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THE UNIVERSAL COEFFICIENT
THEOREM FOR QUADRATIC FUNCTORS

HANS-JOACHIM BAUES AND TEIMURAS PIRASHVILI

Let X be a simplicial abelian group and let F' be a functor which carries abelian
groups to abelian groups so that FX is again a simplicial abelian group. The
homotopy groups 7, X and 7, FX are defined as the homology of the corresponding
Moore complexes. Since the work of Kan and Dold-Puppe it is a well known
problem to compute 7, FX in terms of m, X and invariants of the functor F. If
F is an additive functor there is a classical solution which is derived from the
universal coefficient theorem for homology groups. We here show that a similar
kind of coefficient theorem also holds if F' is a quadratic functor. We use quadratic
modules {1] to formulate explicitly the graded quadratic tensor and torsion products
needed. As an application we compute in § 5 the homology [11] in the variety of
groups of nilpotency degree 2. We also compute the quadratic functors [8,9] of Ellis
in §6.

§ 1 UNIVERSAL COEFFICIENT THEOREM FOR ADDITIVE FUNCTORS

The Dold-Kan equivalence shows that the category of simplicial abelian groups is
equivalent to the category of non-negative chain complexes. The equivalence carries
X to the Moore chain complex C = NX so that m,X = H.C is the homology of
C. Let Ab be the category of abelian groups and let F': Ab — Ab be an additive
functor which preserves direct limits of direct systems. Then one has for free abelian
groups A the natural isomorphism

(1.1) F(A)=A®M where M = F(Z).

Moreover, if X consists of free abelian groups then FX = XQM and NFX = CQM
so that one gets the well known universal coeflicient theorem given by the following
short exact sequences.

T FX
I

0 —— (MX)OM —2 3 m(XQM) —— (mX)*M —— 0

i | |
0 — (H.C)®M —— H,(COM) —— (H.C)xM —— 0
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Here the right hand side is defined by the torsion product of abelian groups

A+ B = Tor (A, B). The rows are binatural short exact and split (unnaturally).
The map A is of degree 0 and p is of degree —1. The bottom row is the classical
universal coeflicient theorem for the homology of chain complexes; see for example
[5] and [15].

§ 2 (QUADRATIC FUNCTORS AND QUADRATIC MODULES

A functor F': A — B between two additive categories is termed guadratic if
F(0) = 0 and if the cross effect

(2.1) F(A| B) =kernel(F(A® B) » FA® FB)
is biadditive. This yields the binatural isomorphism

F(A® B) = F(A)® F(B)@® F(A | B)

Moreover, for any object A one gets the diagram

(2.2) F{A} = (F(A) 25 F(A | A) 55 F4))

where H is induced by the diagonal map A —- A @ A and P is induced by the
codiagonal A § A — A.

(2.8) Definition. A quadratic module in B is a diagram

M= (M, 5 M. 5 M)

satisfying HPH = 2H and PHP = 2P. For example F'{A} is always a quadratic
module in B.

Now assume F' : Ab — Ab is a quadratic functor which preserves direct limits
of direct systems. Then one has for free abelian groups A a natural isomorphism
which is the quadratic analogue of (1.1):

(2.4) F(A)=A®M where M = F{Z}

Here A ® M denotes the quadratic tensor product in [1] defined as follows:

(2.5) Definition. Let A be an abelian group and let M be a quadratic module
in Ab. Then A ® M is the abelian group with generator a ® m, [a,b] ® n for
a,be A, me M, n € M, and relations

(e+b)@m=a@m+b@m+[a,b]®@ Hm
[a,a] @ n = a® P(n)



where a @ m is linear in m and [a,b] ® n is linear in a,b and n.

(2.6) Remark. The category consisting of quadratic functors F': Ab — Ab which
preserve direct limits of direct systems and cokernels is equivalent to the category
of quadratic modules in Ab. The equivalence carries F' to F'{Z} with the inverse
carrying M to the functor A — A Q@ M.

Let A and B be abelian categories where A has enough projective objects. For
any functor F': A — B one obtains the derived functors

L,F:A 5B with
(2.7) (LaF)(A) = ma(FK (A, 0)).

Here K(A,m) is a simplicial object in A with projective components such that
K (A,m) = A, miK(A,m) =0 for i # m. If F is quadratic and if the projective
dimension of A i1s < 1 then L,F = 0 for n > 3. Moreover in this case given a
projective resolution

(1) 0— A1 2 Ag — A—> 0

of A we obtain the chain complex

(2) F(Ay | A1) 22 F(A) ® F(A; | Ao) 25 F(Ao)
with & = (F(d), PF(d | 1)) and §; = (P,—F(1 | d)) which satisfies

cokernel 6, n=20
(3) (L,F)A = { kerneld; /imaged, n=1
kernel &, n=

If F: Ab — Ab is given by F(A) = A ® M we have for A, B € Ab the cross
effect

F(A|B)=(A|B)@M=AQB® M,,

and in this case (2) has the form

(4) A1 ® AL @ Mee 25 A) @ M @ A ® Ao ® Mee —5 Ao ® M.
For a,a’ € Ay, b€ Ag, m € M., n € M., we obtain §; and é; by

$1(a®@m) = (da) @m

§1(la,d'] @ n) = [da,dd’] @ n

61{a®b®n) =[da,b] ®@n

520a®ad ®n)=—-a®dd @n+[a,dd'] @n
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Now we have (Lo F')A = A ® M and we obtain the guadratic torsion functors [1]

(5) (LiF)A=A+M and (L,F)A= A" M.
The proof of (2.7) (3) is based on 4.23 in [6] since the normalization of FI{(A,0)
in low degrees coincides with (2.7) (2); compare also [1] where various examples of

quadratic torsion products are computed.

§3 UNIVERSAL COEFFICIENT THEOREM FOR QUADRATIC FUNCTORS

We introduce the graded quadratic tensor and torsion products needed for the
quadratic analogue of the universal coeflicient theorem in § 1. Each quadratic func-
tor I yields the associated_chain complex

(3.1) F(A)={F4) <L Fua1a T R4 ¥ ra4)

where F(A) is in degree 0 and the differential d; is given by di = P, dzp, = 1 —

T, depyy =1+ T forn > 1 with T'= HP — 1. One readily checks that 77 = 1 and

dd = 0. Now assume the functor F is given by F(A4) = A® M. Then the quadratic

functor F;, in (3.1) with F,,(A) = F(A | A) for n > 1 satisfies
FolA|A)=AQ AQ M,

so that F,{Z} for n > 1 is given by the quadratic module

(Moo U8 3., 0 M, 8 11,,)

Hence the chain complex (3.1) corresponds by the equivalence in (2.6) to the fol-
lowing chain complex associated to M in the category of quadratic modules.

(3.2)
(1,7) (L71) (%3
Mec — ﬁf[eeeMee — Meeeaﬂ’-{ee — Mee @Mee —
M, =< lT lT lT lT
Me AE— Mee — MCE — Mee —
. P 1-T 1+T

Clearly A® M, = F.(A) for AQ M = F(A). We can also write

M, = (M 5 mee 2y me)
as a quadratic module in the category of chain complexes. Here M¢ is the bottom
row and M€ is the top row in (3.2). For a chain complex C in an abelian category
let Z,C be the graded object of cycles with Z,,C = kernel(d, : C;; = Cp—1). In

particular we shall use in definition (3.4) the graded object of cycles Z,M, of the
chain complex M, above. More explicitly one gets for k > 1
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(M, L M. 5 M, n=0
Ker p r+ Moo “=5 Ker P n=1
(3.3) Z.M, =« i
Ker(2 - HP) —» M. — Ker (2 — HP) n =2k
| Ker (HP) — M, =27 Ker (HP) n=2k+1

where »— denotes the inclusion. We also shall use the homology groups H, M¢.
The homology H, M = 0 is trivial.

(8.4) Definition of graded tensor products. Let Ab, be the category of graded abelian
groups A with A; = 0 for ¢+ < 0. As usual we define for A,B € Ab, the
graded tensor product A ® B with

(1) (A®B)n= @ A,‘@Bj.

i+j=n

>
Let A ® B be the ordered tensor product with

2) (A®B).= P 4:®B;

t+j=n
>3

We define the graded quadratic tensor product AQ M of A € Ab, and a quadratic
module M in Ab by

Am ® ZmM: if n= 2m,

3) (AQM), = (ABA), @M., (ADH, M
(3) (AQM)n = (AQA)n @M B(AQH, M) ® 0 if n=2m+1.

Hence we obtain for each M the quadratic functor Ab, — Ab, which carries A to
A ® M. One readily checks that for A, B € Ab, the cross effect satisfies

(4) (A|BYQ M = AQ® B ® M,.

yielding a relationship of the graded quadratic tensor product and the graded tensor
product above. Since Ab, has global dimension 1 we can apply (2.7) (2) for the
definition of the graded quadratic torsion products as derived functors of (3):

Ax'M = Li(- ® M)(A)
(5) {A*" M = Ly(— @ M)(A)

Moreover A @ M = Lo(— @ M)(A) and L,(— @ M)(A) = 0 for n > 3. Given a
bifunctor F' on abelian groups like the tensor product @ or the torsion product *
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one obtains extensions of F' to graded abelian groups 4, B in the same way as in

>
(1) and (2) so that F(4, B) € Ab, and F(4, B) € Ab, are defined. Let Trp be
the triple torsion product of Mac Lane; see the Notes on page 393 in [12]. Then
the cross effects of (5) are given by

(6) { (A| B)*' M =Trp(A, B, M,.),
(A|B)+"M = A% B* M,,.

We can describe the graded quadratic torsion products explicitely by the quadratic
torsion products (2.7) (5) as follows:

(7)

’ > > An ¥ Z.M, if n=2m,
(A" M)y =Trp(A, A, Mee)n @ (A* H M, )

0 if n=2m+1

Ap ¥ ZoM, if n=2m,

I P 2
® (A M>n-<A*A>n*Mee@{o if n=2m+1

We now are ready to formulate the universal coefficient theorem for quadratic
functors.

(3.5) Theorem. Let X be a simplicial abelian group which is free abelian in each
degree and let F': Ab — Ab be a quadratic functor given by F(A) = A ® M where
M is a quadratic module in Ab. Moreover assume that M., is torsion free. Then
there is a short exact sequence, n € Z,

a(FX)
|

0 —— (P X))@ M)y —2 3 T (X QM) —E s (mX) ¥ M)py — 0

which is natural in X and M. Here the left hand side 1s the graded quadratic tensor
product and the right hand side is the graded quadratic torsion product in (3.4).
The explicit description of the inclusion map A is given in the remark (3.8) below.

If M., is not free abelian one gets the following spectral sequence.

(3.6) Addendum. Let X, F and M be given as in (3.5). If M., is not torsion free
there is a homological first quadrant spectral sequence E2, = m,4,(X ® M) with
E? = E* and with differentials d; : qu — Eﬁ—z,qﬂ- Moreover

Eg* = (TF*X) ® M
B} =(mX)¥M
E%t = (TT.,X) *” M
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and B, = 0 for p > 2. The only possible non-trivial differential is d, : EZ , —

E¢ ¢+1- This Addendum and the theorem are consequences of the spectral sequence
in §7 below.

(3.7) Suspension homomorphism. By Dold-Puppe [DP] one has for any functor
T : Ab — Ab with T(0) = 0 the natural suspension homomorphism of degree +1

o:m(TX) » n.T(E2X)
The suspensions X of the simplicial abelian group X is given by the quotient

SX =(ZS")® X/ *x®X

where §! is the pointed simplicial circle and ZS! is obtained by applying the free
abelian group functor. The suspension homomorphism is compatible with the uni-
versal coefficient theorem (3.5); namely there exist natural transformations ¢ of
degree 41 together with a commutative diagram of short exact sequences:

0 — (MX)OM —29 m(XeM) —2s (mX)¥M —— 0
0 — (MX)OM —2o m(EX)@M) —2 (smX)* M —— 0

For a graded abelian group A let sA be given by (sA),+1 = Ap so that the identity
is amap s: A= sA of degree +1. Then it is well known that
T (EX) = s(m X)

so that the bottom row of the diagram is given by the universal coeflicient theorem
for £X. We now describe explicitly the natural transformations of degree +1

o AQM — (sA) @ M,
o Ax M — (sA)x' M

used in the diagram. We only define o on A ® M; the map ¢ on A+’ M is obtained

>
accordingly. The map o 1s trivial on the direct summand A @ A @ M. of A® M.
Moreover on A; @ H; M}, 1+ 3 =n, 1 > j, let o be given by the map

s@id: A; @ H;M{ = (sA)ip1 ® Hj M.
Finally let o on A;p, ® Zm M., n = 2m, be given by

where q : Z,, M, = H,, M, is the projection from cycles to homology classes.

(8.8) Remark. Let X be a simplical abelian group and let M be a quadratic module
in Ab. Then one has natural homomorphisms
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:rr,-(X) & 7TJ(X) ® M., "'2) 7Ti+j(X ® M)’
mi(X) ® ZiM, 1 mi(X @ M),
mi(X) ® H;ME -2 mij(X @ M), i > 5,

which are defined on generators by the formulas below. In fact, these homomor-
phisms yield in the obvious way the inclusion A in the universal coefficient theorem
(3.5). The homomorphism ¥ is induced by the classical shuffle, that is,

vz} @y} ®n) =) tlsz, syl @n.
(a:b)

Here {z} € mX is represented by z and the sum ranges over all (i, 7)-schuffles
(a : b); compare for example 5.6 in [4]. Next we obtain v for i > 0 by the formulas

y([{z}, {v}l®@n)=v{z}@{y} ®n),

Y({e}®@m) = Y sz, s5.2] @ m.
(a:b)

ﬂ1=0

Here the sum is taken over all (4,7) -shuffles (a : b) = (a1 < ... < ag : b < ... < by)
which are permutations of {0,... ,2¢ — 1} with a@; = 0. If i = 0 there is an obvious
map 7 : 7o(X) ® M — m(X ® M). Finally we obtain § for > 5 > 0 by

S({z} @ {m}) = Y *[ss2, 5.5} @m
(a:b)

a1=0

where the sum is taken over all (7, 7)-shuffles (a : b) with @ = 0. Fori > 7 =0
there is a canonical map ¢ : m;(X) @ HoM¢ = mi(X) ® cok(P) = mi(X ® M) given
by §({z} ® {m}) = {t @ m}. For M = Z° ® Z /2 the function § corresponds to the
operation &; considered by Goerss in 3.4 [10].

§ 4 EXAMPLES

The classical functors ®2,P2, A%S?%,T? (tensor square, quadratic construction,
exterior square, symmetric square, Whitehead’s I'-functor [16}) have the following
associated quadratic Z-modules; compare [1].

8



F | F{Z}= (F(Z) A, pzyz) L F(Z))

®" z®=(z“—>'”zez“—'l>’z)
P Z“’:(ZEBZ“—’IQZ“—'IQZ@Z)
A? Zh"=(0—Z—0)

52 ZS -

(
r ZF=(Z—1>Z—2)Z)

Therefore we obtain easily from (3.2) and (3.3) the following list of associated groups
H, M, and associated quadratic modules Z, M, which define for M = F{Z} the
graded quadratic tensor product A @ M in (3.4).

M ZIM* Z2M: Z3M* HO(M*)e Hl(Mt)e H2(M*)e HB(M*)e
Z® VAS z®  Z® 0 0 0 0

z* zh Z" ZA Z 0 Z/2 0

zh Zr zh 7/ 0 Z]2 0 Z/2
Z5 zA A Zh 0 0 Z]2 0

Al zh A zZA Z/2 0 Z/2 0

For all quadratic modules M and Z; M, in this list we have A *” M = 0 since M.,
is free abelian. Moreover the quadratic torsion A ¥’ M is given by the classical
functors

Ax'Z® =A% A
A+'Z" = R(A) = HsK(A,2)
A¥ZA = Q(A) = HiK(A,3)/(Z/3Z @ A)
where R and  are functors of Eilenberg-Mac Lane [7] with R(A | B) = Q(A | B) =
Ax* B and R(Z)=2Z)= 0 and R(Z/n)=Z/(2,n), UZ/n) = Z[n. Moreover
A+ 25 = A« ZF = A+ A/{ra(a,a), a € A}
has the cross effect A * B and satisfies (Z /n)*' Z5 = 0 for n > 0.
Using the list above one obtains readily by (3.5) the universal coefficient theorem

for m,(FX) where F = ®2, P2, A%, S,T. For example for F = A? we have the short

exact sequence



(A1) 00— (mX)®ZMy = m(A2X) L (mX) * Z2) ey — 0

with

(1. X) @ZMn = (X B 70 X)n (1 X & (Z/2)0d)n

A(rmX), n =2m, m even
@ M(mpX), n=2m,m odd

(7 X) ¥ 2y = (10 X) ¥ (12 X)) nmr @ (12 X) % (Z/2)odd)n—1

QrpX),n—1=2m, m even
® R(rmX),n—1=2m, m odd

Here (Z/2)o44 is the graded abelian group which is Z/2 in odd degrees > 1 and
trivial otherwise.

(4.2) Remark. We point out that the universal coefficient sequence (4.1) for A? is
split (unnaturally), also the coefficient sequences for ®?, P?, S*, T are split (un-
naturally). To see this it is enough to consider only 7, F I{(A, m) for such functors
F since X is a sum of such K(A,m). Then the canonical map v : K(4,m) —
K'(A,m) yields the retraction. Here I{'(A,m) is the simplicial group for which the
normalization is concentrated in degree m and (NK'(A,m))m = A.

§5 HOMOLOGY IN THE VARIETY OF GROUPS OF NILPOTENCY DEGREE TWO

The homology in varieties of groups is studied by Leedham-Green [11]. We here
compute this homology if the variety is the category Nil of groups of nilpotency
degree 2. Let G € Nil and let K(G, 0}V be a simplicial object in Nil such that
each group K(G,0)N¥ n >0, is a free object in the category Nil and such that

m K(G,0)""' =G and = K(G,0)0¥"'=0 for i>1.

Let H, : Nil — Ab be the abelianization functor. Then the homology of G
in the variety Nil is defined by

(5.1) HNYG) = mpey (Hy) K(G,0)V).
For any free object F' in Nil one has the natural central extension
0= A(HhF) > F 5 HiF =0
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which yields a short exact sequence of simplicial groups

(5.2) 0 A’X 5 K(G,ON' 5 X =0

with X = H, K(G,0)V*. Hence the long exact sequence of homotopy groups asso-
ciated to (5.2) determines for n > 2 the isomorphisms

(5.3) HY(G) = ma(X) 2 mami (AX).

where the right hand side is embedded in the universal coeflicient sequence (4.1).
We obtain the following result which can be used to compute the groups HY*(G)
completely.

(5.4) Theorem. Let G € Nil. Then one has

HNY(G) = H|(G) = abelianization of G
HNYG) = Ker (A2 H, (G) =5 [G,G))

where w is the commutator map. Moreover for n > 2 one has the split short exact
sequence
0 — (HN1(G) ® ZM)n — HYH(G) — (HEH(G) ¥ 21y — 0
Here H,4; is the graded object with (H,41)n = Hpy1. Inductively the sequence

determines all groups H, = HY"(G). For example one gets the following split
exact sequences.

0 — Hy®@ H — Hy — Q(H;) — 0
0— Hy @ Hy ®T(Hy) — Hy — Hox Hy — 0
0—)H4®H1@H3®(H2@Z/2)—)H5——)Hg*Hl@R(Hz)—'ﬁo

§6 UNIVERSAL QUADRATIC FUNCTORS OF ELLIS

Let G be a group. In [8,9] Ellis introduces the groups I'n,G and J,G, n 2> 2,
which are related with the homology H,G by an exact sequence
(6.1) 0 ¢— HoG — JoG +— TG — H3G +— ...
Moreover one has [',G = I'(H; G). We now describe I',G for n > 2 in terms of the
homology of G. Let K(G,0) be a free simplicial group with mo{(G,0) = G and
7aK(G,0) = 0 for n = 0. Then the homology of G is given by
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(6.2) Hop1G =m(X) where X = H K(G,0).

Moreover for n > 2 the group I',,G is given by

(6.3) TWG = mp_s(I'X)

so that we can apply the universal coeflicient theorem for the functor I'. For this
we use the last row in the second table of §4 and theorem (3.4). For example one
gets for H, = H,G the following short exact sequences which are split.

0 — H: Q(H\BZ/2)O AN Hy — T4G — Hyx (Hy ©Z/2) — 0
0 — H,Q(H @Z/2)® H3; @ Hy — I'sG— Hyx (H1DZ/2)® Q(H,) — 0

From the first sequence one gets the group

I3(Z/mZ)= R(Z/mZ)=Z[/(2,m)

which was also considered in [9] (where this group was calculated incorrectly).

§7 A SPECTRAL SEQUENCE FOR QUADRATIC FUNCTORS

Let A be an abelian category with enough projectives. For any biadditive functor
G : Ax A = Ab we denote by L.G the total derived bifunctor [3]. Recall
that L.G(A, B) = H, Tot (G(P., R,)) where P, = A and R, — B are projective
resolutions. Let Ga : A — Ab be the diagonal of G, that is Ga(4) = G(4, A).
Then it is well known that

(7.1) (LnGa)(A) = (LaG)(4, A).

This is a consequence of Eilenberg-Zilber-Cartier theorem [6] (2.9). Given a qua-
dratic functor F': A — Ab we obtain the biadditive functor G as a cross effect of F
and one gets L,F(A | B) = (L,G)(A4, B). Moreover we have by F the chain com-
plex F,(A) as in (3.1) which yields the functors A — H;F.(A) and A — Z;F,(A)
by the homology and cycles respectively.

(7.2) Theorem. Let FF : A — Ab be a quadratic functor and let X be a
component-wise projective simplicial object in A. Then there is a spectral sequence

B, = mpi F(X)

with differentials d, : E;, — E;_, .. ._,. Moreover the E? -term is naturally given
by the formula

12



El, = €D [Ly(H;F.)(m:X) & L,F(m X | m; X))

i+j=¢
>

@{Lp(ZmF*)(”mX)a if q=2m
0 , if ¢ odd

Proof: Case 1. First we consider the case when X = K(Q,n) = K'(Q,n) is given
by a projective object Q. Here K'(Q,n) is just the simplical object in A with
normalization concentrated in degree n and N,K(Q,n) = Q. By definition we get
forn=20

(1) mF K(Q,0) = (LiF)(Q)
with (Lo F)(Q) = F(Q) and (L; F)(Q) = 0 forz > 0. In fact, for n = 0 the simplicial

object K(Q,0) and FK(Q,0) are both constant simplicial objects. If n > 0 one
has by 4.23 in [6]

(2) mFK(Q,n)=0 for i>2n or i<n.

Moreover for n > 0 one has the isomorphisms

(3) Tn+iFK(Q,n) 2 (HiF)(Q) for 0<i<n,
(@) r2nFE(Qm) 2 (ZuF.)(Q),

For a proof of formula (3) see §4 in {14]; compare also [2]. For a proof of {4) we
first observe that

mn F(K(Q,n) | K(Q,n)) = F(Q | Q)
and the operators H and P of the cross effect F( | ) yield homomorphisms

man FE(Q,n) 23 F(Q | Q) 22 myu FK(Q,n).

By 8.8 in [6] B2n+2 is a monomorphism with

(5) image (f2n+2) = kernel (agp ).

This shows that formula (4) holds. Using (2), (3) and (4) we see that for X =
K(Q,n) we have m,F(X) = EZ, and hence the theorem holds for such X since L,
vanishes on projective objects for p > 0.
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Case 2. Now consider the case when X has homotopy groups 7, X which are pro-
Jective objects in A. Then X is of the form X ~ @K (Q,,n) where Q, is projective
so that @, = m, X. Then using the decomposition of F X by cross effects we obtain
the theorem also for such X.

Case 8. For general X we use proposition 17.1.2 in [3] which shows that there is a
bisimplicial projective resolution @,. — X such that the induced map

(6) errtical(Q”)—)ﬂnX

1s again a simplicial projective resolution. Hence the theorem now follows from the
spectral sequence for F'Q),. by the computations for case 2 above.

g.e.d.
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