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Introduction

In this paper we give formulas for the fundamental classes of Schubert subschemes
in Lagrangian and orthogonal Grassmannians of maximal rank subbundles as well as
some globalizations of them. Our motivation to deal with this subject came essentially
from 3 examples where such degeneracy loci appear in algebraic geometry: 1° The
Brill-Noether loci for Prym varieties, as defined by Welters [W], 2° The loci of curves
with sufficiently many theta characteristics, as considered by Harris [Har], 3° Some
"higher” Brill-Noether loci in the moduli spaces of higher rank vector bundles over
curves, considered by Bertram and Feinberg [B-F] and, independently, by Mukai [Mu].

! Research carried out during the author’s stay at the Max-Planck-Institut fiir Mathematik as a fellow
of the Alexander von Humboldt Stiftung.
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The common denominator of these 3 situations is a simple and beautiful construction
of Mumford [M]. With a vector bundle over a curve equipped with a nondegenerate
quadratic form with values in the sheaf of 1-differentials, Mumford associates an even
dimensional vector space endowed with a nondegenerate quadratic form and 2 maximal
isotropic subspaces such that the space of global sections of the initial bundle is the
intersection of the two isotropic subspaces. A globalization of this construction allows
one to present in a similar way the varieties in 1°, 2° above as loci where two isotropic
rank n subbundles of a certain rank 2n bundle equipped with a quadratic nondegenerate
form, intersect in dimension exceeding a given number. On the other hand, the locus in
3° admits locally this kind of presentation using an appropriate symplectic form.

These varieties are particular cases of Schubert subschemes in Lagrangian and or-
thogonal Grassmannian bundles and their globalizations. The formulas for such loci are
the main theme of this paper. More specifically, given a vector bundle V on a vari-
ety X, endowed with a nondegenerate symplectic or orthogonal form, we pick F and
Fy C F, C...C F, = F - isotropic subbundles of V (rank E = n,rank F; = 1) and for
a given sequence 1 €. a; < ... < ar < n we look at the locus:

D(a):={z € X|dim(En Fﬂp)_r, 2p, p=1,...,k}

We distinguish three cases:

1. Lagrangian: rank V = 2n, the form is symplectic;

2. odd orthogonal: rank V = 2n + 1, the form is orthogonal;
3. even orthogonal: rank V = 2n, the form is orthogonal.

(In the latter case the definition of D(a.) must be slightly modified - see Section 9.)

Let us remark that the loci D(a.) (for the Lagrangian case) admit an important
specialization to the loci introduced by Ekedahl and Oort in the moduli space of abelian
varieties with fixed dimension and polarization, in characteristic p (see, e.g. [O], the
references therein and [E-vG]). This comes from certain filtrations on the de Rham
cohomology defined with the help of the Frobenius- and ”Verschiebung”-maps. The
formulas of the present paper are well suited to computations of the fundamental classes

of such loci in the Chow groups of the moduli spaces - for details see a forthcoming paper
by T. Ekedahl and G. van der Geer [E-vG].

The goal of this paper is to give an algorithm for computing the fundamental classes
of D{a.) as polynomials in the Chern classes of E and F;. Formulas given here can be
thought of as Lagrangian and orthogonal analogs of the formulas due independently to
Kempf-Laksov [IX-L] and Lascoux [L] (notice, however, that the formulas given in {K-L]
are proved under a weaker assumption of "expected” dimension). The strategy here is
similar to that in [K-L] and uses a certain desingularization of Lagrangian and orthogonal
Schubert subschemes. The main technical difference between [K-L| and our approach is
that the class of our desingularization in the Lagrangian and orthogonal cases seems - to
the best of our knowgledge and attempts - not to be given by the top Chern class of some
vector bundle. This makes a significant difference and additional difficulty. We overcome
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this obstruction by using the classes of the diagonals of Isotropic Grassmannian bundles.
To establish formulas for the classes of these diagonals, we use the results of [P1,2] where
the classes of Schubert subvarieties in Lagrangian and orthogonal Grassmannians were
described with the help of a family of symmetric polynomials introduced by I.Schur
[S] in 1911 and then forgotten for a long time. The importance of these Q- and P-
polynomials to algebraic geometry was discovered by the first named author in [P1] and
then developed in [P2]. In fact in [P2, Sect.6], a variant of these polynomials was used to
give a full description of Schubert Calculus on Grassmannians of maximal dimensional
isotropic subspaces associated with a nondegenerate symplectic and orthogonal form.
These familes of symmetric polynomials are called Q and P- polynomials in the present
paper. The results of [P2, Sect.6], recalled in Theorem 2.1 below, are a natural source
of the ubiquity of é- and ﬁ-polynomia,ls in various formulas of this paper. As a general
rule, these are (J-polynomials that appear in the Lagrangian case and ﬁ—polynom_ials
that appear in the orthogonal cases.

In general, our approach gives an efficient algorithm for finding formulas for La-
grangian and orthogonal Schubert subschemes. In several cases, however, we are able
to give compact expressions. At first, these are the cases of one (i.e. kK = 1) and two
Schubert conditions (the case of one Schubert condition is usually referred to as a special
Schubert subscheme). The corresponding formulas are given in Theorem 6.1 and 7.4.

The derivation of those formulas uses a formula for the Gysin pushforward of @-
and P-polynomials (Theorems 5.10, 5.14, 5.16) in Isotropic Grassmannian bundles. For
instance, in the Lagrangian case, 7 : LG,V — X with the tautological subbundle R, the
element @ rRY has a nonzero image under m, only if each number p, 1 < p < n, appears
as a part of I with an odd multiplicity m,. If the latter condition takes place then

n

™ @IRV — H ((__1)pC2pV)(mp—1)f2_

r=1

Occasionally, we also give formulas for Gysin pushforward of S-polynomials (Theorems
5.13, 5.15, 5.17) in Isotropic Grassmannian bundles. For example, in the Lagrangian case,
the element s;RY has a nonzero image under 7, only if the partition I is of the form
2J + pp for some partition J (here, p, = (n,n —1,...,1)). If I = 2J + p, then

[2)
TSR =5,V |

where the right hand side is defined as follows: if s; = P(e.) is a unique presentation of
s as a polynomial in the elementary symmetric functions e;, E— a vector bundle, then

s[}](E) := P with e; replaced by (=1)'ci;E, ¢ = 1,2,...

Another case (corresponding to the Schubert condition a. = (n—k+1,...,n)) that leads
to compact formulas is the variety of maximal rank isotropic subbundles that intersect
a fixed maximal rank isotropic subbundle, in the Grassmannian of such subbundles, in
dimension exceeding a given number (Proposition 3.2 and its analogs). Thanks to the



Cohen-Macaulayness of Schubert subschemes in isotropic Grassmannians proved in [DC-
L), one gets globalizations of those formulas (as well as the other ones) to more general
loci. For instance, the latter case a. = (n — k 4+ 1,...,n) globalizes to the Mumford type
locus discussed above where two maximal rank isotropic subbundles E and F intersect
in dimension exceeding k, say.

Our formulas (see Theorems 9.1, 9.5 and 9.6) are quadratic expressions in (- and
P-polynomials of the subbundles. More explicitly in the corresponding cases we have

1. Lagrangian: > QrEY - Q(k,k—l,... o EYs
odd orthogonal: ZEEV . ﬁ(k,k_l,,,,,l)\fFV;

&

3. even orthogonal: ZﬁIEV . ﬁ(k_l’k_z,__,])\]Fv;

where in 1. and 2. the sum is over all subsequences [ in (k,k —1,...,1), and in 3. the
sum is over all subsequences [ in (k -1,k —2,...,1).

Formula 3. has been recently used by C. De Concini and the first named author in
[DC-P] to compute the fundamental classes of the Brill-Noether loci V" for the Prym
varieties (see [W}), thus solving a problem of Welters, left open since 1985. The formula
of [DC-P] asserts that if either V" is empty or of pure codimension r(r+1)/2 in the Prym
variety then its fundamental class in the numerical equivalence ring, or its cohomology
class is equal to

2D (G = 1)t/(2i = 1)) 2]+,
i=1

where = is the theta divisor on the Prym variety.

Finally, in the Appendix we collect a number of useful results about Quaternionic
Grassmannians. We use them to reprove some results proved earlier using different
methods and to show how some problems concerning Grassmannians of nonmaximal
Lagrangian subspaces can be reduced to those of maximal Lagrangian subspaces; this
sort of application we plan to develop elsewhere.

Some of the results of this paper were announced in [P-R1].
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Background
Several results of this paper: e.g. Proposition 3.2, its odd orthogonal analog and

Proposition 3.6 as well as their globalizations in Theorems 9.1, 9.5 and 9.6 were obtained
already in Spring 1993 when we tried to deduce formulas for the loci D(a.) by combining
the ideas of the paper of Kempf and Laksov [K-L] with the @Q-polynomials technique
developed in [P1,2]. These results were announced together with outlines of their proofs
in [P-R1].

In summer 93, we received an e-mail message from Professor W. Fulton informing us
about his (independent) work on the same subject and announcing another expressions
for the loci considered in Proposition 3.2 and 3.6 of the present paper. In February ’94
we obtained from Professor W. Fulton his preprints [F1,2] containing details of his e-mail
announcement. Both the form of the formulas obtained as well as the approach used in
[F1,2] are totally different from the content of our work and just a simple comparison of
the results of [F'1,2] with ours leads to very nontrivial new identities which are interesting
in themselves. It would be desirable to develop, in a systematic way, the comparison of
formulas given in [F1,2] from one side with those in the present paper and [P-R1] - from
the other one.

Conventions

Partitions are weakly decreasing sequences of positive integers (as in [Mcdl] and are
denoted by capital Roman letters (as in [L-S1]). We identify partitions with their Ferrers’
diagrams. The relation ”C” for partitions is induced from that for diagrams.

For a given partition I = (iy,1,,...) we denote by || (the weight of I) the partitioned
number (i.e. the sum of all parts of I) and by I(I) (the length of I) the number of nonzero
parts of I. Moreover, I~ denotes the dual partition of I, i.e. I™ = (j;,72,...) where
jp = card{hlin > p}, and (i)* - the partition (,...,7) (k-times).

Given sequences I = (11,12,...) and J = (j1,J2,...) we denote by I & J the sequence
(t1 £ 71,82 £ J2,---)-

By strict partitions we mean those whose (positive) parts are all different.

In this paper, we denote by s;(E) the complete symmetric polynomial of degree ¢ with
variables specialized to the Chern roots of a vector bundle E.

The reader should be careful with our notion of é-polynomials here. Namely, since
we are mainly interested in the polynomials in the Chern classes of vector bundles, we
introduce é—polynomials given by the Pfaffian of an antisymmetric matrix whose entries
are quadratic expressions in the elementary symmetric polynomials rather than in the
"one row” Schur’s Q-polynomials. Therefore these polynomials are different from the

original Schur’s @-polynomials. Note that nonzero @-polynomials é;(ml, ... ,Tn) are
indexed by "usual” partitions I but the parts of these partitions cannot exceed the
number of variables; on the contrary, nonzero Schur’s @-polynomials Q;(z;,... ,z,) are

indexed by strict partitions I only but the parts of these partitions can be bigger than
the number of variables.



Also, the specialization of @1(1:1, <., Zn) with (z;) equal to the sequence of the Chern
roots of a rank n vector bundle F, denoted here - accordingly - by @ 1E, is a different
cohomology class than the one associated with E in [P1] and [P2, Sect.3 and 5], and
denoted by @ E therein. (Notice, however, that the @—polynomials appeared already in
an implicit way in [P2, Sect.6].) The reader should make a proper distinction between
Schur’s Q-polynomials and Q—polynomials that are mainly used in the present paper.

By G,V we denote the usual Grassmannian (of n-dimensional subspaces in V'), by
LG,V - the Lagrangian Grassmannian and by OG,V - the orthogonal one. Moreover,
P(V) = G, V. We follow mostly [F] for the terminology in algebraic geometry. In many
situations when the notation starts to be too cumbersome, we omit some pullback-indices
of the induced vector bundles.

1. Schubert subschemes and their desingularizations

We start with the Lagrangian case. Let ' be an arbitrary ground field.

Assume that V is a rank 2n vector bundle over a smooth scheme X over K equipped
with a nondegenerate symplectic form. Moreover, assumethataflagV.: Vi CV, C ... C
V, of Lagrangian (i.e. isotropic) subbundles w.r.t. this form is fixed, with rank V; = 1.
Let 7 : LGH(V) — X denote the Grassmannian bundle parametrizing the Lagrangian
rank n subbundles of V. G = LG,(V) is endowed with the tautological Lagrangian
bundle R C V. Given a sequence a = (1 € a; < ... < ag £ n) we consider in G a
closed subset:

Qa)=0a;V)={g€ Gl dim(RNV,), >, i=1,... ,k}.

The locus 2(a.), called a Schubert subscheme is endowed with a reduced scheme structure
induced from the reduced one of the corresponding Schubert subscheme in the Grass-
mannian G,V - this is discussed in detail , e.g., in [L-Se].

The following desingularization of 2 = 2(a.) should be thought of as a Lagrangian
analogue of the construction used in [K-L|. Let F = F(a )= F(V,, C... CV,,) be the
scheme parametrizing flags 4, C Ay C ... C A C Agy1 such that rank A; =1 and
A, CV,, for i=1,... ,k; rank Ay =n and Axyq 1s Lagrangian. F is endowed
with the tautological flag Dy C Dy ... C Dy C Dyyq1, where rank Dy =+, 1=1,... ,k
and rank Di4; =n . We will write D instead of Djqq.

We have a fibre square:

Gx,F 25 F

n| |
G —_— X

Let o : F — G be the map defined by: (A4; C A, C ... C A1) = Ak, in other words
a is a "classifying map” such that «*R = D. It is easily verified that « maps F onto
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2 and o is an isomorphism over the open subset of ! parametrizing rank n Lagrangian
subbundles A of V such that rank(ANV,,) =1, 7 =1,... ,k. Moreover, « induces a
section s of py. Set Z := s(F) C Gx F. Alternatively, we can describe Z as (1xa)~!(A)
where A is the diagonal in G X, G. The map p; restricted to Z is a desingularization
of Q. Therefore [ = (p1).([Z]). On the other hand, [Z] = (1 x a)*([A]) (because, e.g.,
of [K-L, Lemma 9]). Note that F is obtained as a composition of the following Flag-
and Grassmannian bundles. Let Fl = Fl(a.) = Fl(V,, C ... C V,,) be the "usual” Flag
bundle parametrizing flags 4, C ... C Ay whererank 4, =1and 4, CV,,,i=1,... k.
Let Cy C ... C Cy be the tautological flag on FI. We will write C instead of C. Then
F is the Lagrangian Grassmannian bundle LG,_;(C+/C) over Fl, where C* is the
subbundle of Vg; consisting of all v that are orthogonal to C w.r.t. the given symplectic
form. Note that C C C* because C is Lagrangian, rank(C+/C) = 2(n — k) and the
vector bundle C+/C is endowed with a nondegenerate symplectic form induced from the
one on V. Of course the tautological Lagrangian rank n — k subbundle on LG,_(C*/C)
is identified with D/Cr. In other words, F is a composition of a Flag bundle (with the
fiber being FI{K* C ... C K®*) and a Lagrangian Grassmanian bundle (with the fiber
being LGn—i(K**~#). In particular,

k
dimQ:dimf:dimZ:Z(al—_i).i.

i=1

n—k+1
9

4

) + dim X.

The following particular cases will be treated in a detailed way in the sequel of this
paper: a. = (n—k+1, n—k+2,...,n) (then Q(a ) parametrizes Lagrangian rank n
subbundles L of V such that rank(LNV,) 2k );a.=(n+1~-1),1e. k=1;and
a.=(n+1l—-i,n+1—j)le k=2

Now consider the orthogonal case. Let A be a ground field of characteristic different
from 2. Assume, that V is a rank 2n 4+ 1 vector bundle over a smooth scheme X over
a field K equipped with a nondegenerate orthogonal form. All definitions, notions and
notation with the following exceptions are used mutatis mutandis: the Grassmannian
bundle parametrizing the rank n isotropic subbundles of V' is denoted OG,V, instead of
”symplectic” use "orthogonal” and instead of ”Lagrangian” use "isotropic”. Of course, F
is now a composition of the same Flag bundle F{ and the odd orthogonal Grassmannian
bundle OG,,_(C*/C), where C is the rank k tautological subbundle on FI.

Assume now that V is rank 2n vector bundle over a smooth connected scheme X over
K equipped with a nondegenerate orthogonal form. The scheme parametrizing isotropic
rank n subbundles of ¥V breaks up into two connected components denoted OG,, V' and
OG!'V. Let V, be a fixed rank n isotropic subbundle of V. Then OG;,V (resp. OG,V)
parametrizes rank n isotropic subbundles E C V such that dim(E N V), = n(mod 2)
(resp. dim(E N V,)y = n + 1(mod 2) ) for every ¢ € X. Write G’ := OG,V and
G" = OG.V. Two isotropic rank n subbundles are in the same component iff they
intersect fiberwise in dimension congruent to n modulo 2.



Fix now a flag V; C Vo, C ... C V,, of isotropic subbundles of V with rank V; = 1.
Given a sequence a, = (1 < a3 < ... < ax € n) such that £ = n (mod 2), we consider in
G' a Schubert subvariety:

Qa) = Qa;V) = {g € G| dim(RNV,,), 24, i=1.... k}

(R C Vg is here the tautological bundle). Similarly, given a sequence a = (1 € a; <
... < ar € n)such that k =n + 1 (mod 2), we consider in G" a Schubert subvariety

Qa) = Qa;V) = {g € G| dim(RNVy,), >4, i=1,... k}

(Over a point, say, the interiors of the ((a.)’s form a cellular decomposition of G’ and
respectively G”.) Here, the definition of the scheme structure is more delicate than in
the previous two cases (roughly speaking, instead of minors one should use the Pfaffians
of the "coordinate” antisymmetric matrix of G’ and G”). We refer the reader for details
to [L-Se] and references therein.

The Schubert subvarieties Q(a.) in G’ (resp. Q(a.) in G") are desingularized using
the same construction as above but instead of the scheme F one must now use the
following scheme F' (resp. F"). Let F' = F'(a.) = F'(V,, C ... C V,,) be a scheme
parametrizing flags A; C Ay C ... C Ax C Agyi such that rank A; =1 and A; C V,, for
i=1,...,k rank Agy) =n, Agyy is isotropic and rank{4iy; N Vy,) = n (mod 2) for
any z € X. The definition of 7"/ = F"(a.) is the same with exception of the last condition
now replaced by: rank{Agy1 NVy): =n+1 (mod 2) forany z € X. Let p' : F =+ X
(resp. p” : F — X) denote the projection maps. Of course, F' (resp. F”') now is a
composition of the same Flag bundle Fi{ and the even orthogonal Grassmannian bundle
OG' _,(C*/C) (resp. OG!_.(CL/C)), where C is the rank k tautological subbundle
on Fl.

The formula for dimension now is different:

k

dim F' =dim F' = (ai — i) + (” N

<

k
) + dvm X.

=1

We finish this Section with the following lemma which will be of constant use in this
paper.
Lemma 1.1. Consider cases 1., 2., 3. of a vector bundle endowed with a nondegenerate
form @ that are specified in the Introduction. Let C C V be an isotropic subbundle and
C+ be the subbundle of V consisting of allv € V such that ®(v,c) =0 for any c€ C.
1. Then one has an ezact sequence

0—Ct—v —2 Y —o

where the map ¢ is defined by v — ®(v,—). In particular, in the Grothendieck group,
[V] = [Ct] +[CY), [CL/C] = [V] = [C] = [C"] and the Chern classes of C+/C are the
same as the ones of the element [V] — [C & CV] in the Grothendieck group.
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2. Assume now that C' is a mazimal isotropic subbundle of V.. Then in cases 1. and
3. we have C = CL and ¢ (V) = c.(C & CV); in case 2. one has rank(CL+/C) =1 and
2¢(V)=2c(CaCY).

The latter equality of assertion 2 in case 2. follows from the fact that the form &
induces an isomorphism (C1/C)®? ~ Ox. This assertion will be used in the proof of
Theorem 5.14 and 5.15 and is well suited for this purpose because of the appearance of
the factor "2™” on the right hand side of the formulas of the theorems.

2. Isotropic Schubert Calculus and the class of the diagonal

Let us first recall the following result on Lagrangian and orthogonal Schubert Calculus
from [P1,2]. We work here in the Chow rings; all results, however, are equally valid in
the cohomology rings.

We need two families of polynomials in the Chern classes of a vector bundle F over
a smooth variety X. Their construction is inspired by I. Schur’s paper {S]. The both
families will be indexed by partitions (i.e. by sequences I = (33 2 ... 2 it =2 0) of
integers). Set, in the Chow ring A*(X) of X, for:1 2 7 2 O

j
QiiE=ciB ¢;E+2) (~1VcipE cjpE,
p=1

so, in particular Q;E = é,-,oE = ¢E for 7 2 0. In general, for a partition I =
(11,... ,1%), k—even (by putting 7; = 0 if necessary), we set in A*(G):

Q8= Pf(@iB)

where P f means the Pfaffian of the given antisymmetric matrix.

The member of the second family, associated with a partition 7, is defined by
PE:=2"'DQE.

Observe that in particular P,E = ¢iE /2 (so here we must assume that ¢; E 1s divisible
by 2), and

~

P;

.

j—1
;E=PE -PE+2) (=1’ Piy,E - Pj—pE + (1) Piy;E.
=1

It should be emphasise that @ and P-polynomials are especially important and useful
for isotropic (sub)bundles.

The following result from [P1, (8.7)] and [P2, Sect.6], gives a basic geometric inter-
pretation of é— and ﬁ-polynomia.ls.
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Theorem 2.1. [P2, Theorems 6.17, 6.17’]
(i)  LetV be a 2n—dimensional vector space over a field K endowed with a nondegen-
erate symplectic form. Then, one has in A*(LG,V),

[Q(a)] = QIRV ’

where R 13 the tautological subbundle on LG,V and i, =n+1—ap, p=1,... k.
(#)  Let V be a (2n+ 1)—dimensional vector space over a field K of char. # 2 endowed
with a nondegenerate orthogonal form. Then, one has in A*(0OG,V),

[Qa)] = E,Rv :

where R 1s the tautological subbundle on OG,V andip=n+1l-a,, p=1,... k.
(111) Let'V be a 2n—dimensional vector space over a field K of char. # 2 endowed with a
nondegenerate orthogonal form. Then one has in A*(OG, V) (resp. A*(OGIIV)),

[Q(a)] = PRV,

where R is the tautological subbundle on OG,V (resp. OG,\V ) and i, = n — a,,
p = 1,....k. ( Notice that the indezing family of I’s runs here over all strict
partitions contained in p,—y. )

Qbserve that by Lemma 1.1, RY s the tautological quotient bundle on LG,V,
OG.V and OG!'V. Moreover, the Chern classes of the tautological quotient bundle
on OG,V and RV are equal.

Notice that a new proof of this result has been given recently by Billey and Haiman
in [B-H]. We stress that [P2, Theorems 6.17, 6.17’] contain stronger variants of those
assertions. For instance, consider in case (iii) the assignment

Py — [Qa.)] for I C pn—1, —zero, otherwise,

where P; is the Schur’s P-function (see [S] with Py := 27D Q) and a. is obtained from
I by reversing the rule in (iii) and adding an n at the end (if necessary) to achieve the
correct parity. It was shown in loc. cit. that this assignment is a ring homomorphism
which allows one to identify the Chow ring of A*(OG,V) (resp. A*(OG,V)) with the
quotient ring of the ring of Schur’s P-functions modulo the ideal &Z P;, the sum over all
strict partitions I not contained in p,_1.

Assume now that V is a vector bundle over a smooth variety X" and V. is a flag of
isotropic bundles on X'. Then, using Noetherian induction, one shows that {QrR" }rc,.,
{ﬁ]RV}ICpn and {ﬁIRV}ICpn_l are A*{X)-bases respectively of A*(LG,V), A*(0G,V)
and A*(OG,, V) (resp. A*(OG, V)). Moreover, there is an expression for Q(a.;V.) as a
polynomial in the Chern classes of RY and V;. (This follows, e.g., from the existence of
desingularizations given in Section 1 and formulas for Gysin push forwards - for "usual”
Flag bundles they are obtained by iterating a well known Projective bundle case; for
isotropic Grassmannian bundles, they are given for the first time in Section 5 of the
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present paper). Then the maximal degree term in c.(RY) of this expression, in respective
cases (1), (i1), (i11), coincides with that in Theorem 2.1. We will call it the dominant term

(w.r.t. R).

Let G;,G2 be two copies of the Lagrangian Grassmannian bundle LG,V over a
smooth variety X, equipped with the tautological subbundles R, and R,. Write GG :=
Gh1 % G, . Consider the following diagonal

A= {(91:92) € GG' ((Rl)GG) = ((Rz)\GG)(m.oz)}'

Our goal is to write down a formula for the class of this diagonal. We first record:

(g1.92)

Lemma 2.2. Let G be a smooth complete variety such that the "x-map” (cf. [F, end of
Sect.1]) gives an isotnorphism A*(G x G) ~ A*(G) @ A*(G) . Assume that there exists
a family {bo} , ba € A™(G) , such that A*(G) = ®Zby , and for every a there is a
unique o’ such that ny +ne = dim G and fX by by #0 . Let fx bo bor =1 . Then
the class [A] in A*(G x G) is given by 3 by X bar .

[0 4

Proof. 1t follows from the assumptions that in A*(G x G) , [A] = Y mapbs X bg , for
some integers mqg and ng +ng=dim G for all pairs (e,f) indexing the sum. We
have by a standard property of intersection theory for g,h € A*(G)

Hence the coefficients mqg satisfy:

Map =/ (&) (bar % bgr) =/ bat - bpr.
XxX X

The latter expression, according to our assumption is not zero only if o' = (8') i.e.
8 = o, when it equals 1. This proves the lemma. O

For a given positive integer k, put px = (k,k—1,...,2,1) . For a strict partition
ICpr (le. iy €k, 12 <k—1,...) we denote by pi \ I the strict partition whose parts
complement the parts of [ in the set {k,k—1,...,2,1}.

The Lagrangian Grassmannian (over a point, say) satisfies the assumptions of the
lemma with {éIRv}strict Ic,, Playing the role of {bn} and for &« = [ we have o’ = p,\[.
This i1s a direct consequence the existence of a well known cellular decomposition of such
a Grassmannian into Schubert cells and the results of {P2] recalled in Theorem 2.1(i)
together with a description of Poincaré duality in A*(LG,V) from loc.cit. Thus in this
situation we get by the lemma:

Lemma 2.3. The class of the diagonal A of the Lagrangian Grassmannian equals

[A] =" Qr(RY) x Q,\1(RY),

the sum over all strict I C pn .

We will now show that the same formula holds true for an arbitrary smooth base
space X of a vector bundle V.
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Lemma 2.4. Let # : G — X be a proper morphism of smooth varieties such that ©*
makes A*(G) a free A*(X)-module, A*(G) = @A*(X) - by, where by € A" (G) and for
any « there is a unique o such that ng +ny = dim G—dim X and m.(by - byt ) # 0; let
Te(ba-bar) = 1. Moreover, denoting by p; : Gx G = G (i = 1,2) the projections, assume
that, for a smooth G x; G, the homomorphism A*(G) @,., A*(G) = A*(G x, G)
defined by g ® h — pig - p3h, is an isomorphism. Then the class of the dzagonal A n
G X G equals

= Zmﬂﬂba ®bﬁ, '
af
where, for any o, B, mag = Pag({m(by - bs}) for some polynomial P, € Z{{zs}].
Proof. Denote by § : G = G x, G, § : G = G x, G (the Cartesian product) the

diagonal embeddings and by ~ the morphlsm T X, Wt G Xy G = X. For g,h € A*(G)
we have

mulg-h) = ((8) (g x B) = m (8 (g @) = 70 (5*(g @h) =7([a)-(g&h),

using ©* = v o § and standard properties of intersection theory from [F]. Hence, by the
assumptions, we get

ma(bar - bg) = 7 ([A] - (bar @ bgr) = (70 @ 7) ((Z Meysby ® bs) - (bar @ bﬁ'))
=g+ Y MysTu(by  bor) - wa(bs + by)

where the degree of mys € A*(X) is less then the degree of mqg. The assertion now
follows by induction on the degree of mqg. O

Let now G = (LGL,V — X) be a Lagrangian Grassmannian bundle, and use the same
letter to denote the total space of LG, V.

Proposition 2.5. The class of the diagonal of the Lagrangian bundle in A*(G x , G)
equals

= Zér RY)oc - @uu\i(RY)ca,

the sum over all strict I C pp, GG =G x, G and Ri, 1 = 1,2, are the tautological
(sub)bundles on the corresponding factors.

Proof. Consider the family {by}o = {Q;RV}I where the indexing set of the o’s runs over
the set of all strict partitions I C p,, and n, = |I|. This family satisfies the assumptions
of Lemma 2.4. Observe that the required properties w.r.t. =, follow from the case
X = point by invoking the universal character of formulas for ﬂ,(@ (RY-Q RY). Indeed,
it will follow from results of Section 5 and 4 (obtained independently) that for any I, J,
ﬂ',.,(@ (RY-Q JRY) is given by some universal polynomial expression in the Chern classes of
VY. Also, arguing by Noetherian induction we get A*(G)®,. «, 4*(G) ~ A*(G x4 G).
It follows from the proof of Lemma 2.4 that the polynomials P,z are the same for any
7 : LG,V — X. Hence we have by Lemma 2.4

(A= mus piQu(RY) - p3Qu(RY),
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where myy are universal polynomial expressions in the Chern classes of V'V.

As we have already noticed, the summands occuring on the right hand side for || +
|J| = n(n—1)/2 are the same as in the case X = point. On the other hand, for |I|+|J| <
n(n — 1)/2 we wish to show that the corresponding summands occur with vanishing
universal coefficients. Instead of proceeding directly we use the following specialization
argument. Consider the Grassmannian X = G,(CY), N » 0. Then using the
tautological vector bundle S on X we put V := S&SY and equip it with 2 nondegenerate
symplectic form , e.g. , the one corresponding to the antisymmetric map SV®S — SGSY

given by the matrix
( 0 ids)
—idsv 0 )

Take two copies G; = X and G; =& X, of G = X (endowed with the tautological
Lagrangian rank n subbundles Ry and R3). Our goal is to show that the fibre product
diagonal A C G X, G2 parametrizing the points (z, g1, g2) with g1 = g2, has the desired
class. This will finish the proof because with N — oo the bundle V = 5§ @ SV has the
generic Chern classes of a bundle endowed with a nondegenerate symplectic form, and
hence an appearance of a nonzero universal coefficient my; for |I| + |J| < n(n — 1)/2
would show up in this situation. Let A’ in Gy X, G2 (i.e. in the Cartesian product)
be another diagonal parametrizing the points (z1,¢1,22,92) with z; = z2, g1 = ¢2.
Note that for the natural map ¢ : Gy X, G2 = G1 X, Gz, one has: i, [A] = [A'].
If S; is the tautological subbundle on X and @3 is the tautological quotient bundle
on X,, then the subscheme Gy x, Gy in G; X, G2 is identified with the scheme
Zeros(S; = CV — Q,).

We now investigate
(A=) dr,nQn(RY) - Qn(RY)

in A*(Gy x4 G2), where dy, 1, € A*(X) (we omit writing "p}” as well as the pullback-
indices, for brevity). We have

[A’] = Z}[A] = Z dIszéh(R;/) . sz(R‘\Z/) . (class Of G1 Xy Gz n Gl X Gz)
I,z

= > d,nQn(RY) Qn(RY)-ss(5Y) s, (Q2).

Iy, 02,0

Here s;(—) denotes the Schur polynomial of the indicated vector bundles (see e.g. [F],
[P1,2)); J runs over partitions contained in (N —n,... ,N —n) (n times); given such a
~ partition J, by J* we denote the dual of the partition (N —n — jp,... ,\N —n —71) .

Observe that G satisfies the assumptions of Lemma 2.2 because the bundle S is trivial
over every Schubert cell of X. Indeed, the given Schubert cell

{LeX|dim(LNC* =p, p=1,...,n}
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is contained in the complement of the hypersurface defined by the (n x n)-minor spanned
by the columns &y,... , kn, where X is now identified with the quotient space of the space
of (n x V) nonsingular complex matrices modulo SL(n,C) acting by left multiplication,
and over such a complement S is trivial. Hence the total space of G has a cellular
decomposition formed of the products of the cells of X and those of the fiber of G — X.
Therefore, using Lemma 2.2 with respect to (the total space of) G, we have

[AT=)"ss(8Y) Qr(RY) - 57+(Q2) - @, \r(RY),

the sum over J C (N —n)" and I C p,.
Comparison of the two developments gives dy, 1, # 0 iff I = pp \ [y and dy , \; = 1
for every I. This finishes the proof of the proposition. O

Corollary 2.6. With the notation of Section 1 and GF := G x, F, the class of Z in
A*(GF) (i.e. the image of the class of the diagonal of G x, G via (1 x a)*) equals

Z é’(Dé?')'épn\I( é}')

strict ICpn

Thus the problem of computing the class of Q is essentially that of calculation
p«(@rDY) where p: F — X is the projection map; then we use a base change.

Consider now the case of the orthogonal Grassmannian of rank n subbundles of V,
where rank V' = 2n 4+ 1. The results of Lemma 2.3, Proposition 2.5 and Corollary 2.6
translate mutatis mutandis to this case with @-polynomials replaced by ﬁ-polynomials
(in virtue of Theorem 2.1(ii) ). Thus the problem of computing the class of 2 is essentially
that of calculation p,(ﬁ[Dv) where p: F — X is the projection.

Finally, consider two connected components of the orthogonal Grassmannian of
rank n subbundles of V, where rank V = 2n, as defined in Section 1. The results
of Lemma 2.3, Proposition 2.5 and Corollary 2.6 translate mutatis mutandis to this case
with p, replaced by p,—; and é—polynomials replaced by ﬁ—polynomials (in virtue of
Theorem 2.1(ii1) ). Thus the problem of computing the class of §2 is essentially that
of calculation p’,(};IDV) and pi’(ﬁ[DV) where p’ : F/ - X and p” : F” — X are the
projection maps.

3. Subbundles intersecting an n-subbundle in dim 2 £

We will now show an explicit computation in case a, = (n —k +1,...,n) . This
computation relies on a simple linear algebra argument. The results of this Section will
be reproved in Section 8 using the algebra of divided differences operators.

We start with the Lagrangian case and follow the notation from Section 1. The results
here are stated in the Chow rings but they are equally valid in the cohomology rings.
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Proposition 3.1. Assume a = (n—-k+1,...,n). Let I C p, be a strict partition. If

(nyn—1,...,k+1) & I, then p.Q;DY = 0. In the opposite case, write [ = (n,n—1,...,
E+4+1,71,...,51), where j; >0 and I <k . Then p.@QiDY =0Qy,,.. ; V.

Proof. It suffices to prove the formula for a vector bundle V' — B endowed with a
symplectic form, X equal to LG,V and V,, equal to the tautological subbundle on LG,V
(Recall that Q(n—Ak+1,... ,n;V.) depends only on V,, ; more precisely, it parametrizes
Lagrangian rank n subbundles L of V such that rank(L NV,) 2 k.) The variety F
in this case parametrizes triples (L, M, N) of vector bundles over B such that L and N
are Lagrangian rank n subbundles of V' and M is a rank & subbundle of LN N. Let W.:
Wi, C W, C ... C W, be a flag of Lagrangian subbundles of V' with rank W; = 1. For a
partition J = (71 > ... > 71> 0) C px ,

a;=Qn+1l—7g1,... ,n+1=5W)={L e X|rank(LNWyt1-j,) 2 h, h=1,...,1}

defines a Schubert cycle whose class has the dominant term (w.r.t. V,,) equal to @JV,,V €
A*(X). It is well known that oy is an irreducible subvariety of X provided B is irre-
ducible. ’

Similarly, for a partition / = (13 > ... >4 > 0) C pn, ¢:F = LG,V the projection
on the third factor,

A1=Q‘Q(n+1—i1,...,n+1—i,;W.)= _
={(L,J‘/I,N) ef' TGﬂk(NﬂWn+1_ih) Zh, h = ]_’__,’l}

defines a cycle whose class has the dominant term (w.r.t. D) equal to Q; DY € A*(F).
Also, Ay is an irreducible subvariety of F provided B is irreducible.

We will show (the pushforward is taken on the cycles level) that:

1) If I p (n,n—1,... ,k+1) then p,A; = 0. Passing to the rational equivalence
classes, this implies p.Q;DY = 0.

2y fI>(nn-1,...,k+1)ie I=(nn-1,... ,k+1,75,...,5), where j; > 0
and | < k, then p.A; = oy where J = (j1,...,71). Then, passing to the rational
equivalence classes (and using the projection formula), we get the following equality
involving the dominant terms: p. Q;D¥ =Q LA

Observe that 1) holds if I(I) € n — k because we then have codim,4; = |I| <
n+(n—1)+... 4+ (k + 1), which is the dimension of the fiber of p. We will need the
following:

Claim Let I C p, be a strict partition. Let | = card{h | in—x+r # 0}. Assume that
[ > 0. Then one has

(*) p(Ar) C O k1 yin— kb 2y bkt ”

Indeed, for (L,—, N) € Ay, since rank(L N N) 2 k, the inequality rank(N N W,) 2 h
implies rank(L 0" W.) > h — (n — k) for every h,r; this gives (*).
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1) To prove this assertion we first use (*) (by the above remark we can assume that
I(I) > n — k) and thus get

codim, Ay — codim  p(Ar) € (v + ...+ in) = (inekg1 + i) =114 ... +inep.

Then, since I  (n,n—1,... ,k+ 1), we have

it <n+.+(B+1)

where the last number is the dimension of the fiber of p. Hence comparison of the latter
inequality with the former vields p. Ay = 0.

2) To prove this, it suffices to show p(A4;) C ay, dim A; = dim «y; and if p.A; =d-ay
for some d € Z then d = 1. We have:

p(Ar) C ay : this is a direct consequence of (*).

dim Aj = dim «ay : this results from comparison of the following three formulas
dim F=dim X +k(n—k)+(n—k)(n—k+1)/2, codim,ay=|J|, and codim, A4 =
n+...+k+1)+|J|

Therefore p.Ar = d - aj for some integer d. To show d = 1 it suffices to find an open
subset U C ay such that p|,-1y : p7'U — U is an isomorphism. We define the open
subset U in question as o\ §(n—k; W.). More explicitly, U is defined by the conditions:

rank(LNWagi-5) 21, ..., rank(LNWoyi—;) 21 and LN W,_; = (0).

Observe that these conditions really define an open nonempty subset of a; because
Qn+l—g1,... , n+1=g;W)Z Qn+1-(k+1);W) for J C pir. (Recall that for
I=(mi>...>4>0),J=(1>...>jr >0)onehas Q(n+1—iy,... ,n+1—1; W) C
Qn+l—gi,...,n+ 11—, WHIMTIDJ.)

Since our problem of showing that d = 1 is of local nature, we can assume that
B is a point and deal with vector spaces instead of vector bundles. Let us choose
a basis ej,...,en, f1,..., fan such that, denoting the symplectic form by ®, we have

®(ei,ej) =0=@(f;, f;) and P(e;, f;) = —P(f;,ei) = &;,j. Assume that W; is generated
by the first i vectors {e;}. Let W' be the subspace generated by the last i vectors {e;}.
Moreover, let W; be the subspace generated by the first ¢ vectors {f;} and W be the
subspace generated by the last ¢ vectors {f;}.

Observe that for a strict partition p, > I D (n,n—1,...,k+ 1) a necessary condition
for "(—,—,N) € A" is "N D Wy,_". (This corresponds to the first (n — k) Schubert
conditions defining A;.) On the other hand, if L € U then L N W,_; = (0) and
consequently L must contain PVn ¢ (from the rest, i.e. Wk g W" we can get at most
k—dimensional isotropic subspace). Hence also |L N (WF & W“')l =k (| — | denotes
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the dimension). We conclude that a necessary choice for an n-dimensional Lagrangian
subspace N such that (L, M, N) € A for some M, is

Ni=Wnx ® LN (Wka W),

It follows from the above discussion that N is really a Lagrangian subspace of dimension
n and it satisfies the first {(n — k) Schubert conditions defining A;. N also satisfies the last
! (< k) Schubert conditions defining A; : since [LNW,y1_j, | 2 hand LNW,_; = (0),
we have [INNWoyj, | =Waok| +h2n—k+h for h=1,...,L

Moreover, since |L N N| = k, the subspace M above is determined uniquely: M =
LNN.
Summing up, we have shown that d = 1; the ends the proof of 2).

Thus the proposition has been proved. O
Proposition 3.2. One has in A*(G),

Qn—k+1,...,n=-Lna)l= > QiVV)e Qpu(RY).

strict ICpx

Proof. This formula is obtained directly by pushing forward via (p;). the class of Z in
G x F given by
Y. Qu(D¥s) Qpoi(RE5)
strict [Cpn

(see Corollary 2.5), with the help of Proposition 3.1. O

Example 3.3. For successive k (and any n) the formula reads (with D = Dgr, R =

R r for brevity):

k=1 QDY +Q\RY;

k=2 @DV + @DV - Q1RY + Q1 DY - Q:RY + @ RY;

k=3 Q321D + G2 DY - Q1 RY + QalDv G2RY + @21 DY - QsRY + Q3D - Qi RY +
Q2D - Q31RY + @1 DY - Q52 RY + Qaz1RY.

In the odd orthogonal case, the analogs of Propositions 3.1 and 3.2 are obtained by
replacing Q polynomials through p- polynomials. The proofs are essentially the same. In
particular, oy and Aj are defined in the same way. Obviously, in the proof of the analog
of Proposition 3.1 one should now choose a basis e1,... ,en, f1,..., fn,g such that the
matrix of the orthogonal form w.r.t. this basis is

0 | I, 10
I.| 0 ]0],
0 0 |1

where I, is the (n X n)-identity matrix. Then W;, W' W; and W* are defined in the
same way as in the Lagrangian case and the same proof goes through with P-polynomials
replacing @-polynomials.
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Let us pass now to the even orthogonal case. So let V' — X (X is connected) be a
rank 2n vector bundle endowed with a nondegenerate quadratic form. Fix an isotropic
rank n subbundle V,, of V. Recall that for £ =n (mod 2) by p' : 7' = X we denote the
Flag bundles parametrizing the flags 4, C A; of subbundles of V such that rank 4; = k,
rank A, = n, 4; C V, and A, is isotropic with dim(4; N V), = n (mod 2) for every
¢ € X. Similarly, for £ = n + 1 (mod 2) by p” : 7/ - X we denote the Flag bundle
parametrizing the flags 4; C 4, of subbundles of V such that rank 4, =k, rank 4, = n,
A; C V, and A, is isotropic with dim(4; N V,); =n + 1 (mod 2) for every z € X.

Remark 3.4. The component parametrizing rank n isotrop;ic subbundles A4 of V with
dim(ANVy,), =n (mod 2), z € X, is isomorphic to that parametrizing rank n isotropic
subbundles A of V with rank(ANV,); = n+1 (mod 2), x € X. For this well-known result
we refer, e.g., to [G-Z, Lemma 18] where the space of all isotropic rank n subbundles of
V is presented as a double unramified cover of OG,—1 W with two sheets equal to OG.,V
and OG2V, where W is a rank (2n—1) subbundle of V such that the form restricted from
V to W is nondegenerate. Any such an isomorphism induces an isomorphism of ' and
F" as schemes over X and the pullback via this isomorphism of the rank n tautological
bundle on F' is equal to the rank n tautological bundle on F”. Hence it is clear that
the pushforward formulas for p.PrDY and p!/P;DV are the same.

In the even orthogonal case the analog of Proposition 3.1 reads

Proposition 3.5. Let I C po—1 be a strict partition. If (n —1,n—2,... k) ¢ I then
pf_}A’}DV = 0. In the opposite case, write = (n—1,n—2,... ,k,J1,... ,71), where j; >0
andl < k-1 Then

p.PiDY =P;, . VY.

n

The same formula is valid for p').

Proof. We consider the case of p/. It suffices to prove the formula for a rank 2n vector
bundle V — B (we assume that B is irreducible) endowed with a nondegenerate orthog-
onal form, X equal to OG.,V or OG,V and V, equal to the tautological subbundle on X .
Then the variety ' parametrizes triples (L, M, N) such that d&im(L N\ N), = n (mod 2)
for every b € B (i.e. L and N either belong together to OG,V or together to OGIIV)
and M is a rank k subbundle of LN V.

We will now prove the proposition for X = OG,LV. (Obvious modifications lead to
a proof in the case X = OG!/V.) Since the strategy of proof is the same as in the
Lagrangian case, we will skip those parts of the reasoning which have appeared already
in the proof of Proposition 3.1. Let W.: W; C W, C ... C W, be an isotropic flag in V.

For J = (j1 > ... > j1 > 0) C pr—1 we define
ay=QUn—j1,... ,n—=JW.) if I =n (mod2) and
ay=QMn—7j1,...,n—g,n;W.) if I=n+1(mod?2).

Similarly for I = (i3 > ... > 41 > 0} C pa—1, g¢: F' — OGLV the projection on the
third factor, we define

Ar=q¢*Qn—1y,...,n—1; W) if I =n(mod2)aend
Ar=q¢Qn—-11,..n—i,n; W) if I=n+1(mod?2).
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It is known that a;y and A; are irreducible sgvbvarieties provided B is. The dominant
terms of the classes of ay and A are equal to P;V,Y and PrDY respectively.

The proposition now follows from: .

DT (n—1,n—-2,...,k) then p,A;=0.

NII>nh-1n-2,...,k) iel=(n-1n-2,... k+1,k71,...,51), where

Ji>0and ! < k-1, then p.4;r =«y where J = (51,...,5).

Assertion 1) (being obvious if () < n — k) is a consequence of:

Claim: For every strict partition I C pn—1, let [ = card{h| in—g+r # 0}. Assume that
{ > 0. Then one has

(*) pf(Al) C Qin gty inmket

Inclusion (*) also implies p'(Ar) C ay in 2). The equality dim p'(A;) = dim ay now
follows from: dim F' =dim X + k(n—-k)+ (n —k)(n —k = 1)/2, codim,ay = |J| and
codim_A;=(n—-1)+...+k+|J|

Therefore p,A; = d - o for some integer d. To prove that d = 1 it is sufficient to
show an open subset U C ay such that p'|(,n-1y; (p')”'U — U is an isomorphism. The
open subset U in question is defined as

aj\QUn-=k;W.)if n isodd and a;\Qn—k,n;W)if n is even.

The problem being local, we can assume that B is a point. Let ey,... ,en, fi,... , fa be
a basis of V such that denoting the orthogonal form by ® we have ®(e;,¢;) = ®(fi, f;) =
0, ®(e;, f;) = ®(f;,ei) = &;,; and W, is spanned by ey,... ,e;. Define W W; and W* as
in the Lagrangian case.

Now, given L € U, the unique N such that (L, M, N) € Ay for some M, is defined as
in the proof of Proposition 3.1. This N satisfies the last I(< k — 1) Schubert conditions
defining As: since |L N Wy_j;,| 2 h and LN W,_; = (0), we have [N N W,_;,| =
|Wr_kl+h2n—-k+hfor h=1,... 0. Finally, the M above is determined uniquely:
M = LN N, and p'l,)-1y is an isomorphism. The proposition follows.

Proposition 3.6. If k = n (mod 2) (resp. k = n+ 1 (mod 2) ) then one has in
A*(OG! V) (resp. in A*(OGLV) ):

[Qn—k+1),...,n=1n)= > P(V)g: Ps_\i(RY)

strict ICpr—1

Proof. This formula is obtained directly by pushing forward via p) (resp. p}) the class
of Z in G x, F' (resp. G x F") given by

Z ﬁI(Déf-) 'ﬁpn_l\I(Réf)

strict ICpp—

using Proposition 3.5. O
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4, @-polynomials and their properties

In this Section we define a new family of symmetric polynomials modelled on the
Schur’s @-polynomials. In Schur’s Pfaffian-definition, we replace Q; by e; — the i-th
elementary symmetric polynomial. It turns out that after this modification one gets an
mnteresting family of symmetric polynomials whose properties are studied in this Section
and then applied in the next ones.

Let X = (z1,z2,...) be a sequence of independent variables. Denote by X, the
subsequence (z1,...,z,). We set Qi(X,) := ei(Xn). Given two nonnegative integers
1,7 we define

~ —~ j —~ —~
Qii(Xn) = Bi(Xa)@5(X0) +2 3 (=1 Figp(X0) Fj—p( Xi)

p=1

Finally, for any (i.e. not necessary strict) partition / = (3 2 42 2 ... 2 1x 2 0), with
even k (by putting iz. = 0 if necessary), we set

Q1(Xa) = PF(@y (X))

1<p<qgk

Equivalently, @ 1{X») is defined recurrently on I(I), by putting for odd I(I),

I
(%) Qr(Xn) = (-1 7'Qi; (Xa)@n; (Xn),
=1
and for even (1),
- i . N
() Qu(Xn) = > (1) @i, i;(X2)Qn\(iy,i,3 (Xn)-
=2

The latter case, with [ = I(I), can be rewritten as

i—1
(% % ) Qr(Xn) =Y (=17 Qu; i (X))@ 55,i0y (Xn)-

1=1

Note that assuming formally ¢; = 0, the relation (***) specializes to (*). We will refer
to the above equations as to Laplace-type developements or simply recurrent formulas.

We warn the reader that, with this definition, it is not true either that @i‘j(Xn) =

-éj,f(Xn) or that the only nonzero polynomials @;(Xn) are those associated with strict
partitions I.

We start with a useful linearity-type formula for é—polynornials indexed by strict
partitions.
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Proposition 4.1. For any strict partition I one has

I(I)

éI(fYn)=Z$}i( Z éJ(fYn—l))a

=0 |11=Jl=j

where the sum 1s over all partitions J C I such that I'\ J has at most one boz in every

TOw.

Proof. We use induction on I(]).

10
90

=

30

[(I) = 1. Since we have: ¢;(X,) = €;(Xn—1) + znei—1(Xn_1), the assertion follows.
[{(I) =2. We have for i > j > 0 and with ¢; = ¢;(X,), & = €;(Xn_1),é_1 =0,

o~ J
Q,"J'(Xn) =eie; + 2 Zl(—l)pe.'+pej_.p =
p=

i
= (& + 2n€i-1)(&j +Tn€j-1) +2 Zl(_l)P(éiﬂr + Zn€itp-1)(8j—p + Tn€j—p—1)
P=

I
N
I
-

(]
—
.{...

j j
23 (-1)”5f+péj-p) + Tn [(E:‘—léj +2 Z](—l)”éf—1+p§j—p)+
P=

r=1

j j=1
+(é=‘5;'—1 +2 ) (—1)”éi+péj—1—p)] +a (Ef—léj~1 +23 (—1)Pés—1+péj—1—p)

p=1 p=1
= i3 (Xam1) + 20 |Gimt 5 (Xamt) + Gijt (Xnma)] + 2281 ,jm1 (Xam).

By the remarks before the proposition, to prove the assertion in general it suffices to
show it by using the recurrent relation (***). (Note that the R.H.S. of the formula
of the proposition specializes after the formal replacement iy := 0 (I = I(I)) to the
expression asserted for (13 > 12 > ... > ij—1).

So, let us assume that ! is even and set é; = éI(XR), Qr = é;(Xn_l). Moreover,
let P(I,j) be the set of all partitions J C I such that I\J has at most one box in
every row and |I| — |J| = 7. We have by induction on ,

-2
é[\{fj,.',} = Z Tp ( Z QJ)..

r=0 JEP(I\{i;,i1},7)

Therefore, using 2° we have
-1 . B
QI = Z(_l)J_l [Qj_,',:'; 4 In(QiJ‘—l,i! + Qi,‘,ic—l) + x%Qij—l,i[—l
=1

5,0

r=0 JE'P([\{IJ,H};’")
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On the other hand, apply the relation (***) to the R.H.S. of the formula in the
proposition. One gets:

. ! -1
Z,EJ( S Q_,):Z;c{,[ 3 (Z(—l)"‘lém-QJ\{jq,jl})}-

j=0 JEP(I,5) Jj=0 JEP(L,j) 9=t

It is straightforward to verify that these both sums contain 2/(! — 1) terms of the
form

(—1)’Cﬂan,chl,--- 1Cl=2

and such a term appears in both sums if and only if

(Cl,... 3C3yQyCaq1y.- ,Cl_g,b) € P(I,])

Thus the assertion follows and the proof of the proposition is complete. O

Proposition 4.2. : Q;;(X,) = ei(<?,... ,z2).

n

Proof. By definition we have (e; = ei(Xn)):
Qii(Xn) = eiei — 2ei1€i41 + 2eip2eia — ... = ¥ (=1 epenioy.

On the other hand, with an indeterminate ¢, we have
(I4z18). .. (1 +zat) (1 —zit) ... (1 —xnt) = (1 —23t?)... (1 — 2242),

or equivalently,

(Z e_,,tp) (Z(—l)qeqt) =Y (~Veilal,... ,22)E.

This implies

i

(=D'ei(al,. .. 2k) =D _(~1)Pep - e2icp.

p=0
Comparison of those two expressions gives the assertion. [

Proposition 4.3, For partitions I' = (iy,92,... ,5,7,--+ ,ik=1,1k) and I = (i1,... ,1k),
the following equality holds

Qr(Xa) = Q5 (Xa)@r(Xa).

Proof. Write Q; for Qr(X,). We use induction on k. For k = 0, the assertion is
obvious. For k = 1, we have Q; ;; = QiQj; and Q;;: = @, ;Q: by the Laplace type
developements, so the assertion follows.
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In general, it suffices to show the assertion inductively, using the relation (***), if the
marked ” ;7 does not appear on the last place; and independently, to prove it (inductively)
for I' = (¢1,... ,1%,J,7). In both instances k is assumed to be even.

In the former case, using (***) we get

Qr =Qiy,... jgriney =+ Q50 Qiyigys g ik
:F leih Qilyiz 1111 ja"- )ik i cee 7T Qik_l,ik Qil,... ,j,j,... ,ik_g

and the assertion follows from the induction assumption by using the relation (***) w.r.t.
@i, ... i, once again.
In the latter case we use the relation (**). We have

Qil;"' rihsj;j =Qi1|i2Qi3v“ aikljvj e + Qil)ik Qi?:"' !ik—lajsj
= Qin,j @iz inj T QirjQin,... i s

and the assertion follows from the induction assumption by using the relation (**) w.r.t.
Qi,,... i, once again. 0O

Lemma 4.4. Let I = (i1,12,... ,ix) be a partition. If i} > n then QI(Xn) =0.

Proof. We use induction on [{I). For I(I) = 1,2 the assertion is obvious because
ep(Z1,...,%a) = 0 for p > n. For bigger I(I) one uses induction on the length and
the recurrent formulas, which immediately imply the assertion. [J

Let SPol(X,) denote the ring of symmetric polynomials in X,. Similarly, we denote
by QPol(X,) the ring generated by Schur’s @-polynomials in X,,. Let J denote the
ideal in SPol(X,) generated by e;(z},... ,2%2), 1 € i < n. We now invoke a corollary
of [P2, Theorem 6.17] combined with [B-G-G, Theorem 5.5] and [D2, 4.6(a)]: there is a
ring isomorphism SPol(X,)/J — QPol(X.)/ ® ZQ(X,), where I runs over all strict
partitions I ¢ pn, given by e;(X,) — Qi(X.) (see the remark after Theorem 6.17 in

(P2, pp.181-182]).

Proposition 4.5. The set {@1(.7(,1)} indezed by all partitions such that 1, < n forms
an additive basis of SPol(X,).

Proof. By the remark above we have that Q(X,) with I strict (and I(I) € n) form an
additive basis of the quotient ring SPol(X,)/J. Thus every polynomial in SPol(X,)
has the form Y oyQr(X,) + f - g where f € J, g € SPol(X,) and its degree is less
than the one of the initial polynomial. Arguing by induction on degree, we can assume
that g is a Z—combination of the Q 1{Xn)’s (observe that for the degree one symmetric
polynomials the assertion obviously holds). As a consequence of Propositions 4.2 and
4.3 we get that every symmetric polynomial is a Z —combination of the @ 1(Xn)’s. Since

the cardinality (for each degree) of the looked at family is the same as the one of the
Z—basis {e;(X,)} of SPol(X,) (see [Mcdl]), the final assertion follows. O
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Corollary-Definition 4.6. For every k < n, every strict partition I and every (non
necessary strict) partition J C I, there ezist uniquely defined polynomials

éI/J(mk-Ha T ,:Bn) € SPOl(:Bk+1, o ,:Bn)
such that the following equality holds

Qr(Xn) = Z QJ(-Xk)éI/J($k+la--- ,-”cn)-

Jci!

Proof. Since SPol(X,) C SPol(Xi) @ SPol(zk+41,... ,Tn), the assertion follows from
the previous proposition. O

Example 4.7. In 1° and 2° we set @; = QI(X,,) for brevity. The following equalities
hold:

1° Qssada41 = Q55Qqaa41 = Q55QuaQua) = Q55Q44Q44 Q1 = @55Q4444Q1;5
2°  Qsssaaassst = Qs5QaaQa3Qsas1 = Q554433 Qs4a1;

3° Here, we set @ := @I(ml,xg), Q’I = @I(a:g). Then

Q21 (21,22, 3) = .
= 23Q201 + 25(Q211 + Q22) + T3Q21 = 3Q22Q1 + $§(Q11Q2 + Q22) + 23 Q21
= z3ez(z?,22)(z1 + 72) + 23 [el(z%,:r:%)z:lscz -+ ez(wg,x%)] + 23 (:cg@’ll + :E%Q’l)

= z3(2}2d)(z1 + z2) + 23 [(2? + 2d)z122 + 7ial] + 2} (222d + 2dxs).

By iterating the linearity formula for Q;(X,) (Proposition 4.1), we get the following
algorithm for decomposition of @; = @(X,) into a sum of monomials:

1. If I is not strict, we factorize
Qr=Qj5 @iy Qi Qus

where L is strict (we use Proposition 4.3).

2. We apply the linearity formula to Q (X)) and z,. Also, we decompose

Qip:ip(‘\f’?) =€ (‘I?’ . :55121)
= €ip ('L‘f, h_y) +ej-i(el, .. ,xi )2l

= éjprjp (Xn-1)+ @j,,_l,jp_l(Xn_l)a:ﬁ.

We then repeat 1 and 2 with the so obtained é[(Xn_l)’s, thus extracting z,-; then,
we proceed similarly with the so obtained Qr(X,—_2)’s etc.
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Note that if we stop this procedure after extracting the variables z,,z,-,
get a developement:

caTe41 WE

Qi(Xn) = Qu(Xi)Fs(zrs1, o Tn),
7

where the sum is over J C I (this follows from the linearity formula; J are not necessary
strict). Moreover, Fy(Ti41,... ,Tn) = QI/J(Ik+1,... ,a:n).

Of course, a similar set of formulas can be written for f’—polynomia.ls ﬁI(Xn) =
2-UNQ(X,). We leave it to the (interested in) reader.

Given a rank n vector bundle E with the Chern roots (ey,... ,e,) we set QIE =

é](Xn) with z; specialized to e;. Similarly, we define Q;/,E, P;E and Pr/;E. Note
that this notation is consistent with that used in Section 2 and 3.

We finish this Section with the following example.

Example 4.8. Let =5, é; = é;(Xs) and sy = s7(X5). We have:

@54 = 822221 @53 = 22211 Q52

=s2111 @51 = s21111
Q43 = 52221 — S22111

é42 = 82211 — 821111 (541 = S2111 — S11111

632 = S221 — 82111 + S11111 @31 = 8211 — S1111
@21 = 821 — Si11

6543 = $§33321 — 933222

Q542 = 833221 — S32222 Q541 = 832221 — S22222

Q532 = 833211 — $32221 T $22222 Qsal = 832211 — 822221

Q521 = 832111 — $22211
Q432 = 83321 — $3222 — S33111 Q431 = 83221 — 832111 — 82222
Q421 = 83211 — $31111 — 52221

Q321 = 8321 — 33111 — 8222

Q5421 =

Q5432 = 544321 — 344222

543331 Q5431 = 843321 — 43222 — 833331

543221 — 542222 — 833321

Q5321 = 543211 — 42221 — 333311

(Q4321 = S4321 — S43111 — S4222 — 3331 + S32221 — 2522222

Q54321 = 854321 — S54222 — 53331 — S44421 T 543332 — 2533333.
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5. Divided differences and isotropic Gysin push forwards

Let V — X be a vector bundle of rank 2n endowed with a nondegenerate symplectic
form. Let 7 : LG,(V) = X and 7 : LFI(V) — X denote respectively the Grassmannian
bundle of all Lagrangian subbundles of V and the Flag bundle of total flags of Lagrangian
subbundles of V. We have 7 = mow where w : LFI(V} = LG,(V) is the projection map.
The main goal of this section is to derive several formulas for the Gysin push forward
7ot A (LG (V)) = A*(X) if X is a smooth algebraic variety, or, 7, : H*(LG,(V),Z) —
H*(X,Z)if X is a topological manifold.

We start with by recalling the Weyvl group W, of type C,,. This group is isomorphic
to S, x ZZ. We write a typical element of W, as w = (0, 7) where o € S,, and 7 € ZF;
so that if w’ = (¢',7') is another element, their product in W, is w - w' = (g 0 ¢',4)
where "0” denotes the composition of permutations and é§; = 7,y - 7. To represent
elements of W, we will use the standard "barred-permutation” notation, writing them
as permutations equipped with bars on those places (numbered with ”:”) where 1; = —1.
Instead of using a standard system of generators of W, given by simple reflections s; =
(1,2,...,0+ 1,17,... ,n) l1€i<n—-1,and s, = (1,2,... ,n— 1,;), we will use the
followmg system of generators S = {So = (1,2, Lym), 81,... ,3n_1} corresponding to
the basis: (—2¢1),&1—€2,62—€3, ...,En—1 —€n. It is easy to check that (W,, S) is a Coxeter
system of type Cn. This "nonstandard” system of generators has several advantages
over the standard one: it leads to easier reasonings by induction on n and the divided
differences associated with it produce ”stable” symplectic Schubert type polynomials (for
the details concerning the latter topic - consult a recent work of S.Billey and M.Haiman
[B-H]). Let us record first the formula for the length of an element w = (o, 7) € W, w.r.t.
S. This formula can be proved by induction on /(w) and we leave this to the (interested
in) reader.

Lemma 5.1. {(w) = Z a; + E (2b; + 1), where a; := card{p| p> i & 0, < 0;} and

bj = card{p| p< j & op < 0']}.
In the sequel, whenever we will speak about the ”length” of an element w € W,,, we
will have in mind the length w.r.t. S.
Let X, = (z1,... ,Zn) be a sequence of indeterminates.
We now define symplectic divided differences 0; : Z[X,| — Z[X,], : =0,1,... ,n—1,
setting
Bo(f) = (f —s0f)/(—221)
Gi(f) = (f = sif)/(zi —mis1) t=1,...,n—-1,
where so acts on Z[X,) by sending z| to —z, and s; — by exchanging z; with z;4, and
leaving the remaining variables invariant. For every w € Wy, l[{w) =, let s;, -... s be
a reduced decomposition w.r.t. S. Following the theory in [B-G-G] and [D1,2] we define
Ow := 0y, - ... 05, . By loc.cit. we get a well-defined operator of degree —I(I) acting on
Z[X,] (here, "well-defined” means: independent on the reduced decomposition chosen}).

We want first to study the operator 8,,, where w, = (1,2,... ,n) is the maximal
length element of W,. To this end we need some preliminary considerations. We record
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the following (apparently new) identity in the ring QPol(X,) of Schur’s Q-polynomials
iE Xn. In 5.2 - 5.4 below we will write: ¢; = e;(Xn), 51 = 37(X,), Qr = Qr{X,) and
Qr = Qr(X,) for brevity.

Proposition 5.2. In QPol(X,),

Qo = Detaij)i<ijghs

where a;; = Qrt14j-2i fk+14+7-20#0 (with Q; =0 for i <0) and a;; = 2 if
k+1+4j5-21=0.

Proof. We have from the theory of symmetric polynomials (see [P2] and the references
therein),

Q = 2k8 = Det(?ek 1 '_2') .
Ph Pk +1+5-2: 1<k

By using elementary operations on successive rows (with the help of the Pieri formula
- see [Mcdl} and {L-S1}), the latter determinant can be rewritten as

Det(Z > s,)

|I|:-i3-k1‘+;'—2i 14Kk
The degree 0 entries in this determinant are equal to 2 and the negative degree entries

vanish. Since Q; = 2 > s1, the assertion follows. O
hooks I,|I|=i

Invoking the remark just before Proposition 4.5, we thus get:

Corollary 5.3. In SPol(X,,), @pk is congruent to Det(b; ;)i1i jqx modulo J, where
bi; = exyi4j—2i S hk+14+7—-20 #0 (withe; =0 fori <0)andb; =2 if
k+1+j7—2i=0.

We now state:
Lemma 5.4. In SPol(X,), Q,, = enen-y...6; =s,, (mod J).

Proof. By the corollary it is sufficient to prove that Det(b; ;)i<i,j<n = €n€n-1...€1 =
Sp, (mod J). Recall that s,, = Det(ci j)igi jgn whereci j = enqi4joiif nd+l45-20 #
Oandc; j=1ifn+147—2i =0, i.e. the matrices (b;;) and (c; ;) are the same modulo
the degree 0 entries.

Let us write the determinants Det(b; ;) and Det(c; ;) as the sums of the standard
n! terms (some of them are zero). It is easy to see that apart of the "diagonal” term
€n€n—1 ...€1, every other term appearing in both sums is divisible by e e,—y ... ep_,.]ef,
for some p > 1. We claim that, e ep—; ... ep+le§ € J. Indeed, €2 € J and suppose, by
induction, that we have shown e, e,—1... eq+leg € J for ¢ > p. Then

P
52 A E : i—1
€n€n—1 ...6p+1€p = €n€p—1...€p41 [Qp.p"l'? (—1)! 6p+.'€p_i]
i=1
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belongs to J by the induction assumption, because ép,p € J (see Proposition 4.2). This
shows that
Det(b; ;) = enen-1...e1 = Det(c; ;) (mod J).

Thus the lemma is proved.

Of course the last three results and their proofs are equally valid for countable many
variables. '

The following known result (see, e.g., [D1]) is accompanied by a proof for the reader’s
convenience.

Proposition 5.5. One has for f € Z[X,)],

00, () = (-1 2 (2w T - D) 3 (D u(h)

Proof. By the definition of 9,,, we infer that 8y,(f) = > «uw where the coefficients
) weW,
oy are rational functions in z,... ,z,. Since w, is the maximal length element in W,
G;00,, = 0forall: =0,1,... ,n—1. Consequently s;8,, = 8y, for: =0,1,... ,n—1and
hence v0,,, = Oy, for all v € W,,. In particular, for every v € Wy, 0y, = > v(aw)vw.
weEW,

Thus ayw = v(ay) for all v,w € W, and we see that, e.g., ay, determines uniquely all
the ay,’s.

-1
Claim ay,, = (—1)"wo) (2”‘.7;1 ooz [] (2% - :rf)) :

i<

Proof of the claim: Denote now the maximal length element in W, by wi™. We argue
by induction on n. For n = 1, we have a ) = —2—11:1-. We now record the following
equality:

wgk+1)=Sk'.3k_1'...'81'S()'S]’...'Sk-]'Sk-'wgk),

that implies
0 k+1) =0r0dk_10...001000010...00,-1 o@koawgn).

It follows easily from the latter equality that
-1
Qe = (_1)k+l (2$k+1 H(fﬂi — Tht1) H(-’ﬂi + $k+1)) QL0
i<k i<k

This allows us to perform the induction step n — n + 1, thus proving the claim.
Finally, for arbitrary w € W,

—1
o = wwg(a,) = (—1)" VO (ongy g, TTE ) L O
1<y
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Corollary 5.6. (i) 0, (z7'z5?...22") =0 ifa,, is even for some p=1,... ,n.
(1) If all a, are odd then 8, (z®) = 5,,(Xn)"10(z), where here and in the sequel &

denotes the Jacobi symmetrizer (ZUES (-1)"@o(=))/ 1 (=i — ;).
I<J

Proof. (i) Let us fix ¢ € S, and look at all elements of W, of the form (o, 7) where
TE Z;. Then, writing z* for z{" - ... 2", we have

Z(_l)l(o,r)(o,’r)za — (_l)l(u)ma Z(_l)card{ﬂ r,,=—1}7_la1 o Tgn,

T T

because (see Lemma 5.1) =3 a; + ZT =—1(2b; +1) = (o) + card{p| 7, = -1}
(mod 2). Suppose that some numbers among ai,... ,a, are even. We will show that

this implies
Z(-l)c“rd{pl p=llpo | ran o,

T

We can assume that ay,... ,a; are odd and ag41,... ,0, are even for some k& < n (by
permuting the 7,’s if necessary). We have

E(_l)card{pl rpz—l}Tl‘Jl . 7.:,. —
— Z(_l)card{pl r,,=—-l}(_1)card{p| p=—1, pgk}
p
— Z(_l)card{m rp=—1, p>k}
"
n=—k

=2 L (- ("7 =21 -t =0

i=0
(i) Let us now compute Oy, (z]" ... z5") where all a, are odd. Then

Z(—l)c‘“""{"'| ==y pen =98 and

r

Ou, (%) = (2"3:1 T H(cz:f - :c?))—]fg“ Z (-1 D (z*)

i< cES,
=5, (7a)710(z*). O

We now record the following properties of the operator ¥V = 05, . 3,1)-

Lemma 5.7. (i) If f € SPol(z3,... ,2%) then V(f-g) = f - Y(g).
(3) V(@ (Xn)) = (=1)"(nFD/2,
Proof. (i) This assertion is clear because every polynomial in SPol(zi,... ,z%) is Why-

invariant. Observe that it implies that if f = g (mod ) then V(f) = V(g) (mod I).
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(1) In this part we will use the following properties of the Jacobi symmetrizer & (see
[L-S2], [Mcd2)):

1. If f € SPol(X,), g € Z[X,] then 8(f - g) = f - 3(g).
2. For any o = (ay,... ,a,) € N*, 02% = 34_,,_,(Xys). In particular, if a; = «; for
some t # 7 then Jdz® = 0.
3. 9=0m,n-1,. 1)
Let e; = €;(Xn). Since épn(Xn) = €nen—1...€; (mod I), we have
V(épn(Xn)) =V(epntn-1...€1) =(Vod)(z’teen=1...€1).
by properties 1 and 2 above. Since
(m,n—1,...,)o(n,n~1,...,1) = wo,

the latter expression equals Oy, (z°"~1enen—1...€1) by property 3. The degree of the
polynomial z#"~'enen_j ... €1 isn?. Assumingthat a1+...+a, = n?, we have 0y, (z%) #
0 only if z% = :ci’zl_)lscfu’zg)g ... Ty(n) for some w € §,. Indeed, it follows from Corollary
5.6(1) that Ow,(z%) # 0 only if all the a;’s are odd. Moreover, they must be all different;
otherwise 9z® = 0 (and consequently 8, ,z%* = 0) by property 2. We conclude that
{ai,...,an} = {2n = 1,2n —3,...,1}. But there is only one such a monomial z% in
TP"-le,en—1 ...e€1, namely the one with (a1,... ,a,) = (2n—-1,2n—3,...,1). Therefore

B, (27 eneni .. 1) = Bug (21" 123" wa) = (—1)MHD2

by Corollary 5.6(ii) and property 2. O

We now pass to a geometric interpretation of the operator v.

Proposition 5.8. Specializing the variables z),... ,z, to the Chern roots qi,... ,qn of
the tautological quotient vector bundle on LG,V (which s somorphic to RY), one has
the equality '

el i) = (G )@ a0
where f(—) i3 a polynomial in n variables.

Proof. We have, e.g. by comparing the results of {A-C] and [D1}, the equalities:
T (f(Qh cee ;Qn)) = (a(fjru_ ";)f) (q1,.-. ’ qﬂ) and

w;(f(QN--- ,Qn)) = (a(n,n—],...,l)f)(‘h?"' ,Qn)

Since

(1,2,...,n)=(n,n—1,...,Do(n,n—-1,...,1),
we get
053, = Omn=i,.. ) © Unim=1pe 1)
Of course, 7, = m, o w,. Since w. is surjective, comparison of the latter equation with

the former implies the desired assertion about 7.. O

We now show how to compute the images via m, of @-polynomials in the Chern classes
of RY. Let us write X = {—=z,... ,—z,) for brevity.
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Proposition 5.9. One has V(éI(X,}’)) # 0 iff the set of parts of I is equal to
{1,2,... ,n} and each number p (1 < p < n) appears in I with an odd multiplicity
myp. Then, the following equality holds in Z[X,),

V(X)) = [[ eplal-.. ,a2)me D12,

Proof. By Proposition 4.3 we can express Q(XY) as
QI(X:) = Qj1,i (‘Xr\:) e Qi (‘Y:)QVL (-Xr\:)’

where L is a strict partition. (We divide the elements of the multiset I into pairs of
equal elements and the set L whose elements are all different.) Some of the j,’s can be
mutually equal. N

By Proposition 4.2, Q;,;(X}) = e;j(z},... ,2%) is a scalar w.r.t. V.

By Lemma 4.4, QL(Y,‘{) # O only if L C pn. On the other hand, for a strict partition
L C pn, 9(QL(XY)) # 0 only if L = p,, when it is equal to 1 (see Lemma 5.7(i1)).

Putting this information together, the assertion follows. O

Consequently, specializing (z;) to the Chern roots (r;) of the tautological subbundle
on LG,(V) we have

Theorem 5.10. The element QIRV has a nonzero image under m, : A*(LG,V) —
A*(X) (resp. 7w @ H*(LG,V,Z) - H*(X,Z) ) only if each number p, 1 < p < n,
appears as a part of I with an odd multiplicity m,. If the latter condition takes place
then

n

Tr.éIRv — H ((_l)pC2pV)(mp_1)/2,
p=1

Proof. This follows from Proposition 5.9 and the equality ¢,V = (—1)Pe,(r?,...,r2). O

say i

Our next goal will be to show how to compute the images via 7, of S-polynomials
in the Chern classes of the tautological Lagrangian bundle. To this end we record the
following identity of symmetric polynomials. We have found this simple and remarkable
identity during our work on isotropic Gysin pushforwards and have not seen it in the
literature.

Proposition 5.11. For every partition I = (11,... ,1,) and any positive integer p, one

has in SPol(X,),

sr(zf,...,2h) - $(p=1)pn—1(Xn) = Spr4(p=1)pp_ (Xn)-

where, given a partition I = (iy,1i2,...), we write pI = (piy,pia,... ).

Proof. We use the Jacobi presentation of a Schur polynomial as a ratio of two alternants
(see [Mcd1], [L-S1]). We have:
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Det (:cgf‘ +"_I)‘°)
Det(:cz(n_l))

P 1<k,I<n

51(:1:1,... yzh) =

1<k,I<n

piit+(n—O{p—1)+(n—-1)
Det (" )lsk.lén

(p=1}(n~)+{n—1)

_ Dct(a: )
Det(q:z l)ls.k,l@f ( :Det( — 14::1:@")

Tx )1<k,i<n

_ SpI+(p—=1)pn-r(Xn) 0

S(P_l)Pn—l(Xn)

Corollary 5.12. For p =2 we get

- 31(1:%’ e 33:?1) ’ sPn—l(JYn) = 821+Pn—1(‘¥7")'

(For another derivation of this identity with the help of Quaternionic Grassmannians see
the Appendix.)

QOur goal is to give a geometric translation of the latter formula, or rather its conse-
quence

(*) i@ty 0) - 8p, (Xn) = 8p,421(Xn).

Theorem 5.13. The element s;RY has a nonzero image under m, only if the partition
I 1s of the form 2J + py, for some partition J. If [ = 2J + p, then

Tt RY = s[j]V .
where the right hand side is defined as follows: if s; = P(e.) 1s a unique presentation of

3J as a polynomial in the elementary symmetric functions e;, E — a vector bundle, then
s E) ;= P with e; replaced by (=1)icy,E (i=1,2,...).

Proof. Since syRY = w,(q¢'*?"-1) where ¢ = (g1, , @) are the Chern roots of RV (see
[P1,2], for instance), we infer from Corollary 5.6(i) that s; RV has a nonzero image under
7y only if all parts of I + p,_; are odd. This implies that (I} = n and I is strict thus
of the form I’ + p, for some partition I'. Finally all parts of I’ + p,, + pn—) are odd iff
I’ = 2J for some partition J, as required.

Assume now that I = 2J+ p, and specialize the identity (*} by replacing the variables
(z;) by the Chern roots (¢;). The claimed formula now follows since: sr(¢?,... ,q2) is
a scalar w.r.t. m., T8, (q1,...,¢s) = 1 by Lemma 5.7(ii) combined with Lemma 5.4;
finally (—1)*co;V = ei(q?,... ,q2) because of Lemma 1.1(2). O

Observe that the theorem contains an explicit calculation of the ratio in Corollary
5.6(ii).
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We now pass to the odd orthogonal case. The Weyl group W, of type B,. is iso-

morphic to §, x Z7 and its elements are "barred-permutations”. We use the following
system of generators of W,,: § = {sO = (1,2,... 1)y S1,y... ,3,1_1} corresponding
to the basis (—e1),e1 — €2,62 — €3,...,En~1 — £n. Consequently, the divided differences
Gy, it =1,...,n—1, are the same but do(f) = (f — sof)/(—11).
Theorem 5.14. The element é;RV has a nonzero image under m, : A*(0OG,V) —
A*(X) ( resp. mo : HY(OG,V,Z) - H*(X,Z) ) only if each number p, 1 < p € n,
appears as a part of I with an odd multiplicity m,. If the latter condition takes place
then

mé]R H( 1)Pee V(m'" Nz

This holds because the calculation in Proposxtlon 5.9 now goes as follows: with the
notation from the proof of Proposition 5.9, the polynomial

Qr(XY)=2"Q5 ;1 (XY) ... Qi (XY)B, (X))

is mapped via 93 7 to

n,n— 1,
{

2" H ej (23, .., 22),
h=1
since a(n el )(ﬁpn (XY)) = 1. (The proof of the last statement is the same as that
of Lemma 5. 7(11).)

The analog of Proposition 5.5 reads

Ounlf) = (-1 (z-2, T]E—20) T T (=1 ).
i<y weWw,

The analog of Theorem 5.13 now reads:

Theorem 5.15. The element s;RY has a nonzero image under m, only if the partition
I 13 of the form 2J + p, for some partition J. If I = 2J + p, then

7 SsRY = 2”5[:7’]V,
where 3[2](—) i3 defined as in Theorem 5.183.

This holds because s,, (XY) is congruent to 2" P, (XY) modulo J (Lemma 5.4) and
W,Pan = 1. Also, we use Lemma 1.1(2).

The even orthogonal case can be deduced from the odd one as follows. Let V be
a vector bundle of rank 2n over X (X is connected) endowed with a nondegenerate
orthogonal form. Let W denote a rank (2n — 1) subbundle of V' such that the form
restricted from V' to W is nondegenerate. Then we have OG,V ~ OG, -, W and similarly
OG!V ~ OG- W (see [G-Z, Lemma 18]). Via these identifications Q1(RY,) corresponds
to Q;(RYy) where Ry denotes the tautological subbundle on OG,V and OG"V, and Rw
denotes the tautological subbundle on OG,_1 W (thus I runs over partitions C pn—1).
The analogs of Theorems 5.10 and 5.13 now read with R = Ry and n : OG,V — X or
7 :0G, = X.
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Theorem 5.16. The element Q;RY (I C pn-1) has a nonzero image under m, only if
each number p, 1 < p < n—1, appears as a part of I with an odd multiplicity m,. If the
latter condition takes place then

n—1

nQIR =22 [ ((—1)Pc2pv)

p=1

(mp—=1)/2

Theorem 5.17. The element s;RY (I(I) < n — 1) has a nonzero image under m, only
if the partition I 1s of the form 2J + pn_y for some partition J (I(J) < n—~1). If
I=2J+4pn_y, then

TesIRY = 2"’15[}}V,

where .s[;](—) 18 defined as in Theorem 5.13.

Remark 5.18. 1. Our desingulanzations of Schubert subschemes are compositions of
Flag- and Isotropic Grassmannian bundles (see Section 1). Therefore Corollary 2.6, the
algebra of @-polynomia.ls together with formulas for Gysin push forwards (Theorem 5.10
for Lagrangian Grassmannians and a well known formula for Projective bundles) give
an explicit algorithm for calculation the fundamental classes of Schubert subschemes in
the Lagrangian Grassmannian bundles. One has analogous algorithms in the orthogonal
cases. Examples of such calculations are given in Section 6 and 7.

2. In case X is singular, by interpreting polynomials in Chern classes as operators
acting on Chow groups (see [F]) or singular homology groups, the same formulas hold
(after an obvious adaptation of them to the operator setup).

6. Special Schubert subschemes

We consider the Lagrangian case G = LG,V and follow the notation introduced in
Section 1. The result here is stated in the Chow rings but it is equally valid in the
cohomology rings.

Proposition 6.1. The class of Q(a) in A*(G), where a = n+ 1 —1, is given by the

formula _

[a)] = 3 ep(BY) - si-p(V2"):
p=0
Proof. The desingularization F of Q(a) C G is given by the composition:
F=LGn_1(CHIC) B P(V) B @,

where m; and 7, denote the corresponding projection maps. By Corollary 2.5 we have

(*) 2)= ). QiDY-Q,\R".

strict ICpn
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Let S be the tautological rank n — 1 bundle on F; § = D/Cx. Let ¢ = ¢;(C¥). Then,
by Proposition 4.1,

(**) Q:DY = ch ' Z QsS8Y,
k=0 J

the sum over all partitions J C I of weight |J| = |I| — k£ and I\ J has at most one box

in each row. By Theorem 5.10 the only I's in (*)} for which (7),@Q; DY # 0, are those
one containing pn—i, 1.e.

I=(nn-1,...,p+1,p-1,...,1)

for some p =0,1,... ,n. (Note that [DY] = [SY]+[C¥] and J C I.) Then the only term
in (**) which contributes nontrivially is the one with J = p,,—; and k =n — p.
Since, by a well-known push forward formula for Projective bundles, we have

(m2)a (") = sn_p-(n-i) (Vo) = sip (Vo)

we infer that only p =0, 1,... ,: give a nontrivial contribution from (**) (with k¥ = n—p).
Finally, we get
[2a)] = (mam)u[2] = 3 GolRY) - sicp(VaY) = 3 o RY) - 5ip (V)

p=0 p=0

as asserted. O

A similar formula can be deduced in the orthogonal cases. We leave this to the
(interested in) reader.

7. Two Schubert conditions

We consider the Lagrangian case. The results here are stated in the Chow rings
but they are equally valid in the cohomology rings. Our desingularization in case a. =
(n+1—1i,n+41-7) is the composition (we use the notation of Section 1, rank C' = 2):

F = LGn_a(C/C) T FUV, C V3) =2 G,

where (a,b) = (n+ 1 —14,n+1— j) and the element to be push forwarded via (mom).
is > Q;DV . épn\[RV, the sum over all strict I C p,. Let S be the tautological rank
(n — 2) bundle on LG,_2(C*+/C); S = D/Cr. 1t follows from Theorem 5.10, using
[DY] = [SY] + [C¥], that the unique I's for which ()@ (DY) # 0 are of the form
I=pp, I=(nn—-1,...,5,...,. ) =1L, I=(Mnn-1,...,p...,4...,1) = I,
(here, p and ¢q run over {1,... ,n} and the symbol ” " indicates the corresponding
omission).

We need the following technical lemma.
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Lemma 7.1. Ifrank C =2 then
() @Lpn_a(CY) = Sno1n=p(CV);
(12) For q<p, éfp,q/pn_z(cv) = Sn—q—l,n—p(cv);

(i) For0<v<n—1, Qo /(o nt()(CY) = $n-vn=v-1(CV).

Proof. The proof is an easy application of the linearity formula from Proposition 4.1 and
is given here in case (i) (the proofs of (ii) and (iii) being similar).

Denote the Chern roots of CY by z,,z2. We apply first Proposition 4.1 w.r.t. z; and
then — w.r.t. z2. Consider the skew Ferrers’ diagram of I,/p,—2 and fill up the boxes,
whose subtraction correspond to the summands in Proposition 4.1 w.r.t. z;, with "1”.
Then fill up the boxes, whose subtraction correspond to summands in Proposition 4.1
w.r.t. z9, with "2”. Of course it is impossible to have two ”1” or two "2” in one row.
Also, the following configuration cannot appear:

x 1

2

where the box "x” belong to D,,_, (Having two equal rows ending with 7 we use
Proposition 4.3, thus we must subtract both boxes instead of the lower one only). For
example, for n = 6, p = 3 we get two Ferrers’ diagrams, one contained in another
(depicted with 7.” and ”x"):

X X X X
X X X
X X
% -

and we have 3 possibilities:

21 21 21
21 21 21
21 21 2 1
2 2 1
2 1 1

giving Qry/p.(z1,22) = (2122)% (2} + 2122 + 23) = 553(z1,22). In general, arguing in
the same way, we get

QIp/Pn—Z(I:]’:Ez) = ($1.’L‘2)n—p(l’i’_1 + If—2$2 +...+ .'E‘;_l) =

= 62(551,1132)"—?5;;—1(331,5‘32) = Sn—1,n—p(331,$2)- O
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Lemma 7.2. With the above notation we have:
(i)  Forq<p, (m).(Q1,,D¥) = $n-g-1,0-p(C");
(i)  (m1)«(@r,DY) = sn—1,2-p(C");
- n—2
(111) (71).(Q,, DY) = LZ (=1)* eV - [Sn—k,n-k—l(cv) ~ Sn—k+1,n—k—2(CY) + ...
.=0

A (D) g (nmi—ny,1 (CY)].

Proof. Assertions (i) and (ii) follow immediately from Lemma 7.1(i),(ii) and Theorem
5.10. As for (iii), we have ( below, (7;).( other terms ) =0 ):

(m1)+(@,, DY) =

n—2 _,

= (m1)« [ 2 Qpn_zti2)(57) Qpa/(on-st )y (C¥) + (other terms)

n-2

= 3 (=1)%20(CH/C) - @y f(pn-a42)y~(C")

=

o

= ng:(—l)v [ > eV su(CHCY)| - sn—vn—v-1(C")

k+i=v
n—2 n—2—k
= (_l)kCQkV : { Z (—1)1321(0 (&) CV) . s"-k—l,n—k—l—l(cv)]
k=0 =0
n—2
= L (-DfeaV - [Sﬂ—k-n—k—l(cv) ~ Sn—k+1,n—k—2(CY) + ...
k=0

oot (—1)"_k62(n_k—1),1(cv)] ’

where the above equalities follow from: Theorem 5.10, Lemma 1.1 and Pieri’s formula
([Mcd1], [L-S1]); recall that rank C =2. O

Lemma 7.3. Let a < b and k 2 [ be arbitrary positive integers. Let C be the rank 2
tautological (sub)bundle of 7 : Fl(a,b) = X. Then

Tesk1(CY) = 812(a=1y(V2') - sk=(o-2)(V3") = Sk—(a=2) (V') * s1=(s=1) (V).

Proof. Let Cy C C; = C be the tautological subbundles on Fi(a,b), Cy C Vo, C2 C Vi;
rank Cp = h, h = 1,2. Let z; = 1(C)) and z, = cl((Cg/Cl)V). Consider the
presentation of 7 : Fl(a,b) — X in the form of the composition:

CB(V/C1)Y) T BVY) I X
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We have

reska(€) = m. [(nza) (&5 + 24N . gah 1 k).
The assertion now follows by applying to all summands the well known formulas:

(1) (28) = $p—b-2) (Vs  /CY) = sp—ts=2)(Vs') = 8p—p—2y—1(V}’) - 1,
(m2)a(2]) = $p—(a-1y (Vi)

and simplifying. O

Theorem 7.4. Fori > j >0 one has in A*(G) witha=n+1-2,b=n+1-7,

[Qa,b)] = T @poRY - (5imp(Va) - 5i-g(VyY) = sicg(VY) - 55-p(VyY)) +

p>qz0
PRE9RI
i—-1 i
+ LZ 2>: (1% P e, Ve (Sokgiop(Va ) Sk jap (V) = 5kt p (V) 5k =5 (Vi)
t=0p21

where we assume sy(—) =0 for h < 0.

Proof. 1t follows from Lemma 7.2 that

[Q(a,b)] = 2 (7"2)*(311*4-1,11—?(0\/)) : ép,qu+

0gg<p
n—2
+ E (‘-l)kcsz : (71'2): [Sn-k,n-k-l(cv) - 3n-—k+l,n—k—2(0v) + ...
k=0

+(_1)"‘ksz(n—k—-1);1(cv)] .

Applying Lemma 7.3 to w2 : Fl(a,b) = X, the assertion follows. O

Example 7.5. 1. For: = 2,7 =1 and any n the formula reads:
élev + ézRv 51V + éle (Vs VY — VY )+
+(31an—1 . Sgan - SaVnV_] - SgVnV -V .sanV) =
= Q2RY + Q2RY -G VY + Q1RY - Q2VyY + QuVy.

2. For i = 3,7 = 1 and any n one obtains, with @p,q = Q,,RY, sr = sk(VY_,) and
s = sk(V,’), the expression:
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Q31+@3'Si+ézl'31+éz‘31‘3'1+él'(32'3'1—'53)-}-

+8y-8) — 34— 51 -85 + 5y —c2V - (351-8) —sh)+ ey V.

3. For z = 3,7 = 2 and any n one obtains, with Q’p'q = @p,qRV and sg; = sk (V,),
the expression:

Qa2+ Q3151+ Qa-s2+Qa1 511 +@2'521+é1 899+ 832 — 841 +Ss—c2V (821 —83)+cq V- 51.

More generally we have:

Corollary 7.6. With the above notation and j = i — 1, sg1 = si,i(VyYio_;), the class
[Q(a,b)] equals

1=1=k

- i—1
Z Qp,qu “Si—l—gqi-p T Z (_1)kc2kV ) Z (—1)h3—k+z‘+h,~k—1+i-h-
i2p>¢20 k=0 h=0

Similar formulas can be deduced in the orthogonal cases. We leave this to the (inter-
ested in) reader.

8. Section 3 revisited via the operator approach

The goal of this Section is to provide another proofs of the main results of Section 3
by using divided differences operators. We start with the Lagrangian case. The methods
here are used in the context of the Chow rings but they equally work in the cohomology
rings. Let X, = (z1,... ,7n) be a sequence of indeterminates. Recall (see Section 5)
that the symplectic Weyl group W, is isomorphic to Sy, x Z3 and the elements of W,
are identified with "barred permutations”: if w = (o,7), ¢ € S,, 7 € Z3 then we
write w as the sequence (wy,... ,w,) endowed with bars on places where r; = —1. In
particular, wo = (1,2,...,7) is the longest element of W,,. Consider in W, the poset
W) of minimal length left coset representatives of W, modulo its subgroup generated
by reflections corresponding to the simple roots £, — €2,... ,€p—1 — €, (in the standard
notation):

W(")={(E1 >Zp> ... >y <...< ynot) EW,, 1=0,1,... ,n}.

The assignment w = (Z1,... ,21;Y1,..- y¥n—t) = I = (21,...,2;) establishes a bijection
between the poset W™ and the poset of all strict partitions contained in p,. One has
divided differences 8, : Z[X,] = Z{X,] (w € W) i.e. operators of degree —I(w), whose
definition has been explained in Section 5. &, induces an operator on A*(Sp(V}/B)
which will be denoted by the same symbol, for brevity. (We specialize (z;) to the Chern
roots of the tautological subbundle on LG,V.) It will be clear from the context in which
ring 9, actually acts.

Let V be an 2n—dimensional vector space endowed with a nondegenerate symplectic
form. Let B be a Borel subgroup in Sp(V) and B~ its opposite. Then with every
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w € W, one associates the Schubert cycle X,, = [B"wB/B] in A*(Sp(V)/B). Note
that Sp(V')/B =~ LFI(V) in the previous notation. The latter ring is isomorphic to
Z[X.] modulo the ideal T generated by e;(z%,... ,z2), 1 < ¢ < n (see [B]). We have

A*(LGaV) = A*(Sp(V)/B)"™ C A*(Sp(V)/B),

and, denoting by wy the element of W) that corresponds to a strict partition I C py,
these are precisely X,, I—strict C pp, that, among all X,,’s belong to A*(LG,V).
The following fact comes from comparison of the results from [B-G-G] and [D2] with [P,
Theorem 6.17] recalled in Theorem 2.1(i) (see also a recent work of Billey and Haiman
[B-H] for an alternative proof).

Theorem 8.1. For every strict partition I C pn, one has in A*(LG,V),
Xuw, =Q/RY = awl-lonwo.

where R 1s the tautological subbundle on LG, V.

w. O a representative of
0

Algebraically, this means that applying the operator 8“’;—1
Xuw, in Z[X,], one gets (modulo I) the polynomial Qr(Xn).

Note that if we replace V by a vector bundle V — B, then the right hand side equality
in Theorem 8.1 holds with X,,, replaced through a generator of the top degree component
of Z[X,]/Z, e.g., the one equal to z°" ' 22" "' ... z,.

Fix now an integer 0 < k& < n and denote:

wik) = (m,n—1,...,k+1;1,2,... k).

Observe first that for a strict partition I C p, of length {(I), aw(,,)@;(x,,) # 0 only
if I(I) > n — k. (This is because d,, decreases the degree by [(w¥)) =n + (n - 1) +
...+ (k + 1).) More precisely, we have:

Proposition 8.2. For a strict partition I of length> n — k, Bw(h)éf(Xn) #0ff I D
(n,n—1,...,k+1). In the latter case, writing I = (n,n—1,... ,k+1,71,...,71), where
ji1>0and I < k, one has

By @r(Xn) = @y i (Xn) (mod J).

(This is a congruence in SPol(X,); recall that 7 = IN SPol(X,).)
Proof. Let I be a strict partition of length h > n — k. Let

wr = (Wl,ﬁg,... s WA Whetly - o )wﬂ)

be the element of W(™) corresponding to I. Then taking into account that

(w(k))_1 =n-k+ln-k+2,...,0sn—kn-k—1,... 1),
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we get

wro (w*)~1 =

(wn_k.H D> Wnek42 > ore D Wh,Whp1 KWhyp2 < oo K Wiy Wik < Whepe) < ... < ’w]).
We have l(wy) = wy + ... +wp, {(w®)=n+n-1)+...4+(k+1), and

n—nh

Z(on(w(k))—l) = Wp—k4+1 T+ Wp—ky2+...+wp+ Z Card{l Sp<n—k| wp < wh+j}
i=1

n=h
by Lemma 5.1. Thus, denoting the above sum 3 (...) by Y., we get:
j=1

l{(wr) — l(w(k)) -~ l(w_r o (w(k))‘l) =

=wi+...Fwak—(n+ -V +... +(k+1) -3

Now, a necessary condition for 6w(s.)@;(Xn) # 0 is:
Wy .ot Wk~ (n+(n—l)+...+(k+1)) —Z:O,

which implies (wy,... ,wp-k) = (n,n—1,...,k+1) and 5, = 0, ie., wp < Wn_t.
Assume this and write [ =h — (n — k), jp = wn_k4p (p=1,...,1). Since we have

—_ —_ n
Wiy, = (wn—k-{-la--- s Wh; Whely v s Wny Wnek,-.- ,wl) e wt ),

we conclude that 0, (é;(Xn)) = ijl‘___,j‘(Xn) (mod J), as desired. O

We now pass to a geometric interpretation of the proposition. The setup and the
notation is the same as in the proof of Proposition 3.1: V' — B - rank 2n vector bun-
dle endowed with a nondegenerate symplectic form, X = LG,V, V,, denotes here the
tautological subbundle on X and 7 : F — X is the composition (see Section 1):

LGn_ik(CH/C) 25 Gr(Ve) 23 X,

where C is a tautological rank k bundle on Gi(V},). Let S be the tautological subbundle
on LG,_x(C*/C); hence rank S = n—k. We claim that from the point of view of Chern
classes computations in Proposition 3.1, we can identify V,, and D, or equivalently V,,/C
and S (recall that § = D/Cyx). By the splitting principle the sequence of the Chern
roots of C is a subsequence of the sequence of the Chern roots of V,,. We have (see
Lemma 1.1) that

[S]1+(S¥] = [(Va)#] + (V) 7] = [C#] - [C3].

It follows that any symmetric polynomial in the squares of n — k variables takes the same
value when evaluated in the Chern roots of V,,/C and S. Since we know by Proposition



42

5.9 and Theorem 5.10 that the image of a polynomial in Chern classes of S via (m).
i1s a symmetric polynomial in the squares of Chern roots of V,,/C, we conclude that
in the process of our calculation we can identify the Chern roots of V,,/C with those
of S, the final effect of the calculation being the same in both instances. Denote now
by (q1,---,qn) the Chern roots of VY. Therefore, without changing the effect of our
calculation, we can identify the Chern roots of DY with (q1,... ,¢n) (recall that D is the
rank n tautological subbundle on F). Having this identification in mind, we now give:

Another proof of Proposition 3.1.

In virtue of the previous proposition it suffices to show that for every polynomial f
in n variables 7. (f(q1,... ,qn)) = Oy f)(a1,.-. ,qn), where q1,... ,gn are the above
Chern roots. Let v and u be the following elements of W;:

v=(n-kn-k—-1,... ,T,n—k+1,n-—k+‘2,...,n)
u=(k+l,... ,n, 1,20 .. ,k).

It follows from Proposition 5.8 that

(Wl)*(f(qu“' 7QH)) = (avf)((ha ,Qn)-

On the other hand, as Lascoux showed to us several years ago, one has

(m2)s (flar, - 5 an)) = (Buf)(ars- - am).

(This can be proved using a reasoning similar to the one in the proof of Proposition 5.8
above.) Since w(*) = u o v, we thus have

(8w(")f)(q1)--' 1qﬂ) = ((au Oav)f)(ql"" ’q") =

= (ﬂ-? Orl)*(f(qlw“' vqn)) = T*(f(qlu"' )qn))v

which is the desired assertion. O

In the odd orthogonal case, this way of arguing translates mutatis mutandis, thus
giving another proof of the odd orthogonal analog of Proposition 3.1.

Finally, we pass to the even orthogonal case. In type D, the Weyl group W, is
isomorphic to S, x Zj ~! and is identified with the group of "even barred permutations”.
Consider a system S of generators of W,, consisting of s; = (2,1,3,... ,n) and s; =
(1,2,...,i—1,i+1,4,i+2,...,n),i=1,2,... ,n— 1. (W,,5) is a Coxeter system of
type D, and the length function w.r.t. S is

l(w):zn:ai-}— > oy,
=1 rj=—1
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where a; = card{p | p > 1 & wp, < w;} and bj = card{p | p < j & w, < w;}. The longest
element wo in W, is equal to (1,...,%) if n is even and to (1,2, ...,7) if n is odd. Consider
the poset W{™ of minimal length (w.r.t. S) left coset representatives of W, modulo the
subgroup generated by {si}i=1,..,n—1. We have

— _ n
I'V(")={(zl >Zp > ... > T n <y2<...<yn_2t)€Wn|t=0,1,...,[—]}.

Observe that for w € W(™ we have [(w) = Z?;l(z,- —~1). The assignment
(21,22, .., 226591, Y2, s ¥n—20) (21 = L,20 — 1.0 (29 — 1)

establishes a bijection between W(™ and the poset of strict partitions contained in
pn—1. Given such a partition I, let wy be the corresponding element of W(™). Fol-

lowing [B-G-G] and [D1,2] one defines the operators 9y, : Z{X,] = Z[X,] (resp. Ow :
A*(S0(2n,K)/B) — A"‘(SO(2n,K)/B)) for w € W, mutatis mutandis ; here,

avff = (f _f(_IQa—'mlam:h "'3‘Tﬂ))/(—$1 - :E?)‘

Also, the definition of the Schubert cycles X,, € A®)(S0(2n,K)/B), w € Wy, is
completely analogous to that in the Lagrangian case.
If 7' is an ideal in Z{X,] generated by e;(z},...,z2),1<i<n—-1,and 2, -... z,,

then 4*(S0(2n,K)/B) is isomorphic to Z[X,])/Z' (see [B]). By comparing Theorem
2.1(iii) with [B-G-G] and [D2] we get, for strict I, in A*(OGLV):

wa = ﬁ[RV = aw;_lwu (Xw0>,

( see also [B-H] for an alternative proof).
Fix now an integer 0 < k < n such that k¥ = n (mod 2) and denote:

wh =@\ n—1,... ,k+1;1,2,... k).

Note that [(w(®) = (n — 1) + (n — 2) +... + k. Hence for a strict partition I C pp—1,
Oy Pr(Xrn) #0only if [(I) 2 n—k.

Proposition 8.3. Let k = n (mod 2). For a strict partition I C pp—; of length 2 n—k,
Oy (Xw;) # 0 only if I is of the form I = (n—1,n—2,... k,j1,J2,... ,j1) for some

J=(71,--. 1) with 3y > 0 and | < k — 1. In the latter case, aw(k)ﬁI(Xn) = ﬁj(Xn)
(mod T').

Proof. We imitate the proof of Proposition 8.2. Consider the element w; of W(*),
wr = (W1, Wazy... ,Wh; Whe1s-+- ,Wn),

with h-even and h 2 n — k, corresponding to I;s0 I = (w; — 1,... ,wp — 1). We have
Hwry=wi+...+wp —h, {uN)=n4+(n-1)+...+(k+1)—(n-k), and

l(w; o (w(k))_l) = Wnektl + Wnkq2+ ... +wp —h+{(n—-k)+ Z,
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with 3 as in the proof of Proposition 8.2. Hence the same proof as the imitated one
yields the desired assertion. O

Observe that for & = n (mod 2) there exists a completely analogous operator proof of
Proposition 3.5 (with the same u and v) to that of Proposition 3.1 given in this Section.
Invoking Remark 3.4, this leads to another proof of Proposition 3.5.

9. Main results in the generic case

Let V be a rank 2n vector bundle over a smooth equidimensional scheme X endowed
with a nondegenerate symplectic form. Let E and F. : ; C F, C ... C F, = F be
Lagrangian subbundles of V' with rank F; = ¢ and rank E = n. For a given sequence
a.= (1 <a; <..<ag < n), we are interested in a locus

D(a.) := { z € X|dim(EN Fﬂp); 2p, p= 1,...,k}.

Let G = LG,V and let R C Vi be the tautological rank n subbundle on G. By a well
known universality property of Grassmannians there exists a morphism s : X — G such
that E = s*R. Therefore (in the set-theoretic sense) we have:

D(a.) = s7Y(Q(a.; F)),

where

Qas F) = { geEGldm(RNF,,)g2p, p=1,..,k }

We take this equality as the definition of a scheme structure on D(a.), i.e., D(a.) is
defined in X by the inverse image ideal sheaf (see (Ha, p.163]): s~ (Q(a F.))-Ox where
Z(Q{a.; F.) is the ideal sheaf defining Q in G. It follows from the main theorem of [DC-L]
that (a.; F.) is a Cohen-Macaulay scheme. Hence, by {K-L, Lemma 9] we get [D(a.)] =
s*[Q(a.; F.)] provided D(a.) is either empty or equidimensional of codimension equal to
the codimension of Q(a.; F.) in G. Therefore, having a formula for the fundamental class
of Q(a.; F.) given by a polynomial P in c.(R) and c.(F, ))g, p = 1,...,k, the formula
for D(a.) becomes P(c.(E),c.(Fa,)p=1,..k). Moreover, by using the Chow groups for
singular schemes and a technique from [F] one can prove the following refinement of
the above. If X is an equidimensional Cohen-Macaulay scheme and D(a.) is either
empty or of codimension equal to the codimension of Q(a.; F.) in G then the class of
D(a.) in the Chow group of X equals P(c.(E),c.(Fq,)p=1,..,k)N[X]. In particular, for
a. = (n—k+1,...,n) we have by Proposition 3.2:

Theorem 9.1. If X is an equidimensional Cohen-Macaulay scheme and

={z € X| dm(ENF); 2 k}

13 either empty or an equidimensional subscheme of codimension k(k + 1)/2, then the
class of D* (endowed with the above scheme structure) in the Chow group of X equals

(D% = (2 @rBY - Qoo FY) 1],

where the sum is over all strict partitions I C py.
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Example 9.2. The expressions giving the classes for successive k are:

k=1 élEeré]Fv;

k=2 QuEY +@EY - Q\FY +GQiEV - Q2FY + QuFY,

k=3 Q:mE + QnEY - QIFV + QuEY - QzFV +QuEY - Qs FY + Q3EY - Qo FY +
@2EY - @ FY + Q1EY - Q52 FY + Qani FV.

For a. = (n + 1 — 1) we get:

Theorem 9.3. Let X be an equidimensional Cohen-Macaulay scheme and assume that
St = {z € X| dim(ENFp41-i)z 2 1} 1s either empty or equidimensional of codimension
tin X. Then

(57 = (Z pEY - sicpFyly, i) NIX].

p=0

Example 9.4. The expressions giving the classes for successive ¢ are:
i=1 cEV+s51FY;-

i=2 cEY + clEvle,:’_l + 52 FY_|;

i=3 3BV + cEVs1F) o+ EVsoFyY o + 83 F)_

In a similar way one can interpret other formulas proved earlier for Schubert sub-
schemes in Lagrangian Grassmannian bundles.

In the odd orthogonal case, the setup is the same as above. Repeating mutatis mu-
tandis the above definitions and arguments, one gets the following analog of Theorem
9.1.:

Theorem 9.5. If X is an equidimensional Cohen-Macaulay scheme over a field of char-
acteristic different from 2 and

= {z € X| &im(ENF), > k}

13 either empty or an equidimensional subscheme of codimension k(k + 1)/2, then the
class of D* in the Chow group of X equals

(Z BEV. ﬁWFV) N [X],
where the sum ts over all strict partitions I C pi.
An ana;log of Theorem 9.3 in this case is left to the (interested in) reader.
Let now V be a rank 2n vector bundle over a connected equidimensional scheme X

endowed with a nondegenerate orthogonal form. Let Eand F.: F CF, C...C Fr = F
be isotropic subbundles of V with rank F; =i and rank E = n. One should be careful
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here with the definition of D(a.). For a given sequence a. = (1 € a; < ... < ax < n),
where k£ is such that dim(E N F),; = k(mod 2) if ax = n, we are interested in the locus

D(a) = {:z: € X|dim(ENF, ). 2p, p=1,... ,k}.

There is a morphism s = (s',s") : X - OG,V U OG!V such that s*R = E where
R is the tautological rank n subbundle on OG.V U OG,V. We have (in the scheme -
theoretic sense) that if k = n (mod 2) then

D(a) = (s")"'Q(a;(F)oc,v);

and if k = n + 1(mod 2) then

D(a.) = (") (a; (F)oayv).
(
Hence, arguing as above we have the following analog of Theorem 9.1 :

Theorem 9.6. If X is a connected equidimensional Cohen-Macaulay scheme over a
field of characteristic different from 2 and the locus

D* = {z € X| &im(ENF), > k},

defined for k such that k = dim(E N F); (mod 2) where x € X, 1s either empty or i3 an
equidimensional subscheme of codimension k(k — 1)/2 in X, then the class of D* in the
Chow group of X equals

(S BEY - B, iFY) 01X,
where the sum 13 over all strict partitions I C pi—_;.

Example 9.7. The expressions giving the classes for successive k are:

k=1 1;

P,EY + P FV;

Py EY + B,EY . PiFY + B,EY - B,FY + B, FV:

E321Evj' ﬁszEv;ﬁvaj‘ ﬁleV;:P;FV + Py EV . PyFY + PB,EV - Py FY +
PEY - Py FV 4 PyEY - P3o FY + Py FV.

il

P‘T‘!IT'P-"
W N

i

An analog of Theorem 9.3 in this case is left to the (interested in) reader.

Remark 9.8. All the formulas stated in this Section in the Chow groups have their direct
analogs in topology. Maybe the simplest version is the following. Assume that X is a
compact complex manifold, the bundles E, F; are holomorphic and the morphism s from
X to LG,V above is transverse to the smooth locus of the Schubert variety Q(a.; F.).
Then the cohomology fundamental classes of D(a.) are evaluated by the corresponding
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(given above) expressions in the Chern classes of E and F;. The same applies to the
orthogonal case.

Appendix: Quaternionic Schubert calculus

Let H denote the (skew) field of quaternions. Let ]P’;] be the projective space that
is identified with (H**! \ {0})/ ~, where (h1,... ,hny1) ~ (h{,... ,hl ;) iff there is
0 # h € H such that h; = h - h! for every i. It is a compact, oriented manifold over R
of dimension 4n. Let us recall after Hirzebruch [H1], that, in general, this real manifold
does not admit a structure of a complex analytic manifold.

Let Gx(H") be the set of all k—dimensional subspaces? of H*. Gx(H") has a natu-

ral structure of 4k(n — k)-dimensional, compact, oriented manifold over R. Of course
Gy (H"') = Pp.

Let Fli, ..  (H") be the set of all flags of subspaces of consecutive dimensions
(k1,... ,kr) over H. It is also a compact, oriented manifold over R. One has (see [B],
[S1]), Flk,.... k. (H*) = Sp(n)/[1io Sp(kit+1 — ki) (here, kg = 0 and kryy = n). Of
course Flg, (H") = G, (H").

10.1. ([B, 31.1 p.202]) Let y1,...,yn be a sequence of independent variables with
deg y; = 4. Then

H* (Flkh...,kp(Hn)’Z) = SPOl(yl’ e ’yn)/Ikly“' ke

where Ix, ... k. 8 the ideal generated by polynomials symmetric in each of the sets
{Ykit1s-- 2 Ukiz 1 1=0,1,...,7, separately (ko =0, kry1 =n).

For instance (all cohomology groups are taken with coefficients in Z),

H*(Pg) = Zy)/(y™*?), deg y = 4;

H* (Gk(H")) = SPol(y1,... ,yn)/ Ik, deg yi = 4.

We see that these cohomology rings are double-degree isomorphic with the cohomology
rings of their complex analogues.

Fix now aflag V. : V4 C Vo C ... C V, of subspaces of H* with dimgV; = ¢. For
every partition I C (n — k)* we set

5(1) = {L € Gu(H") | dima(LN Vakap-is) =p, p=1,... k)

The so defined o(I) (I C (n — k)*) give a cellular decomposition of G¢(H") and the
codimension of o(I) is 4|]. Now define

o(I) = o(I,V.) = {L € Gp(H") | dimm(L O Vaokip—i,) 2P, P=1,... A}

The cohomology classes of o(I,V.), in fact, do not depend on the flag V. chosen and will
be denoted by the same symbol o(I). We record: :

2 the word " (sub)space” means always a ”left H-(sub)space”.
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10.2. (Pieri-type formula) In H*(Gi(H") one has

o(I)-o(r) =Y a(J),

where the sum is over J such that i1, < jp, < ip—y and |J| = |I| +r.

Not all proofs of the Pieri formula for Complex Grassmannians can be extended to
the quaternionic case. However, the proof in [G-H, pp.198-204] has this advantage. As

a matter of fact, Gi(H") is an oriented compact manifold and thus its cohomology ring
is endowed with the Poincaré duality. Moreover, one checks by direct examination that

o(I)-o(n—k—ig,...,n—k—i1) =o((n—k)*) = [pt].

Then the proof in loc.cit. goes through mutatis mutandis also in the quaternionic case.

We can restate these information about the multiplicative structure in H*(Gx(H"))
as follows:

10.3. Let YV = (yp ,.... ,Yk) be independent variables of degree 4. The assignment
s1(y1,... ,yx) = o(I) for I C (n —k)*, and 0 -otherwise, is a ring homomorphism,
and allows one to identify H*(Gyx(H")) with a quotient of SPol(Y) modulo the ideal
®Zs1(Y), the sum over I ¢ (n —k)*.

This result has a number of useful consequences. For example, it implies immediately
that the signature of the Complex Grassmannian (see [H, p.163] and [H-S, Formula
(23) p.336] is the same as the one of the Quaternionic Grassmannian - a result proved
originally in [Sl] using different methods.

We now describe a certain fibration which makes the Quaternionic Grassmannians
useful in study of the Grassmannians of non-maximal Lagrangian subspaces (which are
not Hermitian symmetric spaces).

Let V = C?" be endowed with a nondegenerate symplectic form & given by the matrix

0 I.
A= .
-I, 0
where I, is the (n x n)-identity matrix.

Having in mind the standard notation associated with H we endow V with a structure
of H-space setting j-v = Ay, where ” = ” denotes the complex conjugation (note that

A? = —idy).

10.4. If U C V is k—dimensional Lagrangian C-subspace of V then dimg(H - U) = k.
Moreover, the restriction of the symplectic form ® to any H-subspace of V, is nondegen-
erate.

To show this consider the standard Hermitian scalar product <,> on V = C*". Now
given U, we pick up its C—basis uy,... ,ux such that < u,,uq >= §, 4. We claim that
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Uy,... ,Uk,JU1,... ,jur are linearly independent over C (which implies dimg(H-U) = k).
This claim follows immediately from ®(up,u,) = 0 = ®(jup,ju,) and B(up,ju,) =
u;A(AEq) = — < Up,Uqg >= —bp 4.

Suppose now a H—subspace W C V is given with dimgW = k, say. We can always
find C-linearly independent vectors wy,... ,wx € W such that ®(wp,w,) = 0 and
< wp,wq >= bp 4. Then jwy,...,jwi also belong to W. It follows from ®(w,,w,) =
0 = ®(jwp,jwy) and S(wp,jw,y) = —dp 4 that we,... ,wk,jwi,... ,jwi form a C—basis
of W and the form @ restricted to W is nondegenerate.

We infer from the above

10.5. The assignment U — H - U, defines a locally trivial fibration of LGy (Czn) over
G (H") with the fiber LG (C*F).

In other words, denoting by S the tautological (sub)bundle over G (H" ), rankgyS = k,

we have an identification LGy (Czn) ~ LG(S), where the latter symbol denotes (the
total space of) the corresponding Grassmannian bundle.

This identification can be used in reduction of some problems about Grassmanni-
ans of non-maximal Lagrangian subspaces to the problems about the Grassmannians of
maximal ones. For example, we get from 10.5 the following identity of Poincaré series:

PLG,. (c"‘)(t) - PG,. (IBI")(t) 'PLG;,(C%)(t)’

thus reproving the result from [P-R2, Corollary 1.7].

Similar fibrations exist for Flag varieties. Let LFlk, .. & (C*") be the variety of La-
grangian ( w.r.t. ® ) flags of dimensions (ki,... ,k,) in C*".

10.6. The assignment (dimcU;=k;, i=1,...,7r):

(UlcUQC...CU,_)H(H-Ulcﬂ-Ugc...CiHI-Ur)

is a locally trivial fibration of LFly, . 4 (C*") over Fly, . i (H*). If C** c C*2 ¢

... C C* is a (part of) the standard flag, then the fiber of this fibration is the variety

of Lagrangian flags W, C W, C ... C W, such that W; C C** and dimeW; = ky, 1 =
1,...,r.

Therefore the fiber is a composition of Lagrangian Grassmannian bundles of maximal
subspaces. In particular, we obtain the following formula for the Poincaré series of

LFl, . 4. (C™):

r

P (t)=P @ IIP (),
LFlky,... ., (C) Fly.... n, (B ] LGiyn,_, (CRiki=1))
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where ko = 0. Since explicit expressions for the factors on the R.H.S. are known (see

(10.1)), this gives an explicit formula for P (2).
LFly, )

10.7. Finally, we show an algebro-topological interpretation (as well as another proof)
of the identity:

sr(zd, .o 22)  spn(T1ye e Z0) = S2r4p, (T2, 00, 20)

from Section 5. To this end we show two different ways of constructing LF! := LF! (c*™).
The first way is given by taking the total space of the Flag bundle FI(R) — LG, (C*")

where R is the tautological vector bundle on LG, ((Cz"). The second way relies on the
following observation: LF! can be interpreted as the variety of flags W, C W C ... C
Wan such that dimgcW; = 7 and each Wy; is a H-subspace. This realization is given by
the assignment:

(Vicvic..cVa)m (GCH-ViCH-Vi+V; CH-Vi+H-V,C ...

Equivalently, using the tautological sequence S; C S, C ... C S,, rankyS; = 2, on Flp,
this corresponds to taking the total space of the product of Projective bundles

P:=P(S2/S1) XFig - -- X Fig P(Sa/Sn-1) = Flg

where S;11/Si,1 =1,... ,n, are considered as rank 2 complex bundles.

The same holds in the relative situation, i.e. given a rank 2n vector bundle V — X
endowed with a symplectic form we get a commutative diagram

P = LFI(V) = FIR)

Flg(V) 2 X 22— LG,V

where Flg(V) is the Quaternionic (complete) Flag bundle. Let zi,...,z, be the se-
quence of the Chern roots of the tautological quotient bundle on LG,V. By Corollary
5.6(1) we know that if there exists an even ip, then (m o m ), (2} -... - zir) = 0. (Cal-

culating the other way arround, this follows easily from the projection formula.) On the
other hand, iff all i, are odd, then (see Proposition 5.5)

Spn(T1yeeesZa) (meom)u(z} - oo 2i) = s1—p_ (T1,. ., Z0).

Putting 7, = 2j, + 1 and calculating the other way around, we get
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2ji+1_2ja+1 -
(T271)¢(1171]1+ z33 ...:r:f{“‘“) =

= () (@ @Y @)
=S8J—pn_y (:E?, . ,:1:,21)

Indeed, recalling the notation from 10.1 we have y, = 22, p = 1,... ,n (see [B, 31.1]),
and we use the fact that (72), is induced by the Jacobi symmetrizer (recalled in the
proof of Corollary 5.6(ii) and that of Lemma 5.7(it) ) this time applied to y1,... ,¥n.
The latter statement follows from 10.1 by exactly the same reasoning as that used in the
proof of Lemma 2.4 in [P1]. Comparison of the results of both computations, yields the
desired identity.
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