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SURJECTIVE SEPARATING MAPS ON NONCOMMUTATIVE

Lp-SPACES

CHRISTIAN LE MERDY AND SAFOURA ZADEH

Abstract. Let 1 ≤ p < ∞ and let T : Lp(M) → Lp(N ) be a bounded map between
noncommutative Lp-spaces. If T is bijective and separating (i.e., for any x, y ∈ Lp(M)
such that x∗y = xy∗ = 0, we have T (x)∗T (y) = T (x)T (y)∗ = 0), we prove the existence

of decompositions M = M1

∞
⊕M2, N = N 1

∞
⊕N 2 and maps T1 : Lp(M1) → Lp(N 1),

T2 : Lp(M2)→ Lp(N 2), such that T = T1+T2, T1 has a direct Yeadon type factorization
and T2 has an anti-direct Yeadon type factorization. We further show that T−1 is
separating in this case. Next we prove that for any 1 ≤ p < ∞ (resp. any 1 ≤ p 6= 2 <
∞), a surjective separating map T : Lp(M) → Lp(N ) is S1-bounded (resp. completely

bounded) if and only if there exists a decompositionM =M1

∞
⊕M2 such that T |Lp(M1)

has a direct Yeadon type factorization and M2 is subhomogeneous.

1. Introduction

This paper deals with separating maps between noncommutative Lp-spaces, 1 ≤ p <∞.
These operators were investigated recently in [1, 4, 5], to which we refer for background,
motivation and historical facts. Recall that a bounded map T : Lp(M)→ Lp(N ) between
two noncommutative Lp-spaces is called separating if for any x, y ∈ Lp(M), the condition
x∗y = xy∗ = 0 implies that T (x)∗T (y) = T (x)T (y)∗ = 0. It was shown in [4, Proposition
3.11] and [1, Theorem 3.3 & Remark 3.4] that T : Lp(M)→ Lp(N ) is separating if and only
if there exist a w∗-continuous Jordan homomorphism J : M→ N , a positive operator B
affiliated with N and commuting with the range of J , as well as a partial isometry w ∈ N
such that w∗w = s(B) = J(1) and

T (x) = wBJ(x), (x ∈M∩ Lp(M)).

Such a factorization (which is necessarily unique) is called a Yeadon type factorization
in [4, 5]. We further say that T admits a direct Yeadon type factorization if the Jordan
homomorphism J in this factorization is a ∗-homomorphism. It is proved in [5, Proposition
4.4] and [1, Theorem 3.6] that any separating map T : Lp(M) → Lp(N ) with a direct
Yeadon type factorization is necessarily completely bounded. It is also proved in [5,
Proposition 4.5] that any such map is S1-bounded (see Section 2 below for the definition).
The main purpose of the present paper is to establish a form of converse of these results
for surjective maps. More precisely, we prove the following characterizations.

Theorem. Let 1 ≤ p < ∞, let M,N be semifinite von Neumann algebras and let
T : Lp(M)→ Lp(N ) be a surjective separating map. The following are equivalent :

(i) T is S1-bounded;

Key words and phrases. von Neumann algebras, noncommutative Lp-spaces, separating maps, operator
spaces.
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2 C. LE MERDY AND S. ZADEH

(ii) There exists a direct sum decompositionM =M1

∞
⊕M2 such that the restriction

of T to Lp(M1) has a direct Yeadon type factorization andM2 is subhomogeneous.

Moreover if p 6= 2, then (ii) is also equivalent to :

(iii) T is completely bounded.

These results will be proved in Section 4. We also provide an example showing that the sur-
jectivity assumption cannot be dropped. In section 3, we establish a general decomposition
result for bijective separating maps which plays a key role in the above characterization
results. We prove in passing that the inverse of any bijective separating map is separating
as well. Section 2 is preparatory.

2. Background

In this section we recall some necessary background on semifinite noncommutative Lp-
spaces and subhomogeneous von Neumann algebras.

Let M be a semifinite von Neumann algebra with a normal semifinite faithful trace
τM. Assume that M ⊂ B(H) acts on some Hilbert space H. Let L0(M) denote the
∗-algebra of all closed densely defined (possibly unbounded) operators on H, which are
τM-measurable. Then for any 1 ≤ p <∞, the noncommutative Lp-space associated with
M can be defined as

Lp(M) :=
{
x ∈ L0(M) : τM(|x|p) <∞

}
.

We set ‖x‖p := τM(|x|p)
1
p for any x ∈ Lp(M). Then Lp(M) equipped with ‖ · ‖p is a

Banach space. The reader may consult [3,8,12] and the references therein for details and
further properties.

We let Sp, 1 ≤ p <∞, denote the noncommutative Lp-space built upon B(`2) with its
usual trace; this is in fact the Schatten p-class of operators on `2. For any m ≥ 1, we let
Sp
m denote the Schatten p-class of m×m matrices. Whenever E is an operator space, we

let Sp
m[E] denote the E-valued Schatten space introduced in [6, Chapter1].

Recall that we may identify Lp(M⊗Mm) with Lp(M) ⊗ Sp
m in a natural way. Let

N be, possibly, another semifinite von Neumann algebra. We say that an operator T :
Lp(M)→ Lp(N ) is completely bounded if there exists a constant K ≥ 0 such that

‖T ⊗ ISp
m

: Lp(M⊗Mm)→ Lp(N ⊗Mm)‖ ≤ K,

for any m ≥ 1. In this case, the completely bounded norm of T is the smallest such
uniform bound and is denoted by ‖T‖cb. We further say that T is a complete isometry if
T ⊗ ISp

m
is an isometry for any m ≥ 1.

In [5, Section 3], we introduced S1-valued noncommutative Lp-spaces, which naturally
extend previous constructions from [2,6]. We recall this definition here.

For 1 ≤ p <∞, the S1-valued noncommutative Lp-space, Lp(M;S1), is the space of all
infinite matrices [xij ]i,j≥1 in Lp(M) for which there exist families (aik)i,k≥1 and (bkj)k,j≥1
in L2p(M) such that

∑
i,k aika

∗
ik and

∑
k,j b

∗
kjbkj converge in Lp(M) and for all i, j ≥ 1,

xij =
∞∑
k=1

aikbkj .
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We equip Lp(M;S1) with the following norm

‖[xij ]‖Lp(M;S1) = inf

∥∥∥
∞∑

i,k=1

aika
∗
ik

∥∥∥ 1
2

p

∥∥∥ ∞∑
k,j=1

b∗kjbkj

∥∥∥ 1
2

p

 ,(1)

where the infimum is taken over all families (aik)i,k≥1 and (bkj)k,j≥1 as above. The space
Lp(M;S1) endowed with this norm is a Banach space.

For any integer m ≥ 1, we let Lp(M;S1
m) be the subspace of Lp(M;S1) of matrices

[xij ]i,j≥1 with support in {1, . . . ,m}2.
Following [5, Definition 3.8], we say that a bounded operator T : Lp(M) → Lp(N ) is

S1-bounded if there exists a constant K ≥ 0 such that

‖T ⊗ IS1
m

: Lp(M;S1
m) −→ Lp(N ;S1

m)‖ ≤ K,

for any m ≥ 1. In this case, the S1-bounded norm of T is the smallest such uniform
bounded and is denoted by ‖T‖S1 . We further say that T : Lp(M) → Lp(N ) is an
S1-isometry if for each m ≥ 1, T ⊗ IS1

m
is an isometry.

We proved in [5] that for any n ≥ 1, Lp(Mn;S1
m) = Sp

n[S1
m] isometrically. Further, if

M,N are hyperfinite, then T : Lp(M)→ Lp(N ) is S1-bounded if and only if it is regular
in the sense of [7].

We note that any direct sumM =M1

∞
⊕M2 induces isometric identifications Lp(M) =

Lp(M1)
p
⊕Lp(M2) and Lp(M;S1) = Lp(M1;S

1)
p
⊕Lp(M2;S

1) (see [5, Lemma 5.2] for the
last identification).

Recall that a C∗-algebra A is called subhomogeneous of degree ≤ N if all irreducible
representations of A are of maximum dimension N . If A is subhomogeneous of degree
≤ N , for some N , we simply say that A is subhomogeneous. It is well-known (see for
example [9, Theorem 7.1.1]) thatM is a subhomogeneous von Neumann algebra of degree
≤ N if and only if there exist r ≥ 1, integers 1 ≤ n1 ≤ n2 ≤ . . . ≤ nr ≤ N and abelian
von Neumann algebras L∞(Ω1), . . . , L

∞(Ωr) such that

M'
∞
⊕

1≤j≤r
L∞(Ωj ;Mnj ).(2)

If a von Neumann algebra M is not subhomogeneous of degree ≤ N , it is well-known
that there is a non zero ∗-homomorphism γ : MN+1 →M. Lemma 2.1 below makes this
more explicit in the semifinite case.

Lemma 2.1. Let M be a semifinite von Neumann algebra and let N ≥ 1. If M is not
subhomogeneous of degree ≤ N , then there is a complete isometry from Sp

N+1 into Lp(M)

that is also an S1-isometry.

Proof. LetM =M1

∞
⊕M2 be the direct sum decomposition ofM into a type I summand

M1 and a type II summand M2 (see e.g. [11, Section 5]).

Assume that M2 6= {0}. Following the same lines as in [5, Lemma 2.3], there is a
projection e in M2, a trace preserving von Neumann algebra identification

M2 'MN+1⊗(eM2e)(3)
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and a finite trace projection ε in eM2e such that the mapping

γ : MN+1 →M2 ⊂M; γ(a) = a⊗ ε
is a non zero ∗-homomorphism taking values in L1(M), and therefore Lp(M).

For every [aij ]1≤i,j≤m in Sp
N+1 ⊗ S

p
m we have that

‖[aij ⊗ ε]‖Lp(M2⊗Mm) = ‖ε‖p‖[aij ]‖Lp(MN+1⊗Mm),

and therefore ‖ε‖−1p γ is a complete isometry from Sp
N+1 into Lp(M). By [5, Lemma 5.1],

‖[aij ⊗ ε]‖Lp(M2; S1
m) = ‖ε‖p‖[aij ]‖Sp

N+1[S
1
m],

and therefore ‖ε‖−1p γ is also an S1-isometry from Sp
N+1 into Lp(M).

If M2 = {0}, then M is of type I. Since M is not subhomogeneous of degree ≤ N , it
follows from [11, Theorem V.1.27] that there exist a Hilbert space H with dim(H) ≥ N+1
and an abelian von Neumann algebra W such thatM contains B(H)⊗W as a summand.
Using this summand instead of (3) and arguing as above we obtain the result in this case
as well. �

3. bijective separating maps and their inverses

The goal of this section is to provide a decomposition for bijective separating maps that
facilitates their study. We apply this decomposition to show that the inverse of a bijective
separating map is separating as well.

First we recall some terminologies and results that we will use. A Jordan homomorphism
between von Neumann algebras M and N is a linear map J :M→N such that

J(x∗) = J(x)∗ and J(xy + yx) = J(x)J(y) + J(y)J(x)

for all x and y inM. It is plain that ∗-homomorphisms and anti-∗-homomorphisms are Jor-
dan homomorphisms. In fact, every Jordan homomorphism is a sum of a ∗-homomorphism
and an anti-∗-homomorphism, as we recall here.

Let J : M → N be a Jordan homomorphism and let D ⊂ N be the w∗-closed C∗-
algebra generated by J(M). Then J(1) is the unit of D. By e.g. [10, Theorem 3.3],
there exist projections e and f in the center of D such that e + f = J(1), x 7→ J(x)e
is a ∗-homomorphism, and x 7→ J(x)f is an anti-∗-homomorphism. Let N 1 = eN e and
N 2 = fN f . Define π : M→ N 1 and σ : M→ N 2 by π(x) = J(x)e and σ(x) = J(x)f ,

for all x ∈M. Then J is valued in N 1

∞
⊕N 2 and J(x) = π(x) + σ(x), for all x ∈M.

Assume that M and N are semifinite von Neumann algebras and let 1 ≤ p < ∞. In
[4], inspired by Yeadon’s fundamental description of isometries between noncommutative
Lp-spaces, we say that a bounded operator T : Lp(M) → Lp(N ) has a Yeadon type
factorization if there exist a w∗-continuous Jordan homomorphism J : M→ N , a partial
isometry w ∈ N , and a positive operator B affiliated with N , which satisfy the following
conditions:

(a) w∗w = J(1) = s(B), the support projection of B;
(b) every spectral projection of B commutes with J(x), for all x ∈M;
(c) T (x) = wBJ(x) for all x ∈M∩ Lp(M).
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We call (w,B, J) the Yeadon triple associated with T . This triple is unique. Following [5],
if J is a ∗-homomorphism (respectively, anti-∗-homomorphism), we say that T has a direct
(respectively, anti-direct) Yeadon type factorization.

Following [4], we say that a bounded operator T : Lp(M)→ Lp(N ) is separating if for
every x, y ∈ Lp(M) such that x∗y = xy∗ = 0, we have that T (x)∗T (y) = T (x)T (y)∗ = 0.
The following characterization has a fundamental role in the study of separating maps.

Theorem 3.1. ([1, Theorem 3.3], [4, Theorem 3.5]) A bounded operator T : Lp(M) →
Lp(N ) admits a Yeadon type factorization if and only if it is separating.

It is easy to see that for a separating map T : Lp(M) → Lp(N ) with Yeadon triple
(w,B, J), we have that

T (z∗) = wT (z)∗w (z ∈ Lp(M)).(4)

Also, if T has a direct (respectively, anti-direct) Yeadon type factorization, we get that

T (zm) = T (z)J(m) (respectively, T (mz) = T (z)J(m)) ,(5)

for every z ∈ Lp(M) and m ∈M.

Remark 3.2. Let T : Lp(M)→ Lp(N ) be a separating map with Yeadon triple (w,B, J).
We observe that if T is surjective, then w is a unitary. Indeed on the one hand, we see
that T is valued in wLp(N ). Since ww∗w = w, this implies that T is valued in ww∗Lp(N ).
Hence, if T is surjective, we have ww∗Lp(N ) = Lp(N ), which implies that ww∗ = 1. On
the other hand, T (x) = T (x)J(1), for any x ∈ Lp(M). Hence, T is valued in Lp(N )J(1).
Hence, if T is surjective, we have Lp(N )J(1) = Lp(N ), which implies w∗w = J(1) = 1.

Proposition 3.3. Let T : Lp(M) → Lp(N ) be a separating map that is bijective. Then
there exist direct sum decompositions

M =M1

∞
⊕M2, and N = N 1

∞
⊕N 2,

and bounded bijective separating maps T1 : Lp(M1) → Lp(N 1) with a direct Yeadon type
factorization and T2 : Lp(M2) → Lp(N 2) with an anti-direct Yeadon type factorization
such that T = T1 + T2.

Proof. Assume that w = 1. Consider a decomposition for J , induced by central projections
e and f , as recalled above. As detailed in [5, Remark 4.3], this induces a decomposition

N = N 1

∞
⊕N 2 and separating maps

T1 : Lp(M) −→ Lp(N 1), T1(x) = T (x)e,

with Yeadon triple (e,Be, π), and hence a direct Yeadon type factorization, and

T2 : Lp(M) −→ Lp(N 2), T2(x) = T (x)f,

with Yeadon triple (f,Bf, σ), and hence an anti-direct Yeadon type factorization, such
that T = T1 + T2.

Let M1 := ker(σ) and M2 := ker(π). Since M1 and M2 are w∗-closed ideals of M,
there exist central projections α, β ∈ M such that M1 = αM, and M2 = βM. Set
M3 := (1−α)(1− β)M. Note that αβ ∈ ker(σ)∩ ker(π), and therefore J(αβ) = 0. Since
T is one-to-one, by [4, Remark 3.14(a)], J is one-to-one and therefore we must have that
αβ = 0. Hence,

1 = α+ β + (1− α)(1− β).
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Consequently, M =M1

∞
⊕M2

∞
⊕M3, and so we have the decomposition

Lp(M) = Lp(M1)
p
⊕Lp(M2)

p
⊕Lp(M3).

The result will follow if we can show that

Lp(M1) = ker(T2), Lp(M2) = ker(T1) and M3 = {0}.

To see that Lp(M1) ⊆ ker(T2), let x ∈M1 ∩ Lp(M1), then

T2(x) = Bσ(x) = 0.

Hence, M1 ∩ Lp(M1) ⊂ ker(T2) and therefore Lp(M1) ⊂ ker(T2). Now suppose that x
belongs to ker(T2). For any n ≥ 1, let pn = χ[−n,n](|x∗|), the projection associated with
the indicator function of [−n, n] in the Borel functional calculus of |x∗|, and xn := pnx.
Then, using (5), we have that

T2(xn) = T2(x)σ(pn) = 0.

Hence, Bσ(xn) = 0. Since s(B) = 1, this implies that σ(xn) = 0, that is xn is in M1.
Now because xn → x in Lp(M), we obtain that x belongs to Lp(M1). Hence,

Lp(M1) = ker(T2).

Similarly, we can show that Lp(M2) = ker(T2).

Finally, we show that M3 = {0}. Let x ∈ Lp(M). By surjectivity of T , there is
y in Lp(M) such that T (y) = T1(x). Writing T (y) = T1(y) + T2(y), we obtain that
T1(x − y) = 0 and T2(y) = 0, that is x − y belongs to ker(T1) = Lp(M2) and y belongs

to ker(T2) = Lp(M1), thus x belongs to Lp(M1)
p
⊕Lp(M2). Hence, M3 = {0}. This

completes the proof in the case w = 1.

In the general case, consider the map T̃ := w∗T (·), which takes any x ∈M∩Lp(M) to

BJ(x). By Remark 3.2, T̃ is also a bijective separating map. Its Yeadon triple is (1, B, J).

We may apply the above decomposition to the map T̃ to obtain decompositions M =

M1

∞
⊕M2, N = N 1

∞
⊕N 2 and bounded bijective separating maps T̃1 : Lp(M1)→ Lp(N 1)

with a direct Yeadon type factorization and T̃2 : Lp(M2) → Lp(N 2) with an anti-direct

Yeadon type factorization such that T̃ = T̃1 + T̃2. Since wT̃ = T , we obtain the result. �

Proposition 3.4. Suppose that T : Lp(M)→ Lp(N ) is a bijective separating map, then

(i) T−1 : Lp(N )→ Lp(M) is separating.
(ii) If J :M→N is the Jordan homomorphism associated with T , then J is invertible

and J−1 : N →M is the Jordan homomorphism associated with T−1.

Proof. Using the decomposition given in Proposition 3.3, it is enough to show parts (i) and
(ii) for a bijective separating map with a direct Yeadon type factorization. So, throughout
the proof we assume that this is the case. Note that by Remark 3.2, J(1) = 1.

(i) Suppose that a, b ∈ Lp(N ) such that a∗b = ab∗ = 0. We show that T−1(a)∗T−1(b) =
T−1(a)T−1(b)∗ = 0. Let x = T−1(a) and y = T−1(b). Set pn := χ[−n,n] (|y|), for any
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n ≥ 1. We have that

T (x∗ypn)B = T (x∗)J(ypn)B by (5)

= T (x∗)w∗T (ypn)

= wT (x)∗T (ypn) by (4)

= wT (x)∗T (y)J(pn) by (5)

= wa∗bJ(pn) = 0.

Since s(B) = J(1) = 1, we obtain T (x∗ypn) = 0. Because T is one-to-one, we have that
x∗ypn = 0. Now, since ypn → y, we get that x∗y = 0. A similar argument using ab∗ = 0
implies that xy∗ = 0. Hence T−1 must be separating.

(ii) By part (i), T−1 is separating. We let J ′ denote the Jordan homomorphism of its
Yeadon triple. Let e ∈ N be a projection with finite trace. For any y ∈ eN e, we have
that T−1(y) = T−1(e)J ′(y). Applying (5), we deduce that

y = TT−1(y) = T
(
T−1(e)J ′(y)

)
= TT−1(e) JJ ′(y) = e JJ ′(y).

Using the w∗-continuity of J and J ′, and the w∗-density of the union of the eN e, for
τN (e) <∞, we deduce that y = JJ ′(y) for any y ∈ N . By [4, Remark 3.14(a)], since T is
one-to-one, J must be one-to-one. Hence, J is invertible with J−1 = J ′. �

Remark 3.5. Part (ii) of Proposition 3.4 shows that a separating invertible map T :
Lp(M)→ Lp(N ) admits a direct Yeadon type factorization if and only if T−1 does.

4. a characterization of completely/S1-bounded surjective separating
maps

In this section we show that a separating map can always be reduced to a one-to-one
separating map and therefore we may confine ourself to the study of separating maps that
are surjective rather than bijective. The goal of the section is to provide a characterization
for surjective separating maps that are completely bounded (when p 6= 2) or S1-bounded.
We show that the surjectivity assumption is essential.

We require [5, Propositions 4.4 & 4.5] later on in our arguments in this section. We
recall the statements for convenience.

Proposition 4.1. Let T : Lp(M) → Lp(N ) be a bounded operator with a direct Yeadon
type factorization. Then T is completely bounded and ‖T‖cb = ‖T‖.

Proposition 4.2. Let T : Lp(M) → Lp(N ) be a bounded operator with a direct Yeadon
type factorization. Then T is S1-bounded and ‖T‖S1 = ‖T‖.

Lemma 4.3. Let T : Lp(M) → Lp(N ) be a separating map. Then there exists a direct

sum decomposition M =M0

∞
⊕M̃ such that ker (T ) = Lp(M0).

Proof. Let T : Lp(M) → Lp(N ) be a separating map and J : M → N be the Jordan
homomorphism associated with T via its Yeadon type factorization. Let M0 := ker(J).
Then M0 is an ideal. Since J is w∗-continuous, M0 is w∗-closed. Hence we have a direct
sum decomposition

M =M0

∞
⊕M̃.
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It is clear that Lp(M0) ⊂ kerT . Further J |M̃ is one-to-one. By [4, Remark 3.14(a)] this
implies that T |Lp(M̃) is one-to-one. This yields the result. �

For any von Neumann algebraM, we letMop denote its opposite von Neumann algebra.
Recall that the underlying dual Banach space structure and involution on Mop are the
same as on M but the product of x and y is defined by yx rather than xy. Note that the
Banach spaces Lp(M) and Lp(Mop) are the same. It is evident that, for von Neumann
algebras M and N , J :M→N is a ∗-homomorphism if and only if

Jop :Mop → N ; x 7→ J(x),

is an anti-∗-homomorphism. Hence, a separating map T : Lp(M) → Lp(N ) has a direct
Yeadon type factorization if and only if

T op : Lp(Mop)→ Lp(N ); x 7→ T (x),

has an anti-direct Yeadon type factorization.

Lemma 4.4 below is the principal ingredient of our characterization theorems. Its proof
relies on the relation between the completely bounded norm or S1-norm of the identity
map

Iop : Lp(M)→ Lp(Mop)

and the norms of the transformations

[xij ]1≤i,j≤m 7→ [xji]1≤i,j≤m

either on Lp(M⊗Mm) or on Lp(M;S1
m), in particular in the specific case whenM = Mn.

We will use the fact that for any n ≥ 1, we have Lp(Mn ⊗Mm) ' Sp
m[Sp

n], isometrically,
provided that Sp

n is equipped with the operator space structure given in [6].

Let tm denote the transposition map on scalar m × m matrices. Assume that M is
semifinite. The map

IMop ⊗ tm :Mop ⊗Mm →Mop ⊗Mop
m

is a trace preserving ∗-homomorphism, and so

ILp(Mop) ⊗ tm : Lp(Mop ⊗Mm) −→ Lp(Mop ⊗Mop
m )

is an isometry. MoreoverMop⊗Mop
m = (M⊗Mm)op, hence Lp(Mop⊗Mop

m ) = Lp(M⊗Mm)
isometrically. For any [xij ]1≤i,j≤m in Lp(M)⊗Sp

m, since ILp(Mop)⊗ tm maps [xij ] to [xji],
we get that

(6)
∥∥[xij ]

∥∥
Lp(Mop⊗Mm)

=
∥∥[xji]

∥∥
Lp(M⊗Mm)

.

We now show that similarly, for any [xij ]1≤i,j≤m in Lp(M)⊗ S1
m,

(7)
∥∥[xij ]

∥∥
Lp(Mop; S1

m)
=
∥∥[xji]

∥∥
Lp(M; S1

m)
.

To verify the identity (7), assume that ‖[xij ]‖Lp(Mop; S1
m) < 1. Taking into account the

opposite product and (1), we can write

xij =
∑
k

bkjaik

for some aik, bkj in L2p(M) such that
∑

i,k a
∗
ikaik and

∑
k,j bkjb

∗
kj have norm < 1 in Lp(M).

This exacly means that ‖[xji]‖Lp(M; S1
m) < 1. This shows the inequality ≥ in (7). Reversing

the argument we find the other inequality.
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Identities (6) and (7), respectively, imply

(8)
∥∥Iop : Lp(M) −→ Lp(Mop)

∥∥
cb

= sup
m≥1

∥∥ILp(M)⊗tm : Lp(M⊗Mm) −→ Lp(M⊗Mm)
∥∥,

and

(9)
∥∥Iop : Lp(M) −→ Lp(Mop)

∥∥
S1 = sup

m≥1

∥∥ILp(M) ⊗ tm : Lp(M; S1
m) −→ Lp(M;S1

m)
∥∥.

When M = Mn, the above identities can be more specific. In fact, as we show below,
we have that for any n ≥ 1,∥∥Iop : Sp

n −→ {Sp
n}op

∥∥
cb

=
∥∥tn : Sp

n → Sp
n

∥∥
cb

(10)

and ∥∥Iop : Sp
n −→ {Sp

n}op
∥∥
S1 =

∥∥tn : Sp
n → Sp

n

∥∥
S1 .(11)

Using (6) applied toM = Mn, to prove (10), it is enough to show that for any [xij ]1≤i,j≤m
in Sp

n ⊗ Sp
m,

(12)
∥∥[tn(xij)]

∥∥
Sp
m[Sp

n]
=
∥∥[xji]

∥∥
Sp
m[Sp

n]
.

This follows from the fact that tm⊗ tn = tnm is an isometry on Sp
m[Sp

n] ' Sp
nm, and hence∥∥(tm ⊗ tn)[tn(xij)]

∥∥
Sp
m[Sp

n]
=
∥∥[tn(xij)]

∥∥
Sp
m[Sp

n]
.

Since (tm ⊗ tn)[tn(xij)] = [xji], this yields (12).

Likewise, using (7) applied to M = Mn, to prove (11), it is enough to show that for
any [xij ]1≤i,j≤m in Sp

n ⊗ S1
m,

(13)
∥∥[tn(xij)]

∥∥
Sp
n[S1

m]
=
∥∥[xji]

∥∥
Sp
n[S1

m]
.

Assume that ‖[tn(xij)]‖Sp
n[S1

m] < 1. According to (1), we can write

tn(xij) =
∑
k

aikbkj

for some aik, bkj in S2p
n such that

∑
i,k aika

∗
ik and

∑
k,j b

∗
kjbkj have norm < 1 in Sp

n. Then
we have

xij =
∑
k

tn(aikbkj) =
∑
k

tn(bkj)tn(aik),

hence

xji =
∑
k

tn(bki)tn(ajk).

Further ∑
k,j

tn(ajk)∗tn(ajk) = tn

(∑
j,k

ajka
∗
jk

)
,

and tn is an isomerty on Sp
n. Consequently,

∑
k,j tn(akj)

∗tn(ajk) has norm < 1 in Sp
n.

Similarly,
∑

i,k tn(bki)tn(bki)
∗ has norm < 1 in Sp

n. This shows that ‖[xji]‖Sp
n[S1

m] < 1.

We have thus proved the inequality ≥ in (13). Reversing the argument we find the other
inequality.

In the sequel, E(x) denotes the integer part of x.
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Lemma 4.4. Suppose that M is a semifinite von Neumann algebra.

(i) If M is subhomogeneous of degree ≤ N for some N ≥ 1, then for all [xij ] ∈
Mm ⊗ Lp(M), m ≥ 1, we have that

‖[xji]‖Lp(M⊗Mm) ≤ N2|1/2−1/p|‖[xij ]‖Lp(M⊗Mm),

and

‖[xji]‖Lp(M;S1
m) ≤ N‖[xij ]‖Lp(M; S1

m).

(ii) Suppose that there exists K ≥ 1 such that for all [xij ] ∈ Lp(M)⊗ Sp
m, m ≥ 1,

‖[xji]‖Lp(M⊗Mm) ≤ K‖[xij ]‖Lp(M⊗Mm).(14)

Then if p 6= 2, M is subhomogeneous of degree ≤ N with N = E
(
K

1
2|1/2−1/p|

)
.

(iii) Suppose that there exists K ≥ 1 such that for all [xij ] ∈ Lp(M)⊗ Sp
m, m ≥ 1,

‖[xji]‖Lp(M;S1
m) ≤ K‖[xij ]‖Lp(M; S1

m).(15)

Then M is subhomogeneous of degree ≤ N with N = E(K).

Proof. (i) Assume that M = L∞(Ω;Mn). Let m ≥ 1 be given. We have that

Lp(M⊗Mm) ' Lp(Ω;Sp
m[Sp

n]).

By Pisier-Fubini Theorem [6, (3.6)],

Lp(M;S1
m) ' Lp(Ω;Sp

n[S1
m]).

Consequently,

∥∥ILp(M) ⊗ tm : Lp(M⊗Mm) −→ Lp(M⊗Mm)
∥∥ =

∥∥tm ⊗ ISp
n

: Sp
m[Sp

n] −→ Sp
m[Sp

n]
∥∥.(16)

and ∥∥ILp(M) ⊗ tm : Lp(M;S1
m) −→ Lp(M;S1

m)
∥∥ =

∥∥ISp
n
⊗ tm : Sp

n[S1
m] −→ Sp

n[S1
m]
∥∥.(17)

Applying (8) to both sides of (16), we deduce∥∥Iop : Lp(M) −→ Lp(Mop)
∥∥
cb

=
∥∥Iop : Sp

n −→ {Sp
n}op

∥∥
cb
,

and applying (9) to both sides of (17), we deduce that∥∥Iop : Lp(M) −→ Lp(Mop)
∥∥
S1 =

∥∥Iop : Sp
n −→ {Sp

n}op
∥∥
S1 .

By [5, Lemma 5.3],∥∥tn : Sp
n → Sp

n

∥∥
cb

= n2|1/p−1/2| and
∥∥tn : Sp

n → Sp
n

∥∥
S1 = n,

hence we obtain by (10) and (11) that∥∥Iop : Lp(M) −→ Lp(Mop)
∥∥
cb

= n2|1/p−1/2| and
∥∥Iop : Lp(M) −→ Lp(Mop)

∥∥
S1 = n.

When M is subhomogeneous of degree ≤ N , there exist r ≥ 1, integers 1 ≤ n1 ≤
n2 ≤ · · · ≤ nr ≤ N and abelian von Neumann algebras L∞(Ω1), . . . , L

∞(Ωr) such that (2)
holds. Then for any m ≥ 1, we have that

Lp(M⊗Mm) '
p
⊕

1≤j≤r
Lp(Ωj ;S

p
m[Sp

nj
]) and Lp(M;S1

m) '
p
⊕

1≤j≤r
Lp(Ωj ;S

p
nj

[S1
m]).



SURJECTIVE SEPARATING MAPS ON NONCOMMUTATIVE Lp-SPACES 11

Using our previous argument and direct sums we deduce that

‖Iop : Lp(M)→ Lp(Mop)‖cb ≤ N2| 1
p
− 1

2
|

and ‖Iop : Lp(M)→ Lp(Mop)‖S1 ≤ N.
The result follows from (6) and (7).

(ii) Suppose that M is not subhomogeneous of degree ≤ N = E(K
1

2|1/2−1/p| ). By
Lemma 2.1, there exists a complete isometry

Sp
N+1 ↪→ M.

This embedding implies that for any m ≥ 1,∥∥tm⊗ISp
N+1

: Sp
m[Sp

N+1] −→ Sp
m[Sp

N+1]
∥∥ ≤ ∥∥ILp(M)⊗tm : Lp(M⊗Mm) −→ Lp(M⊗Mm)

∥∥.
According to (8) and (10), this implies that∥∥tN+1 : Sp

N+1 −→ Sp
N+1

∥∥
cb
≤
∥∥Iop : Lp(M) −→ Lp(Mop)

∥∥
cb
.

Hence ∥∥Iop : Lp(M) −→ Lp(Mop)
∥∥
cb
≥ (N + 1)

2| 1
p
− 1

2
|
.

Comparing this with inequality (14) above and applying (6), we get a contradiction.

(iii) The proof is similar to the proof of part (ii). �

Proposition 4.5. Let T : Lp(M)→ Lp(N ) be separating. If M is subhomogeneous then
T is completely bounded and S1-bounded.

Proof. Changing T to w∗T , we can assume that w = J(1). By [5, Remark 4.3], we
can write T as a sum T = T1 + T2 such that T1 has a direct Yeadon type factorization
and T2 has an anti-direct Yeadon type factorization. By Propositions 4.1 and 4.2, T1
is completely bounded and S1-bounded. Hence it suffices to show that T2 is completely
bounded and S1-bounded. Let Iop : Lp(M) → Lp(Mop) be the identity map and set
T op
2 =: T2 ◦ Iop−1. Since T2 has an anti-direct Yeadon type factorization, T op

2 has a direct
Yeadon type factorization. So, by Propositions 4.1 and 4.2, T op

2 is completely bounded and
S1-bounded. SinceM is subhomogeneous, part (i) of Lemma 4.4 and its proof show that
Iop is completely bounded and S1-bounded. By composition, we obtain that T2 = T op

2 ◦Iop
is completely bounded and S1-bounded. �

Proposition 4.6. Suppose that T : Lp(M) → Lp(N ) is a bijective separating map with
an anti-direct Yeadon type factorization.

(i) If p 6= 2 and T is completely bounded then M is subhomogeneous.
(ii) If T is S1-bounded then M is subhomogeneous.

Proof. (i) Suppose that T : Lp(M) → Lp(N ), 1 ≤ p 6= 2 < ∞, is a bijective separating
map with an anti-direct Yeadon type factorization. Assume that T is completely bounded.
Let Iop : Lp(M) → Lp(Mop) be the identity map and set T op := T ◦ Iop−1. Since T
is bijective with an anti-direct Yeadon type factorization, T op is bijective with a direct
Yeadon type factorization. By part (i) of Proposition 3.4 and Remark 3.5, T op−1 is also
separating with a direct Yeadon type factorization. Therefore, by Proposition 4.1, T op−1

is completely bounded. Hence, Iop := T op−1 ◦ T is completely bounded. It now follows
from part (ii) of Lemma 4.4 and (6) that M is subhomogeneous.

(ii) The same argument as in part (i) with S1-bounded (norm) replacing completely
bounded (norm), Proposition 4.2 replacing Proposition 4.1, part (iii) of Lemma 4.4 re-
placing its part (ii) and (7) replacing (6) yields the result. �
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Remark 4.7. Suppose that T : Lp(M) → Lp(N ), 1 ≤ p < ∞, is a surjective separating
isometry with an anti-direct Yeadon type factorization. The proof of Proposition 4.6
shows that when T is completely bounded and p 6= 2, M is subhomogeneous of degree

≤ E(‖T‖
1

2|1/2−1/p|
cb ). When T is S1-bounded,M is subhomogeneous of degree ≤ E(‖T‖S1).

Theorem 4.8. Let T : Lp(M) → Lp(N ), 1 ≤ p 6= 2 < ∞, be a bounded separating map
that is surjective. Then the following are equivalent.

(i) T is completely bounded.

(ii) There exists a decomposition M = M1

∞
⊕M2 such that T |Lp(M1) has a direct

Yeadon type factorization and M2 is subhomogeneous.

Proof. (i) =⇒ (ii) Suppose that T : Lp(M) → Lp(N ), 1 ≤ p 6= 2 < ∞, is a surjective
completely bounded separating map. In view of Lemma 4.3, we may assume T is bijective.

By Proposition 3.3, there exist decompositionsM =M1

∞
⊕M2 and N = N 1

∞
⊕N 2 and

surjective separating maps T1 : Lp(M1)→ Lp(N 1) and T2 : Lp(M2)→ Lp(N 2) such that
T1 has a direct Yeadon type factorization, T2 has an anti-direct Yeadon type factorization
and T = T1 + T2. Since T is completely bounded, T2 is also completely bounded. By part
(i) of Proposition 4.6, M2 must be subhomogeneous.

(ii) =⇒ (i) This is a consequence of Propositions 4.1 and 4.5. �

Theorem 4.9. Let T : Lp(M) → Lp(N ), 1 ≤ p < ∞, be a separating map that is
surjective. Then the following are equivalent.

(i) T is S1-bounded.

(ii) There exists a decomposition M = M1

∞
⊕M2 such that T |Lp(M1) has a direct

Yeadon type factorization and M2 is subhomogeneous.

Proof. The proof is similar to Theorem 4.8, replacing completely bounded with S1-bounded,
part (i) of Proposition 4.6 by its part (ii) and Proposition 4.1 by Proposition 4.2. �

The following example shows the surjectivity assumption in Theorems 4.8 and 4.9 is
essential. In fact in this example, on a non-subhomogeneous semifinite von Neumann
algebraM and for a given ε > 0, we construct a separating isometry T : Lp(M)→ Lp(N )
such that T is not surjective, ‖T‖cb ≤ 1 + ε, ‖T‖S1 ≤ 1 + ε and part (ii) of Theorems 4.8
and 4.9 is not satisfied.

The isometry T in our example is set up between hyperfinite von Neumann algebras
and so ‖T‖cb ≤ ‖T‖S1 (see [7, Proposition 2.2] and [5, Proposition 3.11]). Therefore, we
only need to verify that for such T we have that ‖T‖S1 ≤ 1 + ε.

Example 4.10. Let 1 < p <∞. Consider the von Neumann algebra

M = `∞{Mn} =
{

(xn)n≥1 : ∀n ≥ 1, xn ∈Mn and sup
n≥1
‖xn‖∞ <∞

}
,

the infinite direct sum of all Mn, n ≥ 1. Let N :=M
∞
⊕M, the direct sum of two copies

of M. The noncommutative Lp-space associated with M is

`p{Sp
n} =

{
(xn)n≥1 : ∀n ≥ 1, xn ∈ Sp

n and
∑
n≥1
‖xn‖pp <∞

}
,
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equipped with the norm ∥∥(xn)n≥1
∥∥
p

=
( ∞∑
n=1

‖xn‖pp
) 1

p
,

and so the noncommutative Lp-space associated with N is `p{Sp
n}

p
⊕ `p{Sp

n}. Let (βn)n≥1
be a sequence in the interval (0, 1). We may define two operators

T1 : `p{Sp
n} → `p{Sp

n} and T2 : `p{Sp
n} → `p{Sp

n}
by setting

T1
(
(xn)n≥1

)
=
(
(1− βn)

1
pxn

)
n≥1 and T2

(
(xn)n≥1

)
=
(
β

1
p
n tn(xn)

)
n≥1

for any x = (xn)n≥1 ∈ `p{Sp
n}. Consider

T : `p{Sp
n} → `p{Sp

n}
p
⊕ `p{Sp

n}, T (x) = (T1(x), T2(x)).

It is plain that T is an isometry. Indeed for any x = (xn)n≥1 ∈ `p{Sp
n}, we have

‖T (x)‖pp = ‖T1(x)‖pp + ‖T2(x)‖pp

=

∞∑
n=1

(1− βn)‖xn‖pp +

∞∑
n=1

βn‖txn‖pp =

∞∑
n=1

‖xn‖pp = ‖x‖pp.

Given ε > 0, consider the above construction with

βn =
(1 + ε)p − 1

np − 1
.

We show that T is S1-bounded with ‖T‖S1 ≤ 1 + ε. Indeed consider an integer m ≥ 1.
We have

`p{Sp
n}
[
S1
m

]
= `p{Sp

n[S1
m]},

and therefore, we also have that(
`p{Sp

n}
p
⊕ `p{Sp

n}
)[

S1
m

]
= `p{Sp

n[S1
m]}

p
⊕ `p{Sp

n[S1
m]}.

Now let x = (xn)n≥1 ∈ `p{Sp
n[S1

m]} (here each xn is an element of Sp
n[S1

m]). Then

(IS1
m
⊗ T )(x) =

((
(1− βn)

1
pxn

)
n≥1,

(
β

1
p
n (tn ⊗ IS1

m
)(xn)

)
n≥1

)
.

Consequently,∥∥(IS1
m
⊗ T )(x)

∥∥p
p

=
∞∑
n=1

(1− βn)‖xn‖pSp
n[S1

m]
+
∞∑
n=1

βn‖(tn ⊗ IS1
m

)(xn)‖p
Sp
n[S1

m]

≤
∞∑
n=1

(1− βn)‖xn‖pSp
n[S1

m]
+ npβn‖xn‖pSp

n[S1
m]

by [5, Lemma 5.3 (ii)]

≤ (1 + ε)p
∞∑
n=1

‖xn‖pSp
n[S1

m]
= (1 + ε)p‖x‖pp.

It is clear that T is separating and that the Jordan homomorphism J : M→ N in its
Yeadon triple is given by

J
(
(xn)n≥1

)
=
(
(xn)n≥1, (tn(xn))n≥1

)
.
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It follows that whenever M1 is a non zero summand of M, the Yeadon factorization of
the restriction of T to Lp(M1) is neither direct nor indirect. A fortiori, T does not satisfy
the assertion (ii) of Theorem 4.9.
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