
NIELSEN NUMBER IS A KNOT INVARIANT
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Abstract. We show that the Nielsen number is a knot invariant via representation
variety

1. Introduction

We briefly describe the few basic notions of Nielsen fixed point theory(see [2]). We
assume X to be a connected, compact polyhedron and f : X → X to be a continuous
map. Let p : X̃ → X be the universal cover of X and f̃ : X̃ → X̃ a lifting of f , i.e.
p ◦ f̃ = f ◦ p. Two liftings f̃ and f̃ ′ are called conjugate if there is a γ ∈ Γ ∼= π1(X)

such that f̃ ′ = γ ◦ f̃ ◦ γ−1. The subset p(Fix(f̃)) ⊂ Fix(f) is called the fixed point

class of f determined by the lifting class [f̃ ].Two fixed points x0 and x1 of f belong to
the same fixed point class iff there is a path c from x0 to x1 such that c ∼= f ◦ c (ho-
motopy relative endpoints). This fact can be considered as an equivalent definition of a
non-empty fixed point class. Every map f has only finitely many non-empty fixed point
classes, each a compact subset of X. A fixed point class is called essential if its index
is nonzero. The number of essential fixed point classes is called the Nielsen number of
f , denoted by N(f).The Nielsen number is always finite. N(f) is a homotopy invariant.
In the category of compact, connected polyhedra, the Nielsen number of a map is, apart
from certain exceptional cases, equal to the least number of fixed points of maps with the
same homotopy type as f .
Let us consider a braid representative of a knot and induced map of corresponding repre-
sentation variety(see section 2).We prove in section 3 that the Nielsen number of induced
map is a invariant under Markov moves and so is a knot invariant.
The author came to the idea that Nielsen number is a knot invariant at the Summer
2003, after conversations with Jochen Kroll and Uwe Kaiser. The results of this paper
were reported in the author talk on the International Conference “Knots in Poland”, July
2003 in Bendlewo, Poland. The author would like to thank the Max-Planck-Institute für
Mathematik, Bonn for kind hospitality and support.

2. Knot invariants via representations spaces

We recall firstly the Lin’s construction in [6] for the intersection number of the rep-
resentation spaces corresponding to a braid representative of a knot K in S3. Let
(S3, D3

+, D
3
−, S

2) be a Heegaard decomposition of S3 with genus 0, where

S3 = D3
+ ∪S2 D3

−, ∂D3
+ = ∂D3

− = D3
+ ∩D

3
− = S2.

Suppose that a knot K ⊂ S3 is in general position with respect to this Heegaard de-
composition. So K ∩ S2 = {x1, · · · , xn, y1, · · · , yn}, K ∩D

3
± is a collection of unknotted,
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unlinked arcs {γ±1 , · · · , γ
±
n } ⊂ D3

±, where ∂γ−i = {xi, yi} and {γ+
1 , · · · , γ

+
n } = K ∩ D3

+

becomes a braid of n strands inside D3
+. Denote by β a corresponding word in the braid

group Bn. For the top end points xi of γ+
i , the bottom end points of {γ+

1 , · · · , γ
+
n } give

a permutation of {y1, · · · , yn} which generates a map

π : Bn → Sn,

where π(β) is the permutation of {y1, · · · , yn} in the symmetric group of n letters. Let
K = β be the closure of β. It is well-known that there is a correspondence between a
knot and a braid β with π(β) is a complete cycle of the n letters (see [1]).

There is a corresponding Heegaard decomposition for the complement of a K,

S3 \K = (D3
+ \K) ∪(S2\K) (D3

− \K),

D3
± \K = D3

± \ (D3
± ∩K), S2 \K = S2 \ (S2 ∩K).

Thus by Seifert-van Kampen theorem we have following diagramm

π1(S
2 \K) → π1(D

3
+ \K)

↓ ↓
π1(D

3
− \K) → π1(S

3 \K),

and a corresponding diagramm of representation spaces

(1)
R(S2 \K) ← R(D3

+ \K)
↑ ↑

R(D3
− \K) ← R(S3 \K),

where R(X) = Hom(π1(X), SU(2))/SU(2) for X = S2 \K,D3
± \K,S

3 \K.
In [7], Magnus used the trace free matrices to represent the generators of a free group

to show that the faithfulness of a representation of braid groups in the automorphism
groups of the rings generated by the character functions on free groups. This is original
idea to have representations with trace free along all meridians which Lin worked in [6]
to define the knot invariant. It has been carried out by M. Heusener and J. Kroll in [3]
for the representation of knot groups with the trace of the meridian fixed (not necessary
zero). Let R(S2 \ K)[i] be the space of SU(2) representations ρ : π1(S

2 \ K) → SU(2)
such that

(2) ρ([mxi
]) ∼

(

i 0
0 −i

)

, ρ([myi
]) ∼

(

i 0
0 −i

)

,

where mxi
, myi

, i = 1, 2, · · · , n are the meridian circles around xi, yi respectively. Note
that π1(S

2 \ K) is generated by mxi
, myi

, i = 1, 2, · · · , n and one relation
∏n

i=1mxi
=

∏n

i=1myi
. Corresponding to (1), we have

(3)
R(S2 \K)[i] ← R(D3

+ \K)[i]

↑ ↑
R(D3

− \K)[i] ← R(S3 \K)[i].

The conjugacy class in SU(2) is completely determined by its trace. So the condition (2)
can be reformulated for ρ ∈ R(X)[i],

(4) traceρ([mxi
]) = traceρ([myi

]) = 0.
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The spaceR(S2\K)[i] can be identified with the space of 2nmatricesX1 · · · , Xn, Y1, · · · , Yn

in SU(2) satisfying

(5) trace(Xi) = trace(Yi) = 0, for i = 1, · · · , n,

(6) X1 ·X2 · · ·Xn = Y1 · Y2 · · ·Yn.

Let Qn be the space {(X1, · · · , Xn) ∈ SU(2)n| trace(Xi) = 0, i = 1, · · · , n}. Let R∗(S2 \
K)[i] be the subset of R(S2 \ K)[i] consisting of irreducible representations. Note that
R∗(S2 \K)[i] = (Hn \ Sn)/SU(2) in Lin’s notation [6], where

Hn = {(X1, · · · , Xn, Y1, · · · , Yn) ∈ Qn ×Qn| X1 · · ·Xn = Y1 · · ·Yn},

Sn is the subspace of Hn consisting of all the reducible points. Here Hn \ Sn is the total
space of a SU(2)-fiber bundle over R∗(S2 \K)[i].

Given β ∈ Bn, we denote by Γβ the graph of β in Qn ×Qn, i.e.

Γβ = {(X1, · · · , Xn, β(X1), · · · , β(Xn)) ∈ Qn ×Qn}.

As an automorphism of the free group Z[mx1 ]∗Z[mx2 ]∗ · · · ∗Z[mxn
], this element β ∈ Bn

preserves the word [mx1 ] · · · [mxn
]. Thus we have X1 · · ·Xn = β(X1) · · ·β(Xn), or in other

words Γβ is a subspace of Hn. In fact, for β = K, this subspace Γβ coincides with
the subspace of representations ρ : π1(S

2 \ K) → SU(2) in Hn which can be extended
to π1(D

3
+ \ K), Γβ = Hom(π1(D

3
+ \ K), SU(2))[i]. Hence the space R∗(D3

+ \ K)[i] =
Γβ,irre/SU(2) is the irreducible SU(2) representations with traceless condition over D3

+\K.
In the special case β = id, then Γid represents the diagonal in Qn ×Qn,

Γid = {(X1, · · · , Xn, X1, · · · , Xn) ∈ Qn ×Qn}.

Since K ∩ D3
− represents the trivial braid, this space Γid ⊂ Hn can be identified with

the subspace of representations in Hom(π1(S
2 \K), SU(2))[i] which can be extended to

π1(D
3
−\K), i.e. Γid = Hom(π1(D

3
−\K), SU(2))[i]. By Seifert, Van-Kampen Theorem, the

intersection Γβ ∩ Γid is the same as the space of representations of π1(S
3 \K) satisfying

the monodromy condition [i] (see (1)),

Γβ ∩ Γid = Hom(π1(S
3 \K), SU(2))[i].

Given β ∈ Bn with β = K, there is an induced diffeomorphism (still denoted by β) from
Qn to itself. Such a diffeomorphism also induces a diffeomorphism fβ : R∗(S2 \K)[i] →
R∗(S2 \K)[i]of the representation variety.

Note that Γβ = (Γβ \ (Γβ ∩ Sn))/SU(2) is the image of the “diagonal” Γid under
diffeomorphism fβ. By Seifert- van Kampen theorem (3), it is clear that the fixed point
set of fβ is

Fix(fβ|R∗(S2\K)[i]) = Γβ ∩ Γid = R∗(S3 \K)[i].

The oriented submanifolds Γβ = R∗(D3
+\K)[i],Γid = R∗(D3

−\K)[i] intersects each other

in a compact subspace of R∗(S2 \ K)[i] from Lemma 1.6 in [6]. Hence we can perturb

fβ, or in another words perturb R∗(D3
+ \K)[i] to R̂∗(D3

+ \K)[i] by a compactly support

isotopy so that R̂∗(D3
+ \K)[i] intersects R∗(D3

− \K)[i] transversally at a finite number of

intersection points. Denote the perturbed diffeomorphism by f̂β. So its fixed points are
all nondegenerated.
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The Casson-Lin invariant of a knotK = β is given by counting the algebraic intersection
number of R̂∗(D3

+ \K)[i] and R∗(D3
− \K)[i], or the algebraic number of Fix(f̂β),

λCL(K) = λCL(β) = Algebraic(# Fix(f̂β)) = Algebraic(#(R̂∗(D3
+\K)[i]∩R∗(D3

−\K)[i])).

The results proved by Lin in [6] show that the Casson-Lin invariant λCL(K) = λCL(β)
is independent of its braid representatives, i.e. λCL(β) is invariant under the Markov
moves of type I and type II on β and is one half of the classical signature of the knot K.

3. Nielsen number is a knot invariant

In this article we propose to count fixed points of fβ in a Nielsen way - using the classical
Nielsen numbers of fβ. Nielsen counting of fixed points is a counting in the presence of
the fundamental group. In order to get an invariant of knots from braids, we have to
verify that Nielsen number N(fβ) is invariant under Markov moves. A Markov move of
type I changes σ ∈ Bn to ξ−1σξ ∈ Bn for any ξ ∈ Bn, and the Markov move of type
II changes σ ∈ Bn to σ±

n σ ∈ Bn+1, or the inverses of these operations. It is well-known
that two braids β1 and β2 has isotopic closure if and only if β1 can be changed to β2 by
a sequence of finitely many Markov moves [1].

Theorem 1. If β1 = β2 = K as a knot, β1 ∈ Bn, β2 ∈ Bm, then

N(fβ1) = N(fβ2).

So the Nielsen number N(fβ) is a knot invariant.

Proof: We only need to show that for β ∈ Bn with β being a knot K, the Markov
moves of type I and type II on β provide either a cojugacy or a isotopy of fβ. Hence from
the commutativity and the invariance property under isotopy of the Nielsen numbers, we
get that N(fβ) is an invariant of knot K = β.

Suppose we have the Markov move of type I: change β to ξ−1βξ for some ξ ∈ Bn.
The element ξ in Bn induces a diffeomorphism ξ : Qn → Qn is orientation preserving
as observed by Lin in [6]. Note that Bn is generated by σ1, · · · , σn−1. For any σ±

i , the
induced diffeomorphism σ±

i × σ±
i : Qn × Qn → Qn × Qn is an orientation preserving

diffeomorphism. So ξ is also a orientation preserving diffeomorphism since orientation
preserving properties are invariant under the composition operation. Hence there is a
homeomorphism

ξ × ξ : Qn ×Qn → Qn ×Qn,

which commutes with the SU(2)-action and

ξ × ξ(R∗(S2 \K)[i]) = R∗(S2 \K)[i] (changing variables by ξ × ξ),

ξ × ξ(R∗(D3
− \K)[i]) = R∗(D3

− \K)[i] (in new coordinate ξ(X1), · · · , ξ(Xn)),

ξ × ξ(R∗(D3
+ \K)[i]) = R∗(D3

+ \K)[i] (in new coordinate ξ(X1), · · · , ξ(Xn)),

as oriented manifolds. Let gξ : R∗(S2 \K)[i] → R∗(S2 \K)[i] be the induced homeomor-
phism, induced from ξ × ξ as coordinate changes . Hence we get a conjugacy relation

g−1
ξ ◦ fβ ◦ gξ = fξ−1βξ,
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from changing variables via gξ. Note that Fix(fξ−1βξ) is identified with Fix(fβ) under
gξ. Thus the Markov move of type I preserves the conjugacy class of fβ Therefore by
commutativity of the Nielsen number (see [4]) we have,

(7) N(fξ−1βξ) = N(g−1
ξ ◦ fβ ◦ gξ) = N(fβ).

It is clear that the argument goes through for the inverse operation of Markov move of
type I.

Suppose we have the Markov move of type II: change β to σnβ ∈ Bn+1. Recall that
σn(xi) = xi, 1 ≤ i ≤ n− 1, σn(xn) = xnxn+1x

−1
n and σn(xn+1) = xn. We need to identify

the Nielsen number from the construction in Ĥn into the one from Ĥn+1. Following Lin
[6], there is an imbedding q : Qn ×Qn → Qn+1 ×Qn+1 given by

q(X1, · · · , Xn, Y1, · · · , Yn) = (X1, · · · , Xn, Yn, Y1, · · · , Yn, Yn).

Such an imbedding commutes with the SU(2)-action and q(Hn) ⊂ Hn+1, and induces an
imbedding

q̂ : Ĥn(= R∗(S2 \ β)[i])→ Ĥn+1(= R
∗(S2 \ σnβ)[i]).

Note that the symplectic structure of Ĥn+1 restricted on q̂(Ĥn) is the symplectic structure

on Ĥn. Under this imbedding, we have q̂(fβ) : Ĥn+1 → Ĥn+1 is given by

(8) (X1, · · · , Xn, X1, · · · , Xn) 7→ (X1, · · · , Xn, β(Xn), β(X1), · · · , β(Xn), β(Xn)).

The image of q̂(fβ) is invariant under the operation of σn. Also the corresponding diffeo-
morphism fσnβ is given by

fσnβ(X1, · · · , Xn, Xn+1, X1, · · · , Xn, Xn+1)

(9) = (X1, · · · , Xn+1, β(X1), · · · , β(Xn−1), β(Xn)Xn+1β(Xn)−1, β(Xn)).

Thus we have

q̂(R∗(D3
− \ β)[i]) ⊂ R∗(D3

− \ σnβ)[i], q̂(R∗(D3
+ \ β)[i]) ⊂ R∗(D3

+ \ σnβ)[i].

The fixed points of fσnβ are elements

β(Xi) = Xi, 1 ≤ i ≤ n1; β(Xn)Xn+1β(Xn)−1 = Xn, β(Xn) = Xn+1,

which is equivalent to β(Xi) = Xi, 1 ≤ i ≤ n, i.e.

Fix(fσnβ) = Fix(q̂(fβ)) = Fix(fβ).

Then there is a (Hamiltonian) isotopy ψt : Ĥn+1(= (Hn+1 \ Sn+1)/SU(2)) → Ĥn+1

between ψt0 = q̂(fβ) by (8) and ψt1 = fσnβ (9)(see [5, 6] for the explicit constructions).
So we have

(10) N(fσnβ) = N(ĝ(fβ)) = N(fβ).

The first equality is from the invariance property of Nielsen numbers under the isotopy
ψt and the second from the natural identification. We can similarly prove that

N(fσ−1
n β) = N(fβ).

Remark 2. It is known for a long time, that the problem of computation of Nielsen
numbers is a very difficult problem. By this reason, we strongly believe that the Nielsen
number N(fβ) is a new knots invariant, which cannot be reduced to the known knots
invariants, as it happened in the case of the Casson-Lin invariant of knots.
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Example 3. “Pillowcase”. For n = 2 the irreducible variety R∗(S2 \K)[i] is a 2-sphere
with four cone points deleted(see [6]). So, in this case the space R∗(S2 \ K)[i] is non-
simply-connected and the Nielsen number N(fβ) is not trivial(not 0 or 1) for general
β.

It is a important problem to find a non-simply-connected examples of the space R∗(S2\
K)[i] for n > 2.
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