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Abstract

In some Sturm-Liouville problems the estimates of the first eigen­
values are obt.ained. In many cases the sharp values are found and the
existence of the optimal solution is proved. For the classical Lagrange
problem the extremal values of the Lagrange functional are indicated.
The functions realizing these extremal values are found. It is proved
that these values are extremal globally.



1. On some estimates ofthe first eigen-value of a Sturm­
Liouville problem

Let us consider the dependence of the first eigen-value Al of the Stunn­
Liouville problem

y"(X) + >..q(x)y(x) = 0

on the segment 0 ~ x ~ 1, with the boundary conditions

y(O) = 0', y(1) = 0

on the potential q. Denote Rß the set of real-valued measurable on (0,1)
functions q with positive values such that

where ß is areal number, ß i= O. The variational principle implies that the
first eigen-value >"0 can be found as

We will estimate the values

Put

where
2ß

P=ß-1'

The main result of this section is the following

Theorem 1. If ß > 1, then

(ß-1)1+1/ß 2 1 1 1
mß = ß(2ß - 1)lIß B (2"' 2" - 2ß)'
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and Mß = 00, where B is the Euler's Beta-function:

B(a,b) =f xa- 1(1 - X)b-ldx .

There exist functions u(x) and q(x) such that

inf L[q, y] = L[q, u] = mß.
y

// ß = 1, then MI = 00 and ml = 4.
//0 < ß < 1/2, then

and mß = O. There exist functions u(x) and q(x) such that infy L[q, y] ­
L[q,u] = Mß.

/f ß < 0, then

and mß = O. There exist functions u(x) and q(x) such that infy L[q, y] =
L[q, u] = Mß).

//1/2 ::; ß < 1, then Mß = 00 and mß = O.

Proof. 1. If ß > 1, then we have by the Hölder inequali~y

f qy(x)2dx ~ ef qex)ßdx)l/fJe{ ly(x)IPdx)2/p = (f ly(xWdx)2/p
,

where p = 2ß/(ß - 1), for any y E HJ(O, 1). Therefore,

where m = inflfG[y] in the dass HJ(O, 1). Remark that the homogeneity allows
to assume that
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Let {Yk} be a sequence offunctions of this dass, such that

ly;,(X)2dx --+ m .

This sequence is bounded in HJ(O, 1), therefore it is weakly compact in t~s

space and compact in C[O, 1]. We will assume that this sequence is converging
uniformly and weakly in HJ(O, 1) to a function u. Then

{I lu(x)IPdx = 1, {I u'(x)2dx:::; !im (I y~(x)2dx,
Jo Jo .4:-00 Jo

and therefore fd u'(x)2dx = m. Since G[y] has the minimal value at y = u, we
have

d
dt G[u + tz] = 0 at t = 0

for an arbitrary function z of the dass NJ (0,1). It means that

l u'(x)z'(x)dx - m llu(x)IP-2U (X)z(x)dx = 0

for all Z E HJ(O, 1). This equality yields that the function u' has a generalized
derivative, equal to -mlulp

-
2u, Le.

u" + mlulP-
2u= 0

almost everywhere in (0,1). Since u is a continuous function, we have u" E

C[O, 1], so the equation is true in the classical sense.
Since G[lyll = G[y] for all y , we can assume that Yk(X) 2: 0 and thus

u(x) 2: O. Then by the unicity theorem for the Cauchy problem u(x) > 0 in
(0,1). Multiplying the both sides of the equation

u"(x) + mu(x)P-l = 0

by 27.1.' and integrating over (0, x), we obtain that

2m
U'(X)2 + -u(x)P = C .

p

Integrating over (0,1) the both sides of this equality and taking into account
that

l u'(x)2dx = m, l u(x)Pdx = 1 ,
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we obtain that m(1 + 2/p) = C.
Let b be a point, at which the function u has the maximal value M. Since

tI/' = -mup-
1 < 0, such a point exists and is unique. If b =f 1/2, then

we can assume that b < 1/2, since u(x) can be replaced by u(1 - x). The
function 'Ul (x) = u(2b - x) satisfies the same equation on (b,2b) as U 8.!ld
u(b) = Ul (b) = M, u'(b) = U'l (b) = O. Therefore, these functions coincide and
u(2b) = u(O) = 0, Le. b = 1/2. Since

u'(x) = Je-2;u(x)p

for 0 ~ x ~ 4, we have

(M dy 1

Jo Je - 2myP/p = 2'

Since u'(1/2) = 0, we have

M = u(1/2) = (pC )1/1' = (1 + p/2)I/p .
2m

Changing the variable of integration y = Mt, we obtain the equality

M 1-p/2JP (1 dt = .!. .
2m Jo VI - tP 2

Remark that

so that

MP/2- 1 = J 2 B(.!.,.!.) .
pm p 2

The obtained relations allows to find

. (ß - l)I+I/ß 2

m = C(ß) = ß(2ß _ l)l/pB (1/2, 1/2 - 1/2ß) .

2. Let now ß = 1. Since

f q(X)Y(X)2d:I; ~ maxy(x)2,

4



we have

Al > m = inf fd y(x)2dx
- YEH~(O,l) max y(X)2

The value of m can be found according to the following Lemma.
Lemma A10 oE 8.7 implies that Al ;::: 4 if ß = l.

3. Let ß < O. Put

{
(1- e)1/13e-1/ß , if 0 < x < e,

q(x) = (1 - e)-1/1361/ß, if 6 < X < 1,

where e > 0 is a small number. Let Yo(x) = 1/2 - Jx - 1/21. Then

,\ < 1 < Ce- 1/ ß.
1 - Jo1q(x)Yo(x)2dx -

Therefore Al can be arbitrary small.
4. Let 0 < ß < 1. Put

{
(2e)-1/13 if Ix - 1/21 < 6,

q(x) = '
0, if Ix-1/21 < e,

where e > 0 is a small number. Let yo be a smooth function, vanishing in the
points x = 0 and x = 1, which is equal to 1 in (1/3,2/3). Then

Al < C = C e1/ ß- 1 ~ 0
- f1/2~(2c)-1/13dx 1

1/2-E.

as € ~ O. Therefore Al can be arbitrary small.
5. Let ß > 1/2. Put

{
e-1/ß if 0 < x < e,

q(x) = I

0, if € < X < 1,

where e > 0 is a small number. Then

and thence
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Therefore in this ease MtJ = 00.

6. If ß = 1/2, we can put

q(x) = CX~-2,

where C = 6 2/4, so that laI q(X)1/2dx = 1. Then

Therefore Al ~ Ci""le-2 and M 1/ 2 = 00.

7. Let 0 < ß < 1/2. Then by the Hölder inequality

t q(x)ßdx ~ (t q(x)y(x)2dx)ß(t Y(X)Pdx)l-ß,

where p = 2ß/(ß - 1) so that 0 > P > -2. Therefore,

L[q, y] ::; G[y].

Put yo(x) = x"Y for 0 < x < 1/2 and Yo(x) = (1 - x)"Y for 1/2 < x < 1,
where -l/p > "'Y > 1/2 so that 110 E HJ(O, 1). Then the integral J~ Yo(x)Pdx is
converging and thus

'\1 ::; Cl'

Let m = infYEHJ(O,l) G[y]. Consider a minimizing sequence {Yk} such that

There exists a subsequence {Yn/r} uniformly eonverging to a funetion u E

HJ (0,1). By the Fubini theorem, we have Jo1u(x)Pdx :::; 1 and I~ 'lJ,'(x)2dx ::; m.
Therefore, G[u] ::; m and sinee m is the minimal possible value of G, we have
.G[u] = m. Sinee G[lyl] = G[y] for all y I we can assume that Yk(X) ~ 0 and
thus u(x) ~ O. The function u satisfies the same equation as in the S.I, Le.
the equation

u" +mjulp -
2u = 0

almost everywhere in (0,1). Since u is a continuous funetion, we see that the
equation is true in the classieal sense in each interval where u i= O. If u(xo) =
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O,U(Xl) = O,U(X) > 0 for Xo < x < Xl and 0 :::; Xo < Xl :::; l,Xl - Xo = '" < 1,
then we can consider the function v(x) = u(xo + KX) and since

v"(x) + mK?v = 0, v(O) = 0, v(l) = 0,

we see that G(v] = m",2 < m, what is impossible. So u(x) > 0 in (0,1).
Moreover then the equation

2m
U'(X)2 + -u(x)P = C

p

holds for 0 < x < 1 with C = m(l + 2/p) < O.
Let b be a point, at which the function u has the maximal value M.

Since u" = -mup
-

1 < 0, such a point exists and is unique. The function
Ul (x) = u(2b - x) satisfies the same equation on (b,2b) as u and u(b) =
ul(b) = M, u'(b) = u'l(b) = O. Therefore, by the unicity theorem for the
Cauchy problem these functions coincide and u(2b) = u(O) = 0, Le. b = 1/2.
We have

(M dy 1

Jo Je - 2myp/p = 2·
Since u'(1/2) = 0, we have

M = u(1/2) = (pC )l/p = (1 + p/2)1 IP .
2m .

Changing the variable of integration y = Mt, we obtain the equality

M 1-p/2J-p {l dt = ~.
2m Ja JtP - 1 2

Remark that

so that
. (1 - ß)l+lIP 2

m = C(ß) = ß(l _ 2ß)1/ß B (1/2,l/2ß)·

Since
inf L[Q, y] :::; inf G(y]

11 Y

and L[uP-
2

, u] = C(ß), we see that Mß = C(ß).
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8. If ß < 0, then by the Hölder inequality

f y(x)2P/(fJ-l)dx :::; (f q(x)y(x)2dx)P/(fJ-l)(f q(X)Pdx) l/(l-P) .

Therefore,
L[q, y] ~ G[y].

Put 1A>(X) = Ix - 1/21- 1/2. Then

A < 1
1 - (fo1(Ix - 1/21 - 1/2)2P/(ß-l)d:r;)(ß-l)/ß

and so Mß < 00. Consider a rninimizing sequence {YAJ such that

f Yk(x)Pdx = 1, f y~(x)2dx --> m.

There exists a subsequence {Ynk} unifonnly converging to a function z E

HJ{O, 1). Since p > 0, the sequence {~k} converges uniformly to up
• There-

fore, fl u{x)1'dx ~ m-p
/
2, and Jol u'{x)2dx ~ 1. Therefore, G[u] ~ m and since

m is the minimal possible value of G, we have G[u] = m. The function u sat­
isfies the same equation as in the S.I, and C{a) is defined by the same fonnula
as for fJ > 1. Since

inf L[q, y] < inf G[y] = C(ß),
11 - 11

we see that Mp = C(ß). o

2. On other estimates of the first eigen-value
Let us consider the dependence of the first eigen-value Al of the Stunn­

Liouville problem
(P(x)y')' + AY(X) = 0

on the segment 0 ~ x ~ 1, with thc boundary conditions

y(O) = 0, y{l) = 0

on the function p. Let us denote Ra the set of real-valued positive measurable
functions p on [0, 1] such that
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where a is areal number, ,Q =f O. Put

Let Kp(a, b) for real p -# 0 be the set of non-decreasing real functions y
defined on [a, b], absolutely continuous on [a, b- c] for any c > 0 and such that
y(O) > 0, t y'(x)Pd:J; < 00, t Y(X)2d:J; < 00.

Let Kp(a, b, c) be the set of real functions y defined on [a, cl and such that
y E Kp(a,b), Y(-X) E Kp(-c,-b), f;Iy'(x)IPdx < 00 and f~Iy'(x)IPdx < 00

The main result of this section is the following

Theorem 2. Let
MOl = sup "\1, ma = inf "\1,

pERa J1ERa

C(r) = 3r - 2 (2T - 2)2/rB'J(.!., 1 _ .!.).
r 3r - 2 2 r

If er > -1/2, a =f 0, then Mo = C(r) and fflo = O. There exist functions
p E Ra, Z E HJ(O, 1) such that z'(X)2 = p(X)Ol-1 and

infyLw, y] = L[p, z] = C(r).

1/ Q :$ -1, then m a = C(r) and MOl = 00. There exist functions p E Ra,
Z E HJ(O, 1) such that z'(X)2 = p(X)O-1 and

infl/Lfp, y] = L[p, z] = C(r).

11 -1 < a :$ -1/2, then Mo = 00 and 7Tl.c. = 0.

The prooE of Theorem 2 is based on the variational principle, according to
which Al = infYEHJ (0,1) L[p, y].

Proof. 1. IE a > 0, then we can take a function 11 vanishing in [0,1/2] and
such that J01 y2d:J; = 1. Since the function p can have arbitrarily small values in
[1/2, 1], the value of ..\1 cannot be bounded from below by a positive constant.
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2. Let 0 > a > -1. Let us show that in this case also Al cannot be bOlIDded
from below by a positive constant.

Put for that

{

X / c, if 0 < x < C,

y(x) = 1, if c < x < 1 - c,
(1 - x) / c, if 1 - c < x < I,

{
6 if 0 < x < c or 1 - c < x < I,

p(x) = c::' 1, if c: < x < 1 - c:,

where {; is a number such that

l p(x)"'dx = 2E8'" + (1 - 2E)e-'" = 1,

l y(x)2dx = 1 - 2e + 2e/3 = 1 - 4e/3.

On the other hand,

Therefore,

A < Jl p(x)y'(x)2dx < cc:-1-1/a
1 - Jo1y(x)2dx - ,

and since -1 - l/a > 0 I the value of Al can be arbitrarily small.
3. Let a ~ -1. Then 1 ::; r ~ 2 and by the Hölder inequality

l y'(xYdx = l p(xyI2y'(xY· p(x)-r/2dx

::; (l p(x)y'(x)2dxyI2(l p(x)"'dx)1/(1-"') ,

where r = 2a/(a -1). Therefore, for any admissible p we have L[p, y] ~ G[y].
Let m = infll G[y]. Since y(x) = J~ y'(t)dt, we have

l y(x)2dx ::; l (fa'" ly'(t)ldt?dx ::; (lly'(tWdt)2/r

10



We have

and thus m ~ 1.
Consider a minimizing sequence {YJc} such that

There exists a subsequence {Yn.l;} converging uniforrnly to a function z E

HJ(O, 1) such that f~ Iz'(x)jrdx = 1, Jo1 Iz(x)j 2dx = I/rn. The function z satis­
fies the Euler-Lagrange equation

(lz'(x)lr-2z'(x))' + mz(x) = O.

Multiplying it by z' and integrating we obtain

r-I m
--jz'(x)r + -Z2 = O.

r 2

Integrating the last equality over (0,1) we see that C = 3/2 - l/r > O. The
function z is even with respect to x = 1/2, increasing in (0,1/2) from 0 to M
and decreasing in (1/2,1). Since z'(1/2) = 0, we have

mM2 = 2C = 3 - 2/r.

rM dz _ 1 r ) l/r

Jo (0 - mz2/2)1/r - 2(r - 1 .

Substituting z = My, we see that

Remark .that

Therefore,
M- 1 = (r - 1)I/rC-1/ rB(!, 1- !)

r 2 r

and m = 2CM-2 = C(r). Since LW, y] ~ C(r) and L(z!2/(cr-l) , z] = C(r), it
follows that mo = C(r).
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4. If a > 1, then by the Hölder inequality

{p(X)y'(X)2dx :::; ({ p(X)°dx)l/O({ y'(xtdx)2/r,

where r = 2a/{a - 1) > 2. Put Yo(x) = 1/2 -Ix - 1/21. Then

A < (Id YÖ(x)r)2/r = C.
1 - Id Yo(x)2dx

We can repeat the same arguments as above in 8.3 to find the optimal
functions p and z. Moreover then M = C(r) and if a = 1, then

\ < max1k(X)2 _ 12 - l' C()Al _ r 1 ()2 - - 1ffi r.
JO Yo x dx "-00

5. Let 0 < a < 1 and p be a function of the dass Ra. Put

and construct the function yo in such a way that it vanishes in the end points,
increases monotonically on (0, b) and decreases monotonica.lly on (b,l). Let
M = max YO(X)2. It is evident that

{ 1Io(xtdx = {p(X)"dx = 1.

Let b 2: 1/2. The measure of points x E (0, b) such that 1k(x)" 2: 4, is less
than 1/4. Therefore the supplementary set E on (0, b) has the measure 2: 1/4
and at the points x of this set we have

y~(x) ~ 41
/",

because r < O. Put now z(O) = 0, .t(x) = 41
/" at the points of E and .t(x) = 0

at other points of (0, b). Then

and therefore,
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We can assume that

To prove the existence" of the optimal functions p and z we need the result
of Lemma A14.

Let p be an arbitrary positive function of the dass Ra. Then there exists
a function Yo(x) such that p(x) = lyöI2/(Q-I) even with respect to x = 1/2,
increasing in (0,1/2) and decreasing in (1/2,1). FUrthennore, L(p, Yo] = G{Yo]
and therefore, Mo: ~ m. On the other hand, we have the equality L(po, Yo] =
G[yo], if Po (x) = Iyo(x) 1

2/(0:-1). By Lemma A14 we have

m = inf J~ Po (x)y'(x)2dx = L(po ]
!lEH~ f~ y(x)2dx I Yo

and the proof is complete.
6. Let now 0 > a > -1/2. We will use the same function Ya as above, in

the beginning of s.5. Let r = 2a/(a - 1). Then 0 < r < 2/3. By the Hölder
inequality

f Yb(x)"dx ~ (f IYb(x)ldxnf dx)l-r ~ (f IYb(x)ldx)".

Since f Yb(x)"dx = I,

it follows that

f IYb(x)ldx ;::: 1

and therefore
M = (max Ya(x))2 = Ya(b)2 > 1/4.

{ Yb(x)"dx ;::: 1/2.

Let Xl be such a point of (0, b) that YO(Xl) = 1/4r
. Then as above we have

Therefore,

rb

ly~(x)lrdx ~ 1/4.lZl
On the other hand, by thc Hölder inequality

1/4 ~ {b lyb(x)lrdx = {b lyb(x)lrYo(x)2r-2 yo(x)2-2rdx
lZI lXl

13



~ ( {b Y~(X)Yo(X)2-l/r dxr( {r Yo(x)2dx)1-r
lXI lXI

= [(~ )3-2/r _ m3-2/r]/(3 _ 2/TH {b yo(x)2dx)1-r
4 lXI

~ Cl (a)(!ol Yo(x)2dx)1-r.

Therefore,

and
Al ~ (4Cl (a))1/(1-r).

As above to prove the attainment of the optimal value we need some Lem­
mas.

7. Let a < -1/2. Let

{
kl/o. if 0 < x < e,

p(x) = k, I if e < x < 1,

where k is such a number that

so that

for any e > 0 we have

On the other hand,

Therefore,

{ y(x)2dx ~ e2{ y'(x)2dx

+(1 - e)2t y'(x)2dx ~ 8f p(x)y'(x)2dx,

14



where

so that 8 --+ 0 as c -+ O. Hence·

as e --+ O.
8. Consider at last the case when er = -1/2. Put

p(x) = max(x2 /6 2
, f? /62

),

where <5 = exp(l - 1/6). Remark that

f p(X)-1/2dx = 8 . e/8 +f elxdx

= 6 - cln8 = l.

On the other hand, from the well-known estimate

f y(x)2dx ~ 4 10
1

ry'(x)2dx,

valid for &11 functions y E Cl, vanishing in 0, it follows that

It means that for the choosen function p

A = inf 10
1
p(x)1I(x)2d1; > _1

1 Id Y(X)2d1; - 462 '

so that the estimate from above is impossib1e.
Corollary 3. 1/ a > -1/2, a '# 0, then

AI ~ C(Ci)(f p(x)adx)l/a;

if Q ~ -1, then

15
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where C(o) is a positive number depending an 0 anly.

3. On a more general estimate ofthe first eigen-value
of the Sturrn-Liouville operator

In this section the Sturm-Lioville problem

(P(x)y')' + AQ(x)y = 0, 0 < x < 1,

y(O) = y(l) = o.

(1)

(2)

is considered. Our aim is to estimate the minimal eigen-value Al of this problem
under the condition that the non-negative measurable functions P(x) and Q(x)
are such that

{ P(x)"dx = I, { Q(x)ßdx = 1, (3)

where 0 and ß are non-zero real numbers. The variational principle implies
that

Al = inf fd P(x)y'(x)2dx
y fo1Q(x)y(x)2dx '

where the greatest lower bound is taken in the dass of al1 non-zero functions
from Cd [0, 1] .

Let us put
Ma,ß = sup Al, ma,ß = inf )\1.

P,Q P,Q

The main result of this section is the following

Theorem 4. //0> -1/2, ß - a + 2aß < 0, then Ma,ß :::; C(a.,ß) and
ma,ß = o.

// a :::; -1, ß 2:: 1, then ma,ß ~ C(a, ß) > 0 and Ma,ß = 00.

// I/Ci. - I/ß + 2 ::; 0 and either 0: > -1 ar ß < 1, then ma,ß = 0 and
Ma,ß = 00.

Proof.

I. Estimate of Ma,ß.

16



a. Let at first a > 0, ß > 0 and ß- Ci. +2aß > O. We show that Ma,ß = 00.

Für this we put P(x) = e-1/0. für 0 < x < e and P(x) = 0 for e < x <
1j Q(x) = e-1/ß for 0 ~ x ~ e and Q(x) = 0 for e ::; x .::; 1, where e is a small
positive number. Then for y(x) E CJ (0,1) we have

JQ(x)y(x)2dx = e-1/ßJy(x)2dx;

JP(x)y'(x)'2dx = e- 1/0. Jy'(x)2dx.

Since

we have that

JQ(x)y(x)2dx ~ e2-1/ß+l/0JP(x)y' (x)'2dxj

Le.
,.\ > e-2+1/ß-1/01 _ ,

and Al -+ 00 as e -+ O. Therefore in this case Mo,ß = 00.

b. Ha< 0, ß > 0, we put

{
e-l/0(1 - e)l/o für 0 < x < e

P(x) = 'el/O (1 - e)-l/o. for e < x < Ij

{
0 for 0 < x < 2e,

Q(~) = (1 - 2e)-1/ß for 2e < x < l.

where 0 < e < 1/8. It is dear that

JP(x)o.dx = 1,JQ(x)ßdx = 1,

and

(1 - 2E)I/ßl Q(x)y(x)2dx = J~ y(x)2dx

~ 6-1/"(1- 6)1/" J~ P(x)y'(x)2dx.

Hence it follows that Al > el/o /2 and so Mo •ß = 00.

c. Let now Ci. < 0, ß < 0 and ß - a + 2aß > O.
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Weput
_ {c-1/

Q
(1 - c)1/Q for °< x < c,

P(x) - cl/Q(l _ e)-1/Q for e < x < 1j

_{e-1/ß(1 - p)1/ß for °< x< C,
Q(x) - p1/ß(1 _ c)-l/ß for c < x < 1;

where °< C < 1/8,0 < p < 1/8. It is dear that

JP(x)Qdx . . 1,JQ(x)ßdx = 1,

and

t Q(x)y(x)2dx = e-1/ß(1 - p)l/ß [ Y(X)2 + pl/ß(l - e)-l/ß J.' y(x)2dx

~ C-1/ß+l/"'(1 _ p)l/ß(l - e)-l/'" [ P(x)y'(x)2dx

+pl/ße-I/"'(1_ e)1/"'-1/ß+2 J.' P(x)y'(x)2dx ~ Cl l P(x)y'(x)2dx,

where

If we put p = e.ß/2a , then for small e. we have Cl ::::; 2c"Y, where

'Y = rnin(2 - l/ß + 1/Cl,ß/2a) > 0.

Since Al ;::: C11
, we see that in this case MQ,ß = 00.

d. Now we show that MQ,ß = 00, if

ß - Cl + 2o:ß = 0, a > -1/2.

Remark that for Cl =f 0, ß =f 0, ß - Cl + 2C1.ß = 0, CI. > -1/2, Cl and ß have
the same signs. Let

P(x) = CIX~-l/Q, Q(x) = C2X~-IIß; e > 0.

The constants Cl, C2 are chosen so that

JP(x)Ctr.b: = 1, JQ(x)ßdx = 1,
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Le. GI = (0:8)1/0, G2 = (ße)l/ß
• From the Hardy inequality

1X€-1/ßY(X)2dx ::=; Go1X&-1/ß+2Y'(X)2dx; y(x) E Gl(O, 1),

where Co = 4/{1 + (8 - 1/ß)2], it follows that

1Q(x)y(x)2dx ~ COC2/C11P(x)y'(x)2dx.

It remains to note that

as E ~ o. It means that

Le. Mo,ß = 00.

e. Now we show that Ma,ß < 00 if

-1/2 < a < 0, ß - 0: + 20:ß < O.

Put -yb(x)2 = P(X)O-l and define the function yo(x) so that it increases on
the segment {O,xo] from 0 to some m > 0 and decreases on the segment {Xo, 1]
from m to O. By the Hölder inequality

1yb(x)2ar/(a-l)dx ::=; (1 ybdx)2ar/(o-l).

Therefore,

l y~(x)dx ~ 1,

and so m ~ 1/2. Let für definiteness

lo"'0 y~(x)2a/(a-l)dx ~ 1/2.

Let Xl E (0, xo) be a point such that Ya(xt}l-o = 40 .Then

r~l r~l
Ja Y~(X)2o/(0-I)dx ~ (Jo y~(x)dx)2ar/(O-l) = 1/4.

Therefore,

1
:1:0

y~(x)2a/(0-I)dx ~ 1/4.
:1:1
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implies that

On the other hand, by the Hölder inequality

[
0 Yo(x)2a/(Q-l!dx

%1

1- [0::; ( y~(x)2ß/(ß-l)dx)(l+a)/(l-Q)( 'Y'oy!3(l+a)/Q(ß-l)dx)2a/(Q-l)
%1 %1

andso

where
ß(1 + a) 2aß - a + ß

1 + s = a(ß -1) + 1 = a(ß _ 1) < o.
If ß < 0, then

/ y(x)2fJ/CP-1ldx::; (/Q(x)y2(x)dx)ß/(ß-l)(/ Q(x)ßdx)lf(l-ßl,

and therefore

Therefore, the obtained estimate

l %l y,2ß/(ß-l) dx > C > 0o - 1 ,
o

Ao ::; CP-ß)/ß.

f. Let now 0 < a < 1, ß- a +2aß < O. We obtain the estimate for Ao from
above.

The function P(x) is non-negative and f P(x)Qdx = 1. It is sufficient to get
the unifonn estimate from above for the functions P(x), taking positive values
only. Put 1Io(x)2 . P(X)Q-l and define the function yo(x) so that it increases
on the segment [0, xo] from 0 to some m > 0 and decreases on the segment
[xo, 1] from m to O. We have

t P(x)y~(x?dx =t (Y~(X))20/("'-lldx =t P(x)"'dx = 1.
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so that

By the Hölder inequality we have for 0 < ß < 1

/ Q(x)ßdx $ (/ Q(x)y'J(x)dx)ß(/ Y(X)2fJ/(ß-l)dx)l-ß,

/ Q(x)y(x)2dx ~ (/Y(X)2ß/(ß-l)dx)<ß- 1)/ß.

Thus the estirnate frorn above follows frorn the inequality

/ y(x )2ß/(fJ- I)dx $ GI,

that will be proved. -
We note that for 0 < x < Xo we have

x = foz dt = / Yo(X)6Y~(X)-6dt

$ (/ y~(x)8pldt)l/Pl . (/ y~(x)-8p'Jdt)I/P'J. x I
/ P3 ,

where

1 ~ 1
1 > s > 0, PI = s' 112 = s(l _ a)' P3 = (1 - s/2 - s/2a)"

Since J1Io(x)-~dt = 1, it follows that

X!/2+6/2a ::; yo(x) I/PI,

i.e. Yo(X) ~ X I / 2+ I/ 20 . Therefore

{ZO jOJo YO(X)2ß/(ß-I)dx::; J
o

x(a+l)ß/a(ß-I)dx = Cl,

since
(0: + I)ß > -1
a(ß - 1)

in virtue of our conditions. Analogously one can show that yo(x) > (1­
X)1/2+1/20 for xo < x < 1, and thus yo(X)2ß/(ß-I)dx :$ 2C1.

If ß < 0, then

/ y(x)'l{3/<ß- I)dx :$ (/ Q(x)y'J(x)dx)ß/(ß-I)(/ Q(x)ßdx)l/(l-ß),
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and therefore

Thus in this case it is sufficient to prove that

JY(X)2ß/(ß-1)dx ;::: C > o.

As in above we have the estimates

Yo(x) ;::: X
1
/
2+1

/
2a for 0 < x < Xo,

Yo(x) > (1 - X)I/2+1/2a für Xo < x < 1

and thus f Yo(X)2/i/(/i-l)d:I;

;:::. FI:O X(o+1)f}/o(f}-1)dx +11
(1 _ X)(O+1)f}/o(ß-1)dx = C > o.

Ja %0

g. Let a > 1, ß - a + 2aß < O. We show that Ao ~ C(a, ß). We have

J P(x)Y'(X)2d:r; ~ (J y'(x)2a/(0-I)dx)(O-1)/0(J P(x)odx) 1/0

and

Therefare
<. !(y'(x)2a/(or-l)dx)O-1)/or

Al - 1~f (f y(x)2ß/(ß-1) dx) (fJ-1)/ß ~ c.
Let Ya(x) = xP für 0 $ x ~ 1/2 and Ya(x) = (1 - x)P für 1/2 ~ x ~ 1. The
number p must be such that 2ß/(ß - l)p > -1 and 2a(p - l)/(a - 1) > -l.

If a > 1,0 < ß < I, then such p exists if (1 + a)/a < (1 - ß)/ß, Le. für
ß - a +2aß < o. And if Q > 1, but ß < 0, then 8S p one can take any number 1

greater than (1 + a)/20, since the first cünditiün is satisfied far any p > o.

11 . Estimates of ma,ß.

a. We prüve that ma,ß = 0 für ß < 1. Für that we put F(x) = 1. If
ß < 0, we put Q(x) = €-l/ß(1 - €) für x - 1/2 < 6/2 and Q(x) = N für
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o< x < 1/2 - c/2 and for 1/2 + c/2 < x < 1, assuming that 0 < c < 1/4 and
N is such a constant that

Nß(1 - c) + E- 1(1 - E)ßE = 1,

so that N --+ 00 as e --+ O. We note that b€ = JQ(X)1/4dx --+ 00 as E --+ O. Let
qf;(X) = Qf;(x)b;4. Then from the equation

y" + AüQf;(X)Y = 0

it follows that
y" + mq€(x)y = 0, where m = Aob:,

and f q;/4dx = 1. In virtue of the first part of our theorem, if a = 2,ß = 1/4,
the first eigen-value is bounded from above, Le. m ~ C and Cis independent
of E. But then Aü ~ Cb;4, and so Al can take arbitrarily small values.

If 0 < ß < 1, then we put P(x) = 1 and Q(x) = €-1/ß(1 - e) for x - 1/2 <
c/2 and Q(x) = 0 for 0 < x < 1/2-c/2 and for x > 1/2+c/2 ,assuming that
o< c < 1/4. Let Yo E C~(o, 1) and Yo(x) = 1 for 1/2 - x < E. Then

AO = inf fo
1

P(x)y'(x)2dx < Jo
1
'Y'o(x)2dx = Ce1/ß-l.

y fo1 Q(x)y(x)2dx - Jo1 Q(x)Yo(x)2dx

Therefore, .xo --+ 0 as E -+ o.
b. Show that ma,ß = 0 for a > o. For this we put Q(x) == 1 . Since' a > 0,

the function P(x) can vanish on the segment [0,1/2], when y(x) = 0 on the
segment [1/2, 1] , so that Al = O.

c. Let 0 > Q > -1. Let Q(x) =1. Let us put

{

6 for 0 < x < E,

P(x) = 8- 1 for E < X < 1 - c,
6 for 1 - E < X < 1,

and

{

X / E for 0 < x < E,

y(x) = 1 for c < x < 1 - c,
(1 - x)/c for 1 - E < X < 1,

where 6 is such a number that
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JP(x)°dx = 2€00 + (1 - 2c)€-0 = 1,

Le. 0~ €-1/0. It is übviüus that

Jy2(x)d:1; = 1 - 2e + 2c/3 = 1 - 4c/3.

On the üther hand

JP(x)y~(x)2dx = 2t5/e ~ 21-1/oe-1-1/0.

Therefore,
An :::; C€-l-l/o

and since -I-l/et > 0 für 0 > et > -1 , the value .xl can be arbitrarily srnall.

d. Let now et:::; -l,ß ~ 1. Using the Hölder inequality we get that

JQ(x)y(x)2dx :s; (J y(X)2P/(P-l)dx)(P-l)/P,

Jy'(x)2a/(o-l)dx :s J(P(x)y'(X)2d:1;)o/(O-1).

Thus
. (f y'(X)2a/(Ol-l)dx)O-l)/Ol

.xl ~ 1~ (f y(x)2ß/(ß-l)dx)(ß-l)/ß ~ 1.

The last inequality follows frorn the estirnate

(J yq(X)dx)l/q :s (J Y'(X)Pdx)l/p,

where
2 < q = 2ß/(ß - 1) < oo, 1 :::; P = 2et/(a - 1) < 2.

In its turn it is irnplied by the inequality

rnax ly(x)1 :s JIy'(x)jdx

following frorn the formula y(x) = f; y'(t)dt. H Cl: :s -1, ß = 1 l we can use
instead of the Hölder inequality the estirnate

JQ(x)y(x)2dx :s rnax y(X)2
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,and since
maxy(x)2 ~ (/ y'(x)Pdx)2/P for 1 ~ P < 2,

we can see that Ao ~ 1.
The proof is complete.

The proved theorem can be stated in the following way:
Theorem 5. Let.Al be the first eigen-value of the problem (1)-(2).
-1/2,ß - a + 2aß < 0, then .

(f P(x)"cdx)l/a
.Ao ::; G(n, ß) Cf Q(X)ßdx)I/ß;

if Ci ~ -1, ß ~ 1, then

(f p{x)adx)l/a
.Ao > G(n, ß) (f Q(x)ßdx)l/ß'

where G(a, ß) is a positive constant, depending on a and ß only.

4. On estimates of all eigen-values
Onee more consider the Stunn-Liouville problem:

y" + )..Q(x)y = 0, y(O) = 0, y(l) = 0

[fa>

under the conclition that t Q(x)'ldx= 1

and estimate the k-th eigen-value .At. Dur main result is following.

Theore~ 6. 1/ ß ~ 1, then .At ~ CO(ß)k2
• // ß < 4, ß =f 0, then .Ak ::;

Co(ß)k2 . The constant Co(ß) here is independent of k.

Proof. Let ß ~ 1 and Yk be an eigen-function of the Stunn-Liouville problem
having the number k. This function h88 k - 1 zeroes in the interval (0,1) :
VI, . .. ,Vk-l. Let vo = 0 < 111 < ... < VI: = 1 and I be one of the intervals .
(v;, Vj+l), where j = 0,1, ... ,k-l. Consider the function Yk(X) on the interval
I. If maxJ 1h(x) = 1h(~d = 1 and 1h(€) = 0, eE I, then

{6 lei1= J, Y~(x)dx = )..k Q(X)Yk(x)dx.
e e·
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Remark that IYk(X)! ~ C(Vj+l - Vj) and we can assume that Yk(X) ~ 0 in I.
Therefore

It follows that

and thus

Therefore t"+l

JlI.
J

Q(x)ßdx ~ Co(ß)ß(Vj+l - Vj)1-2ßJ\.;ß.
J

Summing these inequalities over j, we obtain that

k-l

1 2:: Co (ß)ß A;ß L(Vj+l - Vj)I-2ß,
j=O

Remark that 1 - 2ß ~ -1 and by Lemma All

Therefore,

and
Ak > CO(ß)k2

,

Analogously, if 0 < ß < 1/2, then we get the inequality

k-l

1 ::; Co (ß)ß A;ß L (Vj+l - Vj)I-2ß.
j=O

Since 1 - 2ß < 1, we have by Lemma A11, that
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Thus

Le.
Ak < Co (ß)k2 .

If ß < 0, then the inequality takes the form

k-I

1 ~ Co (ß)p A;ß L(Vj+I - Vj)1-2ß ,
j=O

and since 1 - 2ß > I, we get

that gives the inequality

o

Now consider an other Stunn-Liouville problem:

(P(x)y')' + Ay = 0 y(O) = 0, y(l) = 0

under the condition t p(x)adx = 1.

Theorem 7. 1/ a > -1/2, a f 0, then Ak ~ Co(a)k2
• 1/ a ~ -1, then

Ak < Co(a)k2
• Here CoCa) is a positive constant independent 0/ k.

Proof. Let at first a > -1/2, a i:- O. As above, consider the k-th eigen­
function Yk(X), corresponding to the eigen-value Ak. Let Vo, ... , Vk be the
zeroes of Yk(X) and 1!o = 0 < VI < ... < Vk = 1. Let 1 be one of the intervals
(Vj, Vj+d with j = 0,1, ... ,k - 1, let

Substituting x by Vj +tl, P(x) by p(t)(p/l)l/Ct and Ak by pl/Ctl-2-1/a, we obtain
that

(P(t)y~~)~+ my = 0, 0 ~ t ~ 1; y(O) = 0, y(l) = 0;
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or

or

l p(t)"'dt = 1.

Theorem 2 implies that m ::; Co (a) J so that

Ak ::; Co(a)l-2-1/opl/O.

If a > 0, then it follows that

[V'+l
A~(Vj+l - lIj)2a+l ::; Co(at' )v,' P(x)°dx.

}

Summing over j from °to k - 1 we obtain that

k-l

A~ L (lIj+l - Vj)2cr+1
::; Oo(a)o.

j=O

Since 1 + 20: > 1, we have by lemma All that

k-l

L(lIj+l - Vj)20+1 ~ k(l/k2a+l) = k-2a

j~

so that

If -1/2 < a < 0, then as above

A~ ~ Co(a)Ol-2a-lp2

[V'+ l
A~(lIj+l - Vj)2a+l ~ Co (aY=- )v.' P(x)°dx.

J

Summing over j between °and k - 1 we see that

k-l

,,\~ L(Vj+l - 1I;)1+2a ~ Oo(a)o.
j=O

since 1 + 20: > 0, Lemma All implies that

k-l

L(Vj+l - Vj)1+20 ~ k(l/kl+2a) = k-2a .

j=O

28



Le.

Therefore

and since a < 0, we see that

For a ::; -1 the same arguments lead to the estimate

.x > C (a)l-2-1/ap l/ak _ 0 ,

t'"+l
h+l - Vj)J+2aAI: ~ Co(at i_i' P(x)"'dx.

Summing over j from 0 to k - 1 we get the estimate

k-l
A~ L:(Vj+l - Yj)l+2a ::; Co(a)a.

;=0

Since 2a + 1 ::; -1, Lemma A11 implies that

/c-l

L (Yj+l - Yj)l+2a ::; k(lfkl+2a) = k-2c:t
j=O

and hence

so that

o

The proved Theorems can be refonnulated in the following fonn.

Theorem 8. Let.A,~ be the k-th eigen-value 0/ the Stunn-Liouville problem
considered in Theorem 6. 1/ ß ~ 1 then

Ak > Co(ßW(l Q(X)ßdX)-I/ß.

1/ß < 4, ß =I 0, then
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Theorem 9. Let Ak be the k-th eigen-value 0/ the Sturm-Liouville problem
considered in Theorem 7. If 0: > -1/2, 0: =f 0, then

If 0: ::; -1, then

5. On estimates of first eigen-value of a Sturm-Liouville
problem for operators of higher order

Let us consider the dependence of the first eigen-value Al of the Sturm­
Liouville problem

(-1)n+ly (2n) (x) + ..\q(x)y(x) = 0

on the segment 0 ::; x ::; 1, with the boundary conditions

(4)

y(O) = y'(O) = ... = y(n-l) (0) = y(l) = y'(1) = ... = y(n-l)(l) = 0 (5)

on the potential q. Denote Rp the set of real-valued measurable on (0,1)
functions q with positive values such that

f q(x)f.ldx = 1,

where ß is areal number, ß i= O. The problem (4),(5) has a discrete spectrum.
The v~ational principle implies that the first eigen-value An can be found as

. J01y(n) (x)2dx
Al = 1nf .

yECOO(O,l) J01q(x)y(x)2dx

It is easy to see that 811 eigen-functions of the problem (4),(5) are real and
positive. We will estimate the values
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Put
Jo1 y(n) (x )2dx

L[q, y] = J~ q(X)y(x)2dx·

Theorem 10. 1/ ß~ 1, then mß ~ 1.

Proof. H y(x) is an eigen-function, corresponding to Al, then by the Rolle
theorem each function y' (x), ... ,y(n-1) (x) has at least one zero on (0, 1). There- ,
fore,

y(n-Il(x) = f y(nl(t)dt,

where € is a zero of y(n-1)(x). So ly(n-1)(x)1 ~ Jo1 Iy(n)(t)ldt. Analogously)
Iy(n-i) (x)1 < J~ ly(n-i+1)(t)ldt. By induction we get the inequality ly(x)1 2 ~

(Jo1 Iy(n)(t)ldt)2 ~ Jo1 Iy(n)(t)1 2dt. Hence

f~ly(n)(t)12dt> 1 > 1 >l.
Jo1q(t)y(t)2dt - fo1 q(t)dt - (Jo1 q(t)adt)l/a -

o

Theorem 11. 1/ ß ~ l/n) then Mß = 00.

Proof. Let qll:(x) = CIl:(x + e)-n, where C~ is such that J~ q~(x)ßdx= 1. It is
easy to see that C~ -jo 0 a.s E -jo O. Let Y E W;(O, 1) and y satisfy the conditions
(5). Put y(x) = 0 outside of (0,1). The Hardy inequality

f Y(X)2(X + E)-ndx :S CI f !y(n)(t)12dt

implies the inequality

f Qe(t)y(t)2dt :S CeCI f Iy(n) (tWdt.

Therefore

Jo1 y(n) (t)2dt 1
L[q~, y] = Jo1 q~(t)y(t)2dt 2: Ct;C

1
-jo 00 a.s E -jo O.

Thus Mß = 00.
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Theorem 12. 1/ ß < l/n, then Mß = C(ß) < 00.

Proof. Let at first 0 < ß < l/n. Using the Hölder inequality we obtain

1 = l q(x)fldx ::; (f q(x)y(x)2dx)fl(f ly(xWdx)l-fl,

where p = 2ß/(ß - 1) so that 0 > P > -2(n - 1). Therefore

Jo1 y(n) (x)2dx
L[q, y] ~ (fa) ly(x)lpdx):llp'

Put yo(x) = xn~-I(l - x)n~-}. Then fo1 y(n) (x):ldx = Cl if 6 > 1/2 and
JJ ly(x)IPdx = C2 < 00, if p(n + 6 - 1) + 1 > 0, Le. if

6 < (1 + ß - 2ßn)/2ß·

Since (1 +ß- 2ßn) /2ß > 1/2, there exists {; satisfying all the conditions. Thus
)\) :::; L[q, Yo] < C3·

Now let ß < O. Using the Hölder inequality we obtain

lly(xWdx =f q(x)i>/2Iy(x)IPq(X)-p/2dx

::; (l q(x)y(X)2dx)P/2(l q(x)fldx)l/(l-fll = (l q(x)y(x)2dx)p/2.

Therefore,

Hence
L < Jo1 y(n) (x)2dx

[Q, y] - (fo1Iy(x)lpdx):l/P'

Putting Yo(x) = x n - 1(1 - x)n-l, we see that L[q, y] ::; c.

. .

Theorem 13. If ß < 1, then mß = O.

Proof. Let at first ß < O. Put

_ {(I_e)1/ße-1/ß, ifO<x<e,
q(x) - (1 _ e)-I/fJe1/ß, if e < x < 1,
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where e > 0 is a small nuinber. Let Yo(x) = xn -
1(1 - X)n-1. Then

r 1 (n)( )2rJx
A < JO Yo X < Ce-1/P.

1 - fo1 q(X)Yo(x)2dx -

Therefore Al can be arbitrary small.
Let 0 < ß < 1. Put

{
(2e)-l/ß if Ix - 1/21 > c,

q(x) = 0, l if Ix - 1/21 < e,

where c > 0 is a small number. Let Yo be a smooth function, vanishing in the
points x = 0 and x = 1, which is equal to 1 in (1/3,2/3). Then

A < C = C cl IP-1 -+ 0
1 - J1/2+t:(2c)-1/ßd:r; 1

1/2-t:

as e -+ O. Therefore Al can be arbitrary small. o

In the study of the Sturm-Liouville problem for an equation of second order
we have obtained the sharp values of the first eigern-value for the operator
y"(x) + Aq(x)y = 0 under the condition JJ q(x)ß = 1. We have found also the
potentials q, when these sharp estimates are true. In the case of an operator of
a higher order one ca.n write down the differential equations for the function q.
However, it is an equation of order n and we cannot find the explicit solution.

Consider more in details the following problem

_y(4) + ,,\q(x)y = 0,

y(o) = y'(0) = 0, y(l) = y'(1) = 0, q(x) ~ 0, f q(x)ß = 1, ß > 1,

q is a bounded measurable function. As we have shown above the least eigen­
value of this problem is bigger than a positive constant, independent of q.
Namely
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Let
fd y"(x)2dx

G[y] = (f
O
lly(x)lpdx)2/p

and m = infYecgo(O,I) G(y]. Let {Yk} be a minimizing sequence. Hy the homo­
geneity we can assume that

The sequence {Yk} contains a subsequence converging to yo unifonnly and
weakly in Wi,o(O, 1). The Euler-Lagrange equation for the functional L has
the form

y(4) _ mly!(ß+l)/(ß-l) sgn Y = 0,

y(O) = y'(0) = 0, y(l) = y'(l) = o.l Y"(X)2d:J; = 1.

Put
q(x) = .-\IYoI2/(ß-l),

where .A is such that Jo1 q(x)ßdx = 1. Then the problem

_y(4) + .-\q(x)y = 0,

y(O) = y'(0) = 0, y(l) = y'(l) = 0

has an eigen-value m, to which the eigen-function y corresponds. This eigen­
value is minimal for the considered class of the functions q. So the finding of the
extremal q and .Al is reduced to the boundary value problem for an equation
of fourth order. The same is true for other values of ß and for equations of
order n > 4.

Let us consider the boundary value problem

on the segment °$ x ::; 1, with the boundary conditions

y(i)(Xj) = 0, i = 0, ... ,kj , 0 = Xl < X2 < ... < X 6 = 1,

where
s ~ 2n - 1, k1 + ... + k6 = 2n - s.
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We assume that

q(x) ~ o.l q(x)P = 1.

We have shown that this problem has positive eigen-values. Let Al be the
minimal of them. Let us show that Al ~ 1. Indeed, the corresponding eigen­
function Y1 has at least 2n zeroes (taking into account their multiplicity.) Tbe
function y(2n-1) has at least one zero~. Hence

and therefore

ly(2n-l)(x)\ S All q(x)dx 0 maxly(x)1 S Al max Iy(x) I,

Since each function y'(x) , ... ,y(n-1)(x) has at least one zero on (0,1), we have

y(2n-i)(x) = [y(2n-i+1)(t)dt~
e.

where ~i is a zero of y(2n-i>(x). Hence

ly(2n-i)(x)1 ::; IDpx ly(2n-i+1) (t)!.

In particular,

o

6. On a Lagrange problem

6.1. Introduction

The considered Lagrange problem consists in the finding of extremal values
of the following functional:
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under the conditions y E }{l(0, 1), Q(x) is a bounded measurable function,

t Q(x)adx = 1, Q(x) ~ 0,

y(O) = 0, y(O) = 0, y(l) = 0, y(l) = 0,

(6)

(7)

where a E R \ {O}. It is easy to see that this problem is equivalent to the
variational problem on the extremum of the functional

F[Q ] = Jl Q(x)y'(x)2dx
. l Y Jo1 y(x)2dx '

under the conditions (6) and

y(O) = 0, y(1) = 0, t y(x)dx = O.

The Euler-Lagrange equation for the functional L has the form

(Q(X)y")" + Ay" = 0, y(O) = 0, y'(O) = 0, y(l) = 0, y'(l) = O. (8)

This problem is very important for applications. For example, it is essential
for the finding of the strongest colurrm of a given volume (the most important
values are then Cl: = 1/2 or 1/3) and was considered by many authors (see,
for example, [1]-[9]). The authors of the articles [4]-[9] used methods of the
functional analysis and of the variational calculus, sometimes very complicated.
However, the problem has not been solved until now.

Let us reproduce some Keller's arguments. Let us suppose that there exists
a function Qo(x) which rnaximizes the lowest eigenvalue. Let Q(x, e) be a
family of functions which depend smoothly on c and such that Q(x, 0) = Qo(x).
Assume that A and y, the lowest eigen-value and corresponding eigenfunction
with Q . Q(x,e), also depend smoothly on 6. Then we may differentiate the
equation

(Q(x,e)y"(x,e))" + "\(e)y"(x,6) = 0

with respect to 6 to obtain the equation

(Qo(x)z")" + "\Zll + (Ql (X)y")" + /l-Y" = 0,

where Ql(X) = 8Q(x,0)/86, z(x) = 8y(X,O)/86 and J1. = 8"\(0)/86. Multiply
the first equation by z, the second by y, subtract one from the other and
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Therefore

integrate the result over [0,1]. In virtue of the boundary conditions we have

t ((Qo(x)y")"Z - (Qo(x)z")"y)dx = 0,

t (y"z - z"y)dx = o.

t Ql(X)Y"(X)2dx - t ILy'(x)2dx = o.

Since A is the maximal value of "\(e) , we see that J.L = 0 and so

t Ql(X)/i"(X)2dx = 0

and this is true for any function Ql (x) such that

t QO(X)"-IQl(X)dx = O.

Thus we have as a necessary condition for a maximum the relation y"(X)2 =
CQO(X)Q-l. It leads to a non-linear equation for y

(ly"12/(o:-1)y")" + ,,\y" = 0,

which is integrable. Indeed, if we put y'Ö = Z, then

(IzI2/(o:-1) z)" + AZ = 0,

and if we put now z' = P(z) we obtain a linear equation of first order for
p2. The weak point of this proof is that the function A(e) can be nonregular,
because the lowest eigen-value A can be double. Besides, the existence of the
optimal 'solution was never proved.

The authors of [9} claimed to prove that the result of Keller-Tadjbakhsh (3]
is not correct. However, their calculations are erroneous and the value 167r2 /3
found in [3] ia optimal.

We propose here another approach, allowing to say that thc indicated solu­
tion is really optimal and gives the globally extremal value to thc functional L.
Let us remark that we had used the Sobolev's type spaces W;(O, 1) with l = 1,2
and any real values of p =f:. 0, what is interesting also outside of thc frames of
thc Lagrange problem. Furthennore, we prove the existence of the optimal
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solution. The obtained results can be extended to the multi-dimensional case
also. elose results for functionals depending on y, y' only have been obtained
in our works [10]-[12].

The important role in that follows belongs to the functional

G{y] = (fo
1

1y'(x) IPdx)2/
P, where p = ~.

fo1 y(x)2dx Cl - 1

Let Ra be the set of bounded measurable functions Q defined on [0, 1] ­
satisfying the conditions (1).

Let Kp(a, b) for real p#-O be the set of non-decreasing real functions y
defined on [a, b], absolutely continuous on [a, b- c] for any c > 0 and such that
y(O) ~ 0,

l y(x)Pd:J; < 00, l y(x)2d:J; < 00.

Let Kp(a, b, c) be the set of real functions y defined on [a, cJ and such that
Y E Kp(a, b), y( -x) E Kp(-c, -b), f: Iy'(x) [Pdx < 00 and fbc 1y'(x)IPdx < 00.

Let H be the set of functions y belonging to }(l(O,1) and satisfying the
conditions (7).

Put at last

mo = inf inf L[Q,y], Mo = sup inf L[Q,yJ.
QERa JlEH QERa JlEH

Our aim is to find thc values of rno and Mo and the functions Q, y realizing
these extremal values.

6.2. Preliminary estimates

Theorem 14. Let Ci E R \ o. Then

1. Mo is finite for a > -1/2, a f 0 and Mo = 00 for a ~ -1/2;

2. rno > 0 for Cl ~ -1 and mo: = 0 for a > -1.

Proof.
1. If a > 1, then by the Hölder inequality

f Q(x)Y"(X)2d:J; ~ (fQ(x)"dx)1fD <f ly"(x)IPdx)2/p ,

where p = 2a/(a - 1). Put Yo(x) = x 2(1 - X)2. Then
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inf L[Q, y] < (JOI lyg(x)IPdx)2/
p = C.

yEH - Jo
111o(x)2dx .

Therefore, Mo :$ C.
Similarly, for a = 1 we have

inf L[Q ] < maxyg(x)2 = C.
yEH ,y - Jo11lo(x)2dx

2. Let 0 < a < 1 and Q be a function from tbe dass Rcr. According to Lemma
A12, we can construct a function y(x) such that

yl/(X)2 = [Q(x) + 1]0-1, y(O) = y'(O) = y(l) = y'(l) = O.

By our construction

where p = 2a/(a -1). Let r be the maximum point of the function y(x). The
function y' satisfies the conditions of Lemma. A6 on the intervals [0, r] and
[r,I]. Therefore, L[Q, y] :$ L[Q + 1, yJ = G[y] :$ C and tbus Mo. :$ C.

3. Let now 0 > a > -1/2. We will use the same function y(x) as abave, in
s.2. Let p = 2a/(a - 1). Then 0 < p < 2/3. Using Lemma. A6, as above, we
obtain that

and therefore, Mo. :$ C-1
.

4. Let a < -1/2 and e E (0, 1/10). Let

_ { e-1/O(1 - e)I/0, if 0 < x < C,
Q(x) - (1 - e)-I/Clel/a, if c < x < 1,

so that

Since
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t y'(x)2dx ~ e2
{ y"(x)2dx + (1 - e? [ y"(x)2dx

= (1 - e)-I/0t!+I/o { Q(x)y"(x)2dx

+(1 - C;)2+1/0C;-1/o. [ Q(x)y" (x)2dx

~ 2c'Yt Q(x)y"(x)2dx,

where , = min(2 + I/Ci., -I/Ci.) > 0, we obtain that

and therefore Mo = 00.

5. Consider now the case when a = -1/2. Put

Q(x) = max(X2/82, 82/82),

where 8 = exp(I - 1/8). Remark that

t Q(X)-1/2dx = 6· e/6 + l e/xdx = e - eln6 = l.

On the other hand, the well-known estimate

t y'(x)2dx ~ 4t x2Y"(X)2dx,

valid for all functions y E Wi(O,l), vanishing at 0, impHes that

t y'(x)2dx ~ 46"t y"(x)2dx + 4l x2y"(X)2dx

~ 4c;2l Q(x)y"(x)2dx.

I t means that
inf Jo

1
Q(x)y"(x)2dx > _1_

yEH Jd y'(x)2dx - 4E2'

so that Mo = 00.

6. Let Cl: ~ -1. By the Hölder inequality
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f 1y"(x)IPdx ~ (f Q(x)Y"(X)2dx)P/2(f Q(Xtdx)I/(I-ol,

where p = 2a/(a - 1). Since p ~ 1, thc inequality

holds for all functions y EH, ,and thus ma ~ 1.

7. If a > 0, then we can take a function y vanishing in [0, 1/2] and such that
Iol 1fdx = 1. Since the function Q can have arbitrarily small values in [1/2,1],
the value of m a is equal to O.

8. Let 0 > a > -1. Let us show that in this case ma = O. Put für that

{

2x, if 0 < x < C,

y'(x) = 2c, if c < x < 1/2 - c,
(1 - 2x), if 1/2 - c < x < 1/2,

{

e-l/a(l - e)l/a, if Ix - 1/21 < e/4
Q(x) = or Ix - 1/21 > 1/2 - 6/4,

(1 - 6)-1/ael/a for other x.

Ir y(O) = 0, the function y is defined for 0 :s; x :s; 1/2. Let us put nüw
y(x) = -y(l - x) for x E (1/2,1). It is easy to see that

fol Q(xtdx = 1; f Q(x)y"(x)2dx = 4e'-I/0(1- e)I/O,

fo' lI(x)dx = 0, fo' y'(x)2dx = 1&3/3 + 4e2 (1 - e).

Therefore,

m < J~ Q(X)Y"(X)2dx < 6-1-I/a
a - Jol y'(x)2dx - ,

and since -1 - 1/a > 0 , the value of m a is equal to zero.
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6.3. Precise results

Now we consider the question on the attainability of the extremal values
of the functional L.

Theorem 15. If 0 < -1, then there exist a function y E Hand a function Q
satisfying (1), such that -

L[Q ] = = 4(20:: + 1) (a + 1 )1-1/0B(~ ~ 2.)2
,y m o 0:: 20+1 2'2+20'

where Bisthe Euler function.
If 1 > 0 > -1/2, a =I 0, then there exist a function Yo E Hand a function

Q satisfying (1), such that

inf L[Q, y] = L[Q, Yo] = Mo-
y

Furthermore, if a 2: 1, then

M < 4(2a + 1) ( 1 4- a ) 1-1/0B(~ ~ -.!...)2
Q - 0 1 + 20 2' 2 + 20 .

If 0 < 0 < 1, then

Mo; = 4 (20: + 1) ( 1 + a ) 1-1/0B(.!.,.!. + -.!... )2.
0: 1 + 2a 2 2 20

If -1/2 < a < 0, then

20: + 1 ( 1 + a ) 1-1/0 ( (OO dt ) 2

Mo = -4 a 1 + 20: Ja (1 + t 2)1/2-1/20 .

Remark 16. In particular1 in the classicaJ Lagrange problem with a = 1/2
the optimal function Q(x) is defined on (0, 1) in the parametrie form as follows

x = (2t + sin2t)/47r, Q(x) = 16cos4 t/9; O:S t ~ 21r.

The optimal value M = 167r2/3 has been indicated by Keller-Tadjbaksh in [3).
The optimal column has two points at which Q(x) vanishes.

Remark also that we don't know the sharp value of Mo if 0: > 1 and cannot
prove that the optimal functions Q, Ya do exist in this case.
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Corollary 17. If p = 1, then m = 16.

Proof. For all Y E K, and p> 1 we have

1 . 1

m 10 y(x)2dx ~ (10 Iy'(x) IPdx)2/p,

and limp--1+0 m = 16. Therefore, m 2: 16. On the other hand, putting y(x) = 1
for c < x < 1/2 - c, y(x) = -1 for 1/2 + c < x < 1 - c, y(x) = x/c for
0< x < C, y(x) = (1/2 -x)/c for 1/2 -c < x< 1/2+c and y(x) = (x -1)/c
for 1 - c < X <. 1, we can see that

and so m = 16. o

In the same way one can prove the following

Corollary 18. If p = 00, then m = limp-cx> m(p) = 48. The estimate is
realized by the function Y1 equal to 1/4 - Ix - 1/41 for 0 < x < 1/2 and to
Ix - 3/41- 1/4 for 1/2 < x < l.

Corollary 19. Let -1/2 < a < l,a =1= 0 and z(x) = Yo(x) for 0 < x < 1/2,
z(x) = -yo(x-1/2) for 1/2 < x < 1, where 110 is the function found in Lemmas
A5 and A6 for r = 1/2 and p = 2a/(a - 1). Put Q(x) = 1z'(x)12/(a-1). Then

Q(x) = Q(l - x) for 0 < x < 1, Q(x) = Q(1/2 - x) for 0 < x < 1/2,

Q(x) = clx - 1/41'Y[1 + 0(1)] as x -+ 1/4,

Q(x) = clx - 3/41'Y[1 + 0(1)] as x -+ 3/4,

where "( = 2/ (Ci + 1) E]1, 2[ if Ci > 0 and , = 2 if a < O.

Lemma 20. Let 0 < a < 1 and Q(x) be the function found in Corollary 19.
Let

. J01Q(x)y"(X)2d,x
m1 = lnf

uEH6(O,1) Jo
11/(X)2dx

Then m1 = m, where m was indicated in Theorem 15. The minimal value is
attained on the function Y1 that is equal to J; z(t)dt.

Proof. Consider the minimizing sequence Yk(X) such that J~ Yk(X)2dx = 1,
h h · al r 1/ 4

-€ 111'( )2d,x J3/4-€ 11//( )2dx cl r 1 "( )2dxt en t e 1ntegr S Ja Yk x '1/4~ Yk X an J3/4+€ Yk X are
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bounded and one can choose a subsequence converging almost everywhere in
(0, 1/4-e), (1/4+e, 3/4-e) and (3/4+e, 1) in H 1 and weakly' in 1P(O, 1/4-e),
H2 (1/4 + E, 3/4 - e) and H2 (3/4 + c, 1). Using the diagonalization1 one can
find a subsequence converging almost everywhere in (0,1) to Yl (x).

Let us show that

(9)

with a constant C independent of c and k. Indeed, using the equality

r1/ 4-t:
y~(1/4 - c:) = Jo yZ(X)dx,

we see that

[1/4-t: [1/4-S
y~(1/4 - e)2 ::; Ja Q(x)yZ(x)2dx Ja Q(x)-ldx ::; C1e1

-,.

Since fI3/4~t! y~(x)2dx < 1, there exists a Bk E]1/4 + e,3/4 - e[ such that
1h:(Bk)2 ::; 2 and

Analogously, we have

1h:(3/4 - e)2 :s; C1c: 1
-" y~(3/4+ c)2 ::; C2C

1
-'"1.

Ir 1/4- c < x< 1/4, then

Y~(X)2:s; 2~(1/4-c)2

+ [Z Q(x)yZ(x)2dx [Z Q(xy- 1dx ::; C3e1-,

Jl/4-t! J1/4-t:

and therefore,

1
1/4

y~(x)2dx ~ C3C
1-'"1.

1/4-e

So (9) is valid. Since we can assume that 1A(x) converge uniformly to Yi (x)
outside of c-neighbourhood of the points 1/4 and 3/4 we see that
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Then f 11. (x)2dx = I, 101

Q(XM(X)2dx ~ m•.

However, mt is the minimal possible value of the latter integral. Therefore,
Jot Q(x)y';(x)2dx = mt. Tbe function Yt satisfies the equation

(Q(X)Y~(X))II+ mtY~(x) = 0,

Yl (0) = 0, 1h (0) = 0, Yl (1) = 0, 1h (1) = 0. The function z(x) = Yl (x) +
Yl (1 - x) is also minimizing, if it does not vanish identically.

If z(x) ~ 0, then it is even and

Q(X)ZIl(X) + mlZ = C.

Using Lemma Ag we see that C = mlz(1/4) = mlz(3/4). Put u = Z - z(1/4).
Then

Q(x)u" + mtU = 0, u(1/4) = u(3/4) = o.
On the other hand, if v = Yo(x) - yo(1/4), then

Q(x)v" + mv = 0, v(1/4) = v(3/4) = 0

and v > 0 in (1/4,3/4). If u vanishes in (1/4,3/4), then by thc Stunn's
theorem, ml > m, what is impossible. If u does not vanish in (1/4,3/4), then
we obtain using Lemma Ag that

( ) /,
3/4 UV ( , ') Ix =3/4

ml - m -Qdx = U v - uv x=I/4 = 0
1/4

and ml = m.
If z(x) =0, then Yl is add and

Q(x)yr(x) + mlYl = A(x - 1/2),

where A is a constant. Applying Lemma Ag, we see that A = -4mlYl(1/4).
Putting u(x) = Yl{X) - A(x - 1/2)/ml, we obtain that

Qu" +mtU = O.

Moreover, u{1/4) = u{1/2) = u{3/4) = o. Applying onee again the Sturm's
theorem, we see that ml > m, what is impossible. D
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Lenuna 21. Let -1/2 <'0 < 0 and Q(x) be the function found in Corollary
19. Let

. J~ Q(x)y"(x)~dx
ml = Inf

J/E H3(O,I) f0
1V(x)2dx

Then ml = m, where m was indicated in Theorem 15. The minimal value is
attained on the function yo that is equal to f; z(t)dt.

Proof. Let 'H. be the space of the functions y which are absolutely continuous
in [0,1/4 - Er, ]1/4 + E, 3/4 - E[, ]3/4 + €, 1] far any E> 0 and such that

fa
1/4 /.3/4

y E ~(O, 1), Q(x)y'(x)2dx + Q(x)y'(x)2dx
o 1/4

+ {I Q(x)y'(x)2dx < 00, (I y(x)dx = 0, y(O) = y(l) = O.
J3/4 Jo

It is easy tü see that 11. is a Hilbert spare.
Let us show that für y E 1-1. there exists a sequence Xk, ~ 1/4 such that

Qyy'(Xk,) -. O. H it is not so, then there exists a constant c > 0 such that
Qyy'(x) ;::: c for 1/4 - € < X < 1/4. Then jyy'(x)l ;::: cl(1/4 - X)-2 and
therefore, ly(x)1 ~ c~(1/4 - X)-I, C2 > O. However, it contradicts to the
condition that y E L2 (O, 1). One can 'also find similar sequences converging to
1/4 + 0,3/4 - 0,3/4 + O.

The nonn in 'H. can be defined as

fa
1/4 /.3/4 11

lIyll~ = Q(x)y'(x)2dx + Q(x)y'(x)2dx + Q(x)y'(x)2dx.
o 1/4 3/4

Indeed, if lIYIl7t = 0, then y'(x) = 0 and y = C on each of the intervals (0,1/4),
(1/4,3/4) and (3/4, 1). Since y(O) = y(l) = 0 we see that y(x) = 0 in (0,1/4)
and (3/4,1). Since Jo1y(x)dx = 0, there exists a f) E (1/4,3/4) such that
y(f) = O' so that y(x) = 0 in (0,1).

Let us verify that
Ilyll~ ~ Cllyll1t·

.Indeed, by the Hardy inequality we have

(10)

{1/4 {1/4 {1/4
Jo y(x)2dx ~ 4 J

o
(x - 1/4)2y'(x)2dx ~ J

o
Q(x)y'(x)2dx,

{I y(x)2dx ~ 4 {I (x _ 3/4?Y'(X)2dx ~ { Q(x)y'(x)2dx.
J3/4 J3/4 J3/4 1
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If y vanishes at a point (FE (1/4,3/4), then the same inequalities are valid in
the intervals (1/4,0) and (0,3/4). Otherwise,

/.
3/4 101/4 /,1

ly(x)ldx ~ ly(x)ldx + ly(x)ldx
1/4 0 3/4

11/4 11
~ 1/2[( ly(x)12dx) 1/2 + ly(x) 12dx)1/2]

o 3/4

fa 1/4 /,1
~ VC/2[( Q(x) Iy'(x) 12dx)1/2 + Q(x) Iy'(x)12dx) 1/2]

o 3/4

and there is a point (J E (1/4,3/4) such that

fa
l/4 /,1

ly(0)1 2
~ 2C( Q(x) ly'(x) 12dx + Q(x)ly'(x)12dx).

o 3/4

Since

/.
3/4 /.3/4

lY(x) - y(O)12dx ~ C Q(x)y'(x)2dx,
1/4 1/4

we obtain that

/.
3~ folßly(x)12dx ~ Cl Q(x)y(x)2dx

1/4 0

and (10) is proved.
Let us verify that the operator A defined in 'HnJf2(O, 1) as Ay = -(Q(x)y')'

is closed in L2 (0, 1). Let Yk -+ y, AYk -+ v in L2(0, 1}. Tbe equation Au = v
has a solution u E Tl since v E L2(0, 1). It follows from the Riesz theorem and
(10).

Applying (10) we see that .

IIYk ~ ull~(o,l) ~ CllYk - ull'H = CIIA(Yk - u) II L2(O,I) = CllAYk - vll~(O,I)

and therefore, IIYk - ullL2(o,l) E 0 so that u = y.
On the other hand, if Au = 0, U E 'H, then (10) implies that 'U = O.

Therefore, the operator A is self-adjoint.
If ml < m, then there exists a function v E 'H such that (Av, v) < mev, v).

However, then there exists an eigen-function 'U such that

Au = AU, U E 'H, A < m.
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so that

So we have

(Q(x)u')' + AU = 0, (Q(x)z')' +mz = O.

Since the mean value of u vanishes, there exists Xo e]O, 1[ such that u(xo) = O.
We may assume that 0 < Xo ~ 1/2 and u(x) > 0 on ]O,xo[. Multiplying the
first equation by z, the second by y and integrating the difference over ]0, xo(,
we see that .

r~O

(Q(x)u'(x)z(x) - Q(x)u(x)z'(x))I::~o + (A - m) Ja u(x)z(x)dx = O.

If Xo > 1/4, we have used here the vanishing of the functions Qu'z and Quz'
at x = 1/4. On the other hand,

z(O) = u(O) = u(xo) = 0, u'(xo) < 0, z(xo) ;::: 0,

(XO
(A-r.n) Jo u(x)z(x)dx ~ O.

Since u(x)z(x) > 0 on ]0, xo[, we obtain that A ~ m in contradiction to our
assumption. Therefore, ml = m and the prüof is complete. 0

Prüof of Theorem 15. Let Q be an arbitrary positive function, satisfying
(6).

Let at first er ~ -1. Then by the Hölder inequality

l Q(X)ly"(XWdx 2: (llyll(XWdx)~/p(l Q(X)<>dx)'/<>,

where p = 2er/(a - 1),2 > P ;::: 1. Therefore, L[Q, y] ;::: G[Y]. Lemma A13
implies the existence of the function Yo e W:o(O, 1) satisfying the conditions

lIY~(xWdx= 1, G[y~l :S G[y']

for all y E W'lo(O,l) such that fd 1y"(x)IPdx = 1 and the value of m is also
indicated in Lemrria A13. Therefore, we have m = 'T11a = L[Q, yo], if Q(x) =
lygI2/(a-l). If p = 1, the optimal functions Q and y da not exist, but the value
of m was indicated in Corollary 17.

Now let a > -1/2, er =1= O. Then by Lemma A12 there exists a function
YQ(x) such that Q(x) = 11k:1 2/(a-l), so that L[Q, YQ] = G[y'Ql and therefore,
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Mo: ~ m. On the other hand, we have the equality L[Qo, Yo] = G[1k], if
Qo(x) = ly'o'(X)!2/(o:-1) and yo is equal to J; z(t)dt, where z is the function
indicated in Corollary 19. If -1/2 < 0: < 0 or 0 < a < 1, then by Lemmas 20
and 21 we have

m = inf Jo
1

QO(X)Y"(X)2dx = L[Q ].
YEH~ J01 y(x)2dx 0, Yo

The proof is complete. o

7. Appendix. Technical Lemmas

Lemma Al. Let p be a real number, p < 2/3, P =F O. Then the function

F(x, y) = X2/p y3-2/p + (1 - x)2/P(1 - Y)3-2/p , 0 S x S 1, 0 < Y S 1

has the minimal value Fmin = 1/4 at x = y = 1/2.

Proof. Remark that among two exponents 2/p and 3 - 2/p one is always
positive and Mother is negative. Let for definiteviness p < O. Then for y =1= 0,1

Hm F(x, y) = +00, lim F(x, y) = +00.
%-+0 %_1-0

If y = 0, then F(x, 0) = (1-x)2/p ~ 1 and for y = 1 we have F(x, 1) = x 2/p ~ 1.
Therefore, the values of F on the boundary of the square are ~ 1.

If x < 8, y < 8, then

F(x, y) ~ (1 - x)2/P(1 - y)3-2/p ~ (1 - X)2/p ~ (1 - 8)2/Pforp > 0,

F(x, y) ~ (1 - x)2/P(1 - y)3-2/p ~ (1 - y)3-2/P 2: (1 - 8)3-2/p forp < 0,

and therefore F(x, y) > 3/4, if 8 is small enough. On the other hand, we have
F(1/2, 1/2) = 1/4.

The same is true for a small neighbourhood of the points (0,1), (1,0) and
(1,1).

Therefore, the function F has an inner minimum point (xo, yo). We have
at this point

8F(xo
1
yo)/8x = 2/p[X~/P-1yg-2/p - (1 - xo)2/p-1(1 - YO)3-2/p] = 0;
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8F(xo, Yo)/8y = (3 - 2/p)[x~/pY6-2/p - (1 - xo)2/p(1 - YO)2-2/p]= O.

Then

2/1'-1 3-2/1' _ (1 )2/p-1 (1 )3-2/pxo Yo - - Xo - Yo )

x~/py~-2/P = (1 - xo)2/P(1 - YO)2-2/p.

Dividing tenn by tenn these equalities we obtain that

(11)

Yo/xo = (1 - xo)/(l - Yo),

Le. Xo = Yo. Then (1) implies that x5 = (1 - xo)2 and thus Xo = 1/2. 0

Lenuna A2. Let p be a negative number. Then for all functions y E Kp(O, h)
the following estimate is valid:

( {h Y'(X)Pdx)1/p ::; (~)1/P-3/2( (h y(x)2dx) 1/2.
Jo 4 Jo

Proof. Let at first h = 1, fd y'(x)Pdx = 1. Then f01/2 y(x)Pdx < 1. Let E
be the subset of points x in [0,1/2] such that y(x) > 41/ p and Jl. its measure.
Then 0 bviously

1 > 4(1/2 - J.L),

Le. J.L > 1/4. Therefore,

y(1/2) ~ t/2
y'(x)dx > ky'(x)dx > 41

/
p

-
1

.

Since y is increasing, we have y(x) > 4 1/p-1 for x > 1/2. Then

{l y(x)dx > {1 y(x)dx > 41/p-3/2,
Jo J1/2

Therefore,

(t y'(x)71dx) 1/71 ~ 43/ 2- 1/ 71t y(x)dx ~ 43/2- 1/ 71(t y2(x)dx)I/2.

Let h =f. 1 and y E Kp(O, h). Then the function z(x) = y(hx) E Kp(O, h)
and we ca.n apply the proved estimate to the function z,so that

(t i(x)Pdx)l/p :::; 43/ 2- 1/ P(t z2(x)dx)I/2.
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Thus (f y'(X)Pdx)l/P ~ (4/h)3/2-1/p(f y2(x)dx) 1/2

and the proof is complete. 0

Lemma A3. Let p be a real number, 0 < p < 2/3. Then there exists a
constant C = C(P) independent 0/ y and h such that

(fY'(X)pdx)I/P < C(P)h1/P- 3/2([ y(x)2dx) 1/2 , y E Kp(O, h).

Proof. Let at first h = 1, Jo1y'(x)Pdx = 1. Then there is a point t 1 E (0,1)
such that

l t
1 11y'(x)Pdx = y'(x)Pdx = 1/2.

o tl

By the Hölder inequality we have

Therefore,
1/2 ~ y(t1)P . t~-P ~ y(tdP

an<;! y(x) ;::: 2-1/ p for x > t 1. By the Hölder inequality

1/2 = {I y'(x)Py2P-2y2-2pdx
Jt1

< ( {I y'(x)y(x)2-'J/pdx)P( {I y(x)2dx)I-P::; Cp( {I y(x)2dx)1-p,
Jtl Jt1 Ja

where Cp = p2(2-3p)/P /(2 - 3p). Thus for p < 2/3 we have

f y(x)2dx ~ (2Cp )I/(p-l),

that gives the result with C = (2Cp )I/(I-p).

If Jo1y'(x)Pdx = I # 1, then one can take instead of the function y(x) the
function Y(X)I-l/P~ If h # 1, one can apply the obtained inequality to the
function y(xh). 0

Remark that the constants in the estimates in Lemmas A2 and A3 are not
the best possible. The exact constants are indicated in Lemmas A5 and A6
below.
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Lenuna A4. Let p < 2/3~ p =f 0, 0 < r ~ 1. Let

ml = sup sup G[y],
h€(O,r) lIEKp(O,h,r)

where
(J; Jy'{x)IPdx)2/P

G[y] = J; y{x)2dx .

Then there exists a constant Cl independent 0/ r such that ml ~ Clr 2/ p
-

3
.

Proof. Let at first r = 1. By Lemmas A2 and A3 we have for y E Kp{O, h, r)
the inequalities

h3- 2/P([ ly'(x)IPdx)2/P ~ Ct y(x)2dx,

(1 - h)3-2/P(lly'(x)IPdx)2/P ~ Cl y(x)2dx,

where the value of C, corresponding to h = 1, was found in Lemmas 1 and 2.
Let f~ y'{x)Pdx = 1 and f; y'{x)Pdx = a. Then

a2/Ph3-2/p + (1 - a)2/P(1 - h)3-2/p ~ C 101
y(x)2dx.

By Lemma Al the function F{a, h) = a2/Ph3-2/p +(1- a)2/P(1-:- h)3-2/p defined
in the square 0 < a < 1, 0 < h < 1 has the minimal value 1/4 at the point
a = h = 1/2. Therefore,

c f y(x?dx ~ 1/4,

Le. G[y] ~ 4C for all admissible y. In order to obtain the result for an arbitrary
r it suffices to substitute the function y(x) by y(xr). 0

Lemma A5. Let 0 < p < 2/3 and m = sUPll€Kp(O,h) G[y]. Then

m -:.. (2 - 2P)2/P{~ _ 3)h2/P- 3( {OO dt )2
2 - 3p p Jo {I + {l)l/P

and there exists a /unction Yo(x) E Kp(O, h) such that G[Yo] = m. Besides, as
x ~ h we have
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Praaf. Let at first h = 1 and {Yk} be such a sequence of functions of Kp(O, 1)
that fol 1A(x)Pdx = 1 and G[Yk] -+ m.

Let us show that we can assume all functions YJc be smooth. Let Y E

Kp(O, 1). Let us define y on thc whale line putting Yl(X) = °far x < 0,
Yl (x) = y(x) for 0 < x < 1 - c and Yl (x) = y(l - e) for x > 1 - c. Obviou~ly

fol!Yl(X) - y(x)1 2dx -+ 0 as e -+ 0 and fll_e 1y'(x)]Pdx -+ 0, as c -+ O. It allows
to assmne that YJc are bounded functions.

Let now y E Kp (O, l) end 0 ~ y(x) ~ C. Then folly'(x)ldx = y(h) < c.
Put Zk(X) = Yk(X) - Yk(O), where Yk is the averaging of y with a positive kernel .
such that

Yk(X) = k JK(k(x - t»y(t)dt, JK(t)dt = 1, K(t) ~ 0, K E q:o(-1,1).

Remark that IYk(O)1 ~ Dk -+ 0 as k -+ 00, so that Zk converge to y(x) unifarmly,
4(x) 2:: 0 and

fo11zk(x) - y(xWdx --+ 0, t Iz:.(x) - y'(x)ldx --+ O.

We have f Iz~(x) - y'(xWdx ~ (f Iz:.(x) - y'(x)ldx)P.

The elementary inequality

laP - lfl ::; la - blP,

valid far all a, b such that a ~ 0, b ~ 0, implies that fol 4(x)Pdx -+ fol y'(x)Pdx.
This allows us to assume that all Yk are smooth functions.

We will call a function y convex, if its derivative is decreasing, and concave,
if its derivative is increa.sing.

Let Us show that if YJc is convex in an interval (Xl, X2) I where 0 ~ Xl ~

X2 ~ 1, then it is possible to substitute it by the linear function

Z(X) = Yk(Xt} + '"'f(x - Xl), where "'Y = (yJc(X2) - YJc(Xt}J/(X2 - Xl)

and the value of G[z] is bigger than G[y.J
Indeed we have Yk(Xl) = Z(Xl), Y/C(X2) = Z(X2) and

1%1 Yk(X)2dx ~ 1%1 z(x)2dx;
%1 %1
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{%2 lhc (x)Pdx::; ( {X
2
y~(x)dx)P( (X2 dx)I-P

lXI lXI lXI

1
x2

. = r"(X2 - XI) = z'(x)Pdx.
Xl

If Z coincides with Yk outside the interval (Xl, X2), then G[z] ~ G[Yk].
We can do the same for all other intervals where Yk is convex. As the resUlt

we shall obtain the function Zk that can be described in the following way.
Consider the set of points (x, y) such that 0 < x < I and Y > Yk(X), and take
thc convex huH of this set. The lower boundary of the huB serves as the graph
of the function Zk. Let us show that ZJc E Cl (0,1). Indeed, if a point x belongs
to an interval of the straight line, then it is obvious that Zk is smooth at this
point. The same is true in the case when the point (x, Zk(X)) belongs to apart
of thc graph of the function Yk. If ZIc is linear on one side of X and coincides
with Yk on thc other side, then Zk is regular at x since its graph is lying on one
side of the straight line, obtaining by the continuation of the linear function.
At last, if the point (X,Zk(X)) is a limit point for a sequence of such points,
then it is also a limit point for a sequence of points belonging to the graph of
Yk and the derivative 4(x) exists.

Therefore, if one changes every function Yk by a concave function Zle in thc
indicated way, then the sequence of new functions will be maximizing. It allows
us to consider as maximizing thc sequences of increasing concave functions, Le.
to suppose that the functions YIe(x) and their derivatives UIc(X) are increasing.

For large k we have

fo' Yk(X)2dx ~ rn- l + l.

Let c > 0 be small enough. There is a point Ble E (I-c, 1) such that IYk(B.JI2
::;

(m-I +1)e- I . 8ince the functions Yk are monotone, they are unifonnly bouncled
for 0 ::; x ::; 1 - e.

AnalogouslYt we can deduce from the equality Jol y'Jc(x)Pdx = 1 that thc
sequence {~(x)} is uniformly bounded in [0,1 - e]. By the Arzela theorem
one can choose the unifonnly converging subsequence {Yn/l:(x)}, and by Helly
theorem one can suppose that the subsequence {Unk (X)} converges everywhere
in [0,1 - e]. Using the diagonalization, one can find a subsequence converging
to a function yo E Kp(O, h) such that the sequence of the first derivatives
converges almost everywhere in [0,1) and Yo satisfies the Lipschitz condition
on the interval [0, 1 - e] for any e > O. Using Lemma A3 one can conclude
that
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({I y~(X)Pdx)I/P:::;C€I/P-3/2,
JI-4

where Cis independent of k and since l/p - 3/2 > 0, we obtain that

l1lo(x)Pdx = 1.

Besides, we have

lYo(X)2dx :::; rn-I.

Since this integral cannot be less than rn-I, we see that Jol Yo(x)2dx = rn-I.
If Yb(xo) > 0, then ~(x) > 0, Yo(x) > 0 for 811 x > xo. Let us assume at

first that 'lfo(x) > 0 for x > 0. Then one can consider the values of G[yo + tzJ
for any z E HJ(O, 1). These values are minimal for t = °and hence

~G[Yo + tz) = 0, if t = O.

It gives the Euler-Lagrange equation of the fonn

so that

( 1) tp-l 11 '0p - Yo Yo + myoyo =

or

Y6 - mlY5 = C,

where ml = -mp/[2(p - l)J > O. Integrating this equality over (0, 1), we
obtain that

.0= 1- ffilm-l = 1 +p/2(P-1) > O.

Therefore,
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{OO ~_d_z ----:-- _ 1
Jo (C + mlz2)1/P - .

Let z = {C/mt}1/2t so that

We have for any cp E Kp(O, 1) the equality

f «y~)p-l(X)r,o'(x) - myo(x)r,o(x))dx = O.

If cp(x) = 1 for 1 - c < x < 1, then the integrating by parts gives the equality

(y~)P-l(l - e)r,o(l - e) - m f Yo(x)r,o(x)dx = O.

Tending c to zero, we obtain that Yo(l) = 00. The equality yg' - mlY5 = C
yields that 1At(1) = 00, tao.

Therefore

10
00 dt / (2 - 3p)l/p-l/2pl/2ml/2__~ = Cl/P-l/2ml 2 = -:--__

o (1 + t 2 )1/p 1 (2 - 2p)1/P

and therefore

m1/ 2 _ (2 - 2p)1/p {OO dt
- pl/2(2 - 3p)1/P-l/2 Jo (I + t2)1/p'

If Yo(x) = 0 for 0 < x < Xo and 1Io(x) > 0 for x > XOI then m = C l (l ­
XO)1/P-3/2, where Cl does not depend on Xo and therefore the optimal value oE
Xo is equal to O. Remark that

/.

00 dz
----~=l-x

110 (C + mlz2) l/p .

Therefore for big values of 110 we have

y~-2/P(1 + 0(1)) = Cl (l - x),

that implies that yo(x) = A(l - x)'"Y[l + 0(1)] with 1 = p/(P - 2) < O.
In order to find the value m for an arbitrary h > 0 it suffices to substutute

in the obtained estimate the function yo(xh). 0

Lenuna A6. Let p < 0 and m = SUP1tEKp(O,h) G[y]. Then
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m = ! (2 - 2P)'Jjp(3 _ ~)h2jp-3B(I/2, 1_ 1/p)2
4 2 - 3p p

and there exists a function Yo E Kp(O, h) such that G[yo] = m. Moreover, as
x ----7 h we have

Yo(x) = yo(h) + el(h - X)pjCP-I) [1 + 0(1)], 1k(x) = C2(h - X)lj(P-I)[1 + 0(1)].

Proof. Let at first h = 1 and {YJ,J be such a sequence of functions in K that
Jol 1h:(x)Pdx = 1 and G[Yk] ----7 m. In virtue of Lemma A2 the value of m is
finite and positive. .

Let us show that we can assume all functions Yle be smooth. Let y E
Kp(O, 1). Let us define y on the whole line putting YI(X) = °for x < 0,
YI(X) = y(x) for 0 < x < 1 - E and YI(X) = y(1 - E) + e:-1j2p(x - 1 + c)
for x > 1 - c, and put Uk(X) = YI(X) + ckX, where ck ----7 0 as k ----7 00.

Obviously fd IUk(x)-y(x)12dx ----70 and by Lebesgue theorem, follu~(x)IPdx ~

flly'(x)IPdx. So we can assume that ?hex) > Eie > O.
Let now Y E Kp(O, 1) and y'(x) > e > O. Put Zk(X) = Yk(X) - Yh(O), where

Yk is the averaging of Y with a positive kernel so that

Yk(X) = k JK(k(x - t»)Y(t)dt, JK(t)dt = 1, K(t) 2: 0, K E Gg"(-1,1).

Remark that IYk(O)1 ~ Öle ~ 0 as k ----7 00 so that Zk converge to y(x) unifonnly
and

llzk(X) - y(xWdx -+ 0, ll4(x) - y'(x)ldx -+ 0.

Therefore, a subsequence ~k converges to y'(x) almost everywhere and ~k (x)P
converges to y'(x)P almost everywhere. Since 0 ~ y(x) ~ C for 0 < x ~ 1
and y'(x) > 0, we see that flly'(x)jdx ~ C. Since l~klP ~ sv, we have by the
Lebesgue theorem f~ ~k (x)Pdx ----7 fl y'(x)Pdx. This allows us to assume that
all Yk are smooth functions.

If Yk is convex in an interval (Xl, X2), where 0 ::5 Xl :5 X2 ::5 1, then it is
possible to substitute it by the linear function

so that the value of the functional G will increase.
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Then Yk(Xl) = z(xd, Yk(X2) = Z(X2) and

l
x2 lx2Yk(X)2dx 2: z(x)2dx.

%1 %1

On the other hand, by the Hölder inequality

and therefore,

[
2 1k(x)Pdx ~ ([:I y~(x)dx)P(X2 _ Xl)l-P

%1 Xl

= [Yk(X2) - Yk(xd)P(X2 - Xl)l-P.

Since

we see that G[z] 2: G[Yk], if z coincides with Yk outside the interval (XI,X2).
We ca.n do the same for all other intervals where Yk is convex. As the result

we shall obtain the function Zk that can be described in thc following way.
Consider the set of points (x, y) such that 0 < x < 1 and Y > Yk(X), and take
the convex hull of this set. The lower boundary of the huB serves as the graph
of the function Zk. Let us show that Zk E GI(O, 1). Indeed, if a point x belongs
to an interval of the straight line, then it is obvious that Zk is smooth at this
point. The same is true in the case when the point (x, Zk(X» belongs to apart
of the graph of the function Yk. Ir ZJc is linear on one side of x and coincides
with YJc on the other side, then Zk is regular at x since its graph is lying on one
side of the straight line, obtaining by thc continuation of the linear function.
At last, if the point (x, zJc(x» is a limit point for a sequence of such points,
then it is also a limit point for a sequence of points belonging to the graph of
Yk and the derivative 4(x) exists.

Therefore, if one changes every function YJc by a concave function ZJc in the
indicated way, then the sequence of these new functions ZJc will be maximiz­
ing, tao. It allows us to consicler the maximizing sequence as a sequence of
monotone concave functions, Le. to suppose that the functions YJc(x) and their
derivatives 1A(x) are increasing.
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For large k we have

f YIc(X)2dx :s rn-I + l.

Let e > 0 be small enough. There is a point Ble E (l-e, 1) such that IYk(BIe )!2- ~
(m- 1+l)e- 1

• Since the functions Y1c are monotone, they are unifonnly bounded
for 0 ~ x ~ 1 - e. It yields

[1-1: Y~(X)dx ~ C
JI-2E.

with a constant C independent of k. Tberefore, there exists a Öle such that
1 - 2e < Öle < 1 - e and ~(BIe) ~ C/e. Therefore the sequence {!h(x)} is
uniformly bounded in [0, 1- 26]. Since J~ ~ (x)Pdx = 1 there exists a Bk E (0 I e)
such that 11k (x)P(9'1c) I ~ l/e and therefore l~(x)Pl ~ l/e for e ~ x < 1 - 2e.

By thc Arzela theorem one can choose the uniformly in [c, 1-26] converging
subsequence {Ynk (X) } I and by Helly theorem one can suppose that the sequence
{Y~k (x)} oonverges almost everywhere in [e, 1 - 26]. Using the diagonalization,
one can find a subsequence oonverging in (0,1) to a function Yo E Kp(O, 1) such
that

1p 1p
Ynk ~ Yo, Ynk --+ Yo

everywhere in (0,1). By the Fatou theorem we have

f yo(x)2dx :s rn-I, f y~(x)Pdx :s 1.

Therefore,

(f 1Io(x)Pdxt p

~ 1,

so that G[yo] 2:: m. However, m is thc maximal possible value of G, so that
Jo1Yo(x)2dx = rn-I and Joll!cJ(X)pd,x = 1.

The Euler-Lagrange equation has thc form

so that
(p 1) fp--l " '0- Yo Yo + myoyo =
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or

fp 2 - 0Yo +mlYo - ,

where ml = mp/[2(p - l)J > O. Integrating this equality over (0,1), we obtain
that

C = 1 + mlm-l = 1 + p/2(P - 1) > O.

Therefore,

rYo dz
Jo (C - mlz2)I/p = x.

Repeating the same arguments 88 in the proof of the preceding Lemma, we
obtain that ]JÖ(1) = 00. Let M = maxyo(x) = yo(1). Then M 2

ml = C, Le.

and

10
M dz
----~-1

o (C - mlz2)I/p - .

Let z = (C/mdl/2t so that

(1 dt = C I/P-l/2
m

l/2 = (2 - 3p)I/p-I/2(_pm) 1/2
Jo (1 - t2)I/P I (2 _ 2p)l/p ,

and therefore

1/2 _ (2 - 2p)l/p ~ _ 2-
m - 2(2 _ 3p)I/P-l/2(_p)1/2 B (2' 1 p).

Since
(M dz
J

lIO
(0 _ fflIZ2)1/p = 1 - x,

we can see that as x ~ 1 that Yo(x) = M + Cl (x - 1)"([1 + 0(1)], where
,=p/(P-l).

In order to find the value m for any h > 0 it suffices to substutute in the
obtained estimate the function yo(xh). 0

Lemma A7. Let p < 2/3, P #- 0, 0 < r ~ 1 and ml = sUPllEKp(O,h,r) G[y].
Then there is a function Yo E Kp(O, h, r) such that Yo(x) = yo(r - x), G[Yo] =
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ml and ml = 4mr2
/ P-

3
1 where the value 0/ m was indicated in Lemmas A4

and A6 for h = l.

Proof. Let at first r = 1. The existence of the extremal function for any fixed
h E [0,1] follows from Lemmas A4 and Aß. Furthennore, we can suppose that
y(x) is monotone and concave in [0, h] and in [h,l].

By Lemmas A4 and A6 we have for y E Kp(O, h, 1) the inequalities

h3
-

2
/ P(f ly'(x)IPdx)2/p :5= m l' y(x)2dx,

(1 - h)3-2/P({ 1y'(x)IPdx)2/p :5= m { y(x)2dx,

where the value of m, corresponding to h = 1, was found in Lemmas A4 and
A6. Let fd 1y'(x)IPdx = 1 and foh 1y'(x)IPdx = a. Then

a2/Ph3-2/p + (1 - a)2/P(1 - h)3-2/p :5= m 101
y(x)2dx.

By Lemma Al the function F(a, h) = a2/ Ph3-'J/p +(1- a)2/P(1- h)3-2/P defined
in the square 0 < a < 1, 0 < h < 1 has the minimal value 1/4 at the point
a = h = 1/2. Therefore,

l y(x)2dx ~. 114m,

Le. G[y] < 4m for all admissible y. On the other hand, if a = h = 1/2 and
if the function y coincides on (0,1/2) with the function Yo, found in Lemmas
31 and A6 for h = 1/2, and is odd with respect to the point x = 1/2, then
G[y] = 4m.

In order to obtain the r~ult for an arbitrary r it suffices to substitute the
function.y(x) by y(xr). 0

Lemma A8. Let p(x) be a smooth positive function on [0, d[1 such th.at

limp(x)(x - d)-~ = a, p'(x) = O«x - d)~-l),
:;r:-d

where 1 < 1 <2. Let y(x) be a solution 0/ the equation

(P(x)y')' +my(x) = 0, 0 < x < d,
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such that t p(x)y'(x?dx < 00.

Then
lim p(x)y(x)yJ(x) = O.
x-d

Moreover, we have as x -+ d-

y(x) = 1 + 0(1)),

y(x) = (d - X)l-'1(C + 0(1)))

if 1 < "y < 2 and
y(x) = (d - x)P(C + 0(1)))

yJ(x) = (d - X)p-1 (pe + 0(1)),

if"Y = 2 with p > -1/2.

Proof. Put I(y] = J; p(x)y' (x)2dx.
If 1 < "Y < 2, then by solving the Cauchy problem we can find two linearly

independent solutions y(x) and z(x) such that as x --t d-

m
z(x) = (d - x) 1-'1 + C2(d - X)3-21' + ... , C2 = a(3 _ 2"Y)(2 _ "Y)"

However z"(x) = (d-x)14(m/a+o(1)) and the integral I(z] = J; Q(x)z"(x)2dx
is divergent. So the solution with a finite value of I is proportional to y and
pyyJ vanishes at x = d.

If "Y = 2) the corresponding solutions have the form

y(x) = (d - x) ltl(l + 0(1))) z(x) = (d - x)It~(l + 0(1)),

where "'j are the different roots of the -characteristic equation

so that

Sp = -~ ± J~-m.
, 2 4 a
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If 4m > a, then the both roots are complex and Re Itl~ = -4. The integrals
1[y] and 1[z] are divergent. If 4m < a, then the both roots are real, the integral
1[y] is finite hut 1[z] is divergent. We have pyy'(d) = O.

At last, if Kl = K2, Le. a = 4m, the solutions have the fonn

y(x) = (d - X)-1/2[1 + 0(1)], z(x) = (d - X)-1/2ln(d - x)[l + 0(1)],

so that the both integrals 1[y] and 1[z] are divergent.
Therefore, if '"( = 2 and I{y] is finite then 4m < a and the function pyy'

vanishes at x = d. D.

Lemma A9. Let Q(x) be a smooth positive function on [0, d[, such that

lim Q(x)(d - x)-r = a # 0,
%-d

where 1 < , ~ 2. Let y(x) be a solution of the equation

Q(x)y"(x) + my(x) = 0, 0 < x < d,

such that t Q(x)y"(x)2dx < 00.

Then
lim y(x) = 0, tim y(x)y'(x) = O.
::t-d ::t-d

Moreover, we have as x ~ d-

y(x) = C[d - x + cl(d - x)3-r(1 + 0(1))],

y'(x) = C[-l + cl(3 - ,)(d - x)2-r(1 + 0(1))],

y"(x) = CCl(3 - ')')(2 -'"()(d - x)l-r(l + 0(1))

if 1 < 1 < 2 and
y(x) = (d - x)P(C + 0(1))],

y'(x) = (d - X)p-l(pC + 0(1)"))

y"(x) = (d - X)p-2(p(p - 1)0 +0(1)),

if '"( = 2 with p > 1/2.

Proof. Put I[y] = J; Q(x)y/l(x)2dx.
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If 1 < , < 2, then by solving the Calirny problem we can find two linearly
independent solutions y(x) and z(x) surn that as x ~ d-

m
y(x)=d-X+Cl(d-x)3-r+ , Cl= a(3-,)(2-,);

z(x) = 1 + c2(d - x?-"Y + C2 = (2 ~( )'a -, 1-,

However zll(x) = (d-x)-'"Y(m/a+o(l)) and the integral I[z] = ~Q(x)z"(x)2dx
is divergent. So the solution with a finite value of I is proportional to y and
vanishes at x = d.

If, = 2, the corresponding solutions have the fonn

y(x) = (d - x),,"l(l + 0(1)), z(x) = (d - x),,"2(1 + 0(1)),

where "-j are the different roots of the chaxacteristic equation

aK:(K - 1) + m = 0

so that

KP=~±J~_m.
, 2 4 a

If 4m > a, then the bath roots are complex and Re "-1,2 = !. Tbe integrals I[y]
and I[z] are divergent. If 4m < a, then the both roots are real, the integral
I[y] is finite but I[z] is divergent. We have y(d) = O.

At last, if "-I = "-2, Le. a = 4m, the solutions have the fann

y(x) = (d - x) 1/2[1 + 0(1)], z(x) = (d - X)I/2ln(d - x)[1 + 0(1)],

so that the hoth integrals I[y] and I[z] are divergent.
Therefore, if, = 2 and I[y] is finite then 4m < a and the solution vanishes

at x = d. D.

Lemma AIO. Ify E Hd(O, 1), then

1 falmax y(X)2 ~ -4 y'(x)2dx.
xE(O,l) 0

The equality is attained on the function yo(x) = 1/2 - Ix - 1/21.
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Proof. Without the lass of generality we can assume that y(x) ~ 0 for 0 <
x < 1. Let M =max Y(X)2 = y(b)2. Then by the Hölder inequality

y(W ~ bl y'(x)2dx, y(W ~ (1 - b) [ y'(x)2dx,

hence

(~+ 1 ~ b)Y(b)2 ~ (1- b) f y'(x)2dx.

Since l/b + 1/(1 - b) ;::: 4 für 0 < b < I, the proof is complete. o·

Lenuna All. Let Xl, ... , Xk be positive numbers and Xl +... +Xk = 1. Then
i/ 0 :::; , :::; 1 the inequality

holds.
// I 2: 1 or I < 0, then

i.e. the extremum 0/ the function x7 + ... + Xk is attained at the point Xl =

... = Xk = l/k.

Proof. The prüüf is rather elementary and we leave it to the reader. 0

Lemma A12. Let a function I be summable on (0,1), lex) ~ o. Then there
are two points a and b such that 0 < a < b < 1 and a function y E CI(O, 1]
such that y'(x) is absolutely continuous,

y(O) = y(l) = y'(O) = y'(l) = 0,

y"(x) = lex) ifO < x< a orb < x< 1 andy"(x) = -/(x) ifa < x< b.

Proof. Let at first fex) > o. Put

F(x) = (1: f(t)dt, G(x) = rx F(t)dt. Ja Ja
and

{

F(x), if 0 < x < a,
y(x) = 2F(a) - F(x), if a < x < b,

F(x) - F(l), if b < x < I,
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the values of a and b will "be indicated in what follows. This function is con­
tinuous at the point x = a and at the point x = b, if

2F(a) + F(l) = 2F(b).

Let

{

G(x) , if 0 < x < a,
y(x) = 2F(a)(x - a) - G(x) + 2G(a), if a < x < b,

G(x) - G(l) - (x - l)F(l), if b < x < l.

This function is continuous at the points x = a and x = b, if

(12)

2F(a)(b - a) - G(b) + 2G(a) = G(b) - G(l) - (b - l)F(l). (13)

Let
H(x) = xF(x) - G(x).

Then
H'(x) = x/ex) ;:: 0, H(O) = 0,

and the conditions (11), (12) imply that

2H(a) + H(l) = 2H(b).

The points a and b can be found in the following way. Put

K(x) = F(x) - F(l)H(x)/H(l) = H(x)[~~:~ - ~~~~l.

Since
(F(x)/H(x»' = -F'(x)G(x)/H(x)'J,

we see that K(x) 2:: 0, K(O) = 0, K(l) = 0 and

K(a) - K(b) = -1/2K(1) = O.

Let the function p(t) be defined by the equality

F(p(t» - 1/2F(1) = F(t).

Then p(O) = ~, where eis such a point that F(€) = F(1)/2, 0 < ~ < 1 and
p(~) = 1. The function

Set) = K(t) - K(p(t»
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is such that 8(0) = K(O) - K(~) ~ 0 and S(~) = K(~) - K(l) > o. Therefore,
there is a point a E (o,~) such that S(a) = O. If we put b = p(a), then we
obtain (4) and the equality K(a) = K(b) will be satisfied also.

If f(x) 2: 0, then we can construct the function ~ corresponding to the
function I(x) + c and pass to limit, what is easy. 0

Lenuna A13. Let p > 1 and K be the dass 01 functions y 01 the space
W~,o(O, 1) such that laI y(x)dx = o. Let

m = inf G[y],
yEK

where

Then

m = 4(2P - 2) 2/p (3 - ~)B(~, 1- ~)2,
3p - 2 P 2 P

where Bisthe Euler lunction, and there exists a function Yo E K such that
G[yo] = m.

Proof. It is evident that the number m is finite and is not greater than, for
example, G[yI] , where Yl (x) = 1/4 - Ix - 1/41 for x E (0, 1/2) and Yl (x) =
Ix - 3/41 - 1/4 for x E (1/2,1).

Let {Yk} be a minimizing sequence such that

l Yk(X)2dx = 1,l Yk(x)dx = 0 and f l1/,.{x)IPdx -> mP
/

2
.

This sequence is compact in ~(O, 1) and weakly compact in W~,o(O, 1) so that
there is a subsequence {Ynk} converging in ~(O, 1) to yo(x) and

l Yo(x)2dx = 1, f lyb(x)IPdx::; m!'/2, f Yo(x)dx = O.

Since mP/ 2 is the minimal value of integrals Jolly'(x)IPdx, we have in fact
the equality: J~ 11k(x)IPdx = mP/

2
, and the function yo is extremal. Since

the integral of Yo vanishes, this function has at least one zero in (0,1). We
can reconstruct the function Yo without changing the values of the integrals
I~ Yo(x)2dx, 101 'Y'o(x)2dx and Jol Yo(x)dx in such a way that it will be positive
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on (0, Xo) and nega.tive on (Xo, 1), where 0 < Xo < 1. To do it we are shifting
all intervals on which y(x) > 0 to left not changing the values of y on them.

The functional G[y] is differentiable since p > 1 and therefore the function
Yo satisfies the Euler-Lagrange equation

(11kIP-2y~)'+ mP/
2yo + ml = 0, Yo(O) = Uo(l) = 0,

which implies that

Therefore,

(p - l)ly~IP /p + mP/2Y5/2 + ml1/O = C.

Integrating this equality over (0,1), we obtain that C = mP/ 2 [(p - l)/p + 1/2].
Moreover,

y~(O) = -y~(xo) = y~(l) = (Cp/(P - l))l/P

and Yo(O) = Yo(Xo) = Yo(l) = O. Therefore, Yo(X) = Yo(xo - x) for 0 ::; x ::; Xo
and Yo(x) = Yo(l + Xo - x). Now put

z(x) = m'P/2yo + ffil'

Then
(1z'\P-2z')' + mP{P-l)/2z = O.

All solutions of this equation are oscillating periodie functions, with the dis­
tance between zeroes, equal to the half of the period, and odd with respect to
each its zero. Therefore, its mean value in the period is equal to zero. Since

z(O) = z(l), z'(O) = z'(l),

the mean value of z on (0,1) is equal to zero. However, then we have

ml = l z(x)dx - mp
/
2 l1io(X)dx = O.

Therefore, Xo = 1/2 and Yo(x) = -Yo(l - x). The maximal value M of Yo
is defined from the equation
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so that

M 2 = 3- 2/p.

Integrating we obtain that for 0 ::; x ::; 1/4

po dz xm1/ 2

Ja [3p - 2 - pz2J1/P = [2(P - l)J1/P'

In particular, Yo(1/4) = M and

{M dz m 1/ 2

Ja [3p - 2 - pZ2P/p = 4[2(P - l)J1/p'

Changing variable z to t(3 - 2/p)1/2, we see that

{1 dt m 1
/
2 (3P - 2) 1/P ( p ) 1/2

Ja (1 - t2)1/p = -4- 2p - 2 3p - 2 I

or

m 1/ 2 = 4(2P- 2) l/p (3 _ ~) 1/2 {I dt .
3p - 2 P Ja (1 - t2 )1/p

Remark that
{I dt 1 1 1

Ja (1 _ t2)1/p = 2B (2' 1 - p)'
where B is the Euler function. Thus

m1/2 = 2(2p - 2)1/P(3 _ ~)1/2B(~, 1- ~).
3p - 2 p 2 p

On the opther hand

{M dz m 1/ 2

JlIO [3p - 2 - pz2]1/p = (x - 1/4) [2(P - 1))1/p'

so that ]Jo(x) = M + A(1/4 - x)'Y[l +0(1)] as x ~ 1/4 - 0 with 1 = p/(P -1).
o
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Then

Lemma A14. Let -1/2'< a < 1, a f °and yo(x) be the function found in
Lemma A7. Let Po(x) = IYÖ(X) 12/(0-1). Let

'nf fo1 p(x)y'(x)2dx
fil = JlEkJ(O,I) fo1y(x)'Jdx .

ml = (~=~:) 2/p(3 _ ~W/P-3B(1/2, 1 - 1/p)2.

The minimal value is attained on the function Yo.

Proof. Consider a minimizing sequence Yk(X) such that Ji Yk(X)2dx = l.

The integrals J01
/
2

-
4 Yk(X)2dx and Jl/2+« 'Y'Jc(x)2dx are bounded and one can

choose a subsequence converging almost everywhere in (0,1/2 - 15) and (1/2 +
c, I), in L'J(O, l) and weakly in Bl(O, 1/2 - c) and H 1(1/2 + c, 1). Using the
diagonalization, one can find a subsequence converging almost everywhere in
(0, 1) to Yl (x). Then

f Yl(X)2dx = 1, f p(x)y~(x)2dx < ml·

However, ml is the minimal possible value of the latter integral. Therefore,
fo1 p(x)1A (x)2dx = mt. The function Yl satisfies the equation

(P(X)Yl (x)')' + mlYl (x) = 0,

Yl (0) = 0, Yl (1) = O. The function z(x) = Yl (x) +Yl(l- x) is also minimizing,
if it does not vanish identically.

If z(x) 1= 0, then it is even and

(p(x)z')'(x) + filZ = O.

On the other hand,

(P(x)!ltiy + mYo = 0, Yo(O) = Yo(l) = 0

and Yo > 0 in (0,1). We have by Lemma AB

(m - ml)t zYodx = p(x)(z'(x)Yo(x) - z(x)1Io(x))l~ = 0

and ml = ffi.
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If z(x) =0, then Yl is odd and

(P(X)1h (x))' + mlYl = O.

We have Yl (0) = Yl (1/2) = O. Let Xo be the first zero of Yl, so that Yl (xo) =
O,Yl(X) > 0 for 0 < x < Xo. We have by Lemma AB

Therefore, ml = m and Yl = Yo.

71

o



I,

REFERENCES

[1] J.L.Lagrange, Sur La figure des colonnes, Oeuvres de Lagrange, Paris:
Gauthier-Villars, 1867.
[2] J.B.Keller, The shape of the strongest column, Arch. Rational Mech. Anal.,
5, 1960, pp.275-285.
[3] J.B.Keller, LTadjbakhsh, Strongest columns and isoperimetrie inequalities
for eigenvalues, Journal 0/ Applied Mech.,29, 1962, pp.159-164.
[4] N.Olhoff, S.Rasmussen, On single and bimodal optimum buckling loads 'of
clamped coluIIllls, Ing. Journal Solids Struct.,13, 1977, pp. 605-614.
[5] A.S.Bratus, A.P.Seiranian, Bimodal solutions in eigenvalue optimization
problems, Prikl. Mat. Mech. USSR, 47, 1983, pp. 451-457.
[6] A.P. Seiranian, On a problem of Lagrange, Inzh. Zh., Mehanika Tverrlogo
Tela, 19, 1984, pp. 101-11I.
[7] A.S.Bratus, Multiple eigenvalues in problems of optimizing, The spectral
properties of systems with a finite number of degrees of freedom. USSR Compt.
Math. Math. Phys., 26, 1986, pp.1-7.
[8] S.J.Cox, The shape of the ideal column, The Mathematical Intelligencer,
14, 1992, pp. 16-24.
[9] S.J.Cox, M.L.Overton, On the optimal design of columns against buckling,
SIAM J. Math. Anal., 23, 1992, pp. 287-325.
[10] Yu.V. Egorov, V.A. Kondratiev, On estimates of the fugt eigenvalue of the
Stunn-Liouville problem, Russian Math. SUnJeys, 39 (2),1984, pp. 151-152.
[11] Yu.V. Egorov, V.A. Kondratiev, On an estimate for the first eigenvalue of
the Sturm-Liouville operator, Vestnik Mosk. un-ta, Mathem., Mechanics, 6,
1990, pp. 75-78.
[12] Yu.V. Egorov, V.A.Kondratiev, On an estimate for the principal eigenvalue
of the Sturm-Liouville operator, Vestnik Mosk. un-ta, Mathem., Mechanics,
6, 1991, pp. 5-11

72


