a

uniquely determined point of intersection with B and set F(z) =7z. Then

F is an affine transformation of R™! onto B . Moreover, F' is equiaffine
(that is volume-preserving) if we fix a determinant function (parallel volume
element) w,4+1 on R™! and a determinant function w, on R*® and define
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. . — —-r+1 .
determinant functions w,4+; and @y4; on R™! and R , respectively, such
that wp41 = Wet1 Aw, and Wpt1 = Wpp1 A wy.

Now suppose ® : M™"t1 — M x L is another cylinder representation,

—_ —r+1 —r41 _ =
where fi:M "SR s a nondegenerate hypersurface of R and fo:L—
R'isa connectmn—preservmg map of a leaf L of T° onto an affine subspace

R transversal to . we > may assume, without loss of generality, that
=L,R* =R, and f; = fo- Then we get an equiaffine transformation

F : R I_QT'H in the manner of Lemma 5. Combining this with the
identity map: R’ we get an equiaffine transformation, denoted by F, of
R™*1 onto itself. It is now clear that Fy(M™) = M and & = F o ®. This
completes the proof of the theorem.

Corollary. Under the assumption of the theorem, we can find a unique
transversal vector field € for M™ with the following properties:

1) € is D-parallel in the direction of T°; the affine shape operator vanishes
on T¢

2) The restriction of £ to a profile hypersurface M" coincides with the
affine normal of the nondegenerate hypersurface M".
Such £ is unique once a profile hypersurface is chosen.

Remark 4. If we do not assume the completeness for 7°, then for any point
zo of M™ we can get a local cylinder decomposition of a neighborhood U of
zo in the form V x W, where V is a nondegenerate hypersurface in R™' and
W is an open subset of R®.

We add some more information on the relationship between the geometry
of M™ and that of M". Continuing the notation in the proof of the theorem,
we define a distribution T? by

T! = foz '(R™?) for each z € M™,

where R™1 is now considered as the vector subspace instead of the affine
space R™1! through f(zo) This distribution is obviously integrable. We de-
note by = the projection of the vector space R**! onto R™! (parallel to the
subspace R*). We also denote by the same symbol the projection of TM
onto T parallel to T so that f, om = 7o f,. Let £ be a transversal vector
field to f. We define £ = w0 £. Then £ is also transversal to f and equal to
¢ mod T°. By the formulas preceding Lemma 5 and those in Lemma 5 we
have

Proposition.

E:h, ?=T, ?:woS, ny':ﬂ‘(VXY)
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R(X,Y)W = x(R(X,YW),

(VxS)Y) ==(VxS)(Y),

and

(VwR)YX,Y)V = n(VwR)(X,Y)V);

for the last two identities we need to assume that { satisfies condition ST C
T° in Lemma 5. Moreover, the same relations hold if V is considered the
connection on M" (that is, the restriction to M").

Remark 5. If { is assumed to be equiaffine, then certainly all the identities
in Lemma 5 hold. Moreover, £ is parallel relative to D along T°.

Combining Remarks 3, 5 and the last identity in the proposition we
obtain

Corollary. Assume £ is an equiaffine transversal vector field to a hypersur-
face f: M™ — R"*? such that VR =0. If rank S > 1 everywhere, then M™
is locally a cylinder M"™ x R® and V on M" is locally symmetric.
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