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Abstract

We discuss a universal quantization procedure based on an integral trans­
form that takes functions on the configuration space to functions on the
phase space and is closely related to the Bargmann transform. In the leading
term this procedure yields Schrödinger's quantization of observables, Maslov's
quantization of Lagrangian modules, and Fock's quantization of canonica.l
transforms.

Introduction

This text is an extended version of [1]. We deal with asymptotic, or semi.classical,
quantization. Let us first explain this notion in some detail.

1. By quantization of classical mechanics physicists mean the assignment of
quantum objects to the corresponding classical ones. The main classes of objects
are states and observables. We recall that in classical mechanics the state of a
system is determined by a point (q,p) in the phase space (the space of coordinates
and momenta), and observables are functions f(q,p) on this space. In quantum
mechanics, the states of the system are described by 1/J-functions (or wave funetions)
1/J(x) and observables are described by linear operators in the state space.

For the Schrödinger quantization, the correspondence between the classical and
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the quantum observables is given by the rule

q......-+ q = x, ... 'h 8
p......-+ P = -t 8x'

so that the (pseudodifferential) operator corresponding to an observable f(q,p) has
the form

... 2 1

f = f(q,ß) (0.1)

(the numbers 1 and 2 indicate the order of action of the operators q and ß [2];
1 2 231

different orderings, such as f( q, ß), the Weyl ordering f(q + q, ß), or the Jordan
1 2 2 1

ordering (1/2)(f(q,ß) + f(q,ß)) give the same result with the accuracy of O(h)).

The correspondence between classical and quantum states is not so simple. Al­
though simultaneous measurement of the coordinates and the momenta is impossi­
ble, it makes sense to speak of the joint probability density of the coordinates and
the momenta for a quantum part icle in astate 1/1 (x ): the mean value of an arbi trary
observable f (q, p) in the state tP is

(f)" = (,;,,j,;, )L, = tr (/PoP) = Jf(q,p)p(q, p) dq dp,
R2n

where F,p is the orthogonal projection on tP and

The function p(q, p) is the desired joint probability density (it is known as the density
funetion corresponding to 1jJ(x)). In the semiclassical limit (h ~ 0) the density
function vanishes for some classical states (p, q); if the support of the limit density
is a manifold and if a certain additional condition is satisfied, then this manifold
is necessary an isotropie submanifold of the phase space, that is, a submanifold on
which the Cartan form p dq is closed.

From the viewpoint of a quantum particle, this submanifold is the oscillation
front of the t/J-function. Quantization must assign a 1/1-function (more precisely, a
dass of tP-functions) to a given isotropie manifold in such a way that the oscillation
fronts of these functions lie in this isotropie manifold.

2. Let us now present a mathematical treatment of the above physical reasons.
A similar diseussion ean be found in [3]. It will be convenient to use the language
of tbe category tbeory.
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Let us fix aphase spaee, for example, the eotangent spaee of a smooth real
manifold M with the eanonical sympleetie strueture dp" dq.

i) Consider the eategory C whose objects are the modules COO{A) of smooth
eomplex funetions on compaet Lagrangian manifolds A over the ring of classical
observables. Thus, an object in this category is the abelian group COO(A) for some
Lagrangian manifold A with the following action of the ring COO(T- M) of c1assical
observables:

f . ep = f(p, q)IA ep,

where the usual pointwise multiplication is used on the right-hand side.
Morphisms in this eategory are induced by symplectic trans/orms of the phase

spaee. Namely, let Al and A2 be Lagrangian manifolds. If

(0.2)

is a symplectic transform such that A2 = g(Ad, then to (0.2) we assign the module
homomorphism

over the ring homomorphism

Note that since Al and A'l are compaet, we can always assume that 9 is well­
behaved at infinity (i.e., a11 derivatives of gare uniformly bounded).

Remark 1 In §3 we also consider a different (though isomorphie) realization of the
category C.

ii) Consider the eategory Q whose objeets are the spaces Cr(M, A) of smooth
functions 1/J(x, h) depending on the parameter h E (0,1] with oseillation fronts in
A. The spaee Cr(M, A) is viewed as a module over the ring PSD(M) of quantum
observables (that is, pseudoditrerential operators). Note that pseudodifferential op­
erators preserve oseiIlation fronts and henee the module strueture is weIl defined.

Morphisms in this eategory are given by invertible mappings

such that
(0.3)

and the operator T HT- I is a pseudodifferential operator for any pseudodifferential
operator H. Note that (0.3) is a module homomorphism over the ring homomor­
phism iI ---+ T HT- I .
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ii i) A semi-classical quantization is a projective contravariant functor1
:

:F : C~ Q (modO(h))

such that the module of smooth functions on M with oscillation front in a given La­
grangian manifold is assigned to the module of smooth functions on this Lagrangian
manifold together with the :F-functorial mappings

J.l : COO(T* M) ~ PSD(M)

and
Kq : C;:(A) ~ Cr(M, A)

for each Lagrangian manifold A equipped with a measure u. (By saying that these
mappings are :F-functorial we mean that they are naturally included in projectively
commutative diagrams involving morphisms in C and Q related by :F.)

Such a functor exists and can be explicitly constructed on the basis of a certain
intergal transform, which we caU the wave packet trans/orm. This is an invertible
transform taking functions j(x, h) determined on the configuration space Rn to same
subspace of fUßctions j(q,p, h) determined on the phase space T*Rn. By using such
a transform one can carry out a unified construction of quantization of aB classieal
objects.

Moreover, this procedure conicides in the leading term with the Schrödinger
quantization2 [5] for observables, with the Fock quantization [6] for canonical (sym­
plectic) transforms and with the Maslov quantization [7] for Lagrangian modules.

Implementing this construction, we obtain 1/h-pseudodifferential operators as
quantization of observables, Fourier integral operators as quantization of symplectic
transforms and Maslov's canonical operator as quantization of Lagrangian modules
(the reader can find the notions used here, for example, in [8]).

3. We conclude these preliminary considerations with some remarks. To obtain
the correspondence between classical and quantum objects, that is, to construct
a quantization procedure, we try to decompose any quantum state 1j;(x, h) into a
sum of elements corresponding to points (q, p) of the phase space T*Rn, that is,
to classical states. Such a decomposition is a microlocalization procedure. Different
realizations of this procedure were widely presented in the literature (see, e. g. [9]).
The realization proposed in this paper leads to a transform providing the direct
quantization procedure.

1By a projeetiv~ funetor we mean a mapping between eategories sueh that tbe composition of
morphisms iB preserved up to a unimodular factor; this makes sense if the sets of morphisms have
the structure of vector spaees over C.

"JWe actually use the anti-Wiek quantization (see, e. g., [4)), whieh eoineides with the
Schrödinger quantization in the leading term.
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Localization of a function f(x, h) in the phase space can be accomplished by
localization along the fibers of T*Rn followed by localization along the base. The
localization along the base uses the "integral partition of unity" of the form

Localization along the base is therefore obtained with the help of multiplication by

note that

as h ----+ O.
Localization along the fibers can be done with the help of the quantum Fourier

transform, in other words, by means of p-representation, at the point Xo:

By composition of these two localizations we obtain the microlocal element corre­
sponding to the function f( x, h) in the form

f(xo,Po) = FX~Po{8h(X - xo}f(x,h}} = (2~hr/2 C:ihr
/2

x

x Jexp {i [-Po(x - xo} + ~(x - xo?]) f(x} dx,

The latter formula determines an integral transform, which we call the wave
packet transform of the function f(x, h). The inverse transform is gjven by

It is convenient to renormalize the obtained transform is such a way that the Parseval
identity takes place. This normalization is used below.
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1 Definition and basic properties of the wave
packet transform

1. In 1961 V.Bargmann [10] introdueed a remarlcable integral transform relating
the "harmonie oseillator representation" of the creation~annihilationoperators for
Bose particles in quantum field theory and the Foek representation of these operators
[11, 12]. Let us briefly reeall these results. In the harmonic osei llator representation ,
the ereation and annihilation operators aet in the space L2 (R;) of square integrable
funetions of the varia.bles q = (q}, ... ,qn) and have the form3 (Pi = -iß/8qi):

i = 1, ... ,n

i = 1, ... ,n

(creation operators);

(annihilation operators).

(1.1 )
The operators ai and ai are adjoints of eaeh other with respect to the inner product
on L 2(R;) and satisfy the commutation relations

[ai,aj] = [a~,a;] = 0, [ai,aj] = Öij, i,j = 1, .. . ,n. (1.2)

Fock introdueed a different solution of the eommutation relations (1.2), namely,

_ 8 _. .
ai = -8' ai = Zi, t = 1, ... , n.

Zi
(1.3)

Here it is required, in analogy with (1.2), that the operators ai and ai are mutually
adjoint in some Hilbert space of functions of z = (z}, ... ,zn)' One can achieve this
by assuming that the Zi are complex variables, Zi = Xi + iYi. Then the operators
(1.3) are pairwise adjoint in the Hilbert space F n of entire analytic functions f(z)
with the sealar produet

(/,g) = :n JJ(z)g(z)e-izdxdy = f a!l",g",
C" lal=o

(here dx dy is the standard Lebesgue measure in C n
,

n

ZZ = L ZiZi, 0' = (ab"" an)
i=1

31n the system of units in which h = 1.
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is a multi-index, and Jo. and 90. are the Taylor coefficients of J and 9:

00

.randsimilarly for 9).

The Bargmann transform An acts from L2(R;) into :Fn according to the formula.

(Anl/J)(z) = JAn(z,q)l/J(q)dq, l/J E L2(R;),
R q

n

where the kernel has the form

An(z, q) = 11"~/4 exp { _~(Z2 + q2) + ../2Zq} .

(1.5)

(1.6)

The main properties of the Bargmann transform are given by the following theorem.

Theorem 1 i) The trans/orm

is an isometrie isomorphism (that is, a unitary operator).
ii) The inverse transform is given by the formula

(1.7)

where ..\ --+ 1 Jrom below, and the limit is understood in the strong sense in L2(R~).

iii) The trans/orm An is an intertwining opemtor for the representations (1.1)
and (1.3) 0/ the eommutation relations (1.2), that is,

(1.8)

The comparison of the formulas

• 1 ( "")
Gi = V2 qi - tPi

suggests that it might be useful to identify the complex space C n
, on which the

elements of :Fn are defined, with the phase space R; EB R; according to the formula

z = ~(q-iP)'
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In the "exact" theory this identification, as Bargmann noted, is of limited applicabil­
ity since qk and Pk do not commute. However, it is quite adequate in the asymptotic
theory (h --+ 0), but we need to consider a different transform.

2. Consider the Gaussian wave packet

where h > 0, q ERn, and p E Rn are parameters. We use the function (1.9) as a
kernel to define an integral transform U acting on L2(R~) as follows:

U[f](q,p) = Z-~(lrW~ JGh(q,p; x) fex) dx, f E L2(R:),

R s
n

(1.10)

where the bar denotes complex conjugation and dx = dXl . dX2 ..... dX n is the
standard Lebesgue measure on R;. The integral on the right-hand side in (1.10) is
obviously weIl defined, since Gh(q,p; x) belongs to L2(R~) for any fixed h, q, and p.

Definition 1 The integral transform U defined in (1.10) will be called the wave
packet trans/orm.

Remark 2 In [1] this transform was called the "Fourier-Gauss transform," but we
prefer the present name since this transform is the symplectic analog of the wave
packet transform considered by Cordoba and Fefferman [13] (see also [14]).

Theorem 2 (i) The wave packet transform is a bounded operator in the spaces

and salisfies the Parseval identity

(U /, Ug)L'J = (!,g)L'J.

(ii) The adjoint operator

is given by the /ormula

U"[IjJ](x) = Z-"/2( lrht~ JGh(q,p; x)ljJ(q,p) dq dp,
R2n

(q,p)

8
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where the integral on the right-hand side (which is not absolutely convergent at infin­
ity in general) is understood as the limit 0/ the similar integrals with 1jJ(q, p) replaces
by .,pk(x, p), where {.,pk} is a sequence 0/ compactly supported /unctions convergent
to 1jJ in L2(R~~).

(iii) One has the inversion /ormula

(1.15)

(1.16)

(iv) The range 0/ U is the closed subspace P(R~~) C L2(R~~) 0/ /unctions
F(q,p) that satis/y the equations

[haa - ih
a
8

- iPi ] F(q,p) = 0, j = 1, ... , n.
qj Pi

Remark 3 Obviously, condition (1.16) is equivalent to saying that exp{p2 /(2h)}
F(q,p) is an analytic function of the variables q - ip = (ql - iph .. . , qn - ipn).

Proo/. Straightforward computation shows that

(1.17)

where F(z) = B[/](z) is the Bargmann transform of f(xvh). Now we obtain all as­
sertions of Theorem 2 from the corresponding properties of the Bargmann transform
(Theorem 1) by routine computations.

The following statement is quite obvious.

Theorem 3 Set

Then
U-IU = 1, UU-1 = 1,

but
U·U = 1, UU· = P,

where P is the operator 0/ orthogonal projection in L2(R;~) onto P(R~~).

(1.18)

(1.19)

(1.20)

Next, on analogy with the Fourier transform, let us derive some commutation
formulas for U.
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Theorem 4 One has the commutation /onnulas

u 0 x = (q + ih:p) 0 U, (1.21 )

U 0 ( -ih:x) = ( -ih:q) 0 U (1.22)

(as usual, the equality 0/ two unbounded operators implies that their domains coin­
eide).

(1.23)

Remark 4 Since any function F in the range of U satisfies (1.16), we can derive
numerous other formulas; for example, replacing ih8/8p by h8/8q - ip in (1.21)
glVes

U 0 x = (q + h:q - iP) 0 U,

etc. This trick will often be used in the sequel.

Proo/. Differentiating the kernel G= Gh(q,p; x) gives

. Be - BÖ Be
lh- = (x-q)G, - = --,

8p 8q 8x
(1.24)

which readily yields (1.21) and (1.22) (to prove the latter formula, one also has to
integrate by parts onee).

We are now in a position to study the action of U and U· in the following spaces,
often used in examining asymptotie expansions as h ~ 0 (for details, see [8]).

Definition 2 Let k E Z+ = {O, 1,2, ... }. By H~/h(R~) we denote the spaee of
funet ions f (x) with fin ite nOfln

Ilflltn =i f(x) [ (1 + x
2

- h
2 :~2) k f(X)] dx, x

2 = 2:x~, :~2 = 2: :~r
(1.25)

Obviously, H~/h(R~) is a Hilbert spaee and we have the filtration

L 2 (Rn) = H~/h(Rn) ::> H:/h(Rn) :) ... :) H~/h(Rn) ::> •...

Similarly, we introduee the spaees H~/h(R~~) equipped with the norms
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Next, let us consider functions f(x, h) depending on the parameter h E (0,1).
We introduce the norm

11/111. = sup 1l/llk,h (1.27)
hE(O,l]

and denote by Hk(Rn) the space of functions with finite norm (1.27). Furthermore,
we consider the Frechet space

00

Hoo(Rn
) =nHk(Rn)

1.=0
(1.28)

with the topology defined by the countable system of seminorms (1.27). The spaces
Hk (R2n) and Hoo (R2n) are defined similarly.

Finally, let H:~h(Rn) be the dual space of H~/h(Rn) with respect to the L2 inner

product. The elements of H:~h are naturally interpreted as distributions, and we
have the embeddings

The definition of the spaces Hk extends to negative k, and we set

-00

H_oo(Rn) = UHk(Rn
);

k=oo
(1.29)

a net {tPk} is said to be convergent in H-oo if it converges in some Hk; with this
topology, H-00 is the dual of Hoo .

Theorem 5 (i) For any k E Z the mappings U and U· are continuous in the spaces

(1.30)

(for negative k, we extend these mappings /rom L'l by continuity).

(ii) Let H-oo,comp(R;~) be the subspace 0/ elements t/J E H-oo(R;~) such that
the support supp 1/1 lies in some ball B R = {(q,p) E R 2n lq'l + p'l ~ R}. For any
finite R, the operator U· is continuous in the spaces

(1.31 )

Consequently, the projection P = UU· is continuous in the spaces

(1.32)

]1



Proof. (i) In suffices to prove that the L 2-norm of

q"l ( -ih ;p) ~ (-ih;J5 U[J],

where er, ß", and aare multiindices such that lai + IßI + 1,1 + lai ~ k, k E z+, can
be estimated via a linear combination of the L2-norms of xlJ.(-ih8/8x)Vf(x) with
Ipl + lvi ~ k. We have

q"rI (-ih;p) ~ (-ih;q) 5 Ulf]

= q"l (q - q - ih;pr (-ih~rU[J]
, 0

= L "0 q0-nß(-1 )I~I (q + ih~)"Y (-ih~) 5 U[J] (1.33)
_ 0 7! ,! op oq
-y+-Y;-y

= L (-l)~I'!q"+irlU [x~ (_ih~)S f]
• 0 7! ,1 8x
"Y+-y;-y

by Theorem 4. Next,

Iql ~ Iq - ipf and Ipl ~ lq - ipl,

and so the L 2-norm of the right-hand side of (1.33) does not exceed

Now, by (1.23) and (1.22),

(q - ip) 0 U = U 0 x- h ;q 0 U = U 0 (x - h:x) , (1.34)

so that the last expression can be replaced by
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whence the desired estimate for k ~ 0 follows immediately. For k < 0, one uses
the standard duality argument. As to the estimates for U·, they are even easier to
obtain. We have, from (1.24),

-ih~~ =(x-q)G, ~~ =-~~,

where G = Gh(q,p; x), whence

( -ih:x) 0 U· = U· 0 ( -ih:q) ,
x 0 U· = U· 0 (q + ih :p)

(1.35)

(1.36)

(1.37)

(integration by parts in used to derive (1.37)), and the desired estimates become
obvious.

(ii) Each element t/J(p, q) E H_oo(R~~) belongs to H_N(R;~) for some N ~ 0
and hence can be represented in the form

tP(p, q) = (1 + l + p2 - h
2:;2 -h

2:;2rtPN(P, q), (1.38)

where 'l/JN(p, q) E HN(R~~) and

II1/JNIIN ~ constll1/JII_N' (1.39)

Now suppose that t/J(p, q) E H-oo,comp' Take a function x(r) E Cgo(R1
) such that

X(p2 +q2)t/J = 1/J. We have

U·['l/J](x) = U·[X(p2 + q2)t/J(p, q)](x)

= Tn/2(-Irht3n/4 Jexp [*(x - q)p - 2~ (x - q)2] X(p2 + q2) (1.40)

x [ (1+ l + p2 - h
2:;2 -h

2:;2rtPN(P, q)] dpdq

= T n/2(1f"h t 3n/4JtPN(p, q) { (1 + q2 + p2 - h2:;2 -h2:;2)N

X exp [~(x - q)p - ;h (x - q)2] X(p2 + l)} dpdq

13



(1.42)

(we have used integration by parts). Now

(
1 + q'J + p'J _ h'J 8'J _ h'J 8'J )N exp [i(x _q)p _ 2-(x _ q)'J]

8q'J 8p2 h 2h

XX(p2 +l) = exp [*(x - q)p- 2~ (x - q?] (1.41)

x [ 1+ q2 + p2 + ( -ih :q - p + i(q - x)r+ ( -ih:p + x - qrr
[

. 1 ] N
XX(p'J + q'J) = exp *(x - q)p - 2h (x - q)'J L (x - q)Oao(p, q),

10 1;;;;0

where the ao(p, q) are smooth compactly supported functions bounded with all
derivatives unifomly with respect to h (the sum is from laI = 0 to N rather than to
2N since the terms i(q - x}2 and (x - q)'J cancel each other out). The expression
obtained can be rewritten in the form

t aa(p,q) {(-ih:pr exp [*(x-q)p- 2
1
h(x- q?]},

101;;;;0

and by integrating by parts once more, we get

U'[1/>](x) = t U' [ ( -ih~r(aotPN)] .
101;;;;0

Since 1/JN E HN(R'Jn) and Go, as weIl as their derivatives, are uniformly bounded, it
follows that

I1 u· [1/JHlo ~ constlllf'N IIN ~ const llt/Jll-N' (1.43)

A slight modification of this argument permits one to estimate IIU*[t/JHlk for any k.

3. Let us summarize the preceding in a somewhat different form. Let M = R~~

be the 2n-dimensional space equipped with the standard Lebesgue measure dp dq.
In L2 (R;) consider the system of vectors

e(q,p)(x) = 2-n /2(1rh)-3n/4Gh (q,pjx) (1.44)

The system (1.44) is complete in L'J(R;) in the sense that

(1.45)
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This is just the Parseval identity (1.12); note that the transform U[f] in these
terms is given by

V[f](q, p) = (f, e(q,p»)

and defines an isometrie embedding

f ..-+ U[fJ.
We have

(1.46)

(1.47)

(the integral is understood in the weak sense); this is just the inversion formula
(1.15).

Furthermore, there is an orthogonal projeetion

(identified with its image P(R~~) = U(L2(R~)), and thc operator P ean be ex­
tended to a wider set induding distributions that belong to H_ oo.R (R2n) for some
R. In particular, this set indudes the delta funetions (more preeisely, the functions

(1.48)

(2.1 )

where 8(y) is thc Dirae delta funetion).
Thus, we are in the situation of the papers [4, 15], whieh permits us to consider

operators with co- and contravariant symbols (or Wiek and anti-Wiek symbols); this
will be used in the next section.

2 Quantization of observables

In this seetion we use the wave packet transform to study h-1-pseudodifferential
operators in the seale {Hk(R~)}; as a by-produet, we obtain some more properties
of wave packet transforms.

We use the symbol dass SOO(R~:;') eonsisting of smooth funetions H(q,p, h),
h E [0,1], such that

I
8Ial+IßI+k H(q p) I

8q 0 8pß8h; ~ Coßk(1 + Iql + IpDm, 10'1, IßI = 0, 1,2, ... ,

15



where m is independent of k, a and ß (but depends on H). For the detailed definition
of functions of operators, we refer the reader to [2] and the textbook [16].

1. The idea of quantization of observables, that is, of constructing the corre­
spondence "symbols --+ operators", is to use the conjugation of the symbol by U.
Since U-1 =J. U· (recall that U-1 = U·!.:F:l(R:ln)}, there are two different candidates:

H(q,p}

H(q,p}

A -1
~ H = U 0 H(q,p) 0 U,
~ iI = u· 0 H (q, p) 0 U,

(2.2)

(2.3)

where H(q,p) on the right-band side stands for the multiplication by H(q,p) in both
cases. After abrief study, we see that (2.2) must be rejected, since the multiplication
by H(q,p) need not preserve the set of solutions to (1.16) unless H(q,p) is an analytic
function of q - ip, and hence the subsequent application of U- I is merely undefined.
So we shall use (2.3), but first let us note that although (2.2) is meaningless "as is,"
the idea itself is not so absurduous. Namely, from the commutation relations (1.21),
(1.22), which mean that U is an intertwining operator for the representations

(
X, -ih~) and (q + ih~, -ih~)

ax ap Bq

of the Heisenberg algebra, we can obviously derive the following theorelll.

Theorem 6 For any symbol H(q, p) E soo(R2n) one has

(2.4)

Remark 5 Note that the left-hand side of (2.4) is weIl defined. Indeed,

[h a 'h a, 'h a] [h a 'h a , 'h a] 0Bq - t 8p - zp, q + z Bp = Bq - Z Bp - tp, -z Bq = ,

whence it follows that the operator

preserves the set of solutions to (1.16).

Let us now leave this topic and return to formula (2.3).
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Theorem 7 The operator

iI = U· 0 H(q,p) 0 U

is the operator with anti- Wiek symbol H (q, p) .

(2.5)

The operator with anti-Wiek symbol H (x, p) is a special ease of the general
eonstruetion of operators with A-symbols suggested in [17]. Namely, let

(
A tB)

A= B C (2.6)

be asymmetrie 2n x 2n matrix wi th n x n blocks A = tA, tB , B, and
C = tc and with nonpositive imaginary part (in [17], only real matriees A were
eonsidered). Then the 1/h-pseudodifferential operator

HA = HA(X, -i:)

wi t h A-symbol H (q, p) is defined by the formula

HA (x, -ih~) u{x)(21rhrn j(Fq_eF;!.yH]({,y)exp [*{x]

u(x-y)exp{;~((~) ,A( ~))} dyd{, (2.7)

where < ',. > is the inner produet in R 2n,

(2.8)

is the 1/h-Fourier transform, and Fp-.!." is the inverse transform. In partieular, for
1

A = 0 we obtain the quantization i, - ih8/8x:

HA(x,-ih:
X

) = H (;,- ih:
x

) ,

the ease

(2.9)
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eorresponds to the Weyl quantization: and for

(2.10)

we obtain the anti-Wiek quantization:

is tbe operator witb anti-Wiek symbol H (q, p)). Tbe Iast assertion can be proved
by straightforward eomputation: one first substitutes the explicit expressions for U'"
and U into (2.5) and then reduces the resultant integral to (2.7) with tbe matrix A
given by (2.10). Using formula (2.7), it is easy to prove the following theorem:

Theorem 8 The operator il given by (2.5) has a (?:, - ihaiax) -symbol. More

precisely,

where

He re

(

1 )" - 2 8
H=H x,-ih

8x
,h ,

- {h ( 8
2

8
2

) i h 8
2

}H(q,p,h)=exp 4" 8q2 + 8p2 -28q8p H(q,p).

(2.11 )

(2.12)

8'1 n 8'1 8'1 82 n 82 82
8q8p = ?= 8q- 8p-' 8q2 + 8p'l = ?= 8q~ + 8p~; (2.13)

1=1 ) 1 ,=1) 1

note that the exponential is weIl defined since both operators in (2.19) are self-adjoint
and nonpositive with respect to the L2 inner product.

It is easy to obtain the expansion in powers of h of the symbol H(q,p, h):

- h
H(q,p,h) = H(q,p) + 4"{Hqq (q,p) + Hpp(q,p) - 2iHqp } + .... (2.14)

We see that in the leading term Heoineides with Hand that the supports of il and
H are the same if for some N we neglect functions that are O(hN ).

Formally, we ean rewrite (2.12) as

{
h ( 8

2
8

2
) i h 8

2
} -

H(q,p) = exp -"4 8q'l + 8p2 +"2 8q8p H(q,p, h).

18

(2.15)



In other words, to reconstruet the anti-Wiek symbol H from the usual symbol H,
we have to solve the reverse heat equation, which is impossible if, say, H is not real­
analytic. However, if we neglect symbols that are O(hN ), we can find' an anti-Wiek
symbol that gives an operator elose to the pseudodifferential operator with a given
usual symbol. To this end, one must expand the exponential in (2.15) in the Taylor
series and retain fini tely many terms.

The representation (2.5) eombined with Theorem 8 permits one to prove bound­
edness theorems for pseudodifferential operators easily; however, we do not dwell on
this topic.

Using (2.12), (2.15) and the usual composi tion formula for pseudodifferential
operators, we arrive at the following theorem.

Theorem 9 Let iI and 6 be the operators with anti- Wiek symbols H(q,p) and
G(q,p), respeetively. Then the produet iI 0 G has the fonn

(2.16)

where the operator W has the anti- Wiek symbol W(q,p) with the /ollowing asymp­
tolie expansion as h -+ 0:

(2.17)

where z = q - ip, z = q + ip, and, aeeordingly,

(2.18)

2. Now we shall apply this definition of l/h-pseudodifferential operators to study
the behavior under U of fronts %seillations. Let us recall this, well-known in semi­
classical theory, notion.

We start from the definition of the support of oscillations.

Definition 3 Let "p E Hoo(Rn). We say that a point Xo E Rn belongs to the
oseillation support of ljJ,

Xo E ose suppljJ,

if for any function ep(x) E c.r(Rn) independent of hand satisfying

we have ep(xo) = o.
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By replacing 0 (h00) with 0 (hk+1), we 0 btain the definition of OSCk supp( t/; ). 0 b­
viously, osc supp t/;, a.s weIl as each OSCkSUpp(?I'), is a closed subset of Rn.

Definition 4 Let t/; E Hoo(Rn). We say that a point (qO'Po) of the phase space
R; EB R; belongs to the oscillation front of t/;,

(qo,Po) E OF(?I'),

if for any symbol H(q,p) E Cr(R2n) independent of hand satisfying

H (i, - ihaiax) 1/J = O(h"')

we have H( qo, Po) = O. The definition of 0 Fk(t/;) is obtained by replaeing O(hoo )
with O(hk+1). Obviously, OF(t/;) and all OFk(T/J) are closed.

The sets 0 F( t/;) and ose supp t/; satisfy properties closely resembling those of
WF(tf;) and sing supp tf; (see [18]). Some of those properties are eollected in the
following theorem.

Theorem 10 Let tf; E Hoo(Rn). Then

(i) ose supp t/; = 1r(OF(?I')),

where 1r : R;~ ~ R~, (q,p) ~ x = q, is the natural projection.

(ii) ose supp Ht/; c osesupp t/; and OF(Htf;) C OF(tf;)
/or any pseudodifferential operator H.

(iii) 1/ H(q,p) = 0 in a neighborhood 0/ some point (qO, Po), then (qo,Po) rt
OF(Ht/;).

(iv) Let
?I'(x, h) = e*S(x)cp(x), (2.19)

where S(x) and cp(x) are smooth functions and Im S ~ O. Then

{
aS(q)}oF(t/;) = (q, p) Icp (q) # 0, Im S(q) = 0, and p = ---aq . (2.20)

Corollary 1 The oscillation front of the Gaussian wave packet Gh(q,Pi x), consid­
ered as a function 0/ x J has the form

OF(Gh(q,p,,» = {(q,p)},

that isJ consisls 0/ the single point (q, p).

20
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Theorem 11 FOT any "p E H (R~) one has

OF[1/J] = osc supp [U["p]]. (2.22)

This assertion readily follows from the fact that in the leading term the appli­
cation of a pseudodifferential operator amounts to the multiplication of the wave
packet transform by the principal symbol.

3 Quantization of states

Informally, quantization of states is a procedure that assigns ,p-functions (or classes
of 1jJ-functions)on tbe configuration space to "objects" in (or on) the phase space
R~~. In asense, the simplest quantization rule is delivered by the Gaussian wave
packets themselves: to each point (p, q) E R~~ we assign the Gaussian wave packet

that has the oscillation front OF("p] consisting of that very point. If we intend to
obtain t/J-functions with oscillation fronts that do not amount to a single point hut
are some more general closed subsets (say, manifolds) of the phase space, then one
of the possihle approaches is to integrate the Gaussian packets with respect to the
parameters (p, q) with some density. Naively, this density would be supported on
the desired oscillation front; however, we shall see that this is not always the case.

The integration ean be interpreted twofold: we apply either U-I or U· to the
density. More preeisely, we set either

(3.1 )

where / E H_ oo (R2n) and is eompaetly supported", or

(3.2)

where j E F2(R~~). (Note that we ean always pass from (3.1) to (3.2) by setting

j = P /, hut eaeh deseription has its own geometrie and analytieal advantages).

1. First, we briefly diseuss formula (3.1), which ean be redueed to a construction
well-known in literature. Dur exposition mainly follows [1].

Suppose that a submanifold A c (R~:;') is given, and we intend to eonstruet
funetions "p E Hoo(Rn) with OF[1/J] C A. To this end, we apply the transform U·
to functions of the form

(3.3)

4The last requirement can of course be weakened.
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(3.4)

where 8 and cp are smooth functions on 1\, cp is eompactly supported, 8 is real­
valued, and b(A,du) is the delta function on 1\ corresponding to a smooth measure
du:

< C(A,du» X >= JX d", X E C;'(R~~),
A

We have introduced the factor ets in (3.3) for the following reasoll. Integration
over 1\ may caneel out the oseillations, a.nd we sha.11 ehoose 8 so as to exclude this
possibility. On substituting (3.3) into (3.1) we obtain

1/;(x) ~f K(A,du)CP = C~h) n/2Je j,4>(r,<>lcp(a) d,,(a), (3,5)

A

where
t

4>(x,o) = 8(0) + (x - q(o))p(o) + 2"(x - q(0))2 (3.6)

and 0 ~ (q(o),p(a)) is the embedding 1\ C R~~. Let H(q,p) be a compactly
supported symbol. Theo

H(i, -ih:x ) 1/;(x)

= (_1_)3n/2 r ej,{p(r-p)+4>(Q'<>)}H(x,p)cp(a)d!7{a) dq dp. (3.7)
21rh JAxR2n

q,p

Obviously, the function (3.7) is O( hOO
) if the phase function

t
1/J(x,q,p,o) = p(x - q) + (q - q(O'))p(O') +8(0') + 2"(q - q(O'))2 (3.8)

has 00 stationary points on the support of the integrand.
The stationary point equations read

~=x-q=O

~ = p(o) - p + i(q - q(O')) = 0 (3.9)

~ = (q _ q(O'))a'8~) - p(O')a~~) + a~~o) + i(q(O') - q)alJ~)'

whenee we obtain
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{
q(O)=q=x, p=p(o),

dS(o) = p(a) dx(a)
(3.10)

From (3.7) we see t hat the val idi ty of these equat ions for some point (x, p) is neces­
sary and sufficient for this point to belong to 0 F( 1jJ) (provided <p(a) i= 0).

If we require that OF(1jJ) = A (more precisely, OF(t/J) = sUpp<p), we must
require that

pdx = dS (3.11 )

on A, that is, A is a Lagrangian manifold. In this case, formula (3.5) defines the
Maslov canonical operator [7] on A in the forms considered by Karasev [19], which
itself is a paraphrase of the construction suggested by Cordoba and Fefferman [13]
for Fourier integral operators.

2. Let us now study formula (3.2). In this case,

1= U[t/J], (3.12)

and so an appropriate method is to start from the desired function 1/1 and try to see
what 1must be.

We are primarily interested in the semiclassical wave functions of the form

t/J(x) = ei/hS(r)<p(x)

or Fourier transforms of such functions.
Consider the wave packet transform of the function (3.13):

(3.13)

U[,p](q,p) = 2-~(11"ht~ Jexp*{S(x) + (q - x)p + ~(q - X)2} <p(x) dx. (3.14)
R;

The first obvious property of the function (3.14) is that it satisfies equations (1.16).
Furthermore, we can obtain the asymptotic expansion of U[1/J](q,p) in powers of h
by using the version [8] of the stationary phase method with complex-valued phase
function.

Ta this end, let us write out the equations of statianary points of the phase
function

t
cI>(x,q,p) = S(x) + (q - x)p + 2"(q - x)2 (3.15)

fi For lack of space, our considerations are purely local and we do not even touch any issues
pertaining to quantization conditions on A.
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of the integral (3.14). They rea.d

84> as .
ax =ax - p+ t(x - q) = o. (3.16)

We are interested in real stationary points, i.e., points at which the phase function
(3.15) is real. Then we have

as
x = q, P = ax (q).

Thus, the integral (3.14) has areal stationary point x = x(q,p) if and only if

as
p= ax(q),

(3.17)

(3.18)

that is, the point (p, q) lies on the Lagrangian manifold As generated by S. In this
case,

x(q,p) = q.

This stationary point is nondegenerate. Indeed,

82 4> 82S .
8x 'J = 8x2 + tE

is a nondegenerate matrix since 82S/ 8x2 is real symmetric6result:

(3.19)

(3.20)

(3.21 )

outside a neighborhood of As , whereas in the vieinity of As for any N > 0 we have
the asymptotic expansion

N=l

u[tPJ(q,p) = h-n
/
4ek4l (q,p) L hkak(q,p) + O(hN ),

k=O

where ak(q,p) are smooth functions independent of hand

4>(q,p) =00 4>(x(q,p),q,p)

(3.22)

(3.23)

is the almost analytic continuation of 4>(x,q,p) to the almost-solution x(q,p) of
equation (3.16) (see details in [8]). The phase function 4>(q,p) has the following
properties:

Im4>(q,p) ~ 0; ImcI>(q,p) ~ 0 {:} (q,p) E As. (3.24)

6Experienced reader will see that being appropriately modified, this arguments remains valid
for a complex-valued phase function S(x) with non negative imaginary part.
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Now consider the semicla.ssical wave function of the form

(3.25)

Then

(3.26)
The real stationary points of the phase function

- 1
4>(~, x, q,p) = S(~) + ~x + (q - x)p + "2(q - x)2

are given by the equations

q = x,

8<t> _ 8~~~) + - 00[- x- ,

~ = ~ - p + i(x - q) = 0,

whence it follows that as
~ = p, x = p, q = - a~ (p).

We see that the point (p, q) lies on the Lagrangian manifold

As = {(q,P) Iq + ~: (p) = 0} .

(3.27)

(3.28)

(3.29)

(3.30)

The stationary point (3.29) is nondegenerate. Indeed,

det Hess~ = det (~ E) = det ( ~ + iE 0 )
E iE E iE

- indet (~~~ + iE) # O. (3.31)

After same calculations, we see that u[t/J] satisfies the same conditions (3.21)-(3.24).

3. Thus, we arrive at considering the following dass of functions 1 to be used in
the formula tP = V-I [I].
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Definition 5 Let ~(q,p) be a smooth function on R~~,

such that ~2(q,P) ~ 0, and let r be the set of zeros of 4>2(q,P). By /(~) we denote
the dass of funetions I{q,p, h), (q,p) E R 2n, h E (0,1], that satisfy the following
eonditions:

(a) I E Hoo(R;~) n ~2(R;~)j

(b) for any integer N > 0 one has the asymptotic expansion

N-l

I(q, p) = etcl(x,p) L hkak(q, p) + O(hN ),

k=O

(3.32)

where ak(q, p), k = 1,2, ... , are smooth functions independent of h and rapidly
decaying at infinity. Furthermore, we set

(3.33)

Let us study the dass I( ~) in some detail.

Lemma 1 Let I E /(4)), and let ak(q,p) be the corresponding functions occurring
in (3.32). Then

00

(a) ose-supp / = WF{U-1[fD = U SUppaknr.
k=o

(b) The funetions 4>(x,p) and ak(q,p), k = 0,1,2, ... , satisfy the 10I/owing sys-
tem 0/ equations in the interior 0/ the support 0/ ao:

.a~ 8~ . O(Ao.OO)
Z 8q + 8p - 1p = ~2'

aak _ .aak = 0(""'00)
8q z 8p ....2·

(3.34)

(3.35)

Proof. (a) is obvious. To prove (b), note that substituting the asymptotie
expansion (3.35) into (1.16), we obtain the equation

i cIl(x ) { [.84- 84> .] ~ k [(.84> 8<l> .)e1i ,p z- + - - zp ao + L.J h 1-+ - - Ip ak+
8q 8p k=1 Bq Bp

+i (:q - i :p) ak- I ] + ihN (:q - i :p) aN-I} = O(h
N

). (3.36)
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(3.37)

(3.38)

By [2), Lemma 4.1 (page 470 of the English translation), Eq. (3.36) implies that

(
.84» 84» .) N
t 8q + 8p - 7. P ao = 0 (~2 ),

(
.8<1» 8eil .) . ( 8 . 8 ) O(if..N-k)

7. 8q + 8p - zp ak + I 8q - zBp ak-l = '+'2 ,

Since N is arbitrary, the assertion of the lemma follows.
At this stage, it might seem that our construction provides functions tP = U-1 [j]

with arbitrary closed oscillation frants f. Hut this is not the ease, a.s shown by the
following remarkable theorem.

Theorem 12 Let / E I(~) haue the asymptotic expansion (3.35), and let (qO, Po) E
f. Suppose, furthermore, that ao( qo, Po) =J 0 and r is a submanilold in a neighbor­
hood 01 (qO,Po)' Then r is isotropie in a neighborhood 0/ (qo, Po), that is,

dp 1\ dqlr = o. (3.39)

Proof. Sinee <1»2 is nonnegative everywhere and cI>21r = 0, we have

(3.42)

(3.40)

(3.43)

(3.41 )

84>2 = 0 8cI>2 = 0
Bq '8p

on f. Since ao(qo,Po) =J 0, Eq. (3.34) is valid on r in a neighborhood of (qO,Po)'
Let us separate the real and the imaginary parts in Eq. (3.34):

BcI>1 _ 8cI>2 = O(eIlOO ) 84>1 84>2 _ = O(cI>OO)
8p 8q 2 , 8q + 8p p 2 •

In view of (3.40), (3.41), on r we have

Bellt = 0, 84>t = p.
8p 8q

Differentiating (3.42) yields the following equations on the tangent space 0/ r:
B2cI>t a2

cI>1 824>1 82
e1l t

8p8q dq + 8p8p = 0, dp = Bq 8pdp + Bq 8qdq.

Let us multiply the seeond equation by dq:

dp 1\ dq =

(3.44)
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where we have used the first equation in (3.43). Sinee the matriees

a2~1 and 82~1

8p8p 8q8q

are symmetrie, we obtain dp 1\ dq = 0, as desired.
If dirn r = n, then r is Lagrangian and the elements of Ch {~) correspond to the

eanonieal operator on r. If, however, dirn r < n, then elements of Ch correspond to
the canonieal operator on the isotropie manifold r with Lagrangian complex germ.
In fact, the interpretation of elements of Cr{<})) as the functions represented by
the canonical operator corresponding to a general eomplex germ (e.g., see [20] and
references therein) remains valid in the case of general set r. However, here we
do not touch this subjeet any morej the corresponding study will be carried out
elsewhere.

4 Quantization of symplectic transforms

In this seetion we shall show that the quantization of some sympleetie transform

(4.1 )

is essentially the conjugation with the help of the ij·transform of canonical change
of variables (4.1). More exactly, the following affirmation is valid.

Theorem 13 The operntor

or, in another form,

{ (
1 )n/2 . }

f{x) ~ ij* 2i e1lS(Q,p)ij f[g(q,p)] (x),

where the funetion S(q, p) is determined by the relation

dS = pdq - g*(~ dy),

(4.2)

is the Fourier integral operator T(g, 1) [21] wilh symbol 1 corresponding to the sym­
pleclic trans/orm (4.1).
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Remark 6 Similarly, the operator

{ (
1 )n/'J " }f ~ U- I 2i etS(q,p)cp(q,p)U f[g(q,p)] (x)

coincides with the Fourier integral operator T(g, "p).

Proof 0/ Theorem 13. Let the functions

y =y(q,p), ,= ~(q,p)

determine the symplectic transform (4.1). We write down operator (4.2) in the
integral form using the definitions of the transforms U and U*:

[ (
1 ) n/'J . ] 'n/2 J .

U· 2i e I;S(r,p)U f[9(y, q)] (x) = (2:h )3n/2 G(r' ,p') (x )eI;S(r' ,p')

{JG(y,q) (y') f (y') dY'} y=y(r' ,p'), q=q(r' ,p') dx'dp' .

Using formula (1.9), one can rewrite the latter formula in the form

( ")nj'J J {"[ "-1 1"" 1. , 2
T (g, 1) f = (21f h)3n/'l exp h S(x ,p ) + p (x - x ) + 2(x - x )

- q(x', p')(y' - y(x', p')) + ~(y' - y(x', p'))2]} f(y')dy' dx'dp'

= (- 2~h) n/2 J[((x, y')f(y')dy',

where the kerneI K(x, y') is given by

[((x,y') = C~h) n Jexp {~ [S(x',p') + p'(x - x') + ~(x - x'?

q(x', p')(y' - y(x', p')) + ~(y' - y(x', p'))2] } dx'dp'.

The latter expression exactly coincides with the expression for the canonically rep­
resented function

I«x,y') = I«Ag,du)(l)
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on the Lagrangian manifold Ag = graphg with the measure du = {dp 1\ dx)"n,
written in the coordinates (x',p') of the manifold Ag. This follows from the fact
that the nonsingular action S on the Lagrangian manifold Ag is determined by the
formula
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