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Preface

Let S be a set, and let µ be a map from S × S to the power set of S. For any
two elements p and q of S, we write pq instead of µ(p, q) and assume that pq
is not empty.

For any two nonempty subsets P and Q of S, we define the complex product
PQ to be the union of the sets pq with p ∈ P and q ∈ Q. If one of the two
factors in a complex product consists of a single element, say s, we write s
instead of {s} in that product.

Following (and generalizing) Frédéric Marty’s terminology in [3] we call S a
hypergroup (with respect to µ) if the following three conditions hold.

H1 For any three elements p, q, and r in S, we have p(qr) = (pq)r.

H2 The set S possesses an element e such that se = {s} for each element
s in S.

H3 For each element s in S, there exists an element s∗ in S such that
p ∈ rq∗ and q ∈ p∗r for any three elements p, q, and r in S satisfying
r ∈ pq.

The present text is a first attempt to see how far a theory of hypergroups can
be developed.

The interest in hypergroups is motivated by the observation that each associ-
ation scheme satisfies the above three axioms H1, H2, and H3; cf. [9; Lemma
1.3.1], [9; Lemma 1.3.3(ii)], and [9; Lemma 1.3.3(i)]. Thus, hypergroups gen-
eralize association schemes. In particular, they generalize groups.

The above observation would not be so exciting if not a significant part of
scheme theory relies just on the above three axioms. A closer look at scheme
theory reveals that most (if not all) of the reasoning in scheme theory consists
of a part that refers only to the complex multiplication in schemes (and,
therefore, just relies on the above three axioms) and a part that requires
the analysis of the underlying set of the scheme under investigation and its
arithmetic. In fact, quite a few results in scheme theory do not make use
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at all of the underlying set, so that, in reality, these results are results on
hypergroups. It is natural that one wishes to conceptually isolate the first
(algebraic) part from the latter (geometric) part of the theory.

The analysis of scheme theory that was mentioned in the previous paragraph
implies of course that many themes of the first three chapters of these notes
(not all) are just formal generalizations of results in [9]. However, putting
them here in the right place of the theory might have its own value.

An additional motive for investigating hypergroups is the fact that (via as-
sociation schemes) hypergroups provide a natural conceptual framework for
buildings and twin buildings. This topic will be discussed in the final (sixth)
chapter of these notes. Chapter 3 and 4 show how natural buildings are em-
bedded in the theory of hypergroups when viewed as closed subsets generated
by Coxeter sets.

The contents of the individual chapters and a motivation for the choice of the
topics will be previewed in the introduction of the corresponding chapters.

There are two topics which have been left out in these notes and which would
make the notes more complete. Firstly, we have not considered quotient hy-
pergroups, although the definition and first results should be straightforward.
Secondly, it would be interesting to have sufficient and necessary conditions
for a hypergroup to be a scheme. In [10; Theorem A], there was given a suf-
ficient and necessary condition for a scheme to be schurian, and it would be
nice to have a similar criterion for a hypergroup to be a scheme.

The major part of these notes originates from a five month stay at the Max-
Planck-Institut für Mathematik at Bonn. The author gratefully acknowledges
the kind hospitality and the comfortable working environment at this institu-
tion.

Bonn, May 2010 Paul-Hermann Zieschang
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1

Basic Facts

In this chapter, we compile some basic facts about hypergroups. Most of the
results were proven earlier for schemes; cf. [9].

The letter S will always stand for a hypergroup.

1.1 First observations

All results of this section will be used throughout these notes, often without
further mentioning.

Lemma 1.1.1 Let s be an element in S. Then the following hold.

(i) For each neutral element e of S, we have e ∈ s∗s.
(ii) We have s∗∗ = s.

(iii) For each neutral element e of S, we have es = {s}.

Proof. (i) Let e be a neutral element of S. Then, by H2, s ∈ se. Thus, by H3,
e ∈ s∗s.
(ii) From (i) we know that e ∈ s∗s. Thus, by H3, s ∈ s∗∗e. On the other hand,
by H2, s∗∗e = {s∗∗}. Thus, s ∈ {s∗∗}, and that means that s∗∗ = s.

(iii) Let r be an element in es. Then, by H3, e ∈ rs∗. A second application of
H3 yields s∗ ∈ r∗e. On the other hand, by H2, r∗e = {r∗}. Thus, s∗ ∈ {r∗},
and that means that r∗ = s∗. Thus, by (ii), r = r∗∗ = s∗∗ = s. �

Lemma 1.1.2 The hypergroup S possesses exactly one neutral element.

Proof. Let c and d be neutral elements of S. Then, by Lemma 1.1.1(iii),
{c} = cd = {d}. It follows that c = d. �

Until further notice the uniquely determined neutral element of S will be
denoted by e.



2 1 Basic Facts

Lemma 1.1.3 We have e∗ = e.

Proof. From H2 we know that e ∈ ee. Thus, by H3, e ∈ e∗e. On the other
hand, by H2, e∗e = {e∗}. Thus, e ∈ {e∗}, and that means e∗ = e. �

Lemma 1.1.4 Let p and q be elements in S. Then the following hold.

(i) We have e ∈ pq if and only if p = q∗.

(ii) Let r be and element in S satisfying r ∈ pq. Then r∗ ∈ q∗p∗.
(iii) Let o and r be elements of S, and assume that op ∩ qr is not empty.

Then o∗q ∩ pr∗ is not empty.

Proof. (i) Assume that e ∈ pq. Then, by H3, p ∈ eq∗. On the other hand, by
Lemma 1.1.1(iii), eq∗ = {q∗}. Thus, p ∈ {q∗}, and that means that p = q∗.

Conversely, assume that p = q∗. Then, by Lemma 1.1.1(i), e ∈ q∗q = pq.

(ii) Applying H3 three times we obtain from r ∈ pq first p ∈ rq∗, then q∗ ∈ r∗p,
and, finally, r∗ ∈ q∗p∗.
(iii) Let s be an element in op ∩ qr. From s ∈ op we obtain o ∈ sp∗; cf. H3.
Thus, as s ∈ qr, o ∈ qrp∗. Thus, rp∗ possesses an element t such that o ∈ qt;
cf. H1. From o ∈ qt we obtain t ∈ q∗o; cf. H3. It follows that t ∈ rp∗ ∩ q∗o.
Thus, by (ii) (together with Lemma 1.1.1(ii)), t∗ ∈ o∗q ∩ pr∗. �

Lemma 1.1.5 For any three nonempty subsets P , Q, and R of S, the fol-
lowing hold.

(i) Assume that P ⊆ Q, Then PR ⊆ QR and RP ⊆ RQ.

(ii) We have P (QR) = (PQ)R.

Proof. (i) This follows immediately from the definition of the complex product.

(ii) Let s be an element in P (QR). Then, by definition, there exist elements
p in P and t in QR such that s ∈ pt. Since t ∈ QR, there exist elements q in
Q and r in R such that t ∈ qr. It follows that s ∈ p(qr). Thus, by definition,
s ∈ (pq)r ⊆ (PQ)R.

Since s was chosen arbitrarily in P (QR), we have shown that P (QR) ⊆
(PQ)R. That (PQ)R ⊆ P (QR) is shown similarly. �

Lemma 1.1.5(ii) says that the set of all nonempty subsets of S is a monoid
with respect to complex multiplication and with neutral element {e}. This
fact will be crucial in Chapter 6 where we shall deal with buildings.

1.2 Closed subsets

For each subset R of S, we set
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R∗ := {s ∈ S | s∗ ∈ R}.

A nonempty subset R of S is called closed if R∗R ⊆ R.

From H2 (together with Lemma 1.1.3) we obtain that {e} is closed. Note also
that S is closed and that intersections of closed subsets are closed.

Lemma 1.2.1 Let T be a closed subset of S. Then the following hold.

(i) We have e ∈ T .

(ii) We have T ∗ = T .

(iii) We have TT = T .

Proof. (i) Since T is assumed to be a closed subset of S, T is not empty.
Let t be an element in T . Then, by definition, t∗t ⊆ T ∗T ⊆ T . On the other
hand, by Lemma 1.1.1(i), e ∈ t∗t. Thus, e ∈ T .

(ii) From (i) we know that e ∈ T . Thus, by H2,

T ∗ = T ∗e ⊆ T ∗T ⊆ T.

It follows that T ∗ ⊆ T , and from this we obtain T ∗∗ ⊆ T ∗. Now recall from
Lemma 1.1.1(ii) that T ∗∗ = T . Therefore, T ∗ = T .

(iii) From (i) we know that e ∈ T . Thus, T = Te ⊆ TT . From (ii) we obtain
TT = T ∗T ⊆ T . Thus, TT = T . �

Lemma 1.2.2 Let T and U be closed subsets of S. Then {TsU | s ∈ S} is a
partition of S.

Proof. Let p and q be elements in S such that p ∈ TqU . From p ∈ TqU
we obtain TpU ⊆ TqU ; cf. Lemma 1.2.1(iii). Thus, it suffices to show that
q ∈ TpU .

Since p ∈ TqU , there exist elements t in T and u in U such that p ∈ tqu.
From p ∈ tqu we obtain an element r in qu such that p ∈ tr.
From r ∈ qu we obtain r∗ ∈ u∗q∗; cf. Lemma 1.1.4(ii). From p ∈ tr we obtain
t ∈ pr∗; cf. H3. Thus, t ∈ pu∗q∗, and from this, we obtain similarly q∗ ∈ up∗t.
Thus, by Lemma 1.1.4(ii),

q ∈ t∗pu∗ ⊆ TpU ;

cf. Lemma 1.2.1(ii). �

For each nonempty subset R of S, we set

S/R := {sR | s ∈ S}.

The following lemma gives a sufficient and necessary condition for a subset of
S to be closed.
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Lemma 1.2.3 Let R be a subset of S with e ∈ R. Then R is closed if and
only if S/R is a partition of S.

Proof. If R is closed, S/R is a partition by Lemma 1.2.2. (Set T = {e} and
U = R in that lemma.)

Conversely, assume that S/R is a partition of S, and let r be an element in R.
Then, by Lemma 1.1.1(i), e ∈ r∗r ⊆ r∗R. On the other hand, we are assuming
that e ∈ R. Thus, as S/R is assumed to be a partition of S, r∗R = R. Thus,
as r has been chosen arbitrarily in R, we have shown that R is closed. �

Lemma 1.2.4 Let T and U be closed subsets of S. Then TU is closed if and
only if TU = UT .

Proof. Assume first that TU is closed. Then, by Lemma 1.2.1(ii), (TU)∗ =
TU . Since T and U are assumed to be closed, we also have T ∗ = T and
U∗ = U . Thus, by Lemma 1.1.4(ii),

TU = (TU)∗ = U∗T ∗ = UT.

Conversely, assume that TU = UT . Then, referring once more to Lemma
1.1.4(ii),

(TU)∗TU = U∗T ∗TU ⊆ U∗TU = U∗UT ⊆ UT = TU.

Therefore, TU is closed. �

Lemma 1.2.5 Let T and U be closed subsets of S. Then we have T ∩U = {e}
if and only if, for each element s in TU , there exist uniquely determined
elements t in T and u in U such that s ∈ tu.

Proof. Assume first that T ∩U = {e}, and let s be an element in TU . Then,
by definition, there exist elements t in T and u in U such that s ∈ tu.

Let t′ be an element in T and u′ an element in U such that s ∈ t′u′. We have
to show that t′ = t and u′ = u.

Since s ∈ tu ∩ t′u′, t∗t′ ∩ uu′∗ is not empty; cf. Lemma 1.1.4(iii). Since T
is assumed to be closed, t∗t′ ⊆ T . Similarly, as U is assumed to be closed,
uu′∗ ⊆ U . It follows that

t∗t′ ∩ uu′∗ ⊆ T ∩ U = {e}.

Therefore, e ∈ t∗t′ and e ∈ uu′∗. Thus, by Lemma 1.1.4(i), t′ = t and u′ = u.

Conversely, let s be an element in T ∩ U . Then s ∈ TU and, by Lemma
1.1.1(iii), es = {s} = se. Thus, as e ∈ T ∩ U , s = e. �

The following lemma is a very specific case of a general observation due to
Richard Dedekind; cf. [2; Theorem VIII].
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Lemma 1.2.6 Let P and Q be nonempty subsets of S, and let T be a closed
subset of S. Then we have the following.

(i) If P ⊆ T , T ∩ PQ = P (T ∩Q).

(ii) If Q ⊆ T , T ∩ PQ = (T ∩ P )Q.

Proof. (i) We first show that T ∩ PQ ⊆ P (T ∩ Q). Let t be an element in
T ∩ PQ. From t ∈ PQ we obtain elements p in P and q in Q with t ∈ pq.
Thus, by H3, p ∈ tq∗ and then q∗ ∈ t∗p. Now recall that T is assumed to be
closed. Thus, as t ∈ T and p ∈ P ⊆ T , t∗p ⊆ T . It follows that q∗ ∈ T , and
then q ∈ T . Thus, as t ∈ pq, t ∈ P (T ∩Q).

Conversely, as T is assumed to be closed, P ⊆ T yields P (T ∩ Q) ⊆ T ; cf.
Lemma 1.2.1(iii). Thus, as P (T ∩Q) ⊆ PQ, P (T ∩Q) ⊆ T ∩ PQ.

(ii) Setting P = Q∗ and Q = P ∗ in (i) we obtain T ∩ Q∗P ∗ = Q∗(T ∩ P ∗).
Thus, the claim follows from Lemma 1.1.4(ii). �

Corollary 1.2.7 Let P and Q be nonempty subsets of S, let T be a closed
subset of S, and assume that PT and QT are closed. Then

(P ∩QT )(Q ∩ PT ) = PQ ∩QT ∩ PT.

Proof. Since T is assumed to be closed, we have e ∈ T ; cf. Lemma 1.2.1(i).
Thus, P ⊆ PT . Thus, as PT is assumed to be closed, Lemma 1.2.6(i) yields

PT ∩ (P ∩QT )Q = (P ∩QT )(PT ∩Q).

From e ∈ T we also obtain Q ⊆ QT . Thus, as QT is assumed to be closed,
Lemma 1.2.6(ii) yields

QT ∩ PQ = (QT ∩ P )Q.

The desired equation follows easily from the last two equations. �

Corollary 1.2.8 Let P and Q be nonempty subsets of S, let T be a closed
subset of S, and assume that Q ⊆ T . Then we have the following.

(i) If T ⊆ QPQ, Q(T ∩ P )Q = T .

(ii) If P ∪Q = PQ ∩QP , (T ∩ P ) ∪Q = (T ∩ P )Q ∩Q(T ∩ P ).

Proof. (i) Since we are assuming that Q ⊆ T , we obtain from Lemma 1.2.6
that

Q(T ∩ P )Q = (T ∩QP )Q = T ∩QPQ.
Thus, if T ⊆ QPQ, Q(T ∩ P )Q = T .

(ii) We are assuming that Q ⊆ T . Thus, (T ∩ P ) ∪Q = T ∩ (P ∪Q). On the
other hand, we know from Lemma 1.2.6 that

PQ ∩ T ∩QP = (T ∩ P )Q ∩Q(T ∩ P ).

Thus, if P ∪Q = PQ ∩QP , (T ∩ P ) ∪Q = (T ∩ P )Q ∩Q(T ∩ P ). �
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1.3 Normalizer, strong normalizer, and centralizer

Let P and Q be subsets of S, and assume that Q is not empty. We set

NP (Q) := {p ∈ P | Qp ⊆ pQ}

and call this set the normalizer of Q in P .

Lemma 1.3.1 Let T be a closed subset of S. Then the following hold.

(i) We have e ∈ NS(T ).

(ii) We have TNS(T ) ⊆ NS(T ).

(iii) Let s be an element in NS(T ) with s∗ ∈ NS(T ). Then Ts = sT .

Proof. (i) This follows immediately from the definition of NS(T ).

(ii) Let s be an element in TNS(T ). Then there exists an element r in NS(T )
such that s ∈ Tr. Thus, by Lemma 1.2.2, Tr = Ts.

Since r ∈ NS(T ), Tr ⊆ rT . Thus, as s ∈ Tr, s ∈ rT . Thus, by Lemma 1.2.3,
rT = sT . From Tr = Ts and Tr ⊆ rT we now obtain Ts ⊆ sT . Thus, by
definition, s ∈ NS(T ).

(iii) We are assuming that s∗ ∈ NS(T ). Thus, by definition, Ts∗ ⊆ s∗T . Thus,
by Lemma 1.1.4(ii), sT ⊆ Ts. Since s has been chosen from NS(T ), we have
Ts ⊆ sT , too. �

In general, NS(T ) is not closed if T is a closed subset of S.

Lemma 1.3.2 Let T and U be closed subsets of S. Then the following hold.

(i) Assume that T ⊆ NS(U). Then TU is closed.

(ii) Assume that T ⊆ NS(U). Then TU ⊆ NS(U).

(iii) We have NS(T ) ∩NS(U) ⊆ NS(TU).

(iv) We have NT (U) ⊆ NT (T ∩ U).

Proof. (i) Considering Lemma 1.2.4 this is a consequence of Lemma 1.3.1(iii).

(ii) From (i) we know that TU is closed. Thus, by Lemma 1.2.4, TU = UT .
From Lemma 1.3.1(ii) we obtain UT ⊆ UNS(U) ⊆ NS(U). Thus, TU ⊆
NS(U).

(iii) For each element s in NS(T ) ∩NS(U), we have

TUs ⊆ TsU ⊆ sTU.

Thus, s ∈ NS(TU).

(iv) Let t be an element in NT (U). Then, by definition, Ut ⊆ tU . Thus, by
Lemma 1.2.6(i),
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(T ∩ U)t ⊆ T ∩ Ut ⊆ T ∩ tU = t(T ∩ U).

Thus, by definition, t ∈ NT (T ∩ U). �

Let P and Q be subsets of S, and assume Q to be not empty. We set

KP (Q) := {p ∈ P | p∗Qp ⊆ Q}

and call this set the strong normalizer of Q in P .

For each nonempty subset R of S, we obviously have e ∈ KS(R). From Lemma
1.2.1(iii) we also obtain that T ⊆ KS(T ) for each closed subset T of S.

Lemma 1.3.3 For each nonempty subset R of S, we have KS(R) ⊆ NS(R).

Proof. Let s be an element in KS(R). Then, by definition, s∗Rs ⊆ R. Thus,
as e ∈ ss∗, Rs ⊆ ss∗Rs ⊆ sR. It follows that Rs ⊆ sR, and that means that
s ∈ NS(R). �

Lemma 1.3.4 Let T and U be closed subsets of S. Then the following hold.

(i) We have KS(T ) ∩KS(U) ⊆ KS(T ∩ U).

(ii) Assume that T ⊆ NS(U). Then KS(T ) ∩NS(U) ⊆ KS(TU).

(iii) Assume that T ⊆ U . Then KS(T ) ∩NS(U) ⊆ KS(U).

Proof. (i) Let s be an element in KS(T ) ∩KS(U). Then

s∗(T ∩ U)s ⊆ s∗Ts ∩ s∗Us ⊆ T ∩ U.

Thus, s ∈ KS(T ∩ U).

(ii) Let s be an element in KS(T ) ∩NS(U). Then

s∗TUs ⊆ s∗TsU ⊆ TU.

Thus, s ∈ KS(TU).

(iii) From Lemma 1.3.1(i), (ii) we obtain U ⊆ NS(U). Thus, the claim follows
from (ii). �

Let T and U be closed subsets of S, and assume that T ⊆ U . The closed
subset T is said to be a normal closed subset of U if U ⊆ NS(T ). In this case,
we say that T is normal in U . The closed subset T is said to be a strongly
normal closed subset of U if U ⊆ KS(T ). In this case, the set T is called
strongly normal in U .

Lemma 1.3.3 implies that, if a closed subset T of S is strongly normal in a
closed subset U of S, then T is normal in U .

Lemma 1.3.5 Let T and U be closed subsets of S, and assume that T
is strongly normal in U . Let V be a closed subset of S, and assume that
U ⊆ NS(V ). Then TV is strongly normal in UV .
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Proof. We are assuming that U ⊆ NS(V ). Thus, by Lemma 1.3.2(i), UV is
closed. Similarly, we obtain from T ⊆ U ⊆ NS(V ) that TV is closed.

In order to show that TV is strongly normal in UV , we pick an element s in
UV . We shall see that s∗TV s ⊆ TV .

Since s ∈ UV , there exist elements u in U and v in V such that s ∈ uv. From
u ∈ U and U ⊆ NS(V ) we obtain u ∈ NS(V ), and that means V u ⊆ uV . From
u ∈ U and U ⊆ KS(T ) we obtain u ∈ KS(T ), and that means u∗Tu ⊆ T .
Thus,

s∗TV s ⊆ v∗u∗TV uv ⊆ v∗u∗TuV v ⊆ v∗TV v ⊆ TV.

(Recall that, by Lemma 1.1.4(ii), s∗ ∈ v∗u∗. Note also that v ∈ TV .) �

Lemma 1.3.6 Let R be a nonempty subset of S, and let p and q be elements
in KS(R). Then pq ⊆ KS(R).

Proof. Let s be an element in pq. Then,

s∗Rs ⊆ q∗p∗Rpq ⊆ q∗Rq ⊆ R.

Thus, s ∈ KS(R). �

From Lemma 1.1.1(i) we know that e ∈ s∗s for each element s in S. An
element s in S is called thin if s∗s = {e}.
For each subset R of S, we define Oϑ(R) to be the set of all thin elements in
R. The set Oϑ(R) is called the thin radical of R.

Lemma 1.3.7 The following statements hold.

(i) We have Oϑ(S) = KS({e}).
(ii) For any two elements p and q in Oϑ(S), we have pq ⊆ Oϑ(S).

Proof. (i) Let s be an element in S. Then s ∈ Oϑ(S) if and only if s∗s = {e}
if and only if s ∈ KS({e}).
(ii) From (i) we know that Oϑ(S) = KS({e}). Thus, our claim is a consequence
of Lemma 1.3.6. �

Lemma 1.3.8 Let s be an element in S and t be an element in Oϑ(S). Then
|st| = 1.

Proof. Let r be an element in st. Then, by H3, s ∈ rt∗. Thus,

st ⊆ rt∗t = re = {r}.

(Recall that t is assumed to be thin.) �

Let R be a subset of S, and let s be an element in S. We set
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CR(s) := {r ∈ R | sr = rs}

and call this set the centralizer of s in R.

Let P and Q be subsets of S, and assume that Q is not empty. We define
CP (Q) to be the intersection of the sets CP (q) with q ∈ Q. The set CP (Q) is
called the centralizer of Q in P .

Note that we have CP (Q) ⊆ NP (Q) for any two nonempty subsets P and Q
of S.

Lemma 1.3.9 Let T and U be closed subsets of S, and assume that T ⊆
NS(U), U ⊆ NS(T ), and T ∩ U = {e}. Then T ⊆ CS(U).

Proof. Let t be an element in T , let u be an element in U , and let s be an
element in tu. Since the hypotheses of the lemma are symmetric in T and U ,
we shall be done if we succeed in showing that s ∈ ut.
From s ∈ tu (together with the hypothesis that U ⊆ NS(T )) we obtain s ∈ uT .
Thus, T possesses an element p such that s ∈ up.
From s ∈ up (together with the hypothesis that T ⊆ NS(U)) we obtain
s ∈ pU . Thus, U possesses an element q such that s ∈ pq. Thus, as s ∈ tu,
Lemma 1.2.5 yields t = p. Thus, as s ∈ up, s ∈ ut. �

1.4 Hypergroups of order 6

It is the purpose of this section to show by an example how similar hypergroup
theory can be to group theory; cf. Corollary 1.4.6. The letter T will stand for
a closed subset of S.

Lemma 1.4.1 Let p be an element in S with pT ⊆ Tp, and let q be an
element in Tp such that q∗T = qT . Then q ∈ pT .

Proof. From q ∈ Tp we obtain q∗ ∈ p∗T ; cf. Lemma 1.1.4(ii) and Lemma
1.2.1(ii). Thus, by Lemma 1.2.3, p∗ ∈ q∗T . Thus, as q∗T = qT , q ∈ Tp, and
pT ⊆ Tp,

p∗ ∈ qT ⊆ TpT = Tp = Tq.

It follows that p ∈ q∗T = qT , so that q ∈ pT . �

Recall that NS(T ) is defined to be the set of all elements s in S such that
Ts ⊆ sT .

Lemma 1.4.2 Let s be an element in S such that sT = {s} and s∗T = {s∗}.
Then s ∈ NS(T ).
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Proof. From our hypothesis s∗T = {s∗} we obtain Ts = {s}; cf. Lemma
1.1.4(ii). On the other hand, we are assuming that sT = {s}. Thus, Ts = sT ,
and that implies that s ∈ NS(T ). �

Lemma 1.4.3 Let s be an element in S such that (sT )∗ ∈ S/T . Then
s ∈ NS(T ).

Proof. We are assuming that (sT )∗ ∈ S/T . Thus, as s∗ ∈ (sT )∗, (sT )∗ = s∗T ;
cf. Lemma 1.2.3. Thus, by Lemma 1.1.4(ii), Ts = sT . �

Recall that the closed subset T is called normal in S if NS(T ) = S. The
following two results give sufficient conditions for T to be normal in S.

An element s in S is called symmetric if s∗ = s.

Lemma 1.4.4 Assume that |S \ T | = |S/T | and that S \ T possesses exactly
|S \ T | − 2 symmetric elements. Then T is normal in S.

Proof. We are assuming that |S \ T | = |S/T |. Thus, S/T \ {T} possesses
exactly one element of cardinality 2, all other elements of S/T \{T} consist of
a single element. Let p and q be the two elements in the uniquely determined
element of S/T \ {T} of cardinality 2.

If {p, q}∗ = {p, q}, we are done by Lemma 1.4.3. Thus, we shall be done if we
succeed in showing that {p, q}∗ 6= {p, q} leads to a contradiction.

If {p, q}∗ 6= {p, q}, we must have p∗ /∈ {p, q} or q∗ /∈ {p, q}. Without loss of
generality, we assume that p∗ /∈ {p, q}.
Since {p, q} is the only element in S/T \{T} that has more than one element,
p∗ /∈ {p, q} forces p∗T = {p∗}. Thus, p∗T ⊆ Tp∗.
We are assuming that S \T has exactly |S \T |−2 symmetric elements. Thus,
as p∗ 6= p 6= q, we must have q∗ = q. Thus, q∗T = qT and, since q ∈ pT ,
q ∈ Tp∗; cf. Lemma 1.1.4(ii).

From p∗T ⊆ Tp∗, q ∈ Tp∗, and q∗T = qT we obtain q ∈ p∗T ; cf. Lemma
1.4.1. Thus, as p∗T = {p∗}, q = p∗, contradiction. �

Theorem 1.4.5 Assume that |S \ T | ≤ 3. Then T is normal in S.

Proof. If |S/T | = 1, T = S, and we are done. If |S/T | = 2, we have Ts =
S \ T = sT for each element s in S \ T . Thus, T is normal also in this case.

Assume that 3 ≤ |S/T |. Then as |S/T | ≤ |S \ T | + 1 ≤ 4, we must have
|S/T | = |S \T | = 3 or |S/T | = |S \T |+ 1. In the former case, we are done by
Lemma 1.4.3 and by Lemma 1.4.4. In the latter case, we are done by Lemma
1.4.2. �

Corollary 1.4.6 Assume that |S| = 6 and that T is not normal in S. Then
|T | = 2.
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Proof. This follows immediately from Theorem 1.4.5. �

1.5 Conjugates of closed subsets

Let R be a nonempty subset of S, and let s be an element of S. We define

Rs := {r ∈ S | sr ⊆ Rs}.

Note that sRs ⊆ Rs.

Lemma 1.5.1 Let s be an element in S, and let R be a nonempty subset of
S. Then the following hold.

(i) We have Rs ⊆ s∗Rs.
(ii) If e ∈ R, e ∈ Rs.

(iii) Let P and Q be nonempty subsets of S such that PQ ⊆ R. Then we
have P sQs ⊆ Rs.

Proof. (i) From e ∈ s∗s and sRs ⊆ Rs we obtain

Rs ⊆ s∗sRs ⊆ s∗Rs.

(ii) Assume that e ∈ R. Then, by Lemma 1.1.1(iii), se = {s} = es ⊆ Rs. It
follows that e ∈ Rs.
(iii) Let r be an element in P sQs. Then there exist elements t in P s and u in
Qs such that r ∈ tu. Since t ∈ P s, st ⊆ Ps. Since u ∈ Qs, su ⊆ Qs. Thus, as
we are assuming that PQ ⊆ R,

sr ⊆ stu ⊆ Psu ⊆ PQs ⊆ Rs,

so that sr ⊆ Rs. Thus, by definition, r ∈ Rs. �

Lemma 1.5.2 Let p and q be elements in S, and let R be a subset of S such
that e ∈ R, RR ⊆ R, and Rp = Rq. Then Rp = Rq.

Proof. Let s be an element in Rp. Then, by definition, ps ⊆ Rp.
From e ∈ R we obtain q ∈ Rq. Thus, as Rp = Rq, q ∈ Rp. It follows that
qs ⊆ Rps.
From qs ⊆ Rps and ps ⊆ Rp we obtain qs ⊆ RRp. Thus, as we are assuming
RR ⊆ R, we obtain qs ⊆ Rp. Since we are assuming that Rp = Rq, this
implies qs ⊆ Rq. Thus, s ∈ Rq.
So far, we have seen that Rp ⊆ Rq. The proof for Rq ⊆ Rp is similar. �

Lemma 1.5.3 Let s be an element in S, and let T be a closed subset of S.
Then s∗ ∈ NS(T ) if and only if T ⊆ T s.
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Proof. By definition, we have s∗ ∈ NS(T ) if and only if Ts∗ ⊆ s∗T . Accord-
ing to Lemma 1.1.4(ii), Ts∗ ⊆ s∗T is equivalent to sT ⊆ Ts, and this means
that T ⊆ T s. �

Lemma 1.5.4 Let s be an element in S, and let T be a closed subset of S
such that ss∗ ⊆ T . Then the following hold.

(i) We have T s = s∗Ts.

(ii) The set s∗Ts is closed.

(iii) We have KS(s∗Ts) = s∗KS(T )s.

Proof. (i) From Lemma 1.5.1(i) we know that T s ⊆ s∗Ts. Conversely, as-
suming ss∗ ⊆ T we also have ss∗Ts ⊆ Ts, so that, by definition, s∗Ts ⊆ T s.
(ii) Assuming ss∗ ⊆ T we have

(s∗Ts)∗s∗Ts = s∗Tss∗Ts = s∗Ts;

cf. Lemma 1.1.4(ii) and Lemma 1.2.1(iii). Thus, s∗Ts is closed.

(iii) Let q be an element in s∗KS(T )s. Then KS(T ) possesses an element p
such that q ∈ s∗ps. Thus, as ss∗ ⊆ T is assumed, we obtain from p ∈ KS(T )
that

q∗s∗Tsq ⊆ s∗p∗ss∗Tss∗ps ⊆ s∗p∗Tps ⊆ s∗Ts.

It follows that q ∈ KS(s∗Ts).

Since q has been chosen arbitrarily in s∗KS(T )s, we, thus, have shown that

s∗KS(T )s ⊆ KS(s∗Ts).

Let q be an element in KS(s∗Ts). Then, as ss∗ ⊆ T is assumed,

sq∗s∗Tsqs∗ ⊆ ss∗Tss∗ = T.

Thus proves that sqs∗ ⊆ KS(T ), whence q ∈ s∗sqs∗s ⊆ s∗KS(T )s.

Since q has been chosen arbitrarily in KS(s∗Ts), we, thus, have shown that

KS(s∗Ts) ⊆ s∗KS(T )s.

This finishes the proof. �

Lemma 1.5.5 Let T and V be closed subsets of S, and set U := KV (T ).
Assume that T ⊆ V and that U is closed. Then we have the following.

(i) Let p and q be elements in V such that Up = Uq. Then pp∗ ⊆ T if
and only if qq∗ ⊆ T .

(ii) The number of sets s∗Ts with s ∈ V and ss∗ ⊆ T is equal to the
number of sets Us with s ∈ V and ss∗ ⊆ T .
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Proof. (i) Since we are assuming that Up = Uq, there exists an element u in
U such that p ∈ uq. Thus, q ∈ u∗p. Thus, assuming that pp∗ ⊆ T , we obtain

qq∗ ⊆ u∗pp∗u ⊆ u∗Tu ⊆ T.

Similarly, one obtains pp∗ ⊆ T from qq∗ ⊆ T .

(ii) Let p and q be elements in V , and assume first that p∗Tp ⊆ q∗Tq and
qq∗ ⊆ T . Then, qp∗Tpq∗ ⊆ qq∗Tqq∗ ⊆ T . It follows that pq∗ ⊆ U . Thus,
p ∈ Uq. Thus, by Lemma 1.2.2, Up = Uq.

Assume now that Up = Uq. Then U possesses an element u such that p ∈ uq.
It follows that

p∗Tp ⊆ q∗u∗Tuq ⊆ q∗Tq.

Similarly, one shows that q∗Tq ⊆ p∗Tp, so that p∗Tp = q∗Tq. �

Lemma 1.5.6 Let T and U be closed subsets of S such that T ∩ U = {e}.
Let t be an element in T , and let u be an element in U . Then the following
hold.

(i) Assume that |tu| = 1. Then |u∗tu ∩ T | ≤ 1.

(ii) If U ⊆ NS(T ), 1 ≤ |u∗tu ∩ T |.

Proof. (i) Let p and q be elements in u∗tu∩T . We have to show that p = q.

We are assuming that tu contains exactly one element. Let us call this element
s. From p ∈ u∗tu and tu = {s} we obtain p ∈ u∗s. Thus, s ∈ up. Similarly, we
obtain s ∈ uq, so that s ∈ up ∩ uq.
Since s ∈ up ∩ uq, u∗u ∩ pq∗ is not empty; cf. Lemma 1.1.4(iii). Thus, as
u∗u ∩ pq∗ ⊆ T ∩ U = {e}, u∗u ∩ pq∗ = {e}. It follows that e ∈ pq∗, so that,
according to Lemma 1.1.4(i), p = q.

(ii) Let s be an element in tu, and assume that U ⊆ NS(T ). Then s ∈ uT .
Thus, T possesses an element r such that s ∈ ur. It follows that r ∈ u∗s ⊆
u∗tu. Thus, as r ∈ T , r ∈ u∗tu ∩ T . �

Lemma 1.5.7 Let p and q be elements in S such that |pq| = 1, and let T be
a closed subset of S such that q ∈ p∗Tp. Then q ∈ T p.

Proof. We are assuming that q ∈ p∗Tp. Thus, p∗T possesses an element r
such that q ∈ rp. It follows that p ∈ r∗q ⊆ Tpq; cf. Lemma 1.1.4(ii). Thus,
p ∈ Tpq. Now recall that we are assuming that |pq| = 1. Thus, pq ⊆ Tp. Thus,
by definition, q ∈ T p. �

Corollary 1.5.8 Let s be an element in S, and let T and U be closed subsets
of S. Assume that, for each element u in s∗Ts ∩U , |su| = 1. Then T s ∩U =
s∗Ts ∩ U .
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Proof. We are assuming |su| = 1 for each element u in s∗Ts ∩ U . Thus,
by Lemma 1.5.7, s∗Ts ∩ U ⊆ T s, so that the desired equation follows from
Lemma 1.5.1(i). �

Corollary 1.5.9 Let s be an element in S, and assume that |sr| = 1 for each
element r in s∗s. Then the following hold.

(i) We have {e}s = s∗s.

(ii) The set s∗s is closed.

Proof. (i) Apply Corollary 1.5.8 to {e} and S in place of T and U .

(ii) From (i) we obtain ss∗s = {s}. Thus, s∗ss∗s = s∗s, and that means that
s∗s is closed. �

Let s be an element in S. For each subset R of S, we define DR(s) to be the
set of all elements r in R such that r∗r ⊆ s∗s.

Lemma 1.5.10 Let s be an element in S, and assume that |sr| = 1 for each
element r in s∗s. Let T be a closed subset of S with T ⊆ DS(s∗). Assume that
T ⊆ T s and that |st| = 1 for each element t in T . Then T ⊆ KS(s∗s).

Proof. Let t be an element in T . We have to show that t ∈ KS(s∗s).

Since t ∈ T , |st| = 1. On the other hand, we are assuming that T ⊆ T s. Thus,
as t ∈ T , t ∈ T s, and that means that st ⊆ Ts.
Since |st| = 1 and st ⊆ Ts, there exists an element r in T such that st ⊆ rs.
From st ⊆ rs we obtain

t∗s∗st ⊆ s∗r∗rs.

From r ∈ T and T ⊆ DS(s∗) we obtain r ∈ DS(s∗). Thus, r∗r ⊆ ss∗. From
Corollary 1.5.9(ii) we also know that s∗s is closed. Thus,

t∗s∗st ⊆ s∗r∗rs ⊆ s∗ss∗s ⊆ s∗s.

This means that t ∈ KS(s∗s). �

1.6 Generating sets

Throughout this section, the letter R stands for a subset of S.

We define 〈R〉 to be the intersection of the closed subsets of S which contain
R as a subset.

Note that 〈R〉 is closed. The set 〈R〉 is said to be generated by R. It is also
called the span of R.

If R possesses an element r with R = {r}, we shall write 〈r〉 instead of 〈R〉.
Similarly, we write 〈p, q〉 instead of 〈R〉 if p and q are elements in R with
R = {p, q}.
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For the remainder of this section, we assume R to be not empty.

We set R0 := {e} and define inductively Rn := Rn−1R for each positive
integer n.

Lemma 1.6.1 The set 〈R〉 is equal to the union of the sets (R∗ ∪ R)n with
n a nonnegative integer.

Proof. Set P := R∗ ∪R and define Q to be the union of the sets Pn with n
a nonnegative integer. We have to show that 〈R〉 = Q.

Since P ∗ = P , (Pn)∗ = Pn for each nonnegative integer n; cf. Lemma 1.1.4(ii).
Thus, for any two nonnegative integers l and m,

(P l)∗Pm = P lPm = P l+m ⊆ Q.

It follows that Q is closed. Thus, as R ⊆ Q, 〈R〉 ⊆ Q.

Conversely, for each non-negative integer n, we have

Pn ⊆ 〈P 〉n ⊆ 〈P 〉 = 〈R〉.

Therefore, Q ⊆ 〈R〉. �

From Lemma 1.6.1 we obtain that, for each element s in 〈R〉, there exists a
nonnegative integer n such that s ∈ (R∗ ∪R)n. The smallest of these integers
is called the R-length of s or simply the length of s and will be denoted by
`R(s).

Since the subset R is fixed within this section, we shall write ` instead of `R
for the remainder of this section.

Lemma 1.6.2 Let s be an element in 〈R〉 \ {e}. Then there exist elements q
in 〈R〉 and r in R∗ ∪R such that s ∈ qr and `(s) = `(q) + 1.

Proof. We set n := `(s). Then, by definition, s ∈ (R∗ ∪ R)n. On the other
hand, we are assuming that s 6= e. Therefore, 1 ≤ n. From s ∈ (R∗ ∪R)n and
1 ≤ n we obtain elements q in (R∗ ∪R)n−1 and r in R∗ ∪R such that s ∈ qr.
From q ∈ (R∗ ∪ R)n−1 we obtain `(q) ≤ n− 1. From n = `(s) and s ∈ qr we
obtain n ≤ `(q) + 1. �

Lemma 1.6.3 Let p, q, and r be elements in 〈R〉 satisfying r ∈ pq and
`(r) = `(p) + `(q). Let t and u be elements in 〈R〉 satisfying q ∈ tu and `(q) =
`(t)+`(u). Then, pt possesses an element s such that r ∈ su, `(s) = `(p)+`(t),
and `(r) = `(s) + `(u).

Proof. Since r ∈ pq and q ∈ tu, r ∈ ptu. Thus, pt possesses an element s
such that r ∈ su.

Since s ∈ pt, `(s) ≤ `(p) + `(t). Since r ∈ su, `(r) ≤ `(s) + `(u). Thus, as we
are assuming that `(r) = `(p) + `(q) and that `(q) = `(t) + `(u), we conclude
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that
`(r) ≤ `(s) + `(u) ≤ `(p) + `(t) + `(u) = `(r).

It follows that `(s) = `(p) + `(t) and `(r) = `(s) + `(u). �

Lemma 1.6.4 Let s be an element in S, and assume that R∗ = R. Then the
following hold.

(i) Assume that Rs ⊆ s〈R〉. Then s ∈ NS(〈R〉).

(ii) We have 〈Rs〉 ⊆ 〈R〉s.

Proof. (i) Define Q to be the set of all elements q in 〈R〉 with qs 6⊆ s〈R〉. By
way of contradiction, we assume that Q is not empty. We fix an element q in
Q such that `(q) is as small as possible.

Since s ∈ s〈R〉, q 6= e. Thus, by Lemma 1.6.2, there exist elements p in 〈R〉
and r in R such that q ∈ pr and `(q) = `(p) + 1. Since `(p) = `(q)− 1, p /∈ Q.
Thus, as p ∈ 〈R〉, ps ⊆ s〈R〉. Thus, as rs ⊆ s〈R〉 (by hypothesis),

qs ⊆ prs ⊆ ps〈R〉 ⊆ s〈R〉,

contradiction.

(ii) Define Q to be the set of all elements q in 〈Rs〉 with sq 6⊆ 〈R〉s. By way of
contradiction, we assume that Q is not empty. We fix an element q in Q such
that `(q) is as small as possible.

Since s ∈ 〈R〉s, q 6= e. Thus, by Lemma 1.6.2, there exist elements p in 〈Rs〉
and r in Rs such that q ∈ pr and `(q) = `(p) + 1. Since `(p) = `(q)−1, p /∈ Q.
Thus, as p ∈ 〈Rs〉, sp ⊆ 〈R〉s.
On the other hand, as r ∈ Rs, sr ⊆ Rs. Thus,

sq ⊆ spr ⊆ 〈R〉sr ⊆ 〈R〉Rs = 〈R〉s,

contradiction. �

Lemma 1.6.5 Let s be an element in S, and assume that s∗Rs ⊆ 〈R〉. Then
s ∈ KS(〈R〉).

Proof. Define Q to be the set of all elements q in 〈R〉 with s∗qs 6⊆ 〈R〉. By
way of contradiction, we assume that Q is not empty. We fix an element q in
Q such that `(q) is as small as possible.

We are assuming that s∗Rs ⊆ 〈R〉. Thus,

s∗s ⊆ s∗Rss∗R∗s ⊆ 〈R〉.

This shows that e /∈ Q. Thus, as q ∈ Q, q 6= e. Thus, by Lemma 1.6.2, there
exist elements p in 〈R〉 and r in R∗ ∪R such that q ∈ pr and `(q) = `(p) + 1.
Since `(p) = `(q)− 1, p /∈ Q. Thus, as p ∈ 〈R〉, s∗ps ⊆ 〈R〉.
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We are assuming that s∗Rs ⊆ 〈R〉. Thus, as 〈R〉 is closed, s∗R∗s = (s∗Rs)∗ ⊆
〈R〉; cf. Lemma 1.1.4(ii). Thus, no matter whether r ∈ R or r ∈ R∗, we have
s∗rs ⊆ 〈R〉.
From s∗ps ⊆ 〈R〉 and s∗rs ⊆ 〈R〉 we now obtain

s∗qs ⊆ s∗prs ⊆ s∗pss∗rs ⊆ 〈R〉,

contradiction. �

Subsets of S are called thin if all of their elements are thin.

Lemma 1.6.6 The following hold.

(i) The set R∗ ∪R is thin if and only 〈R〉 is thin.

(ii) If R∗ = R, 〈Oϑ(R)〉 ⊆ Oϑ(〈R〉).

Proof. (i) Since R∗ ∪R ⊆ 〈R〉, R∗ ∪R is thin if 〈R〉 is thin.

Assume now that R∗ ∪ R is thin and that 〈R〉 is not thin. Assuming 〈R〉
not to be thin we find an element s in 〈R〉 such that s is not thin. Among
the non-thin elements of 〈R〉 we fix s in such a way that `(s) is as small as
possible.

Since s is not thin, s 6= e. Thus, by Lemma 1.6.2, there exist elements q in 〈R〉
and r in R∗ ∪ R such that s ∈ qr and `(s) = `(q) + 1. Since `(q) = `(s) − 1,
the minimal choice of s forces q to be thin. Since r ∈ R∗ ∪ R and R∗ ∪ R is
assumed to be thin, r is thin. Thus, as s ∈ qr, Lemma 1.3.7(ii) forces s to be
thin, contradiction.

(ii) Set Q := Oϑ(R). Then Q ⊆ Oϑ(〈R〉). Thus, for each non-negative integer
n, Qn ⊆ Oϑ(〈R〉); cf. Lemma 1.3.7(ii). It follows that 〈Q〉 ⊆ Oϑ(〈R〉); cf.
Lemma 1.6.1. �

1.7 The thin residue

In this section, the letter T stands for a closed subset of S.

We define Oϑ(T ) to be the intersection of all strongly normal closed subsets
of T and call it the thin residue of T .

Note that Oϑ(T ) is closed.

Theorem 1.7.1 The following statements hold.

(i) The set Oϑ(T ) is strongly normal in T .

(ii) Let R denote the union of the sets t∗t with t ∈ T . Then Oϑ(T ) = 〈R〉.
(iii) For each closed subset U of S with T ⊆ U , we have Oϑ(T ) ⊆ Oϑ(U).

Proof. (i) This follows from Lemma 1.3.4(i).



18 1 Basic Facts

(ii) Let p and q be elements in T . We first prove q∗p∗pq ⊆ 〈R〉.
Let t be an element in pq. Then p ∈ tq∗, whence

t∗pq ⊆ t∗tq∗q ⊆ RR ⊆ 〈R〉.

Since t has been chosen arbitrarily in pq, this yields q∗p∗pq ⊆ 〈R〉.
Since p and q have been chosen arbitrarily in T , we have shown t∗Rt ⊆ 〈R〉
for each element t in T . Thus, by Lemma 1.6.5, 〈R〉 is strongly normal in T .
Thus, by definition, Oϑ(T ) ⊆ 〈R〉.
In order to show that 〈R〉 ⊆ Oϑ(T ) it suffices to show that R ⊆ Oϑ(T ). (This
is because Oϑ(T ) is closed.)

Let t be an element in T . Then, as e ∈ Oϑ(T ), t∗t ⊆ t∗Oϑ(T )t. On the
other hand, we know from (i) that Oϑ(T ) is strongly normal in T , so that
t∗Oϑ(T )t ⊆ Oϑ(T ). Thus, t∗t ⊆ Oϑ(T ). Since t has been chosen arbitrarily in
T , we have shown that R ⊆ Oϑ(T ).

(iii) This is an immediate consequence of (ii). �

Lemma 1.7.2 Let U be a closed subset of S such that T ⊆ NS(U). Then we
have Oϑ(T )U = Oϑ(TU)U .

Proof. From Theorem 1.7.1(iii) we know that Oϑ(T ) ⊆ Oϑ(TU), and from
this we obtain Oϑ(T )U ⊆ Oϑ(TU)U .

By Theorem 1.7.1(i), Oϑ(T ) is strongly normal in T . Moreover, we are as-
suming that T ⊆ NS(U). Thus, by Lemma 1.3.5, Oϑ(T )U is strongly normal
in TU . Thus, by definition of Oϑ(TU), Oϑ(TU) ⊆ Oϑ(T )U . Thus, as U is
closed, Oϑ(TU)U ⊆ Oϑ(T )U . �

Lemma 1.7.3 Let U be a closed subset of S. Assume that TU is closed
and that Oϑ(U) ⊆ T . Then Oϑ(TU) is the intersection of all strongly normal
closed subsets of T which contain Oϑ(U).

Proof. Define V to be the set of all strongly normal closed subsets of T which
contain Oϑ(U) and W to be the intersection of all elements of V. We have to
show that Oϑ(TU) = W .

We first show that Oϑ(TU) ⊆ W . In order to do so we pick an element s in
TU and an element V in V. Since TU is assumed to be closed, TU = UT ; cf.
Lemma 1.2.4. Thus, as s ∈ TU , s ∈ UT . Thus, there exist elements t in T and
u in U such that s ∈ ut. Since u ∈ U , u∗u ⊆ Oϑ(U); cf. Theorem 1.7.1(ii).
Since V ∈ V, t∗V t ⊆ V and Oϑ(U) ⊆ V . Thus,

s∗s ⊆ t∗u∗ut ⊆ t∗Oϑ(U)t ⊆ V.

Now, as s has been chosen arbitrarily in TU , we conclude that Oϑ(TU) ⊆ V ;
cf. Theorem 1.7.1(ii). But also V has been chosen arbitrarily in V. Therefore,
we have shown that Oϑ(TU) ⊆W .
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Let us now prove that, conversely, W ⊆ Oϑ(TU).

From Oϑ(TU) ⊆ W and W ⊆ T we obtain Oϑ(TU) ⊆ T . In particular,
Oϑ(TU) is strongly normal in T . On the other hand, we know from Theorem
1.7.1(iii) that Oϑ(U) ⊆ Oϑ(TU). Thus, Oϑ(TU) ∈ V, so that, by definition,
W ⊆ Oϑ(TU). �

Recall that subsets of S are called thin if all of their elements are thin.

Corollary 1.7.4 Let U be a thin closed subset of S, and assume that TU is
closed. Then we have Oϑ(T ) = Oϑ(TU).

Proof. Since U is assumed to be thin, Oϑ(U) = {e}; cf. Lemma 1.7.1(ii).
Thus, the claim follows from Lemma 1.7.3. �

We set (Oϑ)0(T ) := T . For each positive integer n, we inductively define

(Oϑ)n(T ) := Oϑ((Oϑ)n−1(T )).

Note that (Oϑ)n(T ) is closed for each non-negative integer n. Note also that,
for each positive integer n, (Oϑ)n(T ) is a strongly normal closed subset of
(Oϑ)n−1(T ).

Here is a generalization of Theorem 1.7.1(iii).

Lemma 1.7.5 Let n be a non-negative integer, and let U be a closed subset
of S such that T ⊆ U . Then (Oϑ)n(T ) ⊆ (Oϑ)n(U).

Proof. Our lemma is certainly true if n = 0. By induction, we may assume
that (Oϑ)n−1(T ) ⊆ (Oϑ)n−1(U). Then, by Theorem 1.7.1(iii),

(Oϑ)n(T ) = Oϑ((Oϑ)n−1(T )) ⊆ Oϑ((Oϑ)n−1(U)) = (Oϑ)n(U),

and that proves the lemma. �

The second part of the following lemma generalizes Lemma 1.7.2.

Lemma 1.7.6 Let n be a non-negative integer, and let U be a closed subset
of S such that T ⊆ NS(U). Then the following hold.

(i) We have (Oϑ)n(TU)U ⊆ NS(U).

(ii) We have (Oϑ)n(T )U = (Oϑ)n(TU)U .

(iii) If Oϑ(TU)U = TU , (Oϑ)n(TU)U = TU .

Proof. (i) We are assuming that T ⊆ NS(U). Thus, by Lemma 1.3.2(ii),
TU ⊆ NS(U). In particular, (Oϑ)n(TU) ⊆ NS(U).

Now recall that (Oϑ)n(TU) is closed. Thus, a second application of Lemma
1.3.2(ii) yields (Oϑ)n(TU)U ⊆ NS(U).
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(ii) There is nothing to show if n = 0. Therefore, we assume that 1 ≤ n.

By induction, we may assume that

(Oϑ)n−1(T )U = (Oϑ)n−1(TU)U.

Thus, by Theorem 1.7.1(iii),

Oϑ((Oϑ)n−1(T )U)U = Oϑ((Oϑ)n−1(TU)U)U.

On the other hand, applying Lemma 1.7.2 to (Oϑ)n−1(T ) in place of T , we
obtain

(Oϑ)n(T )U = Oϑ((Oϑ)n−1(T ))U = Oϑ((Oϑ)n−1(T )U)U.

Moreover, by (i), (Oϑ)n−1(TU) ⊆ NS(U). Thus, applying Lemma 1.7.2 to
(Oϑ)n−1(TU) in place of T , we obtain

(Oϑ)n(TU)U = Oϑ((Oϑ)n−1(TU))U = Oϑ((Oϑ)n−1(TU)U)U.

Thus, we have (Oϑ)n(T )U = (Oϑ)n(TU)U .

(iii) By (i), (Oϑ)n−1(TU) ⊆ NS(U). Thus, by Lemma 1.7.2,

Oϑ((Oϑ)n−1(TU))U = Oϑ((Oϑ)n−1(TU)U)U.

On the other hand, we are assuming that Oϑ(TU)U = TU , and, by induction,
we may assume (Oϑ)n−1(TU)U = TU . Thus,

Oϑ((Oϑ)n−1(TU)U)U = TU.

Thus, as Oϑ((Oϑ)n−1(TU)) = (Oϑ)n(TU), (Oϑ)n(TU)U = TU . �



2

Involutions

In this chapter, we shall look at involutions of hypergroups. We start with
two basic observations on involutions. After that, our focus will be on closed
subsets generated by involutions.

There are three conditions on closed subsets generated by involutions which
we shall investigate, the condition of being constrained, the exchange condi-
tion, and dichotomy. We shall first see that the exchange condition implies
dichotomy. After that, our focus will be on constrained sets of involutions that
satisfy the exchange condition.

Constrained sets of involutions that satisfy the exchange condition will be
called Coxeter sets. These sets will be the subject of Chapter 3.

As before, the letter S stands for a hypergroup in this chapter.

2.1 Basic Facts

An element s in S \ {e} is called an involution if {e, s} is closed.

Note that the element in T \ {e} in Corollary 1.4.6 is an involution.

Lemma 2.1.1 Let l be an involution of S. Then the following hold.

(i) We have l∗ = l.

(ii) If l is not thin, ll = {e, l}.

Proof. (i) Since l is assumed to be an involution, l 6= e and {e, l} is closed.
Since {e, l} is closed, l ∈ {e, l} implies l∗ ∈ {e, l}; cf. Lemma 1.2.1(ii). Thus,
as l∗ 6= e, l∗ = l.

(ii) From Lemma 1.1.1(i) we know that e ∈ l∗l. Now assume that l is not
thin. Then, by definition, l∗l 6= {e}. On the other hand, as {e, l} is closed,
l∗l ⊆ {e, l}. Thus, l∗l = {e, l}. Thus, by (i), ll = {e, l}. �
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At several instances we shall refer to Lemma 2.1.1(i) without further mention.

Lemma 2.1.2 Let p and q be elements in S such that p 6= q, and let l be an
involution of S such that pl = {q}. Then the following hold.

(i) If l is thin, ql = {p}.
(ii) If l is not thin, ql = {p, q}.

Proof. (i) Assume that l is thin. Then |ql| = 1; cf. Lemma 1.3.8. On the other
hand, we are assuming that q ∈ pl. Thus, by H3, p ∈ ql.
(ii) We are assuming that pl = {q}. Thus,

ql = pll = p{e, l} = {p} ∪ pl = {p, q};

cf. Lemma 2.1.1(ii) for the second equation. �

2.2 Sets of involutions

In this section, the letter L stands for a nonempty set of involutions of S.

We set P0(L) := {e}. For each positive integer n, we define Pn(L) to be the
union of all sets l1 · · · ln where l1, . . ., ln are elements in L satisfying li−1 6= li
for each element i in {2, . . . , n}.
Note that P1(L) = L.

We set U0(L) := {e}. For each positive integer n, we define Un(L) to be the
union of the sets Pi(L) with i ∈ {0, . . . , n}.
It is clear that Un−1(L) ⊆ Un(L) for each positive integer n.

Lemma 2.2.1 Let L be a set of involutions of S, and let n be a nonnegative
integer. Then Ln ⊆ Un(L).

Proof. The statement is obviously true if n = 0 and for n = 1. Thus, we
assume that 2 ≤ n.

Let l1, . . ., ln be elements in L. We have to show that l1 · · · ln ⊆ Un(L).

If li−1 6= li for each element i in {2, . . . , n}, we have

l1 · · · ln ⊆ Pn(L) ⊆ Un(L)

and we are done. If {2, . . . , n} possesses an element i with li−1 = li, we have

l1 · · · ln ⊆ l1 · · · li−2li · · · ln ∪ l1 · · · li−1li · · · ln ⊆ Ln−2 ∪ Ln−1;

cf. Lemma 2.1.1(ii). On the other hand, by induction,

Ln−2 ⊆ Un−2(L) and Ln−1 ⊆ Un−1(L).
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Thus, the claim follows from Un−2(L) ⊆ Un(L) and Un−1(L) ⊆ Un(L). �

For the remainder of this section, we write ` instead of `L.

Recall from Lemma 2.1.1(i) that l∗ = l for each involution of S. In particular,
we have `(s∗) = `(s) for each element s in 〈L〉.

Lemma 2.2.2 Let s be an element in 〈L〉, and set n := `(s). Then s ∈ Pn(L).

Proof. Since P0(L) = {e}, the statement is true if n = 0. Thus, we assume
that 1 ≤ n.

Since `(s) = n, s ∈ Ln. Thus, by Lemma 2.2.1, s ∈ Un(L), so that s ∈ Pi(L)
for some element i in {1, . . . , n}. From s ∈ Pi(L) we obtain n = `(s) ≤ i.
From i ≤ n and n ≤ i we obtain i = n. Thus, as s ∈ Pi(L), s ∈ Pn(L). �

It is obvious that
`(r) ≤ `(p) + `(q)

for any three elements p, q, and r in 〈L〉 with r ∈ pq. We now shall look at
elements p, q, and r satisfying `(r) ≤ `(p) + `(q).

For each element q in 〈L〉, we define L1(q) to be the set of all elements p in
〈L〉 such that pq contains an element r satisfying `(r) = `(p) + `(q).

For each element q in 〈L〉, we define L−1(q) to be the set of all elements
r in 〈L〉 such that there exists an element p in 〈L〉 satisfying r ∈ pq and
`(r) = `(p) + `(q).

Lemma 2.2.3 For any two elements p and q in 〈L〉, we have the following.

(i) If p ∈ L1(q), q∗ ∈ L1(p∗).

(ii) If L−1(p) ∩ L1(q) is not empty, p ∈ L1(q).

(iii) If q ∈ L−1(p), L−1(q) ⊆ L−1(p).

(iv) If q ∈ L−1(p), L1(q∗) ⊆ L1(p∗).

Proof. (i) This follows from `(p∗) = `(p) and `(q∗) = `(q).

(ii) Let r be an element in L−1(p) ∩ L1(q). From r ∈ L−1(p) we obtain an
element t in 〈L〉 such that r ∈ tp and `(r) = `(t) + `(p). Since r ∈ L1(q),
rq possesses an element s such that `(s) = `(r) + `(q). Thus, by Lemma
1.6.3, pq possesses an element u such that s ∈ tu, `(u) = `(p) + `(q), and
`(s) = `(t) + `(u).

From u ∈ pq and `(u) = `(p) + `(q) we obtain p ∈ L1(q).

(iii) Assume that q ∈ L−1(p) and fix an element s in L−1(q). We shall show
that s ∈ L−1(p).

Since s ∈ L−1(q), 〈L〉 possesses an element u such that s ∈ uq and `(s) =
`(u) + `(q). Since we are assuming that q ∈ L−1(p), 〈L〉 possesses an element
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t such that q ∈ tp and `(q) = `(t) + `(p). Now, by Lemma 1.6.3, ut possesses
an element r such that s ∈ rp, `(r) = `(u) + `(t), and `(s) = `(r) + `(p).

From s ∈ rp and `(s) = `(r) + `(p) we obtain s ∈ L−1(p).

(iv) Assume that q ∈ L−1(p) and fix an element s in L1(q∗). We shall show
that s ∈ L1(p∗).

Since s ∈ L1(q∗), q ∈ L1(s∗); cf. (i). Thus, as we are assuming that q ∈ L−1(p),
p ∈ L1(s∗); cf. (ii). Thus, by (i), s ∈ L1(p∗). �

For each subset R of 〈L〉, we define L1(R) to be the intersection of the sets
L1(r) with r ∈ R.1

Lemma 2.2.4 Let q be an element in 〈L〉, let p be an element in L1(q), and
let r be an element in L1(pq). Then rp ∩ L1(q) is not empty.

Proof. Since p ∈ L1(q), pq possesses an element u such that `(u) = `(p)+`(q).

Since r ∈ L1(pq) and u ∈ pq, r ∈ L1(u). Thus, ru possesses an element t such
that `(t) = `(r) + `(u). Thus, by Lemma 1.6.3, rp possesses an element s such
that t ∈ sq and `(t) = `(s)+`(q). From t ∈ sq and `(t) = `(s)+`(q) we obtain
s ∈ L1(q). �

Lemma 2.2.5 Let K be a subset of L, and assume that 〈L〉 = L−1(k)∪L1(k)
for each element k in K. Then 〈L〉 = L1(K)〈K〉.

Proof. Assume, by way of contradiction, that 〈L〉 6= L1(K)〈K〉. Among the
elements in 〈L〉 \ L1(K)〈K〉 we fix s such that `(s) is as small as possible.

Since s /∈ L1(K)〈K〉, s /∈ L1(K). Thus, by definition, K possesses an element
k such that s /∈ L1(k). Thus, as s ∈ 〈L〉, our hypothesis implies s ∈ L−1(k).
Thus, 〈L〉 possesses an element r such that s ∈ rk and `(s) = `(r) + 1.

Since `(s) = `(r) + 1, the (minimal) choice of s yields r ∈ L1(K)〈K〉. Thus,
as s ∈ rk and k ∈ K, s ∈ L1(K)〈K〉, contradiction. �

2.3 Pairs of involutions

The results in this section will be needed in Section 6.4 in order to show how
Coxeter sets are related to free monoids. This fact in turn is needed in order
to show that Coxeter schemes and buildings (in the sense of Tits) are the
same thing.

In this section, the letters h and k will stand for involutions of S.

Let n be a positive integer, and assume (for a moment) that h 6= k.

We define Rn(h, k) to be the set l1 · · · ln where li = h if i is an odd and li = k
if i is an even element in {1, . . . , n}.
1 Our convention is that L1(R) = 〈L〉 if R is empty.
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Note that Pn({h, k}) = Rn(h, k) ∪Rn(k, h).

Lemma 2.3.1 Assume that h 6= k, and let i and j be positive integers such
that i ≤ j − 1 and Ri(h, k) ∩ Rj(h, k) is not empty. Then there exists an
element n in {j − i, . . . , j + i− 1} such that e ∈ Rn(h, k) or e ∈ Rn(k, h).

Proof. Let s be an element in Ri(h, k) ∩Rj(h, k). Then, as e ∈ s∗s,

e ∈ Rj(h, k)∗Ri(h, k) = Rj−1(k, h)∗Ri−1(k, h) ∪Rj−1(k, h)∗hRi−1(k, h);

cf. Lemma 2.1.1(ii).

Note that
Rj−1(k, h)∗hRi−1(k, h) = Ri+j−1(h, k)

or
Rj−1(k, h)∗hRi−1(k, h) = Ri+j−1(k, h).

Thus, we are done if e ∈ Rj−1(k, h)∗hRi−1(k, h).

If e ∈ Rj−1(k, h)∗Ri−1(k, h), then there exist elements p in Ri−1(k, h) and q
in Rj−1(k, h) such that e ∈ q∗p. From e ∈ q∗p we obtain p = q; cf. Lemma
1.1.4(i). Thus, Ri−1(k, h)∩Rj−1(k, h) is not empty. Thus, by induction, there
exists an element n in {j − i, . . . , j + i − 3} such that e ∈ Rn(h, k) or e ∈
Rn(k, h). �

We define C(h, k) to be the set of all positive integers n such that e ∈ (hk)n

and set

c(h, k) :=

{
min(C(h, k)) if C(h, k) 6= ∅,

∞ if C(h, k) = ∅.

We call c(h, k) the Coxeter number of h and k.

From Lemma 2.1.1(i) one obtains that c(h, k) = 1 if h = k. Note also that
c(h, k) = c(k, h).

For the remainder of this section, we assume that h 6= k.

Lemma 2.3.2 Assume that C(h, k) is not empty. Then 2c(h, k) is the smallest
positive integer n which satisfies e ∈ Rn(h, k).

Proof. The definition of c(h, k) yields e ∈ (hk)c(h,k) = R2c(h,k)(h, k).

Among the positive integers n with e ∈ Rn(h, k) we chose n as small as
possible. We shall be done if we succeed in showing that 2c(h, k) ≤ n.

Assume first that n is odd. We shall see that this leads to a contradiction.

If n is odd, there exists a positive integer i such that n = 2i + 1. From
e ∈ Rn(h, k) and n = 2i+ 1 we obtain e ∈ (hk)ih. Thus, h ∈ (kh)i. It follows
that h ∈ (kh)i−1kh ∩ eh. Thus, by Lemma 1.1.4(iii), (kh)i−1k ∩ hh is not
empty. Thus, as hh ⊆ {e, h},
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e ∈ (kh)i−1k or h ∈ (kh)i−1k.

In the second case, we obtain e ∈ (hk)i = R2i(h, k) = Rn−1(h, k), contrary to
the choice of n.

Assume that e ∈ (kh)i−1k. Then, as before,

e ∈ (hk)i−2h or k ∈ (hk)i−2h.

In the first case, we obtain e ∈ R2i−3(h, k) = Rn−4(h, k), contradiction. In the
second case, we obtain e ∈ (hk)i−1 = R2i−2(h, k) = Rn−3(h, k), contradiction.

Assume now that n is even. Then there exists a positive integer i such that
n = 2i. From n = 2i we obtain Rn(h, k) = (hk)i. Thus, as e ∈ Rn(h, k),
e ∈ (hk)i. Thus, the definition of c(h, k) yields, c(h, k) ≤ i. It follows that
2c(h, k) ≤ 2i = n. �

Lemma 2.3.3 Assume that C(h, k) is not empty. Set L := {h, k}, let n
be an element in {1, . . . , c(h, k)}, and let s be an element in Rn(h, k). Then
`L(s) = n.

Proof. Set ` := `L and i := `(s). We have to show that i = n.

From `(s) = i we obtain

s ∈ Pi({h, k}) = Ri(h, k) ∪Ri(k, h);

cf. Lemma 2.2.2. On the other hand, we are assuming s ∈ Rn(h, k). Thus,
i ≤ n and

s ∈ Ri(h, k) ∩Rn(h, k) or s ∈ Ri(k, h) ∩Rn(h, k).

Assume first that s ∈ Ri(h, k)∩Rn(h, k). If i ≤ n− 1, there exists an element
m in {n− i, . . . , n+ i− 1} such that e ∈ Rm(h, k) or e ∈ Rm(k, h); cf. Lemma
2.3.1. Thus, as i ≤ n ≤ c(h, k),

1 ≤ m ≤ n+ i− 1 ≤ 2c(h, k)− 1,

contrary to Lemma 2.3.2. Thus, we must have i = n in this case.

Assume now that s ∈ Ri(k, h) ∩ Rn(h, k). Then e ∈ Rn+i(h, k) or e ∈
Rn+i(k, h). Thus, by Lemma 2.3.2, 2c(h, k) ≤ n+ i. Thus, as i ≤ n ≤ c(h, k),
i = n. �

Lemma 2.3.4 Assume that C(h, k) is not empty, and set n := c(h, k). Then
Rn(h, k) ∩Rn(k, h) is not empty.

Proof. We are assuming that C(h, k) is not empty. Thus, as n = c(h, k),

e ∈ (hk)n = Rn(h, k)Rn(k, h)∗.
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Thus, there exist elements p in Rn(h, k) and q in Rn(k, h) such that e ∈ pq∗.
Thus, by Lemma 1.1.4(i), p = q. It follows that p ∈ Rn(h, k) ∩Rn(k, h). �

For the remainder of this section, we set L := {h, k} and ` := `L.

Lemma 2.3.5 The set C(h, k) is empty if and only if L−1(L) is empty.

Proof. Assume first that C(h, k) is not empty, and set n := c(h, k). Then,
by Lemma 2.3.4, Rn(h, k) ∩ Rn(k, h) is not empty. Let s be an element in
Rn(h, k) ∩Rn(k, h).

Since s ∈ Rn(h, k), `(s) = n; cf. Lemma 2.3.3.

From s ∈ Rn(h, k) we obtain an element p in Rn−1(h, k) such that s ∈ ph if
n is odd and s ∈ pk if n is even. From p ∈ Rn−1(h, k) we obtain `(p) = n− 1;
cf. Lemma 2.3.3.

Similarly, as s ∈ Rn(k, h) we obtain an element q in Rn−1(k, h) such that
`(q) = n− 1, s ∈ qk if n is odd, and s ∈ qh if n is even.

It follows that s ∈ L−1(L).

Assume now, conversely, that L−1(L) is not empty, fix an element s in L−1(L),
and set n := `(s).

Since s ∈ L−1(h), 〈L〉 possesses an element p such that s ∈ ph and `(s) =
`(p) + 1. From `(s) = `(p) + 1 and `(s) = n we obtain `(p) = n− 1. Thus, by
Lemma 2.2.2, p ∈ Rn−1(h, k) or p ∈ Rn−1(k, h). Note that p ∈ Rn−1(h, k) if
n is odd and p ∈ Rn−1(k, h) if n is even.

Similarly, 〈L〉 possesses an element q such that s ∈ qk, `(q) = n − 1, q ∈
Rn−1(k, h) if n is odd, and q ∈ Rn−1(h, k) if n is even. Thus,

e ∈ s∗s ⊆ hp∗qk ⊆ R2n(h, k) = (hk)n.

It follows that n ∈ C(h, k). �

Proposition 2.3.6 Assume that L−1(L) is not empty, and chose s in L−1(L)
such that `(s) is as small as possible. Then `(s) = c(h, k).

Proof. We set n := `(s) and shall be done if we succeed in showing that
n = c(h, k).

The definition of c(h, k) yields e ∈ (hk)c(h,k). Thus, there exist elements p in
Rc(h,k)(h, k) and q in Rc(h,k)(k, h)∗ such that e ∈ pq∗. It follows that p = q.
Thus,

p ∈ Rc(h,k)(h, k) ∩Rc(h,k)(k, h).

From this we obtain `(p) = c(h, k) and p ∈ L−1(L). Thus, the choice of s
forces n ≤ c(h, k).

Since s ∈ L−1(h), there exists an element p in 〈L〉 such that s ∈ ph and
`(s) = `(p) + 1. It follows that p ∈ L1(h).
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From `(s) = `(p) + 1 and `(s) = n we obtain `(p) = n − 1. Thus, by Lemma
2.2.2, p ∈ Rn−1(h, k) or p ∈ Rn−1(k, h). Since p ∈ L1(h), we must have
p ∈ Rn−1(h, k) if n is odd and p ∈ Rn−1(k, h) if n is even.

Similarly, 〈L〉 possesses an element q such that s ∈ qk, `(s) = `(p) + 1,
q ∈ Rn−1(k, h) if n is odd and q ∈ Rn−1(h, k) if n is even. Thus, we have

e ∈ s∗s ⊆ hp∗qk ⊆ Rn(h, k)∗Rn(k, h) = R2n(h, k) = (hk)n

in both cases. It follows that c(h, k) ≤ n. �

2.4 Constrained sets of involutions

A nonempty set L of involutions of S is said to be constrained if |pq| = 1 for
any two elements q in 〈L〉 and p in L1(q).

For the remainder of this section, the letter L stands for a constrained set of
involutions of S, and we write ` instead of `L.

Lemma 2.4.1 For any two elements q and r in 〈L〉, there exists at most one
element p in 〈L〉 such that r ∈ pq and `(r) = `(p) + `(q).

Proof. We fix an element r in 〈L〉 and define Q to be the set of all elements
q in 〈L〉 such that there exist elements p and p′ in 〈L〉 with r ∈ pq, r ∈ p′q,
`(r) = `(p) + `(q), `(p′) = `(p), and p′ 6= p.

By way of contradiction, we assume that Q is not empty. We pick an element
q in Q, and we do this in such a way that `(q) is as small as possible.

Note that e /∈ Q. Thus, as q ∈ Q, q 6= e. Thus, by Lemma 1.6.2, there exist
elements l in L and u in 〈L〉 such that q ∈ lu and `(q) = 1 + `(u). Thus, as
r ∈ pq and `(r) = `(p) + `(q), pl possesses an element t such that r ∈ tu,
`(t) = `(p) + 1, and `(r) = `(t) + `(u); cf. Lemma 1.6.3.

Similarly, we find an element t′ in p′l such that r ∈ t′u, `(t′) = `(p′) + 1, and
`(r) = `(t′) + `(u).

Since `(q) = 1 + `(u), the (minimal) choice of q yields u /∈ Q. Thus, as r ∈ tu,
r ∈ t′u, `(r) = `(t) + `(u), and `(t′) = `(t), we may conclude that t′ = t.

Recall that L is assumed to be constrained. Thus, as t ∈ pl and `(t) = `(p)+1,
we have pl = {t}. Similarly, p′l = {t′}. Thus, as t′ = t, p′l = pl. It follows that
p′ ∈ {p, t}.
Since t′ = t and `(t′) = `(p′) + 1, p′ 6= t. Thus, p′ = p, contradiction. �

In the remainder of this section, we investigate the set Oϑ(L). (Recall that L
is assumed to be constrained.)

Lemma 2.4.2 Let R be a subset of 〈L〉. Assume that Oϑ(L) ⊆ R, R2 ⊆ R,
and r∗r ⊆ R for each element r in R. Then R ⊆ 〈L ∩R〉.
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Proof. Set K := L ∩R. We have to show that R ⊆ 〈K〉.
Suppose, by way of contradiction, that R 6⊆ 〈K〉. We pick an element r in
R \ 〈K〉, and we do this in such a way that `(r) is as small as possible.

Since r /∈ 〈K〉, r 6= e. Thus, by Lemma 1.6.2, there exist elements q in 〈L〉
and l in L such that r ∈ ql and `(r) = `(q) + 1. Since L is assumed to be
constrained, we obtain from r ∈ ql and `(r) = `(q) + 1 that ql = {r}.
Let us first prove that l ∈ R. If l is thin, this follows from our hypothesis that
Oϑ(L) ⊆ R. Assume that l is not thin. Then, by Lemma 2.1.1, l ∈ l∗l. Thus,
as e ∈ q∗q and ql = {r}, l ∈ l∗q∗ql = r∗r. Thus, as we are assuming r∗r ⊆ R,
l ∈ R.

Since r ∈ ql, q ∈ rl. Thus, as r ∈ R and l ∈ R, q ∈ R2. Thus, as we are
assuming that R2 ⊆ R, we obtain q ∈ R.

Recall that `(r) = `(q) + 1. Thus, the (minimal) choice of r yields q /∈ R \
〈K〉. Thus, as q ∈ R, q ∈ 〈K〉. Thus, as r ∈ ql and l ∈ K, r ∈ 〈K〉. This
contradiction finishes the proof. �

Corollary 2.4.3 Let T be a closed subset of 〈L〉, and assume that Oϑ(L) ⊆ T .
Then 〈L ∩ T 〉 = T .

Proof. Since T is assumed to be closed, we have 〈L∩ T 〉 ⊆ T . From Lemma
2.4.2 we obtain T ⊆ 〈L ∩ T 〉. Thus, 〈L ∩ T 〉 = T . �

Corollary 2.4.4 The following statements hold.

(i) We have 〈Oϑ(L)〉 = Oϑ(〈L〉).

(ii) The set 〈L〉 is thin if and only if L is thin.

(iii) The set Oϑ(L) is empty if and only if Oϑ(〈L〉) = {e}.

Proof. (i) From Lemma 1.3.7(ii) we know that Oϑ(〈L〉)2 ⊆ Oϑ(〈L〉). More-
over, for each element s in Oϑ(〈L〉), we have s∗s = {e} ⊆ Oϑ(〈L〉). Thus, by
Lemma 2.4.2,

Oϑ(〈L〉) ⊆ 〈Oϑ(L)〉.

Since Oϑ(L) ⊆ Oϑ(〈L〉), we obtain from Oϑ(〈L〉) ⊆ 〈Oϑ(L)〉 that we shall be
done if we succeed in showing that Oϑ(〈L〉) is closed.

In order to show that Oϑ(〈L〉) is closed we fix elements p and q in Oϑ(〈L〉).
We have to show that p∗q ∈ Oϑ(〈L〉).
From p ∈ Oϑ(〈L〉) and Oϑ(〈L〉) ⊆ 〈Oϑ(L)〉 we obtain p ∈ 〈Oϑ(L)〉. Thus, by
Lemma 1.6.1, p ∈ Oϑ(L)n for some positive integer n. Thus, Oϑ(L) possesses
elements l1, . . ., ln such that p ∈ l1 · · · ln. Thus, by Lemma 2.1.1(i), p∗ ∈
ln · · · l1. Thus, by Lemma 1.3.7(ii), p∗ is thin. Thus, as p∗ ∈ 〈L〉, p∗ ∈ Oϑ(〈L〉).
From p∗ ∈ Oϑ(〈L〉) and q ∈ Oϑ(〈L〉) we obtain p∗q ⊆ Oϑ(〈L〉); cf. Lemma
1.3.7(ii).
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(ii) If 〈L〉 is thin, so is L. Conversely, assume that L is thin. Then Oϑ(L) = L.
Thus, by (i), 〈L〉 = Oϑ(〈L〉), and that means that 〈L〉 is thin.

(iii) This is an immediate consequence of (i). �

As a consequence of Corollary 2.4.4(i) one obtains that Oϑ(〈L〉) is a closed
subset of S. (In general, Oϑ(T ) is not closed for closed subsets T of S.)

We finish this section with an observation on the case where |L| = 2.

Lemma 2.4.5 Assume L possesses elements h and k such that L = {h, k}
and C(h, k) 6= ∅. Then |Rn(h, k)| = 1 for each element n in {1, . . . , c(h, k)}.

Proof. Let n be an element in {1, . . . , c(h, k)}. The statement is obviously
true if n = 1. Thus, we assume that 2 ≤ n.

Let s be an element in Rn(h, k). We shall be done if we succeed in showing
that Rn(h, k) = {s}.
Since s ∈ Rn(h, k), s ∈ hRn−1(k, h). Thus, Rn−1(k, h) possesses an element
r such that s ∈ hr. By induction, |Rn−1(k, h)| = 1. Thus, as r ∈ Rn−1(k, h),
Rn−1(k, h) = {r}.
By Lemma 2.3.3, `(r) = n−1 and `(s) = n. Thus, `(s) = `(h)+ `(r). Thus, as
s ∈ hr, s ∈ L1(r). Thus, as L is assumed to be constrained, hr = {s}. Thus,
as Rn−1(k, h) = {r}, Rn(h, k) = {s}. �

2.5 Dichotomy and the exchange condition

Throughout this section, the letter L stands for a set of involutions of S. We
assume L to be not empty and write ` instead of `L.

The set L is called dichotomic if 〈L〉 = L−1(l)∪L1(l) for each element l in L.

For each subset R of 〈L〉, we define L−1(R) to be the intersection of the sets
L−1(r) with r ∈ R.2

Lemma 2.5.1 Assume L to be dichotomic, and let s be an element in 〈L〉
such that `(r) ≤ `(s) for each element r in 〈L〉. Then s ∈ L−1(L).

Proof. Let l be an element in L. Then s ∈ L−1(l) or s ∈ L1(l). If s ∈ L1(l),
sl possesses an element t such that `(t) = `(s) + 1, contrary to the choice of
s. Thus, s ∈ L−1(l).

Since l has been chosen arbitrarily in L, we have proved s ∈ L−1(L). �

The set L is said to satisfy the exchange condition if

hs ⊆ sk ∪ L1(k)

2 Again, our convention is that L−1(R) = 〈L〉 if R is empty.
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for any three elements k in L, s in L1(k), and h in L with h ∈ L1(s).3

Lemma 2.5.2 Assume that L satisfies the exchange condition. Then L is
dichotomic.

Proof. Let l be an element in L, and let s be an element in 〈L〉. We have to
show that s ∈ L−1(l) ∪ L1(l).

Since e ∈ L1(l), we may assume that s 6= e. Thus, by Lemma 1.6.2, there exist
elements k in L and r in 〈L〉 such that s ∈ kr and `(s) = 1 + `(r). It follows
that k ∈ L1(r) and s ∈ L−1(r).

Assume first that r ∈ L−1(l). Then L−1(r) ⊆ L−1(l); cf. Lemma 2.2.3(iii).
Thus, as s ∈ L−1(r), s ∈ L−1(l), and we are done.

Assume now r /∈ L−1(l). Then, by induction, r ∈ L1(l). Thus, as k ∈ L1(r)
and L is assumed to satisfy the exchange condition, kr ⊆ rl ∪L1(l). Thus, as
s ∈ kr, s ∈ rl∪L1(l). If s ∈ rl, we obtain from `(s) = `(r)+1 that s ∈ L−1(l).
Thus, s ∈ L−1(l) ∪ L1(l). �

Assume that L satisfies the exchange condition. Then, by Lemma 2.2.5 and
Lemma 2.5.2, 〈L〉 = L1(K)〈K〉 for each subset K of L. We do not explicitly
state this result here since we shall prove a stronger result in Corollary 3.1.7.

Lemma 2.5.3 Assume that L satisfies the exchange condition. Let l be an
element in L, let p be an element in L1(l), and let r be an element in L−1(p)∩
L−1(l). Then pl possesses an element q with `(q) = `(p) + 1 and r ∈ L−1(q).

Proof. Define R to be the set of all elements r in L−1(p) ∩ L−1(l) such
that r /∈ L−1(q) for each element q in pl with `(q) = `(p) + 1. By way of
contradiction, we assume that R is not empty. We fix an element r in R, and
we do this in such a way that `(r) is as small as possible.

Since r ∈ R, r ∈ L−1(p) and r ∈ L−1(l).

Since r ∈ L−1(p), 〈L〉 possesses an element u with r ∈ up and `(r) = `(u) +
`(p). Since r ∈ L−1(l) and p ∈ L1(l), r 6= p. From r ∈ up and r 6= p we
obtain u 6= e. Thus, there exist elements h in L and t in 〈L〉 such that u ∈ ht
and `(u) = 1 + `(t); cf. Lemma 1.6.2. Thus, by Lemma 1.6.3, tp possesses an
element s such that r ∈ hs, `(s) = `(t) + `(p), and `(r) = 1 + `(s).

Since `(r) = 1+`(s), the minimal choice of r yields s /∈ R. Moreover, as s ∈ tp
and `(s) = `(t) + `(p), s ∈ L−1(p).

Suppose that s ∈ L−1(l). Then, as s ∈ L−1(p) and s /∈ R, pl possesses an
element q such that `(q) = `(p) + 1 and s ∈ L−1(q). From s ∈ L−1(q) we
obtain L−1(s) ⊆ L−1(q); cf. Lemma 2.2.3(iii). On the other hand, as r ∈ hs
and `(r) = 1 + `(s), r ∈ L−1(s). Thus, r ∈ L−1(q), contrary to the choice of
r in R.

3 If hs ⊆ sk, we obtain immediately hs = sk, for symmetry reasons.
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This contradiction yields s /∈ L−1(l). Thus, by Lemma 2.5.2, s ∈ L1(l). Thus,
as h ∈ L1(s) and L is assumed to satisfy the exchange condition, hs ⊆ sl ∪
L1(l). Thus, as r ∈ hs, r ∈ sl∪L1(l). Thus, as r ∈ L−1(l), r ∈ sl ⊆ tpl. Thus,
pl possesses an element q such that r ∈ tq. It follows that

`(r) ≤ `(t) + `(q) ≤ `(t) + 1 + `(p) = `(u) + `(p) = `(r).

Thus, `(q) = `(p)+1 and `(r) = `(t)+ `(q). From r ∈ tq and `(r) = `(t)+ `(q)
we obtain r ∈ L−1(q), contrary to r ∈ R. �

A constrained set of involutions of S that satisfies the exchange condition is
called Coxeter set of S.

Lemma 2.5.4 Assume that L is a Coxeter set of S. Let h be an element
in L, let p be an element in 〈L〉, and let t be an element in hp such that
`(t) = 1 + `(p). Let k be an element in L, and let q be an element in 〈L〉, and
let u be an element in qk such that `(u) = `(q) + 1. Assume that t ∈ L1(q)
and p ∈ L1(u). Then we have tq = pu or t ∈ L1(u).

Proof. We are assuming that t ∈ L1(q). Thus, tq possesses an element s with
`(s) = `(t) + `(q). Thus, as t ∈ hp and `(t) = 1 + `(p), pq possesses an element
r such that s ∈ hr, `(r) = `(p) + `(q), and `(s) = 1 + `(r); cf. Lemma 1.6.3.

From r ∈ pq and `(r) = `(p) + `(q) we obtain pq = {r}. (Recall that L
is assumed to be constrained.) From s ∈ hr and `(s) = 1 + `(r) we obtain
h ∈ L1(r).

Similarly, using pq = {r}, we conclude from p ∈ L1(u) that r ∈ L1(k). Thus, as
L is assumed to satisfy the exchange condition, we have hr = rk or hr ⊆ L1(k).

If hr = rk, we obtain from hp = {t}, pq = {r}, and qk = {u} that tq = pu.

If hr ⊆ L1(k), we obtain from s ∈ hr that s ∈ L1(k). Thus, by definition, sk
possesses an element v such that `(v) = `(s) + 1. From v ∈ sk and

sk ⊆ hrk = hpqk = tu

we obtain v ∈ tu. From `(v) = `(s) + 1 and

`(s) + 1 = 1 + `(r) + 1 = 1 + `(p) + `(q) + 1 = `(t) + `(u)

we obtain `(v) = `(t) + `(u). Thus, by definition, t ∈ L1(u). �
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Coxeter sets

In this chapter, we compile basic facts about Coxeter sets of hypergroups.
Most of the results were proven earlier for schemes; cf. [9; Section 3.6], [9;
Section 11.1], [9; Section 11.2], [9; Section 11.4], [9; Section 12.1].

It is easy to see that closed subsets generated by thin Coxeter sets are the
same thing Coxeter groups. Our interest in a general investigation of Coxeter
sets is based on the observation that closed subsets generated by Coxeter sets
share many features with Coxeter groups; cf. Theorem 3.1.4, Theorem 3.1.5,
Theorem 3.1.8, and Section 3.3.

In Chapter 6 we shall see that Coxeter sets provide a conceptional framework
for the class of buildings.

Throughout this chapter, the letter S stands for a hypergroup, the letter L
for a Coxeter set of S. Instead of `L we write `.

3.1 Subsets of Coxeter sets I

In this section, the letter K stands for a nonempty subset of L.

Lemma 3.1.1 Let s be an element in 〈K〉. Then `K(s) = `(s).

Proof. Assume the claim to be false. Among the elements in 〈K〉 which do
not satisfy the equation in question we choose s in such a way that `K(s) is
as small as possible.

Since `K(s) 6= `(s), s 6= e. Thus, by Lemma 1.6.2, there exist elements h in K
and r in 〈K〉 such that s ∈ hr and `K(s) = 1 + `K(r).

Since `K(s) 6= `(s) and K ⊆ L, s /∈ K. Thus, as s ∈ hr and h ∈ K, r 6= e.
Thus, by Lemma 1.6.2, there exist elements p in 〈K〉 and k in K such that
r ∈ pk and `K(r) = `K(p)+1. Now, by Lemma 1.6.3, hp possesses an element
q such that s ∈ qk, `K(q) = 1 + `K(p), and `K(s) = `K(q) + 1.
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Since `K(s) = `K(q) + 1, the (minimal) choice of s yields `K(q) = `(q).
Similarly, as `K(s) = 1 + `K(r) and `K(r) = `K(p) + 1, `K(p) = `(p). Thus,
as q ∈ hp and `K(q) = 1 + `K(p), h ∈ L1(p).

Similarly, one obtains p ∈ L1(k). Thus, as L is assumed to satisfy the exchange
condition, we must have hp = pk or hp ⊆ L1(k).

Since s ∈ hpk, the first of these two cases yields s ∈ pkk ⊆ {p} ∪ pk, contrary
to `K(s) = `K(p) + 2. Since q ∈ hp, the second case yields q ∈ L1(k). Thus,
as s ∈ qk, `(s) = `(q) + 1. (Here we use the hypothesis that L is constrained.)
Thus, as `K(q) = `(q) and `K(s) = `K(q) + 1, `K(s) = `(s), contradiction. �

Lemma 3.1.2 Let s be an element in 〈K〉. Then K1(s) = 〈K〉 ∩ L1(s).

Proof. Let p be an element in K1(s). Then p ∈ 〈K〉 and, by definition, ps
contains an element q such that `K(q) = `K(p) + `K(s). Thus, by Lemma
3.1.1, `(q) = `(p) + `(s), and this means that p ∈ L1(s).

Let p be an element in 〈K〉 ∩ L1(s). Since p ∈ L1(s), there exists an element
q in ps such that `(q) = `(p) + `(s). From p, s ∈ 〈K〉 and q ∈ ps we obtain
q ∈ 〈K〉. From `(q) = `(p)+ `(s) we obtain `K(q) = `K(p)+ `K(s); cf. Lemma
3.1.1. It follows that p ∈ K1(s). �

Corollary 3.1.3 We have the following.

(i) The set K is a Coxeter set of S.

(ii) We have K = L ∩ 〈K〉.
(iii) Let H be a subset of L satisfying 〈H〉 = 〈K〉. Then H = K.

Proof. (i) This is an immediate consequence of Lemma 3.1.2.

(ii) Since K ⊆ L, K ⊆ L∩〈K〉. Thus, we just have to show that L∩〈K〉 ⊆ K.

Let l be an element in L ∩ 〈K〉. Since l ∈ L, `(l) = 1. Since l ∈ 〈K〉, `K(l) =
`(l); cf. Lemma 3.1.1. It follows that `K(l) = 1, and that means that l ∈ K.

(iii) From (ii) we obtain H = L ∩ 〈H〉 = L ∩ 〈K〉 = K. �

Considering Corollary 3.1.3(i) it might be worth mentioning that subsets of
constrained sets are not necessarily constrained.

Recall from Section 2.2 that, for each subset R of 〈L〉, L1(R) is our notation
for the intersection of the sets L1(r) with r ∈ R.

Theorem 3.1.4 We have L1(〈K〉) = L1(K).

Proof. Assume that L1(〈K〉) 6= L1(K). Then, as L1(〈K〉) ⊆ L1(K),
L1(K) 6⊆ L1(〈K〉). Among the elements in L1(K) which are not in L1(〈K〉)
we choose t such that `(t) is as small as possible.

Since t /∈ L1(〈K〉) and e ∈ L1(〈K〉), t 6= e. Thus, by Lemma 1.6.2, there exist
elements h in L and p in 〈L〉 such t ∈ hp and `(t) = 1 + `(p).
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Since t ∈ hp and `(t) = 1 + `(p), t ∈ L−1(p). Thus, as t ∈ L1(K), p ∈ L1(K);
cf. Lemma 2.2.3(ii). Thus, as `(t) = 1 + `(p), the (minimal) choice of t yields
p ∈ L1(〈K〉).
Since t /∈ L1(〈K〉), 〈K〉 possesses an element u such that t /∈ L1(u). Among
the elements u in 〈K〉 satisfying t /∈ L1(u) we choose u in such a way that
`(u) is as small as possible. Since t /∈ L1(u), u 6= e. Thus, by Lemma 1.6.2
together with Lemma 3.1.1, there exist elements q in 〈K〉 and k in K such
that u ∈ qk and `(u) = `(q) + 1.

Since `(u) = `(q) + 1 and q ∈ 〈K〉, the (minimal) choice of u yields t ∈ L1(q).
Since p ∈ L1(〈K〉) and u ∈ 〈K〉, p ∈ L1(u). Thus, by Lemma 2.5.4, tq = pu
or t ∈ L1(u). Thus, as t /∈ L1(u), tq = pu. Thus, as q, u ∈ 〈K〉, t ∈ p〈K〉; cf.
Lemma 1.2.2. Thus, 〈K〉 possesses an element s with t ∈ ps.
Since p ∈ L1(〈K〉) and s ∈ 〈K〉, p ∈ L1(s). Thus, as t ∈ ps, `(t) = `(p) + `(s).
(Here we use the hypothesis that L is constrained.) Since `(t) = 1 + `(p), this
means that `(s) = 1. Thus, by Lemma 3.1.1, s ∈ K. On the other hand, as
t ∈ ps and `(t) = `(p) + `(s), t ∈ L−1(s). Thus, t /∈ L1(K), contrary to our
choice of t. �

Theorem 3.1.5 We have L−1(〈K〉) = L−1(K).

Proof. Assume that L−1(〈K〉) 6= L−1(K). Then, as L−1(〈K〉) ⊆ L−1(K),
L−1(K) 6⊆ L−1(〈K〉). Thus, L−1(K) possesses an element s such that s /∈
L−1(〈K〉).
Since s /∈ L−1(〈K〉), there exists an element q in 〈K〉 such that s /∈ L−1(q).
We pick an element q in 〈K〉 with s /∈ L−1(q), and we do this in such a way
that `K(q) is as small as possible.

Since s /∈ L−1(q), q 6= e. Thus, Lemma 1.6.2 gives us elements p in 〈K〉 and
k in K such that q ∈ pk and `K(q) = `K(p) + 1. Now, the minimal choice of
q yields s ∈ L−1(p). Thus, as s ∈ L−1(K) ⊆ L−1(k), s ∈ L−1(q); cf. Lemma
2.5.3. This contradiction finishes our proof. �

Lemma 3.1.6 We have 〈K〉 ⊆ L1(〈L \K〉).

Proof. Let l be an element in L \K. Then, as L is assumed to satisfy the
exchange condition, l ∈ L1(K). Thus, by Theorem 3.1.4, l ∈ L1(〈K〉). Thus,
by Lemma 2.2.3(i), 〈K〉 ⊆ L1(l).

Since l has been chosen arbitrarily in L \ K, we have shown that 〈K〉 ⊆
L1(L \K). Thus, by Theorem 3.1.4, 〈K〉 ⊆ L1(〈L \K〉). �

The following lemma generalizes Lemma 2.2.5 for Coxeter sets.

Corollary 3.1.7 For each subset H of L, 〈H〉 = (〈H〉 ∩ L1(K))〈H ∩K〉.

Proof. From Lemma 3.1.6 we know that 〈H〉 ⊆ L1(K \H). Thus,
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〈H〉 ∩ L1(H ∩K) = 〈H〉 ∩ L1(K).

From Lemma 2.2.5 (together with Lemma 2.5.2) we obtain

〈H〉 = 〈H〉 ∩ L1(H ∩K)〈H ∩K〉,

and according to Lemma 1.2.6(ii), the right hand side of this equation is equal
to (〈H〉 ∩ L1(H ∩K))〈H ∩K〉. �

Recall that, for each element q in S, CS(q) is our notation for the set of all
elements s in S such that sq = qs. Recall also that, for each nonempty subset
Q in S, CS(Q) is our notation for the intersection of the sets CS(q) with
q ∈ Q.

Theorem 3.1.8 Assume that K 6= L. Then the following conditions are
equivalent.

(a) We have K ⊆ C〈L〉(L \K).

(b) We have 〈K〉 ⊆ C〈L〉(〈L \K〉).
(c) The closed subset 〈K〉 is normal in 〈L〉.

Proof. (a) ⇒ (b) Let p be an element in 〈K〉, and let q be an element in
〈L \K〉. We have to show that pq = qp.

If p = e or q = e, the claim is obvious. Thus, we may assume p 6= e and q 6= e.
From p 6= e we obtain elements t in 〈K〉 and h in K such that p ∈ th and
`(p) = `(t) + 1; cf. Lemma 1.6.2. Similarly, we obtain elements k in L \K and
u in 〈L \K〉 such that q ∈ ku and `(q) = 1 + `(u).

From p ∈ th and `(p) = `(t) + 1 we obtain {p} = th. From q ∈ ku and
`(q) = 1 + `(u) we obtain {q} = ku. We are assuming that hk = kh, and,
by induction, we may assume that tk = kt, that hu = uh, and that tu = ut.
Thus,

pq = thku = tkhu = ktuh = kuth = qp.

(b) ⇒ (c) Let s be an element in 〈L〉. We shall be done if we succeed in
showing that 〈K〉s ⊆ s〈K〉.
There is nothing to show if s = e. Therefore, we assume that s 6= e. From s 6= e
we obtain elements r in 〈L〉 and l in L such that s ∈ rl and `(s) = `(r) + 1;
cf. Lemma 1.6.2. From s ∈ rl and `(s) = `(r) + 1 we obtain r ∈ L1(l). Thus,
as L is assumed to be constrained, we conclude that rl = {s}.
By induction, we have 〈K〉r ⊆ r〈K〉, and from (b) we obtain 〈K〉l ⊆ l〈K〉.
Thus, as rl = {s},

〈K〉s = 〈K〉rl ⊆ r〈K〉l ⊆ rl〈K〉 = s〈K〉.

(c)⇒ (a) Let k be an element in K and let l be an element in L\K. We have
to show that kl = lk.
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Since k ∈ K and l ∈ L \ K, k ∈ L1(l); cf. Lemma 3.1.6. Thus, kl possesses
an element s such that `(s) = `(k) + `(l) = 2. Since L is assumed to be
constrained, we obtain from k ∈ L1(l) and s ∈ kl that kl = {s}.
Since 〈K〉 is assumed to be normal in 〈L〉, we have kl ⊆ l〈K〉. Thus, s ∈ l〈K〉.
Thus, 〈K〉 possesses an element r such that s ∈ lr. From l ∈ L\K and r ∈ 〈K〉
we obtain l ∈ L1(r); cf. Lemma 3.1.6. From l ∈ L1(r) and s ∈ lr we obtain
`(s) = 1 + `(r) and lr = {s}. Thus, as kl = {s}, kl = lr. Thus, as k 6= l, r 6= l.

From `(s) = 2 and `(s) = 1 + `(r) we obtain `(r) = 1. Thus, r ∈ L. On the
other hand, as kl = lr, r ∈ 〈k, l〉. Thus, by Corollary 3.1.3(ii), r ∈ {k, l}.
Thus, as r 6= l, r = k. Thus, as kl = lr, kl = lk. �

3.2 Subsets of Coxeter sets II

In this section, the letter K stands for a nonempty subset of L.

Lemma 3.2.1 Let q be an element in L−1(K), and let p be an element in
〈K〉 \ {q}. Then `(p) + 1 ≤ `(q).

Proof. We are assuming that q ∈ L−1(K). Thus, by Theorem 3.1.5, q ∈
L−1(〈K〉). Thus, as p is assumed to be an element in 〈K〉, q ∈ L−1(p). Thus,
by definition, there exists an element s in 〈L〉 such that q ∈ sp and `(q) =
`(s) + `(p).

From `(q) = `(s) + `(p) and 0 ≤ `(s) we obtain `(p) ≤ `(q).
Assume that `(q) = `(p). Then `(s) = 0, and that means s = e. Thus, as
q ∈ sp, p = q. �

Corollary 3.2.2 The set L−1(L) has at most one element.

Proof. This follows from Lemma 3.2.1. (Set K = L.) �

Lemma 3.2.3 Let p be an element in L1(K), and let q be an element in
p〈K〉. Then q∗ ∈ L−1(p∗).

Proof. We are assuming that q ∈ p〈K〉. Thus, there exists an element s in
〈K〉 such that q ∈ ps.
We are assuming that p ∈ L1(K). Thus, by Theorem 3.1.4, p ∈ L1(〈K〉). Thus,
as s ∈ 〈K〉, p ∈ L1(s). Thus, as q ∈ ps and L is assumed to be constrained,
`(q) = `(p) + `(s).

From q ∈ ps, we obtain q∗ ∈ s∗p∗; cf. Lemma 1.1.4(ii). From `(q) = `(p)+`(s)
we obtain `(q∗) = `(s∗) + `(p∗). Thus, q∗ ∈ L−1(p∗). �

The following result will be useful in the proof of Lemma 3.3.2.
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Lemma 3.2.4 Let p and q be elements in 〈L〉, and let l be an element in
L ∩ L1(p) ∩ L1(q). Assume that lp ⊆ lq〈K〉. Then p ∈ q〈K〉.

Proof. We are assuming that lp ⊆ lq〈K〉. Thus, we must have p ∈ q〈K〉 or
p ∈ lq〈K〉. In the first case, we are done, so we assume p ∈ lq〈K〉.
From Corollary 3.1.7 we know that 〈L〉 = L1(K)〈K〉. Thus, as q ∈ 〈L〉, there
exists an element u in L1(K) such that q ∈ u〈K〉. From u ∈ L1(K) and
q ∈ u〈K〉 we obtain q∗ ∈ L−1(u∗); cf. Lemma 3.2.3. On the other hand, we
are assuming that l ∈ L1(q), and that implies q∗ ∈ L1(l); cf. Lemma 2.2.3(i).
Thus, by Lemma 2.2.3(ii), u∗ ∈ L1(l), and this implies l ∈ L1(u); cf. Lemma
2.2.3(i).

Now recall that L is assumed to satisfy the exchange condition. Thus, we
obtain from l ∈ L1(u) and u ∈ L1(K) that lu ⊆ uK or lu ⊆ L1(K). However,
as p ∈ lq〈K〉, q〈K〉 = u〈K〉, and p /∈ q〈K〉, we cannot have lu ⊆ uK. Thus,
lu ⊆ L1(K).

Similarly, we obtain an element t in L1(K) such that p ∈ t〈K〉, l ∈ L1(t), and
lt ⊆ L1(K). Thus, referring to Theorem 3.1.5 we now obtain lt = lu. (Note
that lt〈K〉 = lu〈K〉.) Thus, by Lemma 2.4.1, t = u. Thus, as p ∈ t〈K〉 and
q ∈ u〈K〉, p ∈ q〈K〉. �

Lemma 3.2.5 Let l be an element in L, and let s be an element in L1(K).
Assume there exists an element r in s〈K〉 such that l ∈ L1(r) \ 〈K〉r∗ . Then
ls ⊆ L1(K).

Proof. From r ∈ s〈K〉 we obtain r〈K〉 = s〈K〉. According to Lemma
1.1.4(ii), this implies 〈K〉r∗ = 〈K〉s∗. Thus, by Lemma 1.5.2, 〈K〉r∗ = 〈K〉s∗ .
Thus, as we are assuming that l /∈ 〈K〉r∗ , l /∈ 〈K〉s∗ . Thus, by definition,
s∗l 6⊆ 〈K〉s∗. Thus, by Lemma 1.1.4(ii), ls 6⊆ s〈K〉.
From s ∈ L1(K) and r ∈ s〈K〉 we obtain r∗ ∈ L−1(s∗); cf. Lemma 3.2.3.
Thus, by Lemma 2.2.3(iv), L1(r) ⊆ L1(s). Thus, as we are assuming that
l ∈ L1(r), l ∈ L1(s). Thus, as L is assumed to satisfy the exchange condition,
we have ls ⊆ L1(K). �

3.3 Sets of subsets of Coxeter sets

In this section, we deal with sets of subsets of L.

Lemma 3.3.1 Let K be a nonempty set of subsets of L. Then we have

〈
⋂
K∈K

K〉 =
⋂
K∈K
〈K〉.

Proof. Define H to be the intersection of the elements in K and T to be the
intersection of the sets 〈K〉 with K ∈ K. We have to show that 〈H〉 = T .
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Assume, by way of contradiction, that 〈H〉 6= T . Then, as 〈H〉 ⊆ T , T 6⊆ 〈H〉.
We pick an element t in T \ 〈H〉, and we do this in such a way that `(t) is as
small as possible.

Since e ∈ 〈H〉 and t /∈ 〈H〉, t 6= e. Thus, by Lemma 1.6.2, there exist elements
s in 〈L〉 and l in L such that t ∈ sl and `(t) = `(s) + 1. It follows that
t ∈ L−1(l). Thus, as t ∈ T , l ∈ H; cf. Lemma 3.1.6. Thus, as t ∈ sl and t ∈ T ,
s ∈ T . Thus, as `(t) = `(s) + 1, the minimal choice of t forces s ∈ 〈H〉. Thus,
as l ∈ H and t ∈ sl, t ∈ 〈H〉, contradiction. �

Lemma 3.3.2 Let K be a nonempty set of subsets of L. Then

s〈
⋂
K∈K

K〉 =
⋂
K∈K

s〈K〉

for each element s in 〈L〉.

Proof. Define R to be the set of all elements in 〈L〉 which do not satisfy
the equation in question. By way of contradiction, we assume that R is not
empty. We pick an element r in R, and we do this in such a way that `(r) is
as small as possible.

By Lemma 3.3.1, e /∈ R. Thus, as r ∈ R, r 6= e. Thus, by Lemma 1.6.2, there
exist elements l in L and q in 〈L〉 such that r ∈ lq and `(r) = 1 + `(q).

Define H to be the intersection of the elements in K and Q to be the inter-
section of the sets r〈K〉 with K ∈ K. Then, as r ∈ R, r〈H〉 6= Q. Thus, as
r〈H〉 ⊆ Q, Q 6⊆ r〈H〉. Thus, we find an element s in Q that is not in r〈H〉.
Assume first that s∗ ∈ L−1(l). Then, 〈L〉 possesses an element p such that
s ∈ lp and `(s) = 1 + `(p). Thus, l ∈ L1(p). Moreover, since r ∈ lq and
`(r) = 1 + `(q), l ∈ L1(q). On the other hand, for each element K in K, we
have s ∈ r〈K〉. Thus, for each element K in K, p ∈ q〈K〉; cf. Lemma 3.2.4.
Thus, as `(r) = 1 + `(q), the minimal choice of r forces p ∈ q〈H〉. It follows
that s ∈ lp ⊆ lq〈H〉 = r〈H〉, contrary to the choice of s.

Assume now that s∗ /∈ L−1(l). Then, by Lemma 2.5.2, s∗ ∈ L1(l). Thus, by
Lemma 2.2.3(i), l ∈ L1(s). Thus, there exists an element t in 〈L〉 such that
ls = {t}. Since s ∈ Q, we have s ∈ r〈K〉 for each element K in K. Thus, for
each element K in K,

q ∈ lr ⊆ ls〈K〉 = t〈K〉,

and this is equivalent to t ∈ q〈K〉. Thus, as `(r) = 1+`(q), the minimal choice
of r forces t ∈ q〈H〉. Thus, s ∈ lt ⊆ lq〈H〉 = r〈H〉, contradiction. �

Corollary 3.3.3 Let K be a nonempty set of subsets of L. Then

〈
⋂
K∈K

K〉s =
⋂
K∈K
〈K〉s

for each element s in 〈L〉.
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Proof. Define H to be the intersection of the elements in K. Then, for each
element K in K, 〈H〉s ⊆ 〈K〉s.
Conversely, let r be an element in 〈L〉 such that, for each element K in K,
r ∈ 〈K〉s. Then, for each element K in K, sr ⊆ 〈K〉s. Thus, by Lemma 3.3.2,
sr ⊆ 〈H〉s, and this means that r ∈ 〈H〉s. �

Recall from Corollary 2.4.4(iii) that L does not contain thin elements if and
only if Oϑ(〈L〉) = {e}. We now deal with that case.

Theorem 3.3.4 Assume that L does not contain thin elements. Then K 7→
〈K〉 is a bijective map from the power set of L to the set of all closed subsets
of 〈L〉.

Proof. We are assuming that Oϑ(L) is empty. Thus, by Corollary 2.4.3,
〈L ∩ T 〉 = T for each closed subset T of 〈L〉. This shows that the map in
question is surjective.

Injectivity follows from Corollary 3.1.3(iii). �

Let
T1, . . . , Tn

be normal closed subsets of S.1 For each element i in {1, . . . , n}, we define
T̂i to be the product of the closed subsets Tj with i 6= j. The hypergroup S
is called direct product of the closed subsets T1, . . ., Tn if T = T1 · · ·Tn and
Ti ∩ T̂i = {e} for each element i in {1, . . . , n}.
If S is the direct product of closed subsets T1, . . ., Tn, we indicate this by
writing

S = T1 × . . .× Tn.

A closed subset T of S different from {e} is called simple if {e} and T are the
only normal closed subsets of T .

We now shall see that 〈L〉 is the direct product of simple closed subsets each
of which is generated by the elements of L which it contains.

Theorem 3.3.5 Assume that L is finite and does not contain thin elements.
Then L possesses subsets L1, . . . , Ln such that {L1, . . . , Ln} is a partition of
L,

〈L〉 = 〈L1〉 × . . .× 〈Ln〉,

and, for each element i in {1, . . . , n}, 〈Li〉 is simple.

Proof. Assume that 〈L〉 is not simple. Then, by definition, 〈L〉 possesses a
normal closed subset T different from {e} and 〈L〉.
1 Recall that S is an arbitrary hypergroup.
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Since we are assuming that L has no thin element, we obtain from Theorem
3.3.4 a subset K of L such that T = 〈K〉. Since T 6= {e}, K is not empty, and
that means that L \K 6= L. Since T 6= 〈L〉, K 6= L.

Since T is normal in 〈L〉 and 〈K〉 = T , 〈K〉 is normal in 〈L〉. Thus, by Theorem
3.1.8, 〈L \K〉 is normal in 〈L〉.
From Lemma 3.3.1 we know that 〈K〉 ∩ 〈L \K〉 = {e}. Thus, by definition,
〈L〉 = 〈K〉 × 〈L \K〉.
Now the claim follows by induction. �

Theorem 3.3.5 tells us that, in order to investigate Coxeter sets without thin
elements, it is enough to look at Coxeter sets which generate simple closed
subsets.

The following lemma is a result about simple closed subsets generated by a
Coxeter set.

Lemma 3.3.6 Assume that 3 ≤ |L| and that 〈L〉 is simple. Let l be an
element in L. Then there exists an element s in L1(l) such that, for each
subset K of L with |K| = 2, 〈K〉s ⊆ L1(l).

Proof. Since {l} 6= L and 〈L〉 is assumed to be simple, we find an element k
in L \ CS(l); cf. Theorem 3.1.8.

Since L is assumed to have at least three elements and 〈L〉 is assumed to be
simple, we find an element h in L\{k, l} such that h /∈ CS(〈k, l〉); cf. Theorem
3.1.8.

Let s be the element in hk, let K be a subset of L with |K| = 2, and let q be
an element in 〈L〉 such that 〈K〉 ⊆ L1(q) and 〈K〉s = 〈K〉q; cf. Lemma 2.2.5.

Since s ∈ 〈K〉q, 〈K〉 possesses an element p such that s ∈ pq. From p ∈ 〈K〉
and 〈K〉 ⊆ L1(q) we obtain p ∈ L1(q). Thus, as s ∈ pq, `(s) = `(p) + `(q). It
follows that s ∈ L−1(q).

From s ∈ hk and l /∈ {h, k} we obtain s ∈ L1(l); cf. Lemma 3.1.6. It follows
that s ∈ L−1(q) ∩ L1(l). Thus, by Lemma 2.2.3(ii), q ∈ L1(l).

Note also that hkl 6⊆ 〈K〉s. Thus, by Lemma 3.2.5, 〈K〉 ⊆ L1(ql). Thus, by
Lemma 2.2.4, 〈K〉q ⊆ L1(l). Thus, as 〈K〉q = 〈K〉s, 〈K〉s ⊆ L1(l). �

3.4 Coxeter sets generating finite sets

In this section, we deal with Coxeter sets generating finite sets.

Lemma 3.4.1 Let s be an element in 〈L〉, and set K := {l ∈ L | s ∈ L−1(l)}.
Then 〈K〉 is a finite set.
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Proof. We first prove that K is finite, and in order to do so we assume that K
is infinite. Then, for each positive integer n, 〈K〉 possesses an element r with
`(r) = n; cf. Lemma 3.1.6. On the other hand, s ∈ L−1(r) for each element r
in 〈K〉. Thus, `(r) ≤ `(s) for each element r in 〈K〉. This contradiction shows
that K is finite.

For each element k in K, we have s ∈ L−1(k). Thus, s ∈ L−1(K) = L−1(〈K〉);
cf. Theorem 3.1.5. Thus, for each element r in 〈K〉, s ∈ L−1(r). Thus, for each
element r in 〈K〉 different from s, we have `(r) ≤ `(s)− 1.

Let n be a positive integer with n ≤ `(s)− 1, and let q be an element in 〈K〉
such that `(q) = n. Then there exist elements p in 〈K〉 and k in K such that
q ∈ pk and `(q) = `(p) + 1; cf. Lemma 1.6.2. It follows that p ∈ L1(k). Thus,
as L is assumed to be constrained, pk = {q}. By induction, we may assume
that 〈K〉 possesses only finitely many elements of length n− 1. Thus, as K is
finite, 〈K〉 possesses only finitely many elements of length n. �

Theorem 3.4.2 The following statements are equivalent.

(a) The set 〈L〉 is finite.

(b) The set 〈L〉 has at least one element of maximal length.

(c) The set 〈L〉 has exactly one element of maximal length.

(d) The set L−1(L) is not empty.

(e) The set L−1(L) contains exactly one element.

Proof. (a) ⇒ (b) Assume 〈L〉 to be finite. Then 〈L〉 possesses an element s
such that `(r) ≤ `(s) for each element r in 〈L〉.
(b) ⇒ (d) We are assuming that L is a Coxeter set. In particular, L satisfies
the exchange condition. Thus, by Lemma 2.5.2, L is dichotomic. Thus, by
Lemma 2.5.1, each element of maximal length in 〈L〉 is in L−1(L).

(d) ⇒ (a) This follows from Lemma 3.4.1.

(d) ⇒ (e) This follows from Corollary 3.2.2.

(d) ⇒ (c) This follows from Lemma 3.2.1. �

For the remainder of this section, we assume 〈L〉 to be finite.

Assuming 〈L〉 to be finite we obtain from Theorem 3.4.2 that L−1(L) contains
exactly one element. In the following, we shall denote this element by mL.

Lemma 3.4.3 The element mL is the uniquely determined element in 〈L〉
of maximal length.

Proof. This follows from Lemma 3.2.1. �

Recall that (mL)∗ ∈ 〈L〉 and `((mL)∗) = `(mL). Thus, by Lemma 3.4.3,

(mL)∗ = mL.
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Let s be an element in 〈L〉. Then, as mL ∈ L−1(L), mL ∈ L−1(s); cf. Theo-
rem 3.1.4. Thus, by definition, 〈L〉 contains an element r with mL ∈ rs and
`(mL) = `(r) + `(s). By Lemma 2.4.1, this element is uniquely determined.
For the remainder of this section, we shall denote this element by s(L).

Lemma 3.4.4 For any two elements p and q in 〈L〉, we have the following.

(i) If p 6= q, p(L) 6= q(L).

(ii) Let r be an element in pq, and assume that `(r) = `(p) + `(q). Then
we have q(L) ∈ r(L)p and `(q(L)) = `(r(L)) + `(p).

Proof. (i) Let p and q be elements in 〈L〉 such that p(L) = q(L). Then, by
definition, mL ∈ p(L)p, `(mL) = `(p(L)) + `(p), mL ∈ p(L)q, and `(mL) =
`(p(L)) + `(q). Thus, by Lemma 2.4.1, p = q.

(ii) By definition, we have mL ∈ r(L)r and `(mL) = `(r(L)) + `(r). By hy-
pothesis, we have r ∈ pq and `(r) = `(p) + `(q). Thus, by Lemma 1.6.3,
r(L)p possesses an element s such that mL ∈ sq, `(s) = `(r(L)) + `(p), and
`(mL) = `(s) + `(q).

From mL ∈ sq and `(mL) = `(s) + `(q) we obtain s = q(L); cf. Lemma 2.4.1.
Thus, the claim follows from s ∈ r(L)p and `(s) = `(r(L)) + `(p). �

For each element s in 〈L〉, we now shall write s[L] instead of s(L)(L).

Lemma 3.4.5 For any two elements p and q in 〈L〉, we have the following.

(i) If p 6= q, p[L] 6= q[L].

(ii) Let r be an element in pq, and assume that `(r) = `(p) + `(q). Then
we have r[L] ∈ p[L]q[L] and `(r[L]) = `(p[L]) + `(q[L]).

Proof. (i) This follows from Lemma 3.4.4(i). (Apply this lemma twice.)

(ii) This follows from Lemma 3.4.4(ii). (Apply this lemma three times.) �

Lemma 3.4.6 For each element s in 〈L〉, the following hold.

(i) We have `(s[L]) = `(s).

(ii) We have s[L][L] = s.

Proof. (i) This follows immediately from the definition of s[L].

(ii) Let s be an element in 〈L〉. Then, by definition, mL ∈ s[L](L)s[L]. Thus, as
(mL)∗ = mL, mL ∈ (s[L])∗(s[L](L))∗; cf. Lemma 1.1.4(ii). Thus, as mL ∈ s(L)s,
the set

(s(L))∗(s[L])∗ ∩ ss[L](L)

is not empty; cf. Lemma 1.1.4(iii). Thus, as {mL} = (s(L))∗(s[L])∗, mL ∈
ss[L](L). However, by definition, we have
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mL ∈ s[L][L]s[L](L).

Moreover, by (i), `(s[L][L]) = `(s). Thus, by Lemma 2.4.1, s[L][L] = s. �

Recall that, for each subset R of 〈L〉, L1(R) is our notation for the intersection
of the sets L1(r) with r ∈ R.

Lemma 3.4.7 Let K be a nonempty subset of L. Then we have (mK)(L) ∈
L1(K) and (mK)(L) ∈ mL〈K〉.

Proof. Let k be an element in K. Then mK ∈ L−1(k). Thus, by Lemma
2.2.3(iv), L1(mK) ⊆ L1(k). Thus, as (mK)(L) ∈ L1(mK), (mK)(L) ∈ L1(k).

Since k has been chosen arbitrarily in K, we have shown that (mK)(L) ∈
L1(K).

By definition, mL ∈ (mK)(L)mK . Thus, as mK ∈ 〈K〉, mL ∈ (mK)(L)〈K〉, so
that the second claim follows from Lemma 1.2.3. �

For each nonempty subset R of 〈L〉, we define R[L] to be the set of all elements
r[L] with r ∈ R.

Lemma 3.4.8 Let K be a nonempty subset of L. Then the following hold.

(i) We have mK[L] = (mK)[L].

(ii) We have 〈K〉 ⊆ 〈K [L]〉((mK)(L)).

Proof. (i) From Lemma 3.4.5(ii) one obtains 〈K〉[L] = 〈K [L]〉. Thus, s 7→
s[L] is a surjective map from 〈K〉 to 〈K [L]〉. By Lemma 3.4.5(i), this map is
injective, too. Thus, the claim follows from Lemma 3.4.6(i).

(ii) Considering Lemma 1.6.1 we obtain from Lemma 1.5.1(iii) that the set

〈K [L]〉((mK)(L)) is closed. Thus, we shall be done if we succeed in showing that

K ⊆ 〈K [L]〉((mK)(L)).

In order to show this we pick an element k in K. From the first statement of
Lemma 3.4.7 we know that

(mK)(L) ∈ L1(k).

Thus, there exists an element p in (mK)(L)k such that `(p) = `((mK)(L)) + 1.

Assume that K [L] ⊆ L1(p). Then, by Theorem 3.1.4, 〈K [L]〉 ⊆ L1(p). Thus,
as mK[L] ∈ 〈K [L]〉, mK[L] ∈ L1(p). Thus, by (i),

(mK)[L] ∈ L1(p).

Thus, there exists an element q in (mK)[L]p such that `(q) = `((mK)[L])+`(p).
Thus, as `(p) = `((mK)(L)) + 1,

`(q) = `((mK)[L]) + `((mK)(L)) + 1 = `(mL) + 1,
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contrary to q ∈ 〈L〉.
Thus, as L is assumed to satisfy the exchange condition, there exists an ele-
ment h in K [L] such that

h(mK)(L) = (mK)(L)k.

It follows that
(mK)(L)k ⊆ 〈K [L]〉(mK)(L),

and that means that k ∈ 〈K [L]〉((mK)(L)). �





4

Constrained sets of involutions with injections

Throughout this chapter, the letter S stands for a hypergroup. We shall inves-
tigate a very specific class of injective maps from closed subsets of S generated
by constrained sets of involutions to S.

The injective maps which we shall discuss generalize the map s 7→ s[L] from 〈L〉
to itself that had been introduced in Section 3.4. While domain and codomain
of the maps in Section 4.3 were equal, this requirement is not anymore imposed
on the injective maps of this chapter.

At no point of this chapter, the constrained sets of involutions under inves-
tigation are assumed to be Coxeter sets. Two times, in Section 4.2 and in
Section 4.4, they will be assumed to be dichotomic.

4.1 Definition and first observations

In this section, the letter L stands for a constrained set of involutions of S,
the letter ρ for an injective map from 〈L〉 to S.

Recall from Lemma 1.2.1(i) that e ∈ 〈L〉. Thus, eρ is defined. For the remain-
der of this section, we set m := eρ and assume

rρr = {m}

for each element r in 〈L〉.
The map ρ generalizes the map s 7→ s[L] from 〈L〉 to itself that had been
introduced in Section 3.4 in the case where L was a Coxeter set and 〈L〉
finite.

As before, we write ` instead of `L.

Lemma 4.1.1 Let s be an element in S, and let r be an element in 〈L〉 such
that sr = {m}. Then s = rρ.
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Proof. The statement is obviously true if r = e. Therefore, we assume that
r 6= e. From r 6= e we obtain elements l in L and u in 〈L〉 such that r ∈ lu
and `(r) = 1 + `(u); cf. Lemma 1.6.2.

Since L is assumed to be constrained, we obtain from r ∈ lu and `(r) = 1+`(u)
that lu = {r}. Thus, our hypothesis sr = {m} leads to slu = {m}.
Let t be an element in sl. Then, as slu = {m}, tu = {m}. Thus, by induction,
t = uρ. Thus, as t has been chosen arbitrarily in sl, we have shown that

sl = {uρ}.

From rρr = {m} and lu = {r} we obtain rρlu = {m}.
Let t be an element in rρl. Then, as rρlu = {m}, tu = {m}. Thus, by in-
duction, t = uρ. Thus, as t has been chosen arbitrarily in rρl, we have shown
that

rρl = {uρ}.

From sl = {uρ} and rρl = {uρ} we obtain sl = rρl. Thus,

rρ ∈ s〈l〉 = {s} ∪ sl = {s, uρ}.

Assume that rρ = uρ. Then the injectivity of ρ forces r = u, contrary to
`(r) = 1 + `(u). Thus, rρ = s. �

Lemma 4.1.2 Let q be an element in 〈L〉, let p be an element in L1(q), and
let r be an element in pq. Then r∗ρq∗ = {p∗ρ}.

Proof. Let s be an element in r∗ρq∗. We have to show that s = p∗ρ.

We are assuming L to be constrained. Thus, as p ∈ L1(q) and r in pq, pq = {r}.
Thus, by Lemma 1.1.4(ii), q∗p∗ = {r∗}. Thus, as s ∈ r∗ρq∗,

sp∗ ⊆ r∗ρq∗p∗ = r∗ρr∗ = {m}.

Thus, by Lemma 4.1.1, s = p∗ρ. �

Corollary 4.1.3 Let l be an element in L, let p be an element in L1(l), and
let q be an element in pl. Then the following hold.

(i) If l is thin, p∗ρl = {q∗ρ}.
(ii) If l is not thin, p∗ρl = {q∗ρ, p∗ρ}.

Proof. From p ∈ L1(l) and q ∈ pl we obtain pl = {q}. (Recall that L is
assumed to be constrained.) On the other hand, as p ∈ L1(l), pl possesses an
element of length `(p) + 1. Thus, `(q) = `(p) + 1. In particular, q 6= p. Thus,
as ρ is assumed to be injective, q∗ρ 6= p∗ρ.

From p ∈ L1(l) and q ∈ pl we also obtain q∗ρl = {p∗ρ}; cf. Lemma 4.1.2.
Thus, the claims follow from Lemma 2.1.2(i), (ii), respectively. �
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We define 〈L〉ρ to be the image of 〈L〉 under ρ. Thus, 〈L〉ρ is the set of all
elements rρ with r ∈ 〈L〉.

Theorem 4.1.4 We have 〈L〉ρ = m〈L〉.

Proof. For each element r in 〈L〉, we have m ∈ rρr. Thus, rρ ∈ mr∗. Thus, as
r∗ ∈ 〈L〉, rρ ∈ m〈L〉. Since r has been chosen arbitrarily in 〈L〉, this proves
〈L〉ρ ⊆ m〈L〉.
Assume, by way of contradiction, that m〈L〉 6⊆ 〈L〉ρ. Then there exists an
element r in 〈L〉 such that mr 6⊆ 〈L〉ρ. Among the elements r in 〈L〉 with
mr 6⊆ 〈L〉ρ we chose r such that `(r) is as small as possible.

Since mr 6⊆ 〈L〉ρ, there exists an element s in mr with s /∈ 〈L〉ρ.
Define P to be the set of all elements p in 〈L〉 such that there exists an element
q in 〈L〉 with r ∈ pq, `(r) = `(p) + `(q), and s ∈ p∗ρq.
Since s ∈ mr, e ∈ P . Thus, P is not empty. From s /∈ 〈L〉ρ we obtain r /∈ P .
Among the elements in P we fix an element p such that `(p) is as large as
possible.

Since p ∈ P , there exists an element q in 〈L〉 with r ∈ pq, `(r) = `(p) + `(q),
and s ∈ p∗ρq.
From p ∈ P and r /∈ P we obtain p 6= r. Thus, q 6= e. Thus, by Lemma 1.6.2,
there exist elements l in L and u in 〈L〉 such that q ∈ lu and `(q) = 1 + `(u).
Thus, as r ∈ pq and `(r) = `(p) + `(q), there exists an element t in pl such
that r ∈ tu, `(t) = `(p) + 1 and `(r) = `(t) + `(u); cf. Lemma 1.6.3.

From `(t) = `(p) + 1 together with the maximal choice of p we obtain t /∈ P .
Thus, as r ∈ tu and `(r) = `(t) + `(u), we conclude that s /∈ t∗ρu.

From s ∈ p∗ρq we obtain q∗ ∈ s∗p∗ρ, from q ∈ lu, q∗ ∈ u∗l. Thus, q∗ ∈
s∗p∗ρ ∩ u∗l. Thus, by Lemma 1.1.4(iii), su∗ ∩ p∗ρl is not empty.

From Corollary 4.1.3 we know that p∗ρl ⊆ {t∗ρ, p∗ρ}. Thus, as t∗ρ /∈ su∗ and
su∗ ∩ p∗ρl 6= ∅, p∗ρ ∈ su∗. It follows that s ∈ p∗ρu.

By definition, m ∈ p∗ρp∗. Thus, p∗ρ ∈ mp. Thus, as s ∈ p∗ρu, s ∈ mpu. Thus,
there exists an element r′ in pu such that s ∈ mr′.
From r′ ∈ pu we obtain

`(r′) ≤ `(p) + `(u) = `(p) + `(q)− 1 = `(r)− 1.

Thus, the minimal choice of r forces mr′ ⊆ 〈L〉ρ. Thus, as s ∈ mr′, s ∈ 〈L〉ρ.
This contradiction finishes the proof. �

As a consequence of Theorem 4.1.4 we obtain that the image of ρ is either
equal to its domain or disjoint from its domain; cf. Lemma 1.2.2.
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4.2 Dichotomy

In this section, the letter L stands for a constrained dichotomic set of involu-
tions of S, the letter ρ for an injective map from 〈L〉 to S.1 As before, we set
m := eρ and assume

rρr = {m}

for each element r in 〈L〉.
Instead of `L we simply write `.

Lemma 4.2.1 Let p and q be elements in 〈L〉, and let l be an element in L
such that q∗ρ ∈ p∗ρl. Then p〈l〉 = q〈l〉.

Proof. Assume first that p ∈ L1(l). Then, by definition, there exists an element
r in pl such that `(r) = `(p) + 1.

From p ∈ L1(l) and r ∈ pl we obtain p∗ρl ⊆ {r∗ρ, p∗ρ}; cf. Corollary 4.1.3.
Thus, as we are assuming that q∗ρ ∈ p∗ρl, we have q∗ρ = r∗ρ or q∗ρ = p∗ρ. It
follows that q = r or q = p. (Recall that ρ is assumed to be injective.)

If q = r, we obtain from r ∈ pl that q ∈ pl, so that we are done by Lemma
1.2.3. If q = p, the statement is trivial.

Assume now that p /∈ L1(l). Then, as p ∈ 〈L〉 and L is assumed to be di-
chotomic, p ∈ L−1(l). Thus, by definition, 〈L〉 possesses an element r such
that p ∈ rl and `(p) = `(r) + 1.

From p ∈ rl and `(p) = `(r) + 1 we obtain r ∈ L1(l). Thus, as p ∈ rl,
p∗ρl = {r∗ρ}; cf. Lemma 4.1.2. Since we are assuming q∗ρ ∈ p∗ρl, this implies
q∗ρ = r∗ρ. Now the injectivity of ρ forces q = r. Thus, as p ∈ rl, p ∈ ql, so
that we are done by Lemma 1.2.3. �

Lemma 4.2.2 Let p and q be elements in 〈L〉, and assume that p∗ρ ∈ mq.
Then `(p) ≤ `(q).

Proof. If q = e, our assumption p∗ρ ∈ mq leads to p∗ρ = m = eρ. Thus, the
injectivity of ρ yields p∗ = e. This implies that p = e, and we are done.

Assume that q 6= e. Then, by Lemma 1.6.2, there exist elements u in 〈L〉 and
l in L such that q ∈ ul and `(q) = `(u) + 1.

From p∗ρ ∈ mq we obtain m ∈ p∗ρq∗. Thus, as q ∈ ul, m ∈ p∗ρlu∗. Thus, p∗ρl
possesses an element r∗ such that m ∈ r∗u∗.
From m ∈ r∗u∗ and u ∈ 〈L〉 we obtain

r∗ ∈ mu ⊆ m〈L〉 = 〈L〉ρ;

cf. Theorem 4.1.4. Thus, 〈L〉 possesses an element t with r∗ = t∗ρ.

1 Recall that L is called dichotomic if 〈L〉 = L−1(l)∪L1(l) for each element l in L.
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From r∗ = t∗ρ and m ∈ r∗u∗ we obtain m ∈ t∗ρu∗. Thus, t∗ρ ∈ mu. Thus, by
induction,

`(t) ≤ `(u) = `(q)− 1.

From r∗ = t∗ρ and r∗ ∈ p∗ρl we obtain t∗ρ ∈ p∗ρl. Thus, by Lemma 4.2.1,
p〈l〉 = t〈l〉. In particular, p ∈ t〈l〉 = {t} ∪ tl. It follows that

`(p) ≤ `(t) + 1.

From this together with `(t) ≤ `(q)− 1 we obtain `(p) ≤ `(q). �

Lemma 4.2.3 Let p and q be elements in 〈L〉 such that p∗ρ ∈ mq and
`(p) = `(q). Then p = q.

Proof. If q = e, our assumption p∗ρ ∈ mq leads to p∗ρ = m = eρ. Thus, the
injectivity of ρ yields p∗ = e. This implies that p = e, and we are done.

Assume that q 6= e. Then, by Lemma 1.6.2, there exist elements u in 〈L〉 and
l in L such that q ∈ ul and `(q) = `(u) + 1.

From p∗ρ ∈ mq we obtain m ∈ p∗ρq∗. Thus, as q ∈ ul, m ∈ p∗ρlu∗. Thus, p∗ρl
possesses an element r∗ such that m ∈ r∗u∗.
From m ∈ r∗u∗ and u ∈ 〈L〉 we obtain

r∗ ∈ mu ⊆ m〈L〉 = 〈L〉ρ;

cf. Theorem 4.1.4. Thus, 〈L〉 possesses an element t with r∗ = t∗ρ.

From m ∈ r∗u∗ we obtain r∗ ∈ mu. Thus, as r∗ = t∗ρ, t∗ρ ∈ mu. Thus, by
Lemma 4.2.2, `(t) ≤ `(u).

From r∗ ∈ p∗ρl and r∗ = t∗ρ we obtain t∗ρ ∈ p∗ρl. Thus, by Lemma 4.2.1,
p〈l〉 = t〈l〉. In particular, p ∈ t〈l〉. Thus, `(p) ≤ `(t) + 1. Thus, as we are
assuming that `(p) = `(q),

`(u) = `(q)− 1 = `(p)− 1 ≤ `(t).

Earlier, we saw `(t) ≤ `(u), so that we now have `(t) = `(u). Thus, as t∗ρ ∈
mu, induction yields t = u.

From p〈l〉 = t〈l〉 and t = u we obtain p〈l〉 = u〈l〉. It follows that p ∈ u〈l〉 =
{q, u}. Since `(p) = `(q) = `(u) + 1, we cannot have p = u. Thus, p = q. �

4.3 Twinned constrained sets of involutions

Two constrained sets H and K of involutions of S are said to be twinned if
there exist injective maps λ from 〈H〉 to S and ρ from 〈K〉 to S such that

ppλ = qρq
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for any two elements p in 〈H〉 and q in 〈K〉 and

〈H〉eλ = eρ〈K〉.

The injective maps λ and ρ will be called the twinning maps of H and K.

For the remainder of this section, the letters H and K stand for twinned
constrained sets of involutions of S with twinning maps λ and ρ.

Lemma 4.3.1 The following hold.

(i) We have eλ = eρ.

(ii) For each element p in 〈H〉, we have ppλ = {eλ}.
(iii) For each element q in 〈K〉, we have qρq = {eρ}.

Proof. (i) Since H and K are twinned with twinning maps λ and ρ, we have

ppλ = qρq

for any two elements p in 〈H〉 and q in 〈K〉. Thus, as e ∈ 〈H〉 and e ∈ 〈K〉,
we have eλ = eeλ = eρe = eρ .

(ii) From (i) one obtains

ppλ = eρe = {eρ} = {eλ}

for each element p in 〈H〉.
(iii) This follows similar to (ii). �

From Lemma 4.3.1(i) we know that eλ = eρ. We set m := eρ and call this
element the conjugating element of H and K.

From eλ = eρ and m = eρ we obtain 〈H〉m = m〈K〉. Thus

〈K〉 ⊆ 〈H〉m,

and that explains our terminology.

Lemma 4.3.2 We have 〈H〉λ = 〈H〉m〈K〉 = 〈K〉ρ.

Proof. Referring to Lemma 4.3.1(iii) we obtain from Theorem 4.1.4 that
〈K〉ρ = m〈K〉. Similarly, referring to Lemma 4.3.1(ii), we obtain 〈H〉m =
〈H〉λ. Finally, asH andK are assumed to be twinned, we have 〈H〉m = m〈K〉.
Thus,

〈H〉λ = 〈H〉m = 〈H〉m〈K〉 = m〈K〉 = 〈K〉ρ,

and that finishes the proof. �

Lemma 4.3.3 For each element p in 〈H〉, there exists exactly one element
q in 〈K〉 such that pλ = qρ.
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Proof. Let p be an element in 〈H〉. Then pλ ∈ 〈H〉λ. Thus, by Lemma 4.3.2,
pλ ∈ 〈K〉ρ. Thus, there exists an element q in 〈K〉 such that pλ = qρ.

Let q′ be an element in 〈K〉 with pλ = q′ρ. Then, as pλ = qρ, q′ρ = qρ. Thus,
as ρ is assumed to be injective, q′ = q. �

Similarly to Lemma 4.3.3 one obtains that, for each element q in 〈K〉, there
exists exactly one element p in 〈H〉 with pλ = qρ. We shall refer to this result
also as Lemma 4.3.3.

Lemma 4.3.4 Let p be an element in 〈H〉, and let q denote the uniquely
determined element in 〈K〉 such that pλ = qρ. Then the following hold.

(i) We have pm = mq.

(ii) We have p∗λ ∈ mq and q∗ρ ∈ pm.

(iii) If p is thin, p∗λ = q∗ρ.

(iv) If p is thin, so is q.

Proof. (i) Since ppλ = {m} = qρq, we obtain from pλ = qρ that

pm = pqρq = ppλq = mq.

(ii) From m ∈ p∗p∗λ we obtain p∗λ ∈ pm. Thus, the first claim follows from
(i). The second statement follows similarly.

(iii) Assume p to be thin. Then, by definition, p∗p = {e}. Thus, by (i),

p∗mq = p∗pm = {m}.

Let s be an element in mq. Then, as p∗mq = {m}, p∗s = {m}. Thus, by
Lemma 4.1.1, s = p∗λ. Thus, as s has been chosen arbitrarily in mq, we have
mq = {p∗λ}. Thus, as q∗ρ ∈ mq, p∗λ = q∗ρ.

(iv) Assume p to be thin. Then, by (i) and (iii),

{m} = p∗pm = p∗mq = mq∗q.

Let r be an element in q∗q. Then, as mq∗q = {m}, mr = {m}. Thus, by
Lemma 2.1.1, m = rρ. Thus, as m = eρ, rρ = eρ. Thus, as ρ is assumed to
be injective, r = e. Thus, as r has been chosen arbitrarily in q∗q, we conclude
that q∗q = {e}, and this means that q is thin. �

4.4 Twinning and dichotomy

In this section, the letters H and K stand for twinned constrained dichotomic
sets of involutions of S with twinning maps λ and ρ.
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Lemma 4.4.1 Let p be an element in 〈H〉, and let q denote the uniquely
determined element in 〈K〉 such that pλ = qρ. Then p∗λ = q∗ρ.

Proof. From Theorem 4.1.4 we know that 〈K〉ρ = m〈K〉. Thus, by Lemma
4.2.2 and Lemma 4.2.3, 〈K〉 possesses a subset R such that

mq = {q∗ρ} ∪ {r∗ρ | r ∈ R}

and `K(r) ≤ `K(q)− 1 for each element r in R. On the other hand, we know
from Lemma 4.3.4(ii) that p∗λ ∈ mq. Thus {q} ∪ R possesses an element u
with p∗λ = u∗ρ.

Assume that u 6= q. Then u ∈ R, and that means that `K(u) ≤ `K(q) − 1.
It follows that `K(u∗) ≤ `K(q) − 1. Thus, as p∗λ = u∗ρ, induction yields
pλ = uρ. Now recall that we are assuming pλ = qρ. Thus, uρ = qρ. Thus, as ρ
is assumed to be injective, u = q, contrary to `K(u) ≤ `K(q)− 1.

Thus, we must have u = q. Thus, as p∗λ = u∗ρ, p∗λ = q∗ρ. �

For the remainder of this section, we assume that K does not contain thin
elements. (By Lemma 4.3.4(iv), this implies that also H does not contain thin
elements.)

Lemma 4.4.2 Let p be an element in 〈H〉, and let q denote the uniquely
determined element in 〈K〉 such that pλ = qρ. Then `H(p) = `K(q).

Proof. Assume first that q = e. Then, as pλ = qρ, pλ = eρ = eλ; cf. Lemma
4.3.1(i). Thus, as λ is assumed to be injective, p = e, and we are done.

Assume now that q 6= e. Then there exist elements u in 〈K〉 and k in K such
that q ∈ uk and `K(q) = `K(u) + 1; cf. Lemma 1.6.2.

We are assuming that K does not contain thin elements. Thus, as k ∈ K,
k is not thin. Thus, by Corollary 4.1.3(ii), u∗ρk = {q∗ρ, u∗ρ}. In particular,
u∗ρ ∈ u∗ρk. Since m ∈ u∗ρu∗, we also have u∗ρ ∈ mu. Thus,

u∗ρ ∈ muk = mq.

Assume that u∗ρ = q∗ρ. Then, as ρ is injective, u∗ = q∗. It follows that u = q,
contrary to `K(q) = `K(u) + 1. Thus, u∗ρ 6= q∗ρ. Thus, as u∗ρ ∈ mq,

u∗ρ ∈ mq \ {q∗ρ}.

From Lemma 4.3.4(i) we know that pm = mq, from Lemma 4.4.1 that p∗λ =
q∗ρ. Thus,

u∗ρ ∈ pm \ {p∗λ}.

Thus, 〈H〉 possesses an element t such that t∗λ = u∗ρ and `H(t) ≤ `H(p)− 1;
cf. Lemma 4.2.2 and Lemma 4.2.3. From t∗λ = u∗ρ we obtain tλ = uρ; cf.
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Lemma 4.4.1. Thus, as `K(u) = `K(q)−1, induction allows us to assume that
`H(t) = `K(u).

From `H(t) = `K(u), `K(u) = `K(q) − 1, and `H(t) ≤ `H(p) − 1 we obtain
`K(q) ≤ `H(p).

Similarly one proves that `H(p) ≤ `K(q). Thus, `H(p) = `K(q). �

Let h be an element in H. From Lemma 4.4.2 we obtain that the uniquely
determined element q in 〈K〉 satisfying hλ = qρ belongs to K.

Theorem 4.4.3 Let p, r, and t be elements in 〈H〉 such that t ∈ pr and
`H(t) = `H(p)+`H(r). Let q, s, and u denote the uniquely determined elements
in 〈K〉 such that pλ = qρ, rλ = sρ, and tλ = uρ. Then u ∈ qs and `K(u) =
`K(q) + `K(s).

Proof. From pλ = qρ we obtain `H(p) = `K(q); cf. Lemma 4.4.2. Similarly, we
obtain `H(r) = `K(s) from rλ = sρ and `H(t) = `K(u) from tλ = uρ. Thus,
as `H(t) = `H(p) + `H(r),

`K(u) = `K(q) + `K(s).

From Lemma 4.3.4(i) we obtain

mu = tm = prm = pms = mqs.

From m ∈ u∗ρu∗ we obtain u∗ρ ∈ mu. Thus, as mu = mqs, u∗ρ ∈ mqs. Thus,
qs possesses an element u′ such that u∗ρ ∈ mu′.
From u′ ∈ qs we obtain `K(u′) ≤ `K(q) + `K(s) = `K(u). On the other hand,
as u∗ρ ∈ mu′, `K(u) ≤ `K(u′); cf. Lemma 4.2.2. Thus, `K(u) = `K(u′). Thus,
by Lemma 4.2.3, u = u′. Thus, as u′ ∈ qs, u ∈ qs. �
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Association schemes

It is the purpose of this chapter to apply the results on hypergroups which
we obtained in the first four chapters to association schemes. In order to do
so we first recall the definition of a scheme. We follow [9].

Let X be a set. We write 1X to denote the set of all pairs (x, x) with x ∈ X.
For each subset r of the cartesian product X ×X, we define r∗ to be the set
of all pairs (y, z) with (z, y) ∈ r. For x an element of X and r a subset of
X ×X, we write xr to denote the set of all elements y in X with (x, y) ∈ r.
We fix a partition S of X × X with 1X ∈ S and assume that s∗ ∈ S for
each element s in S. The set S is called an association scheme or simply a
scheme on X if, for any three elements p, q, and r in S, there exists a cardinal
number apqr such that |yp ∩ zq∗| = apqr for any two elements y in X and
z in yr. This latter condition will be referred to as the regularity condition.
The cardinal numbers showing up in the regularity conditions are called the
structure constants of S.

Let p and q be elements of a scheme S. We define µ(p, q) to be the set of all
elements r in S which satisfy apqr 6= 0. From [9; Lemma 1.3.1], [9; Lemma
1.3.3(ii)], and [9; Lemma 1.3.3(i)] we obtain that S is a hypergroup with
respect to µ and with neutral element 1X .

For the remainder of this chapter, the letter X stands for a set, the letter S
for a scheme on X. Instead of 1X we just write 1, and, for any two elements
p and q in S, we write pq instead of µ(p, q).

There is one equation which says something about the structure constants of
S. It is the following. For any four elements p, q, t, and u in S, we have∑

s∈S
apqsastu =

∑
s∈S

apsuaqts.

This equation is obtained by counting in two different ways the elements in
(yp× zt∗) ∩ u, where y is an element in X and z an element in yu.
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Let W be a nonempty subset of X, and let R be a nonempty subset of S.
We define WR to be the union of the sets wr with w ∈ W and r ∈ R. If W
consists of a single element, say w, we write wR instead of WR. Similarly, if
R consists of a single element r, we write Wr instead of WR.

Note that W (PQ) = (WP )Q for each nonempty subset W of X and for any
two nonempty subsets P and Q of S.

5.1 Involutions

We collect a few elementary facts about involutions of schemes.

Lemma 5.1.1 Let p and q be elements in S such that p 6= q, and let l be an
involution of S such that pl = {q}. Then aplq = 1.

Proof. Let y be an element in X, let z be an element in yq, and assume that
2 ≤ aplq. Then there exist elements v and w in yp ∩ zl such that v 6= w.

From v ∈ yp we obtain y ∈ vp∗. Thus, as w ∈ yp, w ∈ vp∗p. From v ∈ zl we
obtain z ∈ vl. Thus, as w ∈ zl, w ∈ vll. Thus, as v 6= w, w ∈ vl.
From w ∈ vp∗p and w ∈ vl we obtain l ∈ p∗p. Thus, p ∈ pl = {q}, contrary to
p 6= q. �

For the remainder of this section, the letters p and q stand for two elements
in S with p 6= q, the letters h and k for involutions of S satisfying

hp = {q} = pk.

We have the following.

Lemma 5.1.2 Let y be an element in X, let z be an element in yq, and let
x be an element in y〈h〉. Then |xp ∩ z〈k〉| = 1.

Proof. Since x ∈ y〈h〉, y ∈ x〈h〉. Thus, as z ∈ yq, z ∈ x〈h〉q. On the other
hand, as hp = {q},

〈h〉q = 〈h〉hp = 〈h〉p = {1, h}p = {p} ∪ hp = {p, q}.

Thus, z ∈ xp or z ∈ xq.
From pk = {q} and p 6= q we obtain apkp = 0. Thus, if z ∈ xp, we must have
xp ∩ z〈k〉 = {z}.
If z ∈ xq, the claim follows from pk = {q}; cf. Lemma 5.1.1. �

Lemma 5.1.3 Let y be an element in X, and let z be an element in yq. For
each element x in y〈h〉, we define φ(x) to be the unique element in xp∩ z〈k〉.
Then φ is a bijective map from y〈h〉 to z〈k〉.



5.2 Constrained sets of involutions and injections 59

Proof. We first show that φ is injective. We fix elements v and w in y〈h〉 and
assume that v 6= w.

From v ∈ y〈h〉 and w ∈ y〈h〉 we obtain w ∈ v〈h〉. Thus, as v 6= w, w ∈ vh.

By definition, we have φ(w) ∈ wp. Thus, as w ∈ vh and hp = {q}, φ(w) ∈ vq.
Thus, as φ(v) ∈ vp and p 6= q, φ(v) 6= φ(w).

This proves that φ is injective.

In order to show that φ is surjective we fix an element in z〈k〉 and call it w.

Since z ∈ yq, we obtain from w ∈ z〈k〉 that w ∈ yq〈k〉. Thus, as {q} = pk,
w ∈ y{p, q}; cf. Lemma 2.1.2(i), (ii). It follows that w ∈ yp or w ∈ yq.
If w ∈ yp, w ∈ yp ∩ z〈k〉. Thus, φ(y) = w.

If w ∈ yq, we obtain from our hypothesis hp = {q} that w ∈ yhp. Thus, yh
possesses an element v such that w ∈ vp. Thus, as w ∈ z〈k〉, w ∈ vp ∩ z〈k〉.
Thus, as v ∈ y〈h〉, φ(v) = w. �

Corollary 5.1.4 We have nh = nk.

Proof. This is an immediate consequence of Lemma 5.1.3. �

5.2 Constrained sets of involutions and injections

In this section, the letter L stands for a constrained set of involutions of S,
the letter ρ for an injective map from 〈L〉 to S satisfying

rρr = {1ρ}

for each element r in 〈L〉.1

We set m := 1ρ and ` := `L.

Lemma 5.2.1 Let q be an element in 〈L〉, let p be an element in L1(q), and
let r be an element in pq. Then ar∗ρq∗p∗ρ = 1.

Proof. The statement is trivial if q = 1. Thus, we assume that q 6= 1.

Assuming q 6= 1 we obtain elements t in 〈L〉 and l in L such that q ∈ tl and
`(q) = `(t) + 1; cf. Lemma 1.6.2. Thus, as r ∈ pq and `(r) = `(p) + `(q), pt
possesses an element u such that r ∈ ul, `(u) = `(p)+`(t), and `(r) = `(u)+1;
cf. Lemma 1.6.3.

From r ∈ ul and `(r) = `(u) + 1 we obtain u ∈ L1(l). Thus, as r ∈ ul,
r∗ρl = {u∗ρ}; cf. Lemma 4.1.2. Thus, by Lemma 5.1.1, ar∗ρlu∗ρ = 1.

1 We emphasize that in this section (as well as for the following section) the con-
strained set L is never assumed to satisfy the exchange condition (to be a Coxeter
set). The strongest assumption which we will impose on L will be dichotomy.
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From u ∈ pt and `(u) = `(p) + `(t) we obtain p ∈ L1(t). Thus, as u ∈ pt,
induction yields au∗ρt∗p∗ρ = 1. Thus, as r∗ρl = {u∗ρ},∑

s∈S
ar∗ρlsast∗p∗ρ = ar∗ρlu∗ρau∗ρt∗p∗ρ = 1.

On the other hand, recall that q ∈ tl and `(q) = `(t)+1. Thus, as L is assumed
to be constrained, tl = {q}. Thus, lt∗ = {q∗} and, by Lemma 5.1.1, atlq = 1.
The latter equation yields alt∗q∗ = 1. It follows that∑

s∈S
ar∗ρsp∗ρalt∗s = ar∗ρq∗p∗ρalt∗q∗ = ar∗ρq∗p∗ρ .

Thus, the claim follows from the equation on the structure constants that we
mentioned in the introduction of this chapter. �

Corollary 5.2.2 For each element r in 〈L〉, we have ar∗ρr∗m = 1.

Proof. This is the case p = 1 in Lemma 5.2.1. �

5.3 Apartments

In this section, the letter L stands for a constrained set of involutions of S,
the letter ρ for an injective map from 〈L〉 to S. We assume that

rρr = {1ρ}

for each element r in 〈L〉, we set m := 1ρ, we fix elements y in X and z in
ym, and we define Cyz to be the union of the sets

yr∗ρ ∩ zr

with r ∈ 〈L〉.
Recall from Corollary 5.2.2 that, for each element r in 〈L〉, yr∗ρ ∩ zr contains
exactly one element.

Let T be a closed subset of S. A subset W of X is called apartment of T if
|W ∩ wt| = 1 for any two elements w ∈W and t ∈ T .

It is the goal of this section to show that Cyz is an apartment of 〈L〉.
Since z ∈ ym and m = 1ρ, z ∈ y1ρ. Thus, z ∈ Cyz.

Lemma 5.3.1 For each element r in 〈L〉, |Cyz ∩ zr| = 1.

Proof. Let r be an element in 〈L〉. The definition of Cyz yields

Cyz ∩ zr = yr∗ρ ∩ zr,
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and from Lemma 5.2.2 we know that |yr∗ρ ∩ zr| = 1. Thus, |Cyz ∩ zr| = 1. �

Lemma 5.3.2 Let p and q be elements in 〈L〉 such that p in L1(q). Let v be
an element in zp, and let w be an element in vq. Assume that w ∈ Cyz. Then
v ∈ Cyz.

Proof. From w ∈ vq and v ∈ zp we obtain w ∈ zpq. Thus, pq possesses an
element r such that w ∈ zr. Thus, as w ∈ Cyz, w ∈ yr∗ρ. Thus, as v ∈ wq∗,
v ∈ yr∗ρq∗.
From p ∈ L1(q) and r in pq we obtain r∗ρq∗ = {p∗ρ}; cf. Lemma 4.1.2. Thus,
as v ∈ yr∗ρq∗, v ∈ yp∗ρ. Thus, as v ∈ zp, v ∈ Cyz. �

As earlier, we shall now write ` instead of `L.

Lemma 5.3.3 Let p and q be elements in 〈L〉 such that p in L1(q). Let x be
an element in Cyz ∩ zp. Then |Cyz ∩ xq| = 1.

Proof. We are assuming that p ∈ L1(q). Thus, pq possesses an element r with
`(r) = `(p) + `(q). Let w denote the uniquely determined element in Cyz ∩ zr;
cf. Lemma 5.3.1.

From w ∈ zr and r ∈ pq we obtain w ∈ zpq. Thus, zp possesses an element v
such that w ∈ vq. Thus, as p ∈ L1(q) and w ∈ Cyz, v ∈ Cyz; cf. Lemma 5.3.2.
It follows that v ∈ Cyz ∩ zp. Thus, as x ∈ Cyz ∩ zp, v = x; cf. Lemma 5.3.1.

From w ∈ vq and v = x we obtain w ∈ xq. Thus, as w ∈ Cyz,

w ∈ Cyz ∩ xq.

In order to show |Cyz ∩xq| = 1 we fix an element w′ in Cyz ∩xq. We shall see
that w′ = w.

From w′ ∈ xq and x ∈ zp we obtain w′ ∈ zpq. From p ∈ L1(q) and r ∈ pq we
obtain pq = {r}. (Recall that L is assumed to be constrained.) Thus, w′ ∈ zr.
Thus, as w′ ∈ Cyz, w′ ∈ Cyz ∩ zr. Thus, as Cyz ∩ zr = {w}, w′ = w. �

For the remainder of this section, the (constrained) set L is assumed to be
dichotomic.

Lemma 5.3.4 For any two elements x in Cyz and l in L, we have |Cyz∩xl| =
1.

Proof. Let x be an element in Cyz. Then, by definition, 〈L〉 possesses an
element r such that

x ∈ yr∗ρ ∩ zr.

Let l be an element in L. If r ∈ L1(l), we are done by Lemma 5.3.3. Therefore,
we assume that r /∈ L1(l).
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Assuming that r /∈ L1(l), we obtain r ∈ L−1(l). (Recall that L is assumed to
be dichotomic.) This means that 〈L〉 possesses an element q such that r ∈ ql
and `(r) = `(q) + 1.

From x ∈ zr and r ∈ ql we obtain x ∈ zql. Thus, zq possesses an element w
such that x ∈ wl. From x ∈ wl we obtain w ∈ xl.
From r ∈ ql and `(r) = `(q) + 1 we obtain q ∈ L1(l). Thus, as w ∈ zq, x ∈ wl,
and x ∈ Cyz, we must have w ∈ Cyz; cf. Lemma 5.3.2. Thus, as w ∈ xl,

w ∈ Cyz ∩ xl.

In order to show |Cyz ∩ xl| = 1 we fix an element w′ in Cyz ∩ xl. We shall see
that w′ = w.

From w ∈ xl and w′ ∈ xl we obtain w′ = w or w′ ∈ wl; cf. Lemma 2.1.1(ii).

Assume, by way of contradiction, that w′ ∈ wl. Then, as w ∈ zq, w′ ∈ zql. On
the other hand, as L is assumed to be constrained, we obtain from q ∈ L1(l)
and r ∈ ql that ql = {r}. Thus, w′ ∈ zr. Thus, as w′ ∈ Cyz, w′ ∈ yr∗ρ.
From w′ ∈ xl and x ∈ yr∗ρ we obtain w′ ∈ yr∗ρl. From q ∈ L1(l) and r ∈ ql
we obtain r∗ρl = {q∗ρ}; cf. Lemma 4.1.2. Thus, w′ ∈ yq∗ρ.
From w′ ∈ yr∗ρ and w′ ∈ yq∗ρ we obtain q∗ρ = r∗ρ. Thus, as ρ is assumed to
be injective, we conclude that q = r, contrary to `(r) = `(q) + 1. �

Lemma 5.3.5 For any two elements x in Cyz and r in 〈L〉, we have 1 ≤
|Cyz ∩ xr|.

Proof. Let x be an element in Cyz, and let r be an element in 〈L〉. There
is nothing to show if r = 1. Therefore, we assume that r 6= 1. Thus, by
Lemma 1.6.2, there exist elements q in 〈L〉 and l in L such that r ∈ ql and
`(r) = `(q) + 1.

From r ∈ ql and `(r) = `(q) + 1 we obtain that q ∈ L1(l). Thus, as L is
assumed to be constrained, ql = {r}.
By induction, we may assume that Cyz∩xq is not empty. Let w be an element
in Cyz ∩ xq. From Lemma 5.3.4 we obtain an element v in Cyz ∩ wl. From
v ∈ wl and w ∈ xq we obtain v ∈ xql. Thus, as ql = {r}, v ∈ xr. Thus,
v ∈ Cyz ∩ xr. �

Lemma 5.3.6 Let p and q be elements in 〈L〉 with p 6= q, and let l be an
element in L such that q ∈ pl. Let v denote the uniquely determined element
in Cyz ∩ zp, let w denote the uniquely determined element in Cyz ∩ zq. Then
w ∈ vl.

Proof. Assume first that p ∈ L1(l). Then, as q ∈ pl, pl = {q}. (Recall that L
is assumed to be constrained.)
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Since p ∈ L1(l), |Cyz ∩ vl| = 1; cf. Lemma 5.3.3. Let w′ denote the element
in Cyz ∩ vl. From w′ ∈ vl and v ∈ zp we obtain w′ ∈ zpl = zq. Thus,
w′ ∈ Cyz ∩ zq = {w}. Thus, as w′ ∈ vl, w ∈ vl.
Assume now that p /∈ L1(l). Then, as p ∈ 〈L〉 and L is assumed to be di-
chotomic, p ∈ L−1(l). Thus, by definition, 〈L〉 possesses an element r such
that p ∈ rl and `(p) = `(r) + 1. It follows that r ∈ L1(l).

From v ∈ zp and p ∈ rl we obtain v ∈ zrl. Thus, zr possesses an element w′

such that v ∈ w′l. From w′ ∈ zr, r ∈ L1(l), v ∈ w′l, and v ∈ Cyz we obtain
w′ ∈ Cyz; cf. Lemma 5.3.2.

Since p ∈ rl, r ∈ pl = {p, q}. If r = p, w′ ∈ Cyz ∩ zp = {v}, contrary to
v ∈ w′l. Thus, r = q. It follows that w′ ∈ Cyz ∩ zq = {w}. Thus, w′ = w.
Thus, as v ∈ w′l, v ∈ wl, and this implies w ∈ vl. �

The following lemma generalizes Lemma 5.3.2. In fact, Lemma 5.3.2 is the
case x = z of Lemma 5.3.7.

Lemma 5.3.7 Let p and q be elements in 〈L〉 such that p in L1(q). Let x be
an element in Cyz, let v be an element in xp, and let w be an element in vq.
Assume that w ∈ Cyz. Then v ∈ Cyz.

Proof. We define r to be the uniquely determined element in 〈L〉 which satisfies
w ∈ xr and set n := `(r).

There is nothing to show if r = 1. Thus, we assume that r 6= 1. Then 1 ≤ n.
Thus, there exist elements

b0, . . . , bn

in x〈L〉 and l1, . . ., ln in L such that x = b0, v = bj for some element j in
{1, . . . , n}, w = bn, and

bi ∈ bi−1li
for each element i in {1, . . . , n}.
For each element i in {0, . . . , n}, we define ri to be the uniquely determined
element in 〈L〉 which satisfies

bi ∈ zri.

(Then x ∈ zr0, v ∈ zrj , and w ∈ zrn.)

Let i be an element in {1, . . . , n}. Then bi−1 ∈ zri−1 and bi ∈ bi−1li. It follows
that bi ∈ zri−1li. Thus, as bi ∈ zri,

ri ∈ ri−1li.

For each element i in {0, . . . , n}, we define ai to be the uniquely determined
element in Cyz ∩ zri. (Then x = a0 and w = an.) We claim that

ai ∈ ai−1〈li〉
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for each element i in {1, . . . , n}.
In order to show this, we fix an element in {1, . . . , n} and call it i.

If ri = ri−1, the definition of ai−1 and ai yields ai = ai−1. In this case, the
claim is obvious. If ri 6= ri−1, we obtain from ri ∈ ri−1li that ai ∈ ai−1li; cf.
Lemma 5.3.6.

Since `(r) = n, a0 = x = b0, an = w = bn, and ai ∈ ai−1〈li〉 for each
element i in {1, . . . , n}, we must have ai = bi for each element i in {0, . . . , n}.
(Here we use the fact that L is assumed to be constrained.) In particular,
v = bj = aj ∈ Cyz. �

Theorem 5.3.8 The set Cyz is an apartment of 〈L〉.

Proof. Let x be an element in Cyz, and let r be an element in 〈L〉. We have
to show |Cyz ∩ xr| = 1.

Due to Lemma 5.3.5, it is enough to show that |Cyz ∩ xr| ≤ 1. In order to
show this, we fix elements w and w′ in Cyz ∩ xr. We shall see that w = w′.

There is nothing to show if r = 1. Thus, we assume that r 6= 1.

From r 6= 1 we obtain elements q in 〈L〉 and l in L such that r ∈ ql and
`(r) = `(q) + 1; cf. Lemma 1.6.2. It follows that q ∈ L1(l).

From w ∈ xr and r ∈ ql we obtain w ∈ xql. Thus, xq possesses an element v
such that w ∈ vl. Thus, as q ∈ L1(l) and w ∈ Cyz, v ∈ Cyz; cf. Lemma 5.3.7.

Similarly, we obtain an element v′ in xq such that w′ ∈ v′l and v′ ∈ Cyz.
Since `(q) = `(r) − 1, we may assume, by induction, that |Cyz ∩ xq| ≤ 1.
Thus, as v ∈ Cyz ∩ xq and v′ ∈ Cyz ∩ xq, v = v′. Thus, as w ∈ Cyz ∩ vl and
w′ ∈ Cyz ∩ v′l, w = w′; cf. Lemma 5.3.4. �

5.4 Twinned constrained sets of involutions

In this section, the letters H and K stand for constrained sets of involutions
of S.2 We assume H and K to be twinned. The twinning maps from 〈K〉 and
〈H〉 to S will be denoted by ρ and λ, respectively, and we define m to be the
conjugating element of H and K.

Lemma 5.4.1 Let h be an element in H, and let k denote the uniquely
determined element in K such that hλ = kρ. Then nh = nk.

Proof. By definition, we have hhλ = {m} = kρk. Thus, as hλ = kρ, we obtain
the desired equation nh = nk from Corollary 5.1.4. �

2 Also here, we emphasize that in this section the constrained sets H and K
are never assumed to satisfy the exchange condition (to be Coxeter sets). The
strongest assumption which we will impose on L will be dichotomy.
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We now come to apartments. Therefore, we assume the (constrained) sets H
and K to be dichotomic. We also assume that K (and hence H) does not
contain thin elements.

We fix elements y and z in X satisfying z ∈ ym. We define Ayz to be the
union of the sets yp ∩ zpλ∗ with p ∈ 〈H〉. By Byz we mean the union of the
sets yq∗ρ ∩ zq with q ∈ 〈K〉. From Theorem 5.3.8 we know that Ayz is an
apartment of 〈H〉 and Byz an apartment of 〈K〉.

Proposition 5.4.2 Let p be an element in 〈H〉, let q be an element in 〈K〉,
let v denote the uniquely determined element in yp ∩ Ayz, let w denote the
uniquely determined element in Byz∩zq. Then pλ = qρ if and only if w ∈ vm.

Proof. Assume first that pλ = qρ. Then, as v ∈ yp ∩Ayz, v ∈ zqρ∗. From this
we obtain z ∈ vqρ. Thus, as w ∈ zq, w ∈ vqρq. Thus, as qρq = {m}, w ∈ vm.

Assume now that w ∈ vm. Then, as v ∈ yp, w ∈ ypm. On the other hand, we
are assuming that w ∈ Byz ∩ zq, so that w ∈ yq∗ρ. Thus, q∗ρ ∈ pm.

Let t denote the uniquely determined element in 〈H〉 satisfying tλ = qρ; cf.
Lemma 4.3.3. We shall be done if we succeed in showing that t = p.

From tλ = qρ we obtain t∗λ = q∗ρ; cf. Lemma 4.4.1. (Recall that H and K are
assumed to be dichotomic.) Thus, as q∗ρ ∈ pm, t∗λ ∈ pm. Thus, by Lemma
4.2.2, `H(t) ≤ `H(p).

From tλ = qρ we also obtain `H(t) = `K(q); cf. Lemma 4.4.2. Thus, `K(q) ≤
`H(p).

Similarly, one proves `H(p) ≤ `K(q), so that `H(p) = `K(q). Thus, as `H(t) =
`K(q), `H(p) = `H(t). Thus, as t∗λ ∈ pm, Lemma 4.2.3 yields t = p. �

Theorem 5.4.3 For each element v in Ayz, we have |vm ∩Byz| = 1.

Proof. Let v be an element in Ayz, let p denote the uniquely determined
element of 〈H〉 satisfying v ∈ yp, let q denote the uniquely determined element
of 〈K〉 satisfying pλ = qρ, and let w denote the uniquely determined element
of Byz ∩ zq. Then, by Proposition 5.4.2, w ∈ vm.

In order to show uniqueness we fix an element w′ in vm ∩ Byz. We shall be
done if we succeed in showing that w = w′.

Let q′ denote the uniquely determined element of 〈K〉 satisfying w′ ∈ zq′.
Then, as w′ ∈ vm, pλ = q′ρ; cf. Proposition 5.4.2. Thus, as pλ = qρ, q′ρ = qρ.
Thus, as ρ is assumed to be injective, q′ = q. Thus, as w′ ∈ zq′, w′ ∈ zq.
Thus, as Byz ∩ zq = {w}, w = w′. �

Similar to Theorem 5.4.3 one can show that, for each element w in Byz, there
exists exactly one element v in Ayz such that w ∈ vm. Thus, the restriction
of m to Ayz ×Byz establishes a bijective map between Ayz and Byz.
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Buildings

In this chapter, we connect Coxeter sets of hypergroups, Coxeter schemes,
buildings, and twin buildings.

Section 6.2 is devoted to the proof of the fact that Coxeter sets of hypergroups
and Coxeter groups are equivalent notions. We shall prove this fact in Theorem
6.2.6. In Section 6.3, we associate a building to each Coxeter scheme. (This
will be done in Theorem 6.3.1.) In Section 6.4 (more specifically, in Theorem
6.4.9) we, conversely, will associate a Coxeter scheme to each building.

That the two constructions given by Theorem 6.3.1 and Theorem 6.4.9 are
inverse to each other will be the contents of Section 6.5. In fact, Theorem 6.5.2
will show that Coxeter schemes and buildings are equivalent notions.1 Finally,
Theorem 6.6.2 shows that twinned Coxeter sets give rise to twin buildings.
Whether each twin building arises from our construction seems to be unknown.

We shall now fix terminology and notation which will be needed in this chap-
ter. In order to do so we fix a set and call it I.

We define F(I) to be the free monoid over I and denote by ∗ the multiplication
of F(I).

Let i and j be elements in I such that i 6= j, let n be a positive integer, and
let i1, . . ., in be elements in I such that, for each element m in {1, . . . , n},
im = i if m is odd and im = j if m is even. We define

fn(i, j) := i1 ∗ · · · ∗ in

and will use this notation at several instances throughout this chapter.

1 The reader might argue that this was shown already in [8; Theorem E]. This is
true. However, the definition of Coxeter schemes that was suggested in [8; Section
5.1] (and used in the proof of [8; Theorem E]) was not entirely independent
from scheme theory, it was based on the free monoid over the generating set of
involutions. Of course, the definition from [8] and the one used in the present
notes are equivalent.
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We denote by λI the uniquely determined monoid homomorphism from F(I)
to the additive monoid of the nonnegative integers which sends each element
i of I to 1.2

Let c be a Coxeter matrix over I (in the sense of [4; 2.11]).

The set of all elements in F(I) which are reduced with respect to c (in the
sense of [5; Section 3.1]) will be denoted by Fc(I). We shall always speak
about c-reduced elements if we mean elements in F(I) that are reduced with
respect to c.

If two elements e and f of F(I) are c-homotopic (in the sense of [5; Section
3.4.1]), we indicate this by writing e ∼c f .
Note that ∼c is an equivalence relation on F(I). From the definition of ∼c one
obtains that each equivalence class of ∼c is either subset of Fc(I) or disjoint
from Fc(I). We define Hc(I) to be the set of the equivalence classes of ∼c
which are subsets of Fc(I).

For each element f in Fc(I), the equivalence class of ∼c which contains f will
be denoted by [f ]c.

6.1 Hypergroups and free monoids

In this short section, the letter S stands for a hypergroup.

Let I be a set, and let ρ be a monoid homomorphism from F(I) to the monoid
of all nonempty subsets of 〈L〉. Assume that |ρ(i)| = 1 for each element i in
I and that ρ|I is injective. Define R to be the set of all elements s in S for
which there exists an element i in I with ρ(i) = {s}.

Lemma 6.1.1 Set ` := `R and λ = λI . Let s be an element in 〈R〉. Then the
following hold.

(i) Let f be an element in F(I) with s ∈ ρ(f). Then `(s) ≤ λ(f).

(ii) There exists an element f in F(I) such that s ∈ ρ(f) and `(s) = λ(f).

Proof. (i) Set n := λ(f). There is nothing to show if n = 0. Thus, we assume
that 1 ≤ n.

From 1 ≤ n we obtain elements i1, . . ., in in I such that f = i1 ∗ · · · ∗ in. Thus,
as s ∈ ρ(f),

s ∈ ρ(i1 ∗ · · · ∗ in) = ρ(i1) · · · ρ(in) ⊆ Rn.

Thus, `(s) ≤ λ(f).

(ii) Set n := `(s). Then there exist elements r1, . . ., rn in R such that

s ∈ r1 · · · rn.
2 The map λ can be thought of as a “length function” on F(I).
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Then there exist elements i1, . . ., in in I such that ρ(im) = {rm} for each
element m in {1, . . . , n}.
Set f := i1 ∗ · · · ∗ in. Then

s ∈ ρ(i1) · · · ρ(in) = ρ(i1 ∗ · · · ∗ in) = ρ(f)

and `(s) = λ(f). �

6.2 Coxeter sets of hypergroups and free monoids

Throughout this section, the letter S stands for a hypergroup, the letter L for
a Coxeter set of S. Instead of `L we shall write `.

Let cL denote the restriction of c to L×L.3 Then cL is a Coxeter matrix over
L. For the remainder of this section, we shall write ∼L instead of ∼cL .

We denote by ρL the uniquely determined monoid homomorphism from F(L)
to the monoid of all nonempty subsets of 〈L〉 which sends each element l in
L to {l}. Within this section, however, we set ρ := ρL so that we have

ρ(l) = {l}

for each element l in L.

Lemma 6.2.1 Let d and e be elements in F(L) such that d ∼L e. Then
ρ(d) = ρ(e).

Proof. Let h and k be elements in L such that h 6= k, assume that c(h, k) is
an integer, and set n := c(h, k). Then, by Lemma 2.3.4, Rn(h, k)∩Rn(k, h) is
not empty.4

On the other hand, by Lemma 2.4.5, |Rn(h, k)| = 1 and |Rn(k, h)| = 1. Thus,

ρ(fn(h, k)) = Rn(h, k) = Rn(k, h) = ρ(fn(k, h)).

Now the statement follows by induction. �

Recall that λL stands for the uniquely determined monoid homomorphism
from F(L) to the additive monoid of the nonnegative integers which sends
each element l of L to 1. Within this section, we shall write λ instead of λL.

Theorem 6.2.2 Let d and e be elements in F(L). Assume that λ(d) = λ(e)
and that ρ(d) ∩ ρ(e) possesses an element s with `(s) = λ(d). Then d ∼L e.

3 Recall from Section 2.3 that, for any two involutions h and k of S, c(h, k) stands
for the Coxeter number of h and k.

4 Recall from Section 2.3 that Rn(h, k) is our notation for the set l1 · · · ln where,
for each element i in {1, . . . , n}, li = h if i is odd and li = k if i is even.
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Proof. The statement is obviously true if λ(d) = 0. Therefore, we assume
that 1 ≤ λ(d).

From 1 ≤ λ(d) we obtain elements d′ in F(L) and h in L such that d = d′ ∗h.
Thus, as s ∈ ρ(d), s ∈ ρ(d′)h. Thus, ρ(d′) possesses an element p such that
s ∈ ph.

Since p ∈ ρ(d′), `(p) ≤ λ(d′); cf. Lemma 6.1.1(i). Thus, as `(s) = λ(d) =
λ(d′) + 1, `(p) ≤ `(s)− 1. Since s ∈ ph, `(s)− 1 ≤ `(p). Thus, `(p) = `(s)− 1.
Thus, as s ∈ ph, s ∈ L−1(h).

Let e′ be an element in F(L), and let k be an element in L such that e =
e′ ∗ k. Then, as s ∈ ρ(e), s ∈ ρ(e′)k. Thus, ρ(e′) possesses an element q such
that s ∈ qk. Similar to the reasoning in the previous paragraph, we obtain
s ∈ L−1(k).

Assume that h = k. Then, as L is assumed to be constrained, we obtain p = q;
cf. Lemma 2.4.1. Thus, by induction, d′ ∼L e′. Thus, as h = k, d ∼L e, and
we are done.

Assume now that h 6= k, and set M := {h, k}. Then, as s ∈ L−1(h) and
s ∈ L−1(k), 〈M〉 is finite; cf. Lemma 3.4.1. Thus, by Theorem 3.4.2, M−1(M)
contains exactly one element. Staying consistent with the notation of Section
3.4 we denote this element by mM .

Set m := mM . Then, by Proposition 2.3.6, `M (m) = c(h, k). Now recall from
Lemma 3.1.1 that `M (m) = `(m). Thus,

`(m) = c(h, k).

Since s ∈ L−1(h) and s ∈ L−1(k), s ∈ L−1(M). Thus, by Theorem 3.1.5,
s ∈ L−1(〈M〉). Thus, as m ∈ 〈M〉, s ∈ L−1(m). Thus, 〈L〉 possesses an
element r such that s ∈ rm and `(s) = `(r) + `(m).

Since m ∈M−1(h), 〈M〉 possesses an element a such that m ∈ ah and `(m) =
`(a) + 1.

From s ∈ rm, `(s) = `(r) + `(m), m ∈ ah, and `(m) = `(a) + 1 we obtain an
element p′ in ra such that s ∈ p′h, `(p′) = `(r) + `(a), and `(s) = `(p′) + 1;
cf. Lemma 1.6.3.

Now recall that s ∈ ph and `(s) = `(p)+1. Thus, as s ∈ p′h and `(s) = `(p′)+1,
we must have p′ = p; cf. Lemma 2.4.1. It follows that

p ∈ ra and `(p) = `(r) + `(a).

Set µ := `(m). Then `(a) = µ− 1. Thus, by Lemma 2.2.2, a ∈ Rµ−1(h, k) or
a ∈ Rµ−1(k, h). It follows that a ∈ ρ(fµ−1(h, k)) or a ∈ ρ(fµ−1(k, h)). Set

b :=

{
fµ−1(h, k) if µ is odd,
fµ−1(k, h) if µ is even.

Then, as m ∈ ah and `(m) = `(a) + 1,
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a ∈ ρ(b) and `(a) = λ(b).

Now recall that r ∈ 〈L〉. Thus, F(L) possesses an element a such that

r ∈ ρ(a) and `(r) = λ(a);

cf. Lemma 6.1.1(ii).

From p ∈ ra, r ∈ ρ(a), and a ∈ ρ(b) we obtain

p ∈ ρ(a)ρ(b) = ρ(a ∗ b).

From `(p) = `(r) + `(a), `(r) = λ(a), and `(a) = λ(b) we obtain

λ(d′) = `(p) = λ(a) + λ(b) = λ(a ∗ b).

Thus, as p ∈ ρ(d′), induction yields

d′ ∼L a ∗ b.

It follows that
d ∼L a ∗ b ∗ h.

Similarly,
e ∼L a ∗ c ∗ k,

where

c :=

{
fµ−1(k, h) if µ is odd,
fµ−1(h, k) if µ is even.

Now recall that µ = c(h, k). Thus, b ∗ h ∼L c ∗ k. It follows that d ∼L e. �

We set
Fc(L) := FcL(L).

(Recall that cL is a Coxeter matrix over L.)

Proposition 6.2.3 Let f be an element in F(L). Then the following state-
ments are equivalent.

(a) The set ρ(f) possesses an element s such that `(s) = λ(f).

(b) We have f ∈ Fc(L).

Proof. (a) ⇒ (b) Assume that f /∈ Fc(L). Then there exist elements a and b
in Fc(L) and l in L such that

f ∼L a ∗ l ∗ l ∗ b;

cf. [5; Proposition 2(i)]. From f ∼L a ∗ l ∗ l ∗ b we obtain ρ(f) = ρ(a)llρ(b);
cf. Lemma 6.2.1. Thus, for each element s in ρ(f),
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s ∈ ρ(a)llρ(b) ⊆ ρ(a)ρ(b) ∪ ρ(a)lρ(b);

cf. 2.1.1(ii). It follows that `(s) ≤ λ(f) − 1 for each element s in ρ(f); cf.
Lemma 6.1.1(i).

(b) ⇒ (a) Assume the statement to be false. Among the elements in Fc(L)
violating the implication we fix f such that λ(f) is as small as possible.

The choice of f forces 1 ≤ λ(f). Thus, there exist elements e in Fc(L) and l
in L such that f = e ∗ l. From f = e ∗ l we obtain λ(e) = λ(f)− 1. Thus, the
minimal choice of f yields an element q in ρ(e) such that `(q) = λ(e).

Assume that q ∈ L1(l). Then, by definition, ql possesses an element s such
that `(s) = `(q) + 1. Thus, as `(q) = λ(f)−1, `(s) = λ(f). On the other hand,
s ∈ ql ⊆ ρ(e)l = ρ(e ∗ l) = ρ(f), contrary to the choice of f .

Assume that q /∈ L1(l). Then, by Lemma 2.5.2, q ∈ L−1(l). Thus, 〈L〉 possesses
an element p such that q ∈ pl and `(q) = `(p)+1. Since p ∈ 〈L〉, there exists an
element d in Fc(L) such that p ∈ ρ(d) and `(p) = λ(d); cf. Lemma 6.1.1(ii).
Then λ(d ∗ l) = λ(f) and

q ∈ ρ(d ∗ l) ∩ ρ(e).

Thus, by Theorem 6.2.2, d ∗ l ∼L e. Thus, as f = e ∗ l, f /∈ Fc(L), contrary to
the choice of f . �

Corollary 6.2.4 Let f be an element in Fc(L). Then |ρ(f)| = 1.

Proof. Since we have ρ(l) = {l} for each element l in L, we may assume that
f /∈ L.

Since f ∈ Fc(L), ρ(f) possesses an element q such that `(q) = λ(f); cf. Propo-
sition 6.2.3. Since f /∈ L, there exist elements e in Fc(L) and l in L such that
f = e ∗ l. From q ∈ ρ(f) and f = e ∗ l we obtain q ∈ ρ(e)l.

By induction (on λ(f)), ρ(e) possesses an element p such that ρ(e) = {p}.
Thus, as q ∈ ρ(e)l, q ∈ pl.
From p ∈ ρ(e) we also obtain `(p) ≤ λ(e); cf. Lemma 6.1.1(i). Thus, as
`(q) = λ(f) and q ∈ pl, p ∈ L1(l). Thus, as L is assumed to be constrained,
q ∈ pl yields pl = {q}. Thus, as ρ(e) = {p}, ρ(f) = {q}. �

The following result is a partial converse of Lemma 6.2.1.

Corollary 6.2.5 Let d and e be elements in Fc(L) such that ρ(d) = ρ(e).
Then d ∼L e.

Proof. Since d ∈ Fc(L), ρ(d) possesses an element p such that `(p) = λ(d);
cf. Proposition 6.2.3. Similarly, λ(e) possesses an element q such that `(q) =
λ(e).

On the other hand, by Corollary 6.2.4, |ρ(d)| = 1 and |ρ(e)| = 1. Thus, p = q.
It follows that λ(d) = `(p) = `(q) = λ(e) and, by Theorem 6.2.2, d ∼L e. �
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For the remainder of this section, we set

H(L) := HcL(L).

Thus, H(L) is the set of all equivalence classes of ∼L which are subsets of
Fc(L).

We also set
[f ] := [f ]cL

for each element f in Fc(L). Thus, for each element f in Fc(L), [f ] is the
equivalence class of ∼L which contains f .

We are now in the position to prove the main result of this section. Recall
that the letter L stands for a Coxeter set of the hypergroup S.

Theorem 6.2.6 There exists a bijective map ω from 〈L〉 to H(L) such that,
for any two elements s in 〈L〉 and f in Fc(L), ω(s) = [f ] if and only if s ∈ ρ(f).

Proof. Let s be an element in 〈L〉. Then Fc(L) possesses an element f such
that s ∈ ρ(f); cf. Lemma 6.1.1(ii) and Proposition 6.2.3. We define

ω(s) := [f ].

Let d and e be elements in Fc(L) such that s ∈ ρ(d) and s ∈ ρ(e). Then, by
Corollary 6.2.4, ρ(d) = ρ(e). Thus, by Corollary 6.2.5, d ∼L e. This shows
that ω is well defined.

That ω is surjective is obvious. That ω is injective follows from Corollary
6.2.4.

That ω(s) = [f ] if and only if s ∈ ρ(f) for any two elements s in 〈L〉 and f in
Fc(L) follows right from the definition of ω. �

Since there is a natural bijection between H(L) and the Coxeter group of type
cL, Theorem 6.2.6 establishes a bijection between Coxeter sets of hypergroups
and Coxeter groups.

The bijective map ω which was established in Theorem 6.2.6 will be called
the signature of L.

6.3 From Coxeter schemes to buildings

It is the purpose of this section to associate to each Coxeter scheme a building.

First we give the definition of a Coxeter scheme.

Let S be a scheme, and let L be a Coxeter set of S. The scheme S is called a
Coxeter scheme with respect to L if S = 〈L〉.
And here is the definition of a building. We take it from [7].
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Let c be a Coxeter matrix with vertex set I, and let (W, r) be a Coxeter system
of type c. A building of type c is a pair (X, δ), where X is a chamber system
whose index set is I and δ is a function from X ×X to W , such that

δ(y, z) = rf ⇔ there is a gallery in X of type f from y to z

for each c-reduced word f in F(I) and for each ordered pair (y, z) of chambers.5

A chamber system X is called regular if any two equivalence classes of a given
equivalence relation of X have the same cardinality. For the remainder of these
notes, all buildings are assumed to be regular.

Let X be a set, let S be a scheme on X, let L be a set of involutions of S, and
assume that S is a Coxeter scheme with respect to L. We shall now associate
a building to S.

Let l be an element in L. Then, by Lemma 2.1.1(i), l is a symmetric binary
relation and, by Lemma 2.1.1(ii), l is transitive. Thus, 1X ∪ l is an equivalence
relation. It follows that

(X, {1X ∪ l | l ∈ L})

is a regular chamber system (whose index set is L).

Let (W, r) be a Coxeter system of type cL.6

We denote by ψ the signature of {rl | l ∈ L} and by ω the signature of L.
For any two elements y and z in X, we define σ(y, z) to be the uniquely
determined element s in S satisfying (y, z) ∈ s. Then

ψ−1 ◦ ω ◦ σ

is a map from X ×X to W . It will be called the distance function associated
to the Coxeter set L.

Theorem 6.3.1 Let X be a set, let S be a scheme on X, let L be a set of
involutions of S such that S is a Coxeter scheme with respect to L, and let δ
denote the distance function associated to L. Then (X, δ) is a building of type
cL.

Proof. Let (W, r) be a Coxeter system of type cL, let ψ denote the signature of
the set {rl | l ∈ L}, and let ω denote the signature of L. For any two elements

5 Here r stands for the uniquely determined monoid homomorphism from F(I) to
W which sends each element i of I to ri. - Note that, in contrast to [7], where
chamber systems are viewed as graphs, we consider chamber systems to be sets
endowed with a collection of equivalence relations. Since we adopt the notion of
a chamber system from [7], each equivalence class of each equivalence relation of
a chamber system has at least two elements. - Note also that this definition does
not distinguish between a chamber system and the underlying set of a chamber
system. We shall have to take that into account in our further consideration.

6 Recall that cL is a Coxeter matrix over L.



6.4 From buildings to Coxeter schemes 75

y and z in X, define σ(y, z) to be the uniquely determined element s in S
satisfying (y, z) ∈ s. Then, as δ is the distance function associated to L, we
have

δ = ψ−1 ◦ ω ◦ σ.

Let y and z be elements in X, and let f be a cL-reduced element in F(L). We
have to show that

δ(y, z) = rf ⇔ there is a gallery in X of type f from y to z.

Set s := σ(y, z). Then

δ(y, z) = (ψ−1 ◦ ω ◦ σ)(y, z) = ψ−1(ω(σ(y, z))) = ψ−1(ω(s)).

Thus, setting [f ] := [f ]cL , we have

δ(y, z) = rf ⇔ ψ−1(ω(s)) = rf ⇔ ω(s) = [f ].

Following our notation of Section 6.2 we now denote by ρL the uniquely de-
termined monoid homomorphism from F(L) to the monoid of all nonempty
subsets of 〈L〉 which sends each element l in L to {l}. Set ρ := ρL. Then, by
Theorem 6.2.6,

ω(s) = [f ] ⇔ s ∈ ρ(f).

Since (y, z) ∈ s, this last statement means that there is a gallery in X of type
f from y to z.

That (X, δ) has type cL follows from the definition of δ. �

The building (X, δ) which was constructed in Theorem 6.3.1 is called the
building associated to the Coxeter scheme S.

6.4 From buildings to Coxeter schemes

In this section, we associate to each building a Coxeter scheme.

Let (X, δ) be a (regular) building. We denote by c the type of (X, δ) and by I
the vertex set of c. Then, by definition, there exists a Coxeter system (W, r)
of type c such that δ is a map from X ×X to W satisfying

δ(y, z) = rf ⇔ there is a gallery in X of type f from y to z

for any three elements y and z in X and f in Fc(I).

For each element w in W , we set

sw := {(y, z) ∈ X ×X | δ(y, z) = w}.

We define
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S := {sw | w ∈W}.

Note that, for each element w in W , sw is the set of all preimages of w under
δ. Thus, w 7→ sw is a bijective map from W to S.

Proposition 6.4.1 The set S is a scheme on X.

Proof. For any two elements y and z in X, we have (y, z) ∈ sδ(y,z). For any
four elements u and v in W and y and z in X with (y, z) ∈ su ∩ sv, we have
u = δ(y, z) = v and then su = sv. Thus, S is a partition of X ×X.

Note also that s1W = 1X (where 1W is the identity of the group W and 1X
the identity on X) and that sw−1 = (sw)∗ for each element w in W . Thus,
in order to show that S is a scheme, we just have to verify the regularity
condition for S.

Let u, v, and w be elements in W , let y be an element in X, let z be an
element in ysw, and set

A := ysu ∩ zsv∗ .

We have to show that the cardinality a of A does not depend on y or z.

Let d be an element in Fc(I) such that u = rd, let e be an element in Fc(I)
such that v = re, and let f be an element in Fc(I) such that w = rf . By
induction, we may assume that e ∈ I. We set i := e.

Let x be an element in A. From x ∈ ysu and u = rd we obtain a gallery of
type d from y to x. Moreover, as d ∈ Fc(I), there exists at most one such
gallery; cf. [5; Theorem 2]. From z ∈ xsv and v = ri we obtain a gallery of
type i from x to z. This shows that a is equal to the number of galleries of
type d ∗ i from y to z.

Assume, firstly, that d ∗ i ∈ Fc(I). Then, by [5; Theorem 2], there is at most
one gallery of type d ∗ i from y to z. This means that a = 0 if d ∗ i and f are
not c-homotopic and a = 1 if they are. Thus, we are done in this case.

Assume, secondly, that f ∗ i ∈ Fc(I). Assume that a 6= 0. From x ∈ ysu and
u = rd we obtain a gallery of type d from y to x. From z ∈ ysw, w = rf ,
z ∈ xsv, and v = ri we obtain a gallery of type f ∗ i from y to x. Thus, as d
and f ∗ i both are c-reduced, d ∼c f ∗ i.
Thus, for each element x in zsv, there exists a gallery of type d from y to x,
and that means that x ∈ ysu. Thus, a is equal to the size of the i-equivalence
classes minus 1.

Assume, finally, that

d ∗ i /∈ Fc(I) and f ∗ i /∈ Fc(I).

From d ∈ Fc(I) and d ∗ i /∈ Fc(I) we obtain an element d′ in Fc(I) such that
d ∼c d′ ∗ i; cf. [4]. Similarly, as f ∈ Fc(I) and f ∗ i /∈ Fc(I), there exists an
element f ′ in Fc(I) such that f ∼c f ′ ∗ i.
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Assume a 6= 0. From x ∈ ysu and u = rd we obtain a gallery of type d′ ∗ i
from y to x. Thus, there exists an element x′ in X with a gallery of type d′

from y to x′ and a gallery of type i from x′ to x. Similarly, there exists an
element z′ in X with a gallery of type f ′ from y to z′ and a gallery of type i
from z′ to z.

The two galleries of type i yield a gallery of type i ∗ i from x′ to z (via x).
Thus, x′ = z or there is a gallery of type i from x′ to z.

Assume that x′ = z. Then there exist galleries of type d′ and of type f from
y to z. Thus, d′ ∼c f , and from this we obtain

d ∼c d′ ∗ i ∼c f ∗ i ∼c f ′ ∗ i ∗ i,

contrary to d ∈ Fc(I).

Thus, there is a gallery of type i from x′ to z. Thus, there exist galleries of
type d and of type f from y to z. It follows that d ∼c f , and that implies that
d′ ∼c f ′. Since d and f both are reduced, this implies x′ = z′. Thus, A consists
of exactly the elements in the i-equivalence class of z that are different from
x′ and z. Thus, a is equal to the size of the i-equivalence classes minus 2. �

We set
L := {sri | i ∈ I}.

Then we have the following.

Lemma 6.4.2 The set L consists of involutions of S.

Proof. The set X is assumed to be a chamber system with index set I. Thus,
for each element i in I, 1X ∪ sri is an equivalence relation.7 Thus, for each
element i in I, sri is an involution. �

We define ρI to be the uniquely determined monoid homomorphism from F(I)
to the monoid of all nonempty subsets of S which sends each element i of I
to {sri}. For the remainder, however, of this section, we set ρ := ρI . Thus, we
have

ρ(i) = {sri}

for each element i in I.

Lemma 6.4.3 Let y and z be elements in X, and let f be an element in
F(I). Then z ∈ yρ(f) if and only if there exists a gallery in X of type f from
y to z.

Proof. We may assume that f is not the neutral element of F(I). Thus, there
exist elements i1, . . ., in in I such that f = i1 ∗ . . . ∗ in. Thus,

7 By 1X we mean the identity on X.



78 6 Buildings

ρ(f) = ρ(i1 ∗ . . . ∗ in) = ρ(i1) . . . ρ(in) = sri1 . . . srin .

Thus, we have z ∈ yρ(f) if and only if z ∈ y(sri1 . . . srin ), and this means
that there exist elements x0, x1, . . ., xn in X such that y = x0, z = xn, and
xm ∈ xm−1srim for each element m in {1, . . . , n}. This latter condition says
that there exists a gallery in X of type f from y to z. �

Lemma 6.4.4 We have S = 〈L〉.

Proof. Let s be an element in S. Then there exists an element w in W such
that s = sw. Let y be an element in X, and let z be an element in ys. Then
z ∈ ysw. Thus, by definition, δ(y, z) = w.

Let f be an element in Fc(I) such that w = rf . Then, as δ(y, z) = w, δ(y, z) =
rf . Thus, by definition, there is a gallery in X of type f from y to z. Thus, by
Lemma 6.4.3, z ∈ yρ(f).

Let i1, . . ., in be elements in I such that f = i1 ∗ · · · ∗ in. Then, as z ∈ yρ(f),

z ∈ yρ(i1 ∗ · · · ∗ in) = y(ρ(i1) · · · ρ(in)) = y(sri1 · · · srin ).

Thus, as z ∈ ys, s ∈ sri1 · · · srin .

Since s has been chosen arbitrarily from S, the claim now follows from Lemma
1.6.1. �

Lemma 6.4.5 Let f be an element in Fc(I). Then ρ(f) = {srf }.

Proof. Let y and z be elements in X. Then z ∈ yρ(f) if and only if there is a
gallery in X of type f from y to z; cf. Lemma 6.4.3. Thus,

z ∈ ysrf ⇔ δ(y, z) = rf ⇔ z ∈ yρ(f).

It follows that ρ(f) = {srf }. �

Recall that λI is our notation for the uniquely determined monoid homomor-
phism from F(I) to the additive monoid of the nonnegative integers which
sends each element i of I to 1. For the remainder, however, of this section, we
set λ := λI . Thus, we have

λ(i) = 1

for each element i in I.

For the remainder of this section, we set ` := `L.

Lemma 6.4.6 Let f be an element in F(I). Then the following hold.

(i) Assume that ρ(f) possesses an element s such that `(s) = λ(f). Then
f ∈ Fc(I).

(ii) Let s be an element in ρ(f), and assume that Fc(I). Then `(s) = λ(f).
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Proof. (i) Assume, by way of contradiction, that f /∈ Fc(I). Then there exist
elements d and e in F(I) and i in I such that

f ∼c d ∗ i ∗ i ∗ e.

Thus, by Lemma 6.4.3,
ρ(f) = ρ(d ∗ i ∗ i ∗ e).

Thus, as s ∈ ρ(f),

s ∈ ρ(d ∗ i ∗ i ∗ e) = ρ(d)ρ(i)ρ(i)ρ(e).

Thus, there exists elements p in ρ(d) and q in ρ(e) such that

s ∈ psrisriq ⊆ pq ∪ psriq.

From p ∈ ρ(d) we obtain `(p) ≤ λ(d); cf. Lemma 6.1.1(i). Similarly, q ∈ ρ(e)
yields `(q) ≤ λ(e). Thus, `(s) ≤ λ(f)− 1, contradiction.

(ii) From Lemma 6.1.1(ii) we know that there exists an element e in F(I)
with s ∈ ρ(e) and `(s) = λ(e).

From s ∈ ρ(e) and `(s) = λ(e) we now obtain e ∈ Fc(I); cf. (i). Thus, by
Lemma 6.4.5, ρ(e) = {s}. From Lemma 6.4.5 we also know that ρ(f) = {s}.
Thus, we have ρ(e) = ρ(f), so that, by Lemma 6.4.3, e ∼c f . In particular,
λ(e) = λ(f). Thus, as `(s) = λ(e), `(s) = λ(f). �

Proposition 6.4.7 The set L is constrained.

Proof. Let q be an element in S, and let p be an element in L1(q). We shall
be done if we succeed in showing that |pq| = 1.

From p ∈ L1(q) we obtain an element r in pq such that `(r) = `(p) + `(q).

Let c be an element in Fc(I) such that p ∈ ρ(c) and `(p) = λ(c), let d be
an element in Fc(I) such that q ∈ ρ(d) and `(q) = λ(d); cf. Lemma 6.1.1(ii).
Then

r ∈ pq ⊆ ρ(c)ρ(d) = ρ(c ∗ d)

and
`(r) = `(p) + `(q) = λ(c) + λ(d) = λ(c ∗ d).

Thus, by Lemma 6.4.6(i), c ∗ d ∈ Fc(I). It follows that ρ(c ∗ d) = {src∗d}; cf.
Lemma 6.4.5. Thus, as pq ⊆ ρ(c ∗ d), |pq| = 1. �

Proposition 6.4.8 The set L satisfies the exchange condition.

Proof. Let k be an element in L, let s be an element in L1(k), and let h be
an element in L with h ∈ L1(s). We have to show that

hs = sk or hs ⊆ L1(k).
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Let f be an element in Fc(L) such that s ∈ ρ(f) and `(s) = λ(f); cf. Lemma
6.1.1(ii). From f ∈ Fc(L) and s ∈ ρ(f) we obtain ρ(f) = {s}; cf. Lemma 6.4.5.
Let j be an element in I such that k = srj . Then

sk = ρ(f)ρ(j) = ρ(f ∗ j).

Thus, as s ∈ L1(k), f ∗ j ∈ Fc(I); cf. Lemma 6.4.6(i).

Similarly, I possesses an element i such that h = sri ,

hs = ρ(i ∗ f),

and i ∗ f ∈ Fc(I).

From f ∗ j ∈ Fc(I) and i ∗ f ∈ Fc(I) we obtain

i ∗ f ∼c f ∗ j or i ∗ f ∗ j ∈ Fc(I);

cf. [1].

Assume that i ∗ f ∼c f ∗ j. Then, by Lemma 6.4.3, ρ(i ∗ f) = ρ(f ∗ j). Thus, as
hs = ρ(i ∗ f) and sk = ρ(f ∗ j), hs = sk, and we are done.

Assume that i∗ f ∗j ∈ Fc(I), and let t be an element in hsk. Then, by Lemma
6.4.6(ii),

`(t) = λ(i ∗ f ∗ j) = λ(i) + λ(f) + λ(j) = 1 + λ(f) + 1 = `(s) + 2,

and we are done. �

Theorem 6.4.9 The set S is a Coxeter scheme with respect to L.

Proof. From Lemma 6.4.2 we know that the elements in L are involutions,
from Lemma 6.4.4 that S = 〈L〉. From Proposition 6.4.7 we know that L is
constrained, from Proposition 6.4.8 that L satisfies the exchange condition. �

The scheme S is called the Coxeter scheme associated to the building (X, δ),
the set L of involutions of S is called the Coxeter set associated to (X, δ).

Let i and j be elements in I such that i 6= j, let n be a positive integer, and
let i1, . . ., in be elements in I such that, for each element m in {1, . . . , n},
im = i if m is odd and im = j if m is even. Recall from Section 2.3 that

Rn(sri , srj ) := sri1 · · · srin .

Recall also that
fn(i, j) := i1 ∗ · · · ∗ in.

Note that
ρ(fn(i, j)) = Rn(sri , srj )

for any two elements i and j in I with i 6= j.
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Recall now that c stands for the type of the building (X, δ).

Lemma 6.4.11 We have cL = c.

Proof. Let i and j be elements in I such that i 6= j, and let n be a positive
integer. Then, by Lemma 6.4.3,

fn(i, j) ∼c fn(j, i)

if and only if
ρ(fn(i, j)) = ρ(fn(j, i)).

Since ρ(fn(i, j)) = Rn(sri , srj ) and ρ(fn(j, i)) = Rn(srj , sri), this latter equa-
tion is equivalent to

Rn(sri , srj ) = Rn(srj , sri).

Setting 1 := 1X , we obtain that Rn(sri , srj ) = Rn(srj , sri) is equivalent to

1 ∈ Rn(sri , srj )Rn(srj , sri)
∗ = (srisrj )

n.

Thus, C(sri , srj ) is not empty if and only c(i, j) is an integer, and, if that is
the case, Lemma 2.3.2 yields cL(sri , srj ) = c(i, j). �

6.5 Coxeter schemes and buildings

In this section, we shall see that Coxeter schemes and buildings are the same
thing.

Theorem 6.5.1 Let X be a set, let S be a scheme on X, let L be a set of
involutions of S such that S is a Coxeter scheme with respect to L. Let δ be
the distance function associated to L, let Sδ be the Coxeter scheme associated
to the building (X, δ), and let Lδ be the Coxeter set associated to (X, δ). Then
S = Sδ and L = Lδ.

Proof. We first prove that that L = Lδ.

Let (W, r) be a Coxeter system of type cL, let ψ be the signature of {rl | l ∈ L},
and let ω be the signature of L.8 For any two elements y and z in X, we define
σ(y, z) to be the uniquely determined element s in S satisfying (y, z) ∈ s.
Then, as δ is the distance function associated to L,

δ = ψ−1 ◦ ω ◦ σ.

For each element l in L, we have ρL(l) = {l}. Thus, ω(l) = [l]cL and ψ(l) =
[l]cL . It follows that

ψ−1(ω(l)) = ψ−1([l]cL) = rl.

8 Recall that cL is a Coxeter matrix over L.



82 6 Buildings

Note also that

δ(y, z) = (ψ−1 ◦ ω ◦ σ)(y, z) = ψ−1(ω(σ(y, z)))

for any two elements y and z in X. Thus, as ψ and ω are bijective, we have

σ(y, z) = l ⇔ δ(y, z) = rl

for any three elements y, z in X and l in L. However, we also have

(y, z) ∈ l ⇔ σ(y, z) = l

and
(y, z) ∈ srl ⇔ δ(y, z) = rl

for any three elements y, z in X and l in L. Thus, l = srl for each element l
in L. Thus, as Lδ := {srl | l ∈ L}, this yields L = Lδ.

Now we prove that S = Sδ.

We set 1 := 1X and fix an element s in S. We shall see that s ∈ Sδ.
If s = 1, s ∈ Sδ. Assume that s 6= 1. Then, by Lemma 1.6.2, there exists
elements r in S and l in L such that s ∈ rl and `L(s) = `L(r) + 1. Since L is
constrained, this implies rl = {s}. By induction, we may assume that r ∈ Sδ.
Thus, as l ∈ Lδ, there exists an element s′ in Sδ such that s′ ∈ rl.
Since L = Lδ, `L = `Lδ . Thus, as `L(s) = `L(r) + 1, `Lδ(s

′) = `Lδ(r) + 1.
Now recall from Theorem 6.4.9 that Sδ is a Coxeter scheme. Thus, as s′ ∈ rl,
rl = {s′}. Thus, as rl = {s}, s = s′ ∈ Sδ. �

Theorem 6.5.2 Let (X, δ) be a building. Let L be the Coxeter set associated
to (X, δ), and let δL denote the distance function associated to L. Then δ = δL.

Proof. Let c denote the type of the building (X, δ), and let I denote the vertex
set of c. Then, by definition, there exists a Coxeter system (W, r) of type c
such that δ is a map from X ×X to W satisfying

δ(y, z) = rf ⇔ there is a gallery in X of type f from y to z

for any three elements y and z in X and f in Fc(I).

For each element w in W , we set

sw := {(y, z) ∈ X ×X | δ(y, z) = w}.

Then, as L is the Coxeter set associated to (X, δ),

L = {sri | i ∈ I}.

Let (W, r) be a Coxeter system of type cL, let ψ be the signature of {rl | l ∈ L},
and let ω be the signature of L.9 For any two elements y and z in X, we define

9 Recall that cL is a Coxeter matrix over L.
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σ(y, z) to be the uniquely determined element s in S satisfying (y, z) ∈ s.
Then, as δL is the distance function associated to L, we have

δL = ψ−1 ◦ ω ◦ σ.

Let y and z be elements in X, and set w := δ(y, z). We shall be done if we
succeed in showing that δL(y, z) = w.

From δ(y, z) = w we obtain (y, z) ∈ sw. Thus, σ(y, z) = sw. Thus

δL(y, z) = (ψ−1 ◦ ω ◦ σ)(y, z) = ψ−1(ω(σ(y, z))) = ψ−1(ω(sw)).

Let f be an element in Fc(L) such that ω(sw) = [f ]cL . Then, as ω is the
signature of L, {sw} = ρL(f).

On the other hand, as δL(y, z) = ψ−1(ω(sw)) and ω(sw) = [f ]cL , δL(y, z) =
ψ−1([f ]cL) = rf .

From z ∈ ysw and {sw} = ρL(f) we obtain z ∈ yρL(f). Thus, as f ∈ F(L),
there exists a gallery in X of type f from y to z. Thus, δ(y, z) = rf . Thus, as
δ(y, z) = w, w = rf . Thus, as δL(y, z) = rf , δL(y, z) = w. �

Theorem 6.5.1 and Theorem 6.5.2 establish a bijective map from the class of
all buildings to the class of all Coxeter schemes.

6.6 Coxeter sets and twin buildings

In this section, we shall prove that twinned Coxeter sets of a scheme give rise
to twinned buildings. We first recall the definition of twinned buildings. Our
definition is taken from [6].

Let (W, r) be a Coxeter system. A pair ((C+, δ+), (C−, δ−)) of buildings of
type (W, r) is called twinned if there exists a map

δ∗ : (C+ × C−) ∪ (C− × C+) → W

satisfying the following conditions, where ε ∈ {+,−}, y ∈ Cε, z ∈ C−ε, and
w := δ∗(y, z):

T1 δ∗(z, y) = w−1.

T2 If z′ ∈ C−ε satisfies δ−ε(z, z
′) = s with s in S and `(ws) = `(w) − 1,

then δ∗(y, z′) = ws.

T3 For any element s in S, there exists a chamber z′ in C−ε with
δ−ε(z, z

′) = s and δ∗(y, z′) = ws.

Now we are ready to prove that twinned Coxeter sets give rise to twinned
buildings. In fact, we do not need that the twinned sets are Coxeter sets, it
seems that it is enough to assume that they are constrained and dichotomic
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and that they do not contain thin elements. Of course, we do not necessarily
get twinned buildings then, but (possibly) more general structures.

Theorem 6.6.1 Let S be a scheme, let H and K be twinned Coxeter sets
of S with conjugating element m, and let y and z be elements in X such that
(y, z) ∈ m. Assume that H and K do not have thin elements. Then y〈H〉 and
z〈K〉 are twinned buildings.

Proof. Let v be an element in y〈H〉, and let w be an element in z〈K〉. From
w ∈ z〈K〉 and z ∈ ym we obtain w ∈ ym〈K〉. From v ∈ y〈H〉 we obtain
y ∈ v〈H〉. Thus, w ∈ v〈H〉m〈K〉. Thus, by Lemma 4.3.2, w ∈ v〈K〉ρ. Thus,
〈K〉 possesses an element q such that w ∈ vqρ. We define

δ∗(v, w) := q

and δ∗(w, v) := q∗. Then

δ∗ : (y〈H〉 × z〈H〉) ∪ (z〈K〉 × y〈K〉) → 〈K〉

is a map.

Condition T1 in the definition of twinned buildings is trivial. Condition T2
is equivalent to Lemma 4.1.2, and Condition T3 follows from Lemma 4.1.2
and Corollary 4.1.3. That the buildings y〈H〉 and z〈K〉 have the same type
follows from Lemma 4.4.2 together with Theorem 4.4.3. �

Let S be a scheme, let L be a Coxeter set which is twinned to itself with
conjugating element m, and let y and z be elements in X such that (y, z) ∈ m.
Then 〈L〉m = m〈L〉, and from Theorem 6.6.1 one obtains that y〈L〉 and z〈L〉
are twinned buildings.
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