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COHOMOLOGY OF MONOIDS IN MONOIDAL CATEGORIES

HANS-JOACHIM BAUES, MAMUKA JIBLADZE AND ANDY TONKS

INTRODUCTION

It has been known for some time that the cohomology theories of many classical algebraic
objects - monoids, groups, associative algebras and Lic algebras for instance - havc a
common framework in terms of cohomology of internal monoids in asymmetrie monoidal
category; see for example [24]. But there are also important examples of algebraic structures
which occur as monoids in non-symmetrie monoidal categories, such as operads, monads,
theories, categories, and square rings as described below. In this article we show that these
structures are still susceptible to cohomological investigatioll, by developing the theory in the
absence of the symmetry condition. Later we shall assurne that the monoidal structure is
left distributive over coproducts and the category is an abelian categorYj this is the case for
operads, our original motivating example.

1. MONOlOS AND MODULES

We define monoids in monoidal categories and introducc the "module" objects which will
be used later as coefficients in the cohornology of such monoids. We also give sorne of our
motivating examples of monoidal categories and the monoids therein.

Let us start by recalling that a monoidal category is a tuple V = (V, 0, I, a,l, r) where V
is a category, 0 : V X V --+ V is a functor, I is an object of V, and

a = (aX,Y,z: (X 0 Y) 0 Z --+ ~Y 0 (Y 0 Z))X,Y,ZEV,

(Ix : I 0 ~Y --+ ~Y)XEV'

7' (rx : )( 0 / --+ X)XEV

are natural isomorphisms, rcquired to satisfy ccrtain conditions which we omit here (see c.g.
[19]). In many examples our monoidal categories will be strictly associative and have strict
units, in the sense that all aX,l',Z and IX1 rx are identity morphisms. Thc monoidal catcgory
V is abelian if the underlying category V is an abelian catcgory. Suppose V has binary
coproducts, denoted )( U Y j then the monoidal structure is left distributive if the canonical
natural transformation

()(1 0 Y) u (X2 0 Y) --+ (Xl U ~'(2) 0 Y

is an isomorphism. Right distributivity is defined similarly.

Key words and phmses. cohomology, internal monoids , operads.
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(associativity) }
(left unit),
(right unit).

A strict monoidal functor between monoidal categories is a functor between the underlying
categories preserving aB the existing structure in the obvious way.

Given such a V, a monoid in V, or a V-monoid, is a triplc 9 = (G, 11" 1]) where G E V,
J-L : Go G ---+ G} TJ : I ---+ G must satisfy the identities

p(jL 0 G) p(G 0 p)aa,G,a
It(TJ 0 G) = La
Jt(G 01]) = ra

Basic examples of monoidal categories are the following:

Example 1.1. Let C be any category with finite produets. Then these produets may be used
to give it a monoidal struetllre C X = (C, X, 1, a,l, r), where X is the binary produet, 1 is the
terminal object (which exists as the empty product)} and a, I, rare uniquely determined by
the universal property of the products. A monoid in this monoidal eategory is what is usually
caBed an internal monoid in a category with prod uets.

Also in this "cartesian" situation one may define what it means for a monoid 9 = (G, JL :
G X G ---+ G,1] : 1 ---+ G) to be an internal group object: there must exist an endomorphism
t : G ---+ G satisfying

J-L(G X t)d = 1]p = JL(t x G)d
where d : X ---+ X X X and p : X ---+ 1 are the canonical morphisms (whieh are only available
in the cartcsian ease).

In particular, taking C to be the category Ens of sets and funetions, one obtains just
monoids and groups in the ordinary sense; Of, taking the categories of spaces, simplicial sets,
etc., one obtains topological or simplicial monoids and groups.

Example 1.2. The category R-mod of modules over a commutative ring R may be given a
monoidal strueture using the tensor product over R. VVe shall eIenote this monoidal category
by R-mod0 = (R-mod}0R) R} a,l, r). Here a, I, rare the obvious isomorphisms. Monoids
in this example are the associative R-algebras with unit.

These are in fact examples of symmetrie monoidal categories} i. e. they admit additional
structure consisting of natural isomorphisms c = (cx,}' : ...Y 0 Y ---+ V o ...Y)x,y satisfying further
coherence conditions (see [19] for these). In the symmetric situation one mayaiso talk about
commutative monoids: (G, JL,1]) is commutative if

Ilca,G = JL

holeIs. In particular} in the cartesian situation of the example 1.1 one has the notion of an
internal commutative} or abelian, group. We writc Ab(C) for the category of abelian group
objects in thc cartesian monoidal category C.

There is also an important relaxation of the symmetrie strllcture called braiding (the same
CX,y, but satisfying less stringent coherence conditionsj see e.g. [16] for numerous examples
of monoidal categories of this kind).

We are going to define cohomology of V-monoids; hence we must first determine what are
the coefficients for such a eohomology theory. For this we rccall (see e.g. [27]) that a general
notion of coefficients for the cohomology of an objcct ...Y in a category C is given by internal



COHOMOLOGY OF MONOIDS IN MONOIDAL CATEGORIES 3

abelian group objects in the slice category C/X. Here Cj)( is the category whose objects
are morphisms Y -r )( in C and whose morphisms are commutative triangles of the obvious
kind. In order to speak about internal abelian groups in the slice categories one has to assurne
that the CjX have finite products, or equivalcntly that C has pullbacks.

Given a monoidal category V, there is an obvious notion of a morphism between V-monoids,
so we have the category Mon(V) of monoids and their Illorphisms, equipped with a forgetful
functor U : Mon(V) -r V. Anel if we assurne cxistence of pullbacks in V, the same will bc
true for Mon(V). Indeed, one has

Lemma 1.3. For any monoidal category V = (V, ... ), the forgetful functor

U : Mon(V) ---t V

reflects any inverse limits that exist in V.

Proof. Consider any diagram ((9i)iEI, (f~ : (Ji -r Gi, )t:i-+i/) in Mon(V), where 9i = (Gi, Pi, 7Jd
are V-monoids. Suppose we are given a limiting cone (li : G ---t GdiEI over this diagram,

considered as a diagram in V. One easily sees that (G 0 G Jiof
i
) Gi 0 Gi ~ Gi)iEI and

(I ~ Gi)iEI are cones ill V, hence they determine maps J-L : Go G ---t G alld 1] : I ---t G ,
respectively. Alld one then checks that this gives a structure of a limiting cone in Mon(V). •

Note that for any monoid 9 = (G, J-L, 1]) in V, there is a natural monoidal structure on V jG,
which we will denote by V j9 = (V jG, 0IJ' 1'11' (L, L, r). Here the functor oJJ is determined by
(..Y ~ G) olJ (Y 4. G) = (..-Y 0 Y xoy) G oG -4 G); 11] is just J ~ A1; and a, Land rare those
of V (in fact there is a one-to-onc corrcspondence between monoid structures on an object G
and those monoidal structures on V jG which turn the forgetful functor U : V jG -r V into
a strict monoidal functor). With respcct to this monoidal strllcture one has the equivalence
of categories Mon(V j9)::= Mon(V)j9.

So we shall assurne henceforward that our category V has pullbacks, and, for a V-monoid
9 = (G, fl,1]) we choose the category Ab(Mon(V)j9) ofinternal abelian groups in Mon(V)j9
and their homomorphisms to be the category of coefficients for the cohomology of Q. For­
tunately, this category has a much simpler dcscription, up ta equivalence. This description
involves the notion of action af a monoid on an object:

Definition 1.4. A left action of a V-monoid 9 = (C,/i, 17) on an object A of V is a morphism
u : Go A ---t A satisfying

U(J-L 0 A)

u(1]oA)
u(G' 0 u)UC,C,A'

LA'

We will also say that A is a left 9-object. Similarly, a righ t action of a manoid 9' = (G', pI, 1]')
on Ais a morphism u' : AoG' ---t A satisfying analogous identities. And given two such actions
we say that they are compatible, or that A is an G-9'-biobject, if

u'(uoG') = u(GoU')UC,A,G"
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Far example, given any monoid 9 = (C, J-l, 11), there is an evident 9-9-biobjeet strueture
on G itself.

It is obvious how to define a morphism of left 9-, I'ight 91
-, or 9-91-biobjectsj the eorre­

sponding categories will be denoted by {ly, y9 ' , a.nd vyQl, respeetively. All these eategories
come with forgetful funetors to Y (which will be denoted by the same letter U)j and just as
in the lemma above, these forgetful functors reflect all thc limits that happen to exist in Y.
Henee we also ean talk about internal abelian groups in 9y9. And we have

Proposition 1.5. For a,ny monoid Q in y, there is an equivalenee of eategories

Ab(Mon(V)jQ) ~ Ab(ay9 jG).

Proof. Ta simplify exposition, we will prove the proposition in thc particular case when the
monoid in question is the terminal object 1 of Y, with its unique monoid structure. That is
we will prove that there is an equivalence

By thc above rcmarks on slice categories, this will suffice: for any monoid 9, the underlying
object C (more precisely, its identity map) is clearly terminal in Y jG.

Now an object of the category Ab(Mon(V)) looks Iikc (A,IL : A 0 A -t A,11 : I -t A, + :
A X A -t A, 0 : 1 -t A, - : A -t A). First of all note that 0 must be a morphism of monaids,

in partieular 71 = (1 -t 1 ~ A), so that 1J is in fa.ct determined by O. As for J-L, one has the
commutative diagram

J-lx
(A X A) 0 (A X A)--....)0 A X A

+0+1 1+
p,

A 0 A ------~... A

where J-lx is the monoid structure on"A X A which, by a partieular case of lemma 1.3, equals

(A X A) 0 (A X A) (P10Pl,P:lOP:l\ (A 0 A) X (A 0 A)~ A X A.

Composing all this with A 0 A ~ (A X 1) 0 (1 X A) (A x 0)0(0 x A\ (A X A) 0 (A X A) reveals
that J-l is equal to the composite

AoA (AOP,POA)) (Aol)x(loA) ~AxA4A,

where p is the unique morphism from A to 1, anel 'lt : 1 0 A~ A 0 A .!:.t A, v : A 0 1~
AoA ~ Aare easily seen to define a I-l-biobject structure on A, compatible with the abelian
group structure. Hence JL is determined by these structures.

Conversely, given an object (A, u : 1 0 A -t A, v : A 0 1 -t A, + : A X A -t A,O : 1 -t

A, - : A -t A) of A bey!), one equips it with a V-monoid structure via A 0 A (AOP,POA\

(A 0 1) X (10 A)~ A X A 4 A and I --+ 1 ~ A and checks that this is compatible with
the abelian group structure. •
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Hence we are left with Ab(oyo /G) as our category of coefficients for the cohomology of
the V-monoid g. In the next section we will simplify the category of coefficients even more
by imposing tha conditions that Y be abelian with left distributive monoidal strueture.

We finish this seetion with the examples of monoids in non-symmetrie monoidal categories
which mainly motivated the results in this paper.

Example 1.6 (Bimodules). For any assoeiative ring R, the category R-R-Mod of R-R­
bimodules has a non-symmetrie monoidal structurc given by 0R' A monoid Gin this monoidal
category may be identified with an R-ring, that is, a ring equipped with a ring homomorphism
from R. The coefficients for the cohomology of an R-ring G turn out to be G-G-bimodules,
as we will see later.

Example 1.7 (Monads). For any eategory C, the catcgory End(C) of endofunetors on C
earries a monoidal strueture induced by composition of endofunetors; we denote the eorre­
sponding monoidal eatcgory by End(C)O = (End(C), 0, Ide , id, id, id). This is an example of
a stnct monoidal category - the associativity anel unit natural transformations are all identi­
ties. Note also that as soon as C has coproducts, End(C)O is automatieally left distributive,
but almost never right distributive, nor symmetrie. Monoids in End(C)O are monads on C.

There are also variations on this example: one may take various fuH subeategories of
End(C) whieh are closcd under the monoidal structure, c.g. the category of finitary endofune­
tors (that is, those preserving filtered colimits), or the category of cocontinuous endofunetors
(preserving all eolimits), or the eategory of endofllnetors having a right adjoint. Monoids in
these eategories are various kinds of monads on C.

Example 1.8 (Theories). Monoids in the category of finitary cndofunetors are finitary
monads. In the case of finitary endofunetors on Ens the eategory of finitary monads is
equivalent to the category of finitary algebraic thcories in the sense of Lawvere [20]. In this
particular case, coefficients turn out to be the general coefficients for cohomology of algebraic
theories briefly mentioned in [14].

Example 1.9 (Operads). In example 1.7, let C be thc category of veetor spaces over a
eharacteristie zero field k. COllsider the full su bcatcgory of End (C) consisting of endofunctors
which are analytic; recaH from [15] that these a.re functors F admitting a decomposition into
a Taylor series

F(V) = EB Pn 06.. \/0 Jl

n~O

where (Fn)n~O is some sequence of linear represcntatiolls of symmetrie groups 6 n . Since
the analytie endofunctors are closed under compositioll, one obtains an abelian (in fact also
k-linear) left distributive monoidal category. This category is equivalent to that considered
in [17]; in particular, its category of monoids is equivalent to the category of k-linear operads.
We will identify coefficients in the next section.

Example 1.10 (Square rings). Let C be the category of groups Gr or of abelian groups
Ab, and consider the full subcategory

Degreen(C) c End(C)
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whose objects are the finitary endofunctors which preserve cokernels and which have degree
n. In particular functors P of degree one, or linear functors, are thosc which carry coproducts
to products, i.e. the canonical natural transformation

is an isomorphism. Functors F of degree two , or quadratic functors , are those for which the
cross effect F(.XIY) = ker(rt., r2.) is linear as a bifunctor in 4'Y and Y. ft is shown in [4] that
there are canonical equivalences of monoidal categories

Ab s=' DegreedAb) ~ DegreedGr)

Moreover Degree2(Ab) and Degree2(Gr) are cquivalcnt to categories of certain simple
algebraic objects termed quadratic Z-modules [1] anel square groups [4] respectively. The
category Degreen(Ab) is equivalent to the catcgory of modules over a certain commutative
ring defined by Pirashvili [25] and calculated by Dreckmann [7].

Now unlike linear endofunctors, the quadratic olles are not closed under composition. How­
ever in the cases considered, the inclusion of the fuH subcategory of quadratic endofunctors
into End(C) has a left adjoint ( )quad. So one may define a monoidal structure on Degree2(C)
by FoG = (F 0 G)quad. Monoids in Degree2(Gr) corrcspond under the equivalence with
square grou ps to the square rings of [3]. Similarly one can dcfine "rings of degree n" in the
category Degreen(Gr). Rings of degree 1 are just thc classical rings.

Example 1.11 (Categories). Given an object 1 in a category with puHbacks 8, there is
a monoidal structure on the slice category 8/(1 X 1): thc unit object is the diagonal map
d : I -7 J X 1 and for f : )( -7 1 X 1, 9 : Y -7 I X I the object fog: Z -7 1 X I is determined
by the diagram

])2
Z----~~IxlxI---~~lxI

1 l
lXdXI

jxg
4'YxY-----.)1 lxIxlxi

in which the square is pullback. This is sometimes termed thc "category of matrices", since
for 8 = Ens it is eq uivalent to the category of families (4'Yij )i,jE/ of sets, with the operation

(X"ij) 0 (Yij) = (Il4'Y ik X Ykj )i,jEI'

k

_Now monoids in this monoidal category may be identificd with those internal categories in
S having I aB the object of objectsj and morphisms of monoids are those internal functors
which are idcntity on objects. For any two such categorics C anel V, the C-V-biobjects may
be identified with internal profunciors from 'D to C. Whell S = Ens, these are just bifunctors
C X 'Dop -7 S. In particular, the canonical C-C-biobject strllcture on C itself corresponds to its
horn bifunctor. Coefficients for the cohomology of an internal category C are natural systems
on Cl that is) abelian group objccts in the category of internal profunctors. For 8 = Ens
these are exactly thc natural systems in the sense of [5].
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Note that even this example may be fitted into the general setting of thc example 1.7: each

object ~'( !..t 1 X 1 of S/(1 x I) determines an cndofunctor of the catcgory SI lasfollows:

Sl1 (PIj)·) SI):; (p~j).) Sll,

where PI, P2 : I X I ---7 I are thc projections, (PI/)- is pullback along PI/, and (P2/). is
composition with P2/. For S = Ens l Si I may bc identified with the category of I-indexed
families of sets, and thcn the cndofunctor corresponding to the "matrix" (Xij ) is given by

(Vi)iEI t-t (TI ~Yij x '0)iEI.
j

Endofunctors of this kind are obviously closed undcr composition, and the monoidal structure
so obtained coincides with thc "matrix multiplication" above.

Example 1.12 (Spectra). According to recent work of Elmendorf-Kriz-Mandell-May [10)
the category of spectra can be given a monoidal structure. Morcovcr the monoids in this
category correspond to Aoo-ring spectra; compare 6.2 in (10).

2. MONOlOS ANO MODULES IN THE ABELIAN LEFT DISTRIBUTIVE CASE

Throughout this section A = (A, 0, J) will be an abeliall 10ft distributive monoidal category.
For this case the coefficient objects for a monoid (i = (G', J-l, 7]) in A, given by abelian grollps
in {] AQ IG according to proposition 1.5 1 can be further simplified. In fact if the monoidal
structure is also right distributive the coefficients a.re just bimodules:

Proposition 2.1. Let A be an abelian monoidal category which is both left and right dis­
tributive, and suppose 9 is a monoid in A. Then there is an equivalence of categories

Ab(C AC IG) ~ QAQ

This can be readily seen by thc arguments below for the left distributive case.

The results in this seetion can be applied to the following exam pies.

Examples 2.2. Thc following are abelian left distributive monoidal categories. Let R be a
commutative ring.

(1) Clearly the monoid operation ®R on R-mod of example 1.2 is both left and right
distributive, and applying proposition 2.1 shows that thc coefficients for cohomology
of R-algebras Gare the G-bimodules. This is the classical case in for example [21).

(2) Let S be the symmetrie groupoid and let A = Cat(S, R-mod) be the category of
funetors from S to R-modules. Then there is a monoidal structure 0 on A such that
Mon(A) is the category of operads in A. See cxample 1.9.

(3) Let A be the category of endofunetors of R-mod which preserve filtered colimits and
cokernels. Then composition yields a monoidal structure and Mon(A) is the category
of monads on R-Mod.

(4) The category Degreen(Ab) of examplc 1.10.

We may consider (1.) ~ (2.) ~ (3.) aß a sequence of inclusions of monoidal categories.
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Definition 2.3. Let (C, J-l,1]) be a monoid in an abelian monoidal category (A, 0,1), with 0
Ieft distributive over $. Then a coefficient G-mooule is an object M and morphisms

Go (G Ea 1\1)

in A with the following properties

(1) A is linear in M:

A .. IvI 1\10 G P .. M

IlO 1c: 0 G' 0 (G' Ea M) -----+-.. Go (G EB M)

10°1 1A

Go (G Ef7 Go (G Ea AI)) ----........ M
A2

Go (G EB /11 EB M) (10 Pb.! 0 ]J2) .. Go (G' EB 1\1) EB G 0 (G ffi M)

10 (1 El1+l1 jA + A

Go (G EB M) ---------~)oM
A

(2) ,\ is a cross-action:

10 (G EB M)

ry011~
G 0 (G ffi M) A)o M

where ,\2 = '\(10 (1 EB A)) and 0' = (tt(l 0 Pe), 1).

(3) p is a right action:

loft

MoG----.... M
P

(4) A and p are compatible:

!vi oG'oG

po 11
fdoG----....... M

P

Ao1
Go (GEB M) oG -----...~ MaG

~10 (,tElJll1 ~M
G 0 (G $ M 0 G) )' G 0 (G EB M) A

10(lffip)
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Morphisms between coefficient G-modules are morphisms in A which respect all the structure.
We write CoefG for the category of coofficient G-modllies M over a Hxed monoid G in A.

Proposition 2.4. Let 9 = (G, tt, 17) be a monoid in an Cl,belian left distributive monoidal
category A as above. Then there is an equivalence of categories

Ab(Q AQjG) ~ CoefG

Prooj. Let (A, u, V, +,0, -) be an object of Ab(Q AO jG). Then the map P : A ---+ G is split
by °:G ---+ A and so we can write A = G EB lvI with p = Pe anel °= ie . The addition
+ : A Xc A ---+ A becomes now 1 E9 (1, 1) : G EB A,J EI) Al ---+ G EB M alld the actions u, v are
given by

GD (G E9 1\1) (10 Pa, 1).. GD G EB G' 0 (G EB J\tJ) IL ffi A .. GEI) M

~ ~E9p
(GEBM)oG----.......... GoGtIJAloG----.......... GffiM

for some A : GD (G EB M) ---+ M and p : MD G ---+ M, wherc thc biobject axioms on u and v
are just the (cross- )action and compatibility laws for A alld p. Furthermore the compatibility
of + with u is equivalent to the linearity of A. •

Let Coefa be the category of coefficient G-modulcs, for (C, 17, tt) a monoid in A. The
jorgetjtll jtlnctor

U : Coefa --+ A

is the functor which takes a cocfficicnt G-module (M, A, p) to M regarded simply as an object
of A. We will show that U has a left adjoint F , giving explicitly the jree coejJicient G-modtlle
(F(V), A, p) on an object V of A. The adjunction givcs an isomorphism of abelian groups

HomA(V, M) ~ HomCoefa (F(lf), M)

which is natural in A E A and M E Coefa .
We give first an alternative definition of coefficicnt G-mod nies using the language of additive

functors.

Definition 2.5. (cf example 1.10) Let F : A ---+ A be an endofuIlctor on an abclian category
A. We define for objects A, B of A thc cross-effeet F(AIB) by the kernel

F(AIB) = ker (11" : F(A EB B) ---+ F(A) EB F(B))

where 11" = (FpAl FpB) is given by the projcctiolls from A EB B to A and to B respectively.
Clearly F(AIB) is functorial in A and B. Wo say that F is an additive functor if F(AIB) is
zero for all A, B. We define natural maps P by

P : F(AIA) __c - .......... F(A tIJ A) F(+) .. F(A)
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where + is the addition map (1,1) : A EB A -T A for A an objcet of A. The additivisation of
p is the additive funetor F~dd defined by the eokcrnel

padd(A) = eoker (p : P(AIA) --t F(A))

The quotient map q : F --t F add has the universal propcrty that any natural transformation
F -T G where G is additive has a unique faetorisation F --t padd --t G through q.

In our situation the Ieft distributivity of thc tonsor produet 0 in A says that eaeh functor
- 0 B : A l---t A 0 B is additive. However the functors A 0 - : B l---t A CI B are not in general
additive; for A = Cat(S, R-mod) for example thc funetor A CI - is additive if and only if the
objeet A is concentrated in degree 1.

Consider the functor L o : A --t A with

Lo(X) = G CI (G EB .IY)

and the additive funetor L = L~d : A ---t A defined by the additivisation of Lo. We note
that for a coefficient G-module (M,).., p), the lincarity property (2.3)(1) says precisely that
A : GD (G EB M) = Lo(1~1) -T M factors through the quotient map q : Lo --t L. Furthermore
the cross-action properties (2.3)(2) may be written as ).. (1] 0 1) = PM : G ffi M --t M and

(2.6)

/-lol
GD Lo(M) ----+-JI Lo(M)

loal l~
Lo(Lo(M)) --)..-2-~~ NI

where )..2 = )..Lo()..) = )..(10 (1 EB )..)) and 0' = Üt(l CI Pa), 1).

Lemma 2.7. In thc presence of the linearity condition on ).., thc commutativity of (2.6) is
equivalent to that of

(2.8)

where
anel

ß = P2 + (1 0 i G ) ß'
ß' = (1]Dl)Pl(l-ap2)

G EB Lo(/11) ---t Lo(M)
G EB Lo(M) ---t GD G

Proof. Since P2Q: = 1 the maps (1-ap2)0' anel ß'Q' a.re zero. Thus ßa is the identity on Lo(M)
and the commutativity of (2.8) implies that of (2.6). In thc opposite direetion, we will show
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that (1 ffi )..)o:ß = 1 EB).., so that )..Lo()..) (100')(10 ß) = ALo()..) anel (2.6) will imply (2.8). We
have

PI aß = PI ap2 +PI a(1 0 ic )ß'

= PIap2 + j.L(1 0 Pc)(1 0 iC )(17 0 1)PI(1 - ap2)

= PI ap2 +PI (1 - ap2)

PI

Also )..(1 0 ic ) is zero by linearity and so AP20'ß = Aß = A]J2' Thus (1 EB )..)aß = 1 EB ).. as
required. •

We say A is right com]Jatible with cokernels if for each A E A tha additive functor A 0 - :

A ---+ A given by B I--t A 0 B preserves cokernels. If A has this property one has natural
transformations 1](1)' JL(1) anel JL(2) given by the following commutative diagrams, in which q
is the quotient map from LoV() =Go (G ffi X) to the additivisation LeX), q2 is qLo(q) and
pi = 10 (p EB 1) : Lo(.'Y) 0 G =Go (G 0 G EB.X 0 G) ---+ Lo(.'y).

qo1
Lo(.:Y) 0 G ----+- L(X) 0 G

p:1 11'(2)
q

Lo(.,YoG) ~L(XoG)

Lemma 2.9. Thc natural transformations 7](1)1 11(1) anel 1'(2) are wcll-dcfined.

Proof. Since .X is clearly the additivisation of G EB J'Y in ,X 1 1](1) is weil defined. Similarly
J1(2) is weil defined since - 0 G is additive. ßy the assumption that A is right compatible
with cokernels it follows that L(L(J'Y)) is the adelitivisation of Lo(Lo(J'Y)) in X with q2 the
corresponding quotient map. Thus Il(1) is also well defined. •

Using these natural transformations between additive functors we have

Proposition 2.10. A coefficient G-module is equivalently specified by an object M anel
morphisms

JL(M)--..... M, MoG P )I M

such that X1](1) = 1Ml P is a right action as in (2.3)(3), anel the following diagrams commute:

L(X)
L(L(M))--~~L(Al)

1'(1)1 lx
L(M) ----......~ M

X

Xol
L(lt.1) 0 G ---~)o 1YI 0 G P

Il(2)1 ~M
~

L(M 0 G) ~ L(M) )..
L(p)
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Note that these are just the diagrams in (2.8) and (2.3) (4) made additive.

Proof. Given Xwe obtain A by the composite

q X
A : G Cl (G EB M) --~~ L(M) --~~M

Then (A1, A, p) is a coefficient G-module in the sense of (2.3), as follows from the previous
lemmas. Conversely any coefficient G-module lvi is obtained in this way sinee the linearity
property in (2.3) (1) is equivalcnt to the existence of X with A =Xq. •

We ean now give an explicit eonstruction for free coefficient modules. If the monoidal
structure is both right and left distributive, the eoefficient modules are just bimodules, and
it is weIl known that the free G-bimodule is given by F(l1) = G Cl 11 Cl G with left and right
aetions givcn by the multiplication in G. With the assumption that A is right compatible
with cokernels we have a similar explicit prescntation of F in our more general situation.

Proposition 2.11. Let G = (G, 771fl) be a monoid in A. Then the free coefficient G-module
on an objeet V of A is given by

F(V) = L(\1 CJ G)

with the structure maps Xand p given by

Il(1 )
X: L(L(l1 CJ G))----~~ L(\1 CJ G)

JL(2) L(lofl)
p : L(l! CJ G) CJ G ---+-11 L(l! CJ G' CJ G) l L(l! CJ G)

Proof. For an object V of A and a coefficient G-module (M, X, p) we have natural maps
l! ---7 U F(V) in A and F(UM) ---7 M in Coefc given by

1 0 'fJ 1](1)
V = V CJ [----... V CJ G' -------+-) L(V 0 G)

L(M CJ G) L(p) 11 L(M) __X_-----... M

respectively, and these satisfy the triangle identitics requircd Lo define an adjunction. •

We end by interpreting the rcsults of this scetion for operads , the example promised
in (2.2.2). First recall the definition of an operad from e.g. [17].

Let 6 be tha symmetrie groupoid; that is, 6 is given by the disjoint union of the symmetrie
groups Snl with 6 0 = {*}. Let A = R-Mod bc the category of R-modules (or R-module
ehain complexes) for R a commutative ring, with monoidal structure 0 = 0n and I = R.
Consider the category Cat(6, A) of 6-objeets in A, given by functors A from the symmetrie
groupoid to A, or equivalently by families {An}n~o together with actions of 6 n. The category
Cat(6, A) is dearly abelian, with the sum A EI:1 B of 6-objects given by the sum in A

(A EI:1 B)n = An EB Bn
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The tensor product of S-objects is defined as folIows. Let p~ be the set of partitions of
{I, ... , n} into k disjoint subsets (Ji )7=l' and write ji for Ilil. Then for an 6-object Biet

B~ = EB Bh 0 .. ·0 Bj "

(Ji)E'P~

Clearly 6 k acts on B~. In fact 6 n also acts on B~ via. thc 6 i ; actions. Thus the rnonoidal
structure on Cat(6, A) can bc defined by

N

(A 0 B)n = E9 Ak 06" B~
k=O

If Ao = Ba = 0 this is a finite surn EI1~:;;;1' The functor i : A -t Cat(6, A) with i(Ch = C
and i(C)n = 0 for n :f. 1 preserves the tensor product, and J = i(R) defines a neutral object
for 0 in Cat(6, A). The monoidal structure on Cat(6, A) is not symmetrie, but it is left
distributive. In fact - 0 B preserves all colimits and has a right adjoint [B, -] given by

N

[B, Ch = E9 A(B~, Cn)Sn
n:;;;O

where A(-, - )Sn is the object of 6 n -equivariant maps in A.

Definition 2.12. An operad in A is a monoid in Cat(6, A), that is, an 6-object A together
with morphisms 1} : J -t A, JL: A 0 A -t A satisfying thc lInit and associativity laws.

Thlls an operad is spccified by thc objects {An}n~o and 6 n -actions, together with opera­
tions

where n = jl +...+jk' satisfying the obvious unit and associative laws , together with certain
equivariance relations as in IvIay [23].

Definition 2.13. A linear module over an operad G is a coefficient G-module in Cat(6, A),
that is, an 6-object M together with a right action p : Ai 0 G -t NI and a left cross-action
A : Go (G ffi M) -t M with the properties (1)-(4) of definition 2.3.

The functor Lo(NI) = Go (G EB At!) may be expandcd by the distributivity of the tensor
product 0 in A, and we see that the additivisation L(/\'1) consists of those summands which
contain precisely one factor from M. Thus a linear G-module is a family of objects {Mn}n~o

with 6 n -actions, and operations

for 1 ~ i ~ k and n = jl + ... + jk' satisfying the obvious action and compatibility laws
together with equivariance relations as those for the operad structure. Comparc also [22].
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3. COHOMOLOGY

Let 9 = (G, jL, 1J) be a monoid in a monoidal eategory V = (Y, 0 , I). We will avoid
mentioning the associativity isomorphisms where possiblc.

We write GOn for the n-fold iterated tensor product GD GD· .. 0 G , and let ttn
: Gon ---+ G

be given by the iterated multiplication map, with J-1. 0 = 1] and 1',1 the identity. We also write
tti and l}i for thc maps given by applying the multiplieation anel thc unit between the ith and
(i + 1)st tensor factors:

lOlLol
ILi : Gon ~ G O(i-l) 0 G °Go G O(n-i-l) -----.-)0 GO(n-l)

101}01
1}i : Gon e:' GOi ° J °GO(n-i) -------~>GO(n+l)

(0 < i < n)

(0 ~ i ~ n)

Definition 3.1. We denote by B. (g) the two-sided bar construetion [23] in the monoidal
category V j9. This is the simplicial object in V j9 with

n+2
Bn(g) = (00 (0+2)~ G)

and face and degeneracy maps given by

for 0 ~ i ~ n. As usual , this in fact defines a simplicial object in aya jG. There are extra
degeneracy operators 8-1 = 1]0 = 7} ° GO(n+2) allel 8 0 +1 = 17n+2 = (/0(n+2) 0 1} which provide
contractions of B. (g) in Va jG and 0y jG respectively, but not, in 9V9 jG.

Given an internal abelian group A in QVQ jG, we define

Definition 3.2. The cohomology of a monoid 9 E Mon(V) with eoefficients in an internal
abelian group A E Ab( eVo jG) ~ Ab(Mon(V)j9), denoted H" (9i A), is the eohomology of
the eoehain complex associated to the eosimplicial abelian group Homovo/G(B.(9), A).

Now the forgetful funetor U : oVa jG ---+ Y jG has a left adjoint P, where in particular

n n+2
F(Go(n) ~ G) = (00(n+2)~ G)

Hence thcre are natural bijections

anel translating the cosimplicial structure of B. (9) along these one gets
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Proposition 3.3. H· (9; A) is isomorphie to the coholllology of thc complex C·(9; A) with

cn(9; 11) = Homv/G(Go(n) ~ G, A) and differentials

n

cl = L(_l)id i
: Cn-1(Q; A) ~ G"(9; A)

i=O

where
tfl(GO(n-l) .4 A) = (Go(n) 10/ ) GD A ~ A),

di(GO(n-l) .4 A) = (Go(n)~ GO(n-l) .4 A) for 0 < i < n,

dn (GO(n-l) .4 A) = (Go(n) IDl) A 0 G ~ A).

Sinee the forgetful funetor U : QVQjG ~ V jG is monadic, therc is also a standard way to
define eohomology in this setting, the so ealled eotriplc eohomology (see [6]). We will show
that this leads to the same result:

Proposition 3.4. The eohomology groups H·(9; A) defined above are isomorphie to the
eotriple eohomology grollps w. r. t. thc eotriple on QVC jG' indueed by the monadie adjunetion
(F -1 U) : OVa jG ~ V jG'.

Proof. The standard simplicial object for the cotriple cohomology has (Fu)n(lG) in dimension

n; as F(X .4 G) = (G o.X 0 G 10
/
0\ GD G 0 G ~ G), this simplicial object will have

GO(2n+3) in dimension n. In fact direct calculation shows that this simplicial object is exactly
the edgewise subdivision Sub(B.(Q)) of B. (9), in the sense of [28J. Now it is not c1ear whether
a simplieial object in a general category is homotopy eqtlivalent to its edgewise subdivision.
But to prove our proposition, it is enough to deal with cosimplicial a.belian groups obtained by
applying ta simplicial objccts the contravariant functor Ham(-, A), for A an internal abelian
group. There is an obvious dual notion of subdivision for cosimplicial objects. And analyzing
the proof of thc particular case in [28], one can modify it to obtain a proof for cosimplicial
internal abelian groups. Therefore the proposition will follow from the following lemma.

Lemma 3.5 (Subdivision Lemma). For a cosimplicial abelian group A· in any category,
the cochain complexes corresponding to A· and Sub(A·) are hamotopy equivalent.

This lemma is proved in appendix A. •

We now identify the simplification of thc cochain complex in proposition 3.3 in the special
case of monoids in an abelian and left distributive monoidal category A. In this case we
know by proposition 2.4 that the coefficients A E Ab(O A(J jG) can be replaced by coefficient
G-modules (M, A, p) E CoefG •

Proposition 3.6. Let A1 be a coefficient G-module. Then there is a cosimplicial abelian
group

Cn(G, M) = HomA(p 0.:.0 G; M)
Tl radars
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The coface and codegeneracy maps are defined on c E en(G, Iv!) by

~ Go (0 EB M)
.,\

"M

,. A10G
p

"M

> Gon c
~M

)0 Gon c
"M

101]01
Si(C) : GO(n-l) ~ GOi 010 GO(n-i-l) -------_+_

1°11,01.di(c) : GO(n+l) S;! GO(i-l) ° G 02 oGO(n-i) ------~

lfl+l(C) : GO(n+l) ~ Gon oG c_o_1 ...

where GOn is the nth tensor power, p.,0 = 1], It l = 1 alld /tn
: Gon --7 G for n ~ 2 is given by

the multiplication on G.

Proof. We must check those cosimplicial identities which involve da; the others are exactly as
in the c1assical definition of Hochschild cohomology. Wc have

a) dldo dada <=> "\(10 (/ln,c))(/to 1) = ..\ [1 ° Utn+1, "\(10 (/ln, c))]
b) dn+2dO = dOdn+1

~ p(..\(10 (ttn, c)) ° 1) = ..\(10 (/Ln+1,p(co 1)))
c) di+ldO = dOdi {=} ..\ (1 0 (tLn, C)) p.,i+ 1 = A(1 ° (/Ln+1, Cp.,i ) )
d) sOdo = 1 ~ .,\ (1 ° (p.,n, c))( 77 ° 1) = c
e) Si+1do = dOsi {::::::} ..\(10 (/ln 1 C))1]i+l ..\ (1 ° (tLn-1 , C1]I'))

for all c : GOn --7 M, whcre we write /ll' : GO(k+l) --7 GO k and 7]i : GO(k-1) --7 GO k for the
multiplication and unit of G' applied at the ith fa.ctor. By the cross-action property we know

and hence (a) folIows. Also the left distributivity and the compatibility of ..\ and p give

p(A 01)(10 (tLn, c) ° 1) = ..\(10 {tL Efl p))(l ° (/ln ° 1, Co 1))

and hence (b). By thc unit law for..\ we have ..\(1]0 (JLn,c)) = lJM(JLn,C) = c which gives (d),
and (c) and (e) are c1ear from naturality and thc lIlonoid laws.

Finally we note that Hom(Gon 1 M) has an abelian group structure by addition in M, and
that dO is a group homomorphism by the linearity of A. •

Definition 3.7. Let M bc a coefficient G-modulc as above. Then thc cohomology 0/ G with
coeiJicients in M, Hn(G, A1), is given by the cohomology of the cochain complex (C'" 1 ö) with
CO = cn (G, M) the abelian group of hornamorphisms C : GOn --7 A1 under pointwise addition,
and the boundary maps given by

0+1

ön
( c) = E (-1) I' dl

( c)
1';;:0

Below we show that this cohomology is a special case of the cohomology in (3.2). From
the usual relations between the cosimplicial maps di in the proposition wc know that ön+15°
is zero. As usual the same cohomology is obtained from the normalised cochain complex
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Civ(G, M) defined by quotienting by the subcomplex of C* of elements arising aB codegen­
eracies.

Definition 3.8. Assume that A is right compatible with cokerllels as so that we have a free
coefficient G-module functor F as in (2.11). We define a simplicial coefficient G-module B(G)
termed the bar resolution of the monoid G. In the case of R-mod, example 1.2, this will be
the un-normalised bar resolution described in MacLane [21, X.2]. The objects Bo (G) are
given by the free coefficient G-modules on GOn

Bn(G) = F(GoO )

The degeneracy maps Si : ßn(G) --+ Bn+dG) and face maps di : Bn+1 (G) --+ Bn(G) are given
by

Si = F(1]i) for 0 ~ i ~ n
dj = F (/lj ) f0 r 1 ~ i ~ n

where 7]i and J.li are defined on GOk by applying 71 : I -t G' alld IL : GaG --+ G at the ith factor.
The face maps do, dn+1 : F(GD(n+1)) -+ F(GDn) are the morphisms of coefficient G-modules
corresponding under the adjunction to the following maps d~, d~+l : 00(n+1) -+ F(GDn) in A:

Gon 0 G

1
~d~+l

1'01 ~

where l' : Gon -+ F(GDn) in A eorresponds to the idcntity on F(Gon) in Coefa .

Proposition 3.9. Let M be a eoefficient G-module. Thcn there is a natural isomorphism

1j; : C(G, M) ~ HomCoefa(B(G), /1.1)

and henee the cohomology of G is determined by maps [rom the bar resolution

If*(G, M) ~ If*Homcoofa(B(O), M)

Proof. The freejforget adjunction gives natural isomorphisms

7/Jn : Cn(G, M) = HomA(GDn, M) ~ HOmCoofa (F(Gon),1VJ) = HOmCoofa(Bn(G) IM)

and we must check these rcspect the (co)simplicial structures. We have

1j1n(Si) = 1j1nHornA(1]i, M) = HOmCoefa(F(7Jj), fd) = HomCoefa(Sil M)

and similarly 1/Jn (d i
) = HOmCoefa (di , M) for i :j:. 0, n+1. Let d~ and l' bc aB in thc definition of

do above, and let c : F(GoO) -+ M be a morphism of coeffieient G-modules. Then naturality
of the adjunction implies 1j1-1(d~c) = cd~ and 1J;-l(C) =cl', and

dO(cl') = A(l 0 (JLn, cl')) = A(l 0 (1 E& c))(l 0 "Ln 11')) = cA(1 0 (pO, 1')) = cd~

Thus d07/J-1(C) = 1f;-l(d~c). One shows dO+11j1-1(C) = 1/J-1(d~+lC) in the same way. •
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Finally we show that the definition of cohomology in (3.7) is a special case of that in (3.2).

Proposition 3.10. For 9 = (G, J-L, 17) a mOlloid in A the eoehain eomplexes of proposi­
tions 3.3 alld 3.6 are isomorphie

o:c- (9 j AM) ~ C(G, 1\1)

where Al is any eoeffieient G-module alld AM E Ab(" A" /G) is given by M under the
equivalenee of proposition 2.4.

Proof. Reeall first that AM = (PG : G EB M --t G), and that the structurc maps satisfy

PMU = A : Go (G EB NI) ~ M, PMV = P(PM ° 1) : (G EB 1\1) ° G ~ M.

Now a morphism c : GOn ~ M in Adetermines a morphism (JL n
, c) : Gon ~ G EB M in

A/G, and conversely a morphism f : GOn ~ A in t;he slice category gives a morphism
PM f : GOn ~ M in A.

GOn

Yfl~
G ' G ffi M ~ A1

PG PM

Clearly this gives isomorphisms of abelian grou pS

On : cn(9; AM) = HOillAjG(pn, Pa) ~ HomA (Gon I Al) = Cn(G, M)

and we must check the cosimplicial strllctures coincide. For cochains !, c with On! = c we
have

On+ddO f) = PMu(1 D!) = '\(10 (Jlf\ c)) = dOc
On+l(dn+lf) = PMv(fo1) = p(PMfo1) = dn+l c

and the results for the other cofaces and the codegenacics are straightforward. •

Remark 3.11. Particular examples of the cohomology defined by (3.2) or (3.7) above coin­
eide with various cohomologies in the literature.

(1) For V = R-mod in example 1.2 the cohomology IJ- (C, A) is thc same as the classical
cohomology of an R-algebra G; see [21, X.3]. VVe saw in proposition 2.1 that the
coefficients Aare G-bimodules.

(2) Consider the monoidal category V = R-R-mod of bimodules over an arbitrary ring R,
as in example 1.6. The cohomology H- (G, A) wc obtain is the R-relative Hochschild
cohomology from [12]. Indeed, direct comparison shows that in this case our complcx
coincides with the one used by Gersten haber and Schack in [12] to define the R-relativc
Hochschild cohomology groups.

(3) For V = Cat(6, R-Mod) in example 2.2.2 the cohomology H- (G, A) is the eohomol­
ogy of an operad with coefficients as described in proposition 2.13. These have also
appeared in [11, 22].

(4) For V = Ens/I X I in example 1.11 the cohomology H-(G , A) coincides with the
cohomology of a category G with coefficients in a natural system A, see [5].
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(5) For V the category of finitary cndofunctors of Ens in cxamplc 1.8 the cohomology
H- (G, A) is thc cohomology of a finitary theory C considered briefly in [14].

4. DERIVATIONS, EXTENSIONS AND TORSORS

Vve now turn to the interpretation of elements in cohomology groups. We first consider
abelian and left distributive monoidal categories A and thc low dcgree cohomology of monoids
in A, which we interpret in terms of derivations and extensions. In the second part of this
section wc deal with the case of a general monoidal category V and the cohomology of monoids
in V which in low degrees can be interpreted using torsors.

Recall that for thc cohomology of a monoid 9 = (C, Jt,1J) in A we use the coefficient
G-modules (M, A, p) of definition 2.3.

Definition 4.1. A derivation (or crossed homomorphism) from a monoid G to a coefficient
G-module M is a morphism ß : G -+ M in A which satisfies ßtt = A(l 0 (1, ß)) + p(IJ. 0 1).

(1 0 (1 ß) ß [J 1)
GoG " • GD (GEBl'vl)ffiMoG'

I'1 t. 1.\ +p

G -------------.... lvI

The abelian group of derivations from G to 1\1 is writtcn Der(G, M).
In particular a morphism 4> : J -+ M in A dcfines an inner derivation Inn(4)) : G -+ M by

Inn(4)) = AcPo - PcP! where

4>0 = 10 (1J,cP): GD J --+ Go (GEBM) and <Pt = cPo 1: loG --+ MoG

We thus have a homomorphism

Hom(J, M) ---+ Der(G, l\tl)

whose image is the subgroup Inn(G, M) of inner derivatiolls. Thc kernel consists of those cP
with

'\(10 (7],<P)) = p(4)ol)

This may be thought of as the subgroup MG of G-invariant morphisms I --+ M.

Proposition 4.2. There are isomorphisms

anel an exact sequencc of abclian groups

0-------+ HO(G, NI) -------+ Hom(I, M) -----. Der(C, Pd) -----. /1 1 (C, M)~ 0

Proof. Thc derivation property is (P.6. = 0, so derivatians are just l-cacycles. Also the inner
derivation map <P f---7 Ino (4)) is just the cabati ndary map 00

• •
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Wo now describe the theory of extensions of monoids (G,17llt) in A. Our exposition will be
parallel to and will extend the classical dcscriptioll for thc case A = R-Mod of example 1.2,
where the tensor tSn preserves colimits on both sides; see for example MacLane [21].

Definition 4.3. An extension of a monoid 9 in A is a short exact sequence

t Po----..... M -----+-)' A -----+-)' G' ---...... 0

in the abelian category A together with a monoid structurc on A such that p is a morphism
of monoids. The extension is A-split if there is an s : G' -+ A in A which is right inverse to
p, ps = la. The extension is termed singular if the following eonditions hold.

(1) The map ILA (i 0 1) : MoA -+ A is zero on the kernel of 10]J : A10 A -+ Mo G
(2) The maps fLA (10 +) 1 PA (10 pd + ftA (10 ]12) A 0 (A EBa A) ---+ Aare equal.

A 0 (A EBa A)
10+

)' A 0 A

(lOP1,lOP2)1

PA + JLA

IpA

A Cl A EBa A 0 A )' A

Extensions A, A' are equivalent if there is a morphism e : A ~ A' of monoids with Ei = i'
anel p'e = p.

M )' A
]J

)' G

11 i'
El~

pi
M > A' >G

Fixing a monoid G and a coefficient G-module 111, we write 8xt(G, M) for the set of equiva-
lenee classes of A-split singular extensions. .

Suppose M~ A~ G is an A-split singular extension with seetion s as above. Let
d = S7]a - 7]A : I ~ A, then by replacing S by S - JtA(d 0 1) if necessary we ean assume that
s respeets the units of G anel A. Also the map s + i : G EB A1 -+ A is a map of short exact
sequenees anel henee an isomorphism in A by the 5-lemma.

p
)' A I( ~ G

s+ ir~
s

tAt Pa
)' G EB A1 cf ~ G

10

111-----+

M-----..

Using the isomorphism s+i wo obtain a coefficicnt G-moelllie strllcture (A, p) on M as folIows.
The maps j1'A (sCJ(s+i)-so(s+O)) : Go(GEBNI) ~ AoA ~ A allel /l'A (ios) : MoG ~ AoA -+ A
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factor through ker(p) anel define

.x
Go (GEB M) --....)0 M,

p
A1oG--~;t' M

respectively. The singularity conelitions show that A and p are independent of the choice of
splitting sand that A is linear in the sense of (2.3.1). The action and compatibility laws
follow by associativity of ILA'

Conversely, suppose !vI is a coefficient G-module and A4 -.i........ A~ G is an extension
of G. Then it is a singular extension if and only if the monoid structllrc on A extends thc
coefficient G-module structure on M:

P )oM A 0 (A ffi Al) l'O(P$l~ Go (G ffi M) A ,.M

1; 10(111);)1 1;
)I A A 0 (A EB A) r;, )I AoA

!LA
~ AA 0 A ------------..

ItA

10p
MoA---)o~MoG--~

; 0 11

where K = 1 0 (1 + 1) - 10 (1 +0) : A 0 (A ffi A) --+ A 0 A.

The simplest example of an A-split singular extension is thc trivial extension or semi-direct
surn given by A = G EB Al with unit iGTJG and multiplication

(/l,(PG 0 Pe) ,A(PG 0 1) +P(PM 0 PG)) : (G ffi Al) 0 (G ffi M) --+ G EB M

Any A-split singular extension for which p is split by a morphism of monoids is equivalent to
the semi-direct sumo More generally each splitting S of a singular extension defines a factor
set C~ : Co G --+ M, or 2-cocha:in of C" (C, M), by

/LA (s 0 s) = SJlc + ic~

which is normalised if s'1]c = '1]A and is zero if S is a monoid homomorphism. The factor set
Ct given by a different choice of splitting t differs from C6 by a coboundary: one can define
.6 : G --+ M by t = S + i.6, and then

tCe - tC, IlA((S+ i.6) 0 (s+i.6)) - JtA(SOS) - (S+i.6)JLG+SJLG

iA(lo (1, .6)) + ip(.6 0 1) - i6.JLc = i8.6

This process also respects equivalent extensions since given an equivalence c : A --+ A' and a
splitting s for A, thon ES is a splitting for A' anel thc factor sets C6 and Cu are equal.

Theorem 4.4. Let G be a monoid and M a coefficient G-module. Then assigning factor
sets to A-split singular extensions induccs a bijcction betwccIl the cquivalence classes of such
extensions and the cohomology classes of cocycles Go G --+ All

<I> : Ext(G, M) ~ 1I2 (G, A1)

under which the class of the trivial extension corresponels to zero.
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Proof. Vve construet an inverse 'lJ to q.. Given a 2-eoeycle C : GaG --+ M, there is an extension
given by A = G EB M with unit i a7]a and multiplieation Jle as folIows:

Jle = (Jia, A(Pe 0 1) +P(PM a Pa) +ca) : (G EIl AI!) a (G EB M) ~ G EB M

where J-La = P(Pa a Pa) =Parle and Ca = c(Pe a Pa). Clearly Pe is a monoid homomorphism,
and the monoid structure on G EB M extends the eoefficient G-modulo strueture on M. If
eoeycles C and d differ by a eoboundary o~ for.6 : G --+ 111, thon thc map € : G(JjM --+ GEBM
given by (Pe, PM +~Pe) shows that the extensions w(c) and W(d) are equivalent.

For associativity of Jte wo note first

PeJle(Jic 0 1) = Ji(Jia a Pa) = Il(Pa a J-La) = PeJic(l 0 P'e)

by associativity of JL. Now PMJle(Jle 0 1) = A(Jle 0 1) +P(PMJle a Pa) + c(Jla, Pa) whieh is

).(JLa a 1) +P(A(Pa a 1) a Pa) +P(P(PM a Pa) a Pe) + p(ca a Pa) + c(J.la a Pa)

and PMJLc(1 a JLc) = A(Pa a Jic) + P(PM a J-Le) + c(Pa a Jtc) which by linearity of A in M is

.-\(Pa a (Pa, ).(Pe a 1))) + .-\(Pa a (J-La, P(PM a Pa))) + .-\(Pa a (,la, ca)) +P(PM a Pa) + c(Pa a J-La)

Now evaluate these on the inclusions i a a i a a 1, i a a 1 a i a , iM a i c a i a and i a a i a 0 i a . Then
sinee .-\ is linear in G we see that PM Jtc (p.c 0 1) = PM J.lc (1 0 Jle) if and only if the following
relations hold:

a) ).(p. 01) "\(10 (J-L(l 0 Pa), ,,\))
b) p(.-\ol) ).(10 (/IEBp))
c) P(p 0 1) = P(1 0 Jl)
d) p(c 0 1) + c(J-L 01) = A(lo (Jl, c)) + c(l 0 J-L)

But (a), (b), (c) are respcctivcly just the cross-action, compatibility and right action laws for
). and P, and (d) is the eocycle condition oc = O. •

Vve now give similar interpretations of low degree eohomology of monoids in the ease of a
general monoidal eategory V. Note that there is already a general interpretation of eotriple
eohomology by Duskin [8, 9] as in the following remark, which applies to our eohomology by
proposition 3.4. Let 9 be a monoid in V and A an interna,} abelian group in 0yo jG. Let
AMon be the corresponding abelian group in Mon(Y)j9 aecording to proposition 1.5.

Remark 4.5. Let J«A, n) be the Eilenberg-lvJacLane object of A in degree n. Then a
J«(A, n)-torsor relative to the forgetful functor U : "y9 jG --+ Y is a simplicial objeet X.
in "ye jG, togcther with a simplicial map x: .X. --+ [((A, n), such that

(1) X. is isomorphie to the coskeleton of thc nth truncation of ..-Y.,
(2) X satisfies the Kan fibration condition e3.:actly in dimension ~ n,
(3) U(..-Y.) has a eontraeting homotopy in Y /G.

Duskin proves in [9, section 5.2] that there is a natural bijection between the set of equivalenee
classes of J«A, n)-torsors and the nth cotriple eohomology of G with eoeffieients in A.

Simplifieation is possible since it turns out that in degrees n = 1,2 elements of H Jl (9j A) ean
also be interproted using !«A Mon , n - l)-torsors. For higher degrecs we make the following
observations. Suppose we have a left adjoint to the forgetful funetor U : Mon(Y jG) ---+ Y jG,



COHOMOLOGY OF MONOIDS IN MONOIDAL CATEGORIES 23

giving a free monoid functor. We construct explicitly the free monoid functor in appendix B, if
the monoidal catcgory satisfies some reasonable conditions. Thus we can assurne the cotriple
cohomology groups H- (9; AMon) are defined. Suppose further that for 9 a ffee monoid our
cohomology groups IIn (9i A) are trivial for n > 1. Then an analysis of the proof of Theorem
C of [14] shows that one has isomorphisms

Iin((ii A) ~ Ifn- 1((ii AMouL n > I,

and under the assumptions above interpretation of JJn(9j A) by j((AMoßl n - l)-torsors is
valid in all degrees.

Let us begin with degree 0i we give an explicit interpretation generalising that for the
abelian case above. For any A -4 G in QyQJG, let AC denote the set of (i-invariant elements
0/ A, that is, AC is thc sllbset of those morphisms a E Homy(I, A) satisfying pa = TJ : 1--+ G
and

(G IZ;\ J 0 G aoG) A 0 G ..; A) = (G rz;\ Go 1 Ooa) Go A ~ A).

Then inspection of the complcx in proposition 3.3 gives

Proposition 4.6. There is a natural bijection HO((i; A) ~ AO.

Clearly the (i-invariant elements correspond to morphisms from 1c to A -4 G in ayaJGi
these are just the [((A, O)-torsors of Duskin.

Turning to degree 1 we make the following definition.

Definition 4.7. For A 4 G in Ab(QyQ jG), a derivation is a morphism ß : G --+ A in Y
satisfying pß = 1G and

J.lGo G' ------------+-:to G

(GO~,~OG)l 16.
UXV +

GoAxAoG---..:to AxA---..... A

Write Der(9; A) for the set of derivations, and define a map Inn() : HOffiY/G(I --4 c, A -4
G) --+ Der(G; A) by

]no(l ~ A) = (G (rz;I,Iz;l\ Go 1 X loG GoaxaoG) Go A X AoG~ A X A -=+ A).

Proposition 4.8. There is an exact sequence of abelian groups

o --+ 11°(9j A) --+ Homy /G(l --4 G 1 A -4 0) Inn
O) Dcr(9j A) --+ 1[1 (9i A) --+ O.

t1 P InnOProof. Straightforward, on noting that HomYjG(J , G, A --=--7 G) ~ Der(9j A) may be

identified with CO(9j A) ~ ker(C 1 (9; A) ~ C 2 (t/; A)). •
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Clearly (4.7) and (4.8) reduce to (4.1) and (4.2) in thc abelian situation above, where A =
G ffi M.

One readily sees that

Der(Q; A) = HOffiMou(V)/Q(lo1 AMon )

whose elements are the 1((AMon , O)-torsors relative to U : Mon(V)jQ ---t V jG.
For degree two we make the following definition.

Definition 4.9. Let U : C ---t D be a product-preserving functor between categories with
finite products, and let A be an internal group object in C. An A-torsor relative to U is an
object T of C together with

• morphisms

T X A + ~ T, T X T ~ A

in C, such that + is a right action and thc morphisms (Pl1 +) : T X A --+ T X T,
(PI, -) : T XT ---t T X Aare mutually inverse isomorphisms, and

• a morphism s : 1 ---t U(T) where 1 is the terminal object in D.

As in Duskin [9, section 3] the A-torsors relative to U can be identified with the 1((A, 1)­
torsors relative to U.

For A-torsors with A = AMon as above we now show

Proposition 4.10. There is a one-to-one eorrespondenee between H 2(Q; A) and the set of
isomorphism classes of AMou-torsors relative to the forgetfnl runetor U : Mon(V)jQ --+ V jG.

More explicitly, an AMon-torsor relative to thc forgetflll functor U in 4.10 is a V-monoid
T, equipped with monoid homomorphisms

p:T---tG, + : T Xa A ---t T, - : T Xa T ---t A

with properties as abovc, and a section s : G ---t T, ps = lCl in V. A morphism of torsors is
a monoid homomorphism respeeting P, + and -.

Proof. Given an AMon-torsor T with s as above, assign to it the map

Ir = (G 0 G (!t,h) T xcT ~ A),

where 11 = (G 0 G ~ G ~ T) and 12 = (G 0 G ~ ToT ~ T). One checks easily
that IT is a cocycle , that a different choice of s would give a cohomologous cocycle, and any
morphism Tl ---t T2 of torsors produces a 1-coehain whose coboundary is equal to IT1 - IT'J'

ConverselYl for a 2-eocycle I :Go G ~ A, define a new o-monoid multiplieation on A by

(
(lAoA,pOP) G G IJ x J A A + A)JlJ = AoA ) AoAxaro 7~ XG ~ .

One then checks that this together with + : A Xa A ---t A, - : A Xc A ---t Adefines a
AMon-torsor TJ , and cohomologous cocycles yield isomorphie torsors.

Finally, it is straightforward to check that any torsor T is isomorphie to TJT and any cocycle
f is eohomologous to IT/' •
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Examples 4.11. ]n the example of categories, 1.11, one easily sees that the AMon-torsors
correspond exactly to linear extensions of categories [rom [5J so that (4.10) corresponds to
the result of [5] that the elemcnts of thc second cohomology of a category C c1assify linear
extensions of C. In the exam pIe 1.8 one recovers extensions of theories from [14J.

Note that in these examples there are also interpretations of the third cohomology, see [2,
13, 26], for example in terms of linear track extensions of categories. These suggest that
at least in the presence of a free monoid functor there is an interpretation of H 3 (Yj A) by
[((AMon, 2)-torsors. In fact we might expect there to be an explicit correspondence between
[((A, n)-torsors and [((AMon, n - l)-torsors, without appealing to cocycles.

ApPENDIX A. PROOF OF SUHDIVISION LEMMA 3.5

Proof. First of aB, recall (d~Ub(A) : Sub(A)n-l -t Sllb(A)n) = (d~n+l-id~ : A2n-l -t A2n+l).
There is a cosimplicial morphism I : A· -t Sub(A·) defined by In = d2n+ld2n ... dn+l : An -t

A2n+1, which indllces the map of the corresponding cochain complcxes. We will construct its
homotopy inverse 9 by induction. Put

90 = SO : Al ---+ A O
1

971 = (1 U 9n_1)s2n + (-l)ns°(1 U 971-1 U 1),
where 1 U (-), resp. (-) U 1, is induced by the functor ~ ---+ ~ adding to a finite linear order
an extra smallest, resp. greatcst, element. So, 1 U (d i : Ak - 1 -t Ak ) = (di+l : Ak -t Ak +1),

1 U (si: A k ---+ Ak
-

1
) = (Si+1 : Ak +1 -t Ak

). As for (-) U 1, it does not affect anything on the
formal levelj we will take advantage of this by not mentioning this functor at all.

First let us prove that 9 is compatible with differentials. Now for the differential dn :

An-1 ---t An one has
71

""" i i °d71 = L..,.,(-1) d = cl -1 U d71-1
i=O

anel similarly d~ : Sub(A)n-1 ---+ Sub(A)n is given by

d~ = d2n+1dO - (1 U d~_1) : A2n - 1 ---t A2n+1.

We have to prove 971d~ = d71971-l' Starting with 11. = 1, gld~ = d1g0 , one checks directly
(SI S2 - sOs1)(d3dO - d2dl) = (dO - dl)SO. Now givcn 971-1d~_1 = dn-19n-2, one has

9nd~ = (1 U 9n_1)s2n + (-1)" SO (1 U 971-1) (d2n+1 dO - 1 U d~_1)

= (1 U 971-d~ + (-1)"8° (1 U 9n_dd'Jn+l,f - (1 U 971_1)8271 (1 U d~_I)

- (-1)718°(1 U971-1)(1 Ud~_I).

Now one easily sees that (1 U x)dO = dOx for any x whatsoever, in particular (1 U 9n_ddo =
d09n-1' In fact all thc summands in 971-1 are composites of n entries of type Si, with i ~ 2n- 2,
hence one also has (1 U 971-1 )d2n+1 = dn+l (1 U 971- d. Using this, SO (1 U 9n_dtPn+1do =
sOdn+1 (1 U 9n-ddo = sOd71+ldOg71_1 = sOdOdngn _1 = dngn_1. Also (1 U 971-1)(1 U d~_1) =
1 U (g71-ld~-I) = 1 U (dn- 19n-2), by the inductioll hypothesis. Taking all this into account
gives

9nd~ = d0971-1 + (-1)ndn g71 _1 - (1 U 9n_d s271(1 U d~_l) - (-1)" SO (1 U dn-d(l U 9n-2)'
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Now turning to d090-1' one has

d090-1 = (dO - 1 U do- 1)90-1

= d090_1 - (1 U do-d((1 U 90_2)S20-2 + (-1)0-l s°(1 U 90-2))

= d090-1 - (1 U dO - 1) (1 U 90_2)s2n-2 - (-1t- 1 (1 U do_dsO(1 U go-2))

= d,Ügo-l - (1 U go-d(1 U d~_1)820-2 + (-1)"(1 U dO-l)8°(1 U 90-2))'

Com paring these two expressions one gcts

90d~ - d090-1 = (-1)"d090_1 - (1 U 90_1)(820 (1 U d~_I) - (1 U d~_I)S20-2)

- (-1)" (SO (1 U dO - 1) + (1 U do-d8°)(1 U 90-2)'

Now recalling the formulce for do and d~ one easily gets
S20 (1 U d' ) - (1 U d' )820 - 2 = d1(1 - d20-1820-2)0-1 0-1 }
SO (1 U do-d + (1 U do-dso = 1 - (-1)Odo so.

Hence

Now substituting

90-1 = (1 U 90_2)8271 - 2+ (-1)0-18°(1 U 90-2)}
1 U go-1 = (1 U 1 U 90_2)820 - 1+ (_1)0-1 81(1 U 1 U 90-2)

one gets

god~ - d090-1 = (-1)"tF(1 Ugo_2)820 - 2+ (-1)"( _1)"-ldo8°(1 U 90-2)

- (1 U 1 U 90_2)S20-1d1(1 - d20 - 1S20-2) - (_1)"-1 Sl (1 U 1 U 90_2)dl (1 _ d20 - 1S20-2)

- (-1)"(1 U90-2) + (-1)"(-1)"dosO(1 UgO-2)'

Now as before, dO (1 U 90-2) = (1 U go_2)d20 - 1} (1 U 1 U go_2)d1 = (P(1 U 90-2), so we arrive at

(-1)0(1 Ugo_2)d20-1S20-2 _ d1(1 Ugo_2)s2n-2(1- d2n-l s2n-2)

- (-1)"-1(1 Ugn- 2)(1- d20-1 s2n-2) - (-1)"(1 Ugo- 2)

and this easily leads Lo zero.
\Ve now tu rn to construction of homotopies [rom / 9 and 9 / to the identity morphisms.

First note that similarly to g, also / has an inductive den nitioll} /0 = d1, /0 = d2n+l (1 U /n- d.
Using this fact we also determine inductively e = gf : A· ---+ A·. lt has

eo = sOd1 = 1,
eo =90io = ((1 U gn_d82n + (-1)08°(1 U gn_l))d20+1(1 U in-I)

= 1 U eo -l + (-1)n sOdn+I(1 U en-l) = (1 + (-1)OdOsO)(1 U CO-I)'

This implies
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so that one may write €n = 1 + (-l)ndnhn, with ho = 0 : AO --+(trivial group), and hn :
An --+ An-I, n ~ 1. We will show that h is a homotopy [rom e to the identity, i. e. that
hn+1dn+1 + dnhn = en - 1. First let us prod uce a.n inductive expression for hn:

(-l)"dnhn = en - 1 = (1 + (-l)"d" sO)(l U (1 + (-1)"-ldn- 1hn_1)) - 1

= (1 +(-1)ndnSO) (1 - (-1)n1 U (dn-1 hn-1)) - 1 = (1 +(-1)ndnSO) (1 - (-1)nd" (1 U hn-1)) - 1

=-(-l)"dn(l U hn-d + (-l)"dnso - dnsodn(l U hn-d

= (-l)"dn(-1 U hn- 1+ SO - (-1)ndn-1 so(1 U hn-d)'

i. e.
hn = -1 U hn- 1 + SO - (_1)"dn- 1s°{1 U hn-d.

We now proceed by induction. For n = 0, h1d1 = sO(dO - d1
) = °= eo - 1. Now given

hndn+dn-1hn-1 = en-1 -1 = (_1)n-1dn- 1hn_1 , we must deduce hn+1dn+1 +dnhn = en -1 =
(-l)"dnhn. Moving summands around, this means, given hndn = (( _l)n-ldn-l - dn-dhn- 1,

one must deduce ho+1dn+l = ((-l)"dn - dn)hn. One has

hn+1 do+l = hn+1 dO - hn+d1 U d'l) = (-1 U hn +SO - (_l)"+ldn s°{l U hn))dO - hn+d1 U dn)

= -(1 U hn)dO +1- (_l)"+ldn s°{1 U hn)dO - hn+1{1 U dn)

= -dohn + 1- (-l)"+ldnhn - hn+1{1 U dn)

and

Comparing these two expressions we see that we have to prove

The left hand side expands to

1-(-lUhn +8° - (_l)n+ldn sO(luhn))(lUdn) = l+lUhndn-sO(lUdn)+( _l)n+ld" sO(lUhndn);

we now use the induction hypothesis and the obvious identity -s°{1 U dn) = -1 +(1 U dn-dsO
to obtain

Whereas on the right we have

(1 U dn-l)hn = -1 U dn-lho-l + (1 U dn- 1)sO - (-1)"(1 U dn_ddo-ls°{1 U ho-I)'

Comparing again, we are Ieft with

(_1)0-1(1 U d"- lhn_1) + (-l)"+Id" s°{1 U hndn) = -(-l)n(l U do_l)dn-l s°{1 U ho-i)

to prove, i. e.
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Onee again using the induetion hypothesis, the left hand side is

or

dn(1 U hn-d + (-lt-IlflsO~(1 U hn-d - dnsO(l U dn- 1)(1 U hn- l ),

so it suffiees to prove

~ + (_lt-ldns°t:fl- dn s°(1 urIn-I) = (1 U dn_ddn-IsOJ

and this is straightforward.
Finally, we eonstruct a homotopy between e~ = fngn and the identity. Therefore, introduce

some auxiliary notation: Cn = 1 U 1n-1 = d2nd2n-1 ... dn+l. So Cl = d2, Cn = d2n (1 U Cn- d,
and d2n+l cn = 1n. Wc now define

h; = SO SI : A3 -r Al,
h~ = -1 U h~_l + Cn _ls°(1 U gn-d : A2n+1 -r A2n-l

and prove that h~, considered as maps Sub(A)n-1 -+ Sub(A)n, constitutc a homotopy between
e~ and the identity, i. e. h~+l d~+l + d~h~ = e~ - 1. For n = 0 this means SOSI (d3 dO - d?dl) =
dlso -1. Further by induction: givcn h~d~ +d~_lh~_l = e~_l -1, one has

h~+ld~+l = (-1 U h~ + cnsO(1 U gn))(d2n+3do - 1 U d~)

= -(1 U h~)d2n+3d? + cns°(1 U gn)d2n+3d? - cnsO(l U gnd~) + 1 U h~d~j

As we noted before, (1 U x)dO = dOxj since 9 is a 1Il0rphism of complexes, gnd~ = dngn- l ; and
h~d~ = -d~_lh~_l - 1 +d2n-Icn_lgn_1 by the induction hypothesis. Hence one obtains

h~+ld~+l = _doh~d2n+2+ cngnd2n+2 - cnsO(l U dngn- l ) -1 U d~_l h~_l -1 +1 U d2n-Icn_lgn_l_

Similarly

d' h' = (d2n+ldO - 1 ud' )h'n n n-l n
= d2n+ldOh~ - (1 U d~_I)(-1 U h~_l + cn_ls0(1 U gn-d)

= d?d2nh~ + 1 U d~_lh~_l - (1 U d~_l)Cn_ISO(1 U gn-d.

Collecting these together J one sees that the thing to provc is

dOd2nh~ - d? h~ d2n+2 +cngnd2n+2 - cnso(1 Udngn- 1) +cn (1 Ugn - l ) - (1 UrI~_l )Cn_ISO (1 Ugn-d

= d2n+lcngn'

Now an easy inductive argument shows that h~d2n+2 = (pnh~j we saw before that gnd2n+2 =
dn+l gn i and trivially cndn+l = d2n+l cn . All this leaves HS with

-cns°(1 U dngn-d + cn(1 U gn-d - (1 U d~_I)Cn_lSO(l U gn-d = 0

to prove. For that, it is sufficient to omit (1 U gn-l) on the right, obtaining

-cnsO(1 U dn) + Cn - (1 U d~_I)Cn-lSO = 0;
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Mon(C)

and since, as we noted earlier, SO (1 U dn ) = 1 - (1 U dn - I )80, this arnollnts to

Cn (1 U dn-d = (1 U d~_I)Cn-I.

And recalling that Cn = 1 U ln-I' this just expresses the fact that 1 is a morphism of com­
plexes. •

ApPENDIX B. FREE MONOIDS

Let (C, 0, I) be a monoidal category in which the monoid operation ° is left distributive
over coproducts U and preserves filtered colimits. In this case we are going to define an
explicit free monoid functor which is the left adjoint o[ the forgetful functor

U )'C

If C = R-Mod then the free monoid on V E C is the classical tensor algebra T(V). The
assllmptions on C also hold for the monoidal category C = Cat(6, R-Mod) in which monoids
are operads. In this case the free monoid is the free operad on an 6-object in R-Mod which
is used for the definition of the bar construction of operads in [18J.

Let V be an object of C and define a sequence of objects \In by Vo = land inductively
Vn+I = I U V 0 Vn. The first few terms are:

Va = I, V2 = I U V 0 (I U V), \13 = IUVo(lUVo(1UV)),

There are maps in : Vn- I --+ Vn given inductively by i n+1 = 1. U 1. 0 in, with i 1 : I --+ I U V the
natural inclusion of the summand. We define 'IN by the coHmit

V00 = colim (Va --+ VI --+ V2 --+ V3 --+ ... )

We will write i for any of the maps Vn --+ Vm for n < 1n ( 00.

There are also maps !"fl,m : Vn 0 Vm --t Fn +7Il as fallows. Let /-lo,1Jl = I vrn . If n ;::: 1 then
Vn 0 \Im = (I U V 0 Vn-d 0 Vm = Vm U V 0 Vn- I 0 \/m and wo define !"n,m inductively by

/-ln,m = (i, jn+m(1 0 Pn-l,m))
------------+--~Vn+m

Here ik : F 0 Vk - 1 --+ Vk = Iu F 0 Fk - 1 is thc inclusion of the direct summand.

Proposition B.l. Suppose the tensor product ° in C is left distributive over coproducts
and preserves filtercd colimits, and let V be an object of C. Then the free monoid on V is
T(V) = (V001 TJ, /-l), with unit TJ given by the map i: J = Fa --+ T(F) and multiplication
IL : T(F) °T(V) --+ T(F) induced by the maps i!ln,m: Fn 0 Fm --+ T(V).

We also write T~n(V) for Vn- Note that for C = R-Mod the category of R-modules
the tensor product is distributive on both sides and we have T~n (\I) = EBk~n V0 k. In this
situation the maps in are the natural inclusions of summands, and the multiplication structure
is givcn by the isomorphisms VOn (1 VOm ~ V0(n+m).
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Proof. To show that the multiplication is weH defined on the colimit we need the relations
J.Ln+l,m-1 (in+l 0 1) = ikJLn,m-1 = Jln,m(1 0 im) whcre k = n + 711. For n = 0 this becomes
(imlim)(i l 0 1) = im =10 im' For n ~ 1 we havc

J.Ln+l,m-din+1 0 1) = (i ,ik(l 0 Jln,m-d)(l U 10 in 0 1) = (i,ik(lo Jln,m-l(in 0 1)))

J.Ln,m(lo im) = (i,ik(lo Jln-l,m))(imU 10 im) = (i,ik(lo Jln-l,m(1 0 im)))

which are both equal to (i , ik(l 0 ik - 1)(1 0 JLn-i,m-d) by the indtlctive hypothesis. Since
ik (1 0 ik-l) = ikjk-l : "0 "k-2 -r Vk this is just (i, ikjk-l (10 Jln-l,m-d) which equals ikJln,m-1
as required. For the identity laws Jl(TJ 01) = 1 = Jl(l ° 17) wc note that J.Lo,m = 1 = Jln,Ol where
Jln,o = 1 follows inductively from the fact that (i, jn) is the identity on "n 0 Va = I U V 0 "n-I'

For the associativc law we note that jn+m(l 0 Jln-I,m) = Jln,mUn D 1) : V 0 Vn- I 0 Vm -T Vn+m,
and iJlq,r = JLp+q,r (i 0 1) as abovc , so that wo have inductively

Jlp,q+r (1 0 JLq,r) = (i, jp+q+r (1 0 IL p-l ,q+r) )(Jlq,r U 1 0 JLq,r)

(iJlq,r I jp+q+r (1 D JLp-I ,q+r (1 0 Ilq,r)))

= (iJLq,r I jp+q+r (1 0 JL p+q-l ,r)(1 0 JLp-I ,q 0 1))

Jlp +q, r ( ( i 0 1) I Up+q 0 1)(10 Jlp _1,q 0 1))

= JLp+q,r (Jlp,q 0 1)

This construction is functorial. If I : V -r 111 is a morphism in ethen T(/) is defined by
maps In : "n -r Wn where 10 = 1/ and In = 1 Ufo ln-I' Thc map T(f) is weIl defined since
in/ n- 1 = fnin is clear inductively. Using this anel jk(1 0 fk-d = fkjk we have

In+mJln,m = fn+m(i, jn+m(1 0 Jln-I,m)) = (ifml ju+m(f 0 fn+m-IJln-1,m))

which if fn+m-J/Ln-I,m = Jln-1,m (In-1 0 fm) bccomcs Ci, jn+m(1 0 ILn-1,m))(fm U 1 D fn-I 0 Im)
which is just Jln,m(fn 0 Im)' 8y induction T(f) is thus a lllonoid homomorphism.

There is a natural monoid homomorphism cPA : T(A) ----t A for (A, TJA, JlA) a monoid in C
defined as folIows. Let cPo = TJA and cPn = (TJA,/lA(l 0 cPn-I)) for n ~ 1. Then cP Ii1 = TJA = <Po,
and <Pn+Iin+1 = (TJAIJLA(l 0 cPnin)) = ePn if cPnin = cPn-Il so thc <Pn give a well-defined cPA on
T(A) = Aoo ' Clearly <PA 1] = 7JA' By the unit and assüciativity laws für A and by the relations
<Pn+m i = <Pm and <Pkjk = ILA (1 0 4>k- d we havc

JlA(<Pn 0 <Pm) = JlA((17AJ Jl A(1 D 4>n - 1)) 0 <Pm) = (<Pm I JL A(1 0 JL A ( rPn - 10 <Pm)))
rPn+mJln,m = (<Pn+m i ,</>n+mjn+m(10J-ln-l,m)) = (4)mlJLA(l 0 4>n+m-d(l° Jln-l,m))

Thus ILA (<PA 0 <PA) = <PAIL follows inductively and <PA is a. monoid homomorphism. For any
object 11 of C we also have a natural map 'ljJv = ijI : V -r 1'(V). The freeness of T(") will
now follüw from showing that the composites

A ?/JA .. T(A) cf>A ~ A T(V) TCljJv \ T(T(V)) <P-r(V) .. T(V)

are the identity. The first of these is clear: cf>A'1f;A = <PAijI = cf>ijl = JlA(l 0 TJA) = 1.
Consider the maps ('ljJV)n : T~n(V) -r T~n(T(V)) and cf>n : T~n(T(lf)) -T T(V) which define
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T('ljJv) and 4>-r(V)' Then 4>o('ljJv)o = 1] = i : J --+ 1'(V), and assuming inductively that
4>o-d'ljJV)O-l = i : Vn- 1 --+ T(V) we have

cPn(1/JV)n = (71 1 Jl(la4>n-d)(lU (ijda ('ljJV)n-d = (7],'iJL1,0-1(jlOl))

since }l1,n-1 (jl 0 1) = in : Va \ln- 1 --+ \In. Thus <P-r(v)T(1j;v) = 1. •
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