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I. Introduction.

Let n be a bounded regular and connected open set in mN

with N ~ 3 . We are looking for a map u fram n into m

such that

N+2

- 6.u
N-2 in n= u

( 1 )
u > 0 in n

u = 0 on an

We shall denote by Hd (n; ?l2) the homology of dimension d

of n with ~~-coefficients.

Our main result is the following

Theorem 1

If there exists a positive integer d such that
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Hd(Oi ~2) * 0 , then (1) has a solution.

Note that if N = 3 and n is not contractible then H1 (ni ~2)

or H
2

(Oi ~2) is not trivial. Thus Theorem 1 irnplies:

Corollary 2.

If N = 3 and n is not contractible then (1) has a

solution.

Remarks 3
-,..;......... .... -

a. Trudinger [24] has proved that any H1 (O)-solution of ( 1 ) is

co co
in L (rn (and therefore in C (0))

---~-_..............--~-- ~--~- - _.~~ - -~- .. .. - -------.... - ~.

b. Pohozaev [ 15] has proved that if n is starshaped then

(1) has no solution.

c. Kazdan-Warner [9] have pointed out that if 0 is an

annulus then (1) has a solution.

d. It has been proved in [8] that if 0 has a "small hole"

(see [8] for the precise statement) then (1) has a solution.

e. Corollary 2 has been announced in [4] with a sketch of a

proof.

We start the proof of Theorem 1 by recalling same weIl

known facts.

II. WeIl known facts

1) The Palais-Smale condition.

We first introduce sorne notations. Let, for --u in

11 U I1 -- (fl\7u I 2 )1/2 h th' t t' ,v w ere e 1n egra lon 15 on
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Let

L = {u E H6(n) 11 u 11 = 1 }

L+ = {u E L I u ~ O}

N+2
p = N-2

J(u) = 1
for u in l: •

If u is a critical point of J in u

1s a solution of (1). L+ is invariant by the flow associated
I

to -J J does not satisfy the Palais-Srnale condition on

L+ but the sequences which violate the Palais-Smale condition

are known. In order to describe them, let us introduce seme

notations. Let, for a in mN and ~ in (0,00)

the functien from mN into (0,00) defined by

ö (a , A) be

(2 )

IN 2where Co is such that l~ö(a,A) I = 1 (cO is independent

of a and A ) . :IR

For E > 0 and n in :IN* we denote by V(n,E) the set of

functions u in L such that:

(3 ) 1\ u _ 1
In

n
L: pö(ai,A i ) I! < E

i=1
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( 4 ) Ai d(a. ,arn -1 Vi> E
. ~

Ai A, 2 -1
(5 ) I"":" + ~ + AiA j lai-~jj > E V (i , j ) with i*j ,

A.
J ~

where P 1s the projection on H6 01 )

6h = 0 in n and h '= q> on an

distance fram a. to an . Let
1.

(i.e. Pq> = q> - h with

S = 1

o(a,A)p+1

S does not depend on a and A . It is known, see [6], that

Inf J(u) = S
uEE

and that this infimum is not achieved. Let

E:.l
b = n 2 S

n

We shall prove Theorem 1 by contradiction and so we shall

assume throughout the whole paper that (1) has no solution.

proposition 4

Let be a sequence in such that J' (u
k

) ~ 0

and J(u
k

) is bounded ; then there exists a positive integer

n and a sequence (E k ) with Ek > 0 and 1im E = 0 such that,
k+ro k

for a subsequence of the uk ' uk E V(n,E k )

Converse1y, let n be a positive integer let (E k ) be a

sequence in . (0,00) with 11m Ek = 0 and let (uk ) be a
k+ro

sequence in E+ such that u k E V(n,E k ) then J' (uk ) ~ 0

and J(uk) ~ bn
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The pioneers for this kind of conclusion are Sacks-

Uhlenbeck [16] and Wente [27]; [16] deals with harmonic rnaps

and [27] with H-systems. Improvements have been obtained by

Meeks-Yau [13] and Siu-Yau [19] for harmonic maps and by [6]

for H-systems. A similar descript~on has been obtained, using

Uhlenbeck [25J [2,6], by Taubes [21] [22] for the Yang-Mills

and the Yang-Mills-Higgs equations (see also Donald50n [10]

and Sedlacek [18]). Struwe [20] has obtained a result which

is very close to Proposition 4. The conditions (3) and (4)

appear for the first time in·[6]. Lions [11] is also related

to Proposition 4.

In order to prove Proposition 4 one can introduce the

functional

2N

E(u) = ; fl9ul 2 - ~~2 f(u+)N-2

Note that if u
k

E Ethen J' (uk ) ~ 0 if and only if

, E::..!
EI (J(U~) 2 uk)··~ 0 • To get Proposition 4 one can now follow

[6] step by step w1th the functional E. Note that the preof of

[6] .15 inspired by the method of concentration compactness due

to Liens [11].

For c in (O,ro) let JC = {u E E I J(u) $ c} . It
+ +

fellows from Proposition 4 that if cl' c
2

are two real numbers
c 1such that b n < c 1 $ c 2 ~ b n + 1 for some integer n, then J+

c 2is a strang deformation retract of J+ • In the following we
b

set \v = J n+ 1
n +
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Remarks 5.

a. Note that, if J(u
k

) ~ s , then J' (u
k

) ~ 0 . Using

this fact (or Lions [11] as in [8]) and Proposi tion 4 one can

easily see that n is homeomorphic to a retract of W1 • This

has been noticed and used in [8] (we also use it here - see (27».

It explains why the topology of n can play a role in the

existence of a solution to (1). It has been conjectured in [8]

that, if n is not contractible, then (1) has a solution.

Corollary 2 solves this conjecture when N = 3 and Theorem 1

gives a partial answer when N ~ 4 .

b. Bahri [2] [3] has studied the orbits in V(n,E) and'has

described the lI critical points at infinityll, i.e, the orbits of -J'

which stay in V(n,E) . Their description involves Green's

function and its regular part, which indicates that the geometry

of the domain should be also important for the existence of a

solution to (1), and leads to the formula for the topology of

W /W 1 given in [4]. Even if we do not need it, it has helpedn n-

us to find the topological argument described in section FII as

one can see by looking at our sketch of proof in [4]. In that

sketch we use the formula for the topology of W /W 1 ; i tn n-

rnakes the topological argument more transparent. A sirnilar

method (i.e. to find the critical points at infinity and try to

prove, in the absence of a solution that there is a topological

contradiction) has been used in [1].

We continue section 11 with a classical deformation argill~~?t

(see ·e . g. [1 4 ] )
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2. A classical deformation argument~

In this sub-section n is a positive integer which 1s

-fixed. Let e and E be two strictly positive real numbersi

-first 6 will be fixed large enough and then E is fixed

small enough. Let

that

be a function in
co +

C ([O,oo[ i:IR ) such

lJ ( 0 ) -= E

( 6 ) 2 :;; lJ' :;; 0e
lJ(r) = 0 for r in [6s,+oo[

Let now F L+ ~m be defined by

F(u) = J(u) - lJ(lI J'(u)11
2 )

F(u) = J(u) elsewhere.

for
ld.

J(u) :;; (n + 1) 2 S
2

F is c1
(if 6€ 1s small enough - use Proposition 4) i Let

K(U) = 11 J' (u) 11
2

An easy computation shows that there exists a constant M

such that

(7 ) IK' (v). J I (v) J S M 11 J I (v) 11 2 ,,+
V v E t... with J(v) :;; b 1 •

n+

We now fix e > 2M . It follows fram (6) and (7) that
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with J (v) ~ b 1.n+

Let F(u) ~ c}

-We have (if E 1s small enough, see below) :

Proposition 6

The pair

the pair

b
(F n-1 W )

, 1+ n-

(W , W 1) •n n-

is a strong deformation retract of

Proof of Proposition 6

Let f: [Q,OO[XL ~ L be the solution of

( 9 ) I
3
at f(t,u) = - J' (f(t,u))

f (0 "u) = u

is poss1ble to prove that even if

(In [1 4] , f 1s defined by 3f
ät = - F'(f) ,

F 1s not

f ( 0, u ) = u ; i t"

C 1,1 this equation

has a unique solution and that L+ is also stable by such an

f - at least if
-1e· and 8E are small enough - ; but

defining f by (9) we avoid these difficulties since J is

C2 and clearly, if f is defined by (9), f([O,+oo[xE )eE
+ +

this modification has been suggested to us by "Jing)

Using Proposition 4 we have

{t ~ 0 I F(f(t,u)) S b n - 1 } * <P \:/ u E W
n
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T(u) = Min {t ~ OIF(f(t,u)) S b 1} •n-

It follows from (8) and (9) that T is continuous. Moreover

b n - 1
since Wn - 1 c F+ , we have

( 10 ) T(u) == 0 \I u E W 1n-

We now define ß [ 0 , 1 ] xW ---;... W
n· n

by

ß(t,u) f ('':t ,u) if t
~ T(u) and t*1= 1-t

ß(t,u) f (T (u) , u) if T(u) ~
t

== 1-t

ß(t,u) = f (T (u) , u) if . t = 1 .

Then ß is continuous, ß(O,u) = u for any u in W
n

b
f(1,u) E

n-1 for any in W and finallyF u
+ n

b
for any in n-1 It proves Proposition 6 .u F .

+

ß(t,u) = u

In Section III we conclude the proof of Theorem 1. In.order

not to interrupt the main thread of the topological argument

we have placed many of the estirnates needed in Appendices.

III. The topological argument

First let us rernark that, with the notations of section Ir

and n being fixed, we have, using Proposition 4,

o

(11 ) \I e: > 0 3 E
1

> 0
b

eh that ° ~ F n-1 \ W v.......---...()su < E < E1 + n-1 c n,E •
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Hence. (for E small enough, E being g1ven), if we denote by

1 the inclusion map

b b
(F+n-l n V (n, E), Wn-

1
n V (n, E )) ----+- (F+n-l, Wn-

1
), then

( 12) i* 1s an 1sornorphisrn

We are now go1ng to give a pararnetrization of V(n,E) .

Let t.P (O,oo)n x [Zn. x(O,oo)n ----+- E be defined by
+

n n
tp(a,x,A) = ( E a 1po(x

i
,A.))/1i E Ci..PO(X1 ,Ai ) 11

1=1 1 1=1 1

where Ci. = (al'

and let B
(:

be the set of (a.,X,A) in n n n( 0 , co ) x n x (0 , co ) s u c h tha t

-1
> E: Vi

Let:

A. A.
1

2 -11 x: AiA j- + + x. - x. > EA. 1 JJ

1 2-- < .a
i <

21i1

Vi,Vj with i * j

Vi .

e = (1 1
\.;n , In '

Hence

lJ u - t,p(e,x,A) 11 S E} •

v (n , E: ) = {u E E I 3 (x , A) wi th (e,x,A) E B such that
E

',I

We have the follow1ng Proposition
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Proposition 7.

V n 3E O > 0 such that for any u in V(n,E O) the problem

Minimize 1I u - 4)(a,x,A) 11 for (a,x,A) in

has a unique solution (up to permutations)

The proof of Proposition 7 is given in Appendix A.

For a function u in V(n,E O) let (a,x,A) be the unique

solution (up to permutations) of the minimization problem in

nProposition 7. Let X: v(n,sO) ~ n /a be the map defined
n

by X(u) = x . Note that since one has uniqueness only up to

is not in nn but inpermutations X(u) nn /0 (as usual
n

denotes the group of permutations of {1, ... ,n}) .

Let K be a compact set in n , and let

~n-1 = {(t1 , ... t
i

E [0,1] Vi and t = 1} .
i .

B (K) = {E t.o
n 1. X.

1.

. (x
1

, •••
n,x ) E K ,

n

where 0 is the (~) Dirac mass at the point xi . Wex.
1.

its topology, can also be viewed as the quotient of

provide B (K)
n

with the weak topology of measures. B (K) , wi th
n
n

K x ~ 1 'n-

with its usual topology, by some equivalence relation that we

shall denote ~. Fer exarnple, when n = 2 ,

(x 1 ,x 1't1 't2 ')· ....... (x 1 ,x 1,t" t 2), (x 1 ,x 2 ,t1 ,t2 )

and (x 1 ' x 2 ' 0 , 1) ~ (xl' x 2 ' 0 , 1 )
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Let R

Ru = u
11 u 11

and let be defined by

n
,an)) = R( E aiPo(xi,A))

i=1

where A is fixed in (0,00) (A will be taken large) . Two

elements of n
K xß 1n- which are equivalent for have the

same image by gn hence defines a map

It follows from corollary B.3 that if

A is large enough gn(Bn(K)) C Wn . Moreover Proposition

B.l teIls us that

Proposition 8

There exists a positive integer n O and AO in (0,00)

such that if A ~ AO ' g (B (K)) c Wn -1
n O n O 0

Throughout this section we shall denote by H*( (resp. H*( ))

the homology (resp. the cohomology) with ~2-coefficients . By

cenvention BO(K) will be the empty set (note that Wo is also

the empty set) and we shall assurne that K 1s a regular mani-

feld (possibly with boundary). Let

s = {x E K
n I 3 i E [1, n]

n = j E [l,n] with X1*X. and i*j}
J

and let T be an open neighborhood of S in Kn which is
n n

invariant by o
n

and such that (in order to construct such

a Tone can proceed as in Appendix C)
n
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(14) K~ = K
n

\ Tn 1s a manifold (wi th boundary)

(15) Sn is a strong
-° -equivar1ant deformation retract.of T

n n

(15) means that there exists a strong deformation retraction map
_.

of T to
n

n
K xtJ. 1 'n-

S which 1s a -equivariant,Note that an
n n

T xtJ. U·-KnxatJ. and S x6 1 U Kn xa6 1
n n-1 n-1 n n- n-

acts on

by

T ( (x1 '

for T E °n

we shall denote by T x 6n 1 U
n - °n

n
K xa6 1n- and

S xli 1 U
n n- °n

n
K xotJ. 1n- the quotient spaces. Note that for any

(x,a) in n
K x6, 1n-

and any T in an we have (x,a) -- T (x,a)

hence there exists a natural project10n

maps the pair~ B (K)
n

, Sn x6n_1 g KnXo6n_l) into the pair (Bn (K) , Bn - 1 (K))
n

n n
~nd so define 5 a rnap b : H* (K x Ii 1 ' S xD. 1 U K x0.6 1 )

n* an n- n n- On n-

n
b : K x ß 1n 0 n-

n

(Knx II 1° n­n

( 1 6) b 1s an isomorphism .
n*

rndeed b
n

defines an homeomorph15m between

Knx Ii \ (S xli 1 U
n

and B (V) \ B 1 (V) and° n-1 n n- on
K xa6n_1) n n-

,
"n

S x6
n-l U K

n xo6
n-1

is a strong deformation retract of one ofn a
n

its closed neighborhoods in n
K - x !J.

a n-1
n
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The cap product , S x6 1n n- H
n

with a structure of

, S x6 1 U
n n- °n

n
K Xdl1 1)n- provides

* nH (0 /0 )-module via
n

the isomorphism band the homomorphisrnn-w,.

a~ H*(nn/ On ) ~ H*(Kn~ l1
n

-
1

) defined from the rnap
n

a Knx l1 1 ~ On/ o a (x,a) = x . We shall denote by the
n ° n- n. nn

product.

The map gn defines a map: (B (K) , B
n

_
1

(K)) --+ (W
n

, Wn - 1 )n

and so a map gn.M- H* (B (K) Bn - 1 (K) ) ~ H*(Wn ' W 1 )n n-

Our next proposition 1s

Proposition 9.

has a natural structure ofThe hornology H*(Wn ' Wn- 1 )

* nH (0 /on)-module and gn~ is * nH (n /0 )-linear.
n

Proof of Proposition 9.

b
H*(F+ n- 1 n V(n,sO)' Wn- 1 n V(n,E O))

n V(n,E
O
)' Wn -

1
n V(n,E

O
)) induces by Proposition 6

b
and (12) a structure of H*(F+ n - 1 n v(n,sO))-module on

The cap product

* b n- 1H (F+ n V(n,E O)) ~

b
~ H.: (F n-1

* +

H (W , W 1). Moreover, using Proposition 7, we have defined a* n n-

map X: V(n,E O) ~ nn/ on . Therefore H*(Wn , Wn_,) is also, via

the hornomorphism (Xl v ( ) n F
b
+n - 1)* ,n,sO

a

* nH (0 /0 )-module . We shall denote by
n the product.
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We are now going to prove that gn~

Let, for n in (0,1],

is * nH (n /0 )-1inear
n

t:. n-1 , n
1

+ -,
n ~n-1J

at:. 1 = J(n(a 1- 1) + 1, ... ,n(an - n.l) + n.l) I a E: at:. n - 1Jn-,n 1 n n

o

t:. 1 = b. 1 \ ab. 1 •n-,n n-,n n- ,n

Let ob, d(T ) = Max
n n xfT

n

Hin I x, -x. I
i*j 1. J

it follows from the regularity of K that for any d > 0 there

exists T
n

satisfying (14) and (15) and such that d(T ) < cl •
n

Note that if

then

n
(a.,x) E 6. 1 x Kn- is such that, if x.*X. Vi*j ,

1. ]

( 17)
n

1im J(R Z C1
i

P8(X
i

,A))
A-J>+CO i=1

Therefore, using Lemma B.7 and Lemma B.4, one can choose n

in (0,1) , d small enough and then A large enough in such

a way that

T xt:. 1) c Wn n- n-1

b n- 1
c:: F+
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satisfying (14) - (15) and such that

d(T ) ~ d . Hence the following diagram is commutative
n

(17)

1I

(lClo x 6. 1,rx a6. 1 U aK:oX6. 1)
On n- 0 n-, n 0"n n-

1
rx!J. 1° n­n

a
n

)

1

where 1 and i are inclusion maps. Note that 1* and i*

are isomorph1sms (see (12) and use (14)>. Moreover if

o
(Knx 6. l' Knx (6. l' 6. ) U T x6. 1) 1s the inclus10n

on n- n- n-1,n an n n-

map, then it follows from (15) that i 1* 1s an isomorphism;

hence Proposition 9 follows from the commuta~ivity of (17).

Since Hd(n) * 0 it follows from Thom [23] that there

exists a d-dimensional compact connected
co

C - manifold

without boundary V and a continuous rnap h : V~ n such

that if we denote by [V] the class of orientation (mod. 2) of

V then h*([V]) * O. Clearly there exists a compact
00

C

manifold with boundary K such that h(V) c K c n . We define

B (V) as we have defined B (K) . We define alson n



- 17 -

Sn = {x E vn I=i E: [ 1 , n] , . =' j E [1, n ] such that x. = x. ""and i*j}
1 ]

h
n

a
n

n n
V x 1:1 1 ---+ K x 1:1 l' h (x, a) = ((h (x 1)' .•. , h (x )), a)o n- 0 n- n n

n n

B (V) ---* W , g I ( L: a. 0 ) = g ( L: a. 0h ( ))
n n nil Xi n i ~ xi

~ä I:1
n

-
1
~ nn/ On a~(x,a) = (h(x 1 ), ... ,h(xn ))

n

and finally,

b ' (-J1 A S I x" LI Vn )n V ä u n - 1 , n u n - 1 0 x dß
n

_ r ~ (B
n

(V)" , B
n

-
1

(V) )
n n

is the natural projection. As above (see(16))

(18 ) b is an isomorphism
nM'

The cap product:

H*(Vncrn6n_1) ~ H*(~än6n-1' S~x6n_1 ~n VnXd6n_1) ~

H*(V
n

&n6n_ 1 ' S~x6n_1 gn KnX d6 n _ 1) provides H* (Bn(V) ,Bn- 1 (V»)

* nwith a structure of H (V x ß 1)-module via the isomorphisrno n-
I n

b . We shall denote * this product. This product providesnM-
* nH*(Bn(V), Bn - 1 (V)) with a structure of H (n /on)-module via

the homornorphism
I *a
n we shall denote by this new

product. Note that gn

the pair (W , W 1 ) -n n-

maps the pair (Bn(V), Bn - 1 (V))

we agree on BO(V) = $ . We have

into

( 19 )
,

g : H*(B (V),B 1 (V)) ~ H*(W,W 1)
~ n n- n n- is

n
H*(n /0 )-linear

n

Indeed we have the following comrnutative diagrarn
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identity
):

a~ I
n I n

(V x 6 1,5 x6 1 U V xd6 1)
an n- n -n- an n-

h
n
~

n n
(K x 6 1,5 x!J. 1 U K Xd!J. 1)° n- n n- C n-n n

(B {V}, B 1 (V) )n n-

Hence (19) fellows fram Proposition 9 .

Let T be an open neighborhood of 5 in Vn
n n

° -invariant and such that
n

(20) V
n = V

n \ Tl is a manifold wi th boundaryo n

1s astrang -'° -equivariant deformation retract ef Tn n

Let
1

i
n

It follaws from (20) and (21 ) that i n...- and jn* are

isomorphism. Let k n

H* (B (V), B
n

_
1

(V» n
x f1 l' d (V

n
Ö 6 n- 1») be defined by--+- H* (Von ° n- On n

(22) k (i' )-1
jn~

'-1= b n*n rot

k is an isomorphism.
n
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Note that 1s a rnanifold with boundarYi let

be the (mod. 2) or1entation class

of this man1fold and let:

We are going to prove , by induction on n I that:

(23) gT'U'oo ([B (V) I B 1 (V)]) * O· Y n E JN\{O}
J.n'~- n n-

which is in contradiction with Proposition 8. Let w E Hd(n)

•be such that < w , h.([V]) > = 1 and let Wv = h (w) . We

denote by the subgroup of which contains the

permutations of {1 , ,n} which leaves invariant 1. The

be also the projection on

. Let us consider the

V
n

x 6 ~ V
°1 xO n_1 n - 1

first factor of V
n x 6
01xOn_1 n-1

following comrnutative diagram

transfer - we will denote it by tr-defines (see e.g. Bredon

[5]) a map from H*(nn/01xOn_1) into H*(nn/ On ) and a rnap

fram H* (r X o 6 1 ) into H* (Vnx ~ 1) • Let
01 x n-1 n- an n-

n
TI : n /01xOn_1 ~ n be the projection on the first factor

of nn and let p:

the

H*(B (V) IBn-1 (\T) )
gn~

H* (W ,W 1 ))
n n n-

(24) a a
"I "I

H._ 1 (B n - 1 (V) IBn _ 2 (V))
g(n-1)~

H-.e-l (Wn-1/Wn-2):>
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where aare the usual connecting homomorphisms. In Appendix C

we prove

(25) a( (trp* wv)* [B (V), B 1 (V) ]) = [B 1 (V) , B 2 (V)] ·n n- n- n-

Using (19), (24), (25) and the functoriality of"the transfer

(see [5]) we have

Let e be the canonical generator of HO (V) =HO (B, (V) ,B O(V)) .

Using (19) again we have:

I

9 1* (e) = 9 1* (w • [V]) = w • 9 1* ([ V] )

and, therefore, since g1* (e) * 0 and [V] = [B 1 (V) ,BO(V)] ,

(27)

(23) follows from (26) and (27) by induction on n .

Comments 10.

1. An important point in our proof i5 the "interaction" between

the"particles"(i.e. the functions Po(a,A)) . This interaction

is computed in Appendix B (see in particular Proposition B.5)

and it leads to Proposition 8. This interaction phenomena has

been used by Siu-Yau [19]. It has been also computed by Taubes

3
[22] for the Yang-Mills-Higgs equations on m ; it has allowed

hirn to prove that for these equations the functional is a "good

Morse function" (see [22] for the definition). This is also the
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case for our equation but only in the set L \ JC with
+

c

large (this c depends on n; see [4]). Taubes has also com­

puted in [21] the interaction between two particles for the

Yang-Mills equations S4 ; he has used it to prove the analogue of

JS n L+ (which is not empty for these equations) is connected.

2. It follows from the universal-coefficients formula that

Hd (r2;(D) * 0 implies that Hd HG; 2Z 2 ) * 0 . When d is odd and

Hd(n;w) * 0 one can prove the existence of a solution to (1)

without using the transfer (see Appendix D) .

3. One can find a different presentation of the topological

argument in [3-].
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Appendix A

In this Appendix we give a proof of Proposition 7. We

recall that

such that

B
E

is the set of (o.,x,A) n n . nin JR x n x (0 ,(0)

(A.1 ) Aid(xi,an)
-1

> E

(A. 2)
A. A.

2 -11. ~ AiA j
Ix.-

~
+ + x .1 > e:

Ai 1. _ J
]

(A. 3) 1
2-- < o. i <

2/n

Vi

Vi

The symetric group

Lemmas

Lemma A. 1

acts on B • We start with some
E

Then (mOdU10 permutations (~k -k -k),on a. ,x,\ } :

Ak

(A. 5) 1im i 1 V i E [ 1 , n]
A~

=
k++oo

1.

(A. 6) 1im A~ A~ k .....k
1

2
[ 1 , n]lXi xi = 0 V i E

k++oo 1. 1.

(A. 7) 11m I k .....k l 0 V i E [ 1 , n]o.. - o.. =
k++oo 1. 1.
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Froof of Lemma A.1

Let 8 (a , A) = P ( 8 (a , A)) • Note that

(A. 8) 1 im 1I '8 (a , A) 11 = 1
Ad(a,aO)++oo

and that

(A. 9) lim f98(a,A) V8(a l ,A~ = 0
Ad (a, arn ++00

A'd(a',aO)++oo
A A' 2Alo + A + AAl la-all ++00

It follows from (A.8) and (A.9) that there exists c in

m+ such that V i E [1,nJ Yk = j such that

Ak A~
Ak r~ 1 k ,.."kj2(A. 10) i -1+- + xi - x j ;;;j c,.."k

A~ 1 ]
,

A.
] 1.

and, clearly, if k 15 large enough, i and k being given

(usethere exists one and only one

k k kthe fact that (O,X,A) and

j which satisfies (A.10)

,.."k ,.."k ,.."k
(0 ,x ,A) are in B

E: k

Without loss of generality we may assume that j = i . In the

following we shall denote by 0(1) various sequences which

tends to 0 as k goes to 00 and we shall omit the index k .

Using (A.4) and (A.9) we have:

'V i E [1, nJ

/Hence using (A.8) we have (A.7) and also:
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Let

we have

w(x)
( 1 \N-2

= Co \1+lxI 2 ) 2

(A.11)

and using (A.10) and (A.11) we deduce

Our next Lemma i5

Lemma A.2

(A.6) and (A.7).

Ther.e exists So > 0 such that for any u in V(n,s) with

s :;a So

Inf 11 u - l.O(a,x,A) 11

(a,x,A)€B 4 E:

is achieved in B2 E: and is not achieved in B4 E:\B 2 E: .

Proof of Lemma A.2

Argue by contradiction and use Lemma A.1. Let us, for

example, prove that the infimum can not be achieved in

1s small enough. If it is not true, there

E: k > 0

such that

B \ B if E: 04E O 2E: O
exist5 a sequence (E

k
) with

exists a sequence ((Xk,Ak »

B with e = (~, ... ,~)
E: k ' In In

and sk = 0 ( 1) , there

k k
(e,x. ,"A) is in

nE: [0, 1 ] , there exists a
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sequence

that

......k ......k ......k
( (a. , x , A » wi th

We now use Lemma A.2, we have (modulo permutations):

(A.12)

(A.13)

Ak
i 0(1 ) 1 TI i E [ 1 , n]

r k = +

i

k ......k
1

2 Ak-Xk
[ 1 , n]lXi xi = 0(1 ) V i E

i i

k khut one easily checks that (A.12), (A.13), (e,x ,A) E B
Ek

and are not compatible for k

large enough.

We are now going to prove Proposition 7. We argue by

contradiction: if Proposition 7 is false then, by Lemma B.3,

there exists a sequence (Ek )

there exists k
u

with E k > 0 and

k k k
( a. , x· , A.) and

E
k

= o( 1 )

......k ......k ......k
(a. ,X ,A )

in

(A. 14)

such that

and if k k k k k
v = u - ~(a ,X ,A )

(A.15) Vi Vk
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(A.17)

(A. 18)

where
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aö~
E lR

N
)0 = J\7V~~ Vi Vk

3x.
~

J ,..,k \76~ J\7V
k

fJ
36~

O.
1. Vi 'v'k= \7v =

3i\k~

i

ffJvk \7
3ök

E lR
N

),0
i Vi vk- ---"kaX i

a~ k k ~
,..,k

Ak )= a(xi,A i ) = <5 (x. , .
1. ~ 1. i

As before we shall omit the index' k • Using Lemma A.1 we

have (modulo permutations)

= 1 + 0(1)

From (A.15) and (A.17) we get

(A.19) E J(~.vrP<5. - a.fJP6.)fJo
i = J\7v (\7 0 . \7~. )

j ] ] ] J l. l.

Let Ai(X i x. ) Ai
1

,..,
Notea i = - , ni = r - , ~. = ~i - ~. .

l. l. 1.
.1.

that la.l = 0(1) ,
1.

, ~. = 0(1) • In the following
. 1.

c will denote various constant which does not depend on k .

It is easy to see that

(A.20) 18.(y) - o.(y)1 ;;;; c(ln.1 + la.l) 8.(y)
J ] ] J ]

and since -60. ~ 0 we have
J
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Note that
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I (P O. - P8.) (y) I :.i c ( In. I + I a . I) O. (y)
J J J J J

(A.22) f(a. Wo. - a. \7P~.) 'V0
i

= (a.-a.) JIlPO. \7o
i

+ a. S fo.P (pö.-P~.)
. J J J J J J J J 1 J J

From (A.19), (A.21) and (A.22) we get (note that

(A.24)

hut, using the maximum principle and (A.20), we have

(A.25)

From (A.24), (A.25) and again (A.20) we get:

(A. 26)

with

Ti = J oPi(o.-6.) ·
]RN 1· 1

we have

T. = J
1

]RN

hut

(
1 )N+2

1+ ly1 2 2

+ 0 (lai l
2

+ In
i

I2)} ,

2 2 . 2 2
where, as usual, 0 ( Ia i I + In

i
I ) denotes a sequence bJunded by c ( Ia

i
I + In

i
I ) •
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Hence

2
N- 2 f 1 (1- 2 I y I 2) 2 2T. = - -2- n. --~2- dy+O(lail +Inil )

J.. J.. N (l+lyl) l+lyl
:IR

But

N+1

J+oo r
dr =

o (1+r2)N+1

and therefore

N-1
1 fco

o
r= - dr

2 (1 +r 2) N

(A.27)

Frorn (A.23) I (A.26) and (A.27) we deduce

(A.28) lJ i = 0(1) ( ~ (In].1 + la.1 + IlJ·l))
] ] J

Using again (A.15) and (A.17) we have

Vi .

a0
1

aO l ao.
~ J(Ci

J
. Wo.-a. V'P6.)V'~ = (a..-a.)JWo.\7~ + a.J(\7Po.-VP6.)V aAJ..

J J ] J 1 J ] ] i ] J ] i

and a sirnilar computation as above leads to:

Proceeding still as above one gets

(A.30)

with
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2 N-2 (1+ni )N-2)T' = N+2 f (1 - lyl (( 1 )---2
i ~ N 2 N+2 1+ 1y1 2 - 1+1 (1+n

i
)y+a

i
I 2 2 dy

lR (1+lyl) 2

T! = - ni (N- 2) (N +2) ( J (1- I y I 2N) 2 d
Y

) + 1 2 2
1. 4A 2 O(lail +Inil )

i JRN (1 + I y I 2) "2+ 2 Ai

It follows from (A.29) I (A.30) and (A.31) that

(A. 32) n i =0(1)( E (In·1 + laJ.l + IlJJ'!))
j J

Finally we use (A.16) and (A.18) and get:

'9'i

and similar computations as above lead to

(A. 33) a. = 0(1) ( L (In.1 + la.1 + I~J.I)) •
1. . J J

J

From (A.28) I (A.32) and (A.33) we deduce that , at least for

k large enough ,

a. = 0 I
1.

lJ. = 0
J.

'9' i € [1 ,n]

a contradiction with (A.14).
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Appendix B

In this section K is a fixed compact in Q i for

(0,00) one defines

a = (a
1

, ••• , a )
n in ßn- 1 , x = (x 1 ' ••• ,xn ) in

n
lP(a,x,A) : J(R( E Po. (x. ,A)))

i:1 1. 1.

in

Let W(a , x , I.. ) : J (<.P ( a , x , A) ) f 0 r ( Cl , X , I.. ) in

and let ~(cx,x,A) ': J(tP(Cl,X,A)) for (Cl,X,A)

n n
ß 1XK x(O,oo)n-

n
in 6 1XK x(O,oo)n-

In this appendix we are going to give some estimates on w(a,x,A) and

W(u,x,A) . In particular we shall prove

Proposition B.1

There exist a positive integer n O and a positive real number

A
O

such that

(B. 1 )
E:.l

A ~ AO q ~(a,x,A) ~ n o
2 S

n o, Vx E K

For simplicity we write 8 i 'for O(Xi,A
i

) . We start with

some Lenunas.

Lemma B.2

E!..l
(B.2) lJ1{Cl,X,A) ~ s 2

- 1
"2

(
n p+1\ E:.l
E fa.o. )' 2

i=1 l. l.

where

nVx E K , VCl E ß 1 'n-
nVA E (0,00) , V n ~ 1 ,

0..0.
l. l.

n
E

j=1
a.O.

J J
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Proof of Lemma 8.2

(B. 3)

Let:
n

u = .E
i=1

CL Po.
~ J.

J(Ru)

. We have

n
For sirnplicity we shall write E instead of E

i i=1

We have

hence, by Hölder's inequality

(B.4l JI17ul 2
:il S (J( l:

i

E!..l
By the convexity of x ----+- I x I P

.E.:!:..!.
( ~ p-l \ p

l.. a. O. )
i J. ~

and therefore:

.E.:!:..!.
) p CLO.)

1. ~

~
p

Using now Hölder's inequality
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-.E...­
IxI P- 1 one has

2

(
E-..:.l

)
--P-

E aio.
p p-1

~ r: a.o~+1 ,. ~ i
~ .1.

1.

and therefore, with (B. 5) we have

(B. 6)

E::.l
f (r: a..ö~) p

. 1. l.
1.

(B.2) follows from (B.3), (B.4) and (B.6).

We are now going to deduce from Lemma B.2

Corollary B.3

V n > 0 , V E > 0 , 3 X> 0 such that

E:..!
- n 2A t: (A,co) ~ 1P(a.,X,A) S (n+E:)

Proof of Corollary B.3

n
S , Va. E 6 l' Vx E K •n-

It follows from Lemma B.2 that for

n n(a,x,A) E b. 1XK x(O,co)n-

E.:..:!.
2

(B .7) 1P(a,x,A) S n s
f (E a. 0 . ) p+ 1

i 1. 1.

By the maximum principle we have

(B. 8)
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where c is a constant (w~ recall that K 15 fixed). Corallary

B.3 follows from (B.7) and (B.8).

We now prove

Lemma B.4

For any integer n in [2,00) there exists a strictly positive

real number € and A2 in (0,00) such that for any x in Kn

for any in in t:.n-l

(B. 9) 3 i with

Proof of Lemma B.4

[ 2 , co) • Par xLet n be an integer in

in t:.
n-l with a 1 * 1 ane defines -a and -x

in Kn and

by

a. =

-x =

1

(x
2

, •••

(a
2

, ••• ,a ) E 6 2n n-

,x ) F. Kn- 1 •
n

Let n.. be in (0 ,co)

(0,00) such that

one easily sees that there exists € in

Lemma B.4 follows fram Corallary B.3 and (B.10).
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We are now going to give an expansion of ~(a,x,A)

when AMin Ixi-x.1 is large. Let H(x,y) be the regular part
i*j ]

of the Green function, i.e.

(B.11) 1
ÖyH (x, .) = ~

H{x,y) = I Ix-y if Y E an ,

and let G: OxO ~m be the Green function:

G(x,y) 1= Ix-yl - H{x,y) ·

Let d = d(x)=Min Ix.-x.1 and 1P1: 6. n _
1

xK
n

x{O,oo) ~m be
i* j 1. J

defined by

1P1 (a,x,A)
lal P+ 1

= S ~---:.._--

11 a 11 p+ 1

2 p+1
a i )

11 a 11 p+ 1

",P..... i a.
]

11 a 11 p+ 1

aio: j_\ }
'2.) G (x. , x .) ]

lai 1. ]

1

with lai (E 2) "2= O:i
i

1

11 0: 11 = ( E p+1 )i>+T0:.

i 1.

c = E!l S p+1 J 1 dy
1 2 Co N+2

m
N

(1 + I y I 2) -2-

(see (2) for the definition of cO) .

We are going to prove
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Proposition B.5

There exists a constant c(n) which depends only n such that

I <"J I c (n)
~1 (a,x,A) - QJ(a,x,A) ~

(Ad(x))N-1

for any Ct in ~ 1 ' any x in K
n

with d(x) > 0n- and any

A in (1, co) •

Proof of Proposition B.5

Let (a,x,A) . be in nD. 1xK x (1 ,co)n-

n
and u = E a

i
6i . We start with the estimate of

i=1

fl\7ul
2

. We have

(B.12)

(B.13)

f\76
i

\70. = f\78. \70. = s fo~ (ai - h i )
J ~ J J

Joi+
1 = J <sP+1 - J <sp+1 -1 - J öp + 1= S

]RN
i

lR
N

'r2
i

lRN,O
i

Let i = dist (K,an) and c be various constants which may

depend on n but only on n (we recall that K is fixed)

O(a) will denote functions such that IO(a) I ~ clal .Note that,

using Corollary (B.3), we rnay assurne that Ad(x) ~ 1.

We have

(B.14)
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On an '

hence, on an

h. (y)
~

= Co ( 2 A 2)
1+A Iy-x. I

~

N-2
-2-

Therefore, by the maximum principles,

(B.15) j h. (y) _ Co
~ N-2

A-2-

"Iy E n .

We have

hence

(B.16)

(
A ) N+2 N-lJÖl' S c J~oo 2 2 -2-- r dr,

l+A r

JeP
i

S c
N-2

A-2-

JeS~H (y , x . ) d Y =
~ ~

where

o( N~2)
A-2-
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6yH(y,x
i

) = 0 ; therefore rnaking an expansion of

H(y,x.)
~

have

near y = x.
~

and, using the syrnmetries of öI?
~

we

hence:

(B.17)

with

(B.18)

Frorn (B.15), (B.16) and (B.17) we get:

(B.19) + 0 CN)

and finally with (B.12), (B.13), (B.14) and (B.19) we have

(B.20)

Let now i*j

o CN) .

(B. 21 ) JÖ P]. (ci-h;) = J c~ö - f öpö. - IoP].h i ·
J.. N ] i Ni]

m m,n
Sirnilar cornputations to those which lead to (B.19) give:
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(B.22)

We have

JÖ~hi = c Oc 2

H(Xi,X.)
J

N-2A

hence by (B.14)

(B.23) J öl?ö. ~ C
NN J 1. A

IR ,n

Let

We have also

2 2 2
1+IY-Aaijl = (1+A laijl )

her:ce

2I y I -2 Ay. a ..
1.J

2 2
1+A la .. I

1.J

N-2 N-2
2 - ~ 2 1 2 - ~f· (~2)Aaij·Y ( lyI 2 \}

(B.24) (1+ !y->..aij I ) = (1+A !aij I) \1+ 2 2 +0 2 2)
1+A lai' 1 . 1+A la .. 1

J 1.J

Let We have
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(B.25)

N+2

f A (y) dy 1 { f (, + ~ Y I 2)-2- dy= N-2
7\la i j! 2 2 -2- AI a .. ]

Iyl~
(1+A la .. 1 ) Iyl:;;;

. 1.J
4 1.) 4

+ 1 o ( f
1yl2

N+2 dY)}2 2
(1+A laij 1 )

Ala. ·1 2 2
Iyl~

1.J (1+lyl )
4

(B.26) f

Iyl~

dy = 0 (log A 1 a i ] j) ,

(B.27) f dy
N+2

(1+ lyI 2)-2-

C2 (1 \= + 0 2 2) ·
cP
o A 1 a .. 11.J

From (B.25), (B.26), (B.27) we get

(B.28) f A(y) dy
c

2 1
+ 0 ( 1 )= N-2

1
I N- 2 \A,N-1 Ia .. !N-1

7\ ja .. 1
c P A a ..

0 1.J 1.J
lyl~

1.)
4

{ Y E mN I
AI ai·1 }Let B1 = IY-Aaij l ~ J and

4

{ Y E mN I
A la. ·1 }B2 = lyl :i 1.J . We have4

N-1
f c f+oo r

A (y) dy ~ -N~-~2:--!--1N----~2 ---N-+-2 dr,

mN'B, UB
2

A a ij Al a ij I (' +r2 ) -2-
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(B.29)

(B.30)

A ja .. [
1.J
4

N-1
r dr

From (B.28), (B.29), (B.30) it follows that

(B.31) f A(y)dy

mN
= c 2 1 + 0 ( 1 )P N-2 1 IN- 2 N-1 j IN- 1Co A a ij A a

ij

F1nally from (B.21), (Bw22), (B.23) and (B.31) we get, with

d = d (x) ,

Using now (Bw32) and (Bw20) we have

2 2 c 1 {= lai - ---- ---­p+1 AN-2
2L a
1i

H (x. ,.x i ) - L a.o;. G(Xi,X].)}
1 (i,j) 1 ]

i*j

anci therefore
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C 1 r 2 l}2 2 LI: Cli H (xi,x.) - I: (1iCl .G(x. ,x.) J .
IClI AN- i 1 i,j J 1 ]

i*j

We are now going to estirnate Ju
p

+
1

• Let

p+1 ( A )N N-1 (1)
(B · 34 ) JuS c J d 1+ ' 2r 2 r dr S 0 ,NdN .

~l!Bi r>Arnin(2"2.) 1\ 1\

Let
d

d' = rnin (2"2.) . On Bi we have:

(B.35) (
N-2 )

p+1 p+1.{'p+1 ( 1) P.t-P ('\' ':F h ) + 0 A .t-P-i1U = Cl, ui + pt O::u i L. Cl.u.- o.. i 2(N 2) \J

1 1 j*i ] J 1 (Ad)-

J
p-1 d' ( A ) 2 N-1

Ö . = J 2 2 r dr
Bi 1 0 1+A r

1 Ad'
= N-2 J

A 0

and then one easily sees that for any N ~ 3

(B.36) 1
(Ad)2(N-2)

( A )2 N-1 (1 \
J \ 2 2 r dr = 0 N-1)
B. '1+A r (Ad)

1

Using (B.19), (B.22), (B.32), (B.34), (B.35) and (B.36) we have

easily

(B.37)

pt1
1 (11 1 H (xi ,xi) (1)

fupt ()o+ + pt P ( )=-5--- - p+1 Cl cOc2 N-2 N-2 cOc2 E o..Cl. G xi,x.
Bi A A j*i 1 J ]
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Finally we have from (B.37) and (B.34):

+ 0 ( 1 )
(Ad)N-1

Proposition 8.5 follows from (B.33) and (8.38).

Note that there exists c'> 0 and VI > 0 such that

H (y, y) S C I Vy E K

Hence one easily gets frorn Proposition B.5

Corollary B.6

There exists two positive real numbers c and n such that for

any positive integer n there exists a constant c(n) such that

for any A in [1,00) and any x in Kn with d(x) * 0

Max
o:E6 1n-

E:..l
2W(o:,X,A) S n [

5 + 2 (.~ _ n~)] + c(n)
AN- 2 (Ad(x»N-1 .

We are now going to prove

Lemma B.7

For any integer n in [2,00) and any € in (0,00) there exists

d O in (0,00) and A3 in [1 ,00) such that
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V'x E r wi th d (x) ~ d 0 ·

Proof of Lemma B.7

C1ear1y we may assume that

Ix, - x21 = d(x)

Note also that since 1im G(y, 'Y2) = +00 , we have
IY1-Y21-+0

2
(Y1'Y2)EK

from Proposition B.5:

3 d, > 0 3 C, > 0 such that Yx € Kn
VC/.. E ~n-1 VA E [1 ,(0)

Ll
(B.40) $(a,x,A) ~ n 2 S if d(x) ~ d 1 and Alx 1- x 2 1 ~ C1 .

Using· (B.'5) and (B.2) one sees that there exists C2 > 0 such

that

(B.41)
~ 8

,.... ( , ) <I!' S 2 ( , + .~) (J 1 l' P+ 1
~ a,x,A - 2.t' .t' u2N- N u 1+E:U 2

>.. 2 :IR

Lln-1) 2+ --
S

but there exists T in (0,00) such that

(B.42) if

(remark that by translation and dilation we may assurne that

x
1

= 0 and A = 1 )
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Lemma B.7 follows frorn (B.40), (B.41) and (B.42) .

We can now prove Proposition B.1. We first use Corollary B.6

and choose

(B.43)

such that

- -c - n n < 0o

We now use Lemma 8.4 and then, Lemma B.7: there exists E > 0 ,

d 3 > 0 and A4 > 0 such that:

(B.44)

and

(8.45)"
nO

6n _1 n
n O VA [A 4 ,+00)"Ix E K \/0. E [ E ,1 ] E

0

~d(x) S d 3 ~(o.,X,A) S S0:;. n O .

We use Corollary B.6 once more and (B.43), there exists A5 such

that

(B.46) Vx E
n O VCI. E ß VA f. [A 5 ,+00)K

n O
E..:.l

d (x) ~ cl) ~(C1,X,A) S
2

Sc:> n O .

Let now A0 = Max ( A5 ' A4) , us ing (B. 44), (B . 45) and (B. 46)

we have

(B.47)
E..:.l

'ij) (CI. , x, A) ~ n
O

2 S,

hence Proposition B.1.
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Comments

1. The regular part H of the Green 1 s function appears in the

expression of ~(a,x,A) ; originally it came out of expansions

along the gradient flow (see [2] - [3] for further precisions) .

The roie of the regular part of the Green function in connection

with the critical Sobolev exponents has been pointed out for the

first time by McLeod [12] for a Dirichlet problem and by Schoen

[17] in the framework of the Yamabe conjecture. (But the com-

putations in [2] - [3] where made independently of [12] and

[17]) .

2 . More generally one finds the following expansion of 1!J :

p+1
H(xi,x i )

2 . p+ 1
1al {1-C 1

( a i
2a. \11!J(a,x,>..) - 5 1: 1.

p+1 N-2 ~ Il a 11 p+ 1 )
11 a 1I i Ai

+

N-1
N-2 )+ L: e: ..

(i,j) 1.J

i*j

for and with e:. .
1.J

( Ai A.
= + ~ +
\~ A.

J 1.



- 46 -

Appendix C

Thi5 Appendix i5 due to J. Lannes. We use here the notations

of section III and we prove

Proposi tion C_.1

(C. 1 )

Proof of Proposition C.1

For 5implicity we shall write B
n

instead of B (V) • Let
n

be a fixed point in V , and let CBn _ 1

defined by

the subset of B
n

eB 1n-
::! i E [l,n] such that xi

CB 1 is contractible in itself and thereforen-

H* (CBn_ 1 ,Bn- 1 ) Qt H"_1 (Bn- 1 ) • Let T be the natural injection of

CBn _
1

into Bn ; T rnaps the pair (CBn -
1

,Bn _
1

) into the pair

(B,B 1) and the following diagram is cornmutative (y and 0'n n-

are the usual derivations)

H* (CBn_ 1 ,Bn - 1 )
~ H (Bn- 1 ))

M-1Y
I

(C. 2)
T*I identity

VI VI

H*{B,B ,)
oI

H1t-l (Bn - 1))
n n-

Let PO: vn x /j ----+ V be the projection on the first factor.
0 o,xon _, n-1
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nv : V /01xOn_1 --. V be also the projection on the first

factor. We choose an open neighborhood T'
n

of 5'
n

in

° - invariant satisfying (20)-(21) and such that
n

(C. 3) Ker \Ix E avg with x = ~1

(C. 4) S~ is a strong ° -equivariant deformation retract of T~
n n n

where, in (C.3), (dv) (x) denotes the differential of v at x

the tangent 5pace of avn at x and where ino

s~ = {x € 5'
n n

T~ = {x € TI
n . n

= i € [1,n] with xi = ~}

= i € [1,n] with xi = ~}

We give at theend of this Appendix an example of such a T' .
n

Note that it follows from (C.3) that -1
Po (~) i5 a manifold

(with boundary). In Section III we have defined an isomorphism

and

(22). In a similar way we are-going to define an isomorphism

k~
n

between H* (CB B 1 )n n-
1

and -1 -1
H*(PO (~),a(pO (~») • Let

3 i E [1 ,n] with x. = ~}
1

and let b~
n (V

n x 6 ,s~ x6 1 U Vn a6) (CB B )
~ on n-1 n n- on ~ x n-1 ~ n-1' n-1
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be the natural projection. As in Section III (see(16)) one easily

proves

(C. 5) bE; is an isornorphism.
n

Let
,E;

(V
n E; x6 U V

n xCl6
n

_
1

)now J n
x 6 1 ' S --+

E; an n- n n-1 on ~

(V~ x 6 1 ,T~ x6 1 U V
n

xClIJ. 1) i it follows from (C.4) that
s cr n- n n- ° ~ n-n n

(C. 6)

Let now .E,;
1

n

'~is i h'J an somorp 15m.
n*

be the restrietion of the projection: Vn x IJ. ~ Vn x 6
0 °1 xon_1 n-1 on n-1

iE; defines an horneomorphism between -1 -1 andn Po (E;)\ d(PO (E;))

V
n

~ 6n - 1\ (V~ xd6 't;
x6 n- 1 )

-1 isU Tn
. moreover Cl(PO (E;)) a strong

E; n-1 an
,

n
-1

deformation retract of one of its closed neighborhoods in Po (~)

therefore

(C • 7)

\'le define

i~ is an isomorphism.
n*

We next remark that the following diagram is comrnutative

(C. 8)

v
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where B = Vn x ~ q 1s the natural projection and t is the
n . 0 a n-l'

n
inclusion rnap. We have

(C. 9) k 0 T = S 0 k~
*n * n

Indeed (C.9) is a consequence of the cornrnutativity of the following

diagrams

b l

(Vn
x ~ 1,5' xt:. U ~ xa~n_l )

n
(B,B 1)n-l >° n- n ° n n-n n

1 b~ i
(V

n ~ s~ x~ g vn
xa~n_l)

n
) (CBn_ l ' Bn- l )x

n-l1; ° n-l' n ~n n

(VI'l x ~ 1,5 I x~ LI ifl xa~n_l )
j~ (r x t:. l,T' x/). U ~ xa~ 1)n-l ~ n-1° n- n on ° n- n on n-n TI

1 .~ i
(~ x ~ 1,s~ xt:. U v: xo6

n
_1)

Jn (~ x 6 1,T~ x6 1 gn ~ xot:.n-l )n-l ~° n- n On \; ° n- n n-n n

. i"
Vn(Vn n

~ßn-1 ))
n (Vn

x ~ 1,T I x6 xa~n_1)x/).1 ' 0 (V 0 )
n-l' U0 a n- ° n- n ann n_ n

1 i~ i
-1 -1 n (Vn ~

x~ U vn
xa~n-l)(PO (~)Jo(PO (~))) ): X ~ l' T; on n- n n-l On ;

where the rnaps which are not labeled are inclusion rnaps.

Since Bn-2 is contractible in B 1 ' the mapn-
...... .) ( \8:H*(B 1 ~ H* B l,B 2'n- n- n-

of the reduced hornology sequence of (Bn- 1 ,Bn- 2) is one to one;

rnoreover (see (22)) H(n-l)d+n-2(Bn- 1 ,Bn- 2 ) = ~2 ; hence

(C.10)
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15 the cla55 of orientation (modulo ~2)

of the manifold with boundary -1Po (~) .

We denote by n cap product5. We are going to prove that

(C.11)

where tr 0 i5 the transfer map: H* (V
n

x ~'1) + H* (V~ x ß 1) •o 01xOn_1 n- on n-

Note that (C.1) follows (C.2), (C.9), (C.10), (C.11) and the functiorality

of the transfer (see [5]). Since

is a covering between two manifolds,

homomorphism; hence for any u in

tro is the Gysin's

H*(V
n

x ~ ) we haveo 01xon_1 n-1

(trou) n [B ,aB]n n

In particular

n n= q*(u n [Va x ~ 1,a(vO ° ~a ~n-1)])
°1 xO n- 1 n- 1 n-1

(tr...o*ow ) n [B ,aB] = q*(p*ow n [V:o x ~ 1,a(~o x, ~ 1)])
~ v n n v 01xon_1 n- 01xOn_1 n-

but

hence

which gives (C.11).
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Finally we give an example of an open neighborhood TI
n

of

a -invariant satisfying (20), (21), (C.3) and (C.4).
n

We provide V with a
00

C Riemannian metric and denote by

d(x
1

,x
2

) the geodesic distance between two points

of V. Let A: V2 ~m be a C
OO

map such that

and

in a neighborhood of S'2

Let S be in (0,00) and let

Tl = {x E vnl
n

A(x. ,x.) < s}
l J

T' 1s open, a -invariant and contains S' . Moreover one easilyn n n

verifies that, if E is small enough,

(C. 3) and (C. 4) .

T' satisfies (20) (21)
n
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Appendix D

In this Appendix we give a proof, which does not need the

transfer, of the existence of a solution to (1) when there exists

some add integer cl such that Hd(nim) * 0 . We shall consider

here only rational homology and cohomologYi we shall write H*( ),

H* () instead of H* ( iW), H* ( iW)

Let K be a compact in n i we have defined in (13) a map

gn K
n

x~ 1 ~ L which depends on some parameter A in (0,00)n- +

If A is large enough gn maps the pair (K
n

x~n_1,Kn xd~n_1)

into the pair (W,W 1) and it is clear thatn n-
n n

g : H*(K x~ 1,K xd6 1) ~ H*(W,W 1) is independent of then* n- n- n n-

choice of A provided that A is large enough. On the other hand

n n
the homology of (0 x~n_1,n xa~n_1) is the direct limit of the

homology of (K
n

x~ 1,K
n

Xd~ 1) where Kare compact sets inn- n-

n i hence one can define a natural map

~
n Xa~ 1) ~ H*(W,W 1)n- n n-

We have

H ( (in A f'ln "IA ) H ((in) H (A . "'lA )* H xUn_1'~' xoun _ 1 = *~, ~ * u n _ 1 ,ou n _ 1 ·

Let e n - 1 be the canonical generator of Hn - 1 (~n-1,a6n-1)

o H ((in A (in ':\) ( n-1 . n ): *~, xUn_1'~' x o6n _ 1 ~ H*_1 n . x~n_2,n xd6 n _ 2

defined by:

. Let

be

D(f x e 1)n-
= (-1) lfl ( F(_1)i-1 (p.)*f)

. 1 1-1.=
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where P. : Qn + Qn-1 is defined by
1.

Pi (x 1 ' ... ,xn ) = (x 1 ' ... ,x i - 1 ,x i + 1 '

is the degree of f.

Gur first Lemma is

Lemma D.1

The following diagram is commutative

,Xn ) and where 1ft

9..
n

(W,W 1)n n-

a

Proof of Lemma D.1

Lemma D.1 15 a consequence of the cornmutativity of the diagram:

Kn x 6.
Idxf

i
)0 Rn x 6.

gn
)' W

n-2 n-1 n

1p xld

1i

n-1 x 6.
gn-1

)0 WK n-2 n-1

where . .. , t 1 )n-

The cap product H* (Qn x6n_ 1 ~ H* (Qn x6n_
1

" Qn xa~n-1) ~

n n n n
H*(Q xßn_1,n xaßn _ 1 ) provides H*(Q x6. n _ 1 ,n xa~n_1) with a

structure of H*(Qn)-rnodule and hence a structure of H*(Qn/ o )­
n

module via the hornomorphisrn TI
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is the projection the product.

We have seen in- Pr6p6siti6n ~ that H*(W,W 1)n n- has also

a structure of

Lemma D.2

module. Our next Lemma is

The map 2 is H*(nn/ a ) -linear.n n

Proof of Lemma D.2

We give a direct proof of (one could also use Proposition 9) •

Let K be" a cornpact in Q and let
n

E+gn : K x. D. ~
n-1

be defined by

n i
gn(x,a.) = R( L "ai P6(X.,A ))

i=1 1.

Note that

(D. 1 ) 11m J (g (x, Ci) )
.\.-++00 n

_ 5 Ua~l ~
... p+1
l..Ci.
. 1.

1.

nV(x,a) E K xD. 1n-

and hence (if

n n
(K xD. 1,K xdli 1)n- n-

1s large enough)

into the pair

maps the pair

(W,W 1)". We prove first thatn n-

(if A is large enough)

(D. 2)

Let h
n

n
[0,1] x K x li n- 1 ~ L+ be defined by

h (t,x,a) = R(
n

n
L

i=1
a. po(x.,tA+(1-t).\.i))

1. 1.

h is continuous and we have
n
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(D. 3)

(D. 4)

h (O,x,a.) = g (:<,a)
n n

h (1, x , a) = 9 (x", a)n n

nV(x,a) E K x6 1n-

nV(x,a.) E K x6 1n-

Moreover, using Corollary (B.3), we have (if A is large enough)

n n
(K x6 1,K x ,,6 1)n- n-

(D. 5) vt E [0, 1 ] h (t, . , . )
n

inta the pair

maps the pair

0"1 , W 1) •n n-

The equality (0.2) fallows from (D.3), (D.4) and (0.5).

We next remark (see in particular (D.1)) that there exists

no in (0,00) and AO in (0,00) such that (where 6 - is
n-1 ,no

defined in the proof of Proposition 9)

(D. 6)

It is also clear fram (0.1) that

large enough

no being now fixed) for A

(D. 7)
o

9 n (K
n

x (6 1\ 6"1 )) c W 1 •n- n- ,nO n-

Let b(x,a) = x for
o

(6 1~ 6 1 ) :n- n-, n

(D. 8)

n(x,a.) E K x6 1 • Clearly onn-

X07T=qob

It follows fram (0.6), (0.7) and (0.8) that the diagram
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Ufx6 1 ,If1x (6 l' :; 1 ) )
gn bn-1

> (F+ ,Wn- 1). n-,no n- n-., no

r gn b r
U[1x6 1 ,If1x 36 1 ) > (F+ n-1 n v(n,E:O) 'Wn- 1

n V(n,E:
O

))
n- ,no n- ,no

1b X 1
If1 7T nn/On)0

is comrnutative. Lemma D.2 is a consequence of this commutativity

and (D. 2) •

Let now z be in Hd(n) and u be in Hd(n) such that

< u,z > = 1 . We are going to prove by induction on n that if

d is odd the:J.

(D. 9)

where zn = zx ... xz E H (nn) which is in contradiction with
nd

Proposition 8. First note that

(D.10)

Indeed let v be the canonical generator of HO(n) ; we have

~1 (v) * 0 ; by Lemma D.2 ~1 (u. (zx e O)) = u·~1 (zxeO) and

u. (zxeO) = v hence (D.10) .

Since the cohomology we consider is with rational coefficients

the map 7T*:H*(nn/ On ) --7 H*(nn) induces an isomorphism between

H*(nn/ On ) and the elements of H*(nn) which are invariant by on

(see e.g. [5]) . In particular there exists a class, that we shall
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denote u, such that n*(u) = w with

w = (u xlx ... xl) + (lxux ... xl) +

where 1 denotes the unit element of HO(n) •

We are going to prove that

(0.11) a(u.~ (zn xe 1)) = (_l)d-l( ~ (_1)(n-i)d+i)~ (zn-l xe 1)
n n- i=1 n-1 n-

which gives, when d is odd"

(D.12)
"'-J n n n

a(u.~ (z xe 1)) = (-1) n~ 1(z xe 1)n n- n- n-

and then (0.9) follows from (0.10) and "(D.12)

(Note that, if d 1s even, (D.l1) gives

when n 1s even).

"'-J n
3(u·~n(z ,x e

n _ 1 )) = 0

In order to prove (D.11) we remark that, in

n
E

1=1
(-1) (n-i)d i-1 n-iz xvxz

and therefore, if we denote by 1 the unit element of

we have, in n n
H*(n x6 1,n x36 1) :n- n-

o
H (6n - 1 ) ,

(0.13) (wx1) n zn xe = (-1) (n-1)d( nE ( 1) (n-i)d i-1 n-i)
n- 1 - z xV xZ xe l'

. 1 n-
].=

and (0.11) follows fram (0.13) Lemma 0.1 and Le~a D.2.
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