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CONGRUENCES FOR TAYLOR EXPANSIONS OF QUANTUM
MODULAR FORMS

PAVEL GUERZHOY, ZACHARY A. KENT, AND LARRY ROLEN

Abstract. Recently, a beautiful paper of Andrews and Sellers has established linear con-
gruences for the Fishburn numbers modulo an infinite set of primes. Since then, a number
of authors have proven refined results, for example, extending all of these congruences to
arbitrary powers of the primes involved. Here, we take a different perspective and explain
the general theory of such congruences in the context of an important class of quantum
modular forms. As one example, we obtain an infinite series of combinatorial sequences
connected to the “half-derivatives” of the Andrews-Gordon functions and with Kashaev’s
invariant on (2m + 1, 2) torus knots, and we prove conditions under which the sequences
satisfy linear congruences modulo at least 50% of primes of primes.

1. Introduction and statement of results

In his seminal 2010 Clay lecture, Zagier defined a new class of functions with certain
automorphic properties called “quantum modular forms” [31]. Roughly speaking, these are
complex valued functions defined on the rational numbers which have modular transforma-
tions modulo “nice” functions. Although the definition is (intentionally) vague, Zagier gave
a handful of motivating examples to serve as prototypes. For example, he defined quantum
modular forms related to Maass cusp forms attached to Hecke characters of real quadratic
fields, as studied by Andrews, Dyson and Hickerson [2] and Cohen [9], and he gave examples
related to sums over quadratic polynomials and non-holomorphic Eichler integrals. More
precisely, Zagier made the following definition.

Definition. A quantum modular form is a function f : P1(Q) → C for which f(x) −
f |kγ(x) is “suitably nice.”

Here |k is the usual Petersson slash operator and “suitably nice” means that the obstruction
to modularity satisfies an appropriate analyticity condition, e.g. Ck, C∞, etc. One of the most
striking examples of a quantum modular form is described in Zagier’s paper on Vassiliev
invariants [32], in which he studies Kontsevich’s function F (q) given by

(1.1) F (q) :=
∞∑
n=0

(q)n,

where (a)n := (a, q)n :=
∏n−1

j=0 (1− aqj).

The research of first author is supported by the Simons Foundation Collaboration Grant. This research
was conducted while the first author was a guest at MPIM, and he is grateful to the Institute for making this
research possible. The first author thanks Don Zagier for an elucidating communication. The third author
is grateful for the support of the DFG through a University of Cologne postdoc grant.
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This function does not converge on any open subset of C, but converges as a finite sum
for q any root of unity. Zagier’s study of F depends on the “sum of tails” identity

(1.2)
∑
n≥0

(
η(q)− q

1
24 (q)n

)
= η(τ)D (q)− 1

2

∑
n≥1

nχ12(n)q
n2−1
24 ,

where η(q) := q
1
24 (q)∞, D(q) := −1

2
+
∑

n≥1
qn

1−qn , and χ12(n) :=
(
12
n

)
. Recalling the identity

(q)∞ =
∑

n≥1 χ12(n)q
n2−1
24 , we find that the last term on the right hand side of (1.2) is

essentially a “half-derivative” of η. Zagier further observed that η(q) and η(q)D(q) vanish to
infinite order as q approaches a root of unity. Thus, we have what Zagier terms a “strange
identity” of the shape

(1.3) F (q)“ = ”− 1

2

∑
n≥1

nχ12(n)q
n2−1
24 .

Although the left and right hand sides of (1.3) do not ever converge simultaneously, as we
will see below, this identity can be interpreted as saying that there is an equality between
asymptotic expansions when q = e−t as t → 0+ (a similar statement holds as q approaches
other roots of unity as well).

Since [31], there has been an explosion of research aimed at constructing examples of
quantum modular forms related to Eichler integrals, extending the initial applications to
knot invariants and quantum invariants of 3-manifolds in [22] and [32]. For instance, such
quantum modular forms are closely tied to surprising identities relating generating functions
of ranks, cranks, and unimodal sequences [14], are related to probabilities of integer partition
statistics [28], and arise in the study of negative index Jacobi forms and Kac-Wakimoto
characters [6]. For further examples, see also [4, 5, 8, 11, 19, 21, 24, 29].

The general theory of this class of quantum modular forms was further elucidated by
Choi, Lim, and Rhoades in [13], and from a different perspective by Bringmann and the
third author in [7], where the space of “Eichler quantum modular forms” was defined. In
particular, for each half-integral weight cusp form there is an associated Eichler integral with
quantum modular properties. At the end of [7], a program was laid out to study the general
properties of these quantum modular forms. In particular, one of the fundamental problems
in the theory was identified to be the determination of the arithmetic properties of such
forms. This problem was inspired by recent work of Andrews and Sellers [3] in which they
studied the congruence properties of the Fishburn numbers defined by∑

n≥0

ξ(n)qn :=
∑
n≥0

(1− q; 1− q)n .

These numbers are important in combinatorics and knot theory and in particular ξ(n)
enumerates the number of linearly independent Vassiliev invariants of degree n [32]. Uti-
lizing beautiful and clever manipulations, Andrews and Sellers proved an infinite family of
congruences for the Fishburn numbers, and these results were extended in several directions
by Garvan [15], Straub [30], and Ahlgren and Kim [1]. For example, the work of Andrews
and Sellers and Straub implies that for all A, n ∈ N, we have

ξ
(
5An− 1

)
≡ ξ

(
5An− 2

)
≡ 0 (mod 5A),

ξ
(
7An− 1

)
≡ 0 (mod 7A),
2



ξ
(
11An− 1

)
≡ ξ

(
11An− 2

)
≡ ξ

(
11An− 3

)
≡ 0 (mod 11A).

In the context of quantum modular forms, the Fishburn numbers are the coefficients of
the power series expansion at the root of unity q = 1 of the Eichler quantum modular form
associated to η. In light of this connection, Garvan and Straub posed the following natural
question.

Question (Garvan, Straub). What is the general theory of such congruences for more general
quantum modular forms?

In this paper, we answer this question for a class of quantum modular forms. In particular,
we consider quantum modular forms which arise as Eichler integrals of unary theta series.
That is, we consider the quantum modular forms associated to theta series of the form∑

n∈Z

χ(n)nνq
n2−a2
b ,

where ν ∈ {0, 1}, χ is a periodic sequence of mean value zero, and a, b ∈ Z. For the sake
of definiteness, we will focus our attention on the case when ν = 0, i.e., when the unary
theta series has weight 1/2. We will shortly see how to define a “Fishburn-type” sequence
associated to any such unary theta series via a series expansion as q → 1. We remark in
passing that the analogous study of congruences for general modular forms of half-integral
weight does not make sense as we do not know any algebraicity results about the associated
power series coefficients.

Before stating our main result, we define a condition on the periodic sequences χ under
consideration. This condition arises very naturally from the perspective of p-adic measures
below, and is also satisfied by our canonical family of examples arising from knot invariants
(see Section 4). Specifically, our condition on χ is as follows, where

ψu(x) :=

{
1 if x ≡ u (mod M),

0 otherwise,

and ψu,v(x) := ψu(x)− ψv(x).

Definition. Let χ : Z → {0, 1,−1} be a periodic function with period M and mean value
zero. We say that χ is a good function if it is a sum of functions of the form ψu,v such
that there exist natural numbers C := C(u, v) with (C,M) = 1 and uC ≡ v (mod M).

Remark. The condition for χ to be good is trivially satisfied whenever χ is supported on
integers coprime to M . In particular, any quadratic Dirichlet character is good.

To describe our main result, we first consider for any a, b ∈ Z and any periodic sequence
χ the following partial theta function:

Pa,b,χ(q) :=
∑
n≥0

nχ(n)q
n2−a2
b .

Note that this is essentially a “half-derivative” of the series
∑

n χ(n)q
n2−a2
b . From the general

theory outlined in [7], χ has mean value zero in particular whenever Pa,b,χ is a half-derivative
of a modular form which is cuspidal at q = 1. From now on, we will always assume that
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Pa,b,χ ∈ Z[[q]]. As we will see in the proof of Theorem 2.2, the mean value zero property of
χ implies that there is an asymptotic expansion

Pa,b,χ
(
e−t
)
∼
∑
n≥0

αa,b,χ(n)tn

for some αa,b,χ(n) ∈ C as t→ 0+. Thus, we may define coefficients Ha,b,χ(n) by the relation

Pa,b,χ
(
e−t
)
∼
∑
n≥0

Ha,b,χ(n)
(
1− e−t

)n
.

It is easily seen that the coefficients Ha,b,χ(n) are defined by finite recursions in terms of
αa,b,χ(n). Moreover, the explicit formulas for the coefficients in Theorem 2.2 show that
Ha,b,χ(n) ∈ Q for all n. We will see below that in important examples arising from knot
theory, they may also be defined combinatorially in a manner similar to the definition of the
Fishburn numbers above.

Our main result is then the following, where we define βp = β to be the coefficient of p1

in the base p expansion of −a2

b
.

Theorem 1.1. Let χ be a good function and suppose that a, b ∈ Z are chosen so that
Pa,b,χ ∈ Z[[q]]. Then for any prime p not dividing b, the following are true.

(1) If B is a positive integer such that(
a2 − b
p

)
= −1,

(
a2 − 2b

p

)
= −1, . . . ,

(
a2 −Bb

p

)
= −1,

then for all A, n ∈ N, we have

Ha,b,χ

(
pAn−B

)
≡ 0 (mod pA).

(2) If β 6= (p− 1) and B be a positive integer such that(
a2 − b
p

)
6= 1,

(
a2 − 2b

p

)
6= 1, . . . ,

(
a2 −Bb

p

)
6= 1,

then for all A, n ∈ N, we have

Ha,b,χ

(
pAn−B

)
≡ 0 (mod pA).

Three remarks.
1) We will see in Section 4 that Theorem 1.1 implies all known linear congruences for ξ(n).

2) We will give a stronger version of Theorem 1.1 in Theorem 3.3 below.

3) As asked by Andrews and Sellers and Straub in the case of ξ(n), it is an interesting question
to determine a converse of Theorem 1.1 classifying linear congruences for the sequences
Ha,b,χ(n). This seems difficult to prove using our techniques. From the perspective of p-
adic measures outlined in Section 2, Theorem 2.1 aligns with the intuitive notion that the
“integral” of a function which is p-adically small over a compact set is small. However, the
difficulty in proving a converse result lies in the fact that the integral of a large function can
still be small.

In particular, we have the following corollary, which we will show in Section 4 implies that
infinitely many of the sequences arising in our family of examples from knot theory satisfy
linear congruences modulo at least 50% of primes.
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Corollary 1.2. Let χ be a good function and suppose that a, b ∈ Z are chosen so that
Pa,b,χ ∈ Z[[q]], and that a2− b 6≡ 3 (mod 4) and such that a2− b is not a square. Then there
is a linear congruence for Ha,b,χ(n) modulo at least 50% of primes p.

Remark. We will see in Section 4 that the condition that a2 − b is not a square is necessary,
where we will give an example in which our theorem does not guarantee any congruences.

We now highlight an important situation when the coefficients Ha,b,χ(n) may be defined
without using asymptotic expansions of partial theta functions. To describe this situation,
we require the Habiro ring, which was brilliantly studied by Habiro in [16], and further
connected to the F1 story and to the theory of Tate motives in [27]. This ring is defined as
the completion

H := lim←−
n≥0

Z[q]/((q)n),

which may, as usual, be realized as the set of formal expansions of the form∑
n≥0

an(q)(q)n,

where an ∈ Z[q]. Associated to any element of the Habiro ring and to any root of unity ζ
there is a power series expansion in (ζ − q) [16]. That is, there is a map

φζ : H → Z[ζ][[ζ − q]].
For example, the map φ1 may be realized explicitly (and be computed efficiently) for any
F =

∑
n≥0 an(q)(q)n ∈ H as the expansion

∑
n≥0 cn (1− q)n by recursively solving for cn in

the expansion ∑
n≥0

an(1− q)(1− q; 1− q)n =
∑
n≥0

cnq
n.

The resulting expressions defining cn always terminate, since (1 − q; 1 − q)n = O (qn). In
particular, recalling the definition of ξ(n), the Fishburn numbers are the coefficients of φ1(F ),
where F is Kontsevich’s function.

A central result of Habiro (see Theorem 5.2 of [16]) states that the map φζ is injective for
any ζ, so that in fact, an element of the Habiro ring is uniquely determined by its power
series expansion at any given root of unity. As Habiro points out, this is similar to the fact
that a holomorphic function is determined by its power series expansion at a single point, so
that H may be thought of as a “ring of analytic functions on the roots of unity.”

Returning to the question of congruences, we now suppose that Pa,b,χ satisfies a “strange
identity”, i.e., that there is an Fa,b,χ ∈ H such that

(1.4) Pa,b,χ
(
e−t
)
∼ Fa,b,χ

(
e−t
)
.

Defining ca,b,χ(n) as the coefficients of φ1(Fa,b,χ), it directly follows from (1.4) and the defi-
nition of Ha,b,χ(n) that

Ha,b,χ(n) = ca,b,χ(n).

Hence, we have given congruences for the coefficients of power series expansions of any
element of the Habiro ring which satisfies a strange identity connecting it to a partial theta
function Pa,b,χ satisfying the conditions of Theorem 1.1. In Section 4, we study the half-
derivatives of Andrews-Gordon functions, which Hikami showed in [20] satisfy strange iden-
tities. Furthermore, the resulting elements of the Habiro ring arise naturally in the context
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of Kashaev’s invariant for the (2m+1,2)-torus knots and include Kontsevich’s function as a
special case.

More generally, it is very interesting to ask which partial theta functions satisfy strange
identities, and what the general structure of such identities should be. For work related to
this question, the interested reader is referred to important work of Coogan, Lovejoy, and
Ono in [10, 25], which studies connections between asymptotic expansions of partial theta
series and q-hypergeometric series.

The paper is organized as follows. In Section 2, we recall some standard facts on p-
adic measures and L-functions, and we prove a fundamental result concerning congruences
of polynomials in L-values, as well as a useful expression of the coefficients Ha,b,χ(n) in
terms of L-values. Together, these results allow us to reduce the proof of Theorem 1.1 to
an elementary statement on congruences for binomial coefficients, which we prove along
with Corollary 1.2 in Section 3. Finally, in Section 4 we give an illuminating example of
importance in knot theory, which also shows that Theorem 1.1 yields all known congruences
for the Fishburn numbers, as well as new congruences for a class of sequences naturally
generalizing the Fishburn numbers.

2. Preliminaries

2.1. Congruences for polynomials in L-values. In this subsection, we prove a useful
theorem regarding the p-adic properties of certain polynomials in L-values. For any periodic
sequence χ(n) of mean value zero, we define for Re(s)� 0 the L-function

Lχ(s) :=
∑
n≥1

χ(n)

ns
.

This L-function has an analytic continuation to all of C, which can easily be seen by writing
L as a linear combination of specializations of the Hurwitz zeta function and using the well-
known continuation for the Hurwitz zeta function, which only has a simple pole of residue
one at s = 1. Thus, in particular, the values of L(s) for s ∈ −N0 are well-defined.

In order to state our theorem, we first define a linear operator Lχ : Q[x]→ C by its action
on generators as

Lχ (xn) := Lχ(−n),

and we recall that f ∈ Q[x] is called a numerical polynomial on a set X ⊂ Z if f(x) ∈ Z
for all x ∈ X. We also denote by supp(χ) the support of χ. Our main result concerning
congruences of L-values is as follows.

Theorem 2.1. Let χ be a good function with period M , p a prime with (p,M) = 1, and
A ∈ N. If f is a numerical polynomial on supp(χ) such that for all n ∈ supp(χ) we have

f(n) ≡ 0 (mod pA),

then we also have

Lχ(f) ≡ 0 (mod pA).

Remark. This theorem is a specialization of fairly standard facts on p-adic Dirichlet L-
functions, or, if one prefers, p-adic Mazur measures (see e.g. [12], [18, Chapter 3]). However,
for the reader’s convenience, we present a full and elementary proof below.
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Proof: We begin by recalling the definition of generalized Bernoulli numbers Bk,χ, which
are given by the generating function

M−1∑
a=0

χ(a)
teat

eMt − 1
=:
∑
k≥0

Bk,χ
tk

k!
.

As mentioned above, Lχ has an analytic continuation to all of C. At non-positive integers,
this is realized by the well-known relation

Lχ(−n) = −Bn+1,χ

n+ 1
.

Furthermore, it is possible (see [23, ChapterXIII, Theorem 1.2]) to present these numbers
as p-adic limits of related power sums:

Bk,χ = lim
n→∞

1

Mpn

Mpn−1∑
a=0

χ(a)ak.

We thus have that

Lχ(xk) = Lχ(−k) = −Bk+1,χ

k + 1
= − lim

n→∞

1

Mpn

Mpn−1∑
a=0

χ(a)
ak+1

k + 1
.

Now let c > 1 be a positive integer such that (c,Mp) = 1, and define

Lcχ(f) := Lχ(f)− Lχc(f c),
where the functions f c and χc are defined as f c(x) := f(cx) and χc(x) := χ(cx). We now
write

f(x) =
N∑
m=0

dmx
m

with dm ∈ Q, and use the above to compute

Lcχ(f) = −
N∑
m=0

dm lim
n→∞

1

Mpn

Mpn−1∑
a=0

(
χ(a)

am+1

m+ 1
− χ(ca)

(ca)m+1

m+ 1

)
.

Let ac be the element of {0, 1, . . .Mpn−1} such that ac ≡ ca (mod Mpn). Since (c,Mp) = 1,
multiplication by c permutes residues modulo Mpn, and we can rearrange the sum as

Lcχ(f) = −
N∑
m=0

dm lim
n→∞

1

Mpn

Mpn−1∑
a=0

χ(ca)

(
am+1
c − (ca)m+1

m+ 1

)
.

We now let ac = ca+Mpnta with ta ∈ Z, make use of the congruence

am+1
c − (ca)m+1 = (ca+Mpnta)

m+1 − (ca)m+1 ≡ (m+ 1)(ca)mMpnta (mod (Mpn)2),

and reorder the summations to conclude that

Lcχ(f) = − lim
n→∞

Mpn−1∑
a=0

taχ(ca)f(ca).

In particular, we derive that for every c > 1 such that (c,Mp) = 1,

Lcχ(f) ≡ 0 (mod pA)
7



whenever f(n) ≡ 0 (mod pA) for every n ∈ supp(χ).
However, this does not suffice since we need the congruence for Lχ(f) itself, not merely for

the modified version Lcχ(f). Since χ is a good function, it suffices to prove the congruence for
the function ψu,v(n) where u and v satisfy the conditions of the definition of a good function.
We assume that u and v do satisfy these conditions for the remainder of the proof. Now
note that for an integer c such that (c,Mp) = 1 we have

ψcu(x) = ψu(cx) = ψuc−1(x),

where cc−1 ≡ 1 (mod M). We may now choose two integers c1 > 1 and c2 > 1 satisfying

(c1,Mp) = (c2,Mp) = 1
uc1 ≡ v (mod M)
c2 ≡ 1 (mod M)
c1 ≡ c2 (mod pC)

for any large C, which we choose later.
We already know that

Lc1ψv(f) = Lψv(f)− Lψu(f c1) ≡ 0 (mod pA)

and

Lc2ψu(f) = Lψu(f)− Lψu(f c2) ≡ 0 (mod pA),

and it suffices to prove that C can be chosen big enough to guarantee the congruence

Lψu(f c1)− Lψu(f c2) = Lψu(f c1 − f c2) ≡ 0 (mod pA).

However, the assumptions on u and v imply that

Lψu(f c1 − f c2) =
N∑
m=0

dm(cm1 − cm2 )
Bm+1,ψu

m+ 1

for some rational quantities Bm+1,ψu/(m+ 1), which makes our claim obvious.
�

2.2. A useful formula for the sequence Ha,b,χ(n). In this subsection, we relate the values
of the sequences Ha,b,χ(n) to polynomials in L-values. Namely, we show the following result.

Theorem 2.2. Assume the conditions of Theorem 1.1. Then we have

Ha,b,χ(n) = (−1)nLχ

(
x

(
x2−a2
b

n

))
.

Proof: Plugging in q = e−t into the definition of Pa,b,χ(q), we find

Pa,b,χ
(
e−t
)

=
∑
n≥1

nχ(n)e−
n2−a2
b

t.

Using a shifted version of the Euler-Maclaurin summation formula or a simple Mellin trans-
form argument (see, for example, the proposition on page 98 of [22]), we find as t→ 0+ the
asymptotic expansion

8



(2.1)

Pa,b,χ
(
e−t
)
∼ e

a2

b
t
∑
n≥0

(−1)nLχ(−2n− 1)

n!

(
t

b

)n

=
∑
n≥0

tn

n!bn

(
n∑
j=0

(−1)jLχ(−2j − 1)a2(n−j)
(
n

j

))
=
∑
n≥0

(−t)n

n!bn
Lχ
(
x
(
x2 − a2

)n)
.

Now from the definition of the coefficients Ha,b,χ(n), we have another expression for the
asymptotic expansion of Pa,b,χ(e−t), given by

Pa,b,χ
(
e−t
)
∼
∑
n≥0

Ha,b,χ(n)
(
1− e−t

)n
.

Letting
{
n
k

}
denote the Stirling numbers of the second kind, which are defined by the gen-

erating series ∑
n≥k

{
n
k

}
xn

n!
:=

1

k!
(ex − 1)k ,

we find

(2.2) Pa,b,χ
(
e−t
)
∼
∑
n≥0

(−t)n

n!

(
n∑
j=0

{
n

j

}
j!Ha,b,χ(j)(−1)j

)
.

By comparing coefficients of tn in (2.1) and (2.2), we find

(2.3)
n∑
j=0

{
n

j

}
j!Ha,b,χ(j)(−1)j =

1

bn
Lχ
(
x
(
x2 − a2

)n)
.

We now require the Stirling numbers of the first kind, which are defined by the relation

n∑
j=0

s(n, j)xj := (x)n,

where (x)n :=
∏n−1

j=0 (x− j) is the usual Pochhammer symbol.
Recall that the two types of Stirling numbers satisfy the inversion relationship

(2.4)
n∑
k=0

s(n, k)

{
k

j

}
= δn,j,

where

δx,y :=

{
1 if x = y,

0 if x 6= y.
9



Thus, if we have two sequences un, vn satisfying the relationship vn =
∑n

j=0

{
n
j

}
uj, then

we can easily invert to find

(2.5)
n∑
k=0

s(n, k)vk =
n∑
j=0

uj

n∑
k=j

s(n, k)

{
k

j

}
=

n∑
j=0

uj

n∑
k=0

s(n, k)

{
k

j

}
=

n∑
j=0

ujδn,j = un,

where we used the fact that
{
k
j

}
= 0 for j > k.

Combining (2.3) and (2.5), we obtain

Ha,b,χ(n) =
(−1)n

n!
Lχ

(
x

n∑
j=0

(
x2 − a2

b

)j
s(n, j)

)
=

(−1)n

n!
Lχ
(
x

(
x2 − a2

b

)
n

)
,

which implies the desired formula for Ha,b,χ(n).
�

3. Proof of Theorem 1.1 and Corollary 1.2

We begin with a result giving a family of congruences for the sequences Ha,b,χ(n) which we
will shortly see implies Theorem 1.1. Firstly, however, we derive an elementary lemma on
congruences of binomial coefficients. Specifically, we now recall Kummer’s theorem, which
allows us to easily study such congruences.

Theorem 3.1 (Kummer, [26]). Let p be a prime, and suppose n ∈ Z, k ∈ N. Then the
p-adic order of

(
n
k

)
equals the number of carries when adding k to n− k in base p.

From this, one can easily obtain the following lemma (see also Lemma 3.4 of [30]).

Lemma 3.2. Let p be a prime, s ∈ {0, 1, . . . , p − 1}, and α ∈ N. Then the following are
true.

(1) If B ∈ {1, 2 . . . , p− s− 1}, then for all A, n ∈ N,(
s+ pα

pAn−B

)
≡ 0 (mod pA).

(2) If B ∈ {1, 2 . . . , p− 1} and α 6≡ −1 (mod p), then for all A, n ∈ N,(
s+ pα

pAn−B

)
≡ 0 (mod pA−1).

Proof: Write n := s + pα and k := pAn− B, and denote the base p coefficients of n (resp.
k) by n0, n1, . . . (resp. k0, k1, . . .). By assumption, n0 = s and k0 = p − B. Moreover, we
have k1 = k2 = . . . = kA−1 = p− 1. We now split into cases.

Proof of (1): As B ∈ {1, 2 . . . , p − s − 1}, we have k0 > n0. Denoting the base p
coefficients of n − k by m0,m1, . . ., we find that m0 = p − k0 + n0, so that there is a carry
when m0 is added to k0. Since k1 = k2 = . . . = kA−1 = p − 1, there are at least A carries
occur when k is added to n− k, so by Theorem 3.1, we find the desired congruence.

Proof of (2): By part (1) of the Lemma, we may suppose that B ∈ {p − s, p − s +
1, . . . , p − 1}, i.e., that k0 ≤ n0. Note that m0 = n0 − k0, and by the assumption on α, we
find n1 6= p− 1, so that m1 > 0. Hence, when adding k to n−k, a carry occurs when adding
m1 to k1. Since k2 = k3 = . . . = kA−1 = p− 1, there is also a carry when mi is added to ki

10



for i = 2, . . . A − 1, so that there are at least A − 1 carries when k is added to n − k. By
Theorem 3.1, the result follows. �

In order to state our generalized version of Theorem 1.1, we first set

Sa,b,χ,p := S :=

{
s ∈ N0 : s < p,∃ x ∈ supp(χ), x 6≡ 0 (mod p),

x2 − a2

b
≡ s (mod p)

}
,

and we define an analogous set

S∗a,b,χ,p := S∗ :=

{
s ∈ N0 : s < p,∃ x ∈ supp(χ),

x2 − a2

b
≡ s (mod p)

}
.

Then our main result is as follows.

Theorem 3.3. Let χ be a good function and p a prime, and suppose a, b ∈ Z are chosen so
that Pa,b,χ ∈ Z[[q]]. Then the following are true.

(1) If B ∈ {1, 2, . . . , p− 1−maxs∈S∗ s}, then for all n,A ∈ N, we have

Ha,b,χ

(
pAn−B

)
≡ 0 (mod pA).

(2) If β 6= (p− 1) and (b, p) = 1, then for any B ∈ {1, 2, . . . , p − 1−maxs∈S s} and for
all n,A ∈ N, we have

Ha,b,χ

(
pAn−B

)
≡ 0 (mod pA).

Proof: We begin by splitting into cases.
Proof of (1): By Theorem 2.1 and Theorem 2.2, it suffices to show that for B ∈
{1, 2, . . . , p− 1−maxs∈S∗ s}, we have

x

(
x2−a2
b

pAn−B

)
≡ 0 (mod pA)

for all A, n ∈ N, x ∈ supp(χ). For fixed x, let y := x2−a2
b

, and let s ∈ N be the reduction of
y modulo p with 0 ≤ s < p. We claim that we can choose α ∈ N so that(

y

pAn−B

)
≡
(
s+ pα

pAn−B

)
(mod pA).

For this, it is enough to choose α satisfying

(y)pAn−B ≡ (s+ pα)pAn−B (mod pA+C),

where C := ordp
((
pAn−B

)
!
)
. Clearly, it suffices to choose α with

y ≡ s+ pα (mod pA+C).

Now we can set y − s =: zp, where z ∈ Z. The last equation is then equivalent to

α ≡ z (mod pA+C−1),

which is clearly possible to solve for α. Thus, for such an α, we have(
y

pAn−B

)
≡
(
s+ pα

pAn−B

)
(mod pA).

Now (1) of Lemma 3.2 directly implies that(
s+ pα

pAn−B

)
≡ 0 (mod pA)
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for all B ∈ {1, 2, . . . , p− 1−maxs∈S∗ s}, n ∈ N, x ∈ supp(χ).
Proof of (2): To complete the proof, it suffices to show that if x ≡ 0 (mod p), β 6= (p−1),

and (b, p) = 1, then for all 0 ≤ B ≤ p− 1 n ∈ N, we have

x

(
x2−a2
b

pAn−B

)
≡ 0 (mod p).

In this case, we find that y ≡ −a2

b
(mod p2). Hence, we may choose α as above, and assume

without loss of generality that y ≡ s + pα (mod p2). As β 6= (p− 1), we have that α 6≡ −1
(mod p). By (2) of Lemma 3.2, we find that(

s+ pα

pAn−B

)
≡ 0 (mod pA−1).

Hence,

x

(
x2−a2
b

pAn−B

)
≡ x

(
s+ pα

pAn−B

)
≡ 0 (mod pA),

as desired.
�

We are now in a position to prove Theorem 1.1. First, consider the sets

Ta,b,χ,p := T :=

{
s ∈ N0 : s < p,∃ x ∈ Z, x 6≡ 0 (mod p),

x2 − a2

b
≡ s (mod p)

}
,

T ∗a,b,χ,p := T ∗ :=

{
s ∈ N0 : s < p,∃ x ∈ Z,

x2 − a2

b
≡ s (mod p)

}
.

Clearly, since S ⊂ T , and S∗ ⊂ T ∗ if B satisfies the conditions of Theorem 3.3 with S replaced
by T or with S∗ replaced by T ∗, then the same congruence for Ha,b,χ holds. Theorem 1.1
follows from this observation, together with the following elementary result, whose proof
follows from a straightforward calculation.

Lemma 3.4. Let a, b ∈ Z, let p be a prime and suppose (p, b) = 1. Then the following are
equivalent conditions for B ∈ N.

(1) We have that B satisfies(
a2 − b
p

)
= −1,

(
a2 − 2b

p

)
= −1, . . . ,

(
a2 −Bb

p

)
= −1.

(2) We have that

B ∈ {1, 2, . . . , p− 1−max
t∈T ∗

t}.

Moreover, the following are also equivalent conditions for B ∈ N.

(1) We have that B satisfies(
a2 − b
p

)
6= 1,

(
a2 − 2b

p

)
6= 1, . . . ,

(
a2 −Bb

p

)
6= 1.

(2) We have that

B ∈ {1, 2, . . . , p− 1−max
t∈T

t}.
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Remark. An elementary argument shifting integers x by multiples of p shows that if (p,M) =
1, then we have S = T and S∗ = T ∗. Hence, for all but finitely many primes p, the con-
gruences given in Theorem 3.3 are exactly the same as the congruences implied by Theorem
1.1.

We now prove Corollary 1.2.

Proof of Corollary 1.2: It suffices to check that if a2 − b is not a square and a2 − b 6≡ 3

(mod 4), then exactly 50% of primes p satisfy
(
a2−b
p

)
= −1, since Theorem 1.1 then implies

that Ha,b,χ(pn− 1) ≡ 0 (mod p) for all n ∈ N. To see that this is the case, note that given

the conditions on a2−b, the function
(
a2−b
·

)
is a non-principal Dirichlet character, and hence

takes on values 1 and −1 equally often (as the sum over a complete set of representatives
of residue classes modulo the modulus of the character is zero). Moreover, the values where
this character are non-zero are exactly those values which are coprime to the modulus of
the character. Hence, by the Chebatorev density theorem applied to primes in arithmetic
progressions, exactly 50% of primes satisfy the desired condition. �

4. Fishburn numbers and Hikami’s functions

In this section, we work out a particularly important family of examples of Theorem 1.1.
Specifically, we consider a collection of quantum modular forms whose beautiful properties
were laid out by Hikami in [20]. For further important results “inverting” these functions
and relating them to indefinite theta series and mock theta functions, see also [5, 21]. The
quantum modular forms defined by Hikami are then given form ∈ N and α ∈ {1, 2, . . . ,m−1}
by

F (α)
m (q) :=

∞∑
k1,k2,...,km=0

(q)kmq
k21+...+k

2
m−1+kα+...+km−1

m−1∏
i=1
i 6=α

[
ki + 1

ki

]
q

 · [kα+1 + 1

kα

]
q

,

where the usual q-binomial is defined by

[n
k

]
q

:=

{
(q)n

(q)k(q)n−k
if 0 ≤ k ≤ n,

0 otherwise.

We note that the function F
(0)
1 (q) reduces simply to Kontsevich’s function F (q). Moreover, it

is clear from the definition that F
(α)
m ∈ H. The connection to partial theta functions is shown

in (15) of [20], which states that F
(α)
m shares an asymptotic expansion with a half-derivative

of an Andrews-Gordon function. Specifically, Hikami shows that there is a strange identity

connecting F
(α)
m and

(4.1) −1

2

∑
n≥1

nχ
(α)
8m+4(n)q

n2−(2m−2α−1)2

8(2m+1) ,
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where

χ
(α)
8m+4(n) :=



1 if n ≡ 2m− 2α− 1 (mod 8m+ 4),

−1 if n ≡ 2m+ 2α + 3 (mod 8m+ 4),

−1 if n ≡ 6m− 2α + 1 (mod 8m+ 4),

1 if n ≡ 6m+ 2α + 5 (mod 8m+ 4),

0 otherwise.

We now note that P
2m−2α−1,8(2m+1),χ

(α)
8m+4
∈ Z[[q]], since, as in (10) of [20],

1

(q)∞

∑
n≥0

χ
(α)
8m+4(n)q

n2−(2m−2α−1)2

8(2m+1) =
∏
n≥1

n6≡0,±(α+1) (mod 2m+1)

(1− qn)−1 .

Moreover, by the discussion in Section 1, in this case, the coefficients H
2m−2α−1,8(2m+1),χ

(α)
8m+4

may be defined combinatorially as the coefficients of the expansion∑
n≥0

ξ(α)m (n)qn := F (α)
m (1− q),

so that
H

2m−2α−1,8(2m+1),χ
(α)
8m+4

(n) = ξ(α)m (n).

As an example, consider

F
(0)
2 (q) =

∑
n≥0

(q)n

n∑
k=0

qk(k+1)
[n
k

]
q
,

so that the first few coefficients ξ
(0)
2 (n) are given by 1, 2, 6, 23, 109 . . .. Numerical calculations

suggest that the following congruences hold for all n,A ∈ N:

ξ
(0)
2

(
3An− 1

)
≡ 0 (mod 3A),

ξ
(0)
2

(
11An− a

)
≡ 0 (mod 11A), where a ∈ {1, 2, 3},

ξ
(0)
2

(
13An− a

)
≡ 0 (mod 13A), where a ∈ {1, 2, 3, 4}.

These congruences follow immediately from Theorem 1.1 and Lemma 3.4, along with a short
computation, once the following result is checked.

Lemma 4.1. For any m ∈ N, a ∈ {1, 2, . . . ,m− 2}, χ(α)
8m+4(n) is a good function.

Proof: Let x := 2m + 1 and y := α + 1. Then the period of χ
(α)
8m+4 is M = 4x, and by the

definition of the sequence, it is clearly supported on odd integers. Furthermore, one easily
checks that

χ
(α)
8m+4 = ψx−2y,x+2y − ψ3x−2y,3x+2y.

Now it is easy to verify that

(4x, x− 2y) = (4x, x+ 2y) = (x, y)

and
(4x, 3x− 2y) = (4x, 3x+ 2y) = (x, y).

Hence, ψx−2y,x+2y and ψ3x−2y,3x+2y both satisfy the conditions of a good function, so that

χ
(α)
8m+4 is good as well. �
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Thus, we may apply Theorem 1.1 to the coefficients ξ
(α)
m , which directly implies congruences

for ξ
(α)
m (n). Using Corollary 1.2 and the fact that

(2m− 2α− 1)2 − 8(2m+ 1) ≡ 0, 1 (mod 4),

we immediately deduce the following result.

Corollary 4.2. Choose α,m ∈ N with α < m such that (2m− 2α− 1)2 − 8(2m+ 1) is not
a square. Then

ξ(α)m

(
pAn− 1

)
≡ 0 (mod pA)

for all n,A ∈ N for at least 50% of primes p.

Remark. The condition that (2m − 2α − 1)2 − 8(2m + 1) is not a square is necessary in
Corollary 4.2. For example, if α = 1, m = 7, then we have a2 = 121, b = 120. Hence,

Theorem 1.1 yields a congruence modulo p only when
(
a2−b
p

)
=
(

1
p

)
6= 1, which does not

hold for any p.

We now take a closer look at the congruences for ξ(n), which inspired this paper. Using the

well-known fact that for p ≥ 5, p2−1
24
∈ Z, we find that if p2−1

24
≡ s (mod p) with 0 ≤ s < p,

then

βp =
p2−1
24
− s
p

=

⌊
p2 − 1

24p

⌋
6= (p− 1).

By Theorem 1.1, we find that

ξ
(
pAn− 1

)
≡ 0 (mod pA)

for all A, n ∈ N whenever (
−23

p

)
6= 1.

Using quadratic reciprocity, it is easy to check that this occurs exactly when

p = 23 or p ≡ 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22 (mod 23),

which is remarked in [3] and [30].
Finally, we show that our set of congruences for ξ(n) is the same as that which was given

in [30]. Indeed, one easily finds by an elementary argument that the set S in Theorem 3.3
may be replaced by the set T (since (p,M) = 1). Comparing with Theorem 1.2 of [30],

it suffices to show that the set of reductions of values of x2−1
24

modulo p as x ranges over

Z \ pZ is equal to the set of reductions of pentagonal numbers 1
2
x(3x − 1) modulo p with

x 6≡ 0 (mod p) for any prime p ≥ 5. However, this follows immediately by noting that x2−1
24

becomes 1
2
x(3x − 1) upon substituting x with 6x − 1, which simply permutes the residue

classes of x modulo p. Thus, thanks to the extensive calculations of Straub [30], we have
conjecturally given all linear congruences for ξ(n). That is, following Andrews and Garvan
and Straub, we make the following conjecture, which we leave as an important challenge for
future work.

Conjecture. Let p be a prime. Then there exists a B ∈ N such that there is a congruence

ξ
(
pAn−B

)
≡ 0 (mod pA)
15



for all n precisely when

p = 23 or p ≡ 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22 (mod 23).

We conclude by noting that there are other congruences for linear combinations of Fishburn
numbers. Specifically, in unpublished work, Garthwaite and Rhoades observed that for all
n ∈ N, we have

ξ(5n+ 2)− 2ξ(5n+ 1) ≡ 0 (mod 5),

ξ(11n+ 7)− 3ξ(11n+ 4) + 2ξ(11n+ 3) ≡ 0 (mod 11).

In Theorem 1.3 of [15], Garvan established an infinite set of congruences which includes this
example. It is likely that the methods of this paper extend to prove these congruences of
Garvan, and that similar congruences hold for other quantum modular forms. We leave the
details to the interested reader.
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