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MAPPING CLASS GROUP RELATIONS, STEIN FILLINGS, AND

PLANAR OPEN BOOK DECOMPOSITIONS

ANDY WAND

Abstract. The aim of this paper is to use mapping class group relations to

approach the ‘geography’ problem for Stein fillings of a contact 3-manifold.
In particular, we adapt a formula of Endo and Nagami so as to calculate the
signature of such fillings as a sum of the signatures of basic relations in the

monodromy of a related open book decomposition. We combine this with a
theorem of Wendl to show that for any Stein filling of a contact structure
supported by a planar open book decomposition, the sum of the signature and
Euler characteristic depends only on the contact manifold. This gives a simple

obstruction to planarity, which we interpret in terms of existence of certain
configurations of curves in a factorization of the monodromy.

1. Introduction

In recent years, a large body of work has brought to light surprising connections
between open book decompositions, contact manifolds, Lefschetz fibrations, and
symplectic and Stein manifolds. Giroux [9] has demonstrated a 1-1 correspondence
between stabilization classes of open book decompositions and contact 3-manifolds
up to isotopy of the contact structure, and further shown that such a manifold
has a Stein filling if and only if the monodromy of some open book decomposition
associated to it through this correspondence has a factorization into positive Dehn
twists. Work of Giroux and others (in particular Loi and Piergallini [1] and Akbulut
and Ozbagci[12]) has further shown that such a factorization defines a Lefschetz
fibration of a 4-manifold filling of the contact manifold, which in turn defines a Stein
structure on the filling and thus an induced contact structure on the boundary. In
the case of a factorization into twists along homologically non-trivial curves, this
induced structure agrees with the original structure. Conversely, any Stein filling
induces such a Lefschetz fibration and open book decomposition.

Via the above framework, one may translate questions concerning Stein fillings
of a given contact manifold into questions concerning positive factorizations of
the set of monodromies of its open book decompositions. It is however generally
quite difficult to understand how the sets of possible factorizations of stabilization-
equivalent open book decompositions are related.

In this paper, we are concerned with curve configurations in a given mapping
class ϕ, by which we mean any subword of a positive factorization of ϕ into Dehn
twists. In particular, we are motivated by the idea of using an understanding of
possible curve configurations in the monodromy of a given open book decomposition
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to understand properties of its stabilization class (such as support genus, see e.g.
[7]) and also the set of Stein fillings of the supported contact manifold.

In Section 4, we adapt Endo and Nagmi’s [5] notion of the signature of a relation
(itself a generalization of the Meyer cocycle [14]) to the setting of contact structures
and Stein fillings. This gives a simple method of calculating the effect of changing
a factorization of the monodromy of an open book decomposition on the Euler
characteristic and signature of the associated filling. As an application, we find
that well-known presentations of the mapping class group restrict the ‘geography’
of Stein fillings of a contact 3-manifold.

This technique also gives more stringent restrictions on the set of Stein fillings
associated to a contact structure via a given supporting open book decomposition.
These restrictions, however, are not in general preserved by stabilization of the
open book, and as such are not in general properties of the contact structure itself.
Indeed, in [21] we constructed examples of positive open book decompositions for
which stabilization increases the set of related Stein fillings. If, however, contact
(M, ξ) is supported by planar open book decomposition (Σ, ϕ), then the situation is
somewhat more restrictive, due to a recent result of Wendl [22] which in effect says
that we do not have to stabilize (Σ, ϕ); that the set of fillings related to (Σ, ϕ) is
exactly the set of fillings of (M, ξ). This result allows us to use the above restrictions
to demonstrate new obstructions to a contact structure being supported by a planar
open book through existence of particular curve configurations in any supporting
positive open book. These obstructions are of a substantially different flavor than
the known obstructions due to Etnyre [6] and Ozsvath, Stipsicz and Szabo [18].

As a final comment, the dependence of these results on Wendl’s theorem means
that this approach, as is, has no hope of giving obstructions to support genus greater
than zero. Furthermore, our above-mentioned earlier examples (constructed in [21])
are of genus 2, so there can be no analogue of Wendl’s theorem for genus 2 or higher.
The case of genus 1 remains unknown.

The organization of the paper is as follows. Sections 2 and 3 give basic defi-
nitions concerning mapping class groups, Lefschetz fibrations, and open book de-
compositions. In Section 4 we recall Endo and Nagami’s signature of a relation,
adapting their concept for a more general setting. In Section 5, we combine this
with Wendl’s result to give necessary conditions on Stein fillings of planar contact
structures, which we interpret in terms of existence of certain curve configurations
in Section 6.

Acknowledgements. We would like to thank Burak Ozbagci, Ignat Soroko, and
Chris Wendl for helpful comments on an earlier version of this paper, and the Max
Planck Institut für Mathematik for support.

2. Mapping class groups and relators

Let Σ = Σg,b be a compact, orientable surface of genus g with b boundary
components. The (restricted) mapping class group of Σ, denoted ΓΣ, is the group
of isotopy classes of orientation preserving diffeomorphisms of Σ which restrict to
the identity on ∂Σ. If b = 0, i.e. Σ is closed, we write simply Σ = Σg. We denote by
Dehn+(Σ) the subset of mapping classes which admit factorizations into positive
Dehn twists, and by Fac+(ϕ) the set of such factorizations.

Denoting by F the free group generated by isotopy classes of simple closed curves
on Σ, there is a natural homomorphism g : F → ΓΣ sending a curve α to the positive
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Dehn twist τα about α. It is a classical theorem of Dehn that g is surjective. We
call each element r of Ker(g) a relator in the generators of ΓΣ.

We have the following presentation of ΓΣ, due to Gervais [8] and Luo [13]:

Theorem 2.1. For a compact oriented surface Σ, the mapping class group ΓΣ has
the following presentation:
generators: {τα : α a simple closed curve in Σ}.
relators:

(I) τα for α the isotopy class of a null homotopic loop.
(II) τατβτ

−1
α τ−1

β for |α ∩ β| = 0.

(III)τταβτατ
−1
β τ−1

α (the braid relation)

(IV)τ−1
α1

τ−1
α2

τ−1
α3

τ−1
α4

τα12
τα23

τα13
for curves as in Figure 1(a) (the lantern rela-

tion)
(V) τδ(τατβ)

−6 for curves as in Figure 1(b) (the 2-chain relation)

Figure 1. Curves involved in the lantern and 2-chain relations

Suppose r = λ−1
1 λ2 is a relator, and λ a word in ΓΣ which can be written

λ = λ3λ1λ4 (where each λi is a positive word). Then we say λ′ = λ3λ2λ4 is an
r-substitution of λ. If r is a braid relator, i.e. of type (III) above, an r substi-
tution is often referred to as a Hurwitz move. We will unless otherwise specified
be considering words only up to the relations of type (I), (II), and (III), as these
preserve most of the information we will be interested in. Note that, with this
convention, a r-substitution may always be viewed as concatenation of words. In
particular, setting r′ = λ−1

4 ◦ r ◦ λ4, we may write the above r-substitution as

λ = λ3λ1λ4
r′

 λ3λ1λ4r
′ = λ3λ2λ4.

It follows then that any r-substitution of a word λ takes the form λ(λ−1
11

λ12) . . .

(λ−1
n1

λn2
), where each ri := λ−1

i1
λi2 is a relator of type (IV) or (V). We write

r =
∏

ri.
As an example, consider the ‘3-chain’ relator r = τ−1

α1
τ−1
α2

(τα23
τατβ)

4, where
curves are indicated in Figure 2 (the general definition of an n-chain relation, due
to Wajnryb [19], is given in Section 6). We may decompose r as r1r2, where r1 is
the lantern relator τ−1

α1
τ−1
α2

τ−1
α3

τ−1
α4

τα12
τα23

τα13
and r2 the 2-chain τ−1

δ (τατβ)
6. We

recover r by pasting the supporting surfaces along a common subsurface (here a
pair of pants) so that α12 ≃ δ, and α3 ≃ α4 ≃ β, and performing a sequence of
Hurwitz moves and cancelations.
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α2

α1

α12

α3

α4

α

βδ

[ =α23

Figure 2. Decomposition of the 3-chain relator

3. Lefschetz fibrations and open book decompositions

Let X and B be compact oriented smooth manifolds of dimension 4 and 2 re-
spectively, possibly with boundary. A Lefschetz fibration f : X → B is then a
smooth surjective map which is a locally trivial fibration outside of finitely many
critical values {bi} ∈ int(B), where each singular fiber f−1(bi) has a unique crit-
ical point, at which f can be modeled in some choice of complex coordinates by
f(z1, z2) = z21 + z22 . If b′ ∈ B is near a critical value bi, then there is a simple
closed curve C in f−1(b′), called a vanishing cycle, such that the singular fiber
f−1(bi) can be identified with f−1(b′) after collapsing C to a point. The boundary
of a regular neighborhood of a singular fiber is a surface bundle over the circle
with monodromy a right-handed Dehn twist along the corresponding vanishing cy-
cle. Once we fix an identification of Σ with the fiber over a base point of B, the
topology of the Lefschetz fibration is determined by its monodromy representation
Ψ : π1(B − {critical values}) → ΓΣ. If the base is B = D2 the monodromy along
∂D2 = S1 is given by the product of right-handed Dehn twists corresponding to the
singular fibers, and called the total monodromy of the fibration. A Lefschetz fibra-
tion over S2 can be decomposed into two Lefschetz fibrations over D2, one of which
is trivial; consequently, a Lefschetz fibration over S2 is determined by a relator in
the mapping class group. Conversely, given a product of right-handed Dehn twists
in the mapping class group, we can construct the corresponding Lefschetz fibration
over D2, and if the given product of right-handed Dehn twists is isotopic to the
identity (and g ≥ 2), then the fibration extends uniquely over S2. The monodromy
representation also provides a handlebody decomposition of a Lefschetz fibration
over D2: we attach 2-handles to Σ×D2 along the vanishing cycles with framing -1
relative to the framing that the circle inherits from the fiber. (For more detail, see
e.g. [10]).

For this paper, the base B will be either S2 or D2. Having specified the base, we
may specify a Lefshetz fibration over B by the data of the diffeomorphism type of a
generic fiber Σ = f−1(b), and a word λ = ταn

· · · τα1
in ΓΣ given as a composition of

positive Dehn twists, with the condition that λ be a factorization of the identity in
ΓΣ if the base is S2. We denote the resulting 4-manifold by X(Σ,λ), which is unique
up to Hurwitz equivalence (i.e. under relations of type (III) from the previous
section) and global conjugation of λ.

An open book decomposition is a pair (Σ, ϕ), where ϕ ∈ ΓΣ. From the mapping
torus (Σ × [0, 1])/ ∼, where (ϕ(x), 0) ∼ (x, 1) for x ∈ Σ, we obtain a closed 3-
manifold MΣ by gluing solid tori to the boundary so as to identify (y, t) with (y, t′)
for y ∈ ∂Σ. For a closed 3-manifold M , a celebrated result of Giroux [9] gives a
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1-1 correspondence between open book decompositions of M up to a stabilization
operation and contact structures on M up to isotopy.

In the case that a Lefschetz fibration over D2 has fiber Σ = Σg,b, b 6= 0,
the boundary M = ∂XΣ,λ has a natural open book decomposition (Σ, ϕ), where
λ ∈ Fac+(ϕ). Conversely, given an open book decomposition (Σ, ϕ), a positive fac-
torization λ obviously determines a Lefschetz fibration XΣ,λ, which by Eliashberg
[3] determines a Stein structure on XΣ,λ. Even more, if each vanishing cycle is ho-
mologically non-trivial in the fiber, then the contact structure induced on M by the
Stein filling given by the Lefschetz fibration agrees with the contact structure sup-
ported by the open book decomposition (Σ, ϕ) through the Giroux correspondence
(full details may be found in [1],[17]).

4. Signature and Euler characteristic of a relation

In [5], Endo and Nagami introduce the concept of the signature of a relation in a
mapping class group, generalizing a formula of Meyer for the signature of a surface
bundle over a surface to the case of a Lefschetz fibration over S2 with closed fiber.
A particularly useful aspect of this approach is that it allows one to calculate the
signature of a Lefschetz fibration as the sum of basic relations in the monodromy.

Definition 4.1. (Endo and Nagami [5]) Let Σ = Σg, g : F → ΓΣ the homomor-
phism defined in Section 2, and τg : ΓΣ × ΓΣ → Z the signature cocycle of Meyer.
Then there is an explicit homomorphism cg : ker(g) → Z inducing the evaluation
map H2(ΓΣ) → Z for the cohomology class of τg. For a relator r ∈ ker(g), the
signature of r is I(r) := −cg(r)−s(r), where s(r) is the total exponent of the Dehn
twists in r.

The following calculations may be found in [5]:

Lemma 4.2. Let rb, rl and rc be the braid, lantern and 2-chain relators (III, IV
and V of Theorem 2.1), and I, s as in Definition 4.1. Then

: I(rb) = s(rb) = 0
: I(rl) = 1, s(rl) = −1
: I(rc) = −7, s(rc) = 11

Now, following section 2, for r any relator, we write r =
∏

ri, where each ri is
either a lantern or a 2-chain relator. Clearly, we have s(r) =

∑
s(ri). Furthermore,

it follows from Definition 4.1 that I(r) =
∑

I(ri). Thus, for example, for r the
3-chain relation from the example at the end of Section 2, we have r = r1r2 where
r1 is a lantern, r2 (the inverse of) a 2-chain relator. Thus I(r) = −1+ 7 = 6, while
s(r) = 1− 11 = −10.

It is straightforward to see that if a Lefschetz fibration is modified by a r-
substitution in the associated mapping class factorization, then the change in the
Euler characteristic of the 4-manifold is exactly s(r); i.e. if λ′ is an r-substitution
of λ, then s(r) = e(XΣ,λ′)− e(XΣ,λ). That the analogous statement holds for I(r)
in the case of a closed Lefschetz fibration over S2 is the content of Theorem 4.3 of
[5]:

Theorem 4.3. [Endo and Nagami] Let XΣg,λ, XΣg,λ′ be Lefschetz fibrations over

S2, where λ′ is a r-substitution of λ. Then

σ(XΣg,λ′)− σ(XΣg,λ) = I(r).
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For the purposes of this paper, we require a version of Theorem 4.3 which covers
the case of Lefschetz fibrations with open book decomposition boundary. We have:

Theorem 4.4. Let Σ = Σg,b be a surface with boundary, and XΣ,λ, XΣ,λ′ Lefschetz
fibrations over D2, where λ′ is a r-substitution of λ. Then

σ(XΣ,λ′)− σ(XΣ,λ) = I(r). ∗

Our approach is to embed XΣ,λ and XΣ,λ′ into Lefschetz fibrations which satisfy
the hypotheses of Theorem 4.3, and then, using Novikov additivity and Wall’s
formula for non-additivity of the signature, show that the signature equality ∗
holds at each step as we remove what is necessary to recover our original fibrations.
We require the following application of Wall non-additivity:

Lemma 4.5. Suppose Xi, X ′

i are compact 4-manifolds such that ∂Xi = ∂X ′

i,
i = 1, 2. Let X = X1∪f X2, X

′ = X ′

1∪f X
′

2 be the result of gluing along a common
submanifold N of the boundaries via an orientation reversing diffeomorphism f .
Then

σ(X)− σ(X1)− σ(X2) = σ(X ′)− σ(X ′

1)− σ(X ′

2).

Proof. By Wall’s formula for additivity of the signature in this situation [20], we
have

σ(X)− σ(X1)− σ(X2) = −σ(V ;A,B,C)

where the ‘correction term’ σ(V ;A,B,C) depends only on the inclusions of ∂N in
∂X1−N,N and ∂X2−N . In particular, the calculation for σ(X ′)−σ(X ′

1)−σ(X ′

2)
gives the same correction term, from which the result follows. �

Proof. (of Theorem 4.4)

To set things up, let Σ′ ∼= Σ0,b+1, Σ
′′ := Σ ∪∂(Σ) Σ

′, and Σ̂ the closed surface
obtained by filling in the remaining boundary component (Figure 3). It is well-
known that any mapping class on Σ1,g has a factorization such that all negative
twists are about the boundary component δ, so in particular there is n such that
τnδ ◦λ−1 has positive factorization λ1. The word λ1 ◦λ is thus a factorization of the
identity element in ΓΣ̂, so X(Σ̂,λ1◦λ)

gives a Lefschetz fibration over S2 (a similar

construction was used in [2], where one may also find a proof of the above ‘well-
known’ fact). Now, λ = λ′ as elements of ΓΣ, so the above goes through identically
for λ′. By Theorem 4.3 we have

σ(X(Σ̂,λ1◦λ′))− σ(X(Σ̂,λ1◦λ)
) = I(r).

It remains to check that the equality ∗ holds as we remove these new bits to
recover the signatures σ(XΣg,λ) and σ(XΣg,λ′) for the Lefschetz fibrations over D2.

The Lefschetz fibration X(Σ̂,λ1◦λ)
over D2 is obtained from the (closed) fibration

over S2 by deleting a piece with zero signature, so by Novikov additivity the equality
∗ holds for these. Similarly, using Lemma 4.5, removing a disc from the fiber
(corresponding to a 4-ball in the corresponding 4 manifold) to recover the Lefschetz
fibrations with fiber Σ′′ gives

σ(X(Σ̂,λ1◦λ′))− σ(X(Σ′′,λ1◦λ′)) = σ(X(Σ̂,λ1◦λ)
)− σ(X(Σ′′,λ1◦λ))

and so
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Figure 3. Surfaces involved in proof of Theorem 4.4

σ(X(Σ′′,λ1◦λ′))− σ(X(Σ′′,λ1◦λ)) = σ(X(Σ̂,λ1◦λ′))− σ(X(Σ̂,λ1◦λ)
) = I(r).

Then XΣ′′,λ1◦λ is a fiber sum of XΣ′′,λ1
and XΣ′′,λ, so

σ(X(Σ′′,λ′))− σ(X(Σ′′,λ)) = I(r).

Finally, another application of Lemma 4.5 gives the equality for Σ, as desired.
�

5. Applications

Let (Σ, ϕ) be a positive open book decomposition supporting (M, ξ). Now,
while any λ ∈ Fac+(ϕ) determines a Stein filling XΣ,λ of (M, ξ), it is not the
case that any Stein filling X can be given as XΣ,λ for some λ ∈ Fac+(ϕ) (see
Section 5 of [21] for an explicit counterexample). It does however follow easily from
Giroux’s theorem that there is some (Σ′, ϕ′) obtainable by some number of positive
stabilizations on (Σ, ϕ) such that this holds; i.e for any Stein filling X of (M, ξ),
there is λ ∈ Fac+(ϕ′) such that X = XΣ,λ. Note then that by Theorem 4.4, and
the calculations of Lemma 4.2, we find that, if X ′ is any other Stein filling of (M, ξ),
then e(X) + σ(X) ≡ e(X ′) + σ(X ′)(mod4).

Corollary 5.1. If X,X ′ are Stein fillings of contact (M, ξ), then e(X) + σ(X) ≡
e(X ′) + σ(X ′)(mod4).

If, however, (M, ξ) is supported by planar (Σ, ϕ), then the situation is somewhat
more restrictive, due to a recent result of Wendl which in effect says that we do
not have to stabilize (Σ, ϕ). In particular, in [22], Wendl has shown that if planar
(Σ, ϕ) supports (M, ξ), and (X,ω) is any minimal strong symplectic filling of (M, ξ),
then (after possibly enlarging X by a trivial symplectic cobordism preserving the
contact boundary), (X,ω) admits a Lefschetz fibration whose boundary is (Σ, ϕ).
It follows that (X,ω) is symplectically deformation equivalent to Stein XΣ,λ for
λ ∈ Fac+(ϕ).

To summarize using our notation,
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Theorem 5.2 (Wendl). Suppose that X is a minimal strong symplectic filling of
(M, ξ), and that the latter admits a planar open book decomposition (Σ, ϕ). Then
there is λ ∈ Fac+(ϕ) such that X = XΣ,λ.

To see that this gives a restriction, we have the following direct corollary of
Theorem 2.1:

Corollary 5.3. Let Σ = Σ0,b be a planar surface, ϕ ∈ ΓΣ, and λ1, λ2 ∈ Fac+ϕ.
Then λ1, λ2 are related by an r-substitution where r =

∏
ri is a concatenation of

lantern relations.

Now, it follows that, for each i, either I(ri) = 1 and s(ri) = −1, or I(ri) = −1
and s(ri) = 1. In particular, we have:

Lemma 5.4. Let Σ = Σ0,b be a planar surface, ϕ ∈ ΓΣ, and λ1, λ2 ∈ Fac+(ϕ).
Then e(XΣ,λ1

) + σ(XΣ,λ1
) = e(XΣ,λ2

) + σ(XΣ,λ2
).

And thus:

Corollary 5.5. If X1, X2 are Stein fillings of planar (M, ξ), then e(X1)+σ(X2) =
e(X1) + σ(X2).

Note that, using Wendl’s result (see the discussion preceding Theorem 5.2), we
may replace ‘Stein’ in Corollary 5.5 with ‘minimal strong symplectic’. In fact,
a recent strengthening of Theorem 5.2 due to Niederkrüger and Wendl [15], and
brought to our attention by Chris Wendl, extends the result to the more general
case of minimal weak symplectic fillings. Of course, for the purposes of Corollary
5.5, we may drop the minimality condition, as the blowup process preserves e+ σ
(for definitions and details, see e.g. [10]).

6. Curve configurations as obstructions to planarity

We begin with some terminology:

Definition 6.1. Let ϕ ∈ Dehn+(Σ). We say ϕ contains the positive word λ if
there is a positive word λ′ such that λ′ ◦ λ ∈ Fac+(ϕ).

Definition 6.2. Suppose (Σ, ϕ) is an open book decomposition satisfying ϕ ∈
Dehn+(Σ), and let Σ′ ∼= Σg,n be a subsurface of Σ such that ϕ contains the
multicurve ∂Σ′. Then we say ϕ bounds Σg,n.

From the discussion following Lemma 4.2, along with Corollary 5.5, it follows
immediately that if positve ϕ bounds Σ1,2, then (by performing a substitution with
the 3-chain relator) we see that the supported contact manifold admits Stein fillings
X, X ′ such that e(X) + σ(X) = e(X ′) + σ(X ′) + 4. By Corollary 5.5, (M, ξ) is
therefore not planar.

To generalize this obstruction, we begin with the following well-known (see e.g.
[19]) generalization of the 2- and 3-chain relations introduced in section 2. Let
α1, . . . , αn be a chain of curves; i.e. such that each pair αi, αi+1 have a single point
of intersection, while curves of non-consecutive index are disjoint. Note that for
n even, a regular neighborhood of such a chain is a surface of genus n/2 with 1
boundary component, which we denote δ, while if n is odd, a regular neighborhood
is a surface of genus (n − 1)/2 with 2 boundary components, which we denote δ1
and δ2.
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Lemma 6.3. (see, e.g. [19]) For even n, τ−1
δ (τα1

. . . ταn
)2n+2 is a relator, while

for odd n, τ−1
δ1

τ−1
δ2

(τα1
. . . ταn

)n+1 is a relator.

Using the n-chain relation, we see that if ϕ bounds either Σg,1 or Σg,2, g > 1,
then ϕ bounds Σg′,2 for each 2 ≤ g′ ≤ g. In particular, ϕ bounds Σ1,2, and so any
of these is an obstruction to planarity.

We may play a similar game to obtain relators (and thus obstructions to pla-
narity) if ϕ bounds Σ1,n for 2 ≤ n ≤ 9 (see [11] for an explicit construction, from
which one may easily calculate I and s for each relator). Note that the non-existence
of elliptic fibrations with more than 9 disjoint sections means that there is no such
relator for n > 9.

In the genus 2 case, Onaran [16] has given relators for Σ2,n, n ≤ 8. It is straight-
forward to check that each of these gives an obstruction to planarity; i.e. if ϕ bounds
Σ2,n for n ≤ 8, then the contact manifold supported by (Σ, ϕ) is not planar.
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