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Noetherian Symbolic blow up and

exarnples in any dimension

by

Marcel MORALES

Introduetion. - The following question was raised by Cowsik

[CwJ: Consider P a prime ideal in a regular loeal ring (R,m) ,

1s the symbolie Rees's Ring

R{P) := e p{n)

n~O

a noetherian ring?

Where p{n) is the n-symbolic power of P (i.e. p{n) = pnRp n R ).

Thi"s question appears in works of Rees [Re] and Nagata [Na].

P. Robert5 gave a eounterexample to the Cow5ik's question,

but very few examples were known of symbolic Rees's rings

noetherian. Recently many works study the question of Cowsik,

espeeially Huneke [Hu] and Schenzel [Sc].·

The main interest of this paper i5 to give a practical

criterium to decide when the ring R{P) i5 noetherian, also I

use this criterium to show a reduction lemma who permits to

find infinitely many examples in any"embedding dimension fram

one example.

" Also by using syzygies of monomial"~curves and one explicit

deseription of the syzygy of the curve k[ta,tb,tc ] in function
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of a,b,c . I can find a large class of monomial curves wlth

ideal P in k[X,Y,ZJ s.t. R(P) is noetherian.

In a next paper [Mo] I develop the connection between the

syzygies of a monomial curve and the "c hange money problem~' of

Frobenius. I give some cOmblnatorial p~opeit{es of the-syzygies

by using local cohomological methods.

I thank the Max-Planck-Institut (Bann) and especially

Prof. F. Hirzebruch for his hospitality and very good ambiance.
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§ 1. Preliminaries

(R,m) will always denote a loeal eornrnutative ring (noetherian)

with residue field (R/m) infinite.

1.0 Definition - For an ideal I in R, I is the integral

elosure i.e. - n n-1 i
I = {a E R / a + b 1a + ••••' • + b n = 0 with b i EI}

1.1 The symbolic power of a prime ideal is noted by p(n) and

we have two equivalent definitions

p(n) = {x e: R/3y e: p and xy r: pn} •

1.2 Let (R,m) be a Ioeal noetherian ring, I a m-primary ideal,

then for n large enough the Hilbert funetion H(n) = 19(R~n)

eoineides with a polynornial ealled the Hilbert-Sarnuel polynornial

H(n)
d

n
= e(I) d! + •••••

for n» 0 .

Where d i5 the Krull dimension of Rand e(I) the multiplieity

of the ideal I.

Let x
1

, ••• ,xd be a sequenee of parameters for E an

R-module (i.e. E/(X
1

, ••• ,xd ) E is an Artinian module). We have

the inequality
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and a ring 1s Cohen-Macaulay if and only if this is one

equality for any system of parameters.

1.2.1 Localisation of the multiplicity

where the summation is over all prime ideals P minimal

containing ann(E) , s.t. dirn E = dim(R/P)

1.2.2 Associative law for multiplicity

With the notations as above, let 1 ~ iSs then

Here-- p ranges over all minimal" prime ideals of (x 1 ' • • • ,xi)

1.2.3 The relative multiplicity

Let I be an ideal in R , x1 , ••• ,x € R , we note by
. r x

the ideal generated by x1 , ••. ,xr ' suppose that x + I 1s an

m-primary ideal, then the function e(~ R/1n) takes the values

of one polynornial of degree dim(A/I) for n large enough and

the leading coefficient will be noted by e(~,I) . Also usinq

the localisation of the multiplicity we have:

e(~,I) = L e(~ R/P)e(I Rp ) •

P=>I
dirn(A/P)=dirn(A/I)
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1.3 Let P be a prime ideal in R "and n ~ P the multiplication

by x

x

i5 injective for all n.

In particular if dim(R/P) = 1 , R/p(n) i5 a Cohen-Macaulay

ring for any n •

1.3.1 SUPPo5e dim(R/P) = 1 • We can cornpute e(x,p(k)) for any

x E m-P .

1.3.2 Suppo5e dim(R/P) = 1 , x ~ P , fix a k E ~ and put

S = R/x , J
n

= p(nk)S , J
n

i5 a rn/(x)-primary ideal. Then

19(5/J) := 19(R/X+p(nk)) = e(xR/p(nk))
n

(becau5e R/p(nk) i5 Cohen-Macaulay)

= e(x .R/P) 19 (R /p(nk)R )
p P

(by locali5ation of multiplicities)
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in particular 19(5/J )
n

coincides for n» 0 with a polynomial

having the leading term

(k) n d- 1
e(x,P ) (d-1)!

(see 1. 3 . 1 ) •

1.4 Definition - Let I c J two ideals, I is said a reduction

d f I Jn = -n+1of J if an only i u for large n , this is the

same to say I = J , in particular II = IJ , I and J have

the same minimal associa ted primes and so h (I) = h (J)

heigth) .

h means

Suppose that R/m 15 infinite then the analytic spread

1(1) i5 the size of a minimal basis of a reduction of I.

1.4.1 A formally equidimen5ional ring (or quasi unmixed) R is

a ring s.t. for any P minimal in the completion R of R we
....

have dim(R/P) = dim R = dirn R .

In a formally equidimensional ring the altitude formula i5

true, i.e.

h(I) + dim(R/I) = dim(R) .

1.5 The following theorem is central in this paper:
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Equimultiplieity eriteria for 1(1) = h(1) (See [Li] pp. 118).

Theorem - (Dade)

Let (R,m) be a forrnally equidimensional loeal ring, with

(R/m) infinite. For an ideal I the fo11owing conditions are

equivalent:

(i) 1(1) = h(1)

(ii) there exists a sequence y = (Y1'···'Y·)
- J.

whose image in

R/1 is a system of parameters and such that

e(y,1) = e(y + I)

(iii) There exists a sequence x = (x
1

, •• ,., x )
- n

satisfying

(a) x + I is an m-primary ideal

(b) dim(R/~R) = dirn R - r = dirn R - dim(R/1)

[in other words: x is part of a system of parameters in R and]
the image of x in R/1 1s a system of parameters ..

and such that

if r < dirn R then e(!,I) = e(I(R/~))

- if r = dirn R then e(~,I) = e(!)
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§ 2. Theorem (The main theorem)

Let (R,m) be a d-dimensional forrnally equidimensional

local ring, P a height d-1 prime ideal s.t. Rp is regular

then the followings are equivalent

1 ) : R (P) is a noetherian ring

2) 3 k /
p(kn) = p(k)n 3 n

'= 1

3) 3 k / l(p(k» = d-1 = h(p(k) )

4) 3 k , 3 f 1 ,···,fd - 1
E p(k) and for any x E m-P

(see 1.3.1)

5) 3 x ~ P , 3 k and f 1 , ... ,fd - 1 E p(k) such that

(k. )
6) 3 x ~ P ,3 k 1 , ... ,kd- 1 E ~ and f i E P 1 such that

e(x,f 1 ,···,fd _ 1 ) = 19(R/(~+P»k1···kd_1

7) 3k/gr· (k)R is a Cohen-Macaulay ring.
P
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Remarks 1) This theorem was proved by Huneke in the case

d = 3 .

2) The equivalence 1) ~ 2) is due to Co sik [e ] and

Schenzel [Sc].

3) 2) .. 3) is due to Schenzel [Sc].

4) 5) .. 6) 1s purely formal and use the formula

(cf. [No] pp. 311).

5) The number k in the statements 2) to 7) 1s always the

same.

Now we will prove 5) - 3) ~ 4).

Proof. - 5) ~ 3) Put S := R!(x) , I := p(k)S is an m/x-primary

ideal and we consider his Hilbert-Samuel function

Now by hypothesis f
1

, ••• f
d

-
1

E p(k) and (x,f
1

, ••• ,fd _
1

) is

a parameter system in R then (f
1

, ••• ,fd _
1

)S is a parameter

ideal included in land

e (I) :s; e.( (f 1 ' • • • , f d _ 1 ) S) ~ e (x , f 1 ' • • • , f d _ 1) = e (x , p (k)) •
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The secend inequality is just the definition [No]

and the third equality is by hy~o~h~sis.

Also I n = p(k)n S c: p(kn)s = J
n

( 1 3 2) dsee .. an

19(5/In) ~ 19(5/Jn ) , and for large n this becornes an inequality

between polynornials of degree d-1 , in particular by taking

leading terms (see 1.3.2) we obtain

then (
T ) :.: ..... {-' -p (k) )e _ _. e ~,.

arid by 1.5 l(p(k)) = d-1

Now we prove 3) • 4).

is contained in the integral closure of (x,f 1 , ... ,f
d

_
1

)

(x,f
1

, .•. ,f
d

_
1

) 1s a reduction of x + p(k) . Call

Let
(k)

~ + P

and then

x E rn-P and take a reduction of

f := f 1R + ••• + f d- 1 R . Then we have

Attention, here e(x,~) is the relative multiplicity in the

sense of 1.2.3.

The first equality fellows from the general fact: If I is a

reduction of J then e(x,I) = e(x,J) . The second equality is

the associative law for multiplicity.
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§ 3. Reduction theorem

3.1 Definition - Let C be a cürve in kd given parametrically

by

Let

m
X 1 = t , X'2 = t0 2 (t), ••. 'X d = <'od(t) •

a EJN, s.t. (m,a) = 1.

Now let C the curve in k
d given parametrically by

m a a
X1 = t , X2 = <.0 2 (t ), ••• 'Xd = lP

d
(t ) ·

Also for any f(X
1

, ••.• 'X
d

) in R (R = k[X
1

, ••• ,Xd ] a"

k{X
1

, ••• ,X
d

} ,or k{[[X
1

, •.• ,Xd ]]} we note by 1 the element

in R t(X1 , ••• ,Xd ) = f(X~'X2, ... ,Xd) .

For the relations between C and C see the appendix.

Nevertheless we need the following

3.2 Lemma (See [Mo]. Let P (resp. P ) the.prime ideal of C

(resp. of C) then for any f in R we have f E P ~ r E P .

Also if f
1

, ••• ,f s is a minimal set of generators of P then

f
1

, ••• ,ts is a minimal set of generators of P.

Remark - This is true even if d is not the embedding dimension

of c.

3.3 Proposition (Reduction Lemma) - i) If p(k)n = p(kn) for

all n ~ 1 then p(k)n = p(kn)y n ~ 1 .

ii) If C is a monomial curve of embedding dimension d

then the converse is true.
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Proof - R is as before the ring of polynomials, or k{X
1

, ... ,X
d

}

or k[[X
1

, ••• ,Xd ]] •

Now applying the theorem 2.1 take x = X
1

s.t.

and

19(R/ )
(x , f 1 ' • · · , f d-1 )

d-1= 19(R/x+p)k

now by construction and lemrna 3.2 X
1

R + P = X
1

R + P , on the

other hand if f E p(k) it is easy to see that 1 E p(k) , but

we have also

so we obtain

19(R/ ~ ~ )
(x,I: 1 , ••• ,I: d - 1 )

d-1= 19 (R/ (~+p))k

and the theorem 2.1 implies the Proposition i). In fact we have

just that p~kn) = p~k)n where m is the maximal ideal (X 1 , ... ,Xd )

in k[X
1

, ... ,Xd ] but the curves C and C are smooth outside the

origine, this implies that the sheafs p(kn) and p(k)n are

equals outside the origin and this implies

Now we prove 1i). First of all remark that p(k) is a graded

ideal for all k, because pk 1s a graded ideal and p(k) 1s
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the P-primary component of pk • Now suppose that we have

, .- (k)x = X
1

and f
1

, ••• ,fd E P such that

19(R/ ) = 1 (R/ )kd- 1
(x , f 1 ' • • • , f d-1 ) g x +P

we claim that any f E p(k) can be written

(* ) + ••• +
(1-1 ~((1-1)

X
1

1:

where f(i) E p(k) Vi. Using this and the fact that

,>,,0 .,..0
(X1 ,f 1 , ••• ,fd - 1 ) = (X 1 ,I, , ... ,I d ':',) using 2.1 the part ii) of

the proposition will follow. We can always write f as (*) we

rnust prove that

f(i) € p(k) V i

also deg X. = C1 e.
1. 1.

for i ~ 2

deg X, = e, and (C1 , e 1) = 1 ,

then d ?!' ( 0) E Z d ~ ( i ) r' + C1 Z· . 1eg 1: C1, eg:r .:. 1. e,._ , ln partJ.cu ar

xil(i) all have different degrees and using that p(k) is

graded we obtain l(i) E p(k) for any i E [O,et-1] • Now in

order to finish we roust prove that if l E p(k) then f E p(k) .

By definition there exists sorne g E P , s.t.

gf E pk
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write + ••• + with one of the g.
~

not

P . Consider the product

+ ••• +

and the degrees of xi 1gi are all different, in particular because
....,k
P is a grad~d ideal

o .

.....k i O ..... rJ .....pk
but there are some giO e P and X 1 giO ~ and by multiplying

Cl-i
X 0 h h ..... a..... .....,p b1 ' we see t at t ere are sorne G = X 1 g iO not l.n ut

Gf E pk • The proof will be a consequence of the following lemma

Lemma. - G E pk ~ G E pk •

Proof. - Let a = P(~1,~ .. ,ijs) where p E R[Y1' ... 'Ys ] is a. poly­

nomial of order bigger than k • We write the coefficient h of P

like

(':"" ~ 0-1 (':""
h = n O + X1il1 + ••• + X1 n

et
- 1

this implies that
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with Pi E k[X~, X2 , ... ,Xd ][Y1' ... 'Ys ] and using the fact that the

degree term are not in the same set we prove that

kthis implies that G = PO(g1, ... ,gs) E P . The converse is trivial.

We don't know if the property R(P) being noetherian depends only

from R/P, in particular we don't know what happens if the embedding

dimension changes. Nevertheless we have the following lemma.

Lemma. - Consider a curve C in k
d

given parametrically by

and add ·one new variable Wand a new eq~ation involving X1 ' (for

example W = X1X2 ) then if we call P the ideal of C in

k[X 1 ,···,Xd ] and P1 the corresponding ideal of C in

k[X
1

, •.• ,x
d

, W] then if p(k)n = p(kn) for n ~ 1 also

p(k)n = p(kn) for n ~ 1
1 1

Proof. - We use the theorem 2.1. Take x = X1 ' and

f'l' • • · , f d -1 € p (k) 5 • t ·
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where ()rn means localisation in rn. Also f E p(k) irnplies

f E p (k) and
1

And the ideal generated by X1 and Pt is the same as the ideal

generated by X1 ' Wand P, so we obtain

19(k[X1,···,Xd , W]/(X
1

' f f W X X») =
\ 1 ' • . ., d - 1 ' - 1 2 m-

and the lemma follows fram 2.1.
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§ 4. Monomial curves in k 3

Let a,b,c € ~ such that (a,b,c) = 1 and that k[ta,tb,tc ] be

a curve C of ernbedding dimension 3. Let R = k[X,Y,Z] with grading

given by weight (X) = a, weight (y) = b, weight (Z) = c . After

J. Herzog [He] [K] we know that if k[ta,t~,tc] is not a complete

intersection, his syzygies are like follows

0 R
2 M R3 R k[ta,tb,tc ] 0-"-> -> -> -> ->

X ~> t a

Y"~> t b

Z ~> t C

Now we improve th~s result giving explicitely the matrix M. The

equations of the curve C in k 3 being the 2 x 2 minors of the

matrix M. The problem to find M is in fact equivalent to the

solution of the Frobeniusls change rnoney problem in dimension 3

(cf. [Rö] and [Mo]):

Problem. - Find the biggest 9 E E who can1t write

9 = a. a + ß b + y c , wi th a. , ß , y E:N (0 E ~)

See also the appendix for many comments in this problem. Now let

So the unique natural number such that



- 18 -

sOb a C mod a and 0 < So < a

put := a and consider the continuous fraction

- 5 1
5 0 ~ 0
~

- s 2

5 m-1 = CIm+1 s
m

and the sequences Po, R. defined by
~ ~

= b, Rm+ 1 = -c •a

P- 1 = 0, Po = 1, Pi +1 = PiQi - Pi - 1 , Pm+1 = a

sob - P.c
1. 1.

Then {So} and {R.} are strictly decreasing sequences, P. is a
1. ~ .~

strictly increasing sequence.

Definition. - Let v the unique integer number s.t.

4.1 Theorem [Rö]

g ::::I rnax (b 5 V - a Rv +1 ' aRv + c P'J +1) - a - b - c •
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4.2 Theorem. - C is a complete intersection ~ sv+1 = 0, and the

matrix syzygies is

R s -s
X v Y v v+1

s p

M Y v+1 Z
v=

p -p -p,
Z

v+1 v X ~v+1

For the proof ~f this theorem see [Mo]. Now we.apply this

theorem to find a very large class of examples of monomial' curves.

4.3 Theorem. - Let a,b,c,sO natural numbers such that

1) sOc ii b mod -a, o < So < a < b < c

2) a + 1 E So ·z

3) (a+1 1 \ ~
2 1)c -- + s - b(sO - s +So 0 ) 0

Let P be the ideal in k[X,Y,Z] of the curve k[ta,tb,tc ] then

Proof. - Using the notations before 4.3, the first two conditions

implies that
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:::::l a, 51 1 , = 0, a+1
5 = 52 q := q1 = q2 = So-1 So

:::::l 0, 1 , a+1
P-1 Po :::::l P1 = , P2 = a

So

a+1
5 b-c b-(-)-c-

R = b, Ra
0 R1

So
R2= = = -c-1 a

,
a

,

this ~plies that v = 0 or 1, but v = 1 is the

complete intersection case, in this case p(n) = p~ for all n. We

must study the case v = 0 . The syzygy's matrix iso

a+1
1-- -

[x
a y

":-5
0

]
Z

Mt = 5 -1
xßY 0 Z

sOb-c gc-b
where Ct =- a ' B = a •

In> particular the generators of p are

xCt + ß s -1 q-1
F 1 = - Y 0 Z

F 2
50 xCt

Z= Y

F3 = zq _ YX ß

and the relations are

+ YF
1

+ zq-1 F
2

= 0

5 -1
+ Y 0 F

3
+ Z F

1
= 0
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Now we will prove that there exist

and then we apply the theorem 2.1 with

s.t.

x" = X, f,

and we compute

19(R/ (X F d ))" =
" , 2' So

19(R/ . So a) = aSo
(X,Y ,Z)

the theorem 2.1 then implies that for all n 2: , •

The element d will be find by an inductive process. Put d, =.F,
So

and u5ing the relations between F 1 , F2~ ~ we get

ß 5 0-1
Zd,F3 =.-F3 (X F 2 + Y F 3 )

ß so-1 2.= -x F 3F 2 - Y F 3

= Xß- UF
2

IYF, + ZQ-'F
2

) _ y
50

-'F;

this irnplies that there exists d
2

E p(2) (by definition) •
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such that

s -2
Zd ~ Y 0 p2 _ XB-aF F

2 ]. 2 1

Now we cornpute Z d 2 F] using the same method and we find that

there exists same d] € p(3) such that

The third condition on the theorem is equivalent to say.that

ß ~. (s -1)0o
(SO)

d E: PSo

and we can continue the comput~tions and find

such that

So B-(5 -1)0 S -1
= F

3
- X 0 F 0 F

1 2

but F;O = lzq - YXßjSo = za+1 - XßG
1

because qsO = a + 1 , then
s

d
s

= za + XG
1

+ Y 0G
2

and the theorem 15 proved.
o

4.4 Corollary. - Let 5 = 2o and a,b,c satisfying the first condition

on the theorem, if c > b then the third condition i5 satisfied (be­

cause a ~.] ) and we have p(2n) = p(2)n V n ~ 1 •

Proof. - If ä is OQd the three conditions in 4.3- are satisfied. If

a 1s even theorem 4.2 1mplies that P 1s a complete intersection.

4.5 Corollary. - Let P the ideal of a monomial curve of multiplicity

] then p(2n) = p(2)n V n ~ 1 • In this ca5e we can see that if P

15 not a complete intersection then So = 2 , and a,b,c satisfy

the conditions in the theorem 4.3.



4.6 Corollary. - Let a and

prime ideal P of the curve

P ( 2n ) = p ( 2 ) n " n ~ 1 •

23

° two coprime numbers then the'

k[ta,ta+o,ta+2a) . satisfy

Also I mention here that Huneke [Hu] and Schenzel [Sc) have many

ether examples.

For the moment using the reduction Lemma and the following example

of Huneke I find a large class of examples in any dimension.

4.7 Example [Hu) • - Let R = CI:[X,Y,Z) and p the Kernel of the

homomorphism of R into CI:[[t
6 ,t7 + t'O,t8 )) by sending X to

t 6 , Y to t 7 + t'O , Z to t 8 . Then p(10)n = p (1 On) for all

n ~ 1 . In particular P is a set theoretic complete intersection.

4,.8 - Take the example in 4. 7 and add a new variable W and a new

equation

W = XY = t 14 (for example)

now take any ° € m , coprime with 14 than the curve P in

CI:[x,Y,Z,W) given parametrically by

is a curve of ernbedding dimension 4 and such that

~p ( 1On) \J 1
v n ~ •
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Now add a new variable V = XW = t14+6~ and take any ß E N

-
coprime with 14 + Ga , then the curve P in [[X,Y,Z,W,V]]

given parametrically by

is a curve of embedding dimension 5 such that

~(10n) = p(10)n V n '= 1 •

You can continue"this process and find exarnples in any dimension.

In particular all these curves are set theoretic complete inter-

section!
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