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COHOMOLOGY OF MONOIDS IN MONOIDAL CATEGORIES

HANS-JOACHIM BAUES, MAMUKA JIBLADZE AND ANDY TONKS

INTRODUCTION

It has been known for some time that the cohomology theories of many classical algebraic
objects — monoids, groups, associative algebras and Lic algebras for instance — have a
common framework in terms of cohomology of internal monoids in a symmetric monoidal
category; see for example [24]. But there are also important examples of algebraic structures
which occur as monoids in non-symmetric monoidal categories, such as operads, monads,
theories, categories, and square rings as described below. In this article we show that these
structures are still susceptible to cohomological investigation, by developing the theory in the
absence of the symmetry condition. Later we shall assume that the monoidal structure is
left distributive over coproducts and the category is an abelian category; this is the case for
operads, our original motivating example.

1. MonNoIDS AND MODULES

We define monoids in monoidal categories and introduce the “module” objects which will
be used later as coefficients in the cohomology of such monoids. We also give some of our
motivating examples of monoidal categories and the monoids therein.

Let us start by recalling that a monoidal category is a tuple V= (V,0,1,a,l,r) where V
is a category, o : VXV = V is a functor, I is an object of V, and

¢ = (axyz:(XoY)oZ > Xo(YoZ))xyzev,

I = (IX:IOIY_}/Y)XEV:

r = (rx: Xol—o X)xev
are natural isomorphisms, required to satisfy certain conditions which we omit here (see e.g.
[19]). In many examples our monoidal categories will be strictly associative and have strict
units, in the sense that all ay y z and Ix, rx are identity morphisms. The monoidal category
V is abelian if the underlying category V is an abelian category. Suppose V has binary
coproducts, denoted X UY'; then the monoidal structure is left distributive if the canonical
natural transformation

(-’Yl e} Y) L (Xz o Y) - (X] U JY?) oY

is an isomorphism. Right distributivity is defined similarly.

Key words and phrases. cohomology, internal monoids, operads.
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A strict monoidal functor between monoidal categories is a functor between the underlying
categories preserving all the existing structure in the obvious way.

Given such a V, a monoid in V, or a V-monoid, is a triple § = (G, u,n) where G € V,
u:GoG — G, n: I — G must satisfy the identities

proG) = p(Gop)agee (associativity),
p(noG) = lg (left unit),
p(Gomn) = rg (right unit).

Basic examples of monoidal categories are the following:

Example 1.1. Let C be any category with finite products. Then these products may be used
to give it a monoidal structure C* = (C, x, 1,a,{,7), where x is the binary product, 1 is the
terminal object (which exists as the empty product), and «, [, r are uniquely determined by
the universal property of the products. A monoid in this monoidal category is what is usually
called an internal monoid in a category with products.

Also in this “cartesian” situation one may define what it means for a monoid G = (G, it :
G XG — G,n:1— @) to be an internal group object: there must exist an endomorphism
¢t : G — G satisfying

p(Gxd = np = plexGHd
where d: X = X x X and p: X — 1 are the canonical morphisms (which are only available
in the cartesian case).

In particular, taking C to be the category Ens of sets and functions, one obtains just
monoids and groups in the ordinary sense; or, taking the categories of spaces, simplicial sets,
etc., one obtains topological or simplicial monoids and groups.

Example 1.2. The category R-mod ol modules over a commutative ring K may be given a
monoidal structure using the tensor product over 2. We shall denote this monoidal category
by R-mod® = (R-mod,®g, R,a,l,r). Here a, [, r are the obvious isomorphisms. Monoids
in this example are the associative R-algebras with unit.

These are in fact examples of symmetric monoidal categories, i. e. they admit additional
structure consisting of natural isomorphisms ¢ = (cxy : X oY — Y oX)x y satisfying further
coherence conditions (see [19] for these). In the symmetric situation one may also talk about
commutative monoids: (G, p,n) is commutative if

Hegae = H

holds. In particular, in the cartesian situation of the example 1.1 one has the notion of an
internal commutative, or abelian, group. We write Ab(C) for the category of abelian group
objects in the cartesian monoidal category C.

There is also an important relaxation of the symmetric structure called braiding (the same
cx,y, but satisfying less stringent coherence conditions; see e.g. [16] for numerous examples
of monoidal categories of this kind).

We are going to define cohomology of ¥V-monoids; hence we must first determine what are
the coefficients for such a cohomology theory. For this we recall (see e.g. [27]) that a general
notion of coeflicients for the cohomology of an object X in a category C is given by internal
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abelian group objects in the slice category C/X. Here C/X is the category whose objects
are morphisms ¥ — X in C and whose morphisms are commutative triangles of the obvious
kind. In order to speak about internal abelian groups in the slice categories one has to assume
that the C/X have finite products, or equivalently that C has pullbacks.

Given a monoidal category V¥, there is an obvious notion of a morphism between V-monoids,
so we have the category Mon(V) of monoids and their morphisms, equipped with a forgetful
functor U : Mon(V) — V. And if we assume existence of pullbacks in V, the same will be
true for Mon(V). Indeed, one has

Lemma 1.3. For any monoidal category V = (V,...), the forgetful functor
U:Mon(V)->V
reflects any inverse limits that exist in V.

Proof. Consider any diagram ((G:)ie1, (f. : Gi = Gir)pimi) in Mon(V), where G; = (G}, pi, %)
are V-monoids. Suppose we are given a limiting cone (f; : G = G));e1 over this diagram,
considered as a diagram in V. One easily sees that (Go G ELZIN Gi oG &5 Gi)ier and
(7 25 Gi)ier are cones in V, hence they determine maps u : GoG = G and 5p: I — G,
respectively. And one then checks that this gives a structure of a limiting cone in Mon(V). ®

Note that for any monoid G = (G, g, n) in V, there is a natural monoidal structure on V/G,
which we will denote by V/G = (V/G,0,,1,,a,l,7). Here the functor o, is determined by
(X 5 G o, (Y BG)=(XoY Z5HGoG 5 G); 1, is just 1 5 M; and a, ! and r are those
of ¥ (in fact there is a one-to-one correspondence between monoid structures on an object G
and those monoidal structures on V/G which turn the forgetful functor U : V/G — V into
a strict monoidal functor). With respect to this monoidal structure one has the equivalence
of categories Mon(V /@) ~ Mon(V)/G.

So we shall assume henceforward that our category V has pullbacks, and, for a V-monoid
G = (G, i, 7) we choose the category Ab(Mon(V)/G) of internal abelian groups in Mon(V)/G
and their homomorphisms to be the category of coefficients for the cohomology of G. For-
tunately, this category has a much simpler description, up to equivalence. This description
involves the notion of action of a monoid on an object:

Definition 1.4. A left action of a V-monoid § = (G, i1, ) on an object A of V is a morphism
u: G oA — A satisfying

u(po A) = u(Gou)agg, a,
w(no A) = 4.

We will also say that A is a left G-object. Similarly, a right action of a monoid G’ = (G’, i/, ')
on Ais a morphism %' : AoG’ — A satisfying analogous identities. And given two such actions
we say that they are compatible, or that A is an G-G’-biobject, if

‘U,’(‘MOG’) = u(Gou’)aG,A,G“
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For example, given any monoid G = (G, g, ), there is an evident G-G-biobject structure
on G itself.

It is obvious how to define a morphism of left G-, right G’-, or G-G’-biobjects; the corre-
sponding categories will be denoted by ¢V, V&' and ¢V, respectively. All these categories
come with forgetful functors to V (which will be denoted by the same letter U); and just as
in the lemma above, these forgetful functors reflect all the limits that happen to exist in V.
Hence we also can talk about internal abelian groups in V9. And we have

Proposition 1.5. For any monoid G in V| there is an equivalence of categories
Ab(Mon(V)/G) ~ Ab(V9/G).

Proof. To simplify exposition, we will prove the proposition in the particular case when the
monoid in question is the terminal object 1 of V, with its unique monoid structure. That is
we will prove that there is an equivalence

Ab(Mon(V)) ~ Ab(*V').

By the above remarks on slice categories, this will suflice: for any monoid G, the underlying
object G (more precisely, its identity map) is clearly terminal in V/G.

Now an object of the category Ab(Mon(V)) looks like (A,pt: Ao Ao Ayp: T — A+
AxA—= A0:15 A —:A— A). First of all note that 0 must be a morphism of monoids,
in particular n = (/ — 1 N A}, so that 7 is in fact determined by 0. As for p, one has the
commutative diagram

(AxA)o(AxA) —2 » Ax 4
+o+ +
i
Ao A -y

where p, is the monoid structure on A X A which, by a particular case of lemma 1.3, equals

(Ax A)o (AxA) L) (46 4) x (Ao A) L5 A x A

Composing all this with Ao A = (A x1)o(1x A) (A% 0)l0x 4),

that p is equal to the composite

(A x A)o (A X A) reveals

Aop,poA
( )

Ao A (Aol)x(1oA) X% Ax A D 4,

where p is the unique morphism from A to 1, and u: 10 A 24 AcA Y A,v:Aol ELLIN

AoA & A are easily seen to define a 1-1-biobject structure on A, compatible with the abelian
group structure. Hence y is determined by these structures.
Conversely, given an object (4,2 :10A =5 A,v: Aol = A+ :AxA > A0:1—

A, —: A5 A) of Ab(*V!), one equips it with a. ¥-monoid structure via Ao A (Aopipod),

(Ao1)x(loA) ZH AxAH Aand T =1 % A and checks that this is compatible with
the abelian group structure. W
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Hence we are left with Ab(9V9/G) as our category of coefficients for the cohomology of
the ¥V-monoid G. In the next section we will simplify the category of coefficients even more
by imposing the conditions that V be abelian with left distributive monoidal structure.

We finish this section with the examples of monoids in non-symmetric monoidal categories
which mainly motivated the results in this paper.

Example 1.6 (Bimodules). For any associative ring R, the category R-R-Mod of R-R-
bimodules has a non-symmetric monoidal structure given by ®g. A monoid G in this monoidal
category may be identified with an R-ring, that is, a ring equipped with a ring homomorphism
from R. The coefficients for the cohomology of an R-ring G turn out to be G-G-bimodules,
as we will see later.

Example 1.7 (Monads). For any category C, the category End(C) of endofunctors on C
carries a monoidal structure induced by composition of endofunctors; we denote the corre-
sponding monoidal category by End(C)° = (End(C), o, ldg,d, id,id). This is an example of
a strict monoidal category — the associativity and unit natural transformations are all identi-
ties. Note also that as soon as C has coproducts, End(C)° is automatically left distributive,
but almost never right distributive, nor symmetric. Monoids in End(C)® are monads on C.

There are also variations on this example: one may take various full subcategories of
End(C) which are closed under the monoidal structure, c.g. the category of finitary endofunc-
tors (that is, those preserving filtered colimits), or the category of cocontinuous endofunctors
(preserving all colimits), or the category of endofunctors having a right adjoint. Monoids in
these categories are various kinds of monads on C.

Example 1.8 (Theories). Monoids in the category of finitary endofunctors are finitary
monads. In the case of finitary endofunctors on Ens the category of finitary monads is
equivalent to the category of finitary algebraic theories in the sense of Lawvere [20]. In this
particular case, coefficients turn out to be the general coefficients for cohomology of algebraic
theories briefly mentioned in [14].

Example 1.9 (Operads). In example 1.7, let C be the category of vector spaces over a
characteristic zero field k. Consider the full subcategory of End(C) consisting of endofunctors
which are analytic; recall from [15] that these are functors I” admitting a decomposition into
a Taylor series
F(V)=P Fa®s, V®"
n20

where (Fy,)n3o is some sequence of linear representations of symmetric groups &,. Since
the analytic endofunctors are closed under composition, one obtains an abelian (in fact also
k-linear) left distributive monoidal category. This category is equivalent to that considered
in [17]; in particular, its category of monoids is equivalent to the category of k-linear operads.
We will identify coefficients in the next section.

Example 1.10 (Square rings). Let C be the category of groups Gr or of abelian groups
Ab, and consider the full subcategory

Degree,(C) C End(C)
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whose objects are the finitary endofunctors which preserve cokernels and which have degree
n. In particular functors F of degree one, or linear functors, are those which carry coproducts
to products, i.e. the canonical natural transformation

(r12,72.) : F(XUY) = F(X) x F(Y)

is an isomorphism. Functors F of degree two, or quadratic functors, are those for which the
cross effect F(X|Y) = ker(ry.,72.) is linear as a bifunctor in X and Y. It is shown in [4] that
there are canonical equivalences of monoidal categories

Ab = Degree, (Ab) = Degree, (Gr)

Moreover Degree,(Ab) and Degree,(Gr) are cquivalent to categories of certain simple
algebraic objects termed quadratic Z-modules [1] and square groups [4] respectively. The
category Degree,(Ab) is equivalent to the category of modules over a certain commutative
ring defined by Pirashvili [25] and calculated by Dreckmann [7].

Now unlike linear endofunctors, the quadratic ones are not closed under composition. How-
ever in the cases considered, the inclusion of the full subcategory of quadratic endofunctors
into End(C) has a left adjoint ( )9*!. So one may define a monoidal structure on Degree,(C)
by Fo G = (F o G)™. Monoids in Degree;(Gr) correspond under the equivalence with
square groups to the square rings of [3]. Similarly one can define “rings of degree n” in the
category Degree,(Gr). Rings of degree 1 are just the classical rings.

Example 1.11 (Categories). Given an object I in a category with pullbacks S, there is
a monoidal structure on the slice category S/(/ x I): the unit object is the diagonal map
d:T=aIxlTandfor f: X > IxI, g:Y — Ix[Itheobject fog:Z — I x T is determined
by the diagram

P2 -

g —— I xIx ] ——1Ix]

Ixdxli
fx

Xxy Lo rxrxixI
in which the square is pullback. This is sometimes termed the “category of matrices”, since
for S = Ens it is equivalent to the category of families (.X;;); jes of sets, with the operation

(Xiz) o (Vi) = (T Xor X Yig)iser-
k

"Now monoeids in this monoidal category may be identified with those internal categories in
S having I as the object of objects; and morphisms of monoids are those internal functors
which are identity on objects. For any two such categories C and D, the C-D-biobjects may
be identified with internal profunctors from D to . When S = Ens, these are just bifunctors
C x D° — S. In particular, the canonical C-C-biobject structure on C itself corresponds to its
hom bifunctor. Coeflicients for the cohomology of an internal category C are natural systems
on C, that is, abelian group objects in the category of internal profunctors. For S = Ens
these are exactly the natural systems in the sense of [5].
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Note that even this example may be fitted into the general setting of the example 1.7: each
object X Lrxiof S/(I x I) determines an endofunctor of the category S/I as follows:

s/1 Bl g x Bl g/

where py,ps : I XI — I are the projections, (p,f)* is pullback along p,f, and (pz2f). is

composition with p,f. For S = Ens, S/I may be identified with the category of I-indexed

families of sets, and then the endofunctor corresponding to the “matrix” (Xj;) is given by
(Vidiesr — (H Xi; X Viier.

2

Endofunctors of this kind are obviously closed under composition, and the monoidal structure
so obtained coincides with the “matrix multiplication” above.

Example 1.12 (Spectra). According to recent work of Elmendorf-Kriz-Mandell-May [10)
the category of spectra can be given a monoidal structure. Moreover the monoids in this
category correspond to A.-ring spectra; compare 6.2 in [10].

2. MONOIDS AND MODULES IN THE ABELIAN LEFT DISTRIBUTIVE CASE

Throughout this section A = (A, g, I) will be an abelian left distributive monoidal category.
For this case the coefficient objects for a monoid G = (G, i, ) in A, given by abelian groups
in 9A9/G according to proposition 1.5, can be further simplified. In fact if the monoidal
structure is also right distributive the coefficients are just bimodules:

Proposition 2.1. Let A be an abelian monoidal category which is both left and right dis-
tributive, and suppose G is a monoid in A. Then there is an equivalence of categories

Ab(PA9/G) ~ 9A¢

This can be readily seen by the arguments below for the left distributive case.

The results in this section can be applied to the following examples.

Examples 2.2. The following are abelian left distributive monoidal categories. Let 2 be a
commutative ring.

(1) Clearly the monoid operation @ on R-mod of example 1.2 is both left and right
distributive, and applying proposition 2.1 shows that the coefficients for cohomology
of R-algebras G are the G-bimodules. This is the classical case in for example [21].

(2) Let & be the symmetric groupoid and let A = Cat(S, R-mod) be the category of
functors from & to K-modules. Then there is a monoidal structure o on A such that
Mon(A) is the category of operads in A. See example 1.9.

(3) Let A be the category of endofunctors of R-mod which preserve filtered colimits and
cokernels. Then composition yields a monoidal structure and Mon(A) is the category
of monads on R-Mod.

(4) The category Degree,(Ab) of example 1.10.

We may consider (1.} C (2.) C (3.) as a sequence of inclusions of monoidal categories.
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Definition 2.3. Let (G, u,7) be a monoid in an abelian monoidal category (A, o, I), with o
left distributive over @. Then a coefficient G-module is an object M and morphisms

Go(GoM)—2 =y MoG M
in A with the following properties
(1) Ais linearin M:
(lupl,lupg) . \
Go(GoMaoM) »Go(GaM)dGo (G M)
lo(le+) A+ A
Go (G M) 3 M
(2) Ais a cross-action:
pal
To(Go M) GouGo (G M) Goa (G & M)
nol ¢ 1m‘ A
Go(Ge M) 3 M Go(G @& Go (G M)) ¥ - M
where A2 = A(1a (16 A)) and a = (p(Llopg), 1).
(3) pis a right action:
lop
Mol MoGoG@ ——> MoG
1.37?] K pul\ Ip
MoG ) M MoG 5 M
(4) A and p are compatible:
Aol
Ga(G®oM)oG »MoG p
lo(pd® 1)\ \M
/

Ga(G® McG)

lo(1&p)
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Morphisms between coefficient G-modules are morphisms in A which respect all the structure.
We write Coefg for the category of coefficient G-modules M over a fixed monoid ¢ in A.

Proposition 2.4. Let G = (G, p,n) be 2 monoid in an abelian left distributive monoidal
category A as above. Then there is an equivalence of categories

Ab(A?/G) ~ Coef;

Proof. Let (A,u,v,+,0,—) be an object of Ab(?A¢/G). Then the map p: A = G is split
by 0 : G = A and so we can write A = G M with p = pg and 0 = ig. The addition
+:AxgA— Abecomes now 16 (1,1): GOMSM — GH M and the actions u, v are
given by

1 ,1 A
GoGom 2Pl ¢ ocococom —22 cam
(GeM)ald = GDG@AMDG&G@M

for some A : Go (G® M) > M and p: M oG — M, where the biobject axioms on « and v
are just the (cross-)action and compatibility laws for A and p. Furthermore the compatibility
of + with u is equivalent to the linearity of A. W

Let Coefs be the category of coefficient G-modules, for (G, 7n, 1) a monoid in A. The
forgetful functor

U:Coefy — A
is the functor which takes a coefficient G-module (M, A, p) to M regarded simply as an object

of A. We will show that U has a left adjoint F, giving explicitly the free coefficient G-module
(F(V), A, p) on an object V of A. The adjunction gives an isomorphism of abelian groups

Homa (V, M} & Homgeers (F(V), M)

which is natural in A € A and M € Coef;.
We give first an alternative definition of coefficient G-modules using the language of additive
functors.

Definition 2.5. (cf example 1.10) Let ' : A — A be an endofunctor on an abelian category
A. We define for objects A, B of A the cross-effect F{A|B) by the kernel

F(A|B) = ker(r: F(A® B) = F(A)® F(B))

where 7 = (F'p4, F'pp) is given by the projections from A @ B to A and to B respectively.
Clearly F(A|B) is functorial in A and B. We say that /" is an additive functor if F'(A|B) is
zero for all A, B. We define natural maps P by

P F(A|A) e P(A @ A) — )

F(A)
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where - is the addition map (1,1): A@® A — A for A an object of A. The additivisation of
F is the additive functor F»¢ defined by the cokernel

I™4(A) = coker(p: F'(A|A) = F(A))

The quotient map q : ' — F®4 has the universal property that any natural transformation
F - G where G is additive has a unique factorisation ' — F3 — 3 through g¢.

In our situation the left distributivity of the tensor product o in A says that each functor
—oB: A~ Ao B is additive. However the functors Ao —: B+ Ao B are not in general
additive; for A = Cat(&, R-mod) for example the functor Ao — is additive if and only if the
object A is concentrated in degree 1.

Consider the functor Ly : A = A with

Lo(X) = Go(G®X)

and the additive functor L = L3 : A — A defined by the additivisation of L,. We note
that for a coefficient G-module (M, A, p), the linearity property (2.3)(1) says precisely that
A:Go (G M) = Lo(M) - M factors through the quotient map g : Ly = L. Furthermore
the cross-action properties (2.3)(2) may be written as A(nal) = py : G M — M and

GoLo(M)—"22 1)
(2.6) loo A
Lo(Lo(M)) e M

where A2 = ALy(A) = A(La (18 A)) and & = (1(1 o pg), 1).

Lemma 2.7. In the presence of the linearity condition on A, the commutativity of (2.6) is
equivalent to that of

GoLo(M) — 2L o o)
(2.8) 1op J,\
Lo(Lo(M)) 32 M

where ‘B = P2 + (1 ] ig)ﬂ’ : G &b Lg(ﬂ’j) — LD(M)
and B = (mol)p(l-ap) @ G®Li(M) — Gud

Proof. Since pa = 1 the maps (1 —ap,)e and §'« are zero. Thus Bo is the identity on Lg(M)
and the commutativity of (2.8) implies that of (2.6). In the opposite direction, we will show
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that (1® A)af =1 A, so that ALy(A)(loa}(laB) = ALy(A) and (2.6) will imply (2.8). We
have
piaB = piapy+ pre(laic)f’

= piepe + p{lope)(loic)(no 1)pi(l — aps)

= piepy+pi(l - aps)

= N -
Also A(1oig) is zero by linearity and so Ap,aff = A = Aps. Thus (1@ Ao = 1d A as
required. W

We say A is right compatible with cokernels if for each A € A the additive functor Ao — :
A — A given by B — A B preserves cokernels. If A has this property one has natural
transformations 71y, p£(1) and gy given by the following commutative diagrams, in which ¢
is the quotient map from Lo(X) =G o (G @® X) to the additivisation L(X), ¢° is ¢Lo(g) and
p=1lo(p®dl): Ly(X)oG=Go({GoG®XaG) = Ly(X).

2
1
Gox 2 x Lo(Lo(X)) —— L(L(X)) Lo(X)sG 125 L(X)u G
7ol lﬂ(l) pa ﬂl H(1) /_L'l ll”@)
Lo(X) —~ L(X) Lo(X) —F— L(X) Lo(X 0G) =3+ L(X G)

Lemma 2.9. The natural transformations 7y, jt(1) and gi(s) are weli-defined.

Proof. Since X is clearly the additivisation of @ X in X, 5 is well defined. Similarly
tz) is well defined since — o G is additive. By the assumption that A is right compatible
with cokernels it follows that L(L(X)) is the additivisation of Lo(Lo(X)) in X with ¢* the
corresponding quotient map. Thus y ) is also well defined. ®

Using these natural transformations between additive functors we have

Proposition 2.10. A coefficient G-module is equivalently specified by an object M and
morphisms

LM) —2— M, MaG—2

M

such that Any = 1y, pis a right action as in (2.3)(3), and the following diagrams commute:

Ly —= L an L(M)aG—291 L proc ,
) by #2) / M
L(M) ——— M L(M 0 6) — e L) A
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Note that these are just the diagrams in (2.8) and (2.3)(4) made additive.

Proof. Given X we obtain A by the composite
q X
A:Go(GOM)— L(M) ———
Then (M, A, p) is a coefficient G-module in the sense of (2.3), as follows from the previous
lemmas. Conversely any coeflicient G-module M is obtained in this way since the linearity
property in (2.3)(1) is equivalent to the existence of A with A=2Xig. W

We can now give an explicit construction for free coefficient modules. If the monoidal
structure is both right and left distributive, the coefficient modules are just bimodules, and
it is well known that the free G-bimodule is given by F(V)} = Go V o G with left and right
actions given by the multiplication in G. With the assumption that A is right compatible
with cokernels we have a similar explicit presentation of F' in our more general situation.

Proposition 2.11. Let G = (G, 7, ) be a monoid in A. Then the free coefficient G-module
on an object V of A is given by

F(V)y = L(VoG)
with the structure maps X and p given by

- 1y
X: L(L(V 5 G)) - L(V o G)
La
b L(VeG) oG — s vecec) L2 v og

Proof. Tor an object V of A and a coefficient G-module (M, p) we have natural maps
V o UFRV)in A and F(UM) = M in Coefg given by

la Ui
VeVl — e VoG — 2> (Vo G)

L(p) by

L(M) —2 — &

L{MaG)
respectively, and these satisfy the triangle identities required to define an adjunction. W

We end by interpreting the results of this section for operads, the example promised
in (2.2.2). First recall the definition of an operad from e.g. [17].

Let & be the symmetric groupoid; that is, & is given by the disjoint union of the symmetric
groups G,, with &, = {*}. Let A = R-Mod be the category of R-modules (or R-module
chain complexes) for R a commutative ring, with monoidal structure ® = ®p and 7 = .
Consider the category Cat(S, A) of G-objects in A, given by functors A from the symmetric
groupoid to A, or equivalently by families {A,},50 together with actions of &,. The category
Cat (S, A) is clearly abelian, with the sum A @ B of &-objects given by the sum in A

(A®B)n = An@Bn
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The tensor product of G-objects is defined as follows. Let P* be the set of partitions of
{1,...,n} into k disjoint subsets (J;).,, and write j; for |/;|. Then for an &-object B let

Bi = € B,®...9B;,
(Ji)ePk
Clearly &, acts on B%. In fact &, also acts on B via the &;,; actions. Thus the monoidal
structure on Cat(&, A) can be defined by

(Ao B), = P AkQe, B
k=0

If Ao = By = 0 this is a finite sum €,_,. The functor ¢ : A — Cat(&, A) with (C), =C
and ¢(C), = 0 for n # 1 preserves the tensor product, and / = ¢(R) defines a neutral object
for o in Cat(86,A). The monoidal structure on Cat(G, A) is not symmetric, but it is left
distributive. In fact — o B preserves all colimits and has a right adjoint [B, —] given by

(B,Cl = é A(Bﬁv Ch)s.

n=0
where A{—, —)s, is the object of &,-equivariant maps in A.

Definition 2.12. An operadin A is a monoid in Cat{®, A), that is, an G-object A together
with morphisms n: I = A, p: Ac A — A satisfying the unit and associativity laws.

Thus an operad is specified by the objects {A,}n50 and S,-actions, together with opera-
tions
¢
A ® Aj,®A;,0...0A;, —
where n = 7, +...+ Ji, satisfying the obvious unit and associative laws, together with certain
equivariance relations as in May [23].

An

Definition 2.13. A linear module over an operad G is a coefficient (-module in Cat(S, A),
that is, an &-object M together with a right action p: M oG — M and a left cross-action
A:Go(G @ M)~ M with the properties (1)—(4) of definition 2.3.

The functor Lo(M) = G o (G @ M) may be expanded by the distributivity of the tensor
product ® in A, and we see that the additivisation L(AM) consists of those summands which
contain precisely one factor from M. Thus a linear G-module is a family of objects {M,}n30
with &, -actions, and operations

.!'V!k ® Gj1®ng®---®ij

M,

Ai

Ge ® G;,®...0G;,_,OM;,0G;,, ©...0G;, M,

for 1 <7< kand n =7 +...+ j, satisfying the obvious action and compatibility laws
together with equivariance relations as those for the operad structure. Compare also [22].
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3. COHOMOLOGY

Let G = (G,p,n) be a monoid in a monoidal category V = (V,0,I). We will avoid
mentioning the associativity isomorphisms where possible.

We write G™" for the n-fold iterated tensor product GaGo---0G, and let p" : G - G
be given by the iterated multiplication map, with 4® = 7 and ' the identity. We also write
i; and 7; for the maps given by applying the multiplication and the unit between the 7th and
(¢ 4 1)st tensor factors:

lopol

pi s GO 2 GU-D g G o G o GRR-I-Y) Go*=1 (0 < i< n)

lonol

7 G ¥ G o [ oGP GRH) (0gign)

Definition 3.1. We denote by B,(G) the two-sided bar construction [23] in the monoidal
category V/G. This is the simplicial object in V/G with

o iR
B.(G) = (G £ )
and face and degeneracy maps given by

d; : GO+2) i GO+

Ti+1

8 ¢ GD(TH-Z) Gﬂ(n+3)

for 0 € i € n. As usual, this in fact defines a simplicial object in ¥V9/G. There are extra
degeneracy operators s_; = 7y = 70 G and 5,4, = P42 = GOF g 7 which provide
contractions of B,(G) in V¢/G and 9V /G respectively, but not in ¥V9/G.

Given an internal abelian group A in 9V9/G, we define

Definition 3.2. The cohomology of a monoid G € Mon(V) with coefficients in an internal
abelian group A € Ab( 9V9/G) ~ Ab(Mon(V)/G), denoted H*(G; A), is the cohomology of
the cochain complex associated to the cosimplicial abelian group Homovo,g(B,(G), A).

Now the forgetful functor U : V9 /G — V /G has a left adjoint F, where in particular

n n42
PG 2 6y = (et B g

Hence there are natural bijections
Homevyoe g(G2"+? — G, A) = Homy,¢(G™" — G, A)

and translating the cosimplicial structure of B, (G) along these one gets
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Proposition 3.3. H*(G; A) is isomorphic to the cohomology of the complex C*(G; A) with
C™(G; A) = Homy¢(G®™ £ G, A) and differentials

d= i(—l)id‘ :C" Gy A) = CM(G; A)

i=0
where
(G- Ly 4) = (GO 2L G 4 Y A),
di(GD(n—l) i) A) — (GD(") Hiy Goin-1) i) A) for 0 < i< n,
A (GP0-D y 4) = (GO L2 40 G B ).

Since the forgetful functor U : V¥ /G = V /G is monadic, there is also a standard way to
define cohomology in this setting, the so called cotriple cohomology (see [6]). We will show
that this leads to the same result:

Proposition 3.4. The cohomology groups H*(G; A) defined above are isomorphic to the
cotriple cohomology groups w. r. t. the cotriple on V¥ /G induced by the monadic adjunction
(FAU):9V9/G -5 V/G.

Proof. The standard simplicial object for the cotriple cohomology has (FU)"(1g} in dimension

nas F(X 5 G) = (GoXaG 2% GoGaG £ G), this simplicial object will have
GPn43) in dimension n. In fact direct calculation shows that this simplicial object is exactly
the edgewise subdivision Sub(B,(G)) of B,(G), in the sense of [28]. Now it is not clear whether
a simplicial object in a general category is homotopy equivalent to its edgewise subdivision.
But to prove our proposition, it is enough to deal with cosimplicial abelian groups obtained by
applying to simplicial objects the contravariant functor Hom(—, A), for A an internal abelian
group. There is an obvious dual notion of subdivision for cosimplicial objects. And analyzing
the proof of the particular case in [28), one can modify it to obtain a proof for cosimplicial
internal abelian groups. Therefore the proposition will follow from the following lemma.

Lemma 3.5 (Subdivision Lemma). For a cosimplicial abelian group A* in any category,
the cochain complexes corresponding to A* and Sub(A*) are homotopy equivalent.

This lemma is proved in appendix A. ®

We now identify the simplification of the cochain complex in proposition 3.3 in the special
case of monoids in an abelian and left distributive monoidal category A. In this case we
know by proposition 2.4 that the coefficients A € Ab(“A¥¢/G) can be replaced by coefficient
G-modules (M, A, p) € Coefg.

Proposition 3.6. Let M be a coefficient G-module. Then there is a cosimplicial abelian
group

C™"(G,M) = Homa(Ga...0G, M)

n factors
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The coface and codegeneracy maps are defined on ¢ € C*((/, M) by

Lo (1, 0 A

d°(c) : GO+ = G o GO »Ga(GO&M) ———>M

& (c) : GOEH) 2 GOn o g ——<01 - MoC M

di(c) : GO+ s GO=1) o GO2 g A=) lopal cion C oM
si(c) : GR=N & B o [ o GRl=i-1) 0M0% LG

where G™" is the nth tensor power, u® = n, 1! = 1 and g™ : G — G for n > 2 is given by
the multiplication on G.

Proof. We must check those cosimplicial identities which involve d°; the others are exactly as
in the classical definition of Hochschild cohomology. We have

a) d'd° = d¢° <= Mla(p®c)){pal) = AloEA(1a(p® )]
by dtd® = %" = p(AMlo (e, e)ol) = Alo(u*t,p(cal)))

¢y dtd® = & = Aoy = Ala (et ow))

d d° =1 <= Alo(p",c))(nol) = ¢

e) std® = d'* = AMlo (e, e))migr = AMla(e™ Y em))

for all ¢ : GP" — M, where we write p; : GO*+1) 5 GO and n; : GP*-Y — GO for the
multiplication and unit of GG applied at the sth factor. By the cross-action property we know

Ao (5", 6) = MLa [(u(1 0 pa), N(Lo (47, )] = All o [u(1o 4}, A(Lo (47, )]
and hence (a) follows. Also the left distributivity and the compatibility of A and p give

p(ro1)(la (1", 0)a1) = A(1o (@ p))(1a (4" 0l col))

and hence (b). By the unit law for A we have A(na (¢”,c)) = par(1”, €) = ¢ which gives (d),
and (¢} and (e) are clear from naturality and the monoid laws.

Finally we note that Hom(G®", M) has an abelian group structure by addition in M, and
that d® is a group homomorphism by the linearity of A. ®

Definition 3.7. Let M be a coefficient G-module as above. Then the cohomology of G with
coefficients in M, H*(G, M), is given by the cohomology of the cachain complex (C*, &) with
C" = C"(G, M) the abelian group of homomorphisms ¢ : G° — M under pointwise addition,
and the boundary maps given by

n+1 n

() = S.(-1fd(e) = Alo(e,e) + (Z(—U‘m-) + (-1)"*p(eal)

i=0 i=1

Below we show that this cohomology is a special case of the cohomology in (3.2). From
the usual relations between the cosimplicial maps d' in the proposition we know that §"*+14"
is zero. As usual the same cohomology is obtained from the normalised cochain complex
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C}(G, M) defined by quotienting by the subcomplex of C* of elements arising as codegen-
eracies.

Definition 3.8. Assume that A is right compatible with cokernels as so that we have a free
coefficient G-module functor F asin (2.11). We define a simplicial coefficient G-module B(G)
termed the bar resolution of the monoid GG. In the case of R-mod, example 1.2, this will be
the un-normalised bar resolution described in MacLane [21, X.2]. The objects B,(G) are
given by the free coefficient G-modules on G°*

B.(G) = F(G"™)
The degeneracy maps §; : B,(G) = Bn41(G) and face maps d; : B, (G) = B,(G) are given
by
S F(p) for0gign
d; Flu;) forl1gign
where 7; and g; are defined on G by applying n: I = G and i : GoG — G at the ith factor.

The face maps dy, dnyy @ F(GE+)) — F(GP") are the morphisms of coefficient G-modules
corresponding under the adjunction to the following maps dj, d, ., : GPC*+1) o P(G®") in A:

G o GDn ;Un o G
d, d,
la(p",1) U hl{ \
Go(G® F(G™)) F(G™) F(G™) oG F(G™)

P

where 1’ : G?" = F(G"") in A corresponds to the identity on F(G"") in Coefg.

Proposition 3.9. Let M be a coefficient G-module. Tlllcn there is a natural isomorphism
¥ C(G, M) = Homceer, (B(G), M)

and hence the cohomology of G is determined by maps from the bar resolution
H* (G, M) 2 H'Homceet, (B(G), M)

Proof. The free/forget adjunction gives natural isomorphisms

Pn 1 Co(G, M) = Homu (G, M) 2 Homcaer, (F(G™"), M) = Homgoers (Ba (G), M)
and we must check these respect the (co)simplicial structures. We have
Yo (s') = poHoma (1, M) = Homeoer, (F(7:), M) = Homeger, (5i, M)

and similarly 11:"((15) = Homegget, (diy M) for ¢ # 0, n+1. Let djy and 1’ be as in the definition of
do above, and let ¢: F(G™) — M be a morphism of coefficient G-modules. Then naturality
of the adjunction implies ¥~}(d3c) = edjy and ¥~ '(c) = ¢l’, and

d’(cl’) = A(la (g, 1)) = A1 (1@ e)) (Lo (1", 1) = cA(lo (g, 1)) = edy
Thus d%p~'(c) = ¥~ (dgc). One shows d*+'9~!(c) = 9! (d;,c) in the same way. W



18 HANS-JOACHIM BAUES, MAMUKA JIBLADZE AND ANDY TONKS

Finally we show that the definition of cohomology in (3.7) is a special case of that in (3.2).

Proposition 3.10. For ¢ = (G, u,n) a monoid in A the cochain complexes of proposi-
tions 3.3 and 3.6 are isomorphic

G:C'(Q;AM) = C(G',A’I)

where M is any coefficient G-module and Ay € Ab(A9/G) is given by M under the
equivalence of proposition 2.4.

Proof. Recall first that Ay = (pe : G @ M — G), and that the structure maps satisfy
pMr=X2:Gaoa(GHM)—> M, pav=p(paral) : (GAM)a G — M.

Now a morphism ¢ : G® — M in A determines a morphism (¢”,¢) : G" — G@® M in
A /G, and conversely a morphism f : G — A in the slice category gives a morphism
pr:G':‘"—>Min A.

GUn
I f c
¢ PG GoM Pas M

Clearly this gives isomorphisms of abelian groups
0, : C™(G; Ay) = Homaya(i”,pe) & Homa(G™, M) = C*(G, M)

and we must check the cosimplicial structures coincide. TFor cochains f, ¢ with 8, f = ¢ we

have
8,01(d°f) = pyu(lof) = Mla(p®c) = d%
Ot (d**1f) = pyov(fol) = plpufal) = d*le
and the results for the other cofaces and the codegenacies are straightforward. ®

Remark 3.11. Particular examples of the cohomology defined by (3.2) or (3.7) above coin-
cide with various cohomologies in the literature.

(1) For V = R-mod in example 1.2 the cohomology /7*((, A) is the same as the classical
cohomology of an R-algebra G; see [21, X.3]. We saw in proposition 2.1 that the
coefficients A are G-bimodules.

(2) Consider the monoidal category V = E-R-mod of bimodules over an arbitrary ring K,
as in example 1.6. The cohomology H* (G, A) we obtain is the R-relative Hochschild
cohomology from [12]. Indeed, direct comparison shows that in this case our complex
coincides with the one used by Gerstenhaber and Schack in [12] to define the R-relative
Hochschild cohomology groups.

(3) For V = Cat(8, R-Mod) in example 2.2.2 the cohomology H*(G, A) is the cohomol-
ogy of an operad with coefficients as described in proposition 2.13. These have also
appeared in [11, 22].

(4) For V = Ens/I x I in example 1.11 the cohomology H*(G, A) coincides with the
cohomology of a category G with coefficients in a natural system A, see [5].
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(5) For V the category of finitary endofunctors of Ens in example 1.8 the cohomology
H* (G, A) is the cohomology of a finitary theory G considered briefly in [14].

4, DERIVATIONS, EXTENSIONS AND TORSORS

We now turn to the interpretation of elements in cohomology groups. We first consider
abelian and left distributive monoidal categories A and the low degree cohomology of monoids
in A, which we interpret in terms of derivations and extensions. In the second part of this
section we deal with the case of a general monoidal category V and the cohomology of monoids
in V which in low degrees can be interpreted using torsors.

Recall that for the cohomology of a monoid G = (G, s, n) in A we use the coefficient
G-modules (M, A, p) of definition 2.3.

Definition 4.1. A derivation (or crossed homomorphism) from a monoid G to a coefficient
G-module M is a morphism A : G — M in A which satisfies Ap = A(1o0(1,A))+p(Aocl).

(1a(l,A),Aol)

Gol »Ga(GH&EM)BMal
I Atp
G A =~ M

The abelian group of derivations from G to M is written Der(G, M).
In particular a morphism ¢ : I — M in A defines an inner derivation Inn(¢) : G - M by
Inn(¢) = Ay — p¢1 where

$po=1o0(n,¢):Guol -G (GeM) and ¢ =¢ol:/loGo>MnG
We thus have a homomorphism
Hom(/, M) — Der(G, M)

whose image is the subgroup Inn{G, M) of inner derivations. The kernel consists of those ¢
with

Alo(m¢)) = p(écl)
This may be thought of as the subgroup M€ of G-invariant morphisms I — M.

Proposition 4.2. There are isomorphisms
HY(G,M) =~ MY and H'Y(G,M) = Der(G,M)/Inn(G, M)
and an exact sequence of abelian groups
0 — H°(G,M) —— Hom(I,M) —— Der(G, M) — H'(G,M) —0

Proof. The derivation property is §*A = 0, so derivations are just 1-cocycles. Also the inner
derivation map ¢ — Inn(¢) is just the coboundary map 6°. ®
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We now describe the theory of extensions of monoids (G, 7, ) in A. Our exposition will be
parallel to and will extend the classical description for the case A = R-Mod of example 1.2,
where the tensor ®p preserves colimits on both sides; see for example MacLane [21].

Definition 4.3. An eziension of a monoid G in A is a short exact sequence

0 M —p—L L -0

in the abelian category A together with a monoid structure on A such that p is a morphism
of monoids. The extension is A-split if there is an s : G = A in A which is right inverse to
p, ps = lg. The extension is termed singular if the following conditions hold.

(1) The map pa(iol): Mo A — Aiszeroon the kernel of lap: Mo A - MaG
(2) The maps ga(la+), pa(lopi) +pa(laps) : Ac(Ade A) — A are equal.

1
Aa (A@g A) °F oA

(1Dp1,10p2) l,uA
Ao Ay Aod tatha o

Extensions A, A’ are equivalent if there is a morphism € : A = A’ of monoids with €7 = ¢

and p'e = p.
M LN
|,
M d

Fixing a monoid G and a coefficient G-module M, we write Ext(G, M) for the set of equiva-
lence classes of A-split singular extensions. '

)
A—r g

l_ P, |

! G

Suppose M — 4 —p—>G is an A-split singular extension with section s as above. Let
d = sng —n4 : I = A, then by replacing s by s — ppa(do 1) if necessary we can assume that
s respects the units of G and A. Also the map s+1¢: G @ M — A is a map of short exact
sequences and hence an isomorphism in A by the 5-lemma.

P
M A G
s
iM PG
M GaoM , G
ta

Using the isomorphism s+ we obtain a coefficient G-module structure (A, p) on M as follows.
The maps 4 (so(s+i)—so(s+0)) : Go(GAM) = ApA = A and ji4(ias) : MoG — AoA = A
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factor through ker(p) and define

A P

Go(Ga M) M, MoG

M

respectively. The singularity conditions show that A and p are independent of the choice of
splitting s and that A is linear in the sense of (2.3.1). The action and compatibility laws
follow by associativity of pi4.

Conversely, suppose M is a coefficient G-module and M — A L, (G is an extension
of G. Then it is a singular extension if and only if the monoid structure on A extends the
coefficient G-module structure on M:

MoA—"2 MoG—L—>M Ac(AeM) 2N G (Go M) —2u
iol }i 10(1@:‘)1 ;
Ac A Y > A Ac (A A) ADATA

where k =10(1+1)—10(14+0): Ac(A® A) = Ao A,

The simplest example of an A-split singular extension is the trivial eztension or semi-direct
sum given by A = G @& M with unit igng and multiplication

(nlpcape) , AMpeol)+p(pmope))  (GOM)o(GOM) - GOM

Any A-split singular extension for which p is split by a morphism of monoids is equivalent to
the semi-direct sum. More generally each splitting s of a singular extension defines a factor
set ¢, : GoG — M, or 2-cochain of C*(G, M), by

ia(sos) = spg+ic,

which is normalised if sng = 14 and is zero if s is a monoid homomorphism. The factor set
¢, given by a different choice of splitting ¢ differs from ¢, by a coboundary: one can define
A:G— Mbyt=s+1iA, and then
ic,—tic, = pa({s+iA)a(s+:A)) — pa(sos) — (s+iA)ug+ suc
= iz\(l o (1, A)) + tp(Au 1) - iA,u,G = 0A
This process also respects equivalent extensions since given an equivalence £ : A —+ A’ and a

splitting s for A, then €s is a splitting for A" and the factor sets ¢, and ¢,, are equal.

Theorem 4.4. Let G be a monoid and M a coefficient G-module. Then assigning factor
sets to A-split singular extensions induces a bijection between the equivalence classes of such
extensions and the cohomology classes of cocycles Go G = M

& : BExt(G,M) ¥ HYG,M)

under which the class of the trivial extension corresponds to zero.
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Proof. We construct an inverse ¥ to ®. Given a 2-cocycle ¢ : GoG — M, there is an extension
given by A = G @ M with unit igne and multiplication g, as follows:

fe = (pey AMpgol) + p(pmope) +cg) : (GOM) o (GOM) G M

where pg = u(pcopc) = pepe and cg = ¢(pe o pg). Clearly pe is a monoid homomorphism,
and the monoid structure on G @ M extends the coefficient G-module structure on M. If
cocycles ¢ and d differ by a coboundary §A for A : G — M, then the mape : GEM — GOM
given by (pg, pm + Apg) shows that the extensions ¥(c) and ¥(d) are equivalent.

For associativity of y. we note first

Pattc(pe v l) = plpe ape) = 1(pe o ko) = pape(l o)
by associativity of u. Now paspie (e 01) = Al o 1) + p(parpte 0 pe) + ¢(ptg, pe) which is
Alpg a 1)+ p(Mpga ) ape) + plp(py o pe) o pe) + pleg o pe) + c(pe o pes)
and parpte(lope) = A(pe o pe) + p(par o ig) + ¢(pg o te) which by linearity of A in M is
AMpe o (e, Alpe o 1)) + Mpa o (e, p(Py o P6))) + AlPc o (i, ¢6)) + p(Par o pa) + c(pa o o)

Now evaluate these on the inclusions igaiguol, igoloig, iy nigotg and igoigoig. Then
since A is linear in G we see that parpe.(pe 0 1) = parpre(1 o i) if and only if the following
relations hold:

a) A(pol) = Alo(u(lopeg),A))
b) p(Aol) = Alo(p®p))
c) p(pol) = p(lop)

d)  pleal)+e(uol) = Mlo(n,e)+e(lop)
But (a), (b), (c) arc respectively just the cross-action, compatibility and right action laws for
A and p, and (d) is the cocycle condition éc=0. ®

We now give similar interpretations of low degree cohomology of monoids in the case of a
general monoidal category V. Note that there is already a general interpretation of cotriple
cohomology by Duskin [8, 9] as in the following remark, which applies to our cohomology by
proposition 3.4. Let G be a monoid in V and A an internal abelian group in 9V9/G. Let
Amon be the corresponding abelian group in Mon(V)/G according to proposition 1.5.

Remark 4.5. Let K(A,n) be the Eilenberg-MacLane object of A in degree n. Then a
K (A, n)-torsor relative to the forgetful functor U : ¥V9/G — V is a simplicial object X,
in 9V¥ /G| together with a simplicial map x : X, = K (A, n), such that

(1) X, is isomorphic to the coskeleton of the nth truncation of X,

(2) x satisfies the Kan fibration condition ezactly in dimension > n,

(3) U(X,) has a contracting homotopy in V/G.

Duskin proves in [9, section 5.2] that there is a natural bijection between the set of equivalence
classes of K (A, n)-torsors and the nth cotriple cohomology of & with coefficients in A.
Simplification is possible since it turns out that in degrees n = 1, 2 elements of H*(G; A) can
also be interpreted using K(Anion,n — 1)-torsors. For higher degrees we make the following
observations. Suppose we have a left adjoint to the forgetful functor U : Mon(V /G) = V/G,
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giving a free monoid functor. We construct explicitly the free monoid functor in appendix B, if
the monoidal category satisfies some reasonable conditions. Thus we can assume the cotriple
cohomology groups H*(G; Amon) are defined. Suppose further that for G a free monoid our
cohomology groups H"(G; A) are trivial for n > 1. Then an analysis of the proof of Theorem
C of [14] shows that one has isomorphisms

H™(G; A) = H" (G Amon), 2 > 1,

and under the assumptions above interpretation of H"(G; A) by K(Amon,” — 1)-torsors is
valid in all degrees.

Let us begin with degree 0; we give an explicit interpretation generalising that for the
abelian case above. For any A & G in 9V9/G, let AY denote the set of G-invariant elements
of A, that is, A9 is the subset of those morphisms a € Homy (I, A) satisfyingpa =n:1 = G
and

(624106 =% A0G 5 A)= (G5 Gol S5 Gou A)

Then inspection of the complex in proposition 3.3 gives
Proposition 4.6. There is a natural bijection H%(G; A) 2 A9,

Clearly the G-invariant elements correspond to morphisms from 1g to A & G in ¢V¢/G;
these are just the K (A, 0)-torsors of Duskin.

Turning to degree 1 we make the following definition.

Definition 4.7. For A & G in Ab(V?/G), a derivation is a morphism A : G = A in V
satisfying pA = 1 and

GolG G

(GoA,AoG) A

U Xv

GoAXxAoG AxA—T 4

Write Der(G; A) for the set of derivations, and define a map Inn() : Homy/e(/ > G,A 5
G) — Der(G; A) by

-1 ;-1
Goa x aoG, uXxv

Inn{J & A) = (G 122 GoIxToG 22X%% o Ax Ao G 22% Ax A = A).
Proposition 4.8. There is an exact sequence of abelian groups
0 — H°(G; A) = Homy,a(I > G, A B G) 22 Der(G; A) — H(G; A) — 0.

Proof. Straightforward, on noting that Homv s (/ 5 G,AL5 G om0, Der(G; A} may be
identified with C%(G; A) % ker(C(G; A) 5 C2(G; A)). ®
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Clearly (4.7) and (4.8) reduce to (4.1) and (4.2) in the abelian situation above, where 4 =
GoM.
One readily sees that

Del‘(g; A) = I.IomMon(V)/O(lG1 AMon)

whose elements are the K (Apon, 0)-torsors relative to U : Mon(V)/G — V/G.
For degree two we make the following definition.

Definition 4.9. Let U : C — D be a product-preserving functor between categories with
finite products, and let A be an internal group object in C. An A-torsor relative to U is an
object T' of C together with

e morphisms

TxA T, TxT —A

in C, such that + is a right action and the morphisms (p;,+) : TXA - T'xT,
(p1,—): T xT — T x A are mutually inverse isomorphisms, and
e a morphism s : 1 — U(T) where 1 is the terminal object in D.
As in Duskin [9, section 3] the A-torsors relative to U can be identified with the K (A, 1)-
torsors relative to U.

For A-torsors with A = Apon as above we now show

Proposition 4.10. There is a one-to-one correspondence between H*(G; A) and the set of
isomorphism classes of Apen-torsors relative to the forgetful functor U : Mon(V)/G = V/G.

More explicitly, an Apon-torsor relative to the forgetful functor U in 4.10 is a ¥-monoid
T, equipped with monoid homomorphisms

p:T—G, 4+ TxXgA-T, —:TxegT = A

with properties as above, and a section s : G = 1", ps = 1g, in V. A morphism of torsors is
a monoid homomorphism respecting p, + and —.

Proof. Given an Appon-torsor T with s as above, assign to it the map

fr=(GoG LY o 2 4),

where fy = (GoG £S5 G B T)and f, = (GoG =3 ToT <5 T). One checks easily

that fr is a cocycle, that a different choice of s would give a cohomologous cocycle, and any

morphism Ty — T, of torsors produces a 1-cochain whose coboundary is equal to fr, — fr,.
Conversely, for a 2-cocycle f : G oG — A, define a new o-monoid multiplication on A by

jy = (Ao A L2A 4o Ak GoG 22 AxgA D A).

One then checks that this together with + : AxgA —- A, — : AXgA — A defines a
Amon-torsor Ty, and cohomologous cocycles yield isomorphic torsors.

Finally, it is straightforward to check that any torsor T' is isomorphic to Ty, and any cocycle
f is cohomologous to fr,. W
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Examples 4.11. In the example of categories, 1.11, one easily sees that the Apgon-torsors
correspond exactly to linear extensions of categories from [5] so that (4.10) corresponds to
the result of [5] that the elements of the second cohomology of a category C classify linear
extensions of C. In the example 1.8 one recovers extensions of theories from [14].

Note that in these examples there are also interpretations of the third cohomology, see [2,
13, 26), for example in terms of linear track extensions ol categories. These suggest that
at least in the presence of a free monoid functor there is an interpretation of H*(G; A) by
K (AMon, 2)-torsors. In fact we might expect there to be an explicit correspondence between
K (A, n)-torsors and K (Amon, 7 — 1)-torsors, without appealing to cocycles.

APPENDIX A. PROOF OF SUBDIVISION LEMMA 3.5

Proof. First of all, recall (d§,,(4 : Sub(A)*~! —= Sub(A)") = (dPH17id, @ APl 5 ARn),
There is a cosimplicial morphism f : A* — Sub(A*) defined by f, = d**+1d*...4"*H ;A"
A+ which induces the map of the corresponding cochain complexes. We will construct its
homotopy inverse ¢ by induction. Put

go =8 : A1 = A°,

gn = (LU gn-1)s™ + (-1)"s°(1U g, U 1),
where 1U {—), resp. (—) U1, is induced by the functor A — A adding to a finite linear order
an extra smallest, resp. greatest, element. So, 1U (d' : A¥=! & A%) = (d™*! : AF o A*HY),
LU (s*: A% — A*=1) = (s't1 0 AR 5 AF). As for (=) U 1, it does not affect anything on the
formal level; we will take advantage of this by not mentioning this functor at all.

First let us prove that g is compatible with differentials. Now for the differential d,, :

A" ! 5 A" one has .

dn =) (-1)d' =d° - 1Ud,_,
i=0
and similarly d/, : Sub(A)"~! — Sub(A)" is given by
dl, = d*"*d® - (1ud,_)): A" — AP
We have to prove g,d,, = d,g,-1. Starting with n = 1, g;d] = d,go, one checks directly
(s's? — s0s!)(d3d° — d%d') = (d° — d')s®. Now given g,_1d,,_; = d,,_19,_2, one has
gndl = (LU gnoy)s™ + (-1)"s°(QU go) (@ H'd® — 10 d),_,)
= (1Ugp )@+ (=1)"s*(1U go)d* M d® — (1U gay)s™ (1 U, _))
— (=1)"" (LU ga-) (LU, y).

Now one ecasily sees that (1L z)d® = d°z for any = whatsoever, in particular (1 U g,_1)d°
d®g,_,. In fact all the summands in g,,_; are composites of n entries of type s*, with i  2n~
hence one also has (1 U g,_,)d*"*! = d"*(1U g,-1). Using this, s°(1 U g,—,)d**+1d°
s (1 U guoy)d® = 2d*H 0, = $%d%" g,y = d"gaoy. Also (LU ga_)(1Ud,_,) =
1U (gn-1d_y) = 1U (dn-19n-2), by the induction hypothesis. Taking all this into account
gives

g"d’:'l = dogn—l + (-1)"d"g._1 — (1 Ugn—1)32n(1 U d:;—l) - (—1)"30(1 u dn—-l)(l L 90*2)'

2
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Now turning to d,g,-1, one has

dugn-1 = (d° = 1Udno1)gn
= d’gn_y — (TUda i) (1Y gn- 2) n2 gy (-1 -l 0(1 U gn-2))
=dn_1 = (LUdn_ ) (AU gag)s™ 2 = (=1)" (1 U dp_y)s° (1 U ga-2))
=d%n-1— (1U G- ) (LU, _)s* 2 4 (1) (1 U dn_1)s (1 U gns)).

Comparing these two expressions one gets

gnlyy = dngny = (=1)"d gy = (1U goa}(s" (LU d}_)) — (1L, _,)s™ %)
= (=)™ U dpoy) + (AU dn_1)s®) (1 U gn—2).
Now recalling the formula for d, and d), one easily gets
3211(1 u d:;-—l) _ (1 U d::—l) n~-2 _ dl( - dzn-—ISZn—z),

S(1Udpoy) + (1Udy_)s® = 1 — (=1)"d"s°.
Hence

gnd, —dpgny = (=1)"d"go_1 = (1L gy )d (1 =162 =2 - (< 1) (1 = (=1)"d"s") (1 U g _2).

Now substituting

In-1= (1 U gn-2)32ﬂ—2 + (_1)11-130(1 U gn—2)y
1U gy = (1ULUGa-2)s™ 1+ (=1)" s (1U 1 U gns)
one gets

Gndl, — dugn_y = (=1)"d* (1 U go_2)s™ 2 + (= 1) (=1)""'d"s°(1 U gn_2)
_ (1 ulu gn_2)32n—ld1 (1 — d?n—132n—-2) - (_1)11—151(1 ulu !]n-z)dl (1 - dﬂn—lszn—2)
(=1 (U goa) + (=)= 1) (1 U g ).
Now as before, d*(1U gn_2) = (1U gn_2)d**~!, (1U1Ug,-2)d"' = d*(1Ug,_2), 5O we arrive at

(_l)n(l U gn_E)dzn—ISEn-d _ dl(l U gn_z)sz"'z(l - d2n—ls2n—2)
= (17U gn) (1 = &) - (-1)" (1L gna)

and this easily leads to zero.

We now turn to construction of homotopies from fg and gf to the identity morphisms.
First note that similarly to g, also f has an inductive definition, fo = d*, f, = d**1(1U fa_1).
Using this fact we also determine inductively e = ¢gf : A* — A*. It has

eo = s%d! =1,

€n =gnfa = ((1 U gn— 1) "+ ( 1) (1 Ugn- l))d2n+l(1 U fa- 1)
=1Uepq + (1) (1 0e,_y) = (14 (-1)*d*s®) (1 U eyy).

This implies

en = (14 (=1)"d"s") (1 = (=1)*d*s") - - (1 + d"s"2) (1 — d"s" 1),
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so that one may write ¢, = 1+ (—=1)"d"h,, with hy = 0 : A® —(trivial group), and h, :
A" = A1 n > 1. We will show that h is a homotopy from e to the identity, i. e. that
hoy1dns1 + dohy, = e, — 1. First let us produce an inductive expression for h,:

(=1)*d*hy =€, — 1= (14 (=1)*d"s)AU (1 + (=) 'd" h,_y)) — 1
= (14+(=1)"d"s") (1 - (-1)"1U (d" hay)) =1 = (1+ (= 1)"d*°) (1 = (=1)"d" (1 U hp_y)) — 1
= —(=1)"d"(1U bp_y) + (=1)"d*s" — *s°d" (1 U b))
= (-1)"d*(=1Uhuoy +8° — (-1)"d* 1" (1 U hpy)),

Bp=—1Uh,_y +8° — (=1)"d" " 1s°(Q U h,_y).

We now proceed by induction. For n = 0, hydy = s°(d° — d') = 0 = ey — 1. Now given
hody+dn1hy 1 =€, 1 =1=(=1)""1d""1h,_,, we must deduce b,  dny, +dphy, =€, -1 =
(-1)"d"h,. Moving summands around, this means, given hn,d, = ((-1)"7'd""! — d,_1) hn-1,
one must deduce hg,41d,e; = ((—1)"d™ — d,)h,. One has

hn+1dn+1 = hn+1d0 - hﬂ+l(1 LJ dn) = (—1 (W] hn + SU - (_1)n+ldn80(1 U hn))do - hﬂ+1(1 L dn)
= —(1Uh) +1 - (-1)"d*"(1Uh)d® = by (U dn)
= dh 1 = (=1)" %Ay = hoyy (1 dy)

and
(=1D)"d" - d,)h, = (=1)"d"hy — (d° — 1 U dpo1)hn = (=1)*@*hy, — d°hy + (LU dpoy )by
Comparing these two expressions we see that we have to prove
1= hpp(1Ud,) = (1Ud, - )hy,.
The left hand side expands to
1—(=1Uh, 48— (=1)"*'d"s" (1Uh,)) (10d,) = 1+1UA,d, —s® (10d,) +(=1)* 1 d" s (1UALd,);

we now use the induction hypothesis and the obvious identity —s®(1Ud,) = =1+ (LUd,_1)s°
to obtain

—1Udnothacy + (1)1 AU hyoy) + (P Udpo1)s® + (1) M A% (1 U hnd,).
Whereas on the right we have
(1Udn_y)he = —1Udporhaoi + (LU dnoy)s® = (-1 (AU dpoy)d 1% (1 U Rpy).
Comparing again, we are left with
(-1 AU d  haoy) + (=D)AL (1U Ady) = — (1) (LU daoy)d* 18 (1 U Ay)
to prove, i. e.

d"(1U hp_y) + d*s°(1U hndp) = (1 U dn_1)d* ™ s* (10 hy_y).
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Once again using the induction hypothesis, the left hand side is
dA*(1Uh,_ )+ (1) (AU d* h,_ ) = d*s®(1 U dy_1hny),

or
dA*(AUhyq) + (=1)" 1" s®d* (11U hyoy) — d”s% (1 U dp— 1) (LU Ayy),

so it suffices to prove
d" + (—l)n-ldnsﬂd" - d"sﬂ(l Ud,_y)=(1U dn_l)d"_lso,

and this is straightforward.

Finally, we construct a homotopy between e/, = f,g, and the identity. Therefore, introduce
some auxiliary notation: ¢, = 1U f,_; = d**d*>*~!...d"'. So ¢; = d?, ¢, = d**(1U ¢,_y),
and d?"tl¢, = f,. We now define

Ry = s%': A% o Al

R, = —1UR,_, +¢,i18°(1U gnoy) : AV 5 A2n-1
and prove that k!, considered as maps Sub(A)"~! — Sub(A)", constitute a homotopy between
e, and the identity, i. e. b}, d/,, +d, k], =€, — 1. For n = 0 this means s°s'(d*d® — d*d') =
d's® — 1. Further by induction: given A d, +d,_,h,_, = €,_, — 1, one has

Ry = (—1U AL +ea8°(1U go)) (@ H3d° — LU d))
= —(AUAL) A" ¢, 8 (1 U g,)d* 3 — ¢,8°(1 U godly) + 1 U Rl dl;

As we noted before, (11z)d° = d°z; since g is a morphism of complexes, g,d}, = d,,g,-1; and

h.d, = —d,_h,_, — 1+ d*" 'c,_19,_1 by the induction hypothesis. Hence one obtains
hppad ey = —dhld®™ 4 e gad® - ¢, s (1Udgnoy) — LU, _ b, —1+1Ud*" e, 190y
Similarly

dh! = (d*d° —1ud,_ )k,
=d™Pdh, — (1ud,_ ) (=1UARL_, + caa18°(1U gn-1))
=d°d*h, +1ud,_ k- (1Ud,_)eno18°(1U gny)-
Collecting these together, one sees that the thing to prove is
d°d*h! —d°h! d*** ¢, g, d*" =, ® (LU dngn-1) ten(1UgGn-1) — (LU, _ ) en18°(1Ugn1)
—_ d2n+1

Cngn°

Now an easy inductive argument shows that A/ d***2 = d?*h!; we saw before that g,d*"*? =
d**'g,; and trivially ¢,d"*! = d*"t!c,. All this leaves us with

= (1Udpgn 1) +cn(lUgay) ~ (MU, _)ea1s’(1U guy) =0
to prove. For that, it is sufficient to omit (1U g,_,) on the right, obtaining
—c,s®(1Udy) 4+ —(1Ud,_)en_1s° =05
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and since, as we noted earlier, s°(1Ud,) =1 — (1 U d,_,)s°, this amounts to

Cn(l LI dn—l) = (1 L d:‘_l)cn_l.
And recalling that ¢, = 1 U f,_;, this just expresses the fact that f is a morphism of com-
plexes. ®

APPENDIX B. FREE MONOIDS

Let (C,n,7) be a monoidal category in which the monoid operation o is left distributive
over coproducts U and preserves filtered colimits. In this case we are going to define an
explicit free monoid functor which is the left adjoint of the forgetful functor

Mon(C) v

C

If C = R-Mod then the free monoid on V € C is the classical tensor algebra T'(V). The
assumptions on C also hold for the monoidal category C = Cat(&, R-Mod) in which monoids
are operads. In this case the free monoid is the free operad on an G-object in R-Mod which
is used for the definition of the bar construction of operads in [18].

Let V be an object of C and define a sequence of objects V,; by V; = I and inductively
Va1 = TUVaV,. The first few terms are:

Vo =1, Vi=TuV, Vo=TUVa(lUuV), Va=TUVa(JUVo(IUV)),

There are maps i, : V,,_; = V, given inductively by ¢, =1U 104, with i, : I = TUV the
natural inclusion of the summand. We define V,, by the colimit

Voo = colim(V=Vi2 Vo= Va—--1)

We will write ¢ for any of the maps V,, = V,,, for n < m € 0.
There are also maps i, m @ VaaoV,, — Vo4, as follows, Let pg,, = 1y,. If » 2 1 then
VooV, =(UVeV,_1)oV,=V,UVoV,_,o0V, and we define p, , inductively by

nm:i. nlDL_
VooV, =V, uVoV,_,oV, fin, (i, dnsm(1 8 fin l'm)); b

Here ji : Va Vi, = Vi, = TUV o V,_; is the inclusion of the direct summand.

Proposition B.1. Suppose the tensor product a in C is left distributive over coproducts
and preserves filtered colimits, and let V' be an object of C. Then the free monoid on V is
T(V) = (Veo, 7, #£), with unit n given by the map i:/ =V, — T'(V) and multiplication
:T(V)oT(V) - I'(V) induced by the maps ifinm: VooV, = T(V).

We also write T¢,(V) for V,. Note that for C = R-Mod the category of R-modules
the tensor product is distributive on both sides and we have T, (V) = @y, VE*. In this
situation the maps 7, are the natural inclusions of summands, and the multiplication structure
is given by the isomorphisms V8" @ V®m o y&(n+m)
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Proof. To show that the multiplication is well defined on the colimit we need the relations
Pnt1m=1(tat1 0 1) = Gfinme1 = ftam(l Diy) where K = 74+ m. For n = 0 this becomes
(tmy jm) (10 l) =i = L aiy. For n > 1 we have

(iajk(l o ﬂn,m—l))(l Ulai,ol) = (3, k(10 finm=1(ts 0 1)))
(i:jk(l a F‘n—l,m))(im Ulno im) = (4, 7(1lo ﬂ'n—l.vn(1 0tm)))

which are both equal to (4,7x(1a %_1){(1 0 ftn_1.m-1)) by the inductive hypothesis. Since
Je(lote_y) = tefs—1 1 VaVi_y = Vi this is just (4, tufk—1(Llofn-1,m-1)) which equals 3 pip 1
as required. For the identity laws p(nol) = 1 = p(10n) we note that g, = 1 = g, o, where
fin,o = 1 follows inductively from the fact that (7, j,) is the identity on Vo Vo =TUV oV, _,.
For the associative law we note that fu4m(1optno1m) = fnm(dnol) : VaV,_10V, = Viim,
and 2j1y, = Jiypq,r (10 1) as above, so that we have inductively

p'n+l,m—1(in+l =] 1)
tnm(loiy)

tpgre(Lofigr) = (4 Jptqur(L0ptpm1,gar )} (Lgr Ul o pgr)
= (ifqrs Jptatr (3 0 pp_1,g4r (10 ftg,r)))
= (ifgrs Jptqtr (10 fpag1)(laptpoygnl))
= .up-i-q,r((i':‘ 1)v(jp+q‘3 1)(10}"‘;3—1,:10 1))
Hp+q,r (Hpqal)
This construction is functorial. If f : V — W is a morphism in C then T'(f) is defined by

maps f, : V, o W, where fo=1; and f, =1U fo f,_;. The map T'(f) is well defined since
infae1 = fnln is clear inductively. Using this and ji(fo fi_1) = fijx we have

fn+m#’n,m = fn+m(i1jn+m(1 Djun—l,rn)) = (ifnxtjva-km(f [»] fn-!-m-—lﬂ'n—l,m))

which if foym—1fn_1,m = ftn-t,m(fa-10 fin) becomes (¢, joym(Lojtnotm))(fm U fo faci0 fin)
which is just g, m(fa o fin). By induction T'(f) is thus a monoid homomorphism.

There is a natural monoid homomorphism ¢, : T(4) — A for (A, N4, t4) a monoid in C
defined as follows. Let ¢p = 14 and ¢, = (94, ta{lo@n_1)) for n > 1. Then ¢11) = na = ¢y,
and @Pniringr = (Mayfa(l 0 @ntn)) = ¢n if Pnin = Pn_1, s0 the ¢, give a well-defined ¢, on
T(A) = Awo. Clearly ¢47n = n4. By the unit and associativity laws for A and by the relations
Gnimt = G and @iie = pia(ladr-1) we have

fa(Pnodm) = pal(na,pa(lodn-1))oén) = (fm)sa(lopa(@n-10¢n)))
¢’n+mﬂrn,m = (¢n+mi,¢n+mjn+m(1Dﬂn—l.m)) = (¢ma“A(1U¢n+m-1)(1'31uﬂ—l.m))

Thus pra(da o pa) = dap follows inductively and ¢, is a monoid homomorphism. For any
object V of C we also have a natural map ¢y = ij; : V = T'(V). The freeness of T'(V) will
now follow from showing that the composites

ha Pa T (¢y) drvy

A——T(A) —— A T(V) ——T(T(V)) (V)

are the identity. The first of these is clear: ¢aths = daify = i = pallon,) = 1
Consider the maps (v )n : T¢n(V) = T¢a(T(V)) and ¢, : T (T(V)) = T(V) which define
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T(¢v) and ¢rvy. Then @o(thv)o = 7 =1 : I — T(V), and assuming inductively that
Pno1(Pv)nor=1: Voo = T(V) we have

¢’n(¢l’)n = (nal"(ln(f)n-l))(lu(ijl)n(d)l’)n—l) = (na'i.ltl,n—l(jlnl)) = z("a]n) =1

since fip_1(j101) = ju: Va Vo, = V,. Thus groyT(dy) =1. W
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