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Remarks on Torus Principal Bundles

Thomas Hofer

In this paper we study principal bundles X —— M over a compact complex manifold M whose
structure group is a compact complex torus T" = V/A. The total space X of such a principal
bundle is usually not a Kahler space even if the base manifold M is.

Typical examples are Hopf manifolds, or the Calabi-Eckmann manifolds diffeomorphic to a
product of spheres. These are principal bundles over a product of projective spaces, the fibre is
an elliptic curve. Those and other special examples have been studied in detail, see [Cal-Eck],
[Maeda], [Nakamura], [Akao].

We develop the theory starting from the base manifold M, often assuming that it (i.e. H2(M))
has a Hodge decomposition. For a T -principal bundle X —— M we define a characteristic class
¢ € H2(M,A) (1.3) and invariants e: Hy' — H}?, 42 Hy® — Hjp (1.5). It will turn out that
these can be computed from ¢ and determine the do differentials of the Leray spectral sequence
converging to H*(X,C) and of a spectral sequence converging to HY" (with a variant computing
H*(O©x) ). This spectral sequence was constructed by Borel in his appendix to {Hirzebruch] and
was used there to compute the Hodge ring of Calabi-Eckmann manifolds. Since in our case all
those spectral sequences degenerate on FEj-level, Betti numbers, Hodge numbers, and the space

of infinitesimal deformations of X can be computed in general (Theorem 1.6).

In bundles with ¢ = 0 the torus T can be replaced by any other torus of the same dimension
(e.g. Calabi-Eckmann manifolds), whereas for £ # 0 (e.g. Iwasawa manifold) the periods of T
must be related to intrinsic data of M (Chapter 7, Chapter 8).

If M is simply-connected, then it is fairly easy to construct simply-connected bundles, even
with first Chern class ¢;(X) = 0. They do not carry a Kahler metric by Blanchard’s theorem
(1.7), in fact they cannot carry a complex Kahler structure for purely topological reasons (11.4).

I moreover M is a complex surface and T an elliptic curve, then we get a lot of interesting
simply-connected complex threefolds with ¢; = 0. According to Wall’s classification of real six-
dimensional manifolds, the only diffeomorphism invariant is the Betti number b5(M). So we
find complex structures with different Kodaira dimension on the same C* manifold (Chapter
13).
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Small deformations of Calabi-Eckmann manifolds have been described in [Akao], those of the
Iwasawa manifold in [Nakamura]. Suwa has studied infinitesimal deformations of holomorphic
Seifert fibre spaces in general [Suwa,], [Suwas]. In our special situation things are fairly easy,

and we can describe the infinitesimal deformations using the invariants ¢ and 7.

This paper is mainly a result of my stay in Japan. I had many interesting discussions with
Japanese mathematicians there but in the first place I would like to thank Kenji Ueno who
invited me to Kyoto University and helped me in many ways to understand both mathematics

and the way of life of that fascinating country.

1. Notation, Basic Facts, and Main Theorem.

1.1. Notation. T = V/A always denotes an n-dimensional compact complex torus, defined
by a lattice A C V in the n-dimensional complex vector space V. M is a compact complex

manifold of dimension m, and m: X — M denotes a T -principal bundle.

Canonical identifications concerning the torus will be made frequently. In particular we use
To(T) = H'(O7) = V, Hi(O7) = HY @ V, HY® = HO(QL) = HYO®7)" = VvV, HEY =
H"}’o ® Hg"'qa A= HI(T7 2)1 Hl(Ta Z)V = Hl(Ta Z)

Whenever there is a Hodge decomposition for the cohomolgogy, pr,: HP*(Y,C) — HY? de-

notes the projection onto the (p,q)-component, pr, (w) =: wP?.

Hodge numbers and Betti numbers of X will be written in the form

hy! b2(X)

r° h%! b1(X)
n%? bo(X)

1.2. Cocycles. Such principal bundles are described by elements of H'(M, O (T)). For a
Cech 1-cocycle (¢ij) the function ¢;; : U; NU; — T identifies (2,t) € U; x T with (z2,t) =
(z, ¢ij(z) +1) € U; x T in different trivializations.

1.3. The characteristic class. Taking local sections of the constant sheaves 0 = A - V —

T — 0 we get an exact sequence of sheaves on M
0 A= 0@V ->0(T)—0
and from this the exact cohomology sequence

= H(M,A) — HY @V — H'(Oy(T) & HX(M,A) - HZQV — ---



So the defining cocycle of the bundle in H(Os(T)) determines a characteristic class

d=dX)=c2(X 5 M) € H]MA=H*(M1I) QA.

The inclusion A C V 2 C" induces a map from the Z-module H3(M, A) (of rank by (M)-2n) to
the (by(M) - n)-dimensional vectorspace H*(M,V) = H*(M,C) ®, V. The image of ¢* defines

a characteristic class

c=c¢(X)=c¢X D M)e HE (M, C)V

1.4. Basic facts.
(a) The translation invariant vector fields H*(©7) =V on T induce an n-dimensional space

of everywhere linear independent vector fields on X. This gives exact sequences

(*) 0 — Ox®.V — Oy — 70y — 0

Y 0 — 70y — QO — Oxe HY' — 0.

(b) For the sheaves of relative vector fields and of relative differentials and for the canonical

bundle this means

Oxpr = Ox®V = OF
1,0
Qe = Ox® Hyp =N
Kx = K
(c)
e(X) =0 a(X) = ma(M)
x(Q%) = 0 (X)) = (M)
C3 (X) = 0
(d) Furthermore
Rim.Ox = Oum ®c HY'
Rm.Oxpe = Ou @ Hy' ® V =  Omx®H(Or)
Rir.0y = 7.0x ® HY
RmQy,, = Oum® HY @ HY® = On ® Hy'
Rim. Q4 = .04 ® HY'

(e) The long exact sequences obtained by pushing forward (x) split up and all the extensions

coincide:



0 — R‘me‘\-/M — R"ﬂ'*e,\’ — Or® Hg':i - 0
| I I
0 — C)M®V®Hg:i - w*eX®HE}" — @M®Hgn’i — 0

0 — Q}, @ HY' -  RinQy - Rfﬂ*QfY/M - 0
I l I
0 - OL,eHY - 70L@HY - OyeHP®HY — 0
Proof: The invariant vector fields on T' are also invariant under changes of bundle coordinates,
so they define global vector fields on X. This gives (%), and the second sequence in (a) is just
the dual. (b) follows directly from the exact sequences definining G y/3; and Ql\ M
0 - Oxy 2 Ox = ™0y — 0
0 — Q4 - 0% — Q.l\'/M - 0
and A™*0QL = rATQL @ Am“Q_le. (c) is a direct consequence of the multiplicity of the
Euler characteristic resp. of the x,-genus (cf. [Borel] = [Hirzebruch] App. I1.8) and x,(T) = 0.
The Chern classes come from downstairs because Oy is an extension of a trivial sheaf by 7*9,;.
The first equation in (d) holds because transition functions act trivially on the cohomology of a
fibre, the rest is is an easy consequence. For (e) observe that since the bundle is locally trivial,
locally (on M) ©(U) ® HY' is a direct summand of H'(z~*(U),®y) in a canonical way.
Therefore Ri7, Oy — Oy ® H(}Zi is surjective. o

1.5. Invariants. The relevant information on the bundle X =M is contained in the following

invariants of a T -principal bundle:

(a) The extension class of the sequence 0 — Y, — 7.0} — On ® H;-’D — 0, that is
v € Ext}(Oy @ HFY, Q1) = HY(Q},) ® (HX)Y or equivalently

) 11
v: HY" — Hy

(b) The transgression of the fibre bundle, i.e. the first possibly nontrivial ds -homomorphism

}3’20’1 — 22’0 in the Leray spectral sequence of the constant sheaf Cx
0 — HY(M,C) — HYX,€) — HNT,C) -5 HY(M,C).

Together with the transgressions in integral cohomology and homology there are

§ : HYT,C) — H2(M,C)
8 . HYT,Z7) — H2(M,Z)
61 : HQ(M,Z) — H]_(T,Z)




(c) The first possibly nontrivial dy-homomorphism H°(R!7,0Ox) — H?(7,.Ox) in the Leray

spectral sequence of Ox

. 0.1 0,2
e Hpt — Hy;

(d) The characteristic classes ¢f € H2(M,A) and c € HX(M,C) ® V of the bundle as defined
in 1.3.

All these invariants are related to each other, they determine Hodge and Betti numbers and also
the space of infinitesimal deformations of X. The main general results that we will prove in this

paper are:

1.6. Theorem. Let X —— M be a T -principal bundle as described above. Then:

(a) Borel’s spectral sequence PYE," = ZH:,;_‘ ® H’F}_"’t_p'“‘ which computes the Hodge
numbers of X degenerates on FEj-level, and the dy -differential is determined by € and ~
(4.3).

(b) The same holds for Borel’s spectral sequence computing the cohomology h*(©x) (14.7).

(c) Leray spectral sequence E,"' = H*(M,C) ® H*(T,C) which computes the Betti numbers
of X degenerates on Ej-level, and the dy -differential is determined by & (5.1).

(d) Under the identification H*(T,Z) = Hom(A,Z) the characteristic class cf € H*(M,Z)® A
and the map 6%: HY(T,Z) — H?(M,Z) coincide (6.1).

(e) & is obtained from 62 by scalar extension (6.2).

(f) Assume that H?(M) is has a Hodge decomposition. Then § determines € and v, and
vice versa (Chapter 6).

§ somehow measures the twisting of the bundle modulo torsion, and it also appears in

1.7. Blanchard’s Theorem. [Blanchard]
Assume that the base space M is a Kahler manifold. Then the total space X is a Kahler
manifold if and only if 6§ = 0. &

According to (c) and (d) of the previous theorem, § == 0 if and only if the characteristic class ¢Z
is torsion, and then all the invariants behave like for a trivial bundle. So from our point of view,
this is the less interesting case. In contrary, we will construct simply-connected spaces (which
requires a simply-connected base and é injective, see Chapter 11), mainly as elliptic principal
bundles over algebraic surfaces (Chapter 12, Chapter 13), where the topological structure of X

is determined by simple invariants.

2. Example: Calabi-Eckmann manifolds. These are {non-Kahler) principal bundles with

fibre T = C/(Z®TZ) over a product M = P™! x P™2 of complex projective spaces whose total
space is diffeomorphic to a product of spheres $2™1¥1 x §2m2+L If (zg: ... i Zyy;Y0 P - - - f Ymy)
are homogenous coordinates of M, the bundle is trivial over the standard affine coordinate

patches U;; = {z; # 0,v; # 0} and the transition functions are given by



1 ]
$iju (=] W) = o (logz—: + 7 log gj—)

Since 7 ¢ R it is easy to show that the bundle is diffeomorphic to §2™+! x §2m+l

Cmitl x €™+ with the standard projection to P™ x P™2 via

grmutl x §2matl 5 (zy) o ([xl, [v], %(logmi +T~logyj)m0dl®fl) €Ui; x T.

The Hodge algebra has been investigated in [Borel], II.9. The Hodge numbers are (0 < m; <

ma)

r? = 1 ifp>mpandg=p,p—1

{1 ifp<myandg=p,p+1
0 otherwise

(see 9.4). In 4.3 we investigate the spectral sequence that Borel used for his computation.

m; = 0 defines a Hopf manifold. In the easiest simply connected case m; = my =1 we get a

a complex threefold diffeomorphic to S% x §3 with Hodge numbers

1 1

0 1 0

0 1 ¢ a
0 1 1 0 2
0 1 0 0
1 0 0

1 1

Akao has studied the small deformations in [Akao). He starts from the description of Calabi-
Eckmann manifolds as a quotient of (C"‘""l - O) x (Cmat! — O) by an action of the additive
group C via diagonal matrices (eH et ™l ) . Deforming the identity matrices to pairs (A, B)
and dividing out scalar multiples (uA, pB) (defining biholomorphically isomorphic manifolds)
one gets all small deformations (see 15.4).

3. Example: Iwasawa manifold. (cf. [Nakamura]) Let G be the complex Lie group
biholomorphic to €* but with multiplication defined by

1 20 23 1l a a3 1 zo4+as 23403+ 2200
0 1 23 . 0 1 (13} = 0 1 21+ ay
0 0 1 0 0 1 0 0 1

A denotes the lattice of Gaussian integers Z @ ¢ - Z, and [ is the discrete subgroup of G

consisting of those matrices with all entries in A. Then via (21,29, 23) — (21, 22) we get a map
X = G/T = M = C/AxC/A = TxT.

This is an analytic T -principal bundle, T = C/A acting by the matrices of the form a; = ay =

0,a3 € T. Fixing a local lifting 2, for the coordinate zp on T local trivializations are

T U) 3 (21,22,23) = (z,2.t) = (21,22,23—2%) € UxUxT
mod T mod A X AxXA



The inverse mapping is given by 23 = t + 2;2. So the transition functions are ¢;; = 2z, - A;j
for some A;; € A representing the difference between two liftings of z;. The G-invariant
holomorphic 1-form —z1dzs + dzz on G descends to a form w on X which in local bundle
coordinates is

w = di+ 2z -dz.

The invariants are ([Nakamura] or Chapter 10)

1 1

3 2 4

3 6 2 8
1 6 6 1 10
2 6 3 8
2 3 4

1 1

Another example of Nakamura shows that our results hold only for principal bundles. He
constucts a parallelizable manifold with hg&l = 1 which is a non-principal 2-torus bundle over

an elliptic curve. But by 7.4 we know A% = 3 in the principal bundle case.

4. Spectral sequence of QF..

4.1. Bundle coordinates. Under a change of bundle coordinates as described in 1.2, the
leading term of a differential form w = dzr A d2; A dt; A dt’; remains unchanged but there are
additional components coming from the derivatives of ¢;;:
Gw o o= dzAdiAdtgAdiz+ Y frrppder AdzZp AdtpAdig
KRLL
with of course |K|+|L| = {I|+ ||, |K|+|L| = |I| +|J}, but only swnmands with higher base
degree occur, i.e. only those with | K|+ |K| > |I|+ |I| and |K| > |I|, |K] > |]].

4.2. Borel spectral sequence. Q% can be resolved by the Dolbeault complex (A%*,d) of
C*®-(p,.)-forms. The direct image complex 7, A" can by filtered by the base degree of the
forms: Fem,A%? consists of those forms that in local bundle coordinates (z,t) can be written

as a linear combination of dz; A dzy Adty; Adt; with [I| + |1} > s.

Taking global sections AR? = I'AR? we get a filtered complex (A%",d) of modules and from this
the spectral sequence as usual. This is the filtration introduced in [Borel] 4.1, and we keep the
notation from there. The usual spectral sequence graduation is given by (s,t), corresponding
to the filtration, i.e. to the total base and fibre degree of differential forms. We also include
(p,q) denoting the (8,8)— type but p is constant in each of the sequences and we always have

ptg=s+t. _
i {we FeART | Bw € For ARt}
3 Ers, _

Fstl ARS 4 G(Fo-r+1 4RI

P st dy Patl pstrit—rtl
r r

P.q — Pyl st
GrHY? = @ EZ

s+t=p+q



Note that p is not changed by the differential, and ¢ is determined by p+ ¢ = s+, so in fact

there is a single spectral sequence for each p, computing the cohomology of €.

Let At}[’/ s denote the bundle of global C*-(2,j)-forms on the fibres. Then the first levels can
be interpreted as follows [Borel]:

= @ r (A o k)
i
p.qus.t — @Ai}s—l ® ng—f,t-p-fl’
i
p,qEza,t — @ H;’;—i ® H%—i,t—p-}-i
g=0: PgM = HYoHY
p= 0: O’QE.zs’t — H(})"}s ® Hg:t

The map from A%? to »?E " is given by locally taking only the well-defined terms with lowest
base degree in each fibre; these are glued together to a section of Aj{} ®A X_’,;’f_j. The differential
dy is then J in fibre direction, so the map to »?E,* is taking Dolbeault cohomology on the
torus. The bundle consisting of the Hodge spaces H;’_, (2) is trivial, and we are left with a
form on M times a cohomology class of T. The next differential d; equals d of these forms in
base direction. These facts are described in [Borel]. We will now investigate dy in our special

situation. The basic maps are
L 0,1 50,1 _ 0.1 da 0,2 22,0 _ 10,2
e: "By =Hp - TTE;T =H)y

. 1,0p0,1 1,0 d2 1,1 22,0 1,1
v TE; =Hy — TEyT =Hyp

4.3. Proposition.

(a) d2 is a derivation on the product of Hodge algebras 3. _ . .3 Hf{f—i ® H"}_i’q_"“ :
dy(wAn) = dow A+ wAday.

(b) dy(H3) = 0.

(¢} yHP® — 03, is the invariant introduced in 1.5(a).

(d) e Hg.’l — Hg’f is the invariant introduced in 1.5(c), i.e. the do map from Leray spectral
sequence for Ox. It vanishes if and only if the spectral sequence for p = 0 degenerates at
By -level, ie. if %% =AY - Ry

(e) d.=0 forr>2.

Proof. ds{w) is computed by lifting the cohomology class to a global C* form on X, then
taking 0 and projecting back to E,. Since the projection respects wedge products, ds behaves
like a differential. This proves (a). Because w € H'];f can be lifted to the J-closed form 7*w,
all d.(w) vanish for r > 2. So (b) holds. (e) follows because statements (a) and (b) hold also
for r > 2, and the generators dt; and dt; of H}® are not affected by higher d,. because of
their degrees.

{(c): We resolve



0 — Qh — W,Qi— — 0M®H;~’0 — 0

by
0 — A}H' — B — Agf@H;’o — 0

where BY(U) constists of those (1,¢)-forms on #*(U) that are harmonic in fibre direction,
i.e. which in local bundle coordinates can be written as ) w; A dt; +7 with w; and 5 being
forms on M. The map to .Ag}q ® H;’O is the (well-defined) projection to Y w; Adt;. Then v as
defined in 1.5 is the connecting homomorphism HD(A?V’,' ®H,}‘O) — H? (Ah'), it is the obstuction
to lifting dt; to a global section of 7,Q% : Locally on a system of trivializing neighbourhoods
(U,) for the bundle on M, it can be lifted to dt;, and the difference of two liftings on U,z is
dt; — ¢ 5dt; and defines a 1-cocycle in Ahﬂ which must be a boundary since the sheaf is acyclic.
Thus there is a O-chain (pa) € H°(A;7) such that (dt; — p,) is a global form, the lifting to
I'B% and its differential dp, is 7(dt;). But this is exactly how the differential in the spectral

sequence works.

So it remains to show (d): The dp differential H*(M,Rl7,Ox) — H?(%.Ox) of Leray spectral
sequence may be computed by using the same resolution of Oy as above: R7,Ox = (7. A}", ).
An element of HO(M,R'7,.Ox) is represented by a cocycle (01,) where v, € T(zn71U,, A(B\ZO).
Its image in H2(m.Oy) is represented by the cocycle (8%) = (xag); Xapg € T(n~ Uy N
Us), Agﬁo). The same argumentation as in {¢) but with dt; instead of n; proves the assertion.

¢

4.4. Corollary. The spectral sequence degenerates at FEj-level and the ds-differential is

wholly determined by the two maps Hx® - H! and H%! - HO?.
ps Hry M T M

4.5. Remark. The Leray spectral sequence for Q. also converges to H? but has FEj-term
E;’j = HY(Ri7,9%). Except for p = 0 the higher direct image sheaves are non-trivial, the
twisting being measured by . The d,-differential, on the other hand, is determined by €, and
the Leray spectral sequence should degenerate if ¢ = 0.

5. Leray spectral sequence of Cy. Taking de Rham cohomology (with complex valued

forms) instead of Dolbeault cohomology, we get the usual Leray spectral sequence converging to
H*(X,C). Here the constant sheaf Cx is resolved by the de Rham complex (A%, d) of C*°-
forms, the filtration is again defined by base degree. Everything works like described above, now
defining a spectral sequence with

ES*' = H*(M,C)®HYT,C).

The basic map is §: E20’1 = HYT,C) R E'22’0 = H%(M,C). With the same arguments as in
4.3 we get:



5.1. Proposition.

(a) da is a derivation on the product of cohomology rings H*(M,C)®@H*(T,C), i.e. do(wUn) =
dow U 11+ w U da7).

(b) da(H(M,€)) = 0.

(¢} d,=0 forr>2. o

5.2. Proposition. The following statements are equivalent:
(1} The Leray spectral sequence for Cx degenerates at E -level
(ii) 6: HY(T,C) — H2(M,C) is the zero map

(iii) The restriction map H%(X,C) — H%(T,C) takes a non-zero value in H;’l

By Blanchard’s Theorem (1.7), for a Kahler base space these statements are equivalent to X
being a Kahler manifold.

Proof. All the R'n.Cyx are constant, and any eclement of H}’l C H¥(T,C) = H*(M,R?7.Cy)
is a Kahler class and therefore induces isomorphisms in the cohomology of the fibres. So

(i) & (i) < (iii)} is the statement of [Deligne], (2.11). &

5.3. Proposition. Let «: T'— X denote the inclusion of a fibre.

(a) For each p there is an exact sequence
HP~2(M,C) @ H} (T, C) 22 HP(M,C) =5 HP(X,C)

where do(w @ ) = w U §(8).

(b) There is an exact sequence

0 — HY(M,C) == HY(X,C) - HYT,€) -5 B2 (M, €) == H%(X,C).

(c) If § is non-zero, then the pull-back =*: H?*™(M,€) — H?>™(X,C) from top dimensional

cohomology of the base space (m = dimg M) is the zero map.

Proof. The pull back map occurs in Leray spectral sequence as the composite H?(M) = E;J R
EpY — HP(X) ([Whitehead], XIIL.7.2* ). Since the spectral sequence degenerates on Ej-level,
the first map only divides out the image of f: Ej _2'1—dz—+E2p ? For p =2 we can extend the
sequence to the left by the standard spectral sequence argument. In top dimension, since the
target space is one-dimensional, it suffices to show that f is non-zero. But if b € H (T is any
element with §(b) # 0, and e € H?™~2(M) is the Poincaré dual of §(b) ([Dold] VIIL8.13),
then f(a® b) = aUb is non-zero in H*™(M). O

5.4. Leray-Serre spectral sequence in (integral) homology. (see [Whitehead], XT11.4.9,
XIII.7) This is a first quadrant spectral sequence with Eg‘q = H,(X,Hy(F)) (Hg(F) the
local coefficient system of the fibration) converging to the homology of X with differentials

10



de: Ep  — Ep_g 41 Always Ef , = Hy(T) and, since Ho(F) is trivial, EZy = H,(M). There
is a commutative diagram ([Whitehead] XII1.7.8, 7.9)

H2(X: T)
T / N Os
Ha(X) H(T)

I I
2 2
E2.0 E0.1

where 7, is the surjective ([Whitehead] XII1.7.3) projection map to H,(X,pt) = H,(X) in rela-
tive homology and 8, is the connecting homomorphism from the long exact homology sequence
of the pair (X,T). The transgression is by definition the (well-defined) map 8, o ..

5.5. Leray-Serre spectral sequence in integral cohomology. This is dual to 5.4. The
transgression is now the composition of the connecting homomorphism HY(T,2) — H*(X,T;Z)
and the inverse of the injective map H2(M,Z) = H3(M,pt;7) — H}(X,T;1).

Since there are no higher differentials or possibly nontrivial local coefficient systems involved,

statement 5.3(b) holds also in integral cohomology and homology:

5.6. Proposition. There are exact sequences
- * z -
(a) 0 — HY(M,Z) =5 HY(X,Z) <5 HY(T,Z) 55 H2(M,7) = H2(X.2).

(b) Ha(X,Z) I Ha(M,Z) =% Hy(T,Z) = Hi(X,Z) =5 Hy(M,2) — 0 0
5.7. Corollary. ¢;(X) = 7*c;(M) is zero if and only if ¢;(M) € im §Z. o

6. Relations between the invariants

6.1. Theorem. Under the identification HY(T,Z) = Hom(A,Z) the characteristic class
c? € H2(M,I)® A and the map §%: HY(T,Z) - H2(M,Z) coincide.

Proof. We resolve Cy by the de Rham complex and compute 6% analogous to the proof of
4.3(d). It is easy to see that this corresponds to a Cech cocycle representing cZ. o

6.2. Proposition. 6 is obtained from 6% by scalar extension:
§ = T @ide: HY(T,C)=HY(T\Z) ® C — H*(M,7)® C = H?(M,C).

In particular, § commutes with complex conjugation.

Proof. This follows from the universal coefficient theorem (e.g. [Dold], VI.7.8) because § and

6 are the transgressions in cohomology with complex and integral coefficients (Chapter 5). ¢

11



6.3. Theorem. Assume that H2(M) is has a Hodge decomposition. Let = denote complex
conjugation. Then identifying H(T,C) with H}.’o <2) H?r’l we can write

€ = Ppre° 5|Hg;l €opryy = prgpoé
7Y = prigoblye
50 +a®) = e(a®) +4(a") + (@) +e(a®) (o € HY®, o™ € HY)

Proof: All the maps follow the same pattern: Take a closed 1-form w on T, lift it to a global
1-form @ on X that locally can be written as @|,-1y, = w + 74, where 7, is a 1-form on
U,. Then the exterior derivatives of the 7, define a closed global 2-form on the base which
represents the image of w. For § we have to take de Rham cohomology while ¢ and vy are

defined by Dolbeault cohomology. The claims follow from

§(dty) = dny) = ?(EZH?(@ = e(dt;) + y(dt;)
§(dt;) = d(ny) = 9(mL)+9(ny) = 7(dt)+e(dl)

6.4. Corollary.
(a) 6=0 <= =0 and e¢=0.
(b) e injective = 6 injective.

c) & injective <= &L injective.
] L]

Proof. (a) and (c) are obvious. (b):0 = 6(a) = 6(al® + %) = €(a®) =0, e(a®) =0 = o' =
a®* =0 = a=0. So § is injective. ’ o

The first Hodge numbers are

Ky = hY +dimkere
hklo = hh? + dim ker v
bi(X) = b (M)+dimkeré

6.5. Relation between integral and complex structure on the torus. (cf. [GH] p. 300
ff or [Wells] VI.1.6) We have to connect integral structure and Hodge decomposition of the

cohomology of the torus.

Let (A1...A2,) beabasisof A = H;(T,Z), embedded in the complex vector space V with basis
(e1...e,) and corresponding complex coordinates (¢;...t,). Let € = (w;,) be the (n x 2n)
period matrix, i.e. its v-th column contains the t-coordinates of A,. So € is the matrix of the
C -linear map

p: (T,7)=A®C — V. 3p(N) = ) wie

induced by the inclusion A C V' with respect to the bases (A1...A2;) of A®C and (e;...e,)
of V. If (z;...%2,) is the real coordinate system of V' whose unit vectors are the ),, then the

coordinate change is

12



i = E Wiy Ty
v

Coordinates of V' descend to coordinates of T' = V/A. So we get two bases of the de Rham
cohomology H!(T, C). The first one consists of (dz; ...dzs,) and reflects the integral structure
HY(T,2Z) c HY(T, C), it is dual to the basis (A;...A2,) of A®C = H; (T, ). The second basis
is formed by (dt;...dt,,dt; ...d%f,), where the first vectors span H;lrlo and the last ones span

Hg:l. The differential forms are transformed as

dt; = ngvdm,,

d; = > wudz,
So the change of basis H%ﬁo @ Hg:1 — HY(T, €) is described by tQ= (tQ ‘Q) , where *Q and
tQ) correspond to the injections of H%,SO and Hg-‘l, respectively. The inverse of Q is usually
denoted by T = (IT | M), M = (m,). So Q- M=1,, Q- T =0, I-Q+100-Q=1,, and

dz, = Z ,:dt; + quidt_;.

Let ¢ =3 &, ar®A, € H2(M,Z)®A be the characteristic class, i.e. §Z: HY(T,Z) — H2(M, Z)
is given by the integral (bo(M) x 2n)-matrix D := (&) with respect to the dual basis of
(A1...A2,) and some basis (o ...a,) of H?(M,Z) (ignoring torsion) (6.1).

§ is described by D with respect to the (dz,) (6.3) and by D-Q with respect to the (dt;, dt;) :

8(dt;) = Z(kauwiu) ap = ZCkz'ak
v k

k
where ((x;) is the (bo(M) x n)-matrix D -
¢ € H3(M,Z)® A can be considered as an element of H2(M,C) ®. (A ® C). The invariant ¢
defined in 1.3 is then ¢ = id ® ¥(c?) € H2(M,C)®V, i.e.

c = kauak®¢(Au) = nguwiuak®ci = ZCkiak®€f-

Now assume that H?(M) has a Hodge decomposition, the projections to the different compo-
nents being described by matrices Pag, P11, Po2 with respect to the (ax) and some bases of the

Hodge components such that Ppy = Pay. Then the composite matrix has the form

. P20 E 0
P-D-'Q = Py |-D-(Q%) = c C
Poz 0 E

where F and C describe € and -+, respectively (6.3). The symmetry in the matrix comes from

the fact that § commutes with complex conjugation.

¢! had been defined by the cohomology sequence of 0 — A — O ® V — Op(T) — 0. Since

the first inclusion of sheaves factorizes over A CV C Oy ® V, in cohomology we have

() é 0,2

—  HYOum(T)) — HYM,A) — Hyy®V —
N /
H(M,C) oV

Thus the obstruction map for a given ¢ being the characteristic class of some bundle sees only
c =Y (rior ® ¢; and projects the H?(M,C) -part to its (0, 2)-component. In matrix notation
this is Py - D - €2, i.e. the 0-block in the matrix for P D - tQ above. This proves
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6.6. Proposition. Consider any element ¢¥ € H2(M,Z)® A or, equivalently, 6L HY(T,Z) —
H2?(M,Z). This is the characteristic class of some T -principal bundle on M if and only if the

obstruction

z 1,0 0,2
A = ro, 0 810 HYY — HY
PTro2 IHT T M

is zero, where 6=6'®ide: HY(T,C) — H%(M,C). &

6.7. On the other hand, if we start with two maps : H;‘O — H}‘; and €: Hgll — Hg’f,
we define &: H!(T,C) — H2(M,C) by the formula in 6.3. Then these invariants come from a
bundle iff § = 62 ® id¢ for some 6%: HY(T,Z) — H2(M, 7).

7. Bundles with ¢ = 0.

7.1. Proposition.  There is an injective map
®: Pic(M)®, A = H(05;) ®, A — H(OuM(T))

compatible with taking characteristic classes, i.e. if Y L;®\; Is a combination of line bundles in
Pic(M)® A then the characteristic class ¢ of ®(3.L;® );) equals Y ¢;(L;)® A; € H2(M, A).

PicM)®A < HYOy(T))
| e1®id L2

HX(M,Z)® A = H2(M,A)

Proof. Consider the following diagram of Z-modules (with exact rows) obtained by tensoring
the exponential sequence by A and applying the inclusion A — V. The rightmost vertical
homomorphism maps Y (;®A; € C*®, A to 3 log(; A; € VmodA.

exp

0 — A — C®,A Co,A — 0
| l l

0 — A — V — T — 0

Sheafifying over M and taking cohomology yield the following diagram. Short diagram chasing

shows that & is injective.
H'(A) — Hy ©,A — H(O3)®, A — HXMA) — HY®, A
[ i le | 4
HY(A) — HY ®. .V — HYOM(T) — H(M,A) — HY®.V

14



7.2. Corollary. If H?(M) has a Hodge decomposition, then the image of ®, i.e. the set of

isomorphism classes of principal bundles constructed in the previous proposition, equals
im® = {Isomorphism classes of T-principal bundles with c* € (H}.,‘,l NH2(M,Z)) ® A}
= {Isomorphism classes of T-principal bundles with € = O}

Moreover, any é¥ € (HJI."{1 NH?(M,Z)) ® A is the characteristic class of such a bundle.

Proof. This follows from from ¢, (H'(0%;)) = Hy} N H2(M,Z), 6.2, 6.3, and 6.6. &
7.3. Remark. The torus itself does not play any particular role here.

7.4. Fibre bundles over curves. If dim M = 1, then ¢ vanishes for dimension reasons. So
the Hodge numbers h?"-q behave like for a product. The Betti numbers, however, can be smaller:
Consider for example the primary Kodaira surfaces (cf. [BPV] p.147) which are bundles over
an elliptic curve with h(‘)\il =2 and b(X)=3.

7.5. Elliptic fibre bundles over P™. Here of course € = 0, so in the non-trivial case vy must
be a surjective map onto H}ﬁl = C. But then multiplication by -y(dt) is an isemorphism except
in first and top cohomology of P™. This means h‘_{lﬂ = hg:l = h:{f’mﬂ = h}""l‘m"'l = 1, the

other Hodge numbers are zero.

8. Bundles with ¢ # 0.

8.1. The image of the map H?(M,Z) — Hg’f induced by the inclusion Z — Oy is an additive
subgroup A = (H2(M,Z))*2 C H?\'Iz. Usually A is dense in H?.gf.

Progs 0,
HY(T,C) _— Y
N /
HYT,Z7) — A
J 16 1 €
(M, 7y — A
/ PTyg
0,2
H%(M,C) _ Hy
The above diagram implies
8.2. Proposition.
Let A’ = prg; (HY(T,2)) C HY' be the dual lattice of A. Then e(A') C ANe(HI'). &

So the cohomology classes connected to bundles with ¢ # 0 are those not coming from line
bundles on M.

For fixed M, there is a restriction on the periods of a torus T which is the fibre of a principal
bundle over M with £ # 0 : The dual lattice must be mapped to the (countable) set A. This
means that in contrast to v for a given M there are ouly few possible tori T for which a

T -principal bundle with, say, injective £ exists.
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9. Fibrations by elliptic curves.

9.1. Now suppose the fibres are 1-dimensional. Then after choosing a generator dt for H;-:O
the d» differentials become (up to sign) multiplication by y(dt) and e€(d?) in the Hodge algebra
of M (4.3). The only possibly non-zero terms and differentials are

pq—1 pptq—3,2 _ p—1,q-2 1,1
E, = Hy, ® H7
T/ NCF
pg ppptg-1,1 _ pPyg-1 0,1 p~1,9 1,0
E; = HM ® HT @ HM ® HT
e N e
p:a+1 pp+g+1,0 _ pgt+1 0,0
E, = Hyy " @ Hf

The HZ3* are all 1-dimensional but they help to remember the effect of d2 on the Hjy: The
map starting at Hyy ®H?F’1 is multiplication by €(d?), the one starting at Hyf ® H;’O multiplies
by -y(dt) and the last one starting at Hy; ® H%,il by y(dt) — e(dt).

9.2. We take (1,7) as basis of A, 1 as a generator of V and use the notation from 6.5. The

change of bases is now

dt = dz,+ 7 dzo dzy = (7-dt—7-di)
df = dz, + 7 - dzo dro = _‘__1_‘_(—dt+df).
Thus any A € A can be written as
A=DAZTA Ly AZA
F—T T—T

With 2 =a®1 + b®7€ H3(M,Z)®A and c = ® 1 € H*(M,C) @ V we can write the
relations between the invariants as follows. A is the obstruction for ¢ being the characteristic
class of a bundle (6.6).

d = a®l +b@r = MENgl+ T
c = f(e+7-H)®1 = n®1
A = f(a+7-0)2% =

6 dey a = L(F-n-7-9)
dzy +— b = ;iT(—TI‘*‘ﬁ)
dt a+T7-b = 7
dt +— a+7-b = 4

€: it —  (a+7:-5)02 = 502

v: dt +— f(at+7-B) = gl

9.3. In order to construct an elliptic principal bundle with € # 0, we have to find q,b €
H?(M,Z) and 7 € C—R such that A = (a+7-b)"? =0 and e(df) = (e +7- )92 £ 0, i.e.
a% = —7-3%2 but 52 # 0. This is equivalent to finding a,b € H2(M,Z) such that a2 and 592

are linear dependent over € but independent over R, and 7 is the ratio between them.
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9.4. Elliptic bundles over M = P™ x P™2, Since hg’{l = hg’f = 0, the characteristic class
map is bijective in this case. If we vary the transition functions defining the Calabi-Eckmann
manifolds by parameters Ay =] + k7, Ao =lp+ kT €A
_ 1 Ty Y
b b)) = g (M-10g 24 da-log 2 )

we get a family of fibre bundles with characteristic classes
= HQM+Hy @A =(UH +LH)®1+ (kiH + ko H))®T € HZ(M,A)

where Hy and H, are generators for the integral cohomology of the two factors (the Chern
classes of the hyperplane bundles). These are all elliptic principal bundles over M. Now ¢ =0
and 7(dt) = \; Hy + Ao Ha € Hy

Since the Hodge numbers of M are concentrated in the diagonal

r+1 0<r<m
Ry = {ml+1 my <1 < Mo
my+me—r+1 my <r<m +nm

{assuming m; < mg ), for a given p the only contributions to the spectral sequence are

b,p 2P—2,2 — P—17P—1 171 P.p Orl — P~P+1 2p'1
E, = Hy @Hy" — Hyy ®Hy = £

p-1 p2p-2.1 —1,p—1 1,0 2p,0
pb.p EzP » — H?yf WP ®H'Iz Hi,fp —_ PaPE2P

Both are multiplication by «(dt) in the first factor. So if A; and )y are both non-zero, the
maps are injective for p < mo and surjective for p > my + 1 which implies the result stated in

Chapter 2 (even if my =0).

10. Iwasawa manifold.

10.1. We are now able to compute the invariants of the bundle introduced in Chapter 3. The

global holomorphic form w is a lifting of dt with dw = 0 which means v = 0 in the spectral
sequence. On the other hand, if superscripts distinguish between the two factors of M =T x T,
for the complex conjugate 0@ = 0w = —df' Adt? € HYY | so §(df) = e(df) = —di* A di? € H}Y
and §(dt) = e(dt) = —dt* Adt® € Hi’fo in this example. We can compute the characteristic class:

§(dzy) = 36(dt + df)
= —1(dt! A dt? + dit A dt?)
= —1((dz!+i-dzb) A (de? +i- dad) + (da} — i - dab) A (da? — i - da))
= —da:i A dzf + dz% A dz%

§(dwy) = FE6(dt ~ dF)
= S (—dt* Adt? +dI* AdTP)
= 3 (—(de] +1-deh) A (dad +i - dof) + (do] — i- dab) A (daf — i~ da3))
= —dz} A dz3 — dzi Ad2?
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Thus

I (—dz] Adz? +dzl Aded)®1 + (=dzi Ade}—dziAndz?)®i € HA(M,Z)® A

1

10.2. T-bundles over T x T. Let us investigate to which extent the Gauf lattice can be
replaced by a different one in the above construction. So we start with an elliptic curve T, set
M =T x T and ask if there is a T -principal bundle on M with v = 0 and ¢ # 0. Thus
A =a®1+b®7T with a,b € (HiY ®H}?) NH?(M,Z) such that a®2 + 7% = 0 but b # 0

(see 9.2). If we write
a=a -dt*Adt?P+a-diP AdE?E b=pg-dt' Adt® + 3 - dt* AdE?

then by dt' = dzi 4+ 7dz} and @+ 78 = 0 the integrality condition is equivalent to
1 2 gr

B+ € 1 B+8 € 1
HB+pP) € 1 B+ € 1
(B +70) € 1 2+728 € 2

Since the equations are homogenous, it suffices to find # € C such that all the expressions are

rational. One of 8+, 78 + 7 must be non-zero, so the lattice must satisfy the conditions
T+TEQ 77 € Q.

These are also sufficient because 728 + 7262 = (1 + 7) (v + 78) — 277(8+ ), any 0# P € Z
with 778 and (7 4+ 7)8 integral will do.

The invariants can be computed from the spectral sequence (9.1), see 13.6. They are the same

as for the Iwasawa manifold (with 7 =1 and § = —1) given in Chapter 3.

11. Topology of the total space.  We will now investigate homotopy and homology prop-

erties of the bundle. Since m;(T") is the only nontrivial homotopy group of a torus, the long

exact homotopy sequence of the bundle yields

11.1. Proposition. mi(X) = m;(M) for 1 > 3. The first homotopy groups fit in the exact

sequence

0 — m(X) — m(M) — m(T) — m(X) — m(M) — 0. )

11.2. Proposition.

(a) If by(M) =0, then there is an exact sequence

0 — H!(X,C) <5 HY(T,C) -5 H2(M,C) =5 H2(X,C) - H(T, C).
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(b) If (M) =0, then there are exact sequences
0 — HI(X,Z) -5 HYT,Z) 55 w2(M,7) 25 BA(X,Z7) <5 HA(T,Z)

Ho(T,Z) - Hy(X,Z) = Ha(M,Z) 25 Hy(T,Z) - Hy(X,2) — 0.

Proof. If b;(M) = 0, then we can extend the sequence from 5.3(b) one step further to the right
because E21’1 =0 (Serre spectral sequence, [Whitehead] XIII 7.10). But for Z -coefficients (5.6)
we must assume that the base space is simply connected in order to conclude that the local

coefficient system is trivial. O

11.3. Proposition.

(a) b(X) =0 ifand only if by(M) =0 and 6: HY(T,C) — H?(M,C) is injective.

(b) In that case, the restriction to the fibre H2(X,C) — H2(T,C) is zero, the pull-back
H2(M,C) — H?(X,C) is surjective, and

bo(X) = bo(M)—b:(T) = bo(M)-2n.

Proof. (a) follows directly from the preceeding theorem. For {b) note that with § = ds: E20’1 -
EFY also dy: EJ? — E2' is injective. Thus bo(X) = ba(M) — by(T), and H?(M,C) —
H?(X,C) is surjective. &

11.4. Corollary. If b;(X) =0, then m-fold products H*(X,€)®-- - ®H2(X,C) — H2™ (X, C)
are zero. In particular, there is no Kahler structure on the topological manifold underlying X.
Proof. By the proposition, all those products come from downstairs. So (m + 1)-fold products

vanish for dimension reasons. By 5.3 this holds already for m. O

11.5. Proposition.

(a) X is simply connected if and only if ny(M) is zero and 6z is surjective.

(b) In that case the inclusion of a fibre induces zero in homology: Ho(T,T) 2 H, (X,Z), thus
Ho (X, Z) = ker 67.

Proof: If M is 1-connected, then &z coincides with 7m2(M} — m1(T") in the homotopy sequence.
So (a) follows from 11.1. The proof of (b) is dual to the proof of 11.3. &

Analogously:

11.6. Proposition. Assume that M is simply-connected. Then H'(M,7) = 0 if and only if
6 is injective, and in that case H2(X,Z) - H*(T,Z) is zero. O

Note that by the universal coefficient theorem (e.g. [Dold], VI.7.8) if M is simply-connected

then 6% is the dual of éz. So if 6z is surjective, then 67 is injective. The converse is by no
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means true, however. But if 62 an injection onto a direct summand of H?(M,Z), then 8z is

surjective.

11.7. In general, if we only assume that M is simply connected, then the universal covering X
of X is also a fibre bundle over M, with connected fibres since 71(7") generates m;(X). The
fibre T is a covering space of T, it is compact exactly if this covering is finite, i.e. if X has finite
fundamental group. In fact, T is an Abelian complex Lie group, and X—-Misa T-priucipal
bundle. If, for example, T' is an elliptic curve, then X is the quotient of a C”-bundle (total
space of a line bundle with zero section removed) by a linear Z-action exactly if 7;{X) is not
finite. The most extreme case is that by (X) equals the fibre dimension n. Then T is C* and
the bundle is the quotient of an affine principal bundle by the lattice A.

If, on the other hand, 7;(X) is finite, then we can replace the torus T by a finite covering T
which is a compact complex torus again and get a principal bundle with simply-connected total

space.

12. Elliptic fibrations over surfaces

This might be the easiest interesting case. Since the total space is a complex 3-manifold, we can

use C.T.C. Wall’s results on the topology of real 6-manifolds:

12.1. Theorem (C.T.C. Wall’s classification of 6-manifolds). Let X 5 M and
X' Z M’ be two elliptic principal bundles with structure groups T and T’ over compact
complex surfaces M and M'. Assume that X and X' are simply-connected with torsion-
free homology and that the second Stiefel-Whitney classes of the underlying real 6-manifolds
(wo(X) = cr(M)mod 2, we(X') = n""¢c1(M'Ymod?2) are zero. Then the following statements
are equivalent:

(a) X and X' are diffeomorphic.

(b) X and X' are (orientend) homotopy equivalent.

(c})  b2(X) =b2(X') and b3(X) = b3(X").

Proof. This is [Wall], Thm. 5 and 6, applied to our situation. Here triple products in H?(X)
are always zero (11.4). Since the characteristic classes of X are pull-backs from M and the
pull-back morphism H*(M) — H*(X) is zero (5.3), the first Pontrjagin class always vanishes.

Therefore the Betti numbers b and b are the only remaining parameters in the classification.

¢

12.2. Theorem (Almost complex structures on 6-manifolds) ([Wall], Thmn. 9). The
homotopy classes of almost-complex structures on the 6-manifold underlying a compact complex

3-manifold X are in 1-1 correspondence to elements in H?(X,Z) that reduce to the second
Stiefel-Whitney class of X.
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12.3. Proposition. Let X be an elliptic principal bundle over a simply-connected compact

complex surface M and assume that the transgression 8z: Ho(M,Z) — Hi(T,Z) is surjec-

tive with torsion-free kernel (or that §%: HY(T,Z) — H?(M,Z) is an injection onto a direct

summand). Then:

(a) m(X)=0.

(b) Ha(X,Z) is a free abelian group of rank by(X) = bp(M) — 2.

(¢) Hz(X,Z) is a free abelian group of rank b3(X) =2 - b(M) — 2.

(d) X is diffeomorphic to a connected sum (5% x S3)# -+ #(S® x S3)#Y where Y is
obtained from S® by disjoint surgery operations S° x D3 — S°.

(e) There is no Kahler manifold diffeomorphic to X.

Proof. (a) and (b) follow from 11.5. Poincaré duality and Universal Coefficient Theorem ({Dold],
VIIL8.1, VL.7.10) imply Hy(X,Z) = H3(X,Z) = (Hs(X, Z))¥ ®Ext(H2(X, 2),2), so from (b) we
deduce that H3(X,Z) is torsion-free. The rank is determinded by e(X) = 0. (d}) is contained
in [Wall], (e) is 11.4. o

12.4. Remark. So in order to construct interesting bundles on a simply-connected surface M,
we start with a candidate for a characteristic class ¢ = a1 @ A\ + a2 @ A € H2(M,Z) @ A. A
corresponding principal bundle exists iff the obstruction A = Ay - a2 + Az - a9? € H}? vanishes
(6.6). This is always fulfilled if the a; are Chern classes of line bundles.

By the preceeding proposition, X will be simply-counected if a;,as form a basis of a direct
summand of H2(M,Z). Moreover, if ¢;(M) is in the span of the a; then ¢;(X) will be zero
(5.7). Then by 12.1 the diffeomorphism class of the total space is determined only by by (M).
If H2(M) has a Hodge decomposition, then € and + are determined by ¢Z (9.2).

12.5. Computation of the Hodge numbers. According to 9.1 the only non-trivial terms in

the spectral sequence of Ox are “7Ef 1 - 091 B2l Contributions come from

U,3E22,1 — H%f ® ngl

0,2E21,1 — H?\,{l ® ng’l

0.1 E21,0 — Hgy'fl

0,0E20,0 — c

0,1E20,1 = H%l 2N H(;,[Z — 02 E22.0

Thus
AP =1 A} =hr% +dimkere RSP =AY + R0 —dimime  R%® = A%7

The other Hodge numbers are not so easy to compute, because multiplication in the Hodge ring

of M is involved. For p =1 the information is contained in (see 9.1):

21



- - q=2 1,1
l,q 1E2q 2,2 — H(l)uq ® HT
T/ NTE
Lapal = Hy 'eH} o HYYo@HY
& \ )/"I
1,9+1 1 g+2,0 _ 1,q+1 0.0
E; = Hy" " @ Hf

12.6. Surfaces with hi’lo = hg’; = 0. In this case, the only nontrivial terms in the spectral

sequence of Q% appear in

1,302 0,2 1,1
“Ey," = Hy  Hyp

1,1 0.2 1,1 Y@—¢ 1,1 0,1 0,2 1,0 1,2 2,1
10 ~0,1 1,0 ¥ 1.1 1,1 20
TE = Hy — Hy; = E,

The morphism v @ —¢ is injective iff one of the maps is nonzero, i.e. iff § # 0. Assuming this

(otherwise all Hodge numbers equal those of M x T') we get
hyY = dimkery hy' = hyf —dimimy A =hy + RS -1 hy = h%E.

If moreover 6: HY(T,C) — H?*(M,C) is injective, the Betti numbers are determined by 11.3
(and e(X) =0). Then the invariants are (with € := dimime, g := dimimy)

1 1
1—g l1—e 0
r%2 hy'—g h —e ba(A)~2
hS7 R L Y Y e aS7 2bz(M)—2
RS2 —c Ril—g n;? by(M)-2
l—e l—yg 0
1 1

13. Examples of elliptic fibrations over surfaces.

13.1. Surfaces with b; =0 and by = 2. Let M be a compact complex surface with b, = 0
and by = 2, consequently with Euler characteristic e = ¢ = 4. A look on the classification table
([BPV], Chapter VI) shows us that Miyaoka-Yau inequality ¢ < 3-c, holds, and that x(OQr) =
1-— hg}l + hg’f must be positive (in the algebraic case this is clear because 2hi}0 = b (M) =0,
and for the possibly non-algebraic elliptic surfaces we know x > 0 unless alle fibres are (possibly
multiple) non-singular elliptic curves, which would imply e(M) =0 ([BPV], II1.11.4, V.12.2 and
the remark preceeding it)). Together with Noether’s formula 75(c} + ¢p) = x(Oxr) € Z this

only leaves the invariants
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=8 c=4 x(Om=1, hif = hizlo =

So M is cither rational, i.e. a (simply-connected) Hirzebruch surface X, (for r =1 a blown-up
P?, otherwise M is minimal), or it is a surface of general type with these special invariants. In
the latter case M can either be the blow-up of a ball-quotient surface with ¢? =9, co =3 (the
only known example being Mumford’s fake P?) which must have infinite fundamental group, or
it is minimal. For minimal surfaces of general type with those invariants two constructions due to
Beauville and Kuga (cf. [BPV], VII.11) are known, but both lead to infinite fundamental groups.
In any case for a bundle with « % 0 the invariants are those of Calabi-Eckmann manifolds:

1 1

0 1 0

0 1 0 0
0 1 1 0 2
0 1 0 0
1 0 0

1 1

13.2. Bundles over Hirzebruch surfaces. Let M be one of the Hirzebruch surfaces ..
Then 7 (M) =0, k3 =0, and by(M) = 2. So for any given characteristic class in H2(M, Z)®A
there is a unique bundle. If 6% is an isomorphism, then the total space of this bundle is

diffeornorphic to S x S% and the Hodge numbers are the same as in the Calabi-Eckmann case.

Such bundles have been constructed by Maeda, also in higher dimensions over base spaces which
are P™2-bundles over P™! ([Maeda]). ’

13.3. Bundles over other rational surfaces. Every blow-up adds a direct summand 7
to H?(M,Z). Let 0: M — %, be a k-fold blow-up of ¥,. If we take the pull-back of the
characteristic class of a bundle on ¥, and add all the classes of exceptional divisors {(in order
to kill ¢;(X)), we can define a lot of simply-connected bundles with torsion-free homology and

c1(X) =0 on M. The invariants are

1 1
0 1 0
0 ba(M)—1 0 ba(M)—2
0 ba(M)—1 ba(M)-1 0 2:b2( M) =2
0 ba(M)~1 0 be(M)—2
1 0 0
1 1

with b2(M) = k + 2, the diffeomorphism type is determined by this invariant.

13.4. Simply connected surfaces. Since the minimal model M ofa simply connected com-
pact complex surface M is again simply connected, the Enriques-Kodaira classification ([BPV],
Chapter VI) tells us that the minimal model must be either rational or K3 or proper elliptic
(i.e. of Kodaira dimension s« = 1) or of general type. In any case bo(M) > bg(ﬁ) > 1. Since
there is always a rational surface with isomorphic second cohomology (the intersection form

does not play any role here), the total space of any simply-connected elliptic principal bundle
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(with torsion-free homology and ws = 0) over any simply-connected surface is diffeomorphic
to a bundle over a rational surface, which means that there are complex structures of different
Kodaira dimension on the same differentiable manifold. If the second Stiefel-Whitney classes

coincide, they are even homotopic as almost-complex structures.

13.5. Remark. If X is any complex 3-fold diffeomorphic to S% x $* with Kodaira dimension
k(X ) = 2, then its algebraic dimension is also 2 and by [Akao] Part I, Theorem 1 and (the proof
of) Corollary 3, it admits a torus action with possibly singular quotient space M of general type
whose minimal resolution is a (then simply-connected) surface M with hg-f = 0. By [Akao],

Corollary 4, the rational cohomology ring of M equals the one of P! x P,

13.6. Bundles over an abelian surface. Now we consider an elliptic fibre bundle over an
abelian surface, assuming § # 0. As before, we set e := ranke, ¢ :=rank+y. But now we also
have to consider the map H?Ql ®H%,-’0 — Hf.'f, multiplication by y(dt). Its rank h can take the
values 0 (< ¢ =0), 1 (e.g. v(dt) = dt! Adt®), or 2 (e.g. v(dt) a Kahler form). Furthermore
we need f := rank(H}\}O &) H%’; - H},‘f) (induced by multiplication by £(d%) on the first and by
v(dt) on the second summand). But f=2if e=1 and f=h if e =0, and g is determined
by h, so the parameters for the spectral sequence are only e € {0,1} and h € {0,1,2}, not

both zero. Then the invariants are:

1 1

5—f—g 3—e 4

3-h 8—f—g 3—e 8

1 6—h 6—h 1 10
3—e 8—f—g  3~h 8
3—e 5—f—g 4

1 1

For € # 0, i.e. e = 1, there are three possible sets of Hodge numbers, and they all occur for

small deformations of the Iwasawa manifold, see 14.6.

13.7. Fibrations over a K3 surface. According to 12.6, the invariants of a bundie with §
injective can take three different sets of values depending on the ranks g and e of v and e. In

any case X is simply-connected with trivial canonical bundle.

1 1

1—g 1l-e 0

1 20—g 1l-e 29

1 20 20 1 42
l—e 20—¢ 1 20
l—e 1-g 0

1 1

For example, one can take the Calabi-Eckmann fibration over P! x P! and pull it back to a
K3-surface which is a 2-sheeted cover ramified along a smooth curve of bidegree (4,4).
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But this is only one example. The most interesting ones may be those with € # 0, which should

be quite numerous if the Picard number is small.

14. Infinitesimal Deformations.

14.1. We will now study the space H!(8yx) of infinitesimal deformations of X. Combining
the exact sequence from Leray spectral sequence for Ox/p, Ox and 70y (horizontal) and

cohomology sequences from 1.4(e) we obtain the diagram

0 — H%®n) — H'(mOy) — 0
l l l

0 — HY(mOx) — HYOxm) — HR'MOxny) — H(7Ox/a)
i l l l

0 — HY(m&y) — HY{®y) — HYR'T.Ox) — H¥(r.Ox)
l ! l !

0 — H(©311) — HY(7n*©p) — HY'(R7,7*83) — H2(O)
! l l

— H2(m.Ox;) — H2(Ox/n) HY(R'7.Ox/a1)
3
H?(7.Ox)

14.2. With all the isomorphisms from above this becomes

0 — H'®y) — H'Oyw) — 0
% l
0 — BYev — HYeV — H¥ev L HleV
l ! l !
0 — HY(7.Oy) — H(By) — HY®HOG)) — HX(m.O))
1 ! l l
0 — HY(Oy) — HI(1'0y) — HY@H'(Oy) o HE(O)
Ly 3 L+
3
=~ HYev — HYeV Hy' ® V@ HYY
!
H*(r.Ox)

14.3. Remark. The vertical connecting homomorphisms 7!, 7*, ° are induced by (the dual
of) v (1.5(a), 1.4(e)), 7 is 4!, tensored by the identity of H?F’l. The horizontal dy-map €2 is
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€ ®idy. The maps with a superscript occur in Borel spectral sequence which we will investigate
in 14.7.

14.4. In the much more general situation of a holomorphic Seifert fibre space Suwa considers

the following decomposition of H!(©y) derived from the above diagram [Suway]:

0 0 0
l i l
0 — Apr — D — Ap — 0
! 1 !
0 — I — H@®y) — J — 0
¢ 1 !
0 — Ap — G — Ap — 0
l ! !
0 0 0
Here
Ar = cokery® deformations preserving the T-action with quotient space M
Afr = kere’ deformations of T
Ap = kery? deformations of M preserving the fibration
Ap = kery' Nkere? deformations destroying the fibre structure

Ar is the space of infinitesimal ‘twist deformations’, i.e. deformations which are still T'-
principal bundles with the same structure group over the fixed base space M. All of them are
unobstructed ([Suwa;}, Thm. 3.3). € is the obstruction map for a deformation of T' inducing
a global infinitesimal deformation. The deformations in Ar @ Ap @ Ap are still torus principal
bundles.

14.5. Invariants of the deformations. Under a deformation in A = Ar & Ar @ Ap,

Z (and therfore also ) remains unchanged if the cohomology of the

the characteristic class ¢
deformed manifolds M’ and T” is identified with that of M and T, respectively. For Ar-

deformations M and T are not changed, so € and v also remain the same.

14.6. Deformations of the Iwasawa manifold. For the Iwasawa manifold the computations
are very easy because the tangent sheaf is trivial und +y is 0. The connecting homomorphisms in
the vertical sequences are also 0, and we compute dimH!(©x) = dimH(7,8y) =6, dim Ay =
2, dimAp =4 and Ar = Ap = 0. Therefore each infinitesimal deforma.ti_on of M induces
an infinitesimal deformation of X which is still a T -principal bundle. But deformations of T
cannot be globalized — anyway A is a very special lattice. In fact, the small deformations have
been computed by Kodaira and Nakamura, see [Nakamura], Sect. 3. The Hodge numbers of
the deformations are also given there. ¢ remains nonzero in all cases while v can take different
values, see 13.6. Depending on v (i.e. h=0,1,2 in 13.6), three different sets of values for the
Hodge numbers occur (Ar, Ap — 0, and the complement):
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1 1 1 1

3 2 2 2 2 2 4

3 6 2 2 5 2 1 5 2 8
1 6 6 1 1 5 5 1 1 4 4 1 10
2 6 3 2 5 2 2 & 1 8
2 3 2 2 2 2 4

1 1 1 1

(Recall that while Hodge numbers are constant in complex-analytic families of Kahler manifolds,

they are only upper-semicontinuous in the non-Kahler case, see {Wells], V.6.5, V.6.6.)

14.7. Spectral sequence converging to H"(Oy).In general we can compute H'(@x) =
H™="+(QL @ 7*Kar)V using Borel spectral sequence for p = 1 but with a twist by Kjps. Such
twists with vector bundles on the base space have been included in [Borel]. Writing the twisted
Hodge space HY(Q4,®Kar) as HY(Kar) the spectral sequence is (again p+g¢ = s+t but only

considering the case p = 1)
I’QE';’t = Hg}s(’CM) ® H;’t-l 5] H}..'{S“I(J'CM) ® Hgft
= | Hg’fm-s @ H Y Br) @ H™*t1(0,)@HY* ' )V

( By eHy" eV o H"H(Oy)eHF" )Y

i

Hmiex)’ = GrEYI(Ky) = P B
s+t=14¢q

(+V here means Serre duality.) The spectral sequence has no ring structure any more but still a
Hjy -module structure Hif (Kar) @ Hyy — Hib™4*(Kyg). With the same arguments like in 4.3

one can show

14.8. Proposition. Let &: H;lj — Hg,}2 ®H;’-j_1 and H;’.j — Hk}l ® Hir_l’j be the
iterates derived from ¢ and vy by Leibniz’ rule. Then da(w ®¥) = w- (£(9) +¥(¥9)). The higher

differentials are zero. o
The differential is thus
Lagt = HY (Ka) @ Hp' ™ o  H} NKym)®HY
| da 1 é N 1z

l.g+1 E~v3+2,t—-1
2

Hg;g+2 (Kﬂ{) ® Hé‘,t—? e H]‘.‘,{B‘l'l (Kﬂ[) @ Hg_:t—l

(1,q+1E2.9+2,t—1)v — Hg&m—s-2 ® Hg—:’l_t+2 ® 174 @ Hm—g—l (GAI) ® H[},n—t-ﬁ-l

L Lev S L&

MESM)Y = Hy"TeHY" eV e HM(O)@Hp

A careful consideration of those maps shows

27



14.9. Proposition.

(a) VY is the connecting homomorphism in the cohomology sequence of 1.4(e).

(b) €V is the dp-morphism H3y" ™72 @ H3" "% — HY™™° @ HY" ™! from the spectral
sequence of Oy, tensored by idy.

(c) €V is not so easy to describe but it vanishes if ¢ = 0. &

In order to compute H'(Oy) we have to take s+t~1=g=n+m—1. Sinceonly s <m+1
and t < n+ 1 can give contributions, we need to consider only s = m —1,m,m+ 1 and get

the following spaces and dj -differentials (first in spectral sequence notation, then their duals):

1, n+m—2Em 1.n - l,ﬂ-!—m—lE?m-l-l,n-—l N 0
1,n+1n—2E2m—2,n+1 SN l,ndm-—~1 Ezm n N 0
0 — 1,n+m-—1 E"azm.—l,n+1 N 1,n+mE'12m+1,n
Om- (K:M)®H1n— 1,m 0,n-1
Hl m—z(xM) Ho n — ng} (Kar)® HT’ I 0
_ Kar) @ Hy" ™
HY™ 72 (Kar) © HE” ( f‘_’ — 0
0 — MK eHY —  Hy"(Ka) @ HY"
] 2
HYl@HY @V o H2(Oy) = HO(6) ® HY! — 0
3 4
H @V 2wl ev e H(O) — 0
5
0 — Hy oV < HY(© )
15. Special cases.
15.1. If the spectral sequence degenerates, the invariants are
Ex) = > (n () 6%+ Q) - ew)
i+j=r—1
= 3 () (n-8S +0OM)
i+j=r

15.2. Remark. In the case ho"’ 0 for ¢ > 0, all the «-differentials are zero. All remaining
differentials come from e, but this is zero because h?u = 0. Therefore the spectral sequence
degenerates, and h"(Ox) = (?) + 3 (" )1 (O ).
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15.3. Bundles over curves. In this case always € =0, and
MEST = HY(Ku)®HY'TN @ HyT'(Ka) @ HY

is non-zero only for s =0,1,2. The only possibly non-zero maps are 4': HyP (Kar) @ Hy' ™! —
Hy7 (Kar) ® HR'™1 But HYY (Kar) = H*(Kay) and HyPTH(Kar) = HHY(Kar®), so the only
case where both are non-zero is M an elliptic curve, s = 0. Therefore the spectral sequence
degenerates for non-elliptic curves, and the cohomology is given by 15.1.

If M is an elliptic curve, then H L’f (Ku) = }j The first summand of 1"’}?2” is the starting

point of 4! (for s = 0) and the second one receives ¥*~! (for s = 2), and 4* is nothing but
. L l0 0,t—1 1,1 0,t—1 . e . . "

v 1ng~.t-1. Hy" @ Hf — Hjy ® HP"7". So in the non-trivial case this map is surjective

with a kernel of dimension (n — 1) (tfl). In the spectral sequence we still have

Lapot ker 4*
14 0,1 o rlt=1 o 1110 o 170,
EpLt. Hyy @ H7'7 @ Hyy ® Hy
g2t . IIRZ S
E2t: coker 4%+

Assuming v # 0 we get A"t 9(0y) = (n—-1) (3) -+ u(qfl) -+ (:) = n("‘q“).

Depending on the genus g of the curve, the result is thus

R (Ox) = (n+3)(7) (9=0)
h(Ox) = (n+ 1) (") (9=1, 7=0)
h(Ox) = n("H) (9=1, 7#0)
RT(Ox) = n(l)+(,2)({(n+3)g-3) (g2>2)

15.4. Calabi-Eckmann manifolds. Here h%(07) = m? +2m; +m3 +2my, and h{(Oy) =0
if 7 > 0, and the spectral sequence degenerates by 15.2. Thus H}(©yx) & HY{(87) @
H%(©y). Only ‘fibre deformations’ (dim Ar = 1) and ‘fibre destroying deformations’ (Ap =
H“(e M), dimAp = (my + 2)my + (my + 2)my) occur. While all small deformations have
Kodaira dimension —oo, the algebraic dimension drops for the ‘fibre destroying deformations’
([Akao), Part II, Prop. 2 and 3).

15.5. Elliptic fibrations over manifolds with hg’; = (. Here the diagram reduces to
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0 .
H

0 — HY{(m8yx) —
!

0 — HY(©Oy) —
S ‘

0o —  H}? —
!

H?(r.Ox)

If we assume that in addition ASf = 0, then H'(Ox) = H(O) @ H (1) ® H*(O1).

If X is a nontrivial elliptic fibration with £ = 0 over a K3-surface, h%(@x) =1, A!(8x) = 20,
h?(©x) =19, h3(Ox) = 0. Besides the 1-dimensional Ar only Ap-deformations coming from

the base space exist, but y* gives an obstruction for lifting those deformations to X.

15.6. If M is a surface of general type with h?‘/}l = hgf =0, then H'(®37) =0 and x(O) = 6

by Hirzebruch-Riemann-Roch.

15.7. Rigid spaces. In order to constuct a rigid total space, we must get y! ©e? and % + 4*
0 such that
e HY' — H?{f is non-zero will do, e.g. any ball quotient surface with 0 # p; = x(Op) — 1 =

injective and ¥% surjective. Any bundle on a rigid surface of general type with

%CZ(M) - 1.

H'(0x)

H! (7O )
l

0,2
Hy
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H%(Ox)

H®(Oar)

M
1

— H*(7.Bx)
l

“—  H%(Oum)

0,1 _
h’hf -
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