On Affine Hypersurfaces with Parallel Nullity

Katsumi Nomizu
and
Barbara Opozda

Katsumi Nomizu
Department of Mathematics
Brown University
Providence, RI 02912
USA

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3

Germany

Barbara Opozda
Instytut Matematyki, UJ
UL, Reymonta 4
30-059 Kraków
Poland

On Affine Hypersurfaces with Parallel Nullity

Katsumi Nomizu (${ }^{*}$) and Barbara Opozda (**)

Affine differential geometry for hypersurfaces in the classical sense of Blaschke is based on the hypothesis that the given hypersurface is nondegenerate (quote from [B, p.104]: Für parabolisch gekrümmte Flächen ("Torsen", $L N-M^{2}=0$) versagt die Grundform.). In relative geometry (for example, see [S]) and in the study of affine immersions [N-P1], [$\mathrm{N}-\mathrm{P} 2$], the nondegeneracy condition is often important, although a few results (for example, Berwald'stheorem [N-P2], Radon's theorem [O]) have been established under a somewhat weaker assumption on the rank of the fundamental form h.

In this paper, we examine a general condition weaker than nondegeneracy under which geometry of a given hypersurface can be reduced to the classical situation. We start with an immersion $f: M^{n} \rightarrow R^{n+1}$. For an arbitrary choice of a transversal vector field ξ, consider the condition that the kernel of h be parallel relative to the connection ∇ induced by ξ. It turns out that this condition is independent of a choice of ξ. Under this condition of parallel nullity and under a completeness assumption which is also intrinsic, we shall show that f is globally a cylinder immersion of the form $M^{n}=M^{r} \times L, f=f_{1} \times f_{0}$, where $f_{1}: M^{r} \rightarrow R^{r+1}$ is a nondegenerate hypersurface, L is a leaf of T^{0}, and f_{0} is a connection-preserving map of L of T^{0} onto R^{n-r}, where R^{r+1} and R^{n-r} are affine subspaces in R^{n+1} which are mutually transversal. Such a representation is unique up to an equiaffine transformation. Thus the geometry of M^{n} is completely determined by that of a profile nondegenerate hypersurface M^{r} in R^{r+1} which is itself uniquely determined up to equiaffine equivalence. For later applications we include additional information on transversal vector fields.
(*) The work of the first author is supported by an Alexander von Humboldt research award at Technische Universität Berlin and Max-Planck- Institut für Mathematik, Bonn.
${ }^{(* *)}$ The work of the second author is supported by an Alexander von Humboldt research fellowship at Universität zu Köln and Max-Planck-Institut für Mathematik, Bonn.

1. Preliminaries.

Let $f: M^{n} \rightarrow R^{n+1}$ be a connected hypersurface immersed in the affine space R^{n+1} provided with a fixed determinant function (volume element). Around each point of M^{n} let ξ be an arbitrarily chosen transversal vector field. As usual, we write

$$
\begin{equation*}
D_{X} f_{*}(Y)=f_{*}\left(\nabla_{X} Y\right)+h(X, Y) \xi \tag{I}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{X} \xi=-f_{*}(S X)+\tau(X) \xi \tag{II}
\end{equation*}
$$

where X, Y are vector fields on M^{n}, ∇ is the induced connection on M^{n}, h the affine fundamental form, S the shape operator, and τ the transvesal connection form, all depending on the chosen ξ. The following lemma is standard.

Lemma 1. If we change ξ to another transversal vector field $\bar{\xi}=\left(f_{*} Z+\xi\right) / \lambda$, where Z is a certain vector field on M^{n} and λ a positive function, then the induced connection, the affine fundamental form, the transversal connection form, and the shape operator change as follows:

$$
\begin{gather*}
\bar{h}=\lambda h \tag{1}\\
\bar{\nabla}_{X} Y=\nabla_{X} Y-h(X, Y) Z \\
\bar{\tau}=\tau+\eta-d(\log \lambda)
\end{gather*}
$$

where η is the 1-form such that $\eta(X)=h(X, Z)$ for all X;

$$
\begin{equation*}
\bar{S} X=\left[S X-\nabla_{X} Z+\tau(X) Z+h(X, Z) Z\right] / \lambda . \tag{4}
\end{equation*}
$$

By virtue of (1) we see that the rank of \bar{h} at a point x is the same as that of h at x. We call it the rank of f at x. We also see that the null space $\{X: h(X, Y)=0$ for all $Y\}$ at x is the same as the null space of \bar{h} at x. This null space of h is denoted by $T^{0}(x)$. We shall say that T^{0} is parallel relative to ∇ if, for any curve from x to y, parallel translation along the curve maps $T^{0}(x)$ onto $T^{0}(y)$. In this case, the dimension of $T^{0}(x)$ remains constant on M^{n}. In general, it is known that a differentiable distribution, say T^{0}, is parallel if and only if for any vector field $Y \in T^{0}$ we have $\nabla_{X} Y \in T^{0}$ for every vector field X.

Lemma 2. The condition that T^{0} is parallel relative to ∇ is independent of a choice of transversal vector field.
Proof. Suppose T^{0} is parallel relative to ∇. For any curve $x_{t}, 0 \leq t \leq 1$, and for any ∇-parallel $Y_{t} \in T^{0}$, we have by (2)

$$
\bar{\nabla}_{t} Y_{t}=\nabla_{t} Y_{t}-h\left(X_{t}, Y_{t}\right) Z=\nabla_{t} Y_{t}=0
$$

where X_{t} is the tangent vector field of x_{t}. Thus Y_{t} is $\bar{\nabla}$-parallel. This means that T^{0} is $\bar{\nabla}$-parallel.

From now on, we assume that our hypersurface satisfies the condition of parallel nullity (that is, T^{0} is parallel relative to ∇). The distribution T^{0} being parallel, it is integrable and totally geodesic. We say that T^{0} is complete if each leaf L of T^{0} is complete relative to ∇, that is, every ∇ geodesic in L extends infinitely for its affine parameter. In this regard we have
Lemma 3. On each leaf L of T^{0} the induced connection ∇ is the same for any choice of ξ. In particular, the property that T^{0} is complete is independent of a choice of ξ.
Proof. If X, Y are vector fields on L, then we have $\bar{\nabla}_{X} Y=\nabla_{X} Y$ $h(X, Y) Z=\nabla_{X} Y$. Thus two connections ∇ and $\bar{\nabla}$ coincide on L.

From (I), we easily get
Lemma 4. For every leaf L of $T^{0}, f(L)$ is a totally geodesic submanifold in R^{n+1}. If T^{0} is complete, then $f(L)$ is an entire affine subspace of dimension $s=\operatorname{dim} T^{0} ; f$ actually gives a connection-preserving diffeomorphism of L onto the affine subspace $f(L)$. Moreover, for two distinct leaves L_{1} and L_{2} of $T^{0}, f\left(L_{1}\right)$ and $f\left(L_{2}\right)$ are affine subspaces which are D-parallel in R^{n+1}.
Remark 1. If the connection ∇ induced by some transversal vector field ξ is complete and if T^{0} is parallel, then T^{0} is complete.
Remark 2. If an affine hypersurface $f: M^{n} \rightarrow R^{n+1}$ has the property that $\nabla h=0$ for some choice of transversal vector field, then it obviously satisfies the condition of parallel nullity.
Remark 3. For an affine hypersurface $f: M^{n} \rightarrow R^{n+1}$, the Gauss equation implies that for each point $x \in M^{n}$ we have

$$
T^{0}(x) \subset \cap_{X, Y \in T_{x}\left(M^{n}\right)} \text { ker } R(X, Y)
$$

The two subspaces coincide if the rank of S is >1 or if rank $h=1$ and $R \neq 0$. If they coincide at every point and if $\nabla R=0$, then T^{0} is parallel.

We add the following facts for later use. Assume that two transversal vector fields ξ and $\bar{\xi}$ coincide $\bmod T^{0}$, that is, $\bar{\xi}=\xi+f_{*}(Z)$, where $Z \in T^{0}$. Then from Lemma 1 we see that

$$
\begin{gathered}
\bar{h}=h \text { and } \bar{\tau}=\tau \\
\bar{S}=S \bmod T^{0}, \text { and } \bar{\nabla}=\nabla \bmod T^{0},
\end{gathered}
$$

that is, $\bar{\nabla}_{X} Y-\nabla_{X} Y \in T^{0}$ for all vecotr fields X, Y. Now using these facts it is easy to establish the following.

Lemma 5. Assume that $\bar{\xi}=\xi \bmod T^{0}$. Then we have

$$
\begin{equation*}
\overline{\nabla h}=\nabla h, \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\bar{R}=R \bmod T^{0}, \tag{6}
\end{equation*}
$$

that is, $\bar{R}(X, Y) W-R(X, Y) W \in T^{0}$ for all X, Y, W.
Moreover, if ξ satisfies $S T^{0} \subset T^{0}$, then

$$
\begin{equation*}
\overline{\nabla S}=\nabla S \bmod T^{0} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\overline{\nabla R}=\nabla R \bmod T^{0} \tag{8}
\end{equation*}
$$

2. Global cylinder representation of a hypersurface M^{n}

We now prove the following theorem.
Theorem. Let $f: M^{n} \rightarrow R^{n+1}$ be a connected hypersurface such that its affine fundamental form h has parallel kernel T^{0}. Assume that T^{0} is complete. Then we can express $f: M^{n} \rightarrow R^{n+1}$ as follows: $M^{n}=M^{r} \times L, f=$ $f_{1} \times f_{0}$, where $f_{1}: M^{r} \rightarrow R^{r+1}$ is a connected nondegenerate hypersurface and f_{0} is a connection-preserving map of a leaf L of T^{0} onto R^{n-r}, and $R^{n+1}=R^{r+1} \times R^{n-r}$. Such a representation is unique up to an equiaffine transformation of R^{n+1} so that a nondegenerate profile hypersurface M^{r} is determined uniquely up to an equiaffine transformation of R^{r+1}.
Proof. Let x_{0} be an arbitrary but fixed point of M^{n}. For the leaf L_{0} through x_{0} of $T_{0}, f\left(L_{0}\right)$ is an entire affine subspace of dimension $s=n-r$ through $o=f\left(x_{0}\right)$ in R^{n+1}. Call it R^{s}. For any point $p \in R^{n+1}$ we denote by $R^{s}(p)$ the s-dimensional affine subspace through p which is parallel to
R^{s}. Again from Lemma 4 we know that if $x \in M^{n}$, then the image by f of the leaf L through x coincides with $R^{s}(f(x))$. Let us choose an affine subspace of dimension $r+1$, say, R^{r+1} through $f\left(x_{0}\right)$ which is transversal to R^{s}. Again, for any point p in R^{n+1} the ($r+1$)-dimensional affine subspace through p and parallel to R^{r+1} will be denoted by $R^{r+1}(p)$. The mapping $f: M^{n} \rightarrow R^{n+1}$ is then transversal to R^{r+1}. In fact, for any $x \in M^{n}$ such that $p=f(x) \in R^{r+1}$ we have $T_{p}\left(R^{n+1}\right)=T_{p}\left(R^{s}\right)+f_{*}\left(T_{x}\left(M^{n}\right)\right)$, because $f_{*}\left(T_{x}\left(M^{n}\right)\right)$ contains $R^{s}(p)=f(L)$, where L is the leaf of T^{0} through x. By a well known theorem (for example, see [H], p.22]), it follows that $M^{r}=\left\{x \in M^{n}: f(x) \in R^{r+1}\right\}$ is an r-dimensional submanifold of M^{n}. We see that the restriction of $f: M^{n} \rightarrow R^{n+1}$ to M^{r} gives rise to a hypersurface $f_{1}: M^{r} \rightarrow R^{r+1}$; we shall show that M^{r} is connected in a moment. In the case where the original immersion $f: M^{n} \rightarrow R^{n+1}$ is an imbedding, we may think of M^{r} as the intersection of M^{n} with R^{r+1}.

Now we define a one-to-one map $\Phi: M^{n} \rightarrow M^{r} \times L_{0}$ as follows. We consider $o=f\left(x_{0}\right)$ as the origin of R^{n+1}, R^{s}, and R^{r+1}, whenever we need a reference point in each of these affine spaces. Now for any $x \in M^{n}$, we define

$$
\Phi(x)=(y, z) \in M^{r} \times L_{0},
$$

where y, z are determined as follows. Consider $p=f(x)$. For the leaf $L(x)$ of T^{0} through $x, f(L(x))$ is the affine subspace $R^{s}(p)$, which meets R^{r+1} at a certain unique point, say, q. Since f maps one-to-one on $L(x)$, there is a unique point $y \in L(x) \subset M^{n}$ such that $f(y)=q$. This means $y \in M^{r}$. On the other hand, the vector from q to p is parallel to the vector from o to z, where z is a certain uniquely determined point of R^{s}. It is now easy to find the inverse map $M^{r} \times L \rightarrow M^{n}$ of Φ. Since Φ is differentiable, the existence of the projection $M^{n} \rightarrow M^{r}$ shows that M^{r} is connected. So we get a cylinder representation of M^{n} with a profile hypersurface M^{r}.

We have still to prove the uniqueness of such a representation. For this purpose we use the following lemma in analytic geometry which is easy to prove.

Lemma 5. Let R^{s} be a fixed affine subspace of the affine space R^{n+1}. Suppose R^{r+1} and \bar{R}^{r+1} are two affine subspaces that are transversal to map F of R^{r+1} onto \bar{R}^{r+1} as follows: for each point $x \in M^{r+1}$, let $R^{s}(x)$ denote the affine subspace through x that is parallel to R^{s}. We let \bar{x} be a uniquely determined point of intersection with \bar{R}^{r+1} and set $F(x)=\bar{x}$. Then F is an affine transformation of R^{r+1} onto \bar{R}^{r+1}. Moreover, F is equiaffine (that is volume-preserving) if we fix a determinant function (parallel volume element) ω_{n+1} on R^{r+1} and a determinant function ω_{s} on R^{s} and define
determinant functions ω_{r+1} and $\bar{\omega}_{r+1}$ on R^{r+1} and \bar{R}^{r+1}, respectively, such that $\omega_{n+1}=\omega_{r+1} \wedge \omega_{s}$ and $\omega_{n+1}=\bar{\omega}_{r+1} \wedge \omega_{s}$.

Now suppose $\bar{\Phi}: M^{n+1} \rightarrow \bar{M}^{r} \times \bar{L}$ is another cylinder representation, where $\bar{f}_{1}: \bar{M}^{r} \rightarrow \bar{R}^{r+1}$ is a nondegenerate hypersurface of \bar{R}^{r+1} and $\bar{f}_{0}: \bar{L} \rightarrow$ \bar{R}^{s} is a connection-preserving map of a leaf \bar{L} of T^{0} onto an affine subspace \bar{R}^{g} transversal to \bar{R}^{r+1}. We may assume, without loss of generality, that $L=\bar{L}, R^{s}=\bar{R}^{s}$, and $f_{0}=\bar{f}_{0}$. Then we get an equiaffine transformation $F_{1}: R^{r+1} \rightarrow \bar{R}^{r+1}$ in the manner of Lemma 5. Combining this with the identity map: R^{s} we get an equiaffine transformation, denoted by F, of R^{n+1} onto itself. It is now clear that $F_{1}\left(M^{r}\right)=\bar{M}^{r}$ and $\bar{\Phi}=F \circ \Phi$. This completes the proof of the theorem.

Corollary. Under the assumption of the theorem, we can find a unique transversal vector field ξ for M^{n} with the following properties:

1) ξ is D-parallel in the direction of T^{0}; the affine shape operator vanishes on T^{0}.
2) The restriction of ξ to a profile hypersurface M^{r} coincides with the affine normal of the nondegenerate hypersurface M^{r}.
Such ξ is unique once a profile hypersurface is chosen.
Remark 4. If we do not assume the completeness for T^{0}, then for any point x_{0} of M^{n} we can get a local cylinder decomposition of a neighborhood U of x_{0} in the form $V \times W$, where V is a nondegenerate hypersurface in R^{r+1} and W is an open subset of R^{s}.

We add some more information on the relationship between the geometry of M^{n} and that of M^{r}. Continuing the notation in the proof of the theorem, we define a distribution T^{1} by

$$
T_{x}^{1}=f_{*} x^{-1}\left(R^{r+1}\right) \text { for each } x \in M^{n}
$$

where R^{r+1} is now considered as the vector subspace instead of the affine space R^{r+1} through $f\left(x_{0}\right)$ This distribution is obviously integrable. We denote by π the projection of the vector space R^{n+1} onto R^{r+1} (parallel to the subspace R^{s}). We also denote by the same symbol the projection of $T M$ onto T^{1} parallel to T^{0} so that $f_{*} \circ \pi=\pi \circ f_{*}$. Let ξ be a transversal vector field to f. We define $\bar{\xi}=\pi \circ \xi$. Then $\bar{\xi}$ is also transversal to f and equal to $\xi \bmod T^{0}$. By the formulas preceding Lemma 5 and those in Lemma 5 we have
Proposition.

$$
\bar{h}=h, \quad \bar{\tau}=\tau, \quad \bar{S}=\pi \circ S, \quad \bar{\nabla}_{X} Y=\pi\left(\nabla_{X} Y\right)
$$

$$
\begin{gathered}
\bar{R}(X, Y) W=\pi(R(X, Y) W) \\
\left(\bar{\nabla}_{X} \bar{S}\right)(Y)=\pi\left(\nabla_{X} S\right)(Y)
\end{gathered}
$$

and

$$
\left.\left(\bar{\nabla}_{W} \bar{R}\right)(X, Y) V=\pi\left(\nabla_{W} R\right)(X, Y) V\right)
$$

for the last two identities we need to assume that ξ satisfies condition $S T^{0} \subset$ T^{0} in Lemma 5. Moreover, the same relations hold if $\bar{\nabla}$ is considered the connection on M^{r} (that is, the restriction to M^{r}).

Remark 5. If ξ is assumed to be equiaffine, then certainly all the identities in Lemma 5 hold. Moreover, $\bar{\xi}$ is parallel relative to D along T^{0}.

Combining Remarks 3, 5 and the last identity in the proposition we obtain

Corollary. Assume ξ is an equiaffine transversal vector field to a hypersurface $f: M^{n} \rightarrow R^{n+1}$ such that $\nabla R=0$. If rank $S>1$ everywhere, then M^{n} is locally a cylinder $M^{r} \times R^{s}$ and $\bar{\nabla}$ on M^{r} is locally symmetric.

References

[B] Blaschke, W.: Vorlesungen über Differentialgeometrie II, Affine Differentialgeometrie, Springer, Berlin, 1923
[H] Hirsch, M. W.: Differential Topology, Springer, New York, Heidelberg, Berlin, 1976
[N-P1] Nomizu, K. and Pinkall, U.: On the geometry of affine immersions Math. Z. 195(1987), 165-178
[N-P2] Nomizu, K. and Pinkall, U.: Cubic form theorem for affine immersions, Results ini Math. 13(1988), 338-362
[O] Opozda, B.: Some extensions of Radon's theorem, to appear in Proceedings of the Conference on Global Analysis and DifferentialGeoemtry, Berlin, 1990.
[S] Simon, U.:Zur Entwickelung der affinen Differentialgeometrie nach Blaschke, Gesam. Werke Blaschke, Band 4, Thales, Essen, 1985)

Katsumi Nomizu
Department of Mathematics
Brown University
Providence, RI 02912
USA

Barbara Opozda
Instytut Matematyki, UJ
UL, Reymonta 4
30-059 Kraków
Poland

