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Abstract

We discuss a universal quantization procedure based on an integral trans-
form that takes functions on the configuration space to functions on the
phase space and is closely related to the Bargmann transform. In the leading
term this procedure yields Schrodinger’s quantization of observables, Maslov’s
quantization of Lagrangian modules, and Fock’s quantization of canonical
transforms.

Introduction

This text is an extended version of [1]. We deal with asymptotic, or semi-classical,
quantization. Let us first explain this notion in some detail.

1. By quantization of classical mechanics physicists mean the assignment of
quantum objects to the corresponding classical ones. The main classes of objects
are states and observables. We recall that in classical mechanics the state of a
system is determined by a point (g,p) in the phase space (the space of coordinates
and momenta), and observables are functions f(q,p) on this space. In quantum
mechanics, the states of the system are described by ¥-functions (or wave functions)
¥(z) and observables are described by linear operators in the state space.

For the Schrodinger quantization, the correspondence between the classical and



the quantum observables is given by the rule

. . ., 0
g— =2z, pop=-iha,
so that the (pseudodifferential) operator corresponding to an observable f(g,p) has

the form -

f=1(4p) (0.1)
(the numbers 1 and 2 indicate the order of action of the operators § and p [2];
different orderings, such as f(tli,;i), the Weyl ordering f(?i + 3,;3), or the Jordan
ordering (1/2)(f($,;3) + f(;, ;13)) give the same result with the accuracy of O(h)).

The correspondence between classical and quantum states is not so simple. Al-
though simultaneous measurement of the coordinates and the momenta is impossi-
ble, it makes sense to speak of the joint probability density of the coordinates and
the momenta for a quantum particle in a state )(z): the mean value of an arbitrary
observable f(q,p) in the state ¢ is

(o = (&, fo)i, = tr (FBS) = ] £(¢,P)ol, p) dq dp,
R2n

where }34, is the orthogonal projection on 3 and

p(g,p) = Y(Q)(p)e™/*,  %(p) = (2mh) ™"/ f e /M (z) dz.

The function p(q, p) is the desired joint probability density (it is known as the densily
function corresponding to ¥(z)). In the semiclassical limit (b — 0) the density
function vanishes for some classical states (p, ¢); if the support of the limit density
is a manifold and if a certain additional condition is satisfied, then this manifold
is necessary an tsolropic submanifold of the phase space, that is, a submanifold on
which the Cartan form pdq is closed. .

From the viewpoint of a quantum particle, this submanifold is the oscillation
front of the i¥-function. Quantization must assign a i-function (more precisely, a
class of y¥-functions) to a given isotropic manifold in such a way that the oscillation
fronts of these functions lie in this isotropic manifold.

2. Let us now present a mathematical treatment of the above physical reasons.
A similar discussion can be found in [3]. It will be convenient to use the language
of the category theory.



Let us fix a phase space, for example, the cotangent space of a smooth real
manifold M with the canonical symplectic structure dp A dg.

1) Consider the category C whose objects are the modules C*(A) of smooth
complex functions on compact Lagrangian manifolds A over the ring of classical
observables. Thus, an object in this category is the abelian group C*(A) for some
Lagrangian manifold A with the following action of the ring C®(T*M) of classical
observables:

f"lo= f(p)q)lj\‘lo’

where the usual pointwise multiplication is used on the right-hand side.
Morphisms in this category are induced by symplectic transforms of the phase
space. Namely, let A; and A, be Lagrangian manifolds. If

g:T"M —-T'M (0.2)

is a symplectic transform such that A; = g(A,), then to (0.2) we assign the module
homomorphism
g" : C%(A2) = C=(Ay)
over the ring homomorphism
g C®(T*M) - C=(T"M).

Note that since A; and A; are compact, we can always assume that ¢ is well-
behaved at infinity (i.e., all derivatives of g are uniformly bounded).

Remark 1 In §3 we also consider a different (though isomorphic) realization of the
category C.

ii) Consider the category Q whose objects are the spaces Cp°(M, A) of smooth
functions 1(z, ) depending on the parameter h € (0,1] with oscillation fronts in
A. The space C°(M, A) is viewed as a module over the ring PSD(M) of quantum
observables (that is, pseudodifferential operators). Note that pseudodifferential op-
erators preserve oscillation fronts and hence the module structure is well defined.

Morphisms in this category are given by invertible mappings

T:C%(M)— C™(M)
such that

and the operator THT 'is a pseudodifferential operator for any pseudodifferential
operator H. Note that (0.3) is 2 module homomorphism over the ring homomor-

phism H — THT".



ili) A semi-classical quantization is a projective contravariant functor’:

F:C— Q (modO(h))

such that the module of smooth functions on M with oscillation front in a given La-
grangian manifold is assigned to the module of smooth functions on this Lagrangian
manifold together with the F-functorial mappings

2 C®(T*M) — PSD(M)

and
K, : C?(A) = C°(M,A)

for each Lagrangian manifold A equipped with a measure o. (By saying that these
mappings are F-functorial we mean that they are naturally included in projectively
commutative diagrams involving morphisms in C and @ related by F.)

Such a functor exists and can be explicitly constructed on the basis of a certain
intergal transform, which we call the wave packet transform. This is an inveriible
transform taking functions f(z, h) determined on the configuration space R™ to some
subspace of functions f(q,p, h) determined on the phase space T*R". By using such
a transform one can carry out a unified construction of quantization of all classical
objects.

Moreover, this procedure conicides in the leading term with the Schrodinger
quantization? [5] for observables, with the Fock quantization [6] for canonical (sym-
plectic) transforms and with the Maslov quantization (7] for Lagrangian modules.

Implementing this construction, we obtain 1/h-pseudodifferential operators as
quantization of observables, Fourier integral operators as quantization of symplectic
transforms and Maslov’s canonical operator as quantization of Lagrangian modules
(the reader can find the notions used here, for example, in [8]).

3. We conclude these preliminary considerations with some remarks. To obtain
the correspondence between classical and quantum objects, that is, to construct
a quantization procedure, we try to decompose any quantum state (z,k) into a
sum of elements corresponding to points (g,p) of the phase space T*R", that is,
to classical states. Such a decomposition is a microlocalization procedure. Different
realizations of this procedure were widely presented in the literature (see, e. g. [9]).
The realization proposed in this paper leads to a transform providing the direct
quantization procedure.

!By a projective functor we mean a mapping between categories such that the composition of
morphisms is preserved up to a unimodular factor; this makes sense if the sets of morphisms have
the structure of vector spaces over C.

IWe actually use the anti-Wick quantization (see, e. g., [4]), which coincides with the
Schrodinger quantization in the leading term.



Localization of a function f(z,h) in the phase space can be accomplished by
localization along the fibers of T*R" followed by localization along the base. The
localization along the base uses the “integral partition of unity” of the form

nf2
= (21_h) / e~ (=== iz
rig

Localization along the base is therefore obtained with the help of multiplication by

1 n/f2 3 (rmzg)?
Sn(z — xp) = 5 e 2R\ TN,

note that
Sn(z — z0) = 6(z — o)

as h — 0.
Localization along the fibers can be done with the help of the quantum Fourier
transform, in other words, by means of p-representation, at the point zq:

LN e
Fm[fl—(w) [etmesa) da

By composition of these two localizations we obtain the microlocal element corre-
sponding to the function f(z, k) in the form

1 n/2 1 nf2
fow = Femir@=a fem} = (57) ()

« / exp{;{ [—po(x o)+ (o - xo)ﬂ] } f(z) dz.

The latter formula determines an integral transform, which we call the wave
packet transform of the function f(z,h). The inverse transform is given by

. n/2
rd 1 i i -
f(zo,po) — f(z) = (_21rh) /e};[PO(:—:oH}'(z—:o)z]f(xo‘po) dzodpo.

It is convenient to renormalize the obtained transform is such a way that the Parseval
identity takes place. This normalization is used below.



1 Definition and basic properties of the wave
packet transform

1. In 1961 V.Bargmann [10] introduced a remarkable integral transform relating
the “harmonic oscillator representation” of the creation-annihilation operators for
Bose particles in quantum field theory and the Fock representation of these operators
[11, 12]. Let us briefly recall these results. In the harmonic oscillator representation,
the creation and annihilation operators act in the space L*(R}) of square integrable
functions of the variables ¢ = (qi,...,¢n) and have the form® (p; = —i9/d¢;):

al = ﬁ(Qi —1ip;) = % (q; - gaq—l) , t=1,...,n (creation operators);

a; \/—(Qu +1p) = \/— (q‘ + Hq—.) t=1,...,n (annihilation operators)(.l .

The operators a; and a} are adjoints of each other with respect to the inner product
on L*(R}) and satisfy the commutation relations

[ai,a;] = [a],a]] =0, [a;,a}} =&, 1,5 =1,. (1.2)
Fock introduced a different solution of the commutation relations (1.2), namely,

9
az,' ’

a; =

a, = zy, i=1,...,n. (1.3)

Here it is required, in analogy with (1.2), that the operators @; and &} are mutually
adjoint in some Hilbert space of functions of z = (z),...,2,). One can achieve this
by assuming that the z; are complez variables, z; = z; + 1y;. Then the operators
(1.3) are pairwise adjoint in the Hilbert space F, of entire analytic functions f(z)
with the scalar product

/ F)g()e dody = 3 alfuga (1.4)
ja|=0
(here dz dy is the standard Lebesgue measure in C*,

n

Zz = ZE,‘z;, a=(ay,...,a,)

=1

3In the system of units in which A = 1.



is a multi-index, and f, and g, are the Taylor coefficients of f and g¢:

o0

.and similarly for g).

The Bargmann transform A, acts from L*(R7) into F, according to the formula

(An)(z) = ] An(z,9)9(q)dg, ¥ € LARD), (1.5)
R,

where the kernel has the form

An(z,9) =

exp {——%(22 +¢%)+ \/§zq} . (1.6)

ey,
The main properties of the Bargmann transform are given by the following theorem.
Theorem 1 i) The transform

A, LA(R]) — Fu

is an isometric isomorphism (that is, a unitary operator).
1) The inverse transform is given by the formula

(450)(0) = lim = [ A Oa)e " dady, (1.7)
Cn

where A — 1 from below, and the limit is understood in the strong sense in L*(R}).
iii) The transform A, is an intertwining operator for the representations (1.1)
and (1.3) of the commultation relations (1.2), that is,

Ap-a;=8;-An, Ap-al =a]-An, 1=1,...,n. (1.8)
The comparison of the formulas
1
al = — ,'--2.-,' and &::Z;
i = 75la )

suggests that it might be useful to identify the complex space C", on which the
elements of F, are defined, with the phase space R} @ R} according to the formula

2= %(q —ip).

7



In the “exact” theory this identification, as Bargmann noted, is of limited applicabil-
ity since i and p do not commute. However, it is quite adequate in the asymptotic
theory (A — 0), but we need to consider a different transform.

2. Consider the Gaussian wave packet

Gh(q,p;2)=exp{%(m—0) -;7(1—4)2}, z € R, (1.9)

where A > 0, ¢ € R", and p € R"™ are parameters. We use the function (1.9) as a
kernel to define an integral transform U acting on L*(R?) as follows:

Un) =23k [ Glama fe)ds, Fe PR, (110
R,™
where the bar denotes complex conjugation and dx = dz, - dzy - ... dz, is the

standard Lebesgue measure on R7?. The integral on the right-hand side in (1.10} is
obviously well defined, since Gi(q, p; z) belongs to L*(R2) for any fixed 4, ¢, and p.

Definition 1 The integral transform U defined in (1.10) will be called the wave
packet transform.

Remark 2 In {1] this transform was called the “Fourier-Gauss transform,” but we
prefer the present name since this transform is the symplectic analog of the wave
packet transform considered by Cordoba and Fefferman [13] (see also [14]).

Theorem 2 (i) The wave packet transform is a bounded operator in the spaces
U : L*(R}) —» L*(R¥) (1.11)

and satisfies the Parseval identity

([j."-aljg)b2 = (f,g)Li- (112)
(i1) The adjoint operator
U*: L*(R¥) — L*(RD?) (1.13)
8 given by the formula
U*fl(z) = 27/*(xh)~F / Gi(q,p; 2)¥(q, p) dg dp, (1.14)
Ran

(a.p)

8



where the integral on the right-hand side (which is not absolutely convergent at infin-
ity in general) is understood as the limit of the similar integrals with 1(q, p) replaces

by Yi(z,p), where {1} is a sequence of compactly supported functions convergent
to ¢ in L*(R3%).

(iii) One has the inversion formula
UU =1 (1.13)

(iv) The range of U is the closed subspace F*(R2X%) C L*(RI%) of functions
F(q,p) that satisfy the equations

o .0 . :
[ha—qj—zh-a?j—zpj] F(g,p)=0, j=1,...,n. (1.16)

Remark 3 Obviously, condition (1.16) is equivalent to saying that exp{p?/(2h)}
F(gq,p) is an analytic function of the variables ¢ — ip = (g1 — ip1, ..., ¢n — iPn).

Proof. Straightforward computation shows that

Ul = erviy e (-5 |ew (<5 ) P | . aan

z=
2h

where F(z) = B[f](z) is the Bargmann transform of f(:r:\/Z) Now we obtain all as-
sertions of Theorem 2 from the corresponding properties of the Bargmann transform
(Theorem 1) by routine computations.

The following statement is quite obvious.

Theorem 3 Set

[J-l = U-lﬁ(Rg:},)' (1.18)
Then
Ul =1, UU' =1, (1.19)
but
U'U=1, UU* =P, (1.20)

where P is the operator of orthogonal projection in L*(R3%) onto F2(R2}).

Next, on analogy with the Fourier transform, let us derive some commutation
formulas for U.



Theorem 4 One has the commutation formulas

Uoz= (q + ih;;i) oU, (1.21)

Uo (-iha—‘i-) = (—iha%) ol (1.22)

(as usual, the equality of two unbounded operators implies that their domains coin-

cide).

Remark 4 Since any function F in the range of U satisfies (1.16), we can derive
numerous other formulas; for example, replacing thd/3p by h0/0q — ip in (1.21)
gives

Uo:cz(q+h~—a—~—ip)oU, (1.23)
9q

etc. This trick will often be used in the sequel.
Proof. Differentiating the kernel G = Gi(q, p; ) gives
oG . 0G oG
th— = (z — ¢)G, — = ——, 1.24
g =@ 006, 5 = -3 (1.24)

which readily yields (1.21) and (1.22) (to prove the latter formula, one also has to
integrate by parts once).

We are now in a position to study the action of U and U* in the following spaces,
often used in examining asymptotic expansions as h — 0 (for details, see [8]).

Definition 2 Let k € Z, = {0,1,2,...}. By H,i""(Rg) we denote the space of
functions f(z) with finite norm

k
Wik = [T {(1 ) f(x)] O
v (1.25)
Obviously, H,:‘”‘(R;) is a Hilbert space and we have the filtration
L}R™) = H"®™) > HMRYY > ..o HIMRY) o ...
Similarly, we introduce the spaces H;/h(Rf,:;) equipped with the norms

o L,

k
l11E 4 = f ¥(p, q) (l +¢+p° —hza? —h ﬁ) 1!)('9,(1)] dpdg.  (1.26)
RQn

10



Next, let us consider functions f(z,k) depending on the parameter A € (0,1].
We introduce the norm

WAle = sup ||fllen (1.27)
he(o.1]

and denote by Hi(R") the space of functions with finite norm (1.27). Furthermore,
we consider the Fréchet space

Ho(RY) = ﬁ Hy(R") (1.28)
k=0

with the topology defined by the countable system of seminorms (1.27). The spaces
Hi(R*) and H.(R™) are defined similarly.
Finally, let Hiih(R") be the dual space of H,:M(R") with respect to the L, inner

product. The elements of Hl‘ih are naturally interpreted as distributions, and we
have the embeddings

S HYMRY o ... 0 HYMRY) o Hy/M(R™) = Lo(R™) > HM(R™) > ...
The definition of the spaces H; extends to negative k, and we set

How(R) = ] Hi(RY) (1.29)

k=w

a net {1} is said to be convergent in H_,, if it converges in some Hj; with this
topology, H_o is the dual of H,.

Theorem 5 (i) For any k € Z the mappings U and U* are continuous in the spaces
U : Hi(R]) — Hi(R2Y), U*: Hy(RZ) — H(R}) (1.30)

(for negative k, we eztend these mappings from Ly by continuity).

(ii) Let H_oocomp(R3%) be the subspace of elements 1 € H_o(R},) such that
the support supp i lies in some ball B = {(q,p) € R*|¢* + p* < R}. For any
finite R, the operator U* is conlinuous in the spaces

U* : H_ocomp(R2") — Heo(RY). (1.31)
Consequently, the projection P = UU" is continuous in the spaces

11



Proof. (1) In suffices to prove that the L?-norm of

y
oo (-n2) (<n2) vin,
where a, 3,7, and § are multiindices such that |a|+ |8| + |v| + |6] £ k, k € Z,, can

be estimated via a linear combination of the L?-norms of z#(~:ihd/8z)" f(z) with
|| + |v| < k. We have

{

= ¢° (q_q-iha%) —ih ai) Ulf]

— E ~‘Y_!°.qa+-w(_1)l'7l (q+ihl%)1 (—zha) Ulf] (1.33)

by Theorem 4. Next,

lg| < |g—ip| and |p| < |g —ip),

and so the La-norm of the right-hand side of (1.33) does not exceed

~! . ° o\’
> Lo lla= i |5 (i ) g
° ‘?' " Oz La(R2n)
:'+7=.-, P
Now, by (1.23) and (1.22),
: d 0
(q—zp)oU—Uoz—haoU.-Uo(m—ha—x) (1.34)

so that the last expression can be replaced by
9 at+y+8 s ) §
U |:(:r - ha_:z:) T (—zha—x) f

12




whence the desired estimate for & > 0 follows immediately. For k < 0, one uses
the standard duality argument. As to the estimates for U*, they are even easier to
obtain. We have, from (1.24),

., 8G oG  aG
~ihgo= (=06 5o==55, (1.35)

where G = Gi(q, p; z), whence

AN . (..
(—thg;) oU"=U"0 (—1ha—q) , (136)
zolU*=U"0 (q+ih§l—1) (1.37)

(integration by parts in used to derive (1.37)), and the desired estimates become
obvious.

(ii) Each element ¢(p,q) € H_o(R}") belongs to H_y(R2%) for some N > 0
and hence can be represented in the form

0° 0°
sp0=(1+d+r-w L l) o, 0
where ¥n(p,q) € Hy(R2%) and
Wl < constl]-- (1.39)

Now suppose that ¥(p,q) € H_ccomp. Take a function x(r) € C§°(R') such that
x(P* + ¢*)¥ = . We have

Ulgl(z) = U'x(@* +¢")¥(p, 9)(=)
= 273 (k)34 /exp [%(a: —q) 21h(a: —q) ] x(P* +¢*) (1.40)

x[{1+¢*+p* - a—z—h’ T dw(p q)| dpdq
aq Op? ’

o* o*
= 27/%(gh)=3n/4 22 _p?
27"%(wh) /¢N(Paq {(1+q +p"—h 9q? h op? )

X exp [%(I —q)p - 2—,,(x - q)z] x(p* + qz)} dpdq

13



(we have used integration by parts). Now

(1 +q2+p2—h2322;—h %) exp {%(I-q) 21,1(3-(1)]
xx(p* + ¢*) = exp [%(x - q)p— th (z—4q) ] (1.41)

AN _ AN A"
X |(14+¢ +p°+ —zha——p+z(q—x) +|—th—+z—¢g
q dp

. N
xx(p* + %) = exp [%(z -q9p—57(z—9q) ] > (z—9)"aa(p,9),

Jo|=0

where the a,(p,q) are smooth compactly supported functions bounded with all
derivatives unifomly with respect to A (the sum is from |a| = 0 to N rather than to
2N since the terms i(q — z)? and (z — ¢)* cancel each other out). The expression
obtained can be rewritten in the form

and by integrating by parts once more, we get

U )(z) = ZU'[(—zh ) ()] (1.42)

la|=0

Since Yn € Hy(R?™) and a,, as well as their derivatives, are uniformly bounded, it
follows that

[1U*[#]llo < const||sn|[n < const|[]|-~- (1.43)

A slight modification of this argument permits one to estimate ||U*[]||x for any k.

3. Let us summarize the preceding in a somewhat different form. Let M = R3"
be the 2n-dimensional space equipped with the standard Lebesgue measure dpdq.
In L?(R?) consider the system of vectors

eep)z) = 273 (xh)1G (g, pi ) (1.44)
The system (1.44) is complete in L*(R?) in the sense that

U Pe = / (/o) *dq dp. (1.45)

14



This is just the Parseval identity (1.12); note that the transform U[f] in these
terms is given by

U{fl(q1 P) = (f1 e(ql,p)) d (146)

and defines an isometric embedding
LA(RY) - LRI,

[ U[f].
We have

[= j(fa €(q.r))€(a.p) 49 P (1.47)

(the integral is understood in the weak sense); this is just the inversion formula

(1.15).

Furthermore, there is an orthogonal projection

P=UU" : L}R™) — L*(R)

P

(identified with its image F*(R7%) = U(L?*(R})), and the operator P can be ex-
tended to a wider set including distributions that belong to H_., r(R*") for some
R. In particular, this set includes the delta functions {(more precisely, the functions

Paore = h"?6(g — q0)6(p — po), (1.48)

where §(y) is the Dirac delta function).

Thus, we are in the situation of the papers [4, 15], which permits us to consider
operators with co- and contravariant symbols (or Wick and anti-Wick symbols); this
will be used in the next section.

2 Quantization of observables

In this section we use the wave packet transform to study h~!-pseudodifferential
operators in the scale { H¢(R2)}}; as a by-product, we obtain some more properties
of wave packet transforms.

We use the symbol class S®(R2%) consisting of smooth functions H(g,p, h),
h € [0,1], such that

Qlel+IBik H (g p)
0qeOpPoh*

< Copr(1 + gl + 1P)7, lal,181=0,1,2,...,  (2.1)

15



where m is independent of k, a and 3 (but depends on H). For the detailed definition
of functions of operators, we refer the reader to [2] and the textbook [16].

1. The idea of quantization of observables, that is, of constructing the corre-
spondence “symbols — operators”, is to use the conjugation of the symbol by U.
Since U~! # U* (recall that U~! = U*|x,(r2n)), there are two different candidates:

H(q,p) » H=U"'0oH(q,p)oU, (2.2)
H(q,p) = H=U"oH(q,p)oU, (2.3)

where H(q, p) on the right-hand side stands for the multiplication by H(q, p) in both
cases. After a brief study, we see that (2.2) must be rejected, since the multiplication
by H(q,p) need not preserve the set of solutions to (1.16) unless H(g, p) is an analytic
function of ¢ — ¢p, and hence the subsequent application of U~ is merely undefined.
So we shall use (2.3), but first let us note that although (2.2) is meaningless “as is,”
the idea itself is not so absurduous. Namely, from the commutation relations (1.21),
(1.22), which mean that U is an intertwining operator for the representations

., 0 g ., 0
(:z,—zhg-;) and (q+zh6 , zhb—q)

of the Heisenberg algebra, we can obviously derive the following theorem.

Theorem 6 For any symbol H(q,p) € S®(R*™) one has
: d 13 13
_l y — — y — —
U'H|g+ thap, zhaq U=H (:c zhax) (2.4)

Remark 5 Note that the left-hand side of (2.4) is well defined. Indeed,

h(% - zhai tp, g+ th— 9 ] [h— — zhai —1p, —ihaiq] =0,
whence it follows that the operator
2 1
a 7]
H h—,— th—
g+ ap’ " oq

preserves the set of solutions to (1.16).

Let us now leave this topic and return to formula (2.3).

16



Theorem 7 The operator
H=U"oH(q,p)oU (2.5)
is the operator with anti-Wick symbol H(q,p).

The operator with anti-Wick symbol H(z,p) is a special case of the general
construction of operators with 4-symbols suggested in [17]. Namely, let

A= ( a 'CB ) (2.6)

be a symmetric 2n X 2n matrix with n x n blocks A = 'A, ‘B, B, and
C = 'C and with nonpositive imaginary part (in [17], only real matrices A were
considered). Then the 1/A-pseudodifferential operator

Hy = HA(I: _l"af?;)
with A-symbol H(q,p) is defined by the formula

Ho (a:, —ih;%) u(z)(2rh)™" / [Foee 2 H)(E,y) exp [%Ea:]

u(x_y)exp{;—;((g),A(g”} dy dt, 2.7)

where < -,- > is the inner product in R?",
]

[Foef1(E) = (%—h)m ] e~k f(q) dg (2.8)

is the 1/h-Fourier transform, and F;! is the inverse transform. In particular, for

i
A = 0 we obtain the quantization 32:, — thd/0z:

the case
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corresponds to the Weyl quantization: and for

( —;E _?E ) | (2.10)

we obtain the anti-Wick quantization:

A=

[N

0 o

Hu(z,—1h =H

)

is the operator with anti-Wick symbol H(q,p)). The last assertion can be proved
by straightforward computation: one first substitutes the explicit expressions for U*
and U into {2.5) and then reduces the resultant integral to (2.7) with the matrix .4
given by (2.10). Using formula (2.7}, it is easy to prove the following theorem:

R 1
Theorem 8 The operator H given by (2.5) has a (3:,— iha/ax) -symbol. More

precisely,

1
=1 |z- i"%’h) : (2.11)
where 3 62 8'1 ih 62
Hap.h) = eXp{ (aq + 3_132) - 73(13})} H(q,p). (2.12)
Here . i 5 2
8q0p Jz dq; dp;’ aq? 3p2 JZ 3‘1_, = (2.13)

note that the exponential is well defined since both operators in (2.13) are self-adjoint
and nonpositive with respect to the L? inner product.

It is easy to obtain the expansion in powers of h of the symbol H(g,p, h):

. h _ |
H(q,p, h) = H(Q:p) + Z{HQQ(q,p) + HPP(Q:?) - QIHQP} + et (214)

We see that in the leading term H coincides with H and that the supports of H and
H are the same if for some N we neglect functions that are O(AV).
Formally, we can rewrite (2.12) as

h [ &? 9* ih 0% .
H(q,p) = exp {_Z (5? + W) + anap} H(q,p,h). (2.15)
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In other words, to reconstruct the anti-Wick symbol H from the usual symbol H,
we have to solve the reverse heat equation, which is impossible if, say, H is not real-
analytic. However, if we neglect symbols that are O(h"), we can find an anti-Wick
symbol that gives an operator close to the pseudodifferential operator with a given
usual symbol. To this end, one must expand the exponential in (2.15) in the Taylor
series and retain finitely many terms.

The representation (2.5) combined with Theorem 8 permits one to prove bound-
edness theorems for pseudodifferential operators easily; however, we do not dwell on
this topic.

Using (2.12), (2.15) and the usual composition formula for pseudodifferential
operators, we arrive at the following theorem.

Theorem 9 Let H and G be the operators with anti-Wick symbols H(gq,p) and
G(q,p), respectively. Then the product H o G has the form

HoG =W +0(r>), (2.16)

where the operator W has the anti-Wick symbol W (q,p) with the following asymp-
totic expansion as h — 0:

(2h)2 8°H 0°G
W(q,p) = IZ a, o (2.17)
a|=0

where z = q —ip, Z = q + ip, and, accordingly,

g 1(0 .0 g 1/9 .0
E—E(a—q-l-za—p), g—a(a—q—za—P) (2.18)
2. Now we shall apply this definition of 1/h-pseudodifferential operators to study
the behavior under U of fronts of oscillations. Let us recall this, well-known in semi-

classical theory, notion.
We start from the definition of the support of oscillations.

Definition 3 Let ¥y € H,(R"). We say that a point zg € R" belongs to the
oscillation support of ¥,
Zo € oscsuppy,

if for any function ¢(z) € C$°(R") independent of h and satisfying
b = O(h)

we have ¢(zo) = 0.
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By replacing O(h*) with O(h*+!), we obtain the definition of oscisupp(¢). Ob-
viously, osc supp ¥, as well as each osc,supp(¥), is a closed subset of R".

Definition 4 Let ¢ € H,(R"). We say that a point (go, po) of the phase space
R7 @ R belongs to the oscillation front of 1,

(QO,PO) € OF(‘I/)),

if for any symbol H(q,p) € C$°(R*") independent of k and satisfying
1
H (.3,-, - ihB/B;c) ¥ = O(h®)

we have H(qo,po) = 0. The definition of OF,() is obtained by replacing O(h*)
with O(h**+!). Obviously, OF(3) and all OF} (1) are closed.

The sets OF () and osc supp ¥ satisfy properties closely resembling those of
W F(+) and sing supp ¥ (see [18]). Some of those properties are collected in the
following theorem.

Theorem 10 Let iy € Ho(R™). Then

(i) osc supp ¥ = 7(OF(¥)),
where T : Rg:, — R2, (¢,p) — = = g, is the natural projection.

(ii) osc supp Hy C oscsupp and OF(Hy) C OF ()
for any pseudodifferential operator H.

(iii) If H(q,p) = 0 in a neighborhood of some point (qo,po), then (qo,po) ¢
OF(HvY).

(iv) Let

(2, h) = eF5Ep(), (2.19)

where S(z) and p(z) are smooth functions and Im S > 0. Then

OF($) = {(q,p)w(q)aéo, ImS() =0, and p= ag—gq)} (2.20)

Corollary 1 The oscillation front of the Gaussian wave packet Gy(q,p; ), consid-
ered as a function of z, has the form

that is, consists of the single point (q,p).
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Theorem 11 For any ¢ € H(R?) one has
OF[y] = oscsupp [U[¥]]. (2.22)

This assertion readily {ollows from the fact that in the leading term the appli-
cation of a pseudodifferential operator amounts to the multiplication of the wave
packet transform by the principal symbol.

3 Quantization of states

Informally, quantization of states is a procedure that assigns y-functions (or classes
of -functions) on the configuration space to “objects” in (or on) the phase space
Rgf;,. In a sense, the simplest quantization rule is delivered by the Gaussian wave

packets themselves: to each point (p,q) € R3}, we assign the Gaussian wave packet

1/’(3’ h) = Gh(p) q, :1:)

that has the oscillation front OF[¢] consisting of that very point. If we intend to
obtain -functions with oscillation fronts that do not amount to a single point but
are some more general closed subsets (say, manifolds) of the phase space, then one
of the possible approaches is to integrate the Gaussian packets with respect to the
parameters (p,q) with some density. Naively, this density would be supported on
the desired oscillation front; however, we shall see that this is not always the case.

The integration can be interpreted twofold: we apply either U~! or U* to the
density. More precisely, we set either

¥ =U"(f}, (3.1)
where f € H_,(R?*") and is compactly supported*, or
¥ =U""[f], (3.2)

where f € F2(R2%). (Note that we can always pass from (3.1) to (3.2) by setting
f = Pf, but each description has its own geometric and analytical advantages).

1. First, we briefly discuss formula (3.1), which can be reduced to a construction
well-known in literature. Our exposition mainly follows {1].

Suppose that a submanifold A C (R3%) is given, and we intend to construct

functions ¥ € Ho(R") with OF[¢] C A. To this end, we apply the transform U*
to functions of the form

f(ma p) = (Wh)nlde;;scp‘s(!\,da)a (33)

*The last requirement can of course be weakened.
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where S and ¢ are smooth functions on A, ¢ is compactly supported, S is real-
valued, and é(4 40y is the delta function on A corresponding to a smooth measure

do:

< Siadoy X >= / xdo, x € CP(R™). (3.4)
A

We have introduced the factor ek in (3.3) for the following reason. Integration
over A may cancel out the oscillations, and we shall choose S so as to exclude this
possibility. On substituting (3.3) into (3.1) we obtain

nf2 .
def 1 +®(z,o
¥(z) F Kauo)p = (m) /67"@( (@) do(a), (3.5)
A
where

d(z,a) = S(a) + (z — g(a))p(a) + %(:c —g(a))? (3.6)

and a — (g(a),p(a)) is the embedding A C R2%. Let H(g,p) be a compactly
supported symbol. Then

1
H (32: - ih(%) P(z)
1 Inf2 .
— (ﬁ) / ei{P(x‘P)Jf"(‘f"')}H(:c,p)cp(a)da(a) dq dp. (3.7)
AxRe,

Obviously, the function (3.7) is O(A*°) if the phase function

1

¥(2,9,p,@) = p(z — ) + (g — g(@))p(a) + S(@) + (g - g(«))*  (38)

has no stationary points on the support of the integrand.
The stationary point equations read

%%zz—q=0
9y _

B% =p(a) —p+i(g—q(a)) =0 (3.9)
G = (0= a(e) P55~ p(e) 2+ 52+ (g(e) - o) T2,

whence we obtain
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{ glay=g==z, p=p(a), (3.10)

dS{a) = p(a) dz(a)

From (3.7) we see that the validity of these equations for some point (z, p) is neces-
sary and sufficient for this point to belong to OF () (provided ¢(a) # 0).

If we require that OF () = A (more precisely, OF(3) = supp¢), we must
require that

pdz =dS (3.11)

on A, that is, A is a Lagrangian manifold. In this case, formula (3.5) defines the
Maslov canonical operator [7] on A in the form® considered by Karasev [19], which
itself is a paraphrase of the construction suggested by Cordoba and Fefferman [13]
for Fourier integral operators.

2. Let us now study formula (3.2). In this case,

f=UWl (3.12)

and so an appropriate method is to start from the desired function ¥ and try to see
what f must be.
We are primarily interested in the semiclassical wave functions of the form

b(z) = e/ E(z) (3.13)

or Fourier transforms of such functions.
Consider the wave packet transform of the function (3.13):

UWl(0.p) = 2750 F [0 {560+ 0= 2+ 50 - o | (e (2.14)
Ry

The first obvious property of the function (3.14) is that it satisfies equations (1.16).
Furthermore, we can obtain the asymptotic expansion of U[¥](q, p) in powers of k
by using the version [8] of the stationary phase method with complex-valued phase
function.

To this end, let us write out the equations of stationary points of the phase
function

®(z,9,p) = S(z) + (g —z)p + %(q —z)* (3-15)

5For lack of space, our considerations are purely local and we do not even touch any issues
pertaining to quantization conditions on A.
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of the integral (3.14). They read

0b a§ :
We are interested in real stationary points, i.e., points at which the phase function
(3.15) is real. Then we have

a5
z=¢, p=5-(q) (3.17)
Thus, the integral (3.14) has a real stationary point z = z(q,p) if and only if
aS
=20, (.19

that is, the point (p, ¢) lies on the Lagrangian manifold Ag generated by S. In this
case,

z(q,p) = q. (3.19)
This stationary point is nondegenerate. Indeed,
1o 9%S .
527 - 927 +:E (3.20)
is a nondegenerate matrix since §25/8z? is real symmetric®result:
Ul¥l(g,p) = O(h%) (3.21)

outside a neighborhood of Ag, whereas in the vicinity of Ags for any N > 0 we have
the asymptotic expansion
] N=1
u[l(,p) = MR 3 hai(g, p) + O(AY), (3.22)

k=0

where ai(g, p) are smooth functions independent of & and

Q(q,p) = q)(x(%p)aqap) (323)

is the almost analytic continuation of ®(z,q,p) to the almost-solution z(gq,p) of
equation (3.16) (see details in [8]). The phase function ®(g,p) has the following
properties:

Im®(q,p) 2 0; Im®(q,p) 20 & (q,p) € As. (3.24)

SExperienced reader will see that being appropriately modified, this arguments remains valid
for a complex-valued phase function S(z) with nonnegative imaginary part.
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Now consider the semiclassical wave function of the form
L™ [ iesssio)
@)= (g7) [ Op@ (3.25)
Then

UWl(ap) =20 [ ooy [$(6)+ 6o+ (g = 2o+ 50— 27| ol

Ri%
(3.26)
The real stationary points of the phase function
. :
®(¢,2,9,p) = 5(¢) + €z + (4 - 2)p+ 5(g - 2)’ (3.27)
are given by the equations
q9=1,
9 950, (3.9
R=t-p+iz-9=0,
whence it follows that a5
We see that the point (p, ¢) lies on the Lagrangian manifold
| 85
As =<{(¢,p) | ¢+ (P =0¢. (3.30)
9
The stationary point (3.29) is nondegenerate. Indeed,
98 818 | -
det Hessd = det ( a_g- f; ) = det( 3_57;“9 i% )
. (028

After some calculations, we see that u[i)] satisfies the same conditions (3.21)—(3.24).

3. Thus, we arrive at considering the following class of functions f to be used in

the formula ¢ = U~{f].
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Definition 5 Let ®(g,p) be a smooth function on R3?,

®(q,p) = ®1(q,p) +192(q, p),

such that ®2(q,p) > 0, and let I' be the set of zeros of ®,(q,p). By I(®) we denote
the class of functions f(q,p, %), (¢,p) € R*™, h € (0,1], that satisfy the following
conditions:
(a) f € Ho(R3Z) N Fy(REY);
(b) for any integer N > 0 one has the asymptotic expansion
N-1

f(g,p) = 5% S hray(q,p) + O(RY), (3.32)

k=0

where ax(q,p), £ = 1,2,..., are smooth functions independent of A and rapidly
decaying at infinity. Furthermore, we set

Cr(®) = U~ [1(®)). (3.33)
Let us study the class I{®) in some detail.

Lemma 1 Let f € I(®), and let ai(q,p) be the corresponding functions occurring
in (3.32). Then

(a) osc-supp f = WF(U-[f]) = U suppax (T

k=0
(b) The functions ®(z,p) and ar(q,p), k =0,1,2,..., satisfy the following sys-
tem of equations in the interior of the support of ao:

0% 0% -
za—q + a—p —1p = 0(97°), (3.34)
Bak .Bak _ 0o

Proof. (a) is obvious. To prove (b}, note that substituting the asymptotic
expansion (3.35) into (1.16), we obtain the equation

ew';'°(”){[zg—§+a—:—zp] ao + Zh" [( a—¢+a—:~1p) ax+

i (Z% _ za%) ] kY (a% _ z‘(%) aN_l} ~O0(Y).  (3.36)
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By [2], Lemma 4.1 (page 470 of the English translation), Eq. (3.36) implies that

99 89 N
(ta—q + a—p - lp) ag = O(‘I’2 ), (337)
.0 00 a a

o® or . Y A — N-k
(2 34 + o zp) ap +1 (6(1 zap) ag—1 = O(937F), (3.38)

Since N is arbitrary, the assertion of the lemma follows.

At this stage, it might seem that our construction provides functions ¢ = U~1[f]
with arbitrary closed oscillation fronts I. But this is not the case, as shown by the
following remarkable theorem.

Theorem 12 Let f € I(®) have the asymplotic ezpansion (3.35), and let (qo,po) €
I'. Suppose, furthermore, that ao(qo,po) # 0 and T' is a submanifold in a neighbor-
hood of (qo,po). Then T is isotropic in a neighborhood of (qo, po), that is,

dp A dg|. = 0. (3.39)
Proof. Since ®; is nonnegative everywhere and ®;jr = 0, we have

08, _, 0% _

aq¢ ~ ' op

on I'. Since ao(qo,po) # 0, Eq. (3.34) is valid on T in a neighborhood of (go, po).
Let us separate the real and the imaginary parts in Eq. (3.34):

0 (3.40)

2%, 0%, _ oy 091 00, _ .
3 e o(97°), 94 + o PT O(93°). (3.41)
In view of (3.40), (3.41), on " we have
0%, 09,
— =0, — =np. 3.42
o =" B =P (3.42)
Differentiating (3.42) yields the following equations on the tangent space of T':
9%, 5, 0%, ',
———dqg+ —— =0, dp = —=dp+ ——dq. 3.43
dp dq Q+6p6p » P Oq dp p+3q3q 1 (343)

Let us multiply the second equation by dg:
dpAdg = (g;q;;dp) Adg + (g;d;;dq) A dq
= dpA (g;g;dq) + (%dq) A dg (3.44)
- on () (g
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where we have used the first equation in (3.43). Since the matrices

5*®, and 90,
dpdp 0q0q

are symmetric, we obtain dp A dg = 0, as desired.

If dim I’ = n, then I' is Lagrangian and the elements of C°(®) correspond to the
canonical operator on I'. If, however, dim I’ < n, then elements of C§° correspond to
the canonical operator on the isotropic manifold I' with Lagrangian complex germ.
In fact, the interpretation of elements of Cg°(®) as the functions represented by
the canonical operator corresponding to a general complex germ (e.g., see [20] and
references therein) remains valid in the case of general set I'. However, here we
do not touch this subject any more; the corresponding study will be carried out
elsewhere.

4 Quantization of symplectic transforms
In this section we shall show that the quantization of some symplectic transform
g : T"R" - T"R" (4.1)

is essentially the conjugation with the help of the U-transform of canonical change
of variables (4.1). More exactly, the following affirmation is valid.

Theorem 13 The operator
T, = Urekson gy,

or, in another form,

n/2
f(w)HU‘{(%) e*s“””Uf[g(q,p)]} (@), (+2)

where the function S(q,p) is determined by the relation

dS = pdq — g* (£ dy),

is the Fourier integral operator T(g,1) [21] with symbol 1 corresponding to the sym-
plectic transform (4.1).
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Remark 6 Similarly, the operator

nf2
fe U { (%) ek (g, p)U f [g(q,p)]} (z)

coincides with the Fourier integral operator T'(g,¢).

Proof of Theorem 13. Let the functions

vy =y(q,p), €=E(g,p)

determine the symplectic transform (4.1). We write down operator (4.2) in the
integral form using the definitions of the transforms U and U*:

. 1 /2 - n/2 .
U [(E) ek S( .p)Uf[g(y,q)]] (z) = e an/ﬁ/Gtr‘ ) (z)ekSEP)

{/G(v'q)(y')f(y') dy'} dz'dp'.
y=u(z'.p'}, ¢=¢(=".p’)

Using formula (1.9), one can rewrite the latter formula in the form
("_i)“/2 i 't / ’ 1 n2
! / 7 7 f i ! ! f ! ’ ! !
- I o) + 50 - v 0P| | I
: nf2
(—2”—,1) /K(iﬂ,y ) (y')dy',

where the kernel K(z,y’) is given by
K 1) —- L ﬂ/ 1 S( ! I) + .'( _ 1) + i( _ 1)2
(z,¥) = 5rh expq » z,p)+p(z—=z glz—2

— A - v ) + 5 —a( )| el

T(g,1) f

The latter expression exactly coincides with the expression for the canonically rep-
resented function

I((J:,y’) = I((A,,da)(l)
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on the Lagrangian manifold A, = graphg with the measure do = (dp A dz)*",
written in the coordinates (z’,p’) of the manifold A,. This follows from the fact
that the nonsingular action S on the Lagrangian manifold A, is determined by the
formula

S = /(pdq —Edy)la, = /qu — g (€ dy).

References

[1] B. Sternin and V. Shatalov. Fourier-Gauss Transform and Quantization. Max-
Planck Institut fir Mathematik, Bonn, 1994. Preprint MPI 94-102.

(2] V.P. Maslov. Operational Methods. Nauka, Moscow, 1973. English translation:
Mir, Moscow (1976).

[3] M.V. Karasev and V.P. Maslov. Asymptotic and geometric quantization. Us-
pekhi matem. nauk, 39, No. 6, 1984, 115-173. [Russian].

[4] F.A. Berezin. Wick and anti-Wick symbols of operators. Matem. Sb., 86, No.
4, 1971, 578-610.

[5] E. Schrodinger. Quantisierung als Eigenwertproblem. Ann. Phys., 1926. 79,
361; 79, 489; 80, 437; 81, 109.

[6] V.A. Fock. On canonical transformation in classical and quantum mechanics.
Vestnik Leningr. Gos. Univ., 16, 1959, 67-71. English transl.: Acta Phys.
Acad. Sci. Hungar. 27, 1969, 219-224.

[7] V.P. Maslov. Perturbation Theory and Asymptotic Methods [in Russian]. Izd-
vo MGU, Moscow, 1965. French translation: Théorie des Perturbations et
Méthodes Asymptitiques, Dunod, Paris (1972).

(8] A. Mishchenko, V. Shatalov, and B. Sternin. Lagrangian Manifolds and the
Maslov Operator. Springer-Verlag, Berlin—Heidelberg, 1990.

[9] A. Weinstein. The order and symbol of a distribution. Trans. Amer. Math.
Soc., 241, 1977, 1-54.

[10] V. Bargmann. On a Hilbert space of analytic functions and an associated
integral transform. Part I. Comm. Pure Appl. Math., 14, No. 3, 1961, 187-214.

[11] V.A. Fock. Konfigurationsraum und zweite Quantelung. Z. Phys., Bd. 75,
1932, 622-647.

30



[12] V.A. Fock. Zur Quantenelectrodynamik. Sowiet Phys., 6, 1934, 425.

[13] A. Cordoba and Ch. Fefferman. Wave packets and Fourier integral operators.
Comm. in Partial Differential Equations, 1978, 979-1005.

[14] M.A. Shubin. Pseudodifferential Operators and Spectral Theory. Nauka,
Moscow, 1978. English translation: Springer-Verlag, Berlin-Heidelberg (1985).

(15] F.A. Berezin. Covariant and contravariant symbols of operators. Izv. Akad.
Nauk SSSR, 36, No. 5, 1972, 1134-1167.

[16] V. Nazaikinskii, B. Sternin, and V. Shatalov. Methods of Noncommutative
Analysis. Theory and Applicatiors. Mathematical Studies. Walter de Gruyter
Publishers, Berlin-New York, 1995.

[17) M.V. Karasev and V.E. Nazaikinskii. On the quantization of rapidly oscillating
symbols. Matem. Sb., 106, No. 2, 1978, 183-213. [Russian].

[18] L. Hérmander. Fourier integral operators . Acta Math., 127, 1971, 79-183.

[19] M.V. Karasev. Connections on Lagrangian submanifolds and certain problems
of semiclassical approximation. Zap. Nauch. Sem. LOMI, 172, 1989, 41-54.
[Russian].

[20] V.L. Dubnov, V.P. Maslov, and V.E. Nazaikinskii. The complex Lagrangian
germ and the canonical operator. Russian Journal of Mathematical Physics, 3,
No. 2, 1995, 141-190.

[21] V. Nazaikinskii, V. Oshmyan, B. Sternin, and V. Shatalov. Fourier integral
operators and the canonical operator. Usp. Mat. Nauk, 36, No. 2, 1981, 81 -
140. English transl.: Russ. Math. Surv. 36, No 2, 1981, 93 - 161.

Moscow — Potsdam

31



