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PIERI FOR ISOTROPIC GRASSMANNIANS ;

THE OPERATOR APPROACH

Piotr Pragacz1 & Jan Ratajski

INTRODUCTION

The goal of this paper is to give a simple, transparent proof of
a Pieri-type formula for the multiplication in the Cohomology/Chow ring
of the Grassmannian of (maximal) isotropic spaces. Originally, this
formula was given by Boe and Hiller in [H-B], with a proof being a very
complicated, inductive application of the Chevalley formula for multi-
plication in the Cohomology/Chow ring of isotropic flag variety. In con-
trast to [H-B] our proof makes no use of the Chevalley formula; two main
tools used here are: a Leibnitz-type formula for the [B-G-G]&[D] - opera-
tors, and a cholce of special reduced decompositions of elements apearing
in the Pieri formula. The present approach determines in an efficient and
fast way both the shapes of Schubert cycles in the Pieri formula, as well
as their multiplicities (which are powers of 2). This Pieri formula toget-
her with a Giambelli-type formula from [P] and the Basis theorem give us
a symplectic and orthogonal Schubert Calculus - see Section 7 where a new

simple proof of the Basis Theorem is also given.

1
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1. PRELIMINARIES, NOTATICN 2 AND CONVENTIONS

Let G denote the Grassmannian of n-dimensional isotropic subspaces
in ¢ with respect to a non-degenerate symplectic form on ¢, Let F
denote the flag variety of (total) isotropic flags in ¢ (with respect

to the same symplectié form). By p we will denote the partition

(n,...,2,1). Let Acp be a strict partition A = (A1>A2>...>Ak>0). We
associate to A the element 2 of the symplectic Weyl group W :
W =35 s = s s S S s °
A ThaAd+l ThA+2 77 Thner Th 07 TheA ¢l TneA 2 077 Tl Ta
k Kk 1 1
(see [H-B] for detalls about W). Note that w?l has a form
(yl,...,yn_k;n+1~hk,n+1—kk_1,....n+1-A1) ,
where y,< o <yn_k and {yl,...,yn_k;n+1—hk,n+1-hk‘1,,__.n+1-A1} = {1,...,n},

in the standard "barred-permutation notation" (see loc.cit.). Then, deno-
ting by @ the right end root, the subgroup Ha of W generated by {si, i<n}

is the symmetric group Sn, and w, belongs to the set of minimal left coset

A
representatives of wa in W.

From the theory in [B-G-G] and [D] we have a Schubert cycle X e

A
(Al

IAl (G) < A'"*(F), where Ial=y A,

A (F) which in fact belongs to A

Denote this element in Alhl(G) by o(A), for short.

Define the numbers 21:= n+1—7tl . Then

W = vy ;- ,——_ .--~,_ .
A (y1’ Y -k zk zk-l 21)

As usual, we will associate to a partition A a diagram DA' The elem-
ents of the DA will be boxes (and not dots}. This will allow us to speak
about "connected components" of differences between diagrams without

misunderstandings.

2
Our notation here is a comblnation of notations from [(H-B] and [P].

3

Writing here and 1In the sequel s1 sl e Sl we mean that we per-
1 2 k

form first si , then - s1 etc.

1 2



The following result was proved originally in [H-B].
Theorem 1.1 Let A=(A1....,Ak) ¢ p be a strict partition. The following
equality holds in A (G) (p=1,...,n) :

m(A, )

o(A) olp) =} 2 o(u) ,

where the sum 1s over strict partitions p such that Ai_lzulei (Ao=n.

Akn=0) , lgl=lAl+p and m(A,u) is the number of connected components

of D“\D not meeting the first column.

A

Example 1.2 n=7
o(632) e(5) = 2 o(763) + 2° o(7531) + 2 o(7621) + 2 o(7432) + o(6532).

Fig. 1
72 | 1 A
A :/{[ 7=
Z 72 : 7
| | ] ]
Z Z

(If we adopt a name “"the characteristic box of a component" for the
lowest box to the right of a component, then the original Hiller-
Bee’s formulation used the cardinality of the set of the characteri-
stic boxes.)

For a given weW, we denote by R(w} the set of reduced decomposi-

tions of w.

2. [B-G-G] & [D] - OPERATORS
Let x=(xi,...,x ) be independent variables. It follows from [B-G-G]
n

and [D] that A (F) is identified with Z[x1/% ., where ¢ is the ideal gene-
rated by symmetric polynomials in xf,...,x: without constant term.

L ] Sn
Also, A (G) is identified with (Z[x]/%) i.e. with the quotient of the



symmetric polyncmials modulo #
nomials.

We have

a,: Zlx] — Z[x]

ai(f)=(f - sif)/(xi -%x )

Bn(f) =

(of degree

restricted to the ring of symmetric poly-

"divided differences":

-1), i=1,... defined by

1+1

(f - s f)/2x
n n

The key tool for our purposes is a Lelbnitz-type formula:

{2.1)

al(f-g) =

(aif)-g + (slf)-(aig).

We will need in the sequel the following formulas for generating

functions. Let a=(a1,.

E:=
a

.,a e {-1,0,1}". Define

n

E(t):i= (1va x t)

i=1

(small bold letters will be reserved only for sequences of this form).

For example for

o=(0,...,0), E
o

= 1. For 1t1=(1,...,1), E1=(1+x1t)...

...(1+xnt)=E, say, ls the generating functlion for the elementary symme-

tric polynomials.

In formulas below,

0 (usual zero) will denote the zero function.

Lemma 2.2
(a,...,a ,a _,a,a _, ,a ) i<n
1 1-1" T1+17 1 1e2 n
a) s(E )} =E, where a’s
1 "a a
(a_, ,a _,-a ) i=n
1 n-1 n
b) For i=1,2,...,n-1
( 0 a =a
1 1+1
tE , a=a +1
a i 1+1
8 (E )} = ¥ -tE , a=a -1
LA a 1 Tt
2tE , a=a +2
a i 1+
L -2tE , a=a -2 ,
a 1141
where a’=(a1,...,0,0, ,a2 ) 1is a with a, a replaced by zeros.
n
c) 8(E)=a tE
n a n (a , ’°n—1'°)



Proof. - a straightforward verification. We check, for instance, (b4).

In this case (ai,al*l) = (1,~-1). Then

8 (E)) m o (tsaxt) 8 ((+x t)(1-x 1) = |1 (1+a xt)-2t =
J#FL, 141 JEL, 14

=2tE, . O
a

Note that the effect of applying the 31 to Ea (1f nonzero) l1s Ea’ , where
a’ = a’ =0.
i i+1

3. PIERI’S FORMULA AND THE LEIBNITZ RULE

First, we summarize the theory from [B-G-G] and [D]. For every re-

duced decomposition w = s1 Ce sl one can define 6H = 61 ° ...081
1 Kk 1 k
- an operator on Z[x] of degree -£(w). In fact 8  does not depend on the

reduced decomposition chosen. There exists a ring homomorphism
c: Zlxl — A'(F)
(called the characteristic map) defined for a homogeneous f € Z{x] by
c(f) = ) Bw(f) X
E{w)=degr

For instance, denoting by ep the p-th elementary symmetric polynomial
in x , we have

olp) = X e AP(G)

8 « B 1=
n-p+1 n-1 n

cle )
p

([H-B, Lemma 2.13’1]).

The operators &8 glive rise to operators on A‘(F) {(denoted by the
W
same letters) and these two families of operators commute with ¢ . More-

over for w,v , 8 (X ) =1 iff w=v.
. w v

Let fA be such that C(fA) = o(A). Our goal is to find coeffi-

clents m‘l appearing in

cf fl-ep) =¥ mp o)

Consider [ ¢ D“. The boxes in Dp which belong to D will be called D-

boxes; the boxes in DM\D will be called non D-hoxes. We associate with

D the following operators Bz and Qﬁ . For technical reasons we will



use, from now on, the following coordinates for indexing boxes in pcp :

n n-1 ... 2 1

{(i.e. the first column has the number n).

In Definitions (3.1),(3.2) we read DH row by row from left to right

staring from the first row.

(3.1) Definition of gz : Read D“. Every D-box in the i-th column gives us

the S, Every non D-box in the i-th column gives the 81. Then Qz is the
composition of the so obtained sl's and 61’5 (the composition writ-

ten from the right to left).

(3.2) Definition of rot Read D“. Every D-box in the i-th column gives us

the 51' Non D-boxes have no influence on rD. Then rD is the word obtained

’

by writing the so obtained s,'s from right to left.

(3.3) Definition of 53 N L

Example 3.4 u={(763), n=7.

Fig. 2
765 4321
2| |
% VAI (D-boxes are 'dark' here)
|
D
g = 8 o5 o5 o5 o5 of o5 o5 o5 od 08 o8 o5 oS o5 o5
—i4 5 8 7 2 3 4 5 6 7 1 2 3 4 578 7
r = ss8s8S8SSSsSsSSsSs_,
D B872356745867
3° = 8 08_08 08 08 08 08 08 o8 o8 08
u 6 7 2 3 6 B 7 4 5 6 7



Proposition 3.5 In the above notation,

— a0 . D
mo= L 3(r)a5(e)

where the sum is over all DcD such that r € R(w,) and BD(e JE
1 D A 4 p

Proof. This is 2 consequence of consecutive applications of the Leibnitz

rule (2.1) used in this way: we apply only the ai's (and the identity

operators) to £, ; and both the sl’s and 81’3 to ep. u]

A
4. WHAT ARE THE D c D“ FOR WHICH r€ R(uh) 7

We will treat a reduced decomposition of w as a composition

A
S, 8§ .- 8 of ‘"simple transposition"-operations (we will call
1 2 m
them "si - operations”, k=1,...,m) such that
k
(..((1,....n) » s, )e s, Jo ...) e s, = (yl,...,yn_k;zk.zk_l....,21)
1 2 m
{1,...,n) denoting the identity permutation. Recall that S i<n,

acting from the right on v, interchanges the value of v on the i-th and
(i+1)-th place. The s supplies the last component of v (in the "barred
n

notation") with a bar, if this component is bar-free.

Proposition 4.1 Exactly one (bar-free) z. is nontrivially involved

in a "si -operation". More precisely,
k
a) If ik=n, then the operation is:

Nj

z. —
b} If ik<n, then the operation is:
Z. X ... — ... XZ. .. ,
where x # z, (i=1,...,k).
Proof. Since S ... S € R(wh). we have for k=1,...,m ,
1 m



£ s, ... S ) = ¥ S, - S ) + 1.
1 k 1 k-1
It is well known (and easy to check) that the length of a "barred per-
mutation" in W is a sum of the length of the same permutation without
bars (in S ) plus the sum of the numbers 2d1+1 , each coming from a
n

"barred place": to a given "barred place" 1, say, we associate

d1 =card { J: Jo1 & w(Jj)>w(1) }
It follows from this formula that no “sl -operation" interchanges
Kk
{(after they have recelved bars). Consequently

y..y, and z.,zZ,

Zz ...,zk receive their bars in the order k,...,2,1. This information

1,

and the above length-formula imply that no s -operation" can inter-
k

change z,,z. (before they are supplied with bars). Thus, at most one z.

s nontrivially involved in every "s1 -operation”. Every z, needs n-z

s, -operations" to pass from the zlw:h place the n-th place (where it
reciives its bar). This, in sum, requires = n—21+1=}\l "si -operations”.
Since |A|l=m , we conclude that there is exactly one (bar—f:ée) z. lnvolved

nontrivially in any 'Sl -operation". This proves the Proposition. w]
k

Corollary 4.2 No s, -operation" as above can interchange z. and z_ .

k

Now, following definitions and notation of Section 2, we introduce
a notion of a mark of a D-box. Assume that a D-box appears in the i-th
column. Its mark is defined to be the integer m such that the "si—opera—
tion" supplies z_ with a bar if i=n; or it acts on the 1i-th , (i+1}-th

places as:

(here, x#zk =1,...,n; i<n).

Lemma 4.3 :
a) The D-boxes with a fixed mark in one row form a connected set.
b) In a fixed row, the two sets of D-boxes labelled by different marks

are disconnected (i.e. there is at least one non D-box between them).



¢) The sequence of boxes with mark i is of the form

(tn,n) , (tn_l,n—l) s e [tzi.z‘) )

where tn = tn_1 s ... = tZI.( Recall that n-zi+1=Al )
d) The marks of boxes in fixed column increase from the top to the

bottom.
Proof. The assertions a) and b) are obvious. As for c¢) the fact that
the columns of the (mark 1)-boxes are n,n—l,...,zi is clear as z, is
transformed from the n-th to the zl—th place by a sequence of succesive
transpositions. assume that the second assertion of ¢) is not valid.

This means that the following configuration of (mark i)-boxes appears

Fig. 3

CH I

]

(the picture presents three consecutive rows; d 1is in the p-th column,
d’ 1is in the g-th column; g>p+1 ),

But d and d' cannot have the same mark! Indeed, the sequence of
"s.-operations” here is: ... sp A sq cen and z, is not involved
in any "s.-operation" from the interval between s and s . Moreover, a
fixed z, cannot be nontrivially involved succesiSely 1nqsp and sq for
g>p+1l. This contradiction proves c).

d) Two marks appear in a fixed column in a not asserted order only if
some “"barred-free" z..z,  have changed their order during "s.-opera-

tions". This contradicts Corecllary 4.2. (n}

Corollary 4.4 Every configuration of boxes DCD“ such that r.€ R(WA)

can be obtained from D cD“ by the followlng operation applied consecu-

A
tively to the rows of D, with numbers i=L(A), &(A)-1,...,2,1 : the boxes
(i,n), (i,n-1), ... ,(1,21)
are transformed to
(t ,n) , (t ,n-1), ..., (t ,z) ,
n n-1 z i



where i = } = $ﬂ s ... 0= } . Note that Lemma 4.3 b) d} gives
1

two (necessity) conditions of such configurations.

Remark 4.5 Assume re R(wh). Then the set of boxes with mark i can be

visualized as follows

Fig. 4

(n) (z )
i

Tz

NN

(Here, z‘=n+1-hl and the number of boxes is Ai). Two sorts of "steps”

can appear:

Fig. 5

\z
22 H

WA

Corollary 4.6 If A is not contained in uy, then there is no DCD“ such

that re R(wh).

10



S. WHEN r e R(w.) AND 8 (e )= 0 ?
D A M P

Observe that E =¥ e t! implies a°(E) = r 8°(e )t'. Hence 8°(e)
1 —H -+ i — p

equals the coefficient of tF¥ 1in Qz(E].
We start with a list of (some) cases when QE(E)=O.

Lemma 5.1 The equality Qz(E)=0 holds true in the following cases

( D-boxes are marked as "dark area" and non D-boxes are white, in the
figures below)
a) Assume that in the i-th and (i+1)-th row of Du the following confi-

guration of boxes appears

Fig. 6

. J one non D-box here

a 1) 2222222 Al ? |
A ° ]

T 5> 1 non D-boxes here

J one non D-box hore

a 2) iz ? |

° ]

T 2 1 non D-boxes here

J non D-boxes here

? I

a 3)

T two non D-boxes in the same column here

b) Assume that in a sequence of consecutive rows the following configura-

tion of non D-boxes appears:

11



Fig. 7

4 non D-boxes here

? |
?
?
a "stalrcase" of
non D-boxes
?
?
? a ? [a] ? |
* non D-box here
Proof. - a stralghtforward application of Lemma 2.2. We check, for in-

stance (al) and b). In the first case, let us assume that the marked
non D-box in the i-th row appears in the j-th column. Then, after apply-
ing aj (coming from the i-th row) we get Ea where aj=a]+1=0. The
value aj*1=0 will be not affected by "later" operators coming from the
i-th row. If we will not reach 0 before by applylng all the operators

up to the 6j+2 (coming from the (i+1)-th row), an application of BJ*

2
will give us aj+2=0. Finally,

aj+1( E(....0,0,...) ) =0,

where zeros are on the (j+1)}-th and (j+2)- th place.
In the b)-case we see that an application of operators coming from
pictured rows up to the box d in the j-th column, will give us O or Ea

with aj=a ..=a1=0. But then. the operator 8 associated with d’ will

-1
anihilate the function in question (if not zero before). o

Proposition 5.2 Assume that r € R(NA) and QE(E) = 0. If (i,n)eD then

a) the i-th row of Dp consists entirely of non D-boxes.

b) every J-th row, with j>i, consists entirely of D-boxes.

Proof. a) follows from Lemma 5.1 (a2).
b) We know from a) that the operator QE has the following contribution

coming from the i-th row

12



.o 8 ° ...
n-p.l+1 n-1 n

After applying all the 8's above we get Ea , where a = a = ...

n-1
..= a e = 0. Since pJ < M for j>i , an appearance of non D-boxes
n- +
1
in the J-th row, J>i, gives rise to an operator &d. which will anihilate

the function E in question ( if not zero before). D

Corollary 5.3 If a_ﬁ(gﬂo and r e R(w,) then &(u) s &A) + 1.

Now, starting from DA c Dp and using the operations of "deforming

rows" of DA as described in Corollary 4.4, we will try to construct
D c DH such that r € R(wA) and QE(E):O. The next facts give some

necessity conditions for that.

Lemma 5.4 Assume that Ai=u1+1 for some 1. Suppose that the operations
described in Corollary 4.4 have been applied to the rows with numbers
£&A), &A)-1,...,i+1 ,but the i-th row has not been affected yet. Then
we have two possibilities for the configuration of D-boxes in the i-th

and (i+1)-th rows (dark boxes visualize D-boxes)

Fig. 8
a) A, b) A,

1 I_ |
|z AN
et 1 |22z © FotetRel:

T only non D-boxes here T 2 1 D-boxes here

Then, to avolid QE(E)=O, the following operation applied to the i-th row

is necessary in both, corresponding cases:

13



a’) b’}

1 : : | 1 §§$§:§$ : P
141 141 [ZZZ] ]

Proof. The fact that after performing operations to the rows with num-
bers £(A),...,i+1 we can have only two possibilities pictured in a)
and b) 1is a consequence of Lemma 4.3. Then, & necessity of a') follows
from Lemma 5.1(a2). Since by Proposition 5.2b) every J-th row, j>i+1,
consists entirely of D-boxes , no further change of (mark 1i}-boxes is
possible. A necessity of b’) follows from Lemma 5.1(al). Note that the
place of a unique non D-box in the {i+1)-row is uniquely determined:
Just after the right-most D-box in the (i+1)-th row in b). Moreover,

since Mo < p no further change of (mark i)-boxes via pushing

1+1
them down In columns 1s possible. a

Proposition 5.5 1If ppﬂ> Al for some 1 ,then QZ(E)=O for every DcD.u
such that re R(wh].

Proof. Assume that 1 1is the smallest number such that pru> Ax' We
start from DACDu apd perform operations described in Corollary 4.4.
Suppose that we have performed them for the rows with numbers &(A),
2(A)-1,...,i+1. Then we have two possibilities for the configuration
of D-boxes in the i-th and (i+1)-th row:

Fig. 10
a) b)
A A
1 1
1 1
v |2 e | ! =
1+1 | 141 7z
U | U L |
].11+1 two non D-boxes pi+1 two non D-boxes
In one column here in one column here

(This is a consequence of Lemma 4.3.)

14



In the case a), to avoid QE(E)=O , we must push down all the D-boxes
from the i-th row to the (i+1)-th row (use Lemma 5.1(a2) remarking

that if the configuration of D-boxes in the i-th row will not change;
then the box d cannot be filled up with a D-box coming from higher

rows). We can assume that for some j<i,

M =A MO EA, “j+z = AJ+1 but Aj>pj+1

(If no such j exists, we put Jj=0 ). Pictorially

Fig. 11

31 ,7////////////////////////////4 ]
N7z
7777777777222

7777727222222
o T
141 222222| |

T Z 1 non D-boxes here

Now, Lemma 5.1(a2) forces us - if we want to avoid QE(E)=0 - to perform

the operations

Fig. 12

v [ ) T
kel 2272
in the rows with numbers k=i-1,...,J+1 succesively. We obtain a dlagram

where the (j+1)-th consists entirely of non D-boxes. According to Propo-
sition 5.2b), no non D-box can appear in lower rows. Since there is a
non D-box in the (i+1)-th row, we have 6 (E)=0.

In case b), it follows from Lemma 5. 1(a1) that to avoid au(E) =0

we are forced to change the configuration to:

15



Fig. 13

NN
v (220 ST

T 2 1 non D-boxes here

(some of (mark 1)-boxes can be moved even to lower rows). We can assume

u1=A1-1 ! “1—1=A1-2 Tt “J+2 - Aj+1 but Aj>“J+1

(If no such j exists, we put Jj=0 ). Pictorially

Fig. 1

BRd) - I‘T. z 1 D-boxes here
j+e ]

1-1 . ~

SRR <

7 BN I

Z 1 non D-boxes here

Now, Lemma 5.1(al) forces us - if we want to avoid QE(E)=0 - to perform

the operations

Fig. 15

NN Sy
w (222 AR

in the rows with numbers k=i-1,...,j+1 succesively. We obtain the fol-

lowong ceonfiguration od D-boxes:

16



Fig. 1B

IS
Jj+1 IT Z 1 D-boxes here
j+2
i-1
H
i1+1
T 2 1 non D-boxes here
But then, Lemma 5.1 b) implies QE(E]=O . o

Proposition 5.6 Fix a strict partition Acp. Let g be a strict partition

such that Acpcp, &(p)sé(a)+1 ‘5*15A1 for every 1. Then there exists at

most one DecD  such that r e R(w.) and 8 (E)#0.
H D A —H

Proof. To find such a D we use operations described in Corollary 4.4.

We start with DACDp' The operations in questlion are performed succesi-

vely in rows wlth numbers £&(Aa), &(A)-1,...,2,1. At each stage the ope-

ration is uniquely determined and is:

Fig. 17
a) or b)
77 ARy
22 A
l !

] NN ]

777277 | IXXJ
+

one non D-box here
or c¢) no change

D e

This the only way to avoid Qﬁ(E)=O (see Lemma 5.1). The assumption

17



*ﬁ+15xn for every i, allows us to contlnue this procedure up to reach-

ing the first row. In this way we obtain a uniquely determined subset

L D, (card D" = (A]). 0o

6. CALCULATION OF Qz(e ) FOR D=DpM
P

Fix a strict partition Acp and a number p = 1,...,n. Let p be a
strict partition such that Acupcp, Jjul=IAl+p , &(u)se(A)+1 , Lﬂ+1SA1 for
every 1. Let D=DA’“cDu be a collection of boxes from Proposition 5.86.

Every 61 involved in Qﬁ is assocliated to a box in DN\D' We will analy-

ze the connected components of D \D.

Lemma 6.1

a) Assume that a connected component of D“\D meets the n-th column;
Then this is a unique component with this property and is a row in Dp'
Moreover, all the rows with bigger numbers than the component consist
entirely of D-boxes.

b) Assume that a connected component of DN\D does not meet the n-th

column. Then this component can be pictured as follows:

Fig. 18

)

‘3§§§§§§§§§§§T‘“J

.

e =
N N -.f":\:a..i"*.'i
W7 N

? these two boxes are disconnected

More precisely, assume that the lowest row meeting this component is

the 1-th one, and the highest - the j-th one. We claim that

1) this component consists of a "stalrcase of boxes" having one box
d"=(1,n-Ai+1) in the i-th row , one box (1-1,n—A1) in the (i-1)}-th

row, ..., one box in the (J+1)-th row and a connected set of boxes

18



in the J-th row going up to the right border of D“.

2) denoting by d the the last box in the i~th row , an assignment:
(component)— (the box d) , glves a bijection between the set of
connected components of D“\D and the set of "characteristic boxes"

(see Section 1}.

Proof. a) Since 2(u)=£(A)+1 , there is at most one non D-box in the
n-th column (precisely when &(u)=£(A)+1). Thus there 1s at most one con-
nected component meetlng the n-th column and this component equals to,
say, the i-th row by Proposition 5.2 a). Then every J-th row with j>i,
consists entirely of D-boxes by Proposition 5.2 b).

b} Taking into account the operations which give us D starting from
DA < Dp (see Corollary 4.4 and for more precise description - the proof
of Proposition 5.4 ) we see that p“1<>«l , uJ<AJ_1 and u1=ll_

’

1
‘ﬂ-1=A1-2 y e py4=hj_2 . Thus the area of D 1lying between the j-th
and the i-th row is obtalned using the following operations. At the star-
ting polnt the D-boxes in the i-th row are the same as in DA' Then for the
rows with numbers 1i-1,1-2, ... ,j+1,J we apply the operation b) from the
proof of Proposition 5.4. The D-boxes in the (j-1)-th row are the same as

in DA' This discussion implies 1) and 2). o

Let us divide now the set of rows of D” into disjoint subsets If

12,...,1 , each Ik consisting of the rows meeting a fixed connected
q .
component , or consisting of a (single) row built of D-boxes only. The
operator 8° is the composition A e A o ,..,0o A e A where each A
— q q-1 2 1 k

1s defined in the same way as QE but instead of Dlu and D we take their
intersections with the sum of the rows in Ik. Since Qﬁ(ep) is the coef-

ficient of tP on QE(E), we have

A(E) =ct E
1 1 a
1
P.*P
Ao A(E) =cct 2g
2 1 21 a
2
P *P e P
Ao A o sA(E) =cc . t E
q q-1 1 q-1 1 a
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It follows from Lemma 2.2 that pl+p2+...+pq = card(D“\D) = p. Since the

constant term in E  is 1, we have 6D(e ) =c...c.
a - p 1 q
q
Let £k denote the biggest length of a row in Ik, k=1,...,q.
Lemma 6.2

a) If Ik does not equal the connected component of D“\D meeting the
n-th column then a = (*,...,%,1,...,1) ( 1 appears ﬁaq times) ,
k=1,...,q.

b) If Ik equals the connected component of D“\D meeting the n-th

column then a = (*,...,*%0,...,0) ( O appears ﬂwl times), k=1,...,q.

Proof. Notlice first that Ak can change only last & components of a
—_— q

)

(i.e. the components a ,a Y
P n’ n-1' "n-8 +1
q

a) We use induction on k. Assume that ab4=(*,...,*,1,...,1) {(where 1
appears Zk times). Suppose that Fig.18 presents the k-th component.
Then It i1s is clear that the last £k+1 1's In a _ are not affected
by an operator 6i from Ak and the operators s, from Ak can only transpo-
se these units. Therefore ak=(*,...,*,1,...,1), where 1 appears %”]
times.

b) It follows from a) and Lemma 2.2 that after applying Ak to a the

last %ud components of a become zero. o
Combining the above Lemma with Lemma 2.2 we get

Lemma 6.3 a) If Ik is a row consisting of D-boxes only, then ck=1.

b} If the sum of the rows in Ik contains a connected component of DM\D

not meeting the n-th column then ck=2.

c) If Ik equals the connected component of D“\D meeting the n-th

column then ck=1.

( Note that the multiplicity 2 in b) comes from Br (r is the number of
the box d' on Fig.18) applied to
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1
=c...c .t E
1 k-1 (*,...,%.1,-1,1,...,1) '

the pair (1,-1) occupying the r-th and (r+1)-th places. ) a

Summing up we have proved

Proposition 6.4 In the above notatlion

QD(e ) = 2!11(3,}1)

>

where m(A, ) is the number of connected components of D\Du not meeting

the n-th component.

Using the bijections ( see Section 1 and Lemma 6.2 b) )

{ connected components of D“\DA’“ not meeting the n~th column }

I

{ characteristic boxes }

I

{ connected components of Dp\DA not meeting the n-th column } ,
and changing the numbering of columns to the usual order, we infer

Corollary 6.5 In the above notation,

8%(e ) = 2"
i

where m(A, it} is the number of connected components of D“\DA not meeting

the first column.

By combining Propositions 3.5, 5.6 and Coreollary 6.5 our proof
of Theorem 1.1 is finished.

Example 6.6 The diagrams p!&3)H for partitions p appearing in the

decomposition ¢(B632) ¢(5), are
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Fig. 18

7. CONCLUDING REMARKS

(7.1) A Giambelli - type formula

In [P, Sect.B8] the first named author has deduced from Theorem 1.1
the following Giambelli-type formula. Let A=(A1....,Ak) ¢ p be a strict
partition, k -even ( we can always assume it by putting Ak=0 if neces-
sary). Then

o(d) = Pfaffian [ a(hi.Aj) ] 151<)5K

J

where o(A A} = oA )o(r) + 2 ¥ (-1)° o(A,+p) o(A -p) , and where
p=1

G(Al,O) = G(A1L

{(7.2) The orthogonal case

Using exactly the same method one can prove Pieri’s formula for
the Grassmannian of n-dimensional isotroplic subspaces of (2n+1)-dimen-
sional vector space endowed with an orthogonal nondegenerate form
(for the precise Pieri-type formula in this case - see [H-B] ; and a
Giambelli-type formula - see [P,Sect.6]. For analogous results in the
case of Grassmannian of n-dimenslonal isotropic subspaces in an 2n-dime-
nsional vector space endowed with an orthogeonal nondegenerate form -

see [P,Sect.6l].
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(7.3) Symplectic & orthogonal Schubert Calculus

We end with a geometrlc interpretatlon of the o(A)'s. For all no-
tions which are used and not defined here, we refer to [P,Sect.6]. Let

V be a 2n-dimensional vector space endowed with a symplectlc nondegenera-

te form ¢: VxV — €. Let (vl,...,vn,w ,...,wl) be a symplectic basis
n
of V. Let Vlcvzc ... v be a flag of isotroplic subspaces spanned by
n
the first i vectors iIn the sequence (vl,...,v ). Then a(hl,...,hk] is
n

the class in Alh[(G) of the cycle of all isotroplc n-subspaces L in V

such that dim ( LnVv )= i, 1=1,...,k.
n+1-Al

The Schubert Calculus for usual Grassmannians is based on three
main theorems: Pleri's formula, Giambelli’s determinantal formula and
the Basls theorem ( see for example [L] ). In the case of the isotropic
Grassmannian G, a Pleri-type formula is described in Theorem 1.1 and
a Ciambelli -type formula is recalled in (7.1). A Basis-type theorem

can be formulated as

AG) = o Z o(A) ,

the sum over all strict partitions Acp. This result can be deduced from a
general theory of cellular Schubert/Bruhat decompositions of the spaces
of the form G/P (see [B-G-G], [D]). The cellular decomposition in the case
of G was described in details in {P,Sect.6]). Here, we use an opportunity

to give a still another simple, conceptual proof of the Basis theorem.

The proof which we sketch is by Induction on n and 1is inspired by
the proof of the Basis theorem In [L]. Suppose that V’'> V is an (2n+2)-
dimensional vector space endowed with a nondegenerate symplectic form
¢': Vx VV— C extending ¢, and (vi,...,vn,v,w,wn,...,wl) is a sym-
plectic basis of V. Let G' be the Grassmannian of (n+i}-dimensional
subspaces of V', 1sotropic with respect to ¢'. Let i: G ¢ G’ be a closed
imbedding defined by L — L @ Cv. We have a map

p: G'\i(G) —> G"

where G" is the Grassmannian of (n+l1)-dimensional subspaces in VeCw (with
respect to ¢’IV®Cw }. The map p sends L'eG’ to its image via the proje-
ction V' — Velw . In fact, p is a vector bundle of rank n+l over G".

Moreover, G" is isomorphic to G. ( Observe that if L’'c G’'\i(G) then wel’
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because the maximum of dimension of an isotroplc subspace in V is n.} An

exact sequence

i, 3
A(G) — A (G") — A (G'\G) — O

where §:G’\G — G’ is the inclusion, can be rewritten as

i, (pog)”
A(G) — A (G) — A(G) — 0. (#)

Denoting by o’{(u) the Schubert cycles in G’ one can show (by using
the above flags)

i.a(Al,...,Ak) = 0 (n+1,A],...,Ak) ,
and

(pOJ).U’(Al,...,Ak) = a(hi,...,hk) if Alsn , - zero otherwise.

The morphism i, is in fact a monomorphism , the exact sequence (#)
splits, and the Basls theorem follows by induction. Detalled arguments
proving the above assertions are similar to the arguments in [L] and

we omit them.
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