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Introduction.

Let & be a bounded regular and connected open set in

with N 2 3 . We are looking for amap u from Q into IR

such that

( N+2
- Au = uN“2 in
(1) {
ua >0 in @
; u =20 on 38

We shall denote by Hy(Q; Z,) the homology of dimension d

of @ with 7z -coefficients.

2

Our main result is the following

Theorem 1

If there exists a positive integer d such that

R

N



Hd(Q; 22) + 0 , then (1) has a solution.

Note that if N =3 and § 1is not contractible then H1(Q; Zz)

or Hz(Q; Zz) is not trivial. Thus Theorem 1 implies:

Corollary 2.

If N =3 and § is not contractible then (1) has a

solution.

Remarks 3

e ——— - . - — .

a. Trudinger [24] has proved that any H1(Q)-solution of (1) is
in L7(Q) (and therefore in C (R)) .
b. Pohozaev [15] has proved that if Q 1s starshaped then

(1) has no solution.

c. Kazdan-Warner [9] have pointed out that if Q is an

annulus then (1) has a solution.

4. It has been proved in [8] that if 0 has a "small hole"

(see [8] for the precise statement) then (1) has a solution.

e. Corollary 2 has been announced in [4] with a sketch of a

proof.

We start the proof of Theorem 1 by recalling some well

known facts.

II. Well known facts

1) The Palais-Smale condition.

We first introduce some notations. Let, for u in

B (@) , Hlull = (flval®)1/2

0 where the integration is on Q



Let

z ={u€Hg(m I Hoall = 1}

z,={uez|uzo}

_ N+2
P = w2
J(u) = S — for u in I
J'Iulp+1
p-1
If u 1is a critical point of J in I_ , then J(u) 2 u
is a solution of (1). Z+ is invariant by the flow associated
1

to -J . J does not satisfy the Palais-Smale condition on

£, but the sequences which violate the Palais-Smale condition
are known. In order to describe them, let us introduce some
notations. Let, for a in :mN and A in (0,«) , &(a,)) Dbe

the function from :mN into (0,») defined by

(6 ( A 5
(2) a,\)) (x) =c ( ) z
0 1+A2|x-a12

where c0

of a and X ).

is such that [ |V6(a,k)|2 =1 (c
R

0 is independent

For £€ >0 and n 1in IWN* we denote by V(n,c) the set of

functions u in ¢ such that:

n n
3 (a1,az, .o ,an) €E Q , 3 (Aﬂ,A ,An) € (0,») such

2r
that

(3) llu -

neoas

Pé(a A )|l < e

1
vn i=1



-1

(4) A, dla;,30) > ¢ vi
A Al _

(5) s + o~ o+ AN |a -a.lz > £ L v (i,3j) with i3 ,
AL AL i3 i 73
j i -

where P is the projection on H;(Q) (i.e. Pp = @ - h with

Ah = 0 in © and h = ¢ on 238 ) and d(ai,BQ) is the

' distance from ai to 3 . Let

1
[ s(a,n)P*]
=Y -

S =

S does not depend on a and XA . It is known, see [6], that

Inf J(u) = 8
uel

p1
2
and that this infimum is not achieved. Let b =n = § .

We shall prove Theorem 1 by contradiction and so we shall

assume throughout the whole paper that (1) has no soclution.

Proposition 4

Let Uy be a sequence in I _ such that J'(uk) —> 0

and J(uk) is bounded ; then there exists a positive integer

n and a sequence (ek) with Ek > 0 and iiﬁ €x = 0 such that,
for a subsequence of the U s Uy € V(n,ek) .
Conversely, let n be a positive integer let (Ek) be
sequence in " (0,«) with iim € = 0 and let (uk) be a
+c0

sequence in Z+ such that uy € V(n,ek) then J'(uk) —> 0

and J(uk) —_— bn .



The pioneers for this kind of conclusion are Sacks—
Uhlenbeck [16] and Wente {27]; [16] deals with harmonic maps
and [27] with H-systems. Improvements have been obtained by
Meeks-Yau [13] and Siu-~Yau [19] for harmonic maps and by (6]
for H-systems. A similar description has been obtained, using
Uhlenbeck [25] [26], by Taubes [21] [22] for the Yang-Mills
and the Yang-Mills-Higgs equations (see élso Donaldson [10]
and Sedlacek [18]). Struwe [20] has obtained a result which
is very close to Proposition 4. The conditions (3) and (4)
appear for the first time in [6]. Lions [11] is also related

to Proposition 4.

In order to prove Proposition 4 one can introduce the

functional

2N

E =4 fivwi? - 32 [@H¥? e Hg(ﬂ) :

Note that if uy
- p-1
E'(J(uk) 2 uk)“-+ 0 . To get Proposition 4 one can now follow

€I then J'(y) —> 0 if and only if

[6] step by step with the functional E . Note that the proof of
[6] is inspired by the method of concentration compactness due

to Lions [11].

For ¢ in (0,=) let Jf = {u € Z+[ J(u) s ¢} . It

follows from Propositicn 4 that if Cqv c2 are two real numbers

' c

such that bn < c, s <, s bn+1 for some integer n , then J !
c

2

is a strong deformation retract of J,” . In the following we

-+

- n+1l
set Wn = J+ .



Remarks 5.

a. Note that, if J(uk) —> S , then J'(uk) —> 0 . Using
this fact (or Lions [11] as in [8]) and Proposition 4 one can

easily see that @ 1is homeomorphic to a retract of W. . This

1
has been noticed and used in [8] (we also use it here =~ see (27)).
It explains why the topology of Q@ can play a role in the
existence of a solution to (1). It has been conjectured in [8]
that, if § is not contractible, then (1) has a solution.

Corecllary 2 solves this conjecture when N = 3 and Theorem 1

gives a partial answer when N 2 4

b. Bahri [2] [3] has studied the orbits in V(n,e) and has
described the "critical points at infinity", i.e, the orbits of -J°
which stay in V(n,e) . Their description involves Green's
function and its regular part, which indicates that the geometry
of the domain should be also important for the existence of a
solution to (1), and leads to the formula for the topology of
W,/W _4 9iven in [4]. Even if we do not need it, it has helped
us to find the topological érgumént described in section TII as
one can see by looking at our sketch of proof in [4]. In that
sketch we use the formula for the topology of Wn/wn_1 ; it
makes the topological argument more transparent. A similar
method (i.e. to find the critical points at infinity and try to

prove, in the absence of a solution that there is a topological

contradiction) has been used in [1].

We continue section II with a classical deformation argument

(see e.g. [14])



2. A classical deformation argument .

In this sub-section n 1is a positive integer which is
fixed. Let 8 and € be two strictly positive real numbers;
first © will be fixed large enough and then € is fixed

small enough. Let u be a function in Cm([O,w[;JR+) such

that
p(o) = &
(6) _2 S u' g0
8
u(r) =0 for r in [8g,+=(

Let now F : I —>IR be defined by

b1
Fla) = J() = w(l3'@i? for J s m+g 2 s
F(u) = J(u) elsewhere
F is C1 (if 8¢ 4is small enough - use Proposition 4); Let

RK(u) = N3 @i .

An easy computation shows that there exists a constant M

such that

(7)) K. T s M NI WIS v veD with J(v S b_..

We now fix 6 > 2M . It follows from (6) and (7) that



(8) F'(v). J'(v) > 0 Vv eEST with J(v) s b,q-

Let’ Fo ={ue€ez, | Flu Zc}

We have (if € is small enough, see below):

Proposition 6

b

The pair (F*_n—1 , W _,) 1is a strong deformation retract of

)

the pair (Wn, A

Proof of Proposition 6

Let f : [0,o[xf -—> I be the solution of

3 o Tt
(9) ﬁ f(tru) = J (f(tru))
£(0,u) = u
(In (141, £ is defined by 2= = - F'(f) , £(0,u) = u ; it

1,1

is possible to prove that even if F 1is not C this equation

has a unique solution and that I 1is also stable by such an
f - at least if 671 and 6e are small enough - ; but

defining £ by (9) we avoid these difficulties since J is
C2 and clearly, if f 1is defined by (9), f([0,+w[x2+)c2+ ;

this modification has been suggested to us by Jing)

Using Proposition 4 we have

{t 2 0| F(£E(t,u)) s b__,} ¢ Vue€W

n-1



Let, for u in WwW_ ,

T(u) = Min {t 2 OIF(f(t,u)) < b _,} .

It follows from (8) and (9) that T is continuous. Moreover

. n-1
since Wn-1 < F, , we have
(10) T{u) =0 Vue€ew .,
We now define 8 : [0,1] W -—> W by
B(t,u) = £ £ u if = s T(u) and t#1
! 1-t ' -t .

B(t,u) = £ (T(u), u) if T(u) s 1—*j—t
B(t,u) = £ (T(u), u) if - £ o= 1

Then £ 1s continuous, PB(0,u) = u for any u in Wn '
b

£(1,u) € F+n'1

for any u in W, and finally B8(t,u) =u

for any u in F+n—1 . It proves Proposition 6.

In Section III we conclude the proof of Theorem 1. In.order
not to interrupt the main thread of the topological argument

we have placed many of the estimates needed in Appendices.

III. The topological argument

First let us remark that, with the notations of section II
and n being fixed, we have, using Proposition 4,

_ b, o
(1) ve>03 €, >0 such that 0 <e<eg, =F " \W_, Ve .



Hence. (for ¢ small enough, ¢ being given), if we denote by

i the inclusion map

b
n-1 n-1
(F, N Vin,e), W _, N Vin,e })) —> (F, ' Wn-1)’ then
(12) i, 1is an isomorphism

We are now going to give a parametrization of Vi{n,e)

Let ¢ : (0,27 x @™ x(0,#)" —» £ be defined by

n n
wla,x,x) = ( I aiPG(xi,Ain/n z aiPG(xi,Ai)H
i=1 i=1
where o = (a1, .en ,an) , X o= (x1, . ,xn) and X\ = (A1, .o ,An),

and let Be be the set of (a,x,X) in (O,m)nxan(O,m)n such that

1

Ai d(xi,aQ) > € Vi
A, A, s v
7; + xi + Aik I x. i %y [© > ¢ vi,vj with 1i # j
1 .
— <.ay < 2 vi .
2v/n
Let:
e = (—1— L —-1—) € (0,7 .
yn /n /n
Hence
Vin,e) = {u € £ | 3(x,A) with (e,x,)) € B, such that

lu - ole,x,A) || s e} .

We have the following Proposition



- 11 -

Proposition 7.

v n 3dg, > 0 such that for any u in V(n,eo) the problem

Minimize |lu - ¢(a,x,X) || for (a,x,A) in Bye
0

has a unique solution (up to permutations) .
The proof of Proposition 7 is given in Appendix A.

For a function u in V(n,eo) let ({a,x,A) be the unique
solution (up to permutations) of the minimization problem in

Proposition 7. Let X : V(n,eo) —_ Qn/G be the map defined

n
by X(u) = x . Note that since one has uniqueness only up to
permutations X(u) 1is not in Q" but in Qn/c (as usual 9
n
denotes the group of permutations of {1, ... ,n}) .
Let K be a compact set in § , and let
n
8, = Uty v vt ) | £, € [0,1] ¥4 and 151 £, = 1}
_ n
B (K) = {Z tiaxi| Ry eee ax ) € KT, by, ... st ) €4 )
where Gx is the (true) Dirac mass at the point Xy - We

i
provide Bn(K) with the weak topology of measures. Bn(K) , with
its topology, can also be viewed as the quotient of K" x An-1 '
with its usual topology, by some equivalence relation that we
shall denote ~ . For example, when n = 2 ,

e ) [} ~
(x1'x1ft1lt21) (x1 lx-llt 14 tz}l {X1fx21t1lt2) (x21x1 Itzlt-])

and (x1,x2,0,1) ~ (X{.X2,0:1) .



Let R : Hy (Q)\ {0} —> L
u

Re =

n
and let g, ¢+ K x4, 4 — I, be defined by

n

(13) gn{(x1’ rxn)r (0.1; o . rCln)) = R{( 151 GiPG(XiI)\))
where XA 1is fixed in (0,») (A will be taken large) . Two
elements of KnxAn_1 which are equivalent for ~ have the
same image by g ; hence g  defines a map
Iy Bn(K) — I . It follows from corollary B.3 that if

A 1is large enough gn(Bn{K)) < wn . Moreover Proposition

B.1 tells us that

Proposition 8

There exists a positive integer n, and AO in (0,»)

such that if X 2 A, , g (Bn (K)) < Wn

0 n0 0 0-1 .

7

Throughout this section we shall denote by H,( ) (resp. H*( ))
the homology (resp. the cohomology) with :zz-coefficients . By
convention BO(K) will be the empty set (note that Wy is also

the empty set) and we shall assume that K is a regular mani-

fold (possibly with boundary). Let

S ={x€x"|3ic€([1,n] 23 €[1,n] with

n #x  and i%j}

17
and let T, be an open neighborhood of S, in K" which is
invariant by o and such that (in order to construct such

a Tn one can proceed as in Appendix C)



n

(14) Ky

= Kn\Tn is a manifold (with boundary)

r

(15) S, is a strong cn-equivariant deformation retract .ol En

(15) means that there exists a strong deformation retraction map

of Tn to Sn which is on-equivariant.Note that %h acts on
n N n
K'xA 4 o Tox8 o UK'x3A . and S xA ., U K x3d ., by

T((x1r cee lxn)r(aalr “ e aan)) = ((XT(1)I “en 'x“r(n))'(ar(‘l)' “oe Ia.r(n)))

for 1€ o ;
n

' n
we shall denote by K x §n+1 v T8y

g KanAn and
n n

-1

g KanAn_1 the quotient spaces. Note that for any
n

n-1
{(x,a) in KnxAn_1 and any T in o, we have (x,a) ~ T(x,0)

hence there exists a natural projection

b K énAn_1 —_— Bn(K) i b, maps the pair

(KnénAn-1 , S xb__, gn K"x34 _.) into the pair (B_(K) , B__,(K))
and so defines a map bn* : H*(KnénAn-T p S X0, gn KnxaAn_1)

into H,(B_ (K) , B _,(K)) . Note that

(16) bn* i1s an isomorphism

Indeed bn defines an homeomorphism between

xnénan_1\\(snxan_1 gn K'x38_ _.) and B_(V)\B__,(V) , and
SnxAn_1 Y KnxaAn_1 is a strong deformation retract of one of

its closed neighborhoods in Kné A
n

n-1
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The cap product H (Kné A ) @ H*(KnxAn_ )

n

n n
—> H, (K xBo_q 1 SpX8 4 Yy K xBAnn

n-1 -1

n
1 7 Sn*fn-q 8n Koxoh)

1) provides

. x
H,(B (K) , B, _,(K)) with a structure of H (Qn/on)-module via
the isomorphism bnx and the homomorphism

* * *
a H (Qn/cn) —> H (Kné An_1) defined from the map

n n
N n _
a K énAn_1 —> Q" /o, a_ (x,a) = x . We shall denote by . the
product.
The map =i defines a map: (Bn(K) ' Bn—1(K)) —_— (Wn ' Wn_1)

and so a map Inse H*(Bn(K) ' Bn—T(K)) — H*(Wn ' Wn-1) .

Our next proposition is

Proposition 9,

The homology H*(Wn , W ) has a natural structure of

n-1

* n . * n
H (Q /on)-module and Ipse 1S H (Q /On)-linear.

Proof of Proposition 9,

The cap product

H*(an_1 N V(n,e.)) ® H (an'1 N Vin,e.), W . N Vin,e.))

+ 'EO * + 'EO ’ n-1 fEO

— H#(F+n_1 n V(nreo). Wo_q 0 V(n,so)) induces by Proposition 6
b
n-1

. *
and (12) a structure of H (F+ n V{n,eo))—module on

H*(Wn' Wn Moreover, using Proposition 7, we have defined a

1)
map X : v(n,eo) — inon . Therefore H*(Wn, W

*
bn-1) , a

+

n—T) is also, via

the homomorphi X
) phism ( lV(n,eO) nFrE

*
H (Qn/on)-module . We shall denote by . the product.



*
We are now going to prove that g is H (Qn/on)-linear

T

Let, for n in (0,11,

- -1 1 -1 1

bp-1,n T (n(a1 n) Taroe 'n(an n) ¥ n) | o€ bp-1
- -1 1 -1 1

aAn-1,n - (n(a1 n) faroce 'n(an n) ¥ n) | o€ 30n-1

o

L N

Let 3§ =g _ob_, d(T) = Max Min Ix.-x_.| ;
o oxer_ iy b

it follows from the regularity of K that for any d > 0 there

exists ‘Tn satisfying (14) and (15} and such that d(Tn) < d

Note that if (a,x) € An_1XKn is such that, if xi$xj Yii ,

then
+1
n (z o2
(17) lim J(R L aiPG(xi,A)) = 8 T .
}\—;-I-UJ i=1 (§ ag )

Therefore, using Lemma B.7 and Lemma B.4, one can choose n

in (0,1) , d small enough and then X large enough in such

a way that
g _(K"x (A A ) U T xA ) €W
n n-1 n-1,n n n-=1 n-1
n
g (K%x ) « F 071
°n ag n-1 +
n
9, (X, x An-1,n) < Vin,e,)



where we have chosen T, satisfying (14) - (15) and such that

d(Tn) s d . Hence the following diagram is commutative

° g b
= n . n=1
(k" énAn-1' K x( Bt Bneq ) gn Tn¥bn—q) = (F 0y W)
A I h i
Kn Kn Kn 5'1'1 bn-T
(17 | 0 énﬂn_1; OxaAn—1,n gn 3 OxAn,1) —_ (F+ n V(n,eo),wn_1 n V(n,eo))
/ v
a n

n-1
%n

where 1 and 1 are inclusion maps. Note that i, and 1,

are isomorphisms {(see (12) and use (14)) . Moreover if

Dy 4

n

i : (K —_—

1 n-1'Sn

ax

n
xAn-‘l %1K xBAn_1)

n n ° .
(K énan_1, K7 (AN ooy o) gn T xA__.) is the inclusion

map, then it follows from (15) that 11* is an isomorphism;

hence Proposition 9 follows from the commutativity of (17).

Since H (Q) #* 0 it follows from Thom [23] that there
exists a d-dimensional compact connected c®~ manifold
without boundary V and a continuous map h : V — Q@ such
that if we denote by [V] the class of orientation (mod. 2) of
Vv then h,([V]}) # 0, Clearly there exists a compact c”
manifold with boundary K such that h(V) ¢ K« Q . We define

Bn(V) as we have defined Bn(K) . We define also
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S, = {x € v®{3iel1,n], 3j€ [1,n] suchthat X =%y and i#3}
n n ~ '
hn s V énAn_.I — K énAn_1: hn(xya) = ((h(x1)l “ e rh(xn))la)
, .
9n ¢ Bn(V) —> Wy qﬁ ( i aiax.) = 9, i OLi(Sh(xi))
i

L} n ' _
a _: Vné,f‘n-1 — /0, , ajix,a) = (h(xg), ... hixp))

and finally,

. ' n
bl ¢ (Vix &4, SixA § Vs, ) — (B, , B

A
. _,))

n

is the natural projection. As above (see(16))

(18) bnn is an isomorphism

The cap product:

* n ' n
H (Vi 8 1) @ H*(Vn&nAn- , Sxb__, y v x3h__.) —>

n

1

néA
n

! n
H*(V n-1" SnxAn_1 gn K xaAn_1) provides H_ (Bn(V),Bn_1 (V))

*
with a structure of H (Vné An )-module via the isomorphism

-1

b;*’ . We shall denote :his product. This product provides
H,(B_(V), B__,(V)) with a structure of H (2"/c_)-module via
the homomorphism‘ a;* ; we shall denote by . this new
product. Note that g; maps the pair (Bn(V), Bn-1(v)) into
the pair (Wn, Wg_1)- we agree on BO(V) = ¢ . We have

(19)  gp.: Hy(B_(V),B__ (V) —> H, (W_,W s H,(@"/g_)-linear

n-1)

Indeed we have the following commutative diagram



Qn/o identity n

Y
Q
~
Q

)

n
“An-1 gn K xaAn—1

Oh n-1’Sn

-n=1 a
n n

9
I n
(B (V) ,B__ (V)) —D> (W_,W_..) <2 (B_(K),B__,(K) ,

n-1

Hence (19) follows from Proposition 9

Let T be an open neighborhood of Sn in VP

on-invariant and such that

)
(20) V0 = Vn\Tn is a manifold with boundary

(21) Sn is a strong Un—equivariant deformation retract of T

{see Appendix C for an example of Tn)

1

n n n_ ="' n
Let 1 : (V, A 103 (Vg x A _4)) —> (Vg Boq/ToxA Y Vix3A
n n n n
] -
-
In’ (Vnénan~1’snxdn—1 gn anaAn-1) - (Vnénan—1;rnxan—1 y vxa 1) be
inclusion maps.
'l ‘|
It follows from (20) and (21) that 1w and Jpwe 2re
isomorphism. Let kn
n n .
He(B,(V), B _,(V)) — H,(V, énan_1, 3 (Vy 5nAn_1H be defined by
(22) k = (i) 50 p TV,
n T N %

kn is an isomorphism.
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Note that Vg x An-1 is a manifold with boﬁndary; let
n

n . .
[Vo_énAn~1'a(Vg snan_1)] be the {mod. 2) orientation class

of this manifold and let:
_ 1
(8,8, _, "] =k (V) gnAn_1,a(v’g 8 B0mt) DE Mg (B ) B ()

We are going to prove, by induction on n , that:

(23) g

e UB (W), B _,(V)]) «+ 0 ¥n € N\{0}

which is in contradiction with Proposition 8. Let w € Hd(Q)

be such that < w, h,({v]) > =1 and let w, = h*(m) . We

A

denote by o, xo the subgroup of ol which contains the

n-1
permutations of {1, ... ,n} which leaves invariant 1. The

transfer - we will denote it by tr-defines (see e.g. Bredon
* *
[5]) a map from H (Qn/o1k0n_1) into H (incn) and a map

* : * 0
from H (vno1§cn_1An—1) into H (V énAn_1) .

Let

T @ Qn/c1xon_1 —> Q@ be the projection on the first factor

n
;0' n-
91*9n-1
N : A »
04x0__4 M

of o7 and let p: Vv A —> V Dbe also the projection on

1
the first factor of V Let us consider the

following commutative diagram

g

He (B, (V) B _1 (V) ——>  H, (W W _)
(24) 3 9
v g' v
(n=1)
Hy_1(B__4(V),B_ _,(V)) —o— %5 5 (W _ ,W__,)
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where 9 are the ﬁsual connecting homomorphisms. In Appendix C
we prove
* -
(25) 3 ((trp*uy)«[B_(V),B__,(V))) = [B_ _,(V),B _,(V)]

Using (19), (24), (25) and the functoriality of the transfer

(see [5]1) we have
(26) 3((tr T w) . g | [B.(V),B_ (D) =g ;) (B _ V) ,B ()]
Let e be the canonical generator of HO(V)==H0{B1(V),BO(V))

Using (19) again we have:

i (@) = gy (. VD) = w . g, (IV])

and, therefore, since g;* {e) # 0 and [V] = [B1(V),B0(V)] '
(27) g1*,([B1(V),BO(V)]) # 0 ;
(23) follows from (26) and (27) by induction on n

Comments 10,

1. An important point in our proof is the "interaction" between
the"particles"(i.e. the functions Pé(a,\)) . This interaction
is computed in Appendix B (see in particular Proposition B.5)
and it leads to Proposition 8. This interaction phenomena has
been used by Siu-Yau [19]. It has been also computed by Taubes
[22] for the Yang-Mills-Higgs equations on ZEB ; it has allowed
him to prove that for these equations the functional is a "good

Morse function" (see [22] for the definition). This is also the
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€ with ¢

case—for our equation but only in the set I \J
large (this ¢ depends on Q ; see [4]). Taubes has also com-
puted in [21] the interaction between two particles for the
Yang-Mills equations S4 ; he has used it to prove the analogue of

JS n E+ (which is not empty for these equations) is connected.

2. It follows from the universal-coefficients formula that
Hd(Q;Q) # 0 implies that Hd(ﬂ::zz) # 0 . When d is odd and
Hd(Q;m) # 0 one can prove the existence of a solution to (1)

without using the transfer (see Appendix D).

3. One can find a different presentation of the topological

argument in [3].
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Appendix A

In this Appendix we give a proof of Proposition 7.

We

recall that B, is the set of (a,x,}) in RO xQ"x (0,) °

such that
-1

(A.1) Aid(xi,aﬂ) > € vi

AL AL
(A.2) —= + =L 4+ ix.- x.I2 > 5-1 Y o oi#]

A A i3 i 73

3 i
(A.3) —l: <oy < 2 vi .

Y

The symetric group Oh acts con BE . We start with

Lemmas
Lemma A.1
Let (ek) be a sequence with e, > 0 and lim € = 0

k++o0
let (uk,xk,kk> € B , (Nk ~k,Tk) € B such that

~ NkN
(A.4) lim || o (ak,xk,xk) -0 ( k%5, k) Il =0

ko>+o

Then (modulo permutations on (ak,zk,Nk)>

\k
1
(A.5) lim :E = 1 v 1 € [1,n]
k++o A7
1
(A.6) 1im XX K %220 vie (1,n]
kot L1 i i
(A.7) lim o - & = 0 v ice€ (1,n]

k=++wo

some

énd
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Proof of Lemma A.1

Let &(a,\) = P(6(a,\)) . Note that
(A.8) lim || S(a, M) || = 1
Ad(a,dQ) ++e
and that
(A.9) lim [v8(a,\) Vé(a',A) = 0
Ad(a,dq) ++o
Atd(a’, Q) >+
3o %'+ AL tamat | fare
A

It follows from (A.8) and (A.9) that there exists ¢ 1in

]R+ such that v i € [1,n] vk 2 j such that

r

Ak
(A.10) 1M kak Uk ~kp2
=+ N + Ay XD [xy le S c
J 1

and, clearly, if k 1is large enough, i and k being given

there exists one and only one j which satisfies (A.10) (use
the fact that (uk,xk,kk) and (ak,Qk,Tk) are in BE )

k
Without loss of generality we may assume that Jj = i . In the
following we shall denote by o(1) various sequences which
tends to 0 as k goes to « and we shall omit the index

Using (A.4) and (A.9) we have:

- ~ o= e o2
v i€ [1,n] j|ai Ve (x,,Ay) - @ vai(xi,ai)l = o(1)

i i

Hence using (A.8) we have (A.7) and also:
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~ o~ 2
viellt,n] [ [V8 (x;,y)) - VGi(xi,yi)l = o(1)
N
R
2
Let wix) = ey {(—— Ve
\1+[x| /
we have -
LT,
(A.11) [ Ve - 96 (Ai(xi_xi)’fi)l =
IRN
jN [vsi(xi,ai) - v, (x J A )| = 0(1)
R
and using (A.10) and (A.11) we deduce (A.6) and (A.7).

Our next Lemma is

Lemma A.2

There exists ¢, > 0 such that for any u in Vi(n,e) with

0
£ S €9
Inf ||u - ola,x,2) ||
(a,x,A)EB4E
is achieved in B, and is not achieved in B4€\B2€ .

Proof of Lemma A.2

Argue by contradiction and use Lemma A.1. Let us, for

example, prove that the infimum can not be achieved in

B4 \ B if ¢ is small enough. If it is not true, there
€o 250 0
exists a sequence {sk) with €1 > 0 and Ep = o{1) , there
exists a sequence ((xk,kk)) such that (e,xk,xk) is in
B with e = (—l, ... ,—l) € [0,1]n , there exists a

E: . — —-—

k Y1 Yn
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sequence ((Ek,§k,Tk)) with (Ek, Ek,Tk) € B,  \B such
. €y Zek
that :
|03, 35,55 - o, <,y = o(n)

We now use Lemma A.2, we have (modulo permutations):

(A.12) = o(1) + 1 v i€ [1,n]

> >
P-Whﬁw

~ 5 k. ~k .
(A.13) x5 - #5125 < o) vie1,n],

but one easily checks that (A.12), (A.13), (e,xk,xk) € Be

k
~k ~k ~k .
(oo ,x ,A7) € B4 \ B are not compatible for k

€y 2€k

and

large enough.

We are now going to prove Preoposition 7. We argue by

contradiction: if Proposition 7 is false then, by Lemma B.3,

there exists a sequence (ek) with € > 0 and € = o(1)
there exists uk in V(n,ek), (ak,xk,lk) and (akfzkka)
in B such that
' Zsk
(A.14) (X, <%, %)« (@, 35,%5
and if vk = uk - w(ak,xk,kk) $k = dk - w(ak,Qk,ik)
k_ .k K 3‘5};
(A.15) 0 = [Vv vy = [y — Vi vk
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3 6%
(A.16) 0= Jv—L (erY)  vi vk
0X,
1
k
3%
(A.17) 0 = fu¥K vﬁf St AR —  ViVvk
ANy
~k 36? N
(A.18) 0= [Vv" ¥ —x (E€R) vi vk
§x
i
k _ k .k ~k .~k a2k
where Gi = G(Xi,ki) Gi = G(Xi, li)

As before we shall omit the index' k . Using Lemma A.1 we

have (modulo permutations)

From (A.15) and (A.17) we get

(A.19) ? I(ajvpaj - ajVPKj)vai = JUV(Ve, - VE,) .

Let a, = %, (x, - X.) -1, 4. =a, - Ei . Note

that la,| o{1) , ny = ol1) , u; = o(1) . In the following

¢ will denote various constant which does not depend on k

It is easy to see that

(A.20) |t§j(y) -8yl s c(Ind + lajl) éj(y)

and since -Aéj 2 0 we have
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(A.21) |(P6j - pﬁj)(y)l S clingl + lagh 85ty

Note that
) . UPS. - a. VPS.) VS, = (0.-a.) [VPS. VS, + &.S [8.5 (PS.-PS.
(A.22) f(aj 8 = 3y EJ) §; = (oy=iy) J 85 U8y + 3y 857 B8

From (A.19), (A.21) and (A.22) we get (note that j|v$12 = 0(1)):
1

22
oM (& (Inj|+lajl+luj|))+0(1)(IIVGi-VXiI )

~ p _
(A.23) w+d, S[6] P(§;-3)) :

P - P _ - (sP(n -
(A.24) [8] P(8, Ki) J&y (8 31) fol (hy-H)

but, using the maximum principle and (A.20), we have

: \N-2
Ayd(x;,030))

(3.25)  ih,-K 1 s c(in,l + Iail)(
From (A.24), (A.25) and again (A.20) we get:

(A.26)  foF P(6,-F)) = ti+ o) (lagl + IngD)

i
with
- P -
T, T IN 51(61_31)
R
we have
N+2 N-2 1+n, N-2
e (T G (o) T e
RN 1Y 1+|yl 1+E(1+ni)y+ail

but

1+n N-2 N-2 2 a,.y
( - 2) 2 = ( ; 2) 2 {1* 5 Ny~ (N=2)n; — ) 5
1+|(1+ni)y+ail 1+)yi 1+|yl 1+iyl

+0 (IaiI2-+iniI2) } '

where, as usual, O(IaiI2+IniI2) denctes a sequence bounded by c(IaiI2+|nil2)
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Hence
N-2 1 2| Iz 2 2
- 52y (1= ) avsoray i ey Y)
N (i+]y!7) T+1lyl
R
But
N+1 N-1
+o0 r 1 oo 1 ' N 1 oo r
—fE——— dr = == | (———-———) r dr = 5 [, ——=— dr
0 (1+r2)N+1 2N ‘0 (1+r2)N 270 (1+r2}N
and therefore
2 2
(A.27) T, =0 (lail + Inil )

From (A.23), (A.26) and (A.27) we deduce

(3.28) gy = o(M (I (gl + lagl + lugh)) Vi
J

Using again (A.15) and (A.17) we have

= o 38, N I " 8,
. VPS.—a. VB, = (04~0%) [VPS.Y == + Q. [ (VP ,~VES.)V =—
? [ lay VRS o TRO,)T 7, (oy=ary) [7P8 oW o, f (VP8 =VES.) o,

and a similar computation as above leads to:

3sP
(1) ~ i

(A.29) 0 = 2= (I (Ingl+la,l+lu.l))+a,s (P8, -PT,) :
Ai j#i j 3 J i i i aAi

Proceeding still as above one gets

. a6P 1)
- = 1 o
(A.30) [(ps, - PT)) 5%, Ty ¢+ » (laj b + Ingl)
with
as? -
[ R -
T an (6, = &4
1
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o N+2 [ 1 - |y12 ] N;Z ) 1+ni N;Z 5
2A; 2 M2 A\, y)2 1+1 (140, ) y+a, | Y
R {(1+1y!7) 2 i i
(A.31) t! = -n, (N=2) (N+2) (1-Iy12)2 1 2 2
i i i dy j+ — O0(la, 1" +In,17)
4y N 2 N.p 22 1 a
R (1+lyl™)2 i
It follows from (A.22), (A.30) and (A.31) that
(A.32) ny = o {1)( § (lnjl + Iaji + lujl)) Vi
Finally we use (A.16) and (A.18) and get:
/ I 38, s 36, 3%
Z J(a, VP§, = o, VPG.) V =—= = [Uv (V = -V = )
5 j 3 j J Bxi axi 3xi
and similar computations as above lead to
(A.33) a; = o(1) | ? (Injl + Iajl + lujl))

J
From (A.28), (A.32) and (A.33) we deduce that, at least for

k large enough,

ng = 0, a, = 0, wu, =0 v i€ [1,n] ;

a contradiction with (A.14).
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Appendix B

In this section K 1is a fixed compact in Q ; for

@ = (ogr «ve yal) din A 4, x = (%, ... ,x ) din k" , A in
~ n
. {0,») one defines o¢{a,x,x) = J(R( PGi(xi,A))) .
i=1
Let y(a,x,A) = J{o(a,x,))) for (o,x,A) in An_1XKnx(0,m)n
and let V(a,x,A\) = J(®(a,x,))) for (a,x,A) in An_1XKnx(0,m)

In this appendix we are going to give some estimates on yYla,x,A) and

¥(a,x,A) . In particular we shall prove

Proposition B.1

There exist a positive integer n, and a positive real number

A such that

0
51 T
(B.1) A 2 A, = V(a,x,A) $n S Vo€ a r VX € K
0 0 n0-1 .
For simplicity we write §; for G(Xi,ki) . We start with
some Lemmas.
Lemma B.2
n -1
p+1 =
f( % S8.) 2
p+1 -1 11 -
5 i=1 . n P+1\.E 1
(B.Z) w{alxr)‘) s S n ) falél } 2
[( % a.ps, )P 1=
i=1 11

VX € K' , Va € A__ Vi € (0, , ¥vnz1,

where
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Proof of Lemma B.2

n
Let: u = L o, P§, . We have
i=1 * 7
+1
2. 2
(B.3) J(ru) = 17al)
fu Pt
n
For simplicity we shall write I instead of I
i i=1

We have

2 _ P
Jlvul® ='s f( L a; P8, ( L a8

i1 i
hence, by H8lder's inequality
1 pt1 _P_
(8.4) {1vul® s s {[( % a Ps }P”)p” (J( I o, 6f) P )P”
) i i i~i
i i
\ p+1
By the convexity of x — [x| P
,
p+1 p -1
( L a.cfi’”} P stags, P,
;4 {4
and therefore:
2
p+t1 P -1 p*1

P P p P
( E aiGi ) g ( i aiﬁi ) ( i aiéi)

1
p.|.‘| _
p P 3 -1 p
(B.5) (E 0‘151) s j(z °‘i‘31> ‘{j (z a8, )
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&
By the convexity of x —> x| P one has

2
p =1 P

p p-1 p+1
( E aiai ) S E a; 83 ,

and therefore, with (B.5) we have
p ;1 pr % p+1 ;1
®.6) | (i aof ) P s {f (i a6, ) } {z fa,of }

i

(B.2) follows from (B.3}, (B.4) and (B.6).
We are now going to deduce from Lemma B.2
Corollary B.3

Yyn>0,Vve>0, 3 X > 0 such that

p_1
A E (X, o Yla,x,A) S (n+e) 2 s, vace A i+ VX E K"

Proof of Corollary B.3

It follows from Lemma B.2 that for

(@,x,A) € & xK™x (0,0) 0

-1

p=1 J(z a8 )P
(B.7) b(a,X,\) S n’ § —=

(L a

pg, )P
i 1

i

By the maximum principle we have

s MaxVG

(B.8) 0 s si - P§
A

i
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where ¢ 1is a constant (we recall that K is fixed). Corollary
B.3 follows from (B.7) and (B.8).
We now prove
Lemma B.4

For any integer n 1in ([2,») there exists a strictly positive

real number ¢ and Az in (0,») such that for any x in Kn

for any A in [Az,w)n and for any a in &1
p1
(8.9) 31 with o, S e =Ula,x,A) sn° S

Proof of Lemma B.4

n

Let n be an integer in [2,») . For x in K and a

in A _, with o, # 1 one defines o and X by

E‘= 1 (o . a_ ) € A

[ ai) 2" 7 'Un’ 7 Tn=2
iz2

~ n-=1

X = (xz, .o ,xn) £ K .
Let n.. be in (0,») ; one easily sees that there exists ¢ in
(0,») such that

vx € KT VA € [1,m

(B.10) Va € A__, )Ma, S €= vlaxd) S @D

Lemma B.4 follows from Corollary B.3 and (B.10).
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We are now going to give an expansion of Vi{a,x,A)

when A Min lxi-x.l is large. Let H(x,y) be the regular part
iz

of the Green function, i.e.

A Hix,.) =0
y )

H(x,y) = T§%§T if oy € an ,

(B.11)

and let G: x() — IR be the Green function:

Gi(x,y) = T§%§T - H(x,y)

Let d = d(X)=?iq Ixi—le and  y,: An_1xKnX(0,w) —> IR be
defined by ’
2 p+1
Y (d,x,k) = S _lELE:l__ {1- i [ g H(x ,x.)/ i - it )
! o P! W2 50 T2 g Pt
p .
I (2 ik S I ki A AP ]}
(1, 9H\ o NPT LI
i%j
1
with lal = (2 o5)?
1
a
Na Il = ( z P )P*‘
i
R e1y1? @

(see (2) for the definition of «c.)

We are going to prove
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Proposition B.5

There exists a constant c¢(n) which depends only n such that

| ¢1(G:X:A) - m(a,x,l) | s c(n)
(Ad(x) ¥
for any o in A-q rany x in K% with d(x) > 0 and any

A in (1,m) .

Proof of Proposition B.5

= L3 n m T —
Let (a,x,A)  be in An_1xK x(1,») and let Gi = Pdi ’
—— n —
hi = Gi - Gi and u = 121 aiﬁi . We start with the estimate of
2
{1vul® . We have
g 3. = 3 = p -
(B.12) fv8, VB, = [V, Vs, sfaj (6, = hy)
(B.13) j5§+1 = J 5§+1 - 5§+1 s o 6;ia+1
Ry RN R\

Let £ = dist (K,302) and ¢ be various cbnstants which may

depend on n but only on n (we recall that K 1is fixed) ;

0(a) will denote functions such that [0(a)l § clal .Note that,

using Corollary (B.3), we may assume that Ad(x) 2 1.

N
We have f 6?+1 sc (——A§—§> N1 ar
rN0 r2f “+A'r

(B.14) foT s &
N i AN
R’ g
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On 3Q
N-2
A 2
h.(y) = ¢ ( )
* 0 1+J\2|y—x.l2
i
hence, on 4§
' 2-N
c A 2 c
- =0 —_—
by (¥) =zl 5 e
ly=x, | =z
A
Therefore, by the maximum principles,
4 c
(B.15) lhi(Y) - /=3 H (Y,Xi)| s N+3 vy € Q
X 2 A 2
N+2
. +® A N-1
We have ISE sc, (———§—§> 2 r dar ,
1+A7r
hence
P c
X 2
P
fePuly,x)dy = [ 5? Hly,x )dy + [ o SiH(y,x;) dy,

where B(xi,%) = {y € R %yl < %} (and 8,=6,(y)) ; hence, using (B.16)

2

P : 1
83 H{y,x )dy + 0( N_2>
2 2

fePuly,xpay =

2
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Note that AyH(y,xi) = 0 ; therefore making an expansion of

H(y,xi) near y = X, and, using the symmetries of GE we
have

) L N+2
| &P H(y,x,)dy = H(x, ,x.) | 5P+ 0([2 (-l———> 2 rN+3dr>;
B(x, ,2) 1 1 Y Rk, 5 0 \q+a2p?
i’2 172
hence:
H(x,,x.) _
P - R S S 1
(B.17) [, ¢] Hly,x)dy = ¢, =5 * 0 ( N3 )
Bxy.3) z )
A A
with
p N+2
(B.18) c, = ¢ IN ( 1 2) 2 4y .
R T+{yl™”
From (B.15), (B.16) and (B.17) we get:
H(x, ,x,)
Py - i S i 1_>

(B.19) [85 h, = c4e, N + 0 (AN

and finally with (B.12), (B.13), (B.14) and (B.19) we have

H(x, ,x,)
T 12 _ 1771 1
(B.20) j|vai| =1-58cypo, —5=5— + 0 (—N)
A A
Let now 1i#j
P - P p P
B.21 §% (8,-h.) = 856, - 68, - N
( ) j ] ( i 1) IN i IN 173 jéj i
R R'\Q

Similar computations to those which lead to (B.19) give:



H(x,,x.)
(B.22) I&?hi = C4C, — 211 .0 (l—)

We have

IS ORI S AL I
RNQ RNQ

hence by (B.14)

p c_
(B.23) é éjéi s X
R\Q
Let a,. = x,-x. and I = | sPs. . We have
ij i 73 Ny J 1
IR
N+2 N-2
S L | (R N Ry ! 2 dy
0 1+Iyl2 T+iy-Aa 12
ij
We have also
lyl®=2xy.a, .
2 2 2 1J
T+ly=xa,.|“ = (1+X ’ai'i ) 1+ 3 > ,
+d J 1+1%1a, . |
1]
herce
2" %2‘ 2, 2 N22 (N-2))a, .y 12
(B.24) (1+|y—kai.| ) = (1+A |ai.| ) {1+ > 5+ ( 5 2)
J J 1+12%|a, .| M+a%a, L
i3 1]
for |y} s 7 Maygsl
N+2 N-2
' 1 2 1 2
Let Aly) = (——~—7) ( 2) . We have
1+]yl ‘I+|y-}\ai |



- 39 -

(B.25) { Aly) dy =

rMa, il 2 2
P 413 (1+3%|a, .|
1
" ol)a 5 0( J
ij
ly1?
(B.26) f s

(B.27) i dy

Aa, . 2
1 (1+1y17)
yis sl

From (B.25), (B.26), {(B.27) we get

©2 1
(B.28) [ A(y) ay = —= N=3
P A la. .
klai.1 0 i3
yis gl
N Aa, .
Let B, = { y €R | |y-da 4] s —1

EIRN|||<i|a‘_ij_I
2 Y yh 27

o)
n

i A{y)dy s ) =
A lai.
J

IN-Z




(B.29) J Aly)dy = 0 ( Nl1 |N) '
N A |a,
R ~B,UB, i3
Aa, .
— 1 _N-1
(8.30) | Al dy § gy J n-z °F
B, a | 0 2,72
] (1+r%)
) 1
- 0 (ANIa |N)
i]

From (B.28), (B.29), (B.30) it follows that

OIO
ogln

1

a

(B.31) | A(y)dy =

IRN

N-2|

1
=+ (=)
A |N2 )\N1]a_|N1

ij ij
Finally from (3.21), (B.22), (B.23) and (B.31) we get, with

d = d(x) ,

- 1 1
(B.32) IV51V5J = 5 COC2 G(xi'xj) ,\N_z + 0 (AN_1dN-1) .

Using now (B.32) and (B.20) we have

c

[lvul? = 1q12 - 2 ] { £ o H (x ) - T aga. Glxy,x
i (1,3 *J

i%]j

and therefore
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j2adl

(B.33) (Iquiz) 2 - IalP+1 {1- ————El—— ré a2 H(x,,x.)- £ o,0.G(x x.)]}
1o 22 Li i 1771 1,3 17577175
i3
1
vo [t )
\kN—1dN 1
. p+1
We are now going to estimate fu . Let
B, = { | Ix,-yl < min (Q 2) } We have
i Y i 2’ :
p+1 A N oN-1 1
(B.34) I u £ C I a (———2—-2-) r dr s 0( N N)
Q\UBi r>Amin(§,2) 1+2°r A d
. d
Let 4' = min (3,2) . On Bi we have:
prl _ P*1p+1 PP 3 2 p-1
8.35) uF"! = of P (o) o6 ( £ 5.- ahy) + o(—-—_——a )
i i ii 51 i3 ii (Ad)Z(N 2) i
o A N O S DN B A
[ 6 = \T72)r ¥-F3! T2z
Bi 0 1+A%r A 0 (1+t°)
and then one easily sees that for any N 2 3
(B.36) ! f /)‘—)2 M ar =0 (——1————\
(ra) 2 (N=2) B, \1422.2 aa) N1/

Using (B.19), (B.22), (B.32), (B.34), (B.35) and (B.36) we have

easily
o
o H(x JX)
o+ i 1 17771 {(p+1) P
(B.37) [ u = = - (p+1h§”'c c — + —> c.c, I oja, G(x, ,X.)
Bi ] i 7072 AN 2 AN 2 T072 ji i) i’

1
+o (o)
(Ad)N-1
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Finally we have from (B.37) and (B.34):

i} nc:up*1__2°i-(

P+l
(B.38) Ju 3 2

p+1 - P
X oy ..H(xi,xi) Z‘ aiaj G(xi,xja
i ) i3

i#]
]
+ 0 (‘**‘:‘)
@

Proposition B.5 follows from (B.33) and (B.38).

Note that there exists c¢'> 0 and v' > 0 such that

H (y,y) s c! vy € K

G (v ¥y 2 V' Y(y,.y,) € K

Hence one easily gets from Proposition B.S

Corollary B.6

There exists two positive real numbers ¢ and n such that for

any positive integer n there exists a constant «c¢(n}) such that

for any X in [1,«#) and any x 1in K" with d(x) # 0

p-1
> s ;%;5 (- nn) |+ —<2)

(Ad (x)) N

Max w(a,x,k) S n

aEh !

n-1

We are now going to prove

Lemma B.7

For any integer n in [2,») and any ¢ in (0,»}) there exists

d0 in (0,») and A3 in [1,») such that
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. 1
(B.39) ¥i{a,x,A) $n 25 vae A 40 [e,117, WA € [(Ay0=l,

vx € K' with d(x) s d

0
Proof of Lemma B.7
Clearly we may assume that
|x1 - x2| = d(x)
Note also that since lim G(y1,y2) = +x , we have
|Y1-Y2!+0

from Proposition B.5:

3 d1 >0 3¢, >0 such that v¥x € K" Ya. € An

1
p-1
(B.40) 7VPla,x,x) $n 2 S 1f d(x) s d, and A|x1-x

_1 YA E [1,w)

e C

2l 2 ¢

Using  (B.15) and (B.2) one sees that there exists C2 > 0 such

that

p+1 c

5 pz1
(B.41) JP(a,x,A) s S 2 (1+

2 1 p+1 n-1\ 2,
N-Z) (IN 5, 7es, 2 * 7S ) '
2 R

A
but there exists Tt in (0,=) such that

8 p+1 1 _ _
(B.42) | = %1 % (i-1)  1f Alxy=x
N °17EC)

R

s C

5 ¢y

(remark that by translation and dilation we may assume that

X, = 0 and A = 1)
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Lemma B.7 follows from (B.40), (B.41) and (B.42)

We can now prove Proposition B.1. We first use Corollary B.6

such that

and choose no
(B.43) c - noﬁ < 0
We now use Lemma B.4 and then, Lemma B.7: there exists ¢ > 0 ,
d3 > 0 and A4 > 0 such that:
Ny ) ~ 51

(B.44) Vv¥x € K Ya € A AN YA € [A,,+®) ,0(a,x,X) S n

: n0-1 4 0

and
. n, n,
(B.45)° vx € K ~ Va € 4_ _,N [e 1] VA € [Ay,+=)
-0
=
d(x) § 4y = Pla,x,A) § ny“ s
We use Corollary B.6 once more and (B.43), there exists AS such
that
nO ’
(B.46) Vx € K Yo € An VA € [A5,+m)
° p-1
dlx) z dy = Tla,x,A) S n02 5
Let now AO = Max(AS,A4) , using (B.44), (B.45) and (B.46)
we have
R | 51

(B.47) ¥x € K Ya € An YA E [l0,+w) Yla,x,A) S ng S .,

0

hence Proposition B.1.

S



Comments

_45_

1. The regular part H of the Green's function appears in the

~

expression of

Yla,x,A)

; originally it came out of expansions

along the gradient flow (see [2] - [3] for further precisions).

The role of the regular part of the Green function in connection

with the critical Sobolev exponents has been pointed out for the

first time by McLeod [12] for a Dirichlet problem and by Schoen

[(17]) in the framework of the Yamabe conjecture. (But the com-

putations in [2] - [3] where made independently of [12] and

(171 .

2. More generally one finds the following expansion of ¢ :

wit . AUk %) oo 26877
[Wla,x,2) - s 7 {1-ey T — (3 - )
ol Loy lal ™ Hoall
p+1 _
%%y %% | 1 =
+ L ( ) € .}\ S c(n,K)(Z — + I g, )
(1,3 Mo NPT g2/ A i @ B
N Ay A Ay R
for x € K" and with ¢e,. = |—%2 + 1 + %+ J
ij \A. A 2
] i G (xi,xj)
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Appendix C

This Appendix is due to J. Lannes. We use here the notations

of section III and we prove

Proposition C.1

(c.1) 3((tr p* w )x[B_(V),B__,(V)]) = [Bn_1(V),Bn_2(V)]

Proof of Proposition C.1

For simplicity we shall write B instead of Bn(V) . Let

£ be a fixed point in V , and let CBn the subset of Bn

-1

defined by

N .
cB__, = { 151 aiéxi €BN\B _,| 21 € [1,n] such that x, =E}UB__, .
CB_ .1 is contractible in itself and therefore
He(CB _4/B _4) = H,_,(B,_q) . Let Tt be the natural injection of
CB__4 into B ;T maps the pair (CB,_,,B_ _;} into the pair
(Bn'Bn-1) and the following diagram is commutative (y and 3°

are the usual derivations)

_.L+ ﬁ' (B

n-1
|
(C.2) Th ‘ identity
v v
3" ~
Hy (B /B _4) — H_, (B _,)
Let Pyt Vg O#On_1&n-1 —> V be the projection on the first factor.
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and v : Vn/o1xon_1 —> V Dbe also the projection on the first

factor. We choose an open neighborhood Tﬁ of Sﬁ in v© ’

On = invariant satisfying (20)-(21) and such that

(C.3)  Ker (av)(x) * T_(3Vy) VX € 3V, with x, = £
(C.4) Si is a strong cn-equivariant deformation retract of TE ’
where, in (C.3), (dv) (x) denotes the differential of v at x

and TX(BVE) the tangent space of ng at x and where in

(C.4)

sﬁ = {x € s} | 21 € {1,n] with x; = &}
Ti = {x e | 2 1€ [1,n] with x, = &}

We give at the end of this Appendix an example of such a TA

1

Note that it follows from (C.3) that pa (¢£) is a manifold

(with boundary). In Section III we have defined an isomorphism

n n
k ~ between H,(B_, B _,) and H,(V, SnAn—1’a(V0 énAn_1)) ~see

(22). In a similar way we are going to define an isomorphism

-1 -1
kg between H*(CBn1Bn-1) and H,(p, (£),3(py (£))) . Let

vg ={xev® | 31ie€([1,n] with x, = £}

& . (yP | 3 n
and let b- : (VE énAn-1'Sn A4 8n VE X34 _;

)= (OB _1/Byy)



be the natural

projection. As in Section
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III (see(16)) one easily

proves
(C.5) bi is an isomorphism.
Let now jg (Ve x A SE x4 g v oxaa ) —>
n & g, n-1'"n n-1 6, & n-1
(V2 x A TE x & U VD x3A ) it follows from (C.4) that
£ S n-1'"n n-1 o g n-1" "'
(C.86) 'i* is an isomorphism.
Let now ib : (po'(£),3po  (E))) —> (V® x A ., v® x34_ . U Toxa
n 0 ! 0 £ o, n=-1""¢ n-1 §,'n “n-
be the restriction of the projection: Vg x A — v x & ;
04%0. 1 n-1 Oh n-1
15 defines an homeomorphism between p51(£)\ 3(p51(£)) and
vE ox oA\ (VP x9a U ;E x4 ) ; moreover 3(p—1(£)) is a strong
3 Ch n-1 £ n-1 G, B n-1" ' 0
deformation retract of one of its closed neighborhoods in p61(5) ;
therefore
(C.7) iﬁ* is an isomorphism.
-1 -1
= € & €
vie define Zn = (in* ) Ih. (bn* ) .

We next remark that the following diagram is commutative

(B0 <222 (p7T(g),a(p7" (£)))

1

)



N
where B =V, . A -qr 9 1is the

n n
inclusion map. We have

(C.9) k, 0T, = s,

Indeed (C.9) is a consequence of

natural projection and t 1is the

o) kE
n

the commutativity of the following

diagrams
bl
n oh n
v énan—1'sn xAn~1 8n xBAn_1) (Bn'Bn—1)
T bS T
V2 x A .,s% xa v® x3a ) —B > (CB._ .,B_ .)
T o_ n-1""n n-1 gn £ 1 n-1'"n-1

(v x A .S x4
cn n-1""n n-1 g

T :

Bk a 85 xa U
€ g, n 1""n "n—1 9,

n n n n
Vo gnan_1,a(v0 §fn-1” > (V

g
_ i
(g (6),3(p5  (£))) —Bs (v

A ,T' XA
n-1""n

n
E g bn-1'T

n

g

n

n-71

xAn—‘l g

where the maps which are not labeled are inclusion maps.

Since B__, 1is contractible in

of the reduced homology sequence of

B
n

moreover (see (22)) H (B

(in-1}d+n-2

£, =1 -1 -1 .
(C.10)  ev(k)™ ([py (§),3(py (EN]) =

n-1'Bp-2

(B

=Z2;

n-1'2n-2

]

_1 + the map 6:H,(B _,)

hence

> B (BrqrByp

(B _,sB,_,) 1is one to one;
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where [p(-)1 (£) ,a(pa1 (£))1 is the class of orientation (modulo Z,)

of the manifold with boundary p51(5)

We denote by 0N cap products. We are going to prove that

=1 -1 _ * .
(C.11) s, (lpg (E),3(py (E))]) = (try p} w ) 0 [B ,38 ]
. n : n
where tr, 1is the transfer map: H*(V, 01:0n_1én—1) > H* (Vy énAn_1)

Note that (C.1) follows (C.2),(C.9),(C.10),(C.11) and the functiorality

n n
of the transfer (see [5]). Since q: Vs 0. %o An—1 > Vg X An-1
1 "n-1 ~ n
is a covering between two manifolds, tr0 is the Gysin's
: . n _
. *
homomorphism; hence for any u in H (Vs 01:0n-1an_1) we have
. . - n n
(trou) n [Bn’aBn] qy (u 0 |:VO G, %0 An-1’a(V0 0, x0 An-T)])
1 "n-1 1 "n-1
in particular
¥ < = .
(tIOPOMV) n [Bn'aén] q*(PE”v n [Vg 0. X0 An_1,3(V3 0. XG An—T}]) !
1 "n=-1 1 "n-1
but
n n ~ -1 -1
PE“v n [VO o, xG An-1’a(VO 0. %0 An-1)] - t*([Po (5"3(90 (€)1 1)
1 "n=1 1 "n-1
hence

(tr piwy) 0 [B_,3B 1 = a,t,([py (€),3(pg (£))1])

which gives (C.11).



Finally we give an example of an open neighborhood Té of
s in v, o -invariant satisfying (20), (21), (C.3) and (C.4).
We provide V with a ¢® Riemannian metric and denote by
.d(x1,x2) the geodesic distance between two points X, and X,

of V . Let A: V2 >R be a C map such that

_ 42 . '
A(x1,x2) = d (x1,x2) in a neighborhood of 82

. 2
A(x1,x2) > 0 if (x1,x2) € VN S'2

Let € be in (0,») and let
T = {x € V| T A(x,,x.) < e}
n i%] ]

Tﬁ 1s open, on—invariant and contains Sé . Moreover one easily
verifies that, 1if € is small enough, Tﬁ satisfies (20) (21)

(C.3) and (C.4).
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Appendix D

In this Appendix we give a proof, which does not need the
transfer, of the existence of a solution to (1) when there exists
some odd integer - d such that Hd(Q;m) # 0 . We shall consider
here only rational homology and cohomology; we shall write H,( ),

H*( ) instead of H_( ;Q), H*( ;@) .

Let K be a compact in Q ; we have defined in (13) a map

gn k" xan_1 > Z+ which depends on some parameter A in (0,«)

If A 1s large enough 9, maps the pair (k" xAn_1.Kn x3A )

n-1
into the pair (Wn’wn—1) and it is clear that

. n n
9, ¢ He KD xA L, K7 x3A 1) —> Hy(W_,W_

n# ) 1is independent of the

-1
choice of A provided that A 1s large enough. On the other hand

the homology of (@ xAn_1,Qn x94 is the direct limit of the

)

homology of (Kn xAn_1,Kn x3dA ) where K are compact sets in

n-1
2 ; hence one can define a natural map

n

n
»Qn - H*(Q xAn_.po Xaén_.]) —_— H* (Wn,wn_1) .

We have

n N _ n

H_(9 xb 1R X34 _4) = H,(Q7) o He (A 4038 _4)

Let e ., be the canonical generator of Hn_1(An_1,aAn_1) . Let
. n n n-1 o}
D B (@7 xa _,,07 x84 _,) —> H,_, (@7 ° x4, _ 5,0 x34 _,) be
defined by:
Ler, 2 i-1
D(f x e _4) = (-1) (2 (=1) (P) «£) « €2

i=1
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where pi : Q0+ Q0 is defined by

pi(x1, .o ,xn) = (x1, RS THTRE FURTI ,xn) and where |f]|

is the degree of £ .
Our first Lemma is
Lemma D.1

The following diagram is commutative

He (Q7xA 1,07 x 8A__ 1) ——  H, (W ,W__,)
D 3
I3 v
He @k e ke ) B w W)

Proof of Lemma D.1

Lemma D.1 is a consequence of the commutativity of the diagram:

n Idxfi n n
K" x A, ———> K x A —_— s W
n-2 n-1 n
pIXId T
n-1 In-1
K * bp-2 > Wh-1
h =
where £ (t., ... ,t__;) (Bqr wee vty 004t woe b 0) .
The cap product H* (07 x4 ) & H, (Q7xA Q7 x34 ) —>
n-1 * n-1" n-1
n n . n n
He (@7xa _,,@7x34 _,) provides H,(Q XA _q o0 x84 _,) with a

structure of H*(Q")-module and hence a structure of H* (Q%/0_ ) -
n

*
module via the homomorphism w,: H (Qn/on) — H*(Qn) where 1
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is the projection Q" — Qn/on . We denote by . the product.

We have seen 'in- Proposition 9 that H*(Wn’w ) has also

n-=1
a structure of H*(Qn/on) module. Our next Lemma is

Lemma D.2
The map _'Qn is H*(Qn/on) -linear.

Proof of Lemma D.2

We give a direct proof of (one could also use Proposition 9).

Let K be a compact in Q and let g_ : Knx-An_.I — I,
be defined by
~ n i
gn{x,a) = R{( .§ oy Pé(xi,A ))
i=1
Note that
z a? prl .
. ~ i. T 2 a
D.1 lim = 8 v € KxA
(D.1) oim J(g (x,a)) Za?” (x,a) x84
i

and hence (if ) 1is large enough) ‘En maps the pair

n n . . _ .
(K'xa _,,K'x34 _,) into the pair (W ,W__,) . We prove first that

(if A 1is large enough)
(D.2) g =g

Let h_ : [0,1] x K7 x A —> I, be defined by

n .
— — l -
hn(t,X,a) = R{ E oy Pﬁ(xirtk+(1 E)ATYY

h is continuous and we have
n
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(D.3) hn(O,x,a) gn(x,a) Y{x,a) € K XAn

-1

(D.4) h (1,x,0) = g_(x/a) Vix,a) € K'xA__,

Moreover, using Corollary (B.3), we have (if X 1is large enough)

(D.5) vt € [0,1] hn(t, . + . ) maps the pair

(K™xA ,Knxaan_ ) into the pair (W_,W__,)

n-1 1 n=1

The equality (D.2) follows from (D.3), (D.4) and (D.5).

We next remark (see in particular (D.1)) that there exists

in (0,»}) and A in (0,«) such that (where A is

n _ .
0 0 n 11”0

defined in the proof of Proposition 9)
b

n-1

(D.6) A 2 A, = an(xnxa ) = F,7 0 Vin,eg)

It is also clear from (D.1) that ( Mo being now fixed) for X
large enough

0

~ n
(D.7) 9n (K (An—?‘An41,no)) < wn—1
Let b(x,a) = x for (x,a) € KnxAn_1 . Clearly on

n o
K x (8 NA 4 )

(D.8) Xom=qgob

It follows from (D.6), (D.7) and (D.8) that the diagram



o g
n n-1
(KFxAn*1,nO'Knx(An-f\An-1,no)) - (F )
A A
(KxA K x4 ) _?2_;. (Fb“'1 nvi,ed ,W . NVin,eld)
n-1 '”0' n=1,n, + 0" *'n=1 =0
b X
l ’
K° LS Qn/on

is commutative. Lemma D.2 is a consequence of this commutativity

and (D.2).

Let now 2 be in Hd(Q) and u be in Hd(Q) such that
< u,z > =1 . We are going to prove by induction on n that if

d is odd then

(D.9) P.n(znxe ) %+ 0

n-1

n

where zn = 2ZX ... X2 € H () which is in contradiction with

nd
Proposition 8. First note that

1
(D.10) 21(2 xeo) + 0
Indeed let v be the canonical generator of HO(Q) ; we have
21(v) # 0 ; by Lemma D.2 21(u.(2xe0)) = u.£1(2xe0) and
u.(zxeo) = v hence (D.10)

Since the cohomology we consider is with rational coefficients
the map n*;H*(Qn/on) —_— H*(Qn) induces an isomorphism between
H*(Qn/on) and the elements of H*(Qn) which are invariant by o,

{see e.g. [5]) . In particular there exists a class, that we shall
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denote U , such that 7©*(Q) = w with
W o= (Ux1x ... x1) + (1xux ... x1) + ... + (1x ... x1xu) (€ 8™y ,
where 1 denotes the unit element of HO(Q) .
We are going to prove that
(0.11) 3(3.2 (ze 1) = (=) 31§ (opy(p=tiasi o0l
* " n n-1 {=1 n-1 n-1
which gives, when d 1is odd,
~ n _ (_4y\D n
(D.12) d(u.2 (z'xe _,)) = (=1)" n2 _,(z"xe__.) ,
and then (D.9) follows from (D.10} and (D.12)
(Note that, if & is even, (D.11) gives 3(¥.2 (z"xe__,)) =0

when n 1is even}.

In order to prove (D.11) we remark that, in H*{Qn) ’

(-1 (A-1)d@ Li-1 o n-i

1

3

o

N

I
e

and therefore, if we denote by 1 the unit element of H” (A

n n
we have, in H,(Q"xa__,,Q x3b__,)

n .
)(n—1)d( 5 (__”(n-i)cfin.~-1xvxzn-i)xe

(D.13) (wx1) n z'xe . e
i=1

n-1 (=1

and (D.11) follows from (D.13) Lemma D.1 and Lemma D.2.
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