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Abstract

In some Sturm-Liouville problems the estimates of the first eigen-
values are obtained. In many cases the sharp values are found and the
existence of the optimal solution is proved. For the classical Lagrange
problem the extremal values of the Lagrange functional are indicated.
The functions realizing these extremal values are found. It is proved
that these values are extremal globally.



1. On some estimates of the first eigen-value of a Sturm-
Liouville problem

Let us consider the dependence of the first eigen-value A; of the Sturm-
Liouville problem
y'(x) + Ag(z)y(x) = 0

on the segment 0 < 2 < 1, with the boundary conditions

y(0)=0, y(1)=0

on the potential q. Denote Rg the set of real-valued measurable on (0,1)
functions ¢ with positive values such that

[ a@Paz=1,

where 8 is a real number, 8 # 0. The variational principle implies that the
first eigen-value Ao can be found as

. Jo ¥ (z)*dz
4 veéél"go.l) Jo a(z)y(z)?dz

We will estimate the values

mg = 1nf A, Mg = sup Ay .

9€Rg
Pus 1y (2)dz i y/(2)%d
_ by Clyl = _Jo ¥ \Z)7az
Lig.v) fol q(z)y(z)2dz’ ) (fol y(z)Pdx)?r
where
__

The main result of this section is the following

Theorem 1. If 3> 1, then

_B-npvE o111
= BeA-nFC 22" %
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and Mg = 00, where B is the Euler’s Beta-function:
B(a,b) = ];1m°“1(1 — ) ldx .
There ezist functions u(z) and q(z) such that
inf Llg,y] = Llg, ] = mg.

If =1, then M, = o0 and m, = 4.
If0 < B <1/2, then

_ (1__ﬁ)l+l/ﬂ 0,1 1

Me = g2y’ 235

and mg = 0. There ezist functions u(z) and q(z) such that inf, Llg,y] =

L[Qau] = Mp.
If B <0, then
__(l—ﬂ)”"/ﬁ ) l l__ 1
Ms =~ g2’ (32 56 "
and mg = 0. There ezist functions u(z) and q(z) such that inf, Lig,y] =
L[g,u] = Mp).

If1/2< 8 < 1, then Mg = 00 and mg = 0.

Proof. 1. If 8 > 1, then we have by the Hélder inequality

[ waras < ([ d@pe) ([ w@pae = ([ @,
where p = 28/(8 — 1), for any y € Hy(0,1). Therefore,
A1 Z m,

where m = in f,G[y] in the class H}(0,1). Remark that the homogeneity allows
to assume that '

[ w@paz=1.



Let {yx} be a sequence of functions of this class, such that

1
/0 Yi(z)dz = m .

This sequence is bounded in H(0,1), therefore it is weakly compact in this
space and compact in C[0,1}. We will assume that this sequence is converging
uniformly and weakly in H3(0,1) to a function u. Then

1 1 1
/ |u(z)Pdz = l,f u(z)3dz < lim/ vi(z)?dz,
0 0 k—oo Jo

and therefore fJ v'(z)%dz = m. Since G{y] has the minimal value at y = u, we
have

d
EG[u+tz]—~0att—0

for an arbitrary function z of the class Hg(0,1). It means that
1 1
/0 ()2 (z)dz — m ]0 ()P~ 2u(z) 2(x)dz = 0

for all z € H}(0,1). This equality yields that the function u’ has a generalized
derivative, equal to —m|ulP~?u, i.e.

v 4+ muff2u=0

almost everywhere in (0,1). Since u is a continuous function, we have u” €
C[0,1}, so the equation is true in the classical sense.

Since G[ly|]] = Gly] for all ¥ , we can assume that y,(z) > 0 and thus
u(z) > 0. Then by the unicity theorem for the Cauchy problem u(z) > 0 in
(0, 1). Multiplying the both sides of the equation

' (z) + mu(z)?' =0
by 2u’ and integrating over (0,z), we obtain that
v (z)? + 2%nu(:n)p =C.

Integrating over (0, 1) the both sides of this equality and taking into account
that

fol ' (z)*dz = m, /01 u(z)Pdr =1,
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we obtain that m(1 + 2/p) = C.

Let b be a point, at which the function © has the maximal value M. Since
4" = —muP~! < 0, such a point exists and is unique. If b # 1/2, then
we can assume that b < 1/2, since u(z) can be replaced by u(1 — z). The
function u,(z) = u(2b — z) satisfies the same equation on (b,2b) as u and
u(b) = u (b) = M, u/(b) = u(b) = 0. Therefore, these functions coincide and
u(2b) = u(0) =0, i.e. b=1/2. Since

w(z) = ,/C 2—;n—u(:z:)?

for 0 <z < 4, we have

.
o Jo-2mpfp 2
Since 4'(1/2) = 0, we have
M =u(1/2) = ()P = (1 4+ p/2)"7

Changing the variable of integration y = Mt, we obtain the equality

mi-v2 [P /1 @ _ 1
0

omh Vi 2
Remark that
/1 dt _lB(ll
o Vi—tr p ‘p'2°
so that

2 11
Mt = [ ZB(-,7).
pm (p 2)

The obtained relations allows to find

(ﬁ _ 1)1+l/5

m=C0 = geg—1y

B*(1/2,1/2-1/28) .
2. Let now 8 = 1. Since
[ ez < maxy(ay,
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we have . 24,
A]. 2 m = inf Jb_y"(.:lj)__

yeHi(0,1) maxy(z)?

The value of m can be found according to the following Lemma.
Lemma A10 of S.7 implies that A, > 4if f=1.

3. Let # < 0. Put

(z) = (1—g)YPe~/B if0 <z <6,
TE=Y (1)~ VBelP| ffe<z <],

where € > 0 is a small number. Let yo(z) = 1/2 — |z — 1/2|. Then

1
A < < Ce™ VB,
' 1 d@w(z)ids
Therefore A; can be arbitrary small.
4, Let 0 < 8 < 1. Put
_ [ (2e)7'8, if |z~ 1/2| <,
9(z) = { 0, if |z — 1/2] <,

where € > 0 is a small number. Let y be a smooth function, vanishing in the
points z = 0 and z = 1, which is equal to 1 in (1/3,2/3). Then

o

A<
T [ (ge)-ViBdr

= 0161/’6—1 -0

as € — 0. Therefore A, can be arbitrary small.
5. Let 8> 1/2. Put

oz) = ee/8 f0<z<e,
0, ife<z<l,

where € > 0 is a small number. Then

&
!

[ d@ueras =8 [“ypas < 8 [y (@)

and thence
Al > El_/ﬁ_2.
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Therefore in this case Mg = oo.
6. If 8 =1/2, we can put

g(z) = Cz*~%,

where C = €2/4, so that [ ¢(z)/?dz = 1. Then

[ a@w@iis =5 [ o yeran < 0 [ v @Pda,

Therefore A} > Cr'e™? and M|/, = co.
7. Let 0 < 8 < 1/2. Then by the Hélder inequality

[ a@Piz < ([ a@y@ranp ([ yapiz),
where p = 28/(8 — 1) so that 0 > p > —2. Therefore,

Lg, 9] < G[y].

Put yo(z) = 27 for 0 < z < 1/2 and w(z) = (1 —z)" for 1/2 < = < 1,
where —1/p >~ > 1/2 so that y € H:(0,1). Then the integral f; yo(zx)Pdz is
converging and thus

A < Q.

Let m = infyepy(0,1) G[y]- Consider a minimizing sequence {yx} such that

1 1
| w@rd=1, [ g —m.
0 0

There exists a subsequence {yn,} uniformly converging to a function u €
H}(0,1). By the Fubini theorem, we have [} u(z)?dz < 1 and [} u'(z)%dz < m.
Therefore, Glu] < m and since m is the minimal possible value of G, we have
G[u] = m. Since G[Jy|] = Gly] for all y , we can assume that yx(z) > 0 and
thus u(z) > 0. The function u satisfies the same equation as in the S.1, i.e.
the equation

' +muffPu=0

almost everywhere in (0,1). Since u is a continuous function, we see that the
equation is true in the classical sense in each interval where u # 0. If u(zy) =



0,u(z)) =0,u(z) >0forzo<z<ziand 0<zp <z L 1,z1 —2Zo =K < 1,
then we can consider the function v(z) = u{ze + xx) and since

v"(z) + mx*v = 0,v(0) = 0,v(1) = 0,

we see that Glv] = mk? < m, what is impossible. So u(z) > 0 in (0,1).
Moreover then the equation

W (z) + 27"‘1;(3:)# —c

holds for 0 < z < 1 with C = m(1 4+ 2/p) < 0.

Let b be a point, at which the function u has the maximal value M.
Since u” = —muP~! < 0, such a point exists and is unique. The function
ui(z) = u(2b — z) satisfies the same equation on (b,2b) as u and u(b) =
wui(b) = M, v'(b) = u\(b) = 0. Therefore, by the unicity theorem for the
Cauchy problem these functions coincide and u(2b) = u(0) =0, i.e. b=1/2.

We have 1

[ s
o JC-2mye/p 2
Since 4'(1/2) = 0, we have

M =u(1/2) = B2y = (14 /2y

Changing the variable of integration y = M t, we obtain the equality

-p [ dt 1
Ml_p/z‘/—p = -
2mfo VtiP—1 2

Remark that
| [ lpdl Y
0o ViP—1 p '2°2 p”’
so that Q- ﬁ)l""/ﬁ
m=C(f) = ﬂ—(l——_2—ﬁ)1/—382(1/2, 1/28).
Since

inf Llg, 3] < inf G[y]
and L{uP~?,u] = C(8), we see that Mg = C(f).
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8. If 8 < 0, then by the Holder inequality

fo (@) < ( /O ' a(@)y(z)dz)?/ B fo : o(z)Pdz) V0=,

Therefore,
Llg,y] < Gly).

Put yo(z) = |z — 1/2| — 1/2. Then
1
Xz — 1/2] = 1/2)26/6-1 dz)B-D78

and so Mp < co. Consider a minimizing sequence {y:} such that

[ iz =1 [ vhl@)de —m
Dyk ) Oyk .

There exists a subsequence {y,,} uniformly converging to a function z €
Hg(0,1). Since p > 0, the sequence {35, } converges uniformly to w?. There-
fore, fo u(z)?dz < m~?/2, and [} w/(z)*dr < 1. Therefore, G[u] < m and since
m is the minimal possible value of G, we have G[u] = m. The function u sat-
isfies the same equation as in the S.1, and C(a) is defined by the same formula
as for § > 1. Since

A <

inf L[g,3] < inf Gly) = C(B),
we see that Mz = C(B). D

2. On other estimates of the first eigen-value
Let us consider the dependence of the first eigen-value A; of the Sturm-

Liouville problem
(p(z)y) + My(z) =0
on the segment 0 < z <1, with the boundary conditions

y(0) =0, y(1) =0

on the function p. Let us denote R, the set of real-valued positive measurable
functions p on [0, 1] such that

/0 : p(z)%dr =1,
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where a is a real number, a # 0. Put

Jo p(z)y (z)*dz Cyl = By (@) dD)? _ 2
M@z W T a0 T a1

Lip,yl=

Let K,(a,b) for real p # 0 be the set of non-decreasing real functions y
defined on [a, b], absolutely continuous on [a,b—¢] for any € > 0 and such that
¥(0) 20,

b b
/ Y (z)Pdz < o0, ] y(z)*dr < oo.
a a
Let Kp(a,b,c) be the set of real functions y defined on [a, ¢] and such that

y € Ky(a,b), y(—z) € Kp(—c,~b), [ |y (z)Pdz < 00 and f; |y (z)[Pdz < o0
The main result of this section is the following

Theorem 2. Let

My = sup A = inf A,
o pelz 1, My plel}?al

_3r—=2,2r—2\2/r , 1 1
c=="0G=) Bel-

Ifa>-1/2, a#0, then My = C(r) and mq = 0. There ezist functions
P € Ra, z € H}(0,1) such that 2/(z)? = p(z)*! and

infyLp,y] = L[p, 2] = C(r).

If a £ =1, then my = C(r) and M, = oo. There exist functions p € R,
z € H}0,1) such that 2/(z)* = p(z)>~! and

‘ inf,Lp,y] = Llp, 2] = C(r).
If-1<a< -1/2, then M, = 0o and ma = 0.

The proof of Theorem 2 is based on the variational principle, according to

Proof. 1. If & > 0, then we can take a function y vanishing in [0,1/2] and
such that [) 42dz = 1. Since the function p can have arbitrarily small values in
[1/2,1], the value of A; cannot be bounded from below by a positive constant.
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2. Let 0 > a > —1. Let us show that in this case also A; cannot be bounded
from below by a positive constant.

Put for that
z/e, if0<z<e,
ylz) =< 1, ife<z<l—g,
1-xz)fe, fl-e<z<],

(z) = 6, if0<r<eorl-e<z<l,
PZI=1 e, ife<z<l—c¢,

where § is a number such that
/ ' p(@)*dz = 26° + (1 — 2)em = 1,
ie. § < Cie~'/e. 1t is evident that
'[ y(z)?dr=1-2e+2¢/3=1—4¢/3.
On the other hand,
/ ' o)y (@)dz = 26/ < Cae~'-VVe.

Therefore,

1 2
Al S fo pl(z)y'(f) dx S 06—1—1/6!,
Jo y(z)*dz
and since —1 — 1/ > 0, the value of A; can be arbitrarily small.
3. Let @ € —1. Then 1 < r < 2 and by the Holder inequality

[ v@ras= [ sy ey pay

< ([ pa/ @ ey [ pla)da) /0=,

where r = 2a/{a — 1). Therefore, for any admissible p we have Lip,y] > G[y].
Let m = inf,, G[y]. Since y(z) = [§ ¥/ (t)dt, we have

[ vores < [\ woldrds < ([ wora

10



and thus m > 1.
Consider a minimizing sequence {yx} such that

[ k@ras=1, [ @ —1/m

There exists a subsequence {y.,} converging uniformly to a function z €
HL(0,1) such that fj |2(z)|"dz = 1, Jj |2(z)|?dz = 1/m. The function z satis-
fies the Euler-Lagrange equation

(I (@)% (z))’ + mz(z) = 0.

Multiplying it by 2’ and integrating we obtain

r—1 ’ r m o —
- |2 (z)|” + 5 # =C.

Integrating the last equality over (0,1) we see that C = 3/2—1/r > 0. The
function z is even with respect to z = 1/2, increasing in (0,1/2) from 0 to M
and decreasing in (1/2,1). Since 2/(1/2) = 0, we have

mM? =2C =3 -2/r.

We have
1 T

/M dz L
o (C—-mz22/2)Vr  2'r—1
Substituting z = My, we see that

)I/r'

e e T i
o (1—gy)i/r 2r—-1" M~
Remark that . y L1 .
Y
— = _B(=,1-2).
/o (1 —y)i/r 23(2’ r)
Therefore, .

IRl EYV P ySes R |
M= = (= hyrrep - )

and m = 2CM~2% = C(r). Since Llp,y] > C(r) and L[z*(==Y 2] = C(r), it
follows that m, = C(r).
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4. If a > 1, then by the Holder inequality

[ p@W @z < ([ pa)dn)e( [ @)y,
where 7 = 2a/(a — 1) > 2. Put yo(z) = 1/2 — |z — 1/2|. Then

A < (fo %o(=))*" _
= Jo wol(z)%dz

We can repeat the same arguments as above in S.3 to find the optimal
functions p and z. Moreover then M = C(r) and if @ = 1, then

2
=12 = lim C(r).
5. Let 0 < a < 1 and p be a function of the class R,. Put

vo(z)* = p(z)*~"

and construct the function yp in such a way that it vanishes in the end points,
increases monotonically on (0,b) and decreases monotonically on (b,1). Let
M = maxyo(z)?. It is evident that

[ thaydz = [ playds =1

Let b > 1/2. The measure of points z € (0,b) such that y)(z)" > 4, is less
than 1/4. Therefore the supplementary set £ on (0,b) has the measure > 1/4
and at the points z of this set we have

yo(z) > 4",

. because r < 0. Put now z(0) =0, 2/(z) = 4Y/" at the points of E and 2/(z) = 0
at other points of (0,b). Then

1 r 1/4
| w@?dz> [ a@idz> [T aatde =
0 0 0

and therefore,

M, < o pl(m)%(:v)zd:v <1
Jo w(z)*dz Co

12



To prove the existence of the optimal functions p and z we need the result
of Lemma Al4.

Let p be an arbitrary positive function of the class R,. Then there exists
a function yo(z) such that p(z) = |3}|*/®~") even with respect to z = 1/2,
increasing in (0,1/2) and decreasing in (1/2,1). Furthermore, L(p, yo] = Glyo]
and therefore, M, < m. On the other hand, we have the equality Lpg, %] =
Glyo), if po(z) = |yo(z)|>©~V. By Lemma Al4 we have

R le(@)ds
M T M yayds

and the proof is complete.

6. Let now 0 > a > —1/2. We will use the same function y, as above, in
the beginning of s.5. Let r = 2a/(a — 1). Then 0 < r < 2/3. By the Holder
inequality

; shtarde < ([ watalaar ([} ' < (] o)

= L[W!yo]

Since .

| hiayds=1,
it follows that .

| w@ldz > 1

and therefore
M = (maxyo(z))* = %(b)® > 1/4.

We can assume that .
|| wh(aydz =172

Let z, be such a point of (0,b) that yo(z,) = 1/47. Then as above we have
Ly r Ly r
< == )

| @z < ([ lub(a)ldz) = 174

Therefore,
b
[ wh@lrde 2 1/4.

On the other hand, by the Hélder inequality

va< [ @rde= [ @@ o) dz
< J,, ool |, [vo(@)vo(= vo(z)

13



< ([ @y rday (| w(z)dz) =
= () = @ = 2r)( [ (o)

1
< Cl(a)(fo vo(z)?dz) "
Therefore, 1
/0 yo(:c)%b; > (401(a))1/(’-l)

and

A1 < (4Cy () /O

As above to prove the attainment of the optimal value we need some Lem-
mas.
7. Let @ < —1/2. Let

(z) = kYo if0 <z <e,
PE=1k ife<z<l,

where k& is such a number that
ke+k%*(1—¢)=1
so that .
j(; p(z)%dz = 1.
for any € > 0 we have
€ 1
2 < 2 / 2 3
[ vera<e [ yera
On the other hand,
1 1
[ verd<a-o7 [ y@is.
£ £

Therefore, .
1
2 < 2 ’ 2
[)y(m) dzr<e .[0 ¥ (z)*dz

+0-ef [ y@rdz < [ ooy @z,

14



where
6 = max(e2kV®, (1 — €)%™"!) < max(e?*Ve, (1 — €)%),
so that § — 0 as € — 0. Hence -

Al 2 =00

| =

as € — 0.
8. Consider at last the case when @ = —1/2. Put

p(z) = max(x?/e?, §%/€?),

where § = exp(1 — 1/¢). Remark that

/Olp(x)-lfﬂdz =5-¢/5+ ]01 e/zdz

=g—€elnd=1.

On the other hand, from the well-known estimate

fo l y(z)?dr < 4 fo 1 y'(z)*dz,

valid for all functions y € C*, vanishing in 0, it follows that

[ v@ras <48 [ y(@yds +4 [ y@)Pds < 4 [ pla)y/ (@) de.
0 - 0 § . 0
It means that for the choosen function p

s fo plz)y/ () dx 1
Ay = inf T y(z)%dz 2 222

so that the estimate from above is impossible.
Corollary 3. Ifa > —-1/2, a # 0, then

M < ([ pla)da)e;

if a < —1, then .
M 2 C@([ ple)dz)

15



where C(a) is a positive number depending on o only.

3. On a more general estimate of the first eigen-value
of the Sturm-Liouville operator

In this section the Sturm-Lioville problem
(P()y) +\Qx)y=0, 0<z<], (1)

y(0) =y(1) = 0. (2
is considered. Our aim is to estimate the minimal eigen-value A, of this problem

under the condition that the non-negative measurable functions P(z) and Q(x)
are such that

/ ' P(z)odz =1, / ' 0@z =1, (3)

where & and 8 are non-zero real numbers. The variational principle implies

that | .
s\ it B P @)
v fo Qz)y(z)?dz
where the greatest lower bound is taken in the class of all non-zero functions
from C3[0,1] .
Let us put

Myg = S};;Ig/\l, Mag = %}5)‘1-

The main result of this section is the following

Theorem 4. Ifa > —-1/2, 8 — a+ 2af < 0, then M,p < C(a, ) and
Ma,p =0,

Ifa< -1, 821, thenmag 2> Cl,8) > 0 and My p = 0.

If1/a—-1/0+2 £ 0 and either a > —1 or B < 1, then mag = 0 and
Ma"g = Q.

Proof.
I. Estimate of M,g.

16



a. Let at first @ > 0,8 > 0 and 8- a+2af > 0. We show that My g = 00.
For this we put P(z) = e/ for 0 <z < g and P(z) = 0fore < z <
LQ(x)=e""P for 0 <z < e and Q(z) = 0 for e < z < 1, where ¢ is a small
positive number. Then for y(z) € C}(0,1) we have

[ @@y = [y(a)dz;

[ P@y @?dz = [ y()da.

Since

Lcy(I)de < g2 '[Osyr(x)de;y(m) e C&(O, 1),

we have that
[ Q@@ dz < &-/#v= [ Playy (a)ds;

le.
,\1 > E—2+l/,6—1/a,

and A; — oo as € — 0. Therefore in this case M, = oo.
b. fa<0,8>0, we put

_Je Vo1 —¢)* forO<z<e,
P(zr) = {51/0(1 —e)"Ye fore <z <1

Q()—{O for 0 <z < 2¢,
T=1(1-2)""8 for2e<z<l.

where 0 < € < 1/8. It is clear that

/P(a:)adx — 1,/Q(z)ﬁdx =1,

(12" [ Qely(a)dz = [ y(a)de

< e V/e(1 — g/ /2: P()y/ (z)%z.

Hence it follows that A, > €!/*/2 and so M, 5 = .
c. Letnowa < 0,8 <0and f—a+2af > 0.

17



We put i Y
_Je*Q —¢g)* for0 <z <eg,
P(z) = {el/a(l —e) Ve fore<z <1

Q) = eV - p)/8 for0 <z <,
pP(1—g)"VP fore<z< 1

where 0 < £ < 1/8,0 < p < 1/8. It is clear that
| P@rd=1, [Qu@fds =1,

and
[ @@z = 5~ ) [*y(@)? + 951 ~ )8 [ yiz)da
< 2 VBHYa(L — )/ (1 — &) Ve [ Pla)y (a)da

+p'/PemM(1 — g)l/am1/BHE f ' Pla)y (z)dz < G fo ' P(a)y/(z)dz,
where
C, = m(52‘1/ﬁ+1/"(1 _ p)llﬁ(1 — 6)—1/a,p1/ﬁ€-lla(1 — 5)110—1/B+2)_
If we put p = €#/2%, then for small € we have C; < 2¢7, where
v=min(2 - 1/8+ 1/a,5/2a) > 0.

Since A\, > Cy!, we see that in this case M, g = co.
d. Now we show that M, g = oo, if

B—a+2af=0,a>-1/2.

Remark that fora #0,8#0,8—-a+2a8 =0, a > —1/2, « and B have
the same signs. Let

P(z) = Ciz*™ ', Q(z) = Cox*'/%; ¢ > 0.

The constants C), C, are chosen so that
[P@rdr=1, [Q@Piz=1,
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ie. C) = (ag)"*, C; = (Be)"/P. From the Hardy inequality
[&Py@?dz < Go [ 2572y (5)%dz; y(z) € C1(0,1),
where Cp = 4/[1 + (¢ — 1/8)%, it follows that

[ Q@) s < GG/ [ Pla)y (2)ds.
It remains to note that
Co/C = (af)_l/a(ﬁe)l/ﬁ = a—l/aﬁlmez —0

as € — 0. It means that
M > al/epm et

i.e. My g = oo.
e. Now we show that Mg < oo if

~-1/2<a<0,8—a+2af <0.

Put y)(z)? = P(z)>! and define the function 3,(z) so that it increases on
the segment [0, zo] from 0 to some m > 0 and decreases on the segment [zo, 1]
from m to 0. By the Hélder inequality

[ ve@?Vdz < ([ yhda)e/eD.
Therefore, .
|| wh(e)dz 21,
0
and so m > 1/2. Let for definiteness

Io
/0 o (z)2/@=Ddz > 172,
Let z; € (0, zo) be a point such that yo(z,}'~* = 4* .Then

1 )
| @ dz < ([ yh(@)day/e) = 1/a,
Therefore,
[ vyl Vdz > 1/a.
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On the other hand, by the Holder inequality
/"o %(I)h/(a_l_)dx
z

o o
< ( L vh (x)w/(ﬁ—l)dx)(lw)/(l-a)( f % y.ﬂ(1+a)/a(ﬁ-1) d:r)za/(a_l)
z

1
and so -
ya< [y
)

20
< (/: ygﬂ/(ﬂ-l)d_,c)(lm)/(l-a) . [(ms+1 _ 4-,_1)/3]20/(0_1),

1
where

1+s=ﬂ(1+a)+1_2aﬁ—a+ﬂ

af-1) aB-1)

< 0.
If 3 <0, then
fy(z)”/(ﬂ“l)d.:: < (/Q(z)ya(a:)dx)ﬁ/(ﬁ_l)(/Q(a:)ﬁd:c)l’l(l—'s),
and therefore
/ Q(z)y(z)?dz > ( / y(z)28/B=V 4 (B-1I8,
Therefore, the obtained estimate
/o o W28/B-Dgr > 0 >0,

implies that -85
Ao S Gy

f. Letnow 0 < @ < 1,8 —a+2af < 0. We obtain the estimate for Ay from

above.

The function P(z) is non-negative and [ P(z)*dz = 1. It is sufficient to get
the uniform estimate from above for the functions P(z), taking positive values
only. Put 74(z)? = P(z)*~! and define the function y(z) so that it increases
on the segment [0,zo] from 0 to some m > 0 and decreases on the segment

[Zo, 1] from m to 0. We have
1 renzan s ioeaftam1) g [} &g _
| P@ws@?de = [ W@ dz = [ Pa)dz=1.
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By the Holder inequality we have for 0 < g <1

[Q@rds < ([ Qi@ ([ y(z)P/eVdz)-,

SO thdt
[ QEn(@rds > ([ y(a/ 6Dy,

Thus the estimate from above follows from the inequality
[v@Prevaz < c,

that will be proved. -
We note that for 0 < z < z; we have

z= [dt= [vhia)vi(z)at

< (f so(@yman - ([ @)y e 5,
where

1>s5>0 _1 -2 = !
’pl_s’pa—s(l—a)’pe'_ (1-3s/2-5s/2a)

Since [ yp(z)~"?dt = 1, it follows that
zl/2+l/20 < yo(z) 1/p1,

ie. yo(z) > z'/?+'/2= Therefore
o 0
J; wlay#e 0z < 7 gttt b =

since

@18 _ _
a(f —1)
in virtue of our conditions. Analogously one can show that y(z) > (1 —
x)Y/2+1/2% for 7y < x < 1, and thus yo(z)*#/P~Vdz < 2C.
If 5 <0, then

[v@*16-04z < ([ Q@ @)V ([ Qa)dz) -,

1
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and therefore
/ Q(z)y(z)?dz > ( f y(z)?2/B=D g (B-1/8,
Thus in this case it is sufficient to prove that
[y@®/¢dz > ¢ >o.
As in above we have the estimates
yo(z) > /Y2 for 0 < z < z0,

yo(z) > (1 — 2)/2+1/2% for 7y < z < 1

and thus )
/0 yo(:r:)QB/(‘B-l)CL'E

> /zo gletB/aB=1) g7 o fl(l - :l:)(ﬂr+l).t‘:"/c!r(lf‘—1)d_I =C>0.
—Jo z0

g leta>1,8— a+2a8 < 0. We show that Ay < C(a, ). We have
/P(x)y’(z)2d$ < (/ yl(x)%/(a-l)dz)(a—l)/a(/ P(:t:)“d'c)l/a

and
/ Q(z)y(z)?dr > ( / y(z) 2P/ BN gz)(B-1/E

Therefore

o J(y (z)*/@ Vdg)e—De
A< inf (T y(@)PIED i) B-17 = C.

Let yo(z) = z? for 0 < z < 1/2 and yo{x) = (1 — z)? for 1/2 < z < 1. The
number p must be such that 26/(8 — 1)p > -1 and 2a(p - 1) /(e — 1) > —1.

If @ > 1,0 < f <1, then such p exists if (1 + a)/a < (1 - B)/5, i.e. for
B—a+2aB8 <0. And if « > 1, but 8 < 0, then as p one can take any number,

greater than (1 + a)/2a, since the first condition is satisfied for any p > 0.

IT . Estimates of m,g .

a. We prove that map = 0 for 8 < 1. For that we put P(z) = 1. If
B <0, we put Q(z) = e VA1 —¢) for z—1/2 < €/2 and Q(z) = N for
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0<z<1/2—¢/2and for 1/2+¢/2 <z < 1, assuming that 0 < e < 1/4 and
N is such a constant that

NP(1-¢)+e'(1—¢e)fe=1,

so that N — oo as € — 0. We note that b, = [ Q(z)/%dz — oo as € — 0. Let
ge(z) = Q(x)b;4. Then from the equation

Y+ AoQe(z)y =0
it follows that
¥ +mq.(z)y = 0, where m = Aob},

and [ ¢}/4dz = 1. In virtue of the first part of our theorem, if @ = 2,8 = 1/4,
the first eigen-value is bounded from above, i.e. m < C and C is independent
of . But then )\ < Cb %4, and so A, can take arbitrarily small values.

If0 < B <1, then we put P(z) =1 and Q(z) = /P(1—¢) for z~1/2 <
ef2and Q(z) =0for0 <z < 1/2—¢/2 and for z > 1/2+¢£/2 , assuming that
0<e<1/4. Let yo € C§°(0,1) and yo{z) = 1 for 1/2 — z < . Then

— inf follP(a:)g,/(a:)zdx < lfol yh(z) dx — Cel/f-1,
v fo Q@)y(z)¥dz ~ [y Qx)yo(z)?dz

Therefore, Ao — 0 as € — 0.

Ao

b. Show that mgg = 0 for & > 0. For this we put Q(z) =1 . Since a > 0,
the function P(z) can vanish on the segment [0,1/2], when y(z) = 0 on the
segment [1/2,1] , so that A\; = 0.

c. Let 0 > a> —1. Let Q(z) = 1. Let us put

6§ for0<z<e,
Pz)=(¢ 7! fore<z<1l—g,

6 forl—e<z<],

and ‘
xfe for0<z<e,
yz)=< 1 fore<z<1-—g,
(1—z)/e forl—e<z <1,

where § is such a number that
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/P(I)adr =266+ (1 - 2)e™* =1,
i.e. § ~e~= 1t is obvious that

/yz(I)dxz 1 —25+25/3= 1—48/3.
On the other hand

/ P(z)yh(z)?dx = 26/ = 21~V 1"Ve,

Therefore,
/\O < Cs—l—l/a

and since —1~1/a > 0 for 0 > & > —1, the value A; can be arbitrarily small.

d. Let now a < -1, > 1. Using the Holder inequality we get that

[ @@y ds < ([ y(zy/E-Daz)e-0r2,

[v@=/="bdz < [(Pay (@)dzy=.
Thus

([ @)/ Vdz)e-Dre
(f y(z)28/B=dzx)(B-1/8 = =

The last inequality follows from the estimate

([ ¥(@)d=)" < ([ y (@pda) 2,

Ay 2 inf
¥

where
2<qg=28/f-1)< >, 1<p=20f/(a—-1) <2

In its turn it is implied by the inequality

max |y(2)| < [ |y/(z)|dz

following from the formula y(z) = [Fy'(t)dt. f « < —1,8 =1, we can use
instead of the Holder inequality the estimate

[ Q@)y(ayds < maxy(z)?
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and since
max y(z)? < (/ Y (z)Pdz)¥? for 1 < p < 2,

we can see that Ay > 1.
The proof is complete.

The proved theorem can be stated in the following way:
Theorem 5. Let A be the first eigen-value of the problem (1)- (2) Ifa>
—1/2,8 - a+2af <0, then

(J P(z)*dz)'/=
(J Q(z)Pdz) /P’

Ao < Cla, B)
fa<-1,8>1, then

(J P(z)dz)"=
(f Q=z)Pdz)' /P’

where C(a, B) i3 a positive constant, depending on o and 8 only.

A0 Z C(Q‘.’, ﬂ)

4. On estimates of all eigen-values

Once more consider the Sturm-Liouville problem:

¥+ 2Q(z)y =0, y(0) =0, y(1) =0

under the condition that .
| Q@far=1

and estimate the k-th eigen-value Ax. Our main result is following.

Theorem 6. If B > 1, then A, > Co(B)K®. If B < 5, B #0, then A <
Co(B)k?. The constant Co(B) here is independent of k.

Proof. Let § > 1 and y, be an eigen-function of the Sturm-Liouville problem
having the number k. This function has k — 1 zeroes in the interval (0,1) :
Vi,...,Vk1. Let 9 =0 < 1y < ... < vx = 1 and I be one of the intervals’
(vj,vj41), where j =0,1,...,k—1. Consider the function yx(z) on the interval
I. If max; y,.(z) = y(&1) =1 and () =0, £ € I, then

1= [ vi@iz = n [ Q@@
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Remark that |y«(z)] < C(vj41 — v;) and we can assume that y(z) > 0 in /.

Therefore
@@z 2 (v = 1) A"

[t follows that
1 N
| Q@idz=3 [ Qdz 2 5t Ylwse - 1) 2 AT
7 1

and thus
1 1
e > k”(f Qdz)™! > k”(f QPdz)~8 for B> 1.
0 0
Therefore viss
L7 @@z 2 Co(B) (v — 1) N7,
vj
Summing these inequalities over 7, we obtain that
k-1
12 Co(BP AP 3 (vin — v5)' =%,
i=0
Remark that 1 — 26 < —1 and by Lemma All

k=1
S (i = )P 2 k() = k.

Therefore,
1> Co(B)YPA Pk

and
e > Co(B)K2.

Analogously, if 0 < § < 1/2, then we get the inequality
k-1
1< Co(ﬁ)ﬁ'\:ﬁ Z(VHI - Vj)l_w-
j=0
Since 1 — 24 < 1, we have by Lemma Al1l, that
k=1 1
A e T

=0
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Thus
1 < Co(B)P XK,

i.e.

A < Co(B)K?.
If B < 0, then the inequality takes the form

k—-1

1> Co(ﬁ)ﬁ)\;ﬁ Y Wi — v;)' 7%,

j=0
and since 1 — 28 > 1, we get
1> Co(BYP NPk,

that gives the inequality
A < Co(B)K3.

Now consider an other Sturm-Liouville problem:
(P)) + y=0y(0)=0, y(1) =0

under the condition

/ ' P(z)dz = 1.

Theorem 7. Ifa > —1/2, a # 0, then A\ = Co(a)k?. If a < -1, then

A < Co(a)k®. Here Co(a) is a positive constant independent of k.

Proof. Let at first @ > —~1/2, o # 0. As above, consider the k-th eigen-
function yi(z), corresponding to the eigen-value Ax. Let vp,...,v, be the
zeroes of yx(z) and yp =0 < v; < ... < v = 1. Let I be one of the intervals
(Vj;Vj+l) with J = 0, 1, e ,’C — 1, let

Vi+1
l=viy1—vy, p= f P(z)%dz.

vy

Substituting x by v;+tl, P(z) by p(t)(p/1)/* and A by p'/*1-2~1/* we obtain
that
POyt +my =0, 0<t < 1; y(0) =0, y(1) =0;
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folp(t)"dt =1
Theorem 2 implies that m < Cy(@), so that
A < Cola)l=2 e pile,
If @ > 0, then it follows that
M < Co(@)®17**p

or

A Wies - v < Go@)® [ P@)da.

vi
Summing over 7 from 0 to £ — 1 we obtain that

k=1

AR S (Wip — vy)* ot < Colo)”.

=0
Since 1 4+ 2 > 1, we have by lemma A1l that

k—1
S Wip1 — v)t > k(17K = ke
j=0
so that
M < Cok?.

If —-1/2 < @ <0, then as above
X 2 Co(a)l21p?

or v

Mo (Vipr —vy) 2+ > Co(a)c'/ " P(x)°dz.

. IIJ'
Summing over j between 0 and k — 1 we see that

k-1

AR Y (e — 1) 2 Cola)®.
j=0

since 1 4 2a > 0, Lemma A1l implies that

k=1
2 Wi — )M < k(1R = k%

J=0
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Therefore
/\‘,‘;k'z" > Co(a)®

and since a < 0, we see that
A < Cola)k?®.
For oo < —1 the same arguments lead to the estimate
Ae > Co(a)l~2Yeplle,

l.c. vj

(51— 1) 22 < Gl [ Pla).

vi
Summing over j from 0 to k — 1 we get the estimate

k=1
A2 S (Vi — v)'T < o).

j=0

Since 2 + 1 < —1, Lemma A1l implies that

k—1
S (Wi — v < kQU/EM) = k%
Jj=0
and hence
/\‘,:k"%‘ < Co(a)?,
so that

Ak > Co(a)kz.

The proved Theorems can be reformulated in the following form.

Theorem 8. Let A be the k-th eigen-value of the Sturm-Liouville problem
considered in Theorem 6. If B > 1 then

M2 Co@R ([ Qa)dz) ™.
[B<1 B0, then
M < GAR([ Qe)dz) ™.
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Theorem 9. Let A\c be the k-th eigen-value of the Sturm-Liouville problem
considered in Theorem 7. Ifa > —1/2, a # 0, then

Ak > Cola)k?( fo l P(z)*dz)"/*,

Ifa < -1, then
1
M < Co(a)k( jo P(z)2dz)V/=.

5. On estimates of first eigen-value of a Sturm-Liouville
problem for operators of higher order

Let us consider the dependence of the first eigen-value A; of the Sturm-
Liouville problem

(=)™ (z) + Ag(z)y(z) = 0 (4)
on the segment 0 < z < 1, with the boundary conditions
¥O) =y =... =" PO =) =y() = ... =y D) =0 ()

on the potential q¢. Denote Rg the set of real-valued measurable on (0,1)
functions g with positive values such that

[ a@Paz=1,

where £ is a real number, 8 # 0. The problem (4),(5) has a discrete spectrum.
The variational principle implies that the first eigen-value Ay can be found as

fol y(n) ($)2d$
A= in : .
vecg o) fy q(z)y(z)?dr

It is easy to see that all eigen-functions of the problem (4),(5) are real and
positive. We will estimate the values

mg = inf A, Mg = sup A,.
(o geRy "V B qeg”
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Put
Jo ¥ (z)?de

e Jo a(z)y(z)dz

Theorem 10. If 8 > 1, then mg > 1.

Proof. If y(z) is an eigen-function, corresponding to Ay, then by the Rolle
theorem each function ¥/ (), . .., y™ Y (z) has at least one zero on (0, 1). There-
fore,

-D(z) = [ y™()de,
¥"=1(z) /ey (t)

where £ is a zero of y*~V(z). So [y V(z)| < fy ly™(¢)ldt. Analogously,
[y (z)] < fo ly™+V(t)|dt. By induction we get the inequality |y(z)|? <
(Jo W™ (@t)|d)? < fy ly™(t)|%dt. Hence

hl™@Pdt 1 L 51
Jo a@yy(@®)?dt = 5 qt)dt ~ (g g(®)*dt)e =

Theorem 11. If 8 > 1/n, then Mg = oo.

Proof. Let ¢.(z) = Cc(z + &)~", where C, is such that f; q.(z)?dz = 1. It is
easy to see that C, — 0 ase — 0. Let y € WJ'(0,1) and y satisfy the conditions
(5). Put y(z) = 0 outside of (0,1). The Hardy inequality

[ v@e+ami < [ er

implies the inequality

1 1
[ acurae < c.or [ 1w )P
o 0
Therefore '
hyW@rdt 1
fo ae(@)y(t)?dt ~ C.Cy
Thus Mg = co. =

—ooase — 0.

L[Qc: y] =
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Theorem 12. If § < 1/n, then Mg = C(f) < 0.
Proof. Let at first 0 < 8 < 1/n. Using the Holder inequality we obtain

1= /0‘ g(zx)Pdx < ( /0.1 o(2)y(z)%dz)P '[ @),
where p=28/(8 — 1) so that 0 > p > —2(n — 1). Therefore
Jo y™ (z)?dz
(s ly(@)IPdz)?/P’

Put go(z) = z"-'(1 — z)**~L. Then f) y™(z)%dz = ¢, if § > 1/2 and
Jo ly(@)lPdz = ca < 00, if p(n+ 6 — 1) +1 > 0, i.e. if

§ < (1+ B — 26n)/28.

Since (14+3—28n)/28 > 1/2, there exists § satisfying all the conditions. Thus
'\\l S L[q;yO] < c3.
Now let # < 0. Using the Hélder inequality we obtain

Lig,y] <

[,l ly(z)|Pdz = fol a(@)ly(z)Pe(z) " dz

< ([ a@p@raer ([ a@Pan/00 = ([ gy doy”.
Therefore,

[ a@w@?ds > ([ )Pz,

Hence 14 (2)2d
Yz
Llg,y] £ = :
(Jo ly(z)IPdz)*/>
Putting yo(z) = 2"~ '(1 — )"}, we see that L[g,y] < c. O

Theorem 13. Ifﬁ < 1, then mg = 0.
Proof. Let at first § < 0. Put

(z) = (1—g)YBe VP, if0 <z <e,
7= (1—¢)"VBeVB ife<z <],
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where € > 0 is a small number. Let yo(z) = z°~'(1 — z)"~'. Then
1, (n)¢ 12
< l0 Yo () ‘:37 < Ce~V/8.
Jo a(z)yo(z)?dx

Therefore A, can be arbitrary small.
Let 0 < 8 < 1. Put

@, ifla-1/2 >
9(z) “{ 0, if |z —1/2) <&,

where € > 0 is a small number. Let y, be a smooth function, vanishing in the
points z = 0 and z = 1, which is equal to 1 in (1/3,2/3). Then
C

M < =C 150
Ve

as € — 0. Therefore A; can be arbitrary small. a

In the study of the Sturm-Liouville problem for an equation of second order
we have obtained the sharp values of the first eigern-value for the operator
y"(z) + Ag(z)y = 0 under the condition f; g(z)® = 1. We have found also the
potentials q, when these sharp estimates are true. In the case of an operator of
a higher order one can write down the differential equations for the function q.
However, it is an equation of order n and we cannot find the explicit solution.

Consider more in details the following problem

—y® + Ag(z)y =0,

V0 =) =0, y(1) = /() =0, a(@) 20, [ a@P=1,8>1

q is a bounded measurable function. As we have shown above the least eigen-
value of this problem is bigger than a positive constant, independent of g.
Namely

1 2 1, 1 )\2
vecon) Jo q(z)y(z)?dz ~ veceon (fy ly(z)iPdz)?/

33



Let 1.0 2

(o ly(z)lpdz)?/P
and m = inf,eceo(0,1) Gly]- Let {yi} be a minimizing sequence. By the homo-
geneity we can assume that

i
'/; Y (z)%dz = 1.

The sequence {yx} contains a subsequence converging to y, uniformly and
weakly in W2;(0,1). The Euler-Lagrange equation for the functional L has
the form
1
¥ =y =0,y =y (1) =0, [ y'@dz=1.

Put
() = Myo[>/E-Y,

where ) is such that f; g(z)?dz = 1. Then the problem
-4 + Ag(z)y = 0,

y(0) =4(0)=0, y(1)=y'Q) =0

has an eigen-value m, to which the eigen-function y corresponds. This eigen-
value is minimal for the considered class of the functions ¢. So the finding of the
extremal g and ), is reduced to the boundary value problem for an equation
of fourth order. The same is true for other values of 8 and for equations of
order n > 4.

Let us consider the boundary value problem

(=1)*y®(z) + Mg(x)y(z) = 0
on the segment 0 < z < 1, with the boundary conditions
v (z;)=0,i=0,...,k, 0=z <Zp<...<zp=1,
where

s<2n-1, k+...+k;=2n-s.
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We assume that .
9@ 20, [ gz =1

We have shown that this problem has positive eigen-values. Let A; be the
minimal of them. Let us show that A; > 1. Indeed, the corresponding eigen-
function y, has at least 2n zeroes (taking into account their multiplicity.) The
function @Y has at least one zero £&. Hence

1 (@) = [ ()da,
and therefore
B @) < [ a()ds  maxly(@)] < M maxy(z))
Since each function ¥/ (z), ...,y P (z) has at least one zero on (0,1), we have
@9 (z) = /; 2=+ (1) dt
where &; is a zero of y>*~9(z). Hence
y*(z)| < max ly@ =D (1)),

In particular,
[y(z)| < max [y~ V(2)] < A max Jy())|

6. On a Lagrange problem

6.1. Introduction

The considered Lagrange problem consists in the finding of extremal values
of the following functional:

fo Qz)y"(z)’dx
Jo ¥ (z)dz
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under the conditions y € H?(0,1), Q(z) is a bounded measurable functioﬁ,

[ e@rdz=1, @) 20, )

y(O) =0, 1/(0) =0, y(l) =0, 3/(1) =0, (7)
where ¢ € R\ {0}. It is easy to see that this problem is equivalent to the
variational problem on the extremum of the functional

1 2
Q(z)y (z)*dzx
FiQ.yl = B @z
Io y(z)*dz
under the conditions (6) and

1
y(0) =0, y1) =0, [ y(e)dz=0.
The Euler—Lagra.nge equation for the functional L has the form
Q@)Y + My =0, y(0) =0, y'(0) =0, y(1) =0, (1) =0.  (8)

This problem is very important for applications. For example, it is essential
for the finding of the strongest column of a given volume (the most important
values are then @ = 1/2 or 1/3) and was considered by many authors (see,
for example, [1]-[9]). The authors of the articles [4]-[9] used methods of the
functional analysis and of the variational calculus, sometimes very complicated.
However, the problem has not been solved until now.

Let us reproduce some Keller’s arguments. Let us suppose that there exists
a function Qo{z) which maximizes the lowest eigenvalue. Let Q(z,&) be a
family of functions which depend smoothly on € and such that @Q(z, 0) = Qo(z).
Assume that A and y, the lowest eigen-value and corresponding eigenfunction
with Q@ = Q(z,¢€), also depend smoothly on &. Then we may differentiate the

equation
(Q(z,€)y"(z,€))" + Me)y'(z,€) =0
with respect to € to obtain the equation
(Qo(2)2")" + Az" + (Qu(z)y")" + py" =0,

where Q;(z) = 8Q(z,0)}/0¢, 2(z) = dy(x,0)/0c and u = SA(0)/8e. Multiply
the first equation by z, the second by y, subtract one from the other and
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integrate the result over [0,1]. In virtue of the boundary conditions we have
1
| @@z - @(@)2")'y)ds = 0,

1
/0 (v'z — 'y)dz = 0.
Therefore
! " 2 1 ! 2
| @ua"@rds - [ py'@)Pdz =o.

Since A is the maximal value of A(g), we see that = 0 and so

[ @@y @rdz=0

and this is true for any function @Q;(z) such that

fo ' 0o(2)°' Q1 (z)dz = 0.

Thus we have as a necessary condition for a maximum the relation y’(z)? =
CQo(z)*"!. It leads to a non-linear equation for y

(1" Pre=0y"Y" + 3" =,
which is integrable. Indeed, if we put 3, = 2, then
(lz|2/(a—1)z)n + Az = 0’

and if we put now 2’ = P(z) we obtain a linear equation of first order for
P?. The weak point of this proof is that the function A(€) can be nonregular,
because the lowest eigen-value A can be double. Besides, the existence of the
optimal solution was never proved.

The authors of [9] claimed to prove that the result of Keller-Tadjbakhsh (3]
is not correct. However, their calculations are erroneous and the value 1672/3
found in [3] is optimal.

We propose here another approach, allowing to say that the indicated solu-
tion is really optimal and gives the globally extremal value to the functional L.
Let us remark that we had used the Sobolev’s type spaces W;(0,1) with i = 1,2
and any real values of p # 0, what is interesting also outside of the frames of
the Lagrange problem. Furthermore, we prove the existence of the optimal
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solution. The obtained results can be extended to the multi-dimensional case
also. Close results for functionals depending on y,%’ only have been obtained
in our works [10]-[12]. :

The important role in that follows belongs to the functional

fol pdr)2/P
ou- S5

Let R, be the set of bounded measurable functions @ defined on [0,1] -
satisfying the conditions (1).

Let Kp(a,b) for real p # 0 be the set of non-decreasing real functions y
defined on [a, b], absolutely continuous on [a,b—¢] for any € > 0 and such that
y(0) 2 0,

, where p = a1

-Lb;:f(:c)”dz < 00, /: y(x)3dz < oo.

Let Kp(a,b,c) be the set of real functions y defined on [a, ¢] and such that
y € Kp(a,b), y(—z) € Kp(—c,=b), [, ¥/ (z)[Pdz < oo and J5 |y (z)|Pdz < co.

Let H be the set of functions y belonging to H?(0,1) and satisfying the
conditions (7).

Put at last

me = inf inf L[Q,y], Ma = 333;3{,45[@,:;]-

Our aim is to find the values of m, and M, and the functions @,y realizing
these extremal values.
6.2. Preliminary estimates
Theorem 14. Let « € R\ 0. Then
1. M, is finite fora > —1/2,a # 0 and My = o0 for a < —1/2;
2. ma >0 fora< -1 andm, =0 fora> —1.

Proof. .
1. If @ > 1, then by the Holder inequality

[ Q' @ris < ([ Qrdnye([ ' @pdzy,
where p = 2a/(a — 1). Put yw(z) = z%(1 — x)2. Then
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(6 o) Pdz)¥e _
s (o)

. <
;2,5 L@,y <
Therefore, M, < C.

Similarly, for & = 1 we have

i 2
o 11Q,3) < PEBEE _ ¢

yeH Jo vo(z)?dz
2. Let 0 < @ < 1 and @ be a function from the class R,. According to Lemma ‘
A12, we can construct a function y(z) such that

y'(2)? = [Q=) +1°7, y(0) =¥'(0) =y(1) = ¢'(1) = 0.

By our construction

1 1
| W@prdz = [Q@) +1rds,

where p = 2a/(a — 1). Let 7 be the maximum point of the function y(z). The
function 3/ satisfies the conditions of Lemma A6 on the intervals [0,7] and
[r, 1]. Therefore, L[Q,y] < L[Q +1,y] = G[y] £ C and thus M, < C.

3. Let now 0 > a > —1/2. We will use the same function y(z) as above, in
s.2. Let p =2a/(e — 1). Then 0 < p < 2/3. Using Lemma A6, as above, we
obtain that

1
/0 Y (@)%dz > C >0

and therefore, M, < C~1.
4. Leta<~1/2and e € (0! 1/10). Let

e~Ve(l—g)Ve, f0<z <5,
Q) = { (1—g)Veella ife<z <1,

so that

/01 Q(z)"dz = 1.

Since
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1 £ 1
! 2 < 22 " 2 _ ~\2 " 2
[ v@rdz<e [ y@rdz+1-ef [y de
= (1 _ E)—l/a62+1/a ./8 Q(z)y”($)2d$
0
1
+(1 _ E)2+l/as—-l/a/ Q(a:)y”(:r)zd:r
1
<2 [ Q)" (@)ds,
a
where v = min(2 + 1/a, —1/a) > 0, we obtain that
M, >e77/2
and therefore M, = co.
5. Consider now the case when a« = —1/2. Put
Q(z) = max(z?/e?, 6%/?),
where § = exp(1 ~ 1/¢). Remark that
1 1
| e@y iz =5 s/6+/6 ¢/zdz = —elné = 1.

On the other hand, the well-known estimate

1 1
| v@rdz<4 [ oy ey,
0 0
valid for all functions 3 € W}(0,1), vanishing at 0, implies that

[ v@rz <48 [y (@rda+4 [ 2y (o

<4¢ [ Q@)

It means that |
Q@ (@)

1
el [ly(z)ldz  © 4e?

4e?’

2

so that M, = oo.
6. Let a < —1. By the Holder inequality
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1 1 )
-/; |y”(:c)|”d.7: < (-/0 Q(m)yfr(m)de)P/Z(/(; Q(z)adz)l/(l—a)’
where p = 2a/(a — 1). Since p > 1, the inequality

[ v@ra < [([wora < ([ wol? < opa

holds for all functions ¥ € H, and thus m, > 1.

7. If @ > 0, then we can take a function y vanishing in [0, 1/2] and such that
Ji ¥"*dz = 1. Since the function Q can have arbitrarily small values in [1/2, 1],
the value of m, is equal to 0.

8. Let 0 > a > —1. Let us show that in this case m, = 0. Put for that

2z, if 0 <z <e,
y(z) =1 2, ife<xr<1/2—g¢,
(1-2z), ifl/2—e<z<1/2,

or|lr—1/2]>1/2—¢/4,
(1 —g)~Yegl/=  for other z.

If y(0) = 0, the function y is defined for 0 € z < 1/2. Let us put now
y(z) = —y(1 — x) for z € (1/2,1). It is easy to see that

e~V (1 —g)l/, if |z —1/2| <e/4
-]

[ Q@rdz=1; [ Q@' @ids=4e=/"(1 ~ o),
0 0

fol J(€)dz =0, /01 o' (2)2dz = 166%/3 + 4e2(1 — ).

Therefore,
1 ()2
o < BA@V@Pds _ 1oy
Jo y'(z)?dz
and since —1 — 1/a > 0, the value of m, is equal to zero. O
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6.3. Precise results

Now we consider the question on the attainability of the extremal values
of the functional L.

Theorem 15. If a < —1, then there ezist a function y € H and a function ¢
satisfying (1), such that '

A2+l a+lyt-ya 111,
LQul=ma==="—(57)  BGz+5)"

where B is the Euler function.
If1>a>-1/2, a#0, then there exist a function yo € H and a function
Q satisfying (1), such that
inf L(Q, ] = L(Q, 0] = Mo

Furthermore, if @ 2> 1, then

Ma

420+ 1)/ 14+ a \1-1/ 11 1
< T ()

- - _2
a 142 2’2+2a)'

If0 <a <1, then

(2&-{-1)(1—{-01)1-1/::31 1 1
a 1+ 2«

If -1/2 < a <0, then

2004+1,1+ 1-1/a , f® dt 2
R .

Remark 16. In particular, in the classical Lagrange problem with o = 1/2
the optimal function Q(z) is defined on (0, 1) in the parametric form as follows

M,=4

T = (2t + sin2t) /47, Q(z) = 16cos*t/9; 0 < t < 2.

The optimal value M = 167*/3 has been indicated by Keller-Tadjbaksh in [3].
The optimal column has two points at which Q(x) vanishes.

Remark also that we don’t know the sharp value of M, if @ > 1 and cannot
prove that the optimal functions @, o do exist in this case.

42



Corollary 17. Ifp=1, then m = 16.
Proof. For all ¥ € K, and p > 1 we have

m [y < ([ 1 @)Pazy”,

and lim, ;40 m = 16. Therefore, m > 16. On the other hand, putting y(z) = 1
fore <z <1/2—¢,ylz)=-1for1/2+e <z < 1—¢, y(z) = z/e for
O<z<e ylx)=(1/2-z)/efor1/2—e<zx<1/2+¢eand y(z)=(x—1)/¢
for 1 —e <z < 1, we can see that

1 1
| v@rds=1-82/3, [ 1y/(z)lds = 4

and so m = 16. |
In the same way one can prove the following

Corollary 18. If‘p = 00, then m = lim,_., m(p) = 48. The estimate is
realized by the function y, equal to 1/4 — |z — 1/4| for 0 < z < 1/2 and to
|z —3/4| —1/4 for1/2 <z < 1.

Corollary 19. Let —1/2 < a < 1,a # 0 and 2(z) = y(z) for 0 < z < 1/2,
2(z) = —yo(z—1/2) for 1/2 < z < 1, where yo is the function found in Lemmas
A5 and A6 forr =1/2 and p=20/(a —1). Put Q(z) = |Z(z)|¥*~V. Then

Qz)=Q(l-z)for0<z <1, Qz)=Q(1/2—z)for0 <z < 1/2,

Q(z) = clz — 1/4|"[1 + o(1)] as z — 1/4,
Q(z) = clz — 3/4["[1 4+ 0(1)] as z — 3/4,
where v =2/(a+1) €]1,2[ iffa >0 and y=2 if a < 0.
Lemma 20. Let 0 < o < 1 and Q(z) be the function found in Corollary 19.
Let
' Q(z)y (z)dz
™= uellflg(o.l) s ?J(y’)(:y;)(zdzr '

Then my = m, where m was indicated in Theorem 15. The minimal value is
attained on the function y, that is equal to [ z(t)dt.

Proof. Consider the minimizing sequence yx(z) such that f; vi(z)%dz = 1,

then the integrals fo/*™*4/(x)%dz , |} //:_: Yi(z)?dz and [54, vk (z)%dz are
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bounded and one can choose a subsequence converging almost everywhere in
(0,1/4—¢), (1/4+€,3/4—e) and (3/4+€,1) in H! and weakly in H2(0,1/4—¢),
H?*(1/4 +€,3/4 —€) and H?(3/4 +¢,1). Using the diagonalization, one can
find a subsequence converging almost everywhere in (0, 1) to ¥, (z).

Let us show that

1/4—¢ , 2 3/4—¢ , 9 o
< v
Joo, i@Pde+ [ i@ da<e ©)

/4—¢

with a constant C independent of € and k. Indeed, using the equality

[a—e
w-a= [ @,

we see that
, 1/d—¢ _
w/a-o< [ Qe s [ Q) e < Gt

Since f:"//:ﬂ‘yi(a:)zda: < 1, there exists a 6 €]1/4 + £,3/4 — €[ such that
yL(Bk) ( 2 a.nd

(/4 +er s 4+ [T QuEptaras [ Q@ in < g
Analogously, we have
v(3/4—€)? < Cie' ™, 4i(3/4+€)* < Cre' .
If1/4—e <z <1/4, then
Y(2)* < 2(1/4 - €)?
+f Q@) d f Q(z)~'dz < Cae'™

and therefore,

1/4 ! 2 1
/ Ye(z)*dz < Cie™ .

1/4—¢

So (9) is valid. Since we can assume that y;(z) converge uniformly to ¥(x)
outside of e-neighbourhood of the points 1/4 and 3/4 we see that
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Then ) ' :
| vi@rde =1, [ Qi@)?dz < mi.

However, m, is the minimal possible value of the latter integral. Therefore,
Jo Q(z)y"(z)%dz = m,. The function y, satisfies the equation

Q)Y ()" + myi(z) =0,

1(0) = 0, #1(0) = 0, v:i(1) = 0, %(1) = 0. The function z(z) = y(z) +
¥1(1 — z) is also minimizing, if it does not vanish identically.
If z(z) # 0, then it is even and

Q(z)z"(z) + miz = C.

Using Lemma A9 we see that C = m,2(1/4) = m,2(3/4). Put u = 2z — z(1/4).
Then
Qz)u" + mu =0, u(1/4) =u(3/4) = 0.

On the other hand, if v = yo(z) — y0(1/4), then
Qz)v" + mv =0, v(1/4) = v(3/4) =0

and v > 0 in (1/4,3/4). If u vanishes in (1/4,3/4), then by the Sturm’s
theorem, m, > m, what is impossible. If u does not vanish in (1/4,3/4), then
we obtain using Lemma A9 that

3/4 _
(my—m) [ Zdz = (u'v - )Y =0

/4 @

and m; = m.
If z(z) = 0, then ¥, is odd and

Q)y{ (z) + my = Az — 1/2),

where A is a constant. Applying Lemma A9, we see that A = —4m,y1(1/4).
Putting u(z) = y(z) — A(z — 1/2)/m,, we obtain that

Qu" +myu = 0.

Moreover, u(1/4) = u(1/2) = u(3/4) = 0. Applying once again the Sturm’s
theorem, we see that m; > m, what is impossible. O
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Lemma 21. Let —1/2 <'a < 0 and Q(z) be the function found in Corﬁllary

19. Let . g
e g 8@
veHi(0,) [y ¥'(z)%dx
Then m, = m, where m was indicated in Theorem 15. The minimal value is
attained on the function yo that is equal to [§ z(t)dt.

Proof. Let H be the space of the functions y which are absolutely continuous
in0,1/4—¢[,]1/4+¢€,3/4 —¢[, ]3/4 +¢,1] for any € > 0 and such that

ve Lo, [ eEyere+ [ Qe

+ f3 :4 Q(z)y' (z)*dz < oo, /0 l y(z)dz =0, y(0) = y(1) =0.

It is easy to see that H is a Hilbert space.

Let us show that for 4 € H there exists a sequence z — 1/4 such that
Quy'(ze) — 0. If it is not so, then there exists a constant ¢ > 0 such that
Quy(z) > cfor 1/4 —~¢ < z < 1/4. Then |yy/(z)] > c,(1/4 — z)~? and
therefore, |y(z)| > c2(1/4 — z)~*, ¢z > 0. However, it contradicts to the
condition that y € L2(0,1). One can also find similar sequences converging to
1/44+0,3/4-0,3/4+0.

The norm in H can be defined as

it = [ Q@@ + [ Qe @is + [ Qaly/@da.

Indeed, if ||y|l = 0, then ¢/(z) = 0 and y = C on each of the intervals (0,1/4),
(1/4,3/4) and (3/4,1). Since y(0) = y(1) = 0 we see that y(z) = 0 in (0, 1/4)
and (3/4,1). Since [, y(z)dz = 0, there exists a 8 € (1/4,3/4) such that
y(8) = 0 so that y(z) =0 in (0,1).
Let us verify that
I¥lza < Clylhe (10)

-Indeed, by the Hardy inequality we have
1/4 1/4 1/4
| v < [T @1/ @ds < [T Qe (2)de,
! 2 ! 2,1 2 ! 2
[ y@idesaf @3/ @< [ Q@) () s
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If ¥ vanishes at a point 8 € (1/4,3/4), then the same inequalities are valid in
the intervals (1/4,6) and (0, 3/4). Otherwise,

L @iz < [M @ik + [ @i

<12(f " W@Pa + [ u@)Pdn)

<Vl Qi @P) "+ || Q@Y @)

and there is a point § € (1/4,3/4) such that

WP <20(f " Q@I @Fda+ || Q@) @)

Since

[P @ -voresc [ Qe @
1/4 y y = " Jiya '
we obtain that

[ we@ra<a [ ey @i

and (10) is proved.

Let us verify that the operator A defined in HNH?(0, 1) as Ay = —(Q(z)y'Y
is closed in Ly(0,1). Let yx — y, Ayx — v in Ly(0,1). The equation Au =v
has a solution u € H since v € Lg(0,1). It follows from the Riesz theorem and
(10).

Applying (10) we see that

e = ullLaony < Cllye — ulln = CllA(ye — Wl 2oy = CllAyk — vl a0)

and therefore, ||yx — ulj1a0,1) € 0 so that u = y.

On the other hand, if Au = 0,u € H, then (10) implies that u = 0.
Therefore, the operator A is self-adjoint.

If my < m, then there exists a function » € H such that (Av,v) < m(v,v).
However, then there exists an eigen-function u such that

Au= Dy, ueH, A<m.
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So we have
(Qz)) + =0, (Q(z)2) + mz=0.

Since the mean value of u vanishes, there exists x4 €]0, 1[ such that u(zy) = 0.
We may assume that 0 < o < 1/2 and u(z) > 0 on ]0,zo[. Multiplying the
first equation by 2, the second by y and integrating the difference over )0, zo|,
we see that '

(QN(2)2(z) - Q@@)Z NI + (A - m) [~ u(@)z(z)dz =0,

If o > 1/4, we have used here the vanishing of the functions Qu'z and Quz’
at z = 1/4. On the other hand,

2(0) = u(0) = u(zy) = 0, u(z0) < 0, 2(z0) > 0,

so that Zo
(A = m) jo u(z)z(z)dz > 0.

Since u(z)z(z) > 0 on ]0,zo[, we obtain that A > m in contradiction to our
assumption. Therefore, m; = m and the proof is complete. a

Proof of Theorem 15. Let @ be an arbitrary positive function, satisfying
(6).
Let at first o < —1. Then by the Hoélder inequality

[ @ @idz > ([ W @Pdzy([ Q@) da)re,

" where p = 2a/(a — 1),2 > p > 1. Therefore, L[@,y] > G[y]. Lemma A13

implies the existence of the function yo € W2(0, 1) satisfying the conditions

[ e @ra=1, Gy < Gly)

for all y € WZ,(0,1) such that [ [y”(z){Pdz = 1 and the value of m is also
indicated in Lemma A13. Therefore, we have m = mq = L[Q, 3], if Q(z) =
lya|#/(>=1_If p = 1, the optimal functions Q and y do not exist, but the value
of m was indicated in Corollary 17.

Now let @ > —1/2,a # 0. Then by Lemma A12 there exists a function
yq(z) such that Q(z) = |y51¥*Y, so that L[Q,yq] = Glyy] and therefore,
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M, < m. On the other hand, we have the equality L{Qo,%)] = Glyl, if
Qo(z) = | (x)|¥ @V and yp is equal to JF z(t)dt, where z is the function
indicated in Corollary 19. If —1/2 < @ < 0 or 0 < a < 1, then by Lemmas 20
and 21 we have

e B Qo (5

= = L[Qo, 10].
T vere
The proof is complete. ' O

7. Appendix. Technical Lemmas
Lemma Al. Let p be a real number, p < 2/3, p# 0. Then the function

F(z,y) = 2Py P 4+ 1 - 2)P(1-y)>?, 0<2<1,0<y< 1

has the minimal value Fipin = 1/4 atz =y = 1/2.
Proof. Remark that among two exponents 2/p and 3 — 2/p one is always
positive and another is negative. Let for definiteviness p < 0. Then for y # 0,1

Jim F(z,y) = +o0, lim F(z,y) = +oco.

If y = 0, then F(z,0) = (1—z)*? > 1 and for y = 1 we have F(z,1) = 2%/? > 1,
Therefore, the values of F' on the boundary of the square are > 1.
If z < 8,y < 6, then

F(z,y) 2 (1 = 2)P(1 — y)* P 2 (1 - 2)*P 2 (1 - §)*Pforp > 0,

F(z,y) > (1 - 2P (1 —y)* P > (1-9)> P 2 (1-6)**Plorp <0,

and therefore F(z,y) > 3/4, if § is small enough. On the other hand, we have
F(1/2,1/2) = 1/4.

The same is true for a small neighbourhood of the points (0, 1), (1,0) and
(1,1).

Therefore, the function F' has an inner minimum point (zo,%). We have
at this point

OF (w0, y0)/0z = 2/plzs™ 'y /% — (1 — mo)/* (1 — o) ¥7] = 0
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OF(z0,30)/0y = (3 — 2/p) e Pye~ /" — (1 — o) ¥P(1 - yo)*~*7] = 0.
Then
mgfp—lyg-i’/p — (1 _ IO)Q/p—l(l _ y0)3—2/p,

276~ = (1= zo)P(1 - o). (1)
Dividing term by term these equalities we obtain that

Yo/zo = (1 - z0)/(1 - y0),
i.e. o = 3. Then (1) implies that 22 = (1 — z,)? and thus zo = 1/2. (|

Lemma A2. Let p be a negative number. Then for all functions y € Ky(0, h)
the following estimate is valid:

(f vi@rda)e < ([ ya)da)

Proof. Let at first h = 1, [} 4/(z)’dz = 1. Then fol/zy’(:z:)”d.'z <1l Let E
be the subset of points z in [0,1/2] such that 3/(z) > 4!/P and u its measure.
Then obviously

1> 4(1/2 - ,U.),

i.e. u > 1/4. Therefore,

w122 [ v@d> [ @)z > 2571

Since y is increasing, we have y(z) > 4/7~! for z > 1/2. Then

1 1
_/ y(z)dz > f y(z)dz > 417732,
0 1/2

Therefore,

1 1 1
(f) v (@pdz)/e < £/ [ y(@)dz < 42720( [ 4 ()do)
0 ' 0 o
Let h # 1 and y € Kp(0,h). Then the function z(z) = y(hz) € Kp(0,h)
and we can apply the proved estimate to the function z,s0 that

('/: z’(I)pda:)]/P < 43/2—1/1.7(/01 zQ(x)d:x:)‘/z.
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Thus R - X
(/0 y’(m)Pdm)lfp < (4/h)3/2-1,’P(/0 yz(;)dx)lfz

and the proof is complete. O

Lemma A3. Let p be e real number, 0 < p < 2/3. Then there exists a
constant C = C(p) independent of y and h such that

([ varn < Comm[ yafin)', y € Ky(0,h)

Proof. Let at first A = 1, J; ¥/(z)Pdz = 1. Then there is a point ¢, € (0,1)
such that

[ vapis= [ yapi=1s

By the Hélder inequality we have

1/2 < ( fo " (@) - 1P,

Therefore,
1/2 S y(t)? - 177 <y(ta)

and y(x) > 2-'/? for £ > t,. By the Holder inequality
1

/2= [ §@Py Pz
o}

! ’ 2-2/p P ! 2 1-p ! 2 l1-p
< ([ ¥ @) rdap(| y(=)de) < Gy [ y(e)dz)' 7,
where C, = p2(3-%)/? /(2 — 3p). Thus for p < 2/3 we have

1
| @z > e e,

that gives the result with C = (2C,)!/(1-P,

If [, ¥/(z)Pdx = I # 1, then one can take instead of the function y(z) the
function y(z)I~'/?. If h s 1, one can apply the obtained inequality to the
function y(zh). O

Remark that the constants in the estimates in Lemmas A2 and A3 are not
the best possible. The exact constants are indicated in Lemmas A5 and A6
below.
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Lemma A4, Letp<2/3, p#0, 0<r <1. Let

my = sup sup Glyl,
h€E(0,r) yEKp(0,h,r)

where . \
o) = B @Pdae
Jo y(z)dz
Then there exists a constant Cy independent of r such that m, < C r?/?P-3,

Proof. Let at first r = 1. By Lemmas A2 and A3 we have for y € K,(0,h,7)
the inequalities

w2l ([ @Pane < C [ yeyds,

(-2 [ (@) < C [ yizyas,

where the value of C, corresponding to h = 1, was found in Lemmas 1 and 2.
Let [ o/(z)Pdz = 1 and [}/ (z)?dz = a. Then

1
QPR 4 (1 - @)P(1 = b < C [ y()’d.
By Lemma A1l the function F(a, h) = a*Ph3-%/? 4 (1 —a)?/P(1— h)*~%? defined

in the square 0 < a < 1, 0 < A < 1 has the minimal value 1/4 at the point
a = h = 1/2. Therefore,

C /0 @)z > 1/4,

i.e. Gly] £ 4C for all admissible y. In order to obtain the result for an arbitrary
7 it suffices to substitute the function y(z) by y(zr). O

Lemma A35. Let 0 <p <2/3 and m = sup,ex,on) Gy]- Then

. (2—2p\2/p 2 2fp-af [® dt 2
and there exists a function yo(z) € Kp(0,h) such that Gy] = m. Besides, as
z — h we have

vo(z) = c1(h = 2)"PI(1 + 0(1)), yo(z) = calh — ) PI[1 + o(1)].
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Proof. Let at first A = 1 and {y:} be such a sequence of functions of K,(0,1)
that f} y,(z)?dz = 1 and Gly] — m.

Let us show that we can assume all functions 3 be smooth. Let y €
K,(0,1). Let us define y on the whole line putting y,(z) = 0 for z < 0,
y(z) =y(x) for 0 <z <1—¢and y1(z) = y(1 — €) for z > 1 — &. Obviously
JHn(z) — y(z)|*dz — 0 as € — 0 and [}, |/ (x)Pdz — 0, as € — 0. It allows
to assume that ¥, are bounded functions.

Let now y € K,(0,1) and 0 < y(z) < C. Then [} |/(z)|dz = y(h) < C.
Put zx(z) = ye(z) — y(0), where y; is the averaging of y with a positive kernel -
such that

ye(z) = k / K(k(z - £)y(t)dt, / K(tdt=1, K(t) >0, K € C(=1,1).

Remark that Jy(0)] < 6 — 0 as k — 00, so that zi converge to y(z) uniformly,
z;.(x) > 0 and

[ 1) - v@Pdz 0, [ i) -/ (@)ldz 0.
We have ; .
[ 1)~y @)Pdz < ([ 140 - ¥ @)ldzp,
The elementary inequality

[aP - | < |la - bJP,

valid for all a,b such that a > 0,b > 0, implies that fy z(z)Pdx — Jy ¥ (z)Pdz.
This allows us to assume that all 7, are smooth functions.

We will call a function y convez, if its derivative is decreasing, and concave,
if its derivative is increasing.

Let us show that if yx is convex in an interval {z;,z;), where 0 € z; <
z2 < 1, then it is possible to substitute it by the linear function

2(z) = ye(z1) + ¥(z — 21), where ¥ = [yx(z2) — w(@1)]/ (22 — 1)

and the value of G[z] is bigger than G[ys].
Indeed we have yx(z1) = 2(z1), ye(x2) = 2(x2) and

I3 &)
[ w2 [ a2

1 ]
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[ hierds < ([T hi@dor( [ dzy'

= ’rp(.’rg - :Cl) = ./::2 Z’(,’I;)pdx.

If z coincides with yx outside the interval (z1, z2), then G[z] > Glyx].

We can do the same for all other intervals where yj is convex. As the result
we shall obtain the function z, that can be described in the following way.
Consider the set of points (z,y) such that 0 < z < 1 and y > yx(x), and take
the convex hull of this set. The lower boundary of the hull serves as the graph
of the function 2. Let us show that z, € C'(0,1). Indeed, if a point = belongs
to an interval of the straight line, then it is obvious that zx is smooth at this
point. The same is true in the case when the point (z, zx(z)) belongs to a part
of the graph of the function y,. If z; is linear on one side of z and coincides
with g, on the other side, then z; is regular at z since its graph is lying on one
side of the straight line, obtaining by the continuation of the linear function.
At last, if the point (z,2:(z)) is a limit point for a sequence of such points,
then it is also a limit point for a sequence of points belonging to the graph of
yx and the derivative z;(z) exists.

Therefore, if one changes every function y, by a concave function z in the
indicated way, then the sequence of new functions will be maximizing. It allows
us to consider as maximizing the sequences of increasing concave functions, i.e.
to suppose that the functions yx(z) and their derivatives y,(x) are increasing.

For large k we have

1
/(; y(z)dr <m™'+ 1.

Let € > 0 be small enough. There is a point 8 € (1—¢, 1) such that |yx(0s)]? <
(m~'+1)e~1. Since the functions y, are monotone, they are uniformly bounded
for0<z<1-e

Analogously, we can deduce from the equality [, v,(z)Pdx = 1 that the
sequence {y(z)} is uniformly bounded in [0,1 — €]. By the Arzela theorem
one can choose the uniformly converging subsequence {yn,(z)}, and by Helly
theorem one can suppose that the subsequence {3, (z)} converges everywhere
in [0,1 — g]. Using the diagonalization, one can find a subsequence converging
to a function yo € Kp(0,h) such that the sequence of the first derivatives
converges almost everywhere in {0,1) and y, satisfies the Lipschitz condition
on the interval [0,1 — €] for any &€ > 0. Using Lemma A3 one can conclude
that
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([ vh(@pdz)'p < CeMo=02,
l-«
where C is independent of k and since 1/p — 3/2 > 0, we obtain that
1

fo Y(z)Pdz = 1.
Besides, we have

! 2

/{; w(z)idz < m~L.
Since this integral cannot be less than m~!, we see that f; yo(z)?dz = m~".
If y5(ze) > 0, then yy(z) > 0,y0(z) > 0 for all z > zo. Let us assume at

first that y4(z) > 0 for £ > 0. Then one can consider the values of Glyo + t2]
for any z € H}(0,1). These values are minimal for ¢t = 0 and hence

%G[yg +1tz] =0, if t =0.
It gives the Euler-Lagrange equation of the form

&Y + myo =0,
so that

(p— Dyd 'yo + myoyp =0

or

y[!)p - mlyg = Cs
where m; = —mp/[2(p — 1)] > 0. Integrating this equality over (0,1), we
obtain that
C=1-mm'=1+p/2(p—1)>0.

Therefore,

/’v dz —
o (C+muz?)ir ™
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We have for any ¢ € Kp(0,1) the equality

1
/o (%)~ ()¢ (z) — myo(z)p(z))dz = 0.
If o(z) =1for 1 —e <z < 1, then the integrating by parts gives the equality
1yp—-1 !
W) (1 = &)p(L — &) —m [ yo(z)p(a)dz = 0.
Tending € to zero, we obtain that (1) = co. The equality y§ — m32 = C

yields that 34(1) = oo, too.
Therefore

/'°° dz ~1
o (C+mz?)ir
Let z = (C/m,)"/?t so that

= dt — Cl/p—l/z 1/2 _ (2 - 3p) 1/P~°1/2p1/2m1/2
[0 m - m, = o)
and therefore
12 _ (2 — 2p)/r

/w dt
- p1/2(2 _ 3p)1/p—1/2 o (1 + t‘z)l/p'

If yo(z) =0 for 0 < z < zo and y(z) > 0 for x > zo, then m = Cy(1 —
z0)!/P~3/2, where C, does not depend on z, and therefore the optimal value of
Zo is equal to 0. Remark that

/00 dz =1-uz.
Yo (C + mlzz)‘/?’
Thereforé for big values of 3 we have
w (1 +0o(1) = Ci(1 - ),
that implies that yo(z) = A(1 — z)"[1 + o(1)] with v = p/(p— 2) < 0.

In order to find the value m for an arbitrary h > 0 it suffices to substutute
in the obtained estimate the function yo(zh). O

Lemma A6. Let p <0 and m = supyex, o, Gyl Then
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]. 2—2p le 2 2/p—
=(—= — 2)R*P-3B(1/2,1 - 1/p)?
m=1(3=5,) ©-32) (1/2,1~1/p)
and there exists a function yo € K,(0,h) such that Glyo] = m. Moreover, as
z — h we have

%(z) = yo(h) +c1(h = 2P/ V[L+ 0(1)], %5(z) = ca(h ~ 2)/E7V{L + 0(1)].

Proof. Let at first A =1 and {yx} be such a sequence of functions in K that
Jo ¥i(z)’dz = 1 and Glyi] — m. In virtue of Lemma A2 the value of m is
finite and positive. '

Let us show that we can assume all functions y. be smooth. Let y €
K»(0,1). Let us define y on the whole line putting y,(z) = 0 for z < 0,
y(z) =y for0 <z <l—cand y(z) =yl —e) + e VP(x - 1 +¢)
for £ > 1 — ¢, and put ux(z) = y(x) + exz, where & — 0 as k — oo.
Obviously fy |ux(z) —y(z)|?dz — 0 and by Lebesgue theorem, f | (z)|Pdx —
3 W/ (z)|Pdz. So we can assume that y,(z) > & > 0.

Let now y € K;(0,1) and ¥/ (z) > € > 0. Put 2x(z) = yx(z) — yn(0), where
Yk i8 the averaging of y with a positive kernel so that

() = k [ Kkl - 00, [ KOd=1,K©) 20, K € GR(-1,1).

Remark that |yx(0)| < éx — 0 as k — o0 so that 2 converge to y(z) uniformly
and

.[:.l |zk(z) — y(2)[*dz — 0, /0 @) - Y @)ldz — 0.

Therefore, a subsequence 2, converges to /() almost everywhere and 2, (z)”
converges to y'(z)? almost everywhere. Since 0 < y{z) < Cfor0 <z <1
and y/(z) > 0, we see that fj |v/(z)|dxr < C. Since |27, |P < €P, we have by the
Lebesgue theorem Jy 2., (z)?dz — fy /(z)Pdz. This allows us to assume that
all yx are smooth functions.

If yx is convex in an interval (z(,z;), where 0 < z;, € z, < 1, then it is
possible to substitute it by the linear function

z(z) = ye(z1) + v(x — 1), where v = [ye(z2) — ye(z1)]/ (@2 — T1)

so that the value of the functional G will increase.
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Then yi(z1) = 2(z1), ye(z2) = 2(zp) and

T3 I3
f we(z)dz > [ z2(z)%dz.
I

I

On the other hand, by the Hélder inequality
T3
m—ai= [ YO PPz
]

< (E’ yﬁ,(z)d:r)’/(”'l)(_[u:g yi(:c)pda:)lf(“”.)

and therefore,

[ hiapde 2 ([ sh@)dzp (e - 2)'7

= [yr(z2) — ye(z1) P (22 — 1) 7"
Since

.[: Z(z)Pdz = ¥*(z2 — T,) = [ye(z2) — ye(z1)]P (22 — 1)} 7P,

we see that G{z] > Gy, if z coincides with g, outside the interval (z:, z2).

We can do the same for all other intervals where y; is convex. As the result
we shall obtain the function z; that can be described in the following way.
Consider the set of points (z,y) such that 0 <z < 1 and y > yx(z), and take
the convex hull of this set. The lower boundary of the hull serves as the graph
of the function 2. Let us show that 2z, € C'(0,1). Indeed, if a point = belongs
to an interval of the straight line, then it is obvious that z; is smooth at this
point. The same is true in the case when the point (z, zx(x)) belongs to a part
of the graph of the function yi. If z; is linear on one side of = and coincides
with g on the other side, then z is regular at z since its graph is lying on one
side of the straight line, obtaining by the continuation of the linear function.
At last, if the point (z,2x(z)) is a limit point for a sequence of such points,
then it is also a limit point for a sequence of points belonging to the graph of
yx and the derivative z,(z) exists.

Therefore, if one changes every function y, by a concave function zx in the
indicated way, then the sequence of these new functions z; will be maximiz-
ing, too. It allows us to consider the maximizing sequence as a sequence of
monotone concave functions, i.e. to suppose that the functions yx(z) and their
derivatives y;(z) are increasing.
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For large k we have
1
.[o ye(z)’de <m~ '+ 1.

Let € > 0 be small enough. There is a point 8 € (1 ¢, 1) such that Jyx(fx)]> <
(m~'+1)e~!. Since the functions y, are monotone, they are uniformly bounded
for0 <z <1—e¢. It yields

l-e
. <
J h@dzs<C

with a constant C independent of k. Therefore, there exists a 0) such that
1 -2 < 6 <1—¢ and 4.(0c) < C/e. Therefore the sequence {y.(z)} is
uniformly bounded in [0, 1—2¢]. Since J; ¥ (z)Pdz = 1 there exists a §; € (0,¢)
such that |y (z)?(6%)| < 1/e and therefore |y, (z)?] <1l/efore <z <1 -—2e.

By the Arzela theorem one can choose the uniformly in [e, 1—2¢] converging
subsequence {yn,(z)}, and by Helly theorem one can suppose that the sequence
{y5, ()} converges almost everywhere in [g, 1 — 2¢]. Using the diagonalization,
one can find a subsequence converging in (0, 1) to a function 3 € Kp(0, 1) such
that

Yne = Yor Yo = U0
everywhere in (0,1). By the Fatou theorem we have

1 1
2 -1 ! P
'/(; Yyo(z)*dz < m™', _/0 vo(z)Pdz < 1.

Therefore,

([ vhiapdz)™ 21,

so that G[yo] > m. However, m is the maximal possible value of G, so that
Jo yo(z)%dz = m~! and fj yh(z)Pdz = 1.
The Euler-Lagrange equation has the form

@& +myo =0, 4(0) =0
so that
(- Dyd 'vh + myoyp = 0
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or

yg, + mlyg = Cs
where m; = mp/[2(p - 1)] > 0. Integrating this equality over (0, 1), we obtain
that _
C=1l+mm'=14+p/2(p-1)>0.

Therefore,

/‘VO dz —

o (C—m2)r ™

Repeating the same arguments as in the proof of the preceding Lemma, we
obtain that 1)(1) = co. Let M = maxyo(z) = yo(1). Then M2m; =C, i.e.

a-rld.

/‘M dz =1
o (C—m2)ir
Let z = (C/my)"?t so that

]1 d  _ =12V _ (2 - 3p) /2~ 1/3(—pm)'/2
o (1—1t2)l/r ! (2 - 2p)i/p ’

and therefore

1/p
™= s sy A 2 T )
Since
fM dz 1oy
w (C—m2?)ir ,

we can see that as z — 1 that yo(z) = M + ci(z — 1)"[1 + o(1)], where

v=p/lp—1).
In order to find the value m for any h > 0 it suffices to substutute in the
obtained estimate the function yo(zh). 0

Lemma A7. Letp < 2/3, p# 0, 0 <r <1 and my = supyek, o) G-
Then there is a function yo € K, (0, h,r) such that yo(z) = yo(r — z), Glw] =
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my and m; = 4mr¥P=3, where the value of m was indicated in Lemmas A4
and A6 for h=1.

Proof. Let at first r = 1. The existence of the extremal function for any fixed
he [O 1] follows from Lemmas A4 and A6. Furthermore, we can suppose that
y(z) is monotone and concave in [0, k] and in [k, 1}.

By Lemmas A4 and A6 we have for y € K,(0, h,1) the inequalities

W=l @Pdzy < m [ y(e)da

1 1
— R)3-2/p Pir)2/P < 2
(- w*22([ Wy @) Pds? <m [ y(o)dz,
where the value of m, corresponding to h = 1, was found in Lemmas A4 and
A6. Let f) |y (z)|Pdz =1 and ) |3/(z)[Pdz = a. Then
1
a?PR3-P (1 — g)*P(1 — h)*¥P < m/ y(z)*dz.
0

By Lemma A1 the function F(a, h) = a¥Ph3-2/P 4 (1 —a)*/P(1~ h)*>%? defined
in the square 0 < a < 1, 0 < A < 1 has the minimal value 1/4 at the point
a = h = 1/2. Therefore,

[ v@dz 2 1/4m,

i.e. Gly] £ 4m for all admissible y. On the other hand, if a = h = 1/2 and
if the function y coincides on (0, 1/2) with the function 3o, found in Lemmas
31 and A6 for h = 1/2, and is odd with respect to the point z = 1/2, then
Gly] = 4m.

In order to obtain the result for an arbitrary r it suffices to substitute the
function y(z) by y(zr). O

Lemma A8. Let p(z) be a smooth positive function on [0,d|, such that
: _ - __ / = —_ N1
lim p(z)(z =a, p(z)=0((z-d)™),

where 1 < v < 2. Let y(z) be a solution of the equation

()Y +my(z) =0, 0 <z < d,
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such that P

[ pa)y @)z < oo.
Then

lim p(z)y(2)y'(z) = 0.

Moreover, we have as T — d—

y(z) =1+ 0(1)),

y(z) = (d - z)'"77(C +0(1)),
ifl <y <2 and
y(z) = (d — z)*(C + o(1)),
y(z) = (d—2)*"(pC +0(1)),
ify=2 withp>—-1/2.
Proof. Put Ify] = [ p(z)y/ (z)%dz.

If 1 <« < 2, then by solving the Cauchy problem we can find two linearly
independent solutions y(z) and z(z) such that as z — d—

. m
T a(2-9)

m
B-2M2-7
However 2'(z) = (d—z)'~"(m/a+o0(1)) and the integral I[z] = [§ Q(z)7'(z)%dz
is divergent. So the solution with a finite value of I is proportional to y and

pyy’ vanishes at z = d.
If v = 2, the corresponding solutions have the form

y@)=1+cd-—2)¥"+..., a

2@)=d-2)"""+ad-z) T +..., 0= -

y(z) = (d—z)"(1 +0(1)), z(z} = (d - 2)™(1 + (1)),
where «; are the different roots of the characteristic equation

ak(k+1)+m=0

1 1 m
= —— 1/— - —
1.2 2 4 a
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If 4m > a, then the both roots are complex and Re 15 = —3. The integrals
I[y] and I[z] are divergent. If 4m < a, then the both roots are real, the integral
Ify] is finite but I[2] is divergent. We have pyy'(d) = 0.

At last, if k) = kg, i.e. @ = 4m, the solutions have the form

y(z) = (d - )" /*[1 + o(1)], 2(z) = (d - z)7/*In(d - )[1 + o(1)},

so that the both integrals I[y] and I[z] are divergent.
Therefore, if v = 2 and I{y] is finite then 4m < a and the function pyy’
vanishes at z = d. a.

Lemma A9. Let Q(z) be a smooth positive function on [0,d[, such that
lim Q(z)(d - z)"" =a #0,
where 1 < v < 2. Let y(x) be a solution of the equation
Q@)Y (z) + my(z)=0,0<z <d,
such that

/Od Q(z)y"(z)%dz < 0.

Then
lim y(z) = 0, lim y(z)y/(z) = 0.

Moreover, we have as x — d—
y(@) = Cld -z +ai(d - 2)*77(1 +o(1))],

¥ (z) =C[-1+ (3= )(d—2)*7"(1 + o(1))],
¥'(@) =Ca(3-7)2—7)(d-z)'""(1 +0(1))

ifl <y <2and
y(z) = (d—z2)*(C +o(1))],

¥(z) = (d - 2)""(eC +o(1)),
y'(@) = (d - z)*(plp — 1)C +0(1)),
ify=2 withp>1/2.
Proof. Put I[y] = & Q(z)y"(z)*dz.
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If 1 <« < 2, then by solving the Cauchy problem we can find two linearly
independent solutions y(z) and 2(x) such that as x — d—

=d— ad—z* " +...,a= ik ;

yr)=d—-z+cad-2)7"+..., ¢ B
2y _ m

z2(x) =1+ c(d — z) +""62_a(2—f7)(1—7)'

However z”(z) = (d—z)~7(m/a+o0(1)) and the integral I[z] = & Q(z)2"(z)%dz
is divergent. So the solution with a finite value of I is proportional to y and
vanishes at z = d.

If v = 2, the corresponding solutions have the form

y(z) = (d— )" (1 +0(1)), 2(z) = (d - z)™(1 +o(1)),
where x; are the different roots of the characteristic equation
ak(k—1)+m=0

so that :
1 1 m
= 4=
1,2 2 4 a

If 4m > a, then the both roots are complex and Re x5 = 1. The integrals I{y]
and I{z] are divergent. If 4m < a, then the both roots are real, the integral
I[y] is finite but I{2] is divergent. We have y(d) = 0.

At last, if k) = Kg, i.e. a = 4m, the solutions have the form

y(z) = (d— z)*[1 + 0(1)}], 2(z) = (d - ) 2In(d - z)[1 + o(1)],

so that the both integrals I[y] and /(2] are divergent.
Therefore, if v = 2 and I[y] is finite then 4m < a and the solution vanishes
at z=d. a.

Lemma A10. Ify € H}(0,1), then
1
2 < Z ! 2
zrg(%.)f) y(:c) - 4]0 y (.'l:) az.

The equality is attained on the function yo(z) = 1/2 — |z — 1/2|.

64



Proof. Without the loss of generality we can assume that y(z) > 0 for 0 <
z < 1. Let M = maxy(z)? = y(b)2. Then by the Holder inequality

b 1
y®? <b [ Y(@ide, y® < (1 -b) [ y(o)ds,

hence 1 . .

- e 2 < _ / t 2 )

G+ e < (1-8) [ (@
Since 1/b+1/(1 —b) > 4 for 0 < b < 1, the proof is complete. Q-
Lemma All. Letx,,...,T, be positive numbers and z,+...+xx = 1. Then

if 0 < v <1 the inequality
] +... +z) <k

holds.
Ifvy>21o0rvy<0, then

i+ ...zl >k,

i.e. the extremum of the function ] + ... + =] is attained at the point z, =
=T = l/k
Proof. The proof is rather elementary and we leave it to the reader. mi

Lemma A12. Let a function f be summable on (0,1), f(z) > 0. Then there
are two points a and b such that 0 < a < b < 1 and a function y € C'[0,1]
such that ¥ (x) is absolutely continuous,

y(0) =y(1) =y'(0) =4'(1) =0,
V(@)= fz)if0<z<aorb<z<landy’(z)=-f(z)ifa<z <b
Proof. Let at first f(z) > 0. Put
F(z) = [0 " f@)dt, Glz) = /0’ F(t)dt
and
F(z), if0<z<a,

Y (z)= { 2F(a) — F(z), ifa<z <b,
F(z) - F(1), ifb<z<l,
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the values of a and b will be indicated in what follows. This function is con-
tinuous at the point z = a and at the point z = b, if

2F(a) + F(1) = 2F(b). (12)
Let
G(z), f0<z<a,
y(z) = { 2F(a)(z — a) — G(z) + 2G(a), ifa<z <},
Gz)-GQ)-(z-1)F(Q), ifb<z<l.

This function is continuous at the points £ = a and z = b, if

2F(a)(b—a) — G(b) + 2G(a) = G(b) — G(1) — (b— 1)F(1). (13)
Let
H(z) = zF(z) — G(z).

Then
H'(z) = zf(z) > 0, H(0) =0,

and the conditions (11), (12) imply that
2H(a) + H(1) = 2H(b).
The points a and b can be found in the following way. Put

Flz) FQ)

K(@) = F(z) - FO)H(@)/HO) = H@)ey = T

Since
(F(z)/H(z)) = —F'(z)G(z)/H (z)?,

we see that K(z) > 0, K(0) =0, K(1) =0 and
K(a) — K(b) = —1/2K(1) = 0.
Let the function p(t) be defined by the equality
Fp(t)) - 1/2F(1) = F(2).

Then p(0) = £, where £ is such a point that F(§) = F(1)/2, 0 < £ <1 and
p(€) = 1. The function
S(t) = K(t) - K(p(t))
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is such that S(0) = K(0) — K(£) < 0 and S(&§) = K(§) — K(1) > 0. Therefore,
there is a point a € (0,£) such that S(a) = 0. If we put b = p(a), then we
obtain (4) and the equality K(a) = K (b} will be satisfied also.

If f(z) > 0, then we can construct the function Y, corresponding to the
function f(z) + € and pass to limit, what is easy. O

Lemma A13. Let p > 1 and K be the class of functions y of the space
Wo(0,1) such that fy y(z)dz =0. Let

m = inf Gly],

where (i (=) P
2)|P P
b= mre
Then
-2, 2.1 1,
m= 4(311;_ 2) (3— 5)3(5’1 - 5) ’

where B is the Euler function, and there exists a function yo € K such that
G[yo] =m.
Proof. It is evident that the number m is finite and is not greater than, for
example, G(y1], where y,(z) = 1/4 — |z — 1/4| for z € (0,1/2) and y(z) =
|z —3/4| —1/4 for z € (1/2,1).

Let {yx} be a minimizing sequence such that

[01 yr(z)?dz = 1,/01 yr(z)dz = 0 and Ll v, (z)|Pdz — mP!?.

This sequence is compact in L,(0,1) and weakly compact in W,(0,1) so that
there is a subsequence {yn,} converging in L2(0, 1) to yo(z) and

! 2 0 — Lo P p/2 ! —
| w@de =1, [ wh@)rde <m?”?, [ yo(z)dz =0

Since mP/? is the minimal value of integrals f |/ (z)|Pdz, we have in fact
the equality: f; |yh(z)|Pdr = mP/?, and the function 3, is extremal. Since
the integral of y, vanishes, this function has at least one zero in (0,1). We
can reconstruct the function 3 without changing the values of the integrals
I3 yo(z)?dz, [y vh(x)*dz and [ yo(z)dz in such a way that it will be positive
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on (0,zo) and negative on (zq, 1), where 0 < zo < 1. To do it we are shifting
all intervals on which y(z) > 0 to left not changing the values of y on them.

The functional G[y] is differentiable since p > 1 and therefore the function
Yo satisfies the Euler-Lagrange equation

(ol ~*y0) +mP"*yo +ma = 0, %(0) = 1o(1) =0,
which implies that

(P = Dlyol"~"v5 + m”*poyp + muyy = 0.
Therefore,

(p— Digol/p+mP?y2/2 + miyo = C.

Integrating this equality over (0, 1), we obtain that C = m?/?[(p—1)/p+1/2].
Moreover,

15(0) = —yh(z0) = ¥h(1) = (Cp/(p — 1)V/P

and ¥ (0) = yo(zo) = ¥o(1) = 0. Therefore, yo(z) = yo(zo —z) for 0 < z < 7o
and yo(z) = yo(1 + o — z). Now put

2(z) = m*yo + my.

Then
(£ P~22Y + mPP-1/25 = q.

All solutions of this equation are oscillating periodic functions, with the dis-
tance between zeroes, equal to the half of the period, and odd with respect to
each its zero. Therefore, its mean value in the period is equal to zero. Since

z(0) = 2(1), 2'(0) = #(1),
the mean value of z on (0, 1) is equal to zero. However, then we have
‘ 1 1
my = / z(z)dr — m”/z_/ 1 (z)dz = 0.
0 0

Therefore, zo = 1/2 and y5(z) = —yo(1 — z). The maximal value M of g
is defined from the equation
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(p — DlyhlP/p + mP Mg /2 = mPP{(p - 1) /p + 1/2),
so that

M?=3-2/p.
Integrating we obtain that for 0 < z < 1/4
/’vo dz _ zm!'/?
o [3p—2-p2/r " [2(p - 1)]VF
In particular, %(1/4) = M and

M dz m!/?
/0 [Bp—2—pz2)VP ~ 42(p— 1)]P’

Changing variable z to (3 — 2/p)'/2, we see that

1 dt mY2 3p—2\1/p; p 112
./o aA—)r 4 (2p--2) p(Sp—Q) !

or

2p—2 2v172 11 dt
m1/2=4(3£_2)1/"(3_5)12f0 (—1-__t2)'17;'

Remark that
1 1 1

/1 dt ~lpd, )
o (1—)/p  27°2"7 p”
where B is the Euler function. Thus

22— N1, 2 1 1
1/2 — _“ 1/2 il _ =
m/t=2(3-—3) 8- 2B =
On the opther hand
M dz ml/?
Lo B~ - VGG

(14)

so that yo(z) = M + A(1/4 —z)"[1 +0(1)] as z — 1/4 — 0 with vy = p/(p — 1).

a
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Lemma Al4. Let -1/2<a <1, a# 0 and yo(z) be the function found in
Lemma A7. Let po(z) = |yh(z)|¥@V. Let

i p(a)y (@)'ds

m, =
L7 leHion  [ly(z)idz
Then
my = (ﬂ)2/p(3 - 2)h2/9—33(1/2 1—1/p)>
2-3p P ’

The minimal value i3 atlained on the function Y.

Proof. Consider a minimizing sequence y(z) such that fy yx(z)?dx = 1.
The integrals [o/?~*y(z)*dz and Jij2+¢ Vi(2)?dz are bounded and one can
choose a subsequence converging almost everywhere in (0,1/2—¢) and (1/2+
g,1), in Ly(0,1) and weakly in H'(0,1/2 —¢) and H'(1/2 +¢,1). Using the
diagonalization, one can find a subsequence converging almost everywhere in
(0,1) to yu(x). Then

/01 y(z)'dz =1, fol p(z)y)(x)*dz < ma.

However, m,; is the minimal possible value of the latter integral. Therefore,
Jo p(z)¥,(x)*dz = m;. The function 3, satisfies the equation

(p(@)y1(z)) + mup(z) =0,
11(0) = 0, y(1) = 0. The function z2(z) = y1(z) + (1 — =) is also minimizing,
if it does not vanish identically.
If z(z) £ 0, then it is even and
(p(z)2'Y (z) + myz = 0.
On the other hand,
(p()yo) + myo = 0, %(0) = yo(1) =0
and yp > 0 in (0,1). We have by Lemma A8

(m—m) [ 230ds = p(z) (2 (@)yole) — 2()sh(@)) 2k = 0
and m, = m.
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If z(x) = 0, then ¥, is odd and

(p(z)¥i(z)) + muyr = 0.

We have 41(0) = %1(1/2) = 0. Let zo be the first zero of y;, so that yl(a:o) =
0,y1(z) > 0 for 0 < z < 2. We have by Lemma A8

(m—m) [ pivodz = p(e)h @Nun(z) ~ (@) ET = 0.

Therefore, m; = m and ¥, = yo. O
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