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ANDY WAND

ABSTRACT. The aim of this paper is to use mapping class group relations to
approach the ‘geography’ problem for Stein fillings of a contact 3-manifold.
In particular, we adapt a formula of Endo and Nagami so as to calculate the
signature of such fillings as a sum of the signatures of basic relations in the
monodromy of a related open book decomposition. We combine this with a
theorem of Wendl to show that for any Stein filling of a contact structure
supported by a planar open book decomposition, the sum of the signature and
Euler characteristic depends only on the contact manifold. This gives a simple
obstruction to planarity, which we interpret in terms of existence of certain
configurations of curves in a factorization of the monodromy.

1. INTRODUCTION

In recent years, a large body of work has brought to light surprising connections
between open book decompositions, contact manifolds, Lefschetz fibrations, and
symplectic and Stein manifolds. Giroux [9] has demonstrated a 1-1 correspondence
between stabilization classes of open book decompositions and contact 3-manifolds
up to isotopy of the contact structure, and further shown that such a manifold
has a Stein filling if and only if the monodromy of some open book decomposition
associated to it through this correspondence has a factorization into positive Dehn
twists. Work of Giroux and others (in particular Loi and Piergallini [I] and Akbulut
and Ozbagci[12]) has further shown that such a factorization defines a Lefschetz
fibration of a 4-manifold filling of the contact manifold, which in turn defines a Stein
structure on the filling and thus an induced contact structure on the boundary. In
the case of a factorization into twists along homologically non-trivial curves, this
induced structure agrees with the original structure. Conversely, any Stein filling
induces such a Lefschetz fibration and open book decomposition.

Via the above framework, one may translate questions concerning Stein fillings
of a given contact manifold into questions concerning positive factorizations of
the set of monodromies of its open book decompositions. It is however generally
quite difficult to understand how the sets of possible factorizations of stabilization-
equivalent open book decompositions are related.

In this paper, we are concerned with curve configurations in a given mapping
class ¢, by which we mean any subword of a positive factorization of ¢ into Dehn
twists. In particular, we are motivated by the idea of using an understanding of
possible curve configurations in the monodromy of a given open book decomposition
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2 ANDY WAND

to understand properties of its stabilization class (such as support genus, see e.g.
[7) and also the set of Stein fillings of the supported contact manifold.

In Section 4, we adapt Endo and Nagmi’s [5] notion of the signature of a relation
(itself a generalization of the Meyer cocycle [14]) to the setting of contact structures
and Stein fillings. This gives a simple method of calculating the effect of changing
a factorization of the monodromy of an open book decomposition on the Fuler
characteristic and signature of the associated filling. As an application, we find
that well-known presentations of the mapping class group restrict the ‘geography’
of Stein fillings of a contact 3-manifold.

This technique also gives more stringent restrictions on the set of Stein fillings
associated to a contact structure via a given supporting open book decomposition.
These restrictions, however, are not in general preserved by stabilization of the
open book, and as such are not in general properties of the contact structure itself.
Indeed, in [2I] we constructed examples of positive open book decompositions for
which stabilization increases the set of related Stein fillings. If, however, contact
(M, €) is supported by planar open book decomposition (X, ¢), then the situation is
somewhat more restrictive, due to a recent result of Wendl [22] which in effect says
that we do not have to stabilize (¥, ¢); that the set of fillings related to (X, ) is
exactly the set of fillings of (M, £). This result allows us to use the above restrictions
to demonstrate new obstructions to a contact structure being supported by a planar
open book through existence of particular curve configurations in any supporting
positive open book. These obstructions are of a substantially different flavor than
the known obstructions due to Etnyre [0] and Ozsvath, Stipsicz and Szabo [I8].

As a final comment, the dependence of these results on Wendl’s theorem means
that this approach, as is, has no hope of giving obstructions to support genus greater
than zero. Furthermore, our above-mentioned earlier examples (constructed in [21])
are of genus 2, so there can be no analogue of Wendl’s theorem for genus 2 or higher.
The case of genus 1 remains unknown.

The organization of the paper is as follows. Sections 2 and 3 give basic defi-
nitions concerning mapping class groups, Lefschetz fibrations, and open book de-
compositions. In Section 4 we recall Endo and Nagami’s signature of a relation,
adapting their concept for a more general setting. In Section 5, we combine this
with Wendl’s result to give necessary conditions on Stein fillings of planar contact
structures, which we interpret in terms of existence of certain curve configurations
in Section 6.

Acknowledgements. We would like to thank Burak Ozbagci, Ignat Soroko, and
Chris Wendl for helpful comments on an earlier version of this paper, and the Max
Planck Institut fiir Mathematik for support.

2. MAPPING CLASS GROUPS AND RELATORS

Let ¥ = X, be a compact, orientable surface of genus g with b boundary
components. The (restricted) mapping class group of X, denoted I's, is the group
of isotopy classes of orientation preserving diffeomorphisms of ¥ which restrict to
the identity on 0X. If b = 0, i.e. X is closed, we write simply > = X,. We denote by
Dehn™t(X) the subset of mapping classes which admit factorizations into positive
Dehn twists, and by Fact(yp) the set of such factorizations.

Denoting by F the free group generated by isotopy classes of simple closed curves
on X, there is a natural homomorphism g : 7 — I'y; sending a curve « to the positive
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Dehn twist 7, about «. It is a classical theorem of Dehn that g is surjective. We
call each element r of Ker(g) a relator in the generators of I'y,.
We have the following presentation of I's;, due to Gervais [§] and Luo [13]:

Theorem 2.1. For a compact oriented surface 3, the mapping class group I's has
the following presentation:

generators: {74 : a a simple closed curve in L}.

relators:

(1) 7o for a the isotopy class of a null homotopic loop.

(II) TaTgT(;lTﬁ_l for lan gl =0.

(III)TTaﬁTaTﬁ_lTl;l (the braid relation)

(V) i i m o ans Tass Tars for curves as in Figure [i(a) (the lantern rela-
tion)

(V) 75(1a75)~C for curves as in Figure[l(b) (the 2-chain relation)

FIGURE 1. Curves involved in the lantern and 2-chain relations

Suppose r = )\1_1/\2 is a relator, and A a word in I's which can be written
A = AsA Ay (where each A; is a positive word). Then we say X = AgAa\4 is an
r-substitution of X\. If r is a braid relator, i.e. of type (III) above, an r substi-
tution is often referred to as a Hurwitz move. We will unless otherwise specified
be considering words only up to the relations of type (I), (II), and (III), as these
preserve most of the information we will be interested in. Note that, with this
convention, a r-substitution may always be viewed as concatenation of words. In
particular, setting r’ = )\Zl or oM\, we may write the above r-substitution as

A= A3A1 A 2 AgAAar’ = Azhoda

It follows then that any r-substitution of a word \ takes the form A(A[" A1) ...
(AnlAn,), where each r; := )\i_ll)\z-2 is a relator of type (IV) or (V). We write
r= HTZ'.

As an example, consider the ‘3-chain’ relator r = 7. 1170721 (Tans TaTg)?, Where
curves are indicated in Figure [ (the general definition of an n-chain relation, due
to Wajnryb [19], is given in Section [B). We may decompose r as rirq, where ry is
the lantern relator 707117'(;217';3175417'0(127',123Tam and 72 the 2-chain Tgl(TaTB)G. We
recover r by pasting the supporting surfaces along a common subsurface (here a
pair of pants) so that ajs ~ 4, and a3z ~ a4 ~ (3, and performing a sequence of
Hurwitz moves and cancelations.
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3. LEFSCHETZ FIBRATIONS AND OPEN BOOK DECOMPOSITIONS

Let X and B be compact oriented smooth manifolds of dimension 4 and 2 re-
spectively, possibly with boundary. A Lefschetz fibration f : X — B is then a
smooth surjective map which is a locally trivial fibration outside of finitely many
critical values {b;} € int(B), where each singular fiber f~!(b;) has a unique crit-
ical point, at which f can be modeled in some choice of complex coordinates by
f(21,22) = 22 + 23. If ¥’ € B is near a critical value b;, then there is a simple
closed curve C' in f=1(b'), called a vanishing cycle, such that the singular fiber
f71(b;) can be identified with f~1(b’) after collapsing C' to a point. The boundary
of a regular neighborhood of a singular fiber is a surface bundle over the circle
with monodromy a right-handed Dehn twist along the corresponding vanishing cy-
cle. Once we fix an identification of ¥ with the fiber over a base point of B, the
topology of the Lefschetz fibration is determined by its monodromy representation
VU : 7 (B — {critical values}) — I's. If the base is B = D? the monodromy along
0D? = S is given by the product of right-handed Dehn twists corresponding to the
singular fibers, and called the total monodromy of the fibration. A Lefschetz fibra-
tion over S2 can be decomposed into two Lefschetz fibrations over D?, one of which
is trivial; consequently, a Lefschetz fibration over S? is determined by a relator in
the mapping class group. Conversely, given a product of right-handed Dehn twists
in the mapping class group, we can construct the corresponding Lefschetz fibration
over D?, and if the given product of right-handed Dehn twists is isotopic to the
identity (and g > 2), then the fibration extends uniquely over S2. The monodromy
representation also provides a handlebody decomposition of a Lefschetz fibration
over D?: we attach 2-handles to ¥ x D? along the vanishing cycles with framing -1
relative to the framing that the circle inherits from the fiber. (For more detail, see
e.g. [10]).

For this paper, the base B will be either 52 or D?. Having specified the base, we
may specify a Lefshetz fibration over B by the data of the diffeomorphism type of a
generic fiber ¥ = f71(b), and a word A = 7, -+ T4, in 'y given as a composition of
positive Dehn twists, with the condition that A be a factorization of the identity in
I's if the base is S2. We denote the resulting 4-manifold by X (2,2, Which is unique
up to Hurwitz equivalence (i.e. under relations of type (III) from the previous
section) and global conjugation of .

An open book decomposition is a pair (X, ), where ¢ € I's;. From the mapping
torus (X x [0,1])/ ~, where (¢(z),0) ~ (z,1) for € 3, we obtain a closed 3-
manifold My, by gluing solid tori to the boundary so as to identify (y,t) with (y,t")
for y € 93. For a closed 3-manifold M, a celebrated result of Giroux [9] gives a



MAPPING CLASS GROUPS AND STEIN FILLINGS 5

1-1 correspondence between open book decompositions of M up to a stabilization
operation and contact structures on M up to isotopy.

In the case that a Lefschetz fibration over D? has fiber ¥ = ,;, b # 0,
the boundary M = 0Xsy ) has a natural open book decomposition (3, ¢), where
A € Fact(p). Conversely, given an open book decomposition (3, ¢), a positive fac-
torization A obviously determines a Lefschetz fibration Xy 5, which by Eliashberg
[3] determines a Stein structure on X x. Even more, if each vanishing cycle is ho-
mologically non-trivial in the fiber, then the contact structure induced on M by the
Stein filling given by the Lefschetz fibration agrees with the contact structure sup-
ported by the open book decomposition (X, ¢) through the Giroux correspondence
(full details may be found in [I],[I7]).

4. SIGNATURE AND EULER CHARACTERISTIC OF A RELATION

In [5], Endo and Nagami introduce the concept of the signature of a relation in a
mapping class group, generalizing a formula of Meyer for the signature of a surface
bundle over a surface to the case of a Lefschetz fibration over S? with closed fiber.
A particularly useful aspect of this approach is that it allows one to calculate the
signature of a Lefschetz fibration as the sum of basic relations in the monodromy.

Definition 4.1. (Endo and Nagami [5]) Let £ = ¥,, g : F — I's, the homomor-
phism defined in Section 2] and 7, : I's x I's;, = Z the signature cocycle of Meyer.
Then there is an explicit homomorphism ¢, : ker(g) — Z inducing the evaluation
map H(I's;) — Z for the cohomology class of 7. For a relator r € ker(g), the
signature of r is I(r) := —cg(r) — s(r), where s(r) is the total exponent of the Dehn
twists in 7.

The following calculations may be found in [5]:

Lemma 4.2. Let ry, r; and r. be the braid, lantern and 2-chain relators (III, IV
and V of Theorem[21), and I,s as in Definition[{-1] Then

: I(rp) = s(rp) =0

: I(r) =1, s(r) =-1

2 I(re) = =7, s(r.) =11

Now, following section [ for r any relator, we write r = []r;, where each r; is
either a lantern or a 2-chain relator. Clearly, we have s(r) = Y s(r;). Furthermore,
it follows from Definition 1] that I(r) = > I(r;). Thus, for example, for r the
3-chain relation from the example at the end of Section 2l we have r = r1ry where
r1 is a lantern, o (the inverse of) a 2-chain relator. Thus I(r) = —14 7 = 6, while
s(r)=1-11=-10.

It is straightforward to see that if a Lefschetz fibration is modified by a r-
substitution in the associated mapping class factorization, then the change in the
Euler characteristic of the 4-manifold is exactly s(r); i.e. if X is an r-substitution
of A, then s(r) = e(Xx »/) — e(Xx,2). That the analogous statement holds for I(r)
in the case of a closed Lefschetz fibration over S? is the content of Theorem 4.3 of

[5]:
Theorem 4.3. [Endo and Nagami] Let Xx, \, X5, x be Lefschetz fibrations over
S2, where N is a r-substitution of X\. Then

U(Xz]y’)\/) — O‘(ng,)\) = I(T)
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For the purposes of this paper, we require a version of Theorem which covers
the case of Lefschetz fibrations with open book decomposition boundary. We have:

Theorem 4.4. Let ¥ = X, be a surface with boundary, and Xx x, Xx a Lefschetz
fibrations over D?, where X' is a r-substitution of X. Then

J(XE’)\/) — O'(Xg’)\) = I(?") *

Our approach is to embed Xy ) and Xy x/ into Lefschetz fibrations which satisfy
the hypotheses of Theorem (4.3, and then, using Novikov additivity and Wall’s
formula for non-additivity of the signature, show that the signature equality x*
holds at each step as we remove what is necessary to recover our original fibrations.
We require the following application of Wall non-additivity:

Lemma 4.5. Suppose X;, X! are compact 4-manifolds such that 0X; = 0X],
i=1,2. Let X = X; Uy Xo, X' = X{ Uy X} be the result of gluing along a common
submanifold N of the boundaries via an orientation reversing diffeomorphism f.
Then

o(X) = 0(X1) = 0(X2) = o(X') = 0(X]) — 0(X3).

Proof. By Wall’s formula for additivity of the signature in this situation [20], we
have

o(X) = 0(X1) — 0(Xa) = —0(V; A, B, C)
where the ‘correction term’ o(V; A, B, C) depends only on the inclusions of N in
0X;— N, N and 0X5 — N. In particular, the calculation for o(X’) — o (X]) — o (X})
gives the same correction term, from which the result follows. O

Proof. (of Theorem )

To set things up, let ¥’ = X541, L7 1= X Uy ¥, and 3 the closed surface
obtained by filling in the remaining boundary component (Figure B)). It is well-
known that any mapping class on ¥, 4 has a factorization such that all negative
twists are about the boundary component §, so in particular there is n such that
T§ o0 A~! has positive factorization A\;. The word A; o ) is thus a factorization of the
identity element in I'y,, so X (S A100) gives a Lefschetz fibration over S? (a similar
construction was used in [2], where one may also find a proof of the above ‘well-
known’ fact). Now, A = ) as elements of Iy, so the above goes through identically
for \'. By Theorem 3] we have

U(X(i?,)\lo)\’)) - J(X(i),)\lo)\)) =I(r).

It remains to check that the equality * holds as we remove these new bits to
recover the signatures o(Xx, z) and o(Xx, /) for the Lefschetz fibrations over D2,
The Lefschetz fibration X ¢ \ ) over D? is obtained from the (closed) fibration
over S? by deleting a piece with zero signature, so by Novikov additivity the equality
x holds for these. Similarly, using Lemma [H.3] removing a disc from the fiber
(corresponding to a 4-ball in the corresponding 4 manifold) to recover the Lefschetz
fibrations with fiber ¥/ gives

O'(X(27>\10)\,)) - O—(X(Z”,klok’)) = O'(X(27>\10)\)) - O-(X(E”J\IOA))
and so
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FIGURE 3. Surfaces involved in proof of Theorem [4.4]

U(X(E”,)\lo)\’)) — O’(X(EllyAlo)\)) = U(X(i),)\lo)\’)) — U(X(i:’)\lo)\)) = I(’l")

Then Xs x,0x is a fiber sum of X5y, and Xs» y, so

O’(X(E//7/\/)) — U(X(E”,A)) = I(’f‘)
Finally, another application of Lemma gives the equality for X, as desired.
O

5. APPLICATIONS

Let (X,¢) be a positive open book decomposition supporting (M, &). Now,
while any A\ € Fact(p) determines a Stein filling Xx 5 of (M,¢), it is not the
case that any Stein filling X can be given as Xy ) for some A € Fact(p) (see
Section 5 of [21] for an explicit counterexample). It does however follow easily from
Giroux’s theorem that there is some (X', ¢’) obtainable by some number of positive
stabilizations on (3, ) such that this holds; i.e for any Stein filling X of (M, &),
there is A € Fact(¢') such that X = Xy ». Note then that by Theorem 4] and
the calculations of Lemma[L2] we find that, if X’ is any other Stein filling of (M, &),
then e¢(X) 4+ o(X) = e(X’) + o(X’)(mod4).

Corollary 5.1. If X, X' are Stein fillings of contact (M, &), then e(X) + o(X) =
e(X') + o(X')(mod4).

If, however, (M, £) is supported by planar (X, ¢), then the situation is somewhat
more restrictive, due to a recent result of Wendl which in effect says that we do
not have to stabilize (3, ¢). In particular, in [22], Wendl has shown that if planar
(X, ) supports (M, ), and (X, w) is any minimal strong symplectic filling of (M, £),
then (after possibly enlarging X by a trivial symplectic cobordism preserving the
contact boundary), (X,w) admits a Lefschetz fibration whose boundary is (3, ¢).
It follows that (X,w) is symplectically deformation equivalent to Stein Xs;  for
A € Fact ().

To summarize using our notation,
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Theorem 5.2 (Wendl). Suppose that X is a minimal strong symplectic filling of
(M, €), and that the latter admits a planar open book decomposition (3, ). Then
there is A € Fact () such that X = Xx ».

To see that this gives a restriction, we have the following direct corollary of
Theorem 2.1t

Corollary 5.3. Let ¥ = Yo be a planar surface, ¢ € I's;, and A\, Ay € FacT .
Then A1, Ao are related by an r-substitution where r = [[r; is a concatenation of
lantern relations.

Now, it follows that, for each i, either I(r;) = 1 and s(r;) = —1, or I(r;) = —1
and s(r;) = 1. In particular, we have:

Lemma 5.4. Let ¥ = g, be a planar surface, ¢ € T's;, and A1, A2 € Fac™(y).
Then e(Xs,a,) +0(Xsn,) = e(Xsp,) +0(Xs ), )-

And thus:

Corollary 5.5. If X1, Xo are Stein fillings of planar (M,§), then e(X1)+0(X2) =
e(X1) 4+ o(X2).

Note that, using Wendl’s result (see the discussion preceding Theorem [(2)), we
may replace ‘Stein’ in Corollary with ‘minimal strong symplectic’. In fact,
a recent strengthening of Theorem due to Niederkriiger and Wendl [15], and
brought to our attention by Chris Wendl, extends the result to the more general
case of minimal weak symplectic fillings. Of course, for the purposes of Corollary
B35 we may drop the minimality condition, as the blowup process preserves e + o
(for definitions and details, see e.g. [10]).

6. CURVE CONFIGURATIONS AS OBSTRUCTIONS TO PLANARITY
We begin with some terminology:

Definition 6.1. Let ¢ € Dehn™(Z). We say ¢ contains the positive word A if
there is a positive word A" such that A" o X\ € Fac*t(y).

Definition 6.2. Suppose (X, ¢) is an open book decomposition satisfying ¢ €
Dehnt (%), and let ¥ = ., be a subsurface of ¥ such that ¢ contains the
multicurve 9¥'. Then we say ¢ bounds X .

From the discussion following Lemma 2] along with Corollary B8 it follows
immediately that if positve ¢ bounds X 2, then (by performing a substitution with
the 3-chain relator) we see that the supported contact manifold admits Stein fillings
X, X’ such that e(X) 4+ o(X) = e(X’) + o(X’') + 4. By Corollary 55 (M,¢) is
therefore not planar.

To generalize this obstruction, we begin with the following well-known (see e.g.
[19]) generalization of the 2- and 3-chain relations introduced in section Let
ai,...,an be achain of curves; i.e. such that each pair a;, ;11 have a single point
of intersection, while curves of non-consecutive index are disjoint. Note that for
n even, a regular neighborhood of such a chain is a surface of genus n/2 with 1
boundary component, which we denote §, while if n is odd, a regular neighborhood
is a surface of genus (n — 1)/2 with 2 boundary components, which we denote §;
and ds.
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Lemma 6.3. (see, e.g. [19]) For even n, 75 ' (Tay .- - Ta, )>" 2 is a relator, while

11
for odd n, 75 5 N (Tay - Ta, )T

n

s a relator.

Using the n-chain relation, we see that if ¢ bounds either ¥, or X492, g > 1,
then ¢ bounds X4 » for each 2 < ¢’ < g. In particular, ¢ bounds ¥ 2, and so any
of these is an obstruction to planarity.

We may play a similar game to obtain relators (and thus obstructions to pla-
narity) if ¢ bounds ¥, for 2 < n <9 (see [II] for an explicit construction, from
which one may easily calculate I and s for each relator). Note that the non-existence
of elliptic fibrations with more than 9 disjoint sections means that there is no such
relator for n > 9.

In the genus 2 case, Onaran [16] has given relators for g ,,, n < 8. It is straight-
forward to check that each of these gives an obstruction to planarity; i.e. if ¢ bounds
Yo, for n <8, then the contact manifold supported by (£, ¢) is not planar.
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