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On_the Density of Ratios of Chern Numbers

of Algebraic Surfaces
by

Andrew John Sommese

Recently Hirzebruch [3] gave a construction (see §1),
that associates an algebraic surface H(A,n) to each set A =
{Ll,...;Lk} of k 2 3 distinct lines in éz(C) and each n 2 2.
These surfaces are of particular interest because they are

often minimal models of general type*with ci /e > 2. This

paper answers a question asked in [3] about the density of

ratios of Chern numbers, studies the distribution of

!
1im ci(H(A.n))/e(H(A,n)) as A varies, and characterizes
nie

compietely those H(A,n) with ample cotangent bundle.

Let me describe this paper in detail.

In §1, I quickly review Hirzebruch's construction of the
surfaces H(A,n) and prove a few simple results about them

that are needed in this paper.

In §2, I solve the problem raised in [3;(3.3)1.

(2.1) Theorem. Every point r ¢ [l, 3] occurs as a limit:

2 (sy)
r = lim —e—z-s—;r

n+o



for a sequence Sn of minimal surfaces of general type.

Previously Persson [7] had shown “he above theorem for

all re [l, 2]. As F. Hirzebruch pointed out to me, an
appropriate set of the H(A,n) shows the theorem for r € [2
I refer to [3] for a fuller discussion of previously known
examples with ci > 2e.

The method that I use is very simple minded. I take
H = H(Al(G),S) where A1(6) is the arrangement:

I

# fibres with connected fibres over a curve R of genus 6.

It is a result of Hirzebruch [3] that ci(H) = 3e(H). By

taking appropriate branched covers C of R, the ratios:
cz(Hx C)/e(Hx,C)
1 R "R

are shown to be dense in [2,3]. The fact that the fibre

products are minimal models of general type is trivial. A
similar construction using a double cover of the rational
Hirzebruch éurface F12, gives ratios of minimal models of

general type surfaces that are dense in [%, 2].

» 2 *
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In 83, I discuss some elementary aspects of ampleness.

In §4 I characterize those H(A,n) with ample cotangent
bundle in the sense of Grothendieck-~-Hartshorne (2], 1l.e.

those H(A,n) with Grauert negative tangent bundle.

Let A and n be as in the first paragraph of this paper.

Let tJ be the number of points of Pz(m) that lie ‘on exactly

J elements of A and let rp for p e Pz(c) be the exact number

of Li € A, that contain p.

Theorem. Let A and n be as in the first paragraph of this

*
paper. TH(A,n) is ample in the sense of Grothendieck-Hartshorne

[2] if and only if:

a) given any line L; € A, the set {p € Lilrp 2 3}

has cardinality at least 2,

b) ;l_i_'n==3thent3=O,andifﬁ=2thent3=tu=0.

Under the above cohditions-H(A,n) immerses into a product

of curves of genus 2 2.

In §5 I study the asymptotic distribution of these
ratios, i.e. I study the characteristic number [3,4], Y,

of the arrangement:



c2(H(A,n))
Y = Um —Smrem

) ¢ o

(5.1) Theorem. Let A be an arrangemeﬁ% of k lines on PZ(C),

that satisfles t, = ¢, _, = 0. Then the characteristic

k

number, vy, of A satisfies:

Yy 22 (%E%)

with equality if and only-if tr =0 forr 2 3.

(5.2).Corollarx.‘ Assume that A is an arrangement such that

ty =t =0andt, =0 for some r 2 3. ?hen Y 2 % with

equality omly if k = 5, t, = 7, and ty = 1. Excluding this

case,y 2 % with equality only if k = 6, t, = 12, and ty = 1.

Finally we.find the maximum of all y; this answers a
question first studied by Iitaka ([4].

(5.3) Theorem. Let A be an arrangement with ty

8 8
Then v < 3 If y =4§ thep k=29, t3 = 12 and tr = 0 for

r = 3; this case occurs [3,(3.3)1].

I would like to express my thanks to F. Hirzebruch for
explaining his examples to me and for the questions that he
asked me. I would also like to thank U. Persson for going
over my construction in 8§82 and suégesting an improvement.
Finally I would like to thank the Max Planck Institut fur
Mathematik/Sonderforschungsbereich "Theoretische Mathematik"

and the National Science Foundation for their support.



§1. Background Material

We follow the notation of [3], tc which we refer for
motivation and more details. An arrangement A of k lings
“in Pz(c) 18 a set of k distlncts lines given by linear forms

Ll"""k' Let Ll,.;., Lk denote the correéponding lines
on ?z(c) corresponding to Ll,...,l respectively.' By t, for

r 2 2 we denote the number of distinct points in Pz(c) that

lie on exactly r lines of the arrangement A. By rp we denote

the exact number of lines of A that contain a given point

p e Pz(c); in case confusion can arise this is denoted

0

k k
= L tr and fl L r tr. We always

rb(A). We define f

r=2 r=2
assume that k = 3 and ¢t = 0. The formula: T
(1.1) k(k-1) = It r(r-1) B
r22

will be useful. . Tt

For any n 2 2, and the above arrangement A, consider the

function field:
. 1 1
€(z,/2, 2./2.)((2./2,)" (e, /e
1/%0° %2/% 27517 2o\ 00 )

where ZysZ1s%, are homogenous.coordinates on P2(c). This

field determines a normal algebraic surface, X, that is a

k-1

branched cover, w: X + P,(¢), of P,(C) of degree n with



A as the ramification lccus. Let H(A,n) denote the minimal

desingularization of X with map p: H(A,n) + X.
The Chern numbers of H(A,n) are given by:
[ c3(H(A,n)) =

k-3._2
(1.2) n- “[n (-5k+9+3f1-4f0)+4n(k+fo-fl)+f1—fofk+t2]

e(H(A,n)) =

k-3, 2
\ n {n (3—2k+f1-f0)+2n(k+fo-f1)+fl—t2]

A .
Let T: Pa - PZ(G) denote Pz(C) blown up at all points

A
where r p 2 3. There is a map o: H(A,n) - P_ such that:

2

H(A,n) L X
A
P2 — PZ(C)

is a fibre product; in particular ¢ is an nk'l sheeted finite

A
to one cover. Let np: Pz -> Pl(c) denote the holomorphic map

A .
on Pz gotten by composing T with the projection to Pl(c) from
p; this Pl(c) is canonically (Tp-p)/W* where Tp is the tangent
space of PZ(C) at p. Associated to the composition npoo: H(A,n)

+ Pl(C) we have the Remmert-Stein factorization

sp ° Rp,i.e. Rp: H(A,n) - C is a holomorphic surjection onto

a connected normal variety'with connected fibres and Sp; Cc

* Pl(c) is a finite to one map. Since Pl(C) 1s one dimensional,



s0 also is C. Thus C is a smooth curve. The ramification

locus, B, of Sp: cC -+ Pl(C) on Pl(c) = (Tp—p)/C* is the set
of rp points that correspond to the r; lines of A contalning

p. Using this 1t is easy to check that any connected component

of the set p'l(n'l(p)), where p and 7 are as in (1.3), 1s a
section of Rp: H(A,n) - C. Therefore by the Hurwitz formula
[3’(2-1)]:

r_ -1 . r =2
(1.4) e(C) =nP (2-rp) + r, n P

where as always e( . ) denotes the Euler characteristic. At

. |
this point the reader onlxwinterested in §2 has all the

background material needed.

We need some more information about Rp. It 1s convenient

to introduce a few concepts.

(1.5) Definition. An arrangement A is said to be simple 1if:

a) given any two points p and q that satisfy rp 2 3,

r 2 3, there is a sequence L, ,..., L of elements of A
q 51 ¢

such that p ¢ L1 s Q€ Liv, and such that for J=1,..., t-1,
1 t

L1 meets L1 in a point z with r, 2 3,
5 j+l :

b) the set of points p ¢ Pz(c) with rp 2 3 1s not collinear.

(1.5.1) Lemma. Let A be a simple arrangement. Then the map

R: H (A,n) - 1t Cp given by the maps {Rplrp 2 3} is an embedding.
{p,r 23} '



A
Proof. First note that the map =«: €, =+ I e,(c) given
{p,rp23}

by the maps {wplrp 2 3} is an embeddizg if and only if the
set of points p € PZ(C) ﬁith rp 2 3 does not lie on a l;ne.

Consider the commutative diagram:

R
H(A,n) — 1IC
P P

lo ls

A LES
Pz — HPl(C)
p
where S is the product mapping associated to {Splrprz 3}.

By construction of the Rp and Sp, the Galois group, G, of

automorphisms of H(A,n) over 92 maps homomorphically into

the Galois groups of automorphisms é, of 1 Cp over I Pl(c).
P p

Since ¢ is a Galois cover, 1.e. since G acts transitively on
the fibres of o, the proof of (1.5.1) will be done if we show
that G injects into G. To show this, it suffices to show

that function field of II Cp pulls back to that of H(A,n).
P

Let Mp-denote the function field of Cp. Let M be the

subfield of the function field F of H(A,n) generated by

Z

7.2 2/ ). We will be done if we

(R*M |r_ > 3} and c( 1/
p'p!Tp * 37 an o’ 'z

show that M = F.



Note that:

2, % 8, E
M= ¢ /g s /Z Y({( /q ) Ly meets‘LJ in a single point
0 0 J

p with rp 2 3}). The hypothesis of simplicity guarantees

2y :
that ( /2 ) € M for all 1 and jJ. Thus M = F.

J 0

(1.6) Definition. An arrangement A is a sum of the arrange-
ments Ay,...,A  1if:

a) A 1is the disjoint union of the A, for v s m,

b) 1if two lines {Li’LJ} S A meet in a point z with

r, 2 3 then {Li’Lj} c Av for some v.

Assume that each Ai satisfies the conditions of the first

paragraph of this chapter. Then from (1.3) we have the diagrams:

. Pi
H(A,on) — X,
AlO’i Tj; lll’i
B,y — By(C)

and, of course

{o A

-+ B,(¢€)

Since the sets {plrp(Ai)z 3} are disjoint, where rp(Ai) is

the number of elementé of Ai that contain p, it follows that
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Pz + P (C) is the fibre product of {ri 2,1 " 2(d!)li = 1,...,m}.

Let Hi(n) denote the fibre product of o

) 4° H(A ,n) -» P

2,1

A A
and the projectionP2 + P Let H(n) denote the fibre

2,1.

A A
product of all the maps Hi(n) > 92. Since o: H(A,n) ~ P2

factors through Hi(n) for each 1 = 1,...,n, we have a natural

map En: H(A,n) + H(n).

This map is onto. To see this let {zj ilj = 1,...,k}
>
be the forms defining Ai for each 1. Note that the function

A
field of Hi(n) as an extension of that of 92 is given by:

. 1 ) ) 1
4 z L = k =
n n
€1y, 2/ 003, T B e Y
o 0 » 1,1 ?

z
Tensoring these-algebras together over €( 1, ’ 2/ )

Zo VA 0
Zl Zz .
we get an algebra M over €( z R /z ). Since adjoining
1 | 0 0
*1, 1, )™ to M for all 1 and j gives the function field
Ly
,J

F, of H(A, n), it follows that M is a sub-field of F.

(1.6.1) Lemma. E, 1s an unramified cover.

Proof. Let A1 denote the union of the proper transforms L/ under

J

T of L, ¢ A, and the E_ with r_(A,)2 3. Note that A% and
J i P p'‘"i i

A3 have no components in common if 1 = Jj. Further r'l(A)=UA1
' i



A
Since H(A,n) - PZ is a Galois covering and since the branching

A
with A/, as locus of ramification takes place in Hi(n) + P

1 29

we conclude En: H(A,n) - H(n) 1is unramified.
0

(1.6.2) Theoren. Assume that A is a sum of simple arrange-

ments. Then the map R: H(A,n) -+ I C given by the maps

>3-
rp 3

[Rp[rp 2 3} is zn immersion.

Proof. A 1s a sum of simple arrangements A,, 1 = 1,...,n.

i’
Apply (1.5.1) and (1.6.1).

(1.7) Lemma. Let p ¢ Pz(c) be a point where fp-z 3. Let

C equal the set p-l(w‘l(p)) where p and n are as in (1.3).

Then TH(A,n),C-z Tc ® NC wheré N, is the normal bundle of C.

c

Proof. Since C 1s smooth we have the short exact sequence:

I + N.=+ 0

¢ Tywa,n),c ™ Ne

As we saw in showing (1.4), C is section of Rp: H(A,n) + Cp.

Thus dRp: TH(A,n),C + Tcp is a surjection and splits the

above sequence.
a

Given any line L c P,(C) let y(L) denote the number of
p € L such that rp 2 3. Let 6§(L) equal the cardinality of the

set L a {U L} counted without multiplicity if L € A and let
LeA

11
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§ (L) equal the number of p € L with rp 22 1f L c A.

A
Consider the map o: H(A,n) + PZ;- here we are using the

notation of (1.3). Let L’ be the proper transform of any

line L ¢ P,(€) under t. Let C be any irreducible component
of a1 (1L’).

Letting v(L) = 1 or 2 depending on whether L ¢ A or

Le A, 1t follows from a local check and the Hurwitz formula:

[ c-C = [1 - y(L)1- n®) - V(L)

(1.8)

§(2) =2 S(L) -1

] e(C) = §(L)n -(§(L) - 2)
To carry out the local check and in particular to see that

- A
C is smooth, note that given any singular point of =t l(A) < Pz,

we can choose:

'a) a neighborhood V of x with coordinates'zl,z2

satisfying zl(x) = zz(x) =0and A nV = {zl = 0}u {22 = Q.
b) a neighborhood U of o~1(x) with coordinates a;,a,
satisfying al(a'l(x)) =0 = az(c°1(x)) and

. . ' = n = n
o: U+ V given by Z; = a5, 3z, a,.

The apalogue of (1.7) is very important for us.

(1.9) Lemma. Given L ¢ A let C be as above. Then

Tua,n),c = Tc @ N;-
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Proof. There is the exact sequence:

0O+T,~+T

c” Twa,m),c > 4~ O

Let y € C. By using the above coordinates it is immediate
that there is a neighborhood U of y and a manifold V such that

A A
g: U - P2 factors o = BoA with A: U+ V and B: V * P2 where

there are coordinates Zq5 z2 on V and al, a2 on U so that:

a) Cn U'a {a1 = 0}

n

b) Z) = 2, 2, = aa

Note that the annihilator of:

* n-1
o dz1 na, "~ da,

*dz. = d
g 22 .az

the pullbacks of one forms on V, contain a unique subbundle

of Th(A,n),C n U that surjects onto the normal bundle NC ay”

By uniqueness we get the desired splitting of the above

exact sequence.
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§2. Branched Covers and the interval [%, 3].
P ———

The following question is posed 2n [3,(3.3)1 to which

I refer for a detailed history of previous work.

Question. What is the set R of points (necessarilx,g_[l, 31)

that are limits:

2
%ig ey (Sn)/e(Sn)

where the Sh‘are a sequence of surfaces which are minimal

models of general type and-all but finitely many of the

2
cl(Sn)/e(Sn) vare different?

Work of U. Persson [7] shows that [l, 2] < R ané the
results of Hirzebruch [31 show that [2, 2.5] < R. 1In this

section I will give a simple uniform proof that R = [%, 31].

First there are a few results about branched covers.

The following lemma is stréightforward.

(2.1) Lemma. Let r: S + C be a holomorphic surjection with

cormected fibres of a smooth algebralic surface S satisfying

e(S) > 0 onto a smooth connected curve, C. Let F be a fibre

of r in a neighborhood of which r is of maximal rank. Let

C' - C be a finite branched cover of a smooth, connected

curve C' over C. Assume that the ramification locus of
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C' + C 1s disjoint from the image under r of the set where

r 1s not of maximal rank. Let S' be the fibre product

S x, C'. Then S' is a minimal model if S is and

dci(S) - 2pe(F)
de(S) - pe(F)

c2(sty/e(s)=

where d and p are the sheet number and ramification number

respectively of C' + C.

FProm here on S will be some fixed surface. Por ease of

2

2
1 will denote cl(S).

notation e will denote e(S) and ¢

We are interested in the way that the ratios vary in the

above lemma as the branched covers C' + C vary.

(2.2) Lemma. Assume that S, C, and r are as in lemma (2.1).

Assume that the genus of F in lémma (2.1) is > 1 and that the

genus g of C is 2 1. The closure of the set of ratios,

c%(S')/e(S') obtained by considering all branched covers

C' - C as in lemma (2.1), is the interval with endpoints 2

2
and ey /e.

Proof. For definiteness we will do the case of ci /e 2 2;

the case ci /e € 2 1s handled in the same manner.

2 . 2 2 -
c;(8")/e(s") = ci/e + (2 - cj/e) (E%EéE%ETFT) 2 ci/e +2 - ci/e =2



and:

2. ' d(c1 - 2e)
cl(s.)/e(S ) =2 + T e(F) + (c /e =2) = ¢ /e

This shows that R ¢ [2, Ci/e].

We must now show that [2, ci/e] < R. To see this first

choose an x sheeted unramified cover a: C' + C; with C!
connected this can be done for any x 2 1 since g 2 1. Choose
a 2 sheeted branched cover b: C" - C' with C" connected and

having 2y branch points; this can be done for any y = 1.

We have:
2x 02 - lbye(F) x c2 - 2ye(F)

e2(smy/e(sm) = bt -7 T 517 Y

1 2xe - 2ye(F) xe - ye(F)
where S" = (chC')x ,C".

This shows that the ratios:
2 : ye(F)
4{c1/e + (2 /e) e(F)l x21l,y21l R

It suffices to show that:

{ ;YG(F) I

Xe = ye (™! x21, y21}

i1s dense in [0,1]. To see this choose any fraction p/q
where p and q are integers satisfying 0 < p < q. Then choose

x = ~-(q - p)e(F) and y = pe. Note then:

16



-p-ese(P =E
(q - piEZF;E - p~e-e(F$ q

(2.3) Theorem. The closure, R, of the set of ratios ci/e(S)

o

of the Chern numbers of the minimal models of general type

surfaces is [%, 31].

Proof. Let A be the arrangement of six lines:

A

Hirzebruch [3] showed using his formulae (1.2) that

ci(ﬂ(A,S)) = 3e(H(A,5)). By (l.u) the holomorphic surjection
Rp: H(A,5) » Cp assoclilated to any p with rp = 3 has a genus
6 curve, Cp, as image. Recall that Rp has connected fibres.

Since H(A,5) is of general type, the genus of a generic fibre

of Rp is positive (in fact 76). This by the above lemma shows

that [2,3] < R.

Let P be the 12 th rational Hirzebruch surface, 1i.e.

12
the unique holomorphic Pl(w) bundle over Pl(c) with a smooth

irreducible holomorphic curve E of self-intersection -12. Let

f be any fibre of the natural projection F12 -+ Pl(c). .Then

17
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6

LE]1” @& [f]76 = L is a very ample line bundle, e.g. [2].

Choose B, a smooth zero set of a general section of L. Let

7: X » ?12 be the cyclic cover of F12 branched over B, that

is associated to the square root L = [EJ3 @ [f]38 of L. X
is of general type and a minimal model since

KX = W*(KFI2 L) = ﬂ*([El ® [f]24) is ample. Note that:

ci(x) = 72

e(X) = 396

Let C » Pl(C) be a double cover branched at 4 general points. Let
X' + C be the fibre product of C =+ Pl(c) and X » Pl(c) where

the last map is the composition of X - F and the tautological

12

projection of F,. =+ Pl(c). By lemma (2.1)

12

e2(X') = 144 + 8-2 = 160

e(X') = 792 + 4-2 = 800

Here I have used that a general fibre of X - Pl(m) has genus

2; this is why the [E]6 was chosen in L. Note that:

5ci(X') = e(X').

Use lemma (2.2).
o

(2.4) Remark. If U is a quasi-projective smooth connected



surface, the logarithmic Chern numbers 5? and e can be defined
[(4,8]). F. Sakai (8] showed the analogue of the Miyaoka
inequality [6], Ei < 3e. The number, §(U), of connected

components of U - U, where U is any connected projective
manifold containing U as a Zariskl open set, is independent

of U. It is natural to ask about the density of E?(U)/E(U)

as U ranges over quasi-projective surfaces with §(U) fixed.

Note that in the examples we used we could increase the
magnitude of ci and e, while keeping the ratio ci/e unchanged,

by going to a cover of the base curve. Further note that the
smooth fibres of the maps from our examples to the base curves
always had the same Euler characteristics, i.e. -150 anq -2

respectively. Purther if we chose U by pulling out & smooth

19

fibres from a given example, X, with e(F) as Euler characteristic

of a smooth fibre we get:

=2 2
g3(U) = ei(X) - 286(U) e(F)
S(U) = e(X) - §(U) e(F)

As an immediate corollary of (2.3) and the considerations of

this last paragraph, we obtain the following corollafy of (2.3).

(2.4.1) Corollary. Let Ut be the set of all smooth connected

gggsi—grojective'surfaces U such that:

a) &6(u) = ¢
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b) given any projective surface U containing U as a

Zariskl open set and letting D = U - U, it follows that

(Kﬁ e [D]f‘has at least one non-trivial section for some N > 0.

Then the set of limits of the numbers Ei(U)/E(U), where

1
§,3Jo

U c ut, contains [



§3. Ampleness

In this section we discuss ampleness in the sense of
Grothendieck-Hartshorne [1,2]. We follow the now standard
convention of not notationally distinguishing between a
holomorphic vector bundle and its locally free sheaf of germs

of holomorphic sections.

Let E be a holomorphic vector bundle on a projective

variety X. Let P(E) denote (E* - X)/C* and let w : P(E) + X

E
denote the natural projection. There is a tautological line

bundle EE on P(E) with the properties:

(3.11) "E*(EE) = E where Tpe denotes the direct image

functor.
(3.1.2) EE,F = Oel(c)(l) for any fibre F °f,"E-

'(3.2) Definition. A vector bundle E 1s ample if there exlists

an N > 0 and an embedding ¢: P(E) + P(C) such that
N

* ~

$*0p(c)(1) = Eg-

Some basic facts [1,2] we wlll use over and over are:

(3.2.1) If E is ample and g: D + X is a finite to one map

from a projective variety 0D, then g¥*E is ample,

(3.2.2) If E is ample then given any irreducible curve

D ¢ X, and any line bundle L on ? such that E, - L + 0, it

D

21



follows that deg L > 0O,

(3.2.3) If E is spanned by global sections then E is ample
if there exists no irreducible curve D < X with a trivial

line bundle quotient:

ED - 00 + 0.

m
(3.3) Lemma. Let R: X+ 1 C
- c=1

1 be an immersion of a smooth

connected projective surface X into a product of curves of

genus 2 2. Let D < be an irreducible curve such that there

is a trivial sub-bundle:

) 0+0,+T

] X,0°

If there is a factor map Ri:'X + C; such that dRr, is non-

trivial on 00, then ni(v) is a point.

"Proof. If nicv) is not a point, then R is finite to one.

i,0
- *
Since C; has genus > 2, T, is ample and therefore by (3.2.1)
' i
# * ~
Ry p T, 1is ample. Thus composing with the dual of ¥) we
3 i

Y *
get what must be the trivial map Ri D TC -+ 00. This con-
* 3

i

tradiction establishes the }emma.

22
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§4. Characterization of H(Aln) with Ample
Cotangent Bundles

(4.1) Theorem. Let A be an arrangement of k 2 3 lines. Then

*
Th(A n) is ample in the sense of Grothendieck-Hartshorne
2

(2] if any only 1if:

(4.1.1) if L € A, then the set {p ¢ Llrp 2 3} has
cardinality 'at least 2, and

(4.1.2) 1f n = 3 then t, = 0 and if n = 2 then t, = t, = 0.

3 3

Under the above conditions H(A;n) immerses a product of curves

of genus 2 2.

Proof. Let # denote H(A,n). Assume that Ty

is ample.

To see that (4.1.1) must hold, assume otherwise. Let
L € A be such that there is at most one point p € L with

T 2 3. Letting C be as in (1.8) and (1.9) we see that:

%* "'T*QN’
Ty,c = Tc ® Ng

3
degree Nc = - CCxs 0

»
By (3.2.2), T, 1is not ample.

To see that (4.1.2) must hold, let p € Pz(c)'with

rp 2 3. As we saw earlier before (1.4), there is a smooth

connected curve C on H with:
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1l 2

r - r_ -
%) e(C)=n?P (2 - rp) + rp n P

If (4.1.2) failed there would by *) be a curve C on H with

* * - *
degree TC <€ 0. Since TC is a quotient of TH c* it would
’

_ %
follow from (3.2.2) that TH is not ample.

Before we prove the converse we need a lemma.

(4.1.3) Lemma. Let A be an arrangement of k 2 3 lines. Assume

that it is a sum of simple arrangements [see(1.5),(1.6)].

Then the following are equivalent::

* .
a) TH(A,n) 1s spanned by global sections,

b) H(A,n) immerses into a product of curves of

positive genus,

¢) if n = 2, then ty = 0.

Proof. By (1.6.2) there is an immersion:

R: H(A,n) + 1 C..
{plrp23} P

To see that ¢) = b) it suffices to show that e(Cp) < 0 for

all p with rﬁ 2 3. By (1.4) this follows from c). That

b) = a) 1is clear. To see that a) = ¢) note that T
. . "H(A,n)

'being spanned implies all smooth C € H(A,n) have eZC) < 0.

Using the fact that each factor map Rp: H(A,n) ~» Cp has a

section, we can use (1.4) to conclude c).
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Assume (4.1.1) and (4.1.2) hold. It is a simple check
that A is a sum of simple arrangements. Thus by the above

lemma and (4.1.2) we have an immersion:
R: H » IIC
P

where e(Cp) $ 0. Using the full strength of (4.1.2) and the

same argumenﬁ as the lemma we see that e(Cp) < 0 for all p

z .
with rp 3

*
If TH 1s not ample then there exists an irreducible curve

DcH and a quo%ient map:

*) T

Ho> 9

p > 0.

..1(

Dco t™1(A)) 1in the notation of (1.3). To see this

assume otherwise. Note that by (1.7) and (1.9):

. * T'! L
Thyo=Tp 0Ny

By (4.1.2) combined with (1.8) and [3, (2.1)], this implies

% .
that TH D 1s a direct sum of ample line bundles and thus can't
_ b4

have a trivial quotient line bundle.

Since o(D) g_r-l(A) we can use the condition (4.1.1) to

1l

see that there are two distdinct p,quz(G)-D. Since o(D) < 1 7(A),

it follows that o is etale in a neighborhood of a general point

A
neighborhood of a general point of 0 . Since w_: P2 - Pl(w)

p

A A -1
and LA P, ~ P,(C) give an embedding (np,uq). B, -t (A) + P, (C)xP, (



and since neither wp or wq collapse ¢ (D) to a point, we can

conclude that:

; -1 '
2) (Rp, Rq). H 6 “(A) » Cp b'¢ Cq is an immersion.

This implies we have a factor map which contradicts (3.3).
8]

*
(4.2) Question. Is H(A,n) a K(w,1) if T is ample
suestion H(A,n)

and A is simple?
the
(4.3) Question. What arerirrggularities of H(A,n) with ample

cotangent bundle?

Note that in general there are more than the holomorphic

-one forms coming from surjections Rp:,H(A,n) -+ Cp with rp 2 3.

To see this note that Ishida [5] has shown for n = 5§ and Gliser
has shown for n = 6 that H(A,n) where A 1is as in (2.3) has

5 (n - l)én = 2) holomorphic one forms even though the curves

Cp account for only 2(n - 1)+ (n - 2) holomorphic one forms.

In this case K. Zuo (at Bonp) has shown that the extra holo-
one forms can be accounted for by the pencil of cénics passing

through the four points with rp 2 3. Gldser has made compu-

. P RN
tations of the number of independent holomorphic one formsiﬁ““’ﬂjg

for the H(A,n) associated to some other A. fﬁ' e
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F: Hirzebruch using a generalization of his proportionality
principle has shown that ci(H(A,n)) = 3e(H(A,n)) implies

that n = 2, 3, 5 and that in these cases there are strong

constraints.
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§5. Asymptotic Properties of ci(H(A,n)/e(H(A,n)

In this section we find the lower and upper bound of the
characteristic number, vy, of an arrangement [3,4]. This solves
a question first looked at by Iitaka [4], whose paper was very

helpful to me.

(5.1) Theorem. Let A be an arrangement of k lines of Pz(c),

that satisfies t, = t, ; = 0. Then the characteristic number,

Y, of A satisfies:

2k - 5
Y252

with equality if and only if tr =0 forr 2 3.

Proof. Recall (3,(3.3)1 that:
(35, - £; - 3)

*) Y =5 - =
2 23 -3k + 1, -1,)
It suffices to show that y = g%—f—g implies that t, = 0
2k - 6 .
for r 2 3. By ¥), v < X =3 i1s equivalent to:
kf, s (2k - 2)f, + k° - k
1 0
or _
) I (rk -2k + 2)t_ sk -k
r
r=2
using the fact that t =t, = 0.

k-1 k

Rewriting and using the fact that tk = tk-l = 0
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we get:
. 2 k-2 2 2
L (r° - r)tr + I (r-r°"+rk-2k+ 2)t_ <k -k
r=2 r=3 r
or by (1.1):
k-2 5
I (r-r°+rk -2k + 2)tr < 0.
r=3
2 2

Note that r = r“ + rk - 2k + 2 =r - r° + (r - 2)k + 2

2 r - r2 + (r-2)(r+2)+2=r-221for3s<rs<k-2.

This implies that each tr in this range is 0. Combined with

t, =¢ = 0, we get our theoren.

k k-1

a

(5.2) Corollary. Assume that A is an arrangement such that

tk =t = 0 and tr # 0 for all r 2 3, then the characteristic

k-1

number y is 2 % with equality if and only if k = 5, t2 =7,
and t; = 1. Excluding this case,y 2 % with equality if and

only if k = 6,-t2 = 12, and t3 = 1.

Proof. By elementary projective geometry and the formula for
Y we get the following table for the numbers attached to

arrangements with k < 6 and t, = t,_, = 0.



X £, t ty Y

5 7 1 0 3/2
5 4 2 0 2
6 | 12 1 0 8/5
6 9 0 1 | s5/3
6 9 2 0 7/4
6 6 3 0 2
6 6 1 1 2
6 3 | w 0 5/2

Since 2;?56 = 8/5 the corollary follows from the table

and theorem (5.1)
]
For any € > 0 and by ever more tedious enumeration of

A with te = tk—i = 0, the reader can use theorem (5.1) as

in the proof of corollary (5.2) to enumerate all of the
finite number of characteristic numbers that are < 2 - g.

F. Hirzebruch has constructed A to get y dense in [2, %].

3Q
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He has also pointed out [3,(3.3)] that among the possible y are:

3m - 6
2(2m2 - 3m)

2
5 + mz2 2

Note that the largest 1s % with k = 9, t3 = 12, and tr =0

for r = 3.

(5.3) Theorem. Let A be an arrangement with tk

8 _8 - -1
Then v < 3 If v 3 then k 9,t3 12 and tr

L]
ct
]
o

O for r = 3.

Proof. If y 2 % then by the formula for y we get:

3t. + t < Z (r-8)t_+k + 3
2 r4 r

3

Using the Hirzebruch-Sakal inequality [3; remark 2 added in proof] we
get:

2 t, + %(k + t

3t + 2t6 + ...) £ (r - u)tr + k + 3

5

- r24
or
5t2 + k +r§4(r - l#)tr <9
This inequality and the table from the corollary (5.2)
we get:
¥) 7sks9, t,=0

We argue case by case. If k = 9 then we conclude from

the Hirzebruch-Sakai inequality and ¥) that t3 2 12. Using

(1.1) we conclude that t, = 12 and t, =0 forr = 3. In this

3
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case y = %.

If k = 8 then *) and the Hirzebruch-Sakai inequality

implies that ty 2 11. By (1.1) we get 82 - 8 » 66 which is

absurd.

If k = 7 then *) and the Hirzebruch-Sakal inequality
implies that t5 2 10. By (1.1) we get the absurdity 72 - 7 2 60
o
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