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Noetherian Symbolic blow up and

examples in any dimension
by

Marcel MORALES

Introduction. - The following question was raised by Cowsik

[Cw]: Consider P a prime ideal in a regular local ring (R,m) ,
is the symbolic Rees's Ring

r'P) .- e

nz0

{n)

a noetherian ring?

(n) (M) - p"r_nRr).

P
This question appears in works of Rees [Re] and Nagata [Nal.

Where P is the n-symbolic power of P (i.e. P
P. Roberts gave a counterexample to the Cowsik's question,

but very few examples were known of symbolic Rees's rings

noetherian. Recently many works study the question of Cowsik,

especially Huneke [Hu] and Schenzel [Sc].

The main interest of this paper is to give a practical

criterium to decide when the ring R(P)

is noetherian, also I
use this criterium to show a reduction lemma who permits to
find infinitely many examples in any embedding dimension from
one example.

. Also by using syzygies of monomialjcurves and one explicit

b

description of the syzygy of the curve k(t?,t ,tc] in function



of a,b,c . I can find a large class of monomial curves with

ideal P in k[X,Y¥,Z] s.t. R(P)

is noetherian.

In a next paper [Mo] I develop the connection between the
syzygies of a monomial curve and the "change money problem" of
Frobenius. I give some combinatorial properties of the syzygies
by using local cohomological methods.

I thank the Max-Planck-Institut (Bonn) and especially

Prof. F. Hirzebruch for his hospitality and very good ambiance.



§ 1. Preliminaries

(R,m) will always denote a local commutative ring (noetherian)

with residue field (R/m) infinite.

1.0 Definition - For an ideal I in R , I 1is the integral

closure i.e. I = {a € R/an + b an_1+...;.+1%1= 0 with b

i
1 € I} .

i

(n)

1.1 The symbolic power of a prime ideal is noted by P and

we have two equivalent definitions

pm PnRP n R

(M) . (xeRrR/3y € P and xy < P"}

P
1.2 Let (R,m) be a local noetherian ring, I a m-primary ideal,
then for n large enough the Hilbert function H{(n) = lg(%/én)

coincides with a polynomial called the Hilbert-Samuel polynomial
H(n) = e(I)

for n >> 0 .
Where d 1is the Krull dimension of R and e(I) the multiplicity
of the ideal I

Let XqreeerXyg be a sequence of parameters for E an
R-module (i.e. E/(XT""'xd) E is an Artinian module). We have

the inequality



© Xy reuerXs) S lg(E/ )
1 d | (x1,...,xd)

and a ring is Cohen-Macaulay if and only if this is one

equality for any system of parameters.

1.2.1 Localisation of the multiplicity
Let E be a noetherian R-module and g a system of
parameters ¢ = (x1,...,xs) for E , then

(EP) ep/p {q R/P)

e(gE) = ] 1
P P

where the summation is over all prime ideals P minimal

containing ann(gE) , s.t. dim E = dim(R/P) .

1.2.2 Associative law for multiplicity

With the notations as above, let 1 $ i § s then

e({xys.00,x )E) = E eRp((x1,...,xi)Ep)eR/p((xi+1,...,xs)R/p) .

Here. p ranges over all minimal prime ideals of (x1,...,xi) .

1.2.3 The relative multiplicity

Let I Dbe an ideal in R , x.],....}xr € R , we note by x
the ideal generated by Xqre+sX,. , Suppose that x + I 1is an
m-primary ideal, then the function e(x R/In) takes the values
of one polynomial of degree dim(A/;) for n large enough and

the leading coefficient will be noted by e(x,I) . Alsc using

the localisation of the multiplicity we have:

e(x,T) = ] e(x R/P)e(I R,) .
_ PoI
dAim(A/P)=dim (A/I)



1

.3 Let P be a prime ideal in R and n € P the multiplication

by x

R/p(n) —F—> R/p (n)

is injective for all n

In parﬁicular if dim(rR/P) =1 , R/P(n) is a Cohen~-Macaulay

ring for any n .

1.3.1 Suppose dim(R/P) = 1 . We can compute e(x,P(k)) for any
X € m-P
e(x.P{k)) = e(x R/P) e (P(k)RP)
= 1g(®/x+p) e (2R

a-1

lg (R/x+P) e (PRp)k

1.3.2 Suppose dim(R/P) =1 , x ¢ P , fix a k € N and put

S = R/x , Jn = P

(because R/P

(nk)s r I, is a m/ (x)-primary ideal. Then

(nk)) (nk))

lg(S/Jn) := 1g(R/x+P = e(xXR/P

(nk) is Cohen-Macaulay)

(nk)R )

= e(x R/P) 1lg (R,/P p

(by localisation of multiplicities)



_ nk

= 19(R/y,p) 19 (Ry/P™°Rp)
in particular lg(S/Jn) coincides for n >> 0 with a polynomial
having the leading term

(k), nd

e/ P ) @y

(see 1.3.1).

1.4 Definition - Let I = J +two ideals, I is said a reduction

of J if and only if I at = Jn+1 for large n , this is the
same to say I = J , in particular VI = /J , I and J have
the same minimal associated primes and so h(TI) =h (J) ( h means
heigth).

Suppose that R/m is infinite then the anal?tic spread

1(I) is the size of a minimal basis of a reduction of I .

1.4.17 A formally equidimensional ring (or guasi unmixed) R is

~

a ring s.t. for any P minimal in the completion R of R we
have dim(R/P) = dim R = dim R

In a formally equidimensional ring the altitude formula is
true, i.e.

h(I) + dim(R/I) = dim(R)

1.5 The following theorem is central in this paper:



Equimultiplicity criteria for 1(I) = h(I) (See [Li] pp. 118).

Theorem - (Dade)
Let (R,m) be a formally equidimensional local ring, with
(R/m) infinite. For an ideal I the following conditions are

equivalent:

(1) 1(I) = h(I)

(ii) there exists a sequence y = (y1,...,yi) whose image in

R/I 1is a system of parameters and such that
e(y,I) = ely + I) .

(iii) There exists a sequence x = (x1,.r.,xn) satisfying
(a) x + I is an m-primary ideal

(b) dim(R/xR) = dim R - r = dim R - dim(R/I)

in other words: x 1is part of a system of parameters in R and

the image of x in R/I 1is a system of parameters

and such that

- if r < dim R then e(x,I) e(I(R/x})

- if r = dim R then e(x,I) e(x)



§ 2. Theorem kThe main theorem)

Let (R,m) be a d-dimensional formally equidimensional
local ring, P a height d-1 prime ideal s.t. RP is regular

then the followings are equivalent

1) ER(P) is a noetherian ring
2y 3k, ptk) o pKIn g oy
3) 3k/ 1%y = a-1 = ne®)
(k) a
4) 3k, 3 f1""’fd-1 € P and for any x € m-P
e(x,f1,...,fd_1) = e(g,P(k))
(see 1.3.1)

(k)

5) 3 x ¢P , 3k and f1""'fd—1 € P such that
ek, Ey,eify ) = elx,p ™))
. (k)
6) 3 x¢P, 3 Kky,.-nrky 4 EN and £, €FP such that
elx,fy,0..084 ) = 1g(R/(x+P) ) kq. . ky_,

7) Bk/gr'(k)R is a Cohen-Macaulay ring.'
p



Remarks 1) This theorem was proved by Huneke in the case

d = 3

2) The equivalenée 1) e 2) is due to Co sik [C ] and

Schenzel [Sc].
3) 2) «= 3) is due to Schenzel [Sc].

4) 5) e= 6) is purely formal and use the formula

n n
1
e(y1 reeerYq ) = n,...n4 e(Y1,...,Yd)

(cf. [Nol pp. 311).

5) The number Xk 1in the statements 2) to 7) is always the

same.

Now we will prove 5) = 3) = 4).

Proof. - 5) = 3) Put S := R/(x) , I := P(k)s is an m/x-primary

ideal and we consider his Hilbert-Samuel function

HI(n) = lg(8/in) = 1g(R/§+P(k)n))

Now by ﬁypothesis £,,...£f (k)

1 d-1
a parameter system in R then (f1,...,f

£ P and (x,f1,...,fd“1) is

3-1'S 1is a parameter

ideal included in I and

- (k)
e(I) s e((fy,...,£4 4)8) S elx,£,,...,64_,) = e(x,P )



The second inequality is just the definition [No]

(e(x,£y,...,fq 4) = e(fT,...,fd_1(R/x))-e(ifﬁf.,;,fd”1T(0 : X))

R

and the third equality is by hy?oﬁhééis.

Also I = P(k)n S < P(kn)s = Jn (see 1.3.2) and
lg(S/In) 2 lg(S/Jn) , and for large n this becomes an inequality
between polynomials of degree d-1 , in particular by taking

leading terms (see 1.3.2) we obtain

e(D) -z e;p k)

then e(I) = e(x,;P

(k))

and by 1.5 1(P = d-1

Now we prove 3) = 4),

(k)

Let x € m-P and take (f;,...,£5_,) a reduction of P ,

(k)
x + P is contained in the integral closure of (x,f1,...,f

. plk)

a-1)
and then (x,f,,...,f;_ 4) 1s a reduction of x . Call

£ := £,R +...4 fd—1 R . Then we have

(k)

e(x,P ) = elx,f) = e(x,fq,...,f

a-1

Attention, here el(x,f}) 1is the relative multiplicity in the
sense of 1.2.3.

The first equality follows from the general fact: If I is a
reduction of J then e(x,I) = e(x,J) . The second equality is

the associative law for multiplicity.



§ 3. Reduction theorem

3.1 Definition - Let C be a curve in kd given parametrically
= 00 = -
by X1 - t ? Xz - wz(t) ,...,Xd - (Dd(t)

Let o €N , s.t. (m,a) = 1.

Now let C the curve in k% given parametrically by

- L " o - o
X1 = t ' X2 = wz(t ),...,Xd = wd(t } .
Also for any f(x1,..,,Xd) in R (R = k[X1,...,Xd] a, .
k{X1,...,Xd} , or k{[[X1,...,Xd]]} we note by ¥ the element
. _ a
in R ?(x1,...,xd) = E(X7 /Xy e, Xg)

For the relations between C and C see the appendix.

Nevertheless we need the following

3.2 Lemma (See [Mo]. Let P (resp. P ) the.prime ideal of C
(resp. of C ) then for any f in R we have f € P «= T € P .
Also if f1""'fs is a minimal set of generators of P then

?1,...,f5 is a minimal set of generators of P .

Remark - This is true even if d 1is not the embedding dimension

of C .

3.3 Proposition (Reduction Lemma) - i) If pkin _ ,(kn) for

all n 2 1 then BKID _glkn)y oy

ii) If C 1is a monomial curve of embedding dimension d

then the converse is true.



Proof - R 1is as before the ring of polynomials, or k{X1,...,X

al

or k[[x1,...,Xd3]

Now applying the theorem 2.1 take x = X1 and f1""'fd-1 € P(k)
s.t.
1g (R/ ) = 1g(R/_, k%]
(x'f "--'f ) x+P
1 d-1" =
now by construction and lemma 3.2 X,R + P = X,R + P , on the
other hand if £ € P(k) it is easy to see that ¥ € §(k) , but
we have also
(Xq £ reeerfq ) = X 0E, 08 )
so we obtain
1q (R/ ) = 1g(R/ 5 )k
(x,? F oo "f - ) (}_{+P)
1 d-1
and the theorem 2.1 implies the Proposition i). In fact we have
just that Pékn) = P;k)n where m 1is the maximal ideal (X1""'Xd)
in k[x1,...,xd] but the curves € and C are smooth outside the
origine, this implies that the sheafs P(kn) and P(k}n are

equals outside the origin and this implies

plkn) _ pKIn 4 yix X7

17°° d

(k)

Now we prove ii). First of all remark that P is a graded

ideal for all k , because PX is a graded ideal and P} is



the P-primary component of Pk . Now suppose that we have

x = X, and f gl

1 such that

1’..-'fd

= d-1
lg(R/(xff1I°'-!fd_1)) = lg(R/§+'§‘)k

(k)

we claim that any f € B can be written

_ >(0) (1) a=1 »(o-1)
(*) £ =1 + K £ + o v x0T E
where f(i) £ P(k) ¥ i . Using this and the fact that
0 0 , .
(X1,f1,...,fd_1) = (XT,?1,...,?d;1) using 2.1 the part ii) of

the proposition will follow. We can always write £ as (*) we

must prove that

) ¢ plk)
also deg X, = ae; for 1 2 2
deg X, = e, and (a,e,) =1,
g(o) g(i) .o . .
then deg € o Z , deg tle, + o 2 , in particular
Xlg(l) all have different degrees and using that ﬁ(k) is

graded we obtain f(i) € P(k) for any i € [0,a-1] . Now in

(k) (k)

order to finish we must prove that if ¥ € P then f € P

By definition there exists some g € B , s.t.

g e ¥



- 14 -

write g = 30 + X1§1 * ... + X3 ‘g _, Wwith one of the g, not

P . Consider the product
gt = ?(go + x1g1 + ... + X

and the degrees of Xl?Ei are all different, in particular because

ﬁk is a graded ideal

x%"f“g‘. ¢ 3¥
but there are some 930 ¢ P and x1 gio ¢ P and by multiplying
a-1i .
X, 0 | we see that there are some & = f?gio not in P but

8% ¢ 3 . The proof will be a consequence of the following lemma

Lemma. - G € P e G € P

Proof. - Let & = 9(31’1"’55) where p € R[Y,,...,¥_] is a poly-

nomial of order bigger than k . We write the coefficient h of »p

like

h =Hh +x1H1+...+x°"1E

0

this implies that

~

G = 90(91'°"'gs) + x1p1(g1,...,g5) + ... + X



- 15 =

with B, € k[x?, Xyree-sXgl[¥,, ..., ¥ ] and using the fact that the
degree term are not in the same set we prove that

~

G = 50(6‘1’...'65)

this implies that G = po(g1,...,gs) € Pk . The converse is trivial.
~We don't know if the property R(p) being noetherian depends only
from R/P , in particular we don't know what happens if the embedding

dimension changes. Nevertheless we have the following lemma.

Lemma. - Consider a curve C in kd given parametrically by

_ ,a
X1 =t
= (t)
X3 79
- (t)
Rg = g
and add one new variable W and a new equation involving x1 , (for

example W = x1x2 ) then if we call P the ideal of C in

k[X1,...,Xd] and P the corresponding ideal of € in

1

K[X,, ..., Xy, W] then if plkIn _ plkn} o0 15 1 also
P:k)n = Pfkn) for nz2 1.

Proof. - We use the theorem 2.1. Take x = X, , and

1
£ ¢ ptk)

fu}:'ooo' d_.l S.t.
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d-1
lg(k[x RV, Vo= tglkix,, ... ,x 0/ )k
1’ el (x1,f1,...,fd_1)}m \ 1! 7a (X1R‘+P) m
where ( )m means localisation in m . Also f € P(k) implies
f € P1(k) and

(X.l, W-X1X2) = (X.I, W)

And the ideal generated by X and PT is the same as the ideal

1
generated by X1 + W and P , so we obtain

( ) -
lg\k[x1r°°°’xd’ W]/(x1, f1""'fd-1' W'X1X2) m )

4 )d-1
= lg\k[X1,...,Xd, W]/(X1, P ) k

and the lemma follows from 2.1.
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§ 4. Monomial curves in k3

Let a,b,c € N such that (a,b,c) = 1 and that k[ta,tb,tc] be

a curve C of embedding dimension 3. Let R = k[X,Y,2] with grading
given by weight (X) = a, weight (Y) = b, weight (2) = ¢ . After

J. Herzog [He] [K] we know that if k[ta,tb,tc] is not a complete
intersection, his syzygies are like follows

2 M 3

0 —> r® M, R3 — R —s k[t?, ¢

Now we improve this result giving explicitely the matrix M . The
equations of the curve C in k3 being the 2 x 2 minors of the
matrix M . The problem to find M 1is in fact equivalent to the
solution of the Frobenius's change money problem in dimension 3

(cf. [R&] and [Mol):
Problem. - Find the biggest g € W who can't write
g=0a +8b +yc , with a,8,y € N (0 € N) .

See also the appendix for many comments in this problem. Now let

Sy the unique natural number such that
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sob g cmod a and 0 < so <. a

0}
1
-
1
v
1
Q
—
0
o
i
0
—-—
te]
=
[\
[N)
-
0
v
o

and the sequences Py Ri defined by

Py =0, Pg =10 Pyyq 5 F3Q) ~ Py qr Ppyq =2
sib - P.c
Ry = a N L

Then {si} and {R,} are strictly decreasing sequences, Ei is a
i

strictly increasing sequence.

Definition. - Let v the unique integer number s.t.

R\)+1 £ 0 < Rv .

4.1 Theorem [R&]

= -d4a akr = - -
g = max(bs ~aR + cP ) a-b-c

17 Vv v+ 1
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4.2 Theorem. - C 1is a complete intersection <« Sy+1 = 0 and the

matrix syzygies is

r R S =S
gV g V v+l 1
s P
M= |y V7 z ¥
P -P -P
z v+l " v X v+1 i
\ /

For the proof of this theorem see {Mo]. Now we apply this

theorem to find a very large class of examples of monomial curves,.
4.3 Theorem. - Let a,b,c,s0 natural numbers such that

1) soc = bmod a, 0 < S < a < b<e¢
2) a + 1€ sO-Z

3) c(gil + s, = 1) 2 b(sg - s, + 1)

S 0 0
Let P be the ideal in k[X,Y,2] of the curve k[ta,tb,tc] then
P(so)n = P(son) vn 22t
Proof. - Using the notations before 4.3, the first two conditions

implies that
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s =a, s, =1,

S = 0rq:=q =5, q; =5

arl
p_1=0,p0=1,p1=——50,92=-a

- a+1
s b-c b-(?ay}c
Ry =br Rg = —5— Ry = a ' Ry = C

this implies that v =0 or 1, but v =1 is the

complete intersection case, in this case P(n) = p? for all n . We

must study the case v = 0 . The syzygy's matrix is

a+1l _
-8
x° y 1z 0
t
M- = s.=-1
vy9 gz xB
g s.b-c
where ao = Oa r B = 9%;9 .

F,o= X8 oy 0 37
S
- 0 _ go
Fy = Y x% 3z
F, =29 - yxP

and the relations are

X%F., + yp, + 2371 F, = 0

B Sp~1



Now we will prove that there exist ds € P s.t.
0

and then we apply the theorem 2.1 with

= F,, £.=4d

x. =X, £ 2

1 s0

and we compute

o 1ol ) _
lg(R/ix,Fz,dso)) lg\R/tx'Ysolza) = a8,

- 1. \
= 19\ R/ (xr+p) ] So

' (sy)n (syn)
the theorem 2.1 then implies that P = P for all n
The element ds will be find by an inductive process. Put d1
‘ 0 :
and using the relations between F1, Fzy F; we get

8 So~1
Zd1F3 -_-F3(X Fz + Y F3)
' -1
8 S~ 2
= ~X'FaF, - ¥ F3
-1

_ JB-a q-1 L0702

= x %r,(yF, + 237 F,) - v F3
o aar, - 29 %07%2) oy xB o p - v 0 52

173 20 7 271 3

this implies that there exists d2 € P(Z) (by definition).

[ A"
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such that

Now we compute 2 dz F3 using the same method and we find that

there exists some d3 € P(3) such that

The third condition on the theorem is equivalent to say that

B 2'(50-1)a and we can continue the computations and find

(so)
d € P such that
s
0
s B=(s,-1)a s,-1
- 0 _ 0 0
A dso = F3 X F1 F2
0 q g 0 a+1 B
but F3 = (2% - ¥X") = Z - X G1 because gs; = a + 1 , then
S _
ds = z2 & XG, + Y 0G2 and the theorem is proved.
0 , .
4.4 Corollary. - Let Sg = 2 and a,b,c éatisfying the first condition
on the theorem, if ¢ > b then the third condition is satisfied (be-
cause a 2 3 ) and we have P(Zn) = P(Z)n vn 21

Proof. - If & 1is odd the three conditions in 4.3 are satisfied. If

a 1is even theorem 4.2 implies that P 1is a complete intersection.

4.5 Corollary. - Let P the ideal of a monomial curve of multiplicity

3 then P(Zn) = P(Z)n ¥nz 1. In this case we can see that if P

is not a complete intersection then Sg = 2 , and a,b,c satisfy

the conditions in the theorem 4.3.
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4.6 Corollary. - Let a and a two coprime numbers then the

k[ta'ta+a a+2a]'

prime ideal P of the curve i

pt2n) _ p(2)n

satisfy
vynzal

Also I mention here that Huneke [Hu] and Schenzel [Sc] have many
other examples.
For the moment using the reduction Lemma and the following example

of Huneke I find a large class of examples in any dimension.

4.7 Example [Hu]. - Let R = €[X,¥,Z] and P the Kernel of the

homomorphism of R into G:[[ts,t7 + t10,t8]] by sending X to

t6 , ¥ to t7 + t10 , 2 to t8 . Then P(10)n = P(10n) for all

n 2 1 . In particular P is a set theoretic complete intersection.

4.8 - Take the example in 4.7 and add a new variable ‘W and a new

equation

W = XY = t14 (for example)

now take any o € N , coprime with 14 than the curve P in

€[(X,Y,2,W] given parametrically by

is a curve of embedding dimension 4 and such that

pl10n o 50000 oy g,
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- t14+6a

Now add a new variable V = XW and take any 8 € N

coprime with 14 + 6a , then the curve P in [[X,Y,Z,W,V]]
given parametrically by

6aB

x = £%9B vy - (T0B

t10a8’ Bo

+ Z =t

_ t14+6a

is a curve of embedding dimension 5 such that

g0n) . g00n 1y g,

You can continue this process and find examples in any dimension.
In particular all these curves are set theoretic complete inter-

section!
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