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Remarks on Torus Principal Bundles

Thomas Höfer

In trus paper we study principal bundles X ~ M over a compact complex manifold M whose

structure group is a compact complex torus T = VIA. The total space X of such a principal

billldle is usually not a Kähler space even if the base manifold M iso

Typical examples are Hopf manifolds, or the Calabi-Eckmann manifolds diffeomorphic to a

product of spheres. These are principal bundles over a product of projective spaces, the fibre is

an elliptic curve. Those and other special examples have been studied in detail, see [Cal-Eck],

[Maeda], [Nakamura], [Akao].

We develop the theory starting from the base manifald M, often assuming that it (i.e. H2 (M))

has a Hodge decomposition. For a T -principal bundle X ~ M we define a characteristic dass

cZ E H2 (M, A) (1.3) and invariants E: H~l -+ H~, ,: H~o -+ H~ (1.5). It will turn out that

these can be computed from cZ and determine the d2 differentials of the Leray spectral sequence

converging to H- (X, C) and of a spectral sequence converging to H;;- (with a variant cOlnputing

H-(8x )). This spectral sequence was constructed by Borel in his appendix to (Hirzebruch] and

was used there to compute the Hodge ring of Calabi-Eckmann manifolds. Since in our case a11

those spectral sequences degenerate on E 3 -level, Betti numbers, Hadge numbers, and the space

of infinitesimal deformations of X can be computed in general (Theorem 1.6).

In billldles with E = 0 the torus T can be replaced by auy other torus of the same dimension

(e.g. Calabi-Eckmann manifolds)J whereas for E =1= 0 (e.g. Iwasawa manifold) the periods of T

must be related to intrinsic data of M (Chapter 7, Chapter 8).

lf M is simply-connected, then it is fairly easy to construct simply-connected bundlesJ even

with first Chern dass Cl (X) = O. They do not carry a Kähler metric by Blanchard's theorelll

(1.7), in fact they CroillOt carry a complex KäWer structure for purely topological reasons (11.4).

If moreover M is a complex surface and T an elliptic curve, then we get a lot of interesting

simply-connected complex threefolds with Cl = O. According to Wall's c1assification of real six­

dimensional manifolds, the only diffeomorphism invariant is the Betti number b2 (M). So we

find complex structures with different Kodaira dimension on the same Coo manifold (Chapter

13).
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Small defoffilations of Calabi-Eckmann manifolds have been described in [Akao], those of the

I wasawa manifold in {Nakamura]. Suwa has studied infinitesimal defonnations of holomorphic

Seifert fibre spaces in general {Suwad, [Suwa2]' In our special situation things are fairly easy,

and we can describe thc infinitesimal defonnations using tbe invariants c and ,.

This paper is mainly a result of IUy stay in Japan. I had many interesting discussions with

Japanese mathematicians there but in tbe first place I would like to thank Kenji Ueno who

invited Iue to Kyoto University and helped me in many ways to understand both matheIllatics

and the way of life of that fascinating country.

1. Notation, Basic Facts, and Main Theorem.

1.1. Notation. T = V / A always denotes an n-dimensional compact complex torus, defined

by a lattice A C V in the n -dimensional complex vector spacc V. M is a COInpact cOInplex

manifold of dinwusion 1n, and 7r: X ~ M denotes a T -principal bundlc.

Canonical identificatioIlS concerning the torus will be ulade frequently. In particular we use

To(T) = HO(8T) = V, Hi (8T) = H~i 0 V, H~o = HO(O~) = HO(8T )v = v v , Hi·q =
H~.;Ü 0H~q, A = Hr(T,Z), H1 (T,Z)V = H1 (T,Z).

Whenever there is a Hodge decomposition for the cohomolgogy, prpq : Hp+q(y, C) ~ H~;q de­

notes the projection outo the (p, q) -component, prpq (w) =: wpq .

Hodge numbers and Betti numbers of X will be written in the form

h~/ b2(X)

h~/ h~l b1(X)

h~o bo(X)

1.2. Cocycles. Such principal bundles are described by elenIents of H1(M,V.M(T». For a

Cech l-cocycle (<Pij) the function <Pij: Ui n Uj ~ T identifies (z, t) E Ui X T with (z, t') =

(z, <Pij(Z) + t) E Uj x T in different trivializations.

1.3. The characteristic class. Taking Iocal sections of the COllstant sheaves 0 ~ A ~ V --t

T ~ 0 we get an exact sequence of sheaves on M

and from this the exact cohomology sequence
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So the defining cocyde of thc bundle in H1(OAf(T)) determines a characteristic dass

The indusion A C V ~ CU induces a map from the Z -module H2 (M, A) (ofrank b2 (M) ·2n) to

the (b2(M)· n) -dimensional vectorspace H2(M,V) = H2(M,C) 0 e V. The image of cl defines

a characteristic dass

I c = c(X) = c(X ~ M) E H2 (M, Cl (9 V I

1.4. Basic facts.

(a) The translation invariant vector fields HO (eT) = V on T induce an n -dimensional space

of everywhere linear independent vector fields on X. This gives exact sequences

(*) 0 ------* 0 X 0 e V ------* ex -----+ 7f*eM -----+ 0

(*) V 0 *AI Al J"l iOI HI,O 0------* 7f ~ t. M -----+ ~ t. X -----+ V X '61e T -----+ .

(b) For tbe sbeaves of relative vector fields and of relative differentials and for tbe canonical

bundle tbis meaIlB

eX/M Ox0e V ~ Offi n
X

Ü~/M = o . 0 HI,O ~ offin
.\: c T X

/Cx = 7f* /CM

(c)
e(X) 0 CI(X) = 7f*cdM)

X(ü~) 0 C2(X) = 7f* C2 (M)

C3(X) 0

(cl) Furthermore

. I
Rl

1r*üX / M

=

=

J"l iOI HO,i
VAl '6Ie T

8 iOI HO,i
1[* X '6Ie T

o iOI HO,i iOI HI,O
AI '6Ie T 'OIe T

Al iOI HO,i
1r*~t.X 'OIe T

J"l iOI HI,i
vAl 'OIe T

(e) The lang exact sequences obtained by pushing forward (*) split up and all tbe extensions

coincide:
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o -+

11 11

-+ 0

-+ 0

o -+

o -+

1I 11 11

/Tl 101 H1 ,0 tO. HO, i
VAJ'CI T 'CI T

-+ 0

-+ 0

Proof: The invariant voctor fields on T are also invariant under changes of bundle coordinates,

so they define global vector fields on X. This gives (*), and the second sequence in (30) is just

the dual. (b) follows directly from the exact sequel1ces definining 8 X/M and 0\/M

o -+ eX/M -+ 8x -+ ?T"'eM -+ 0

O *,,1 ",,1 ,,1 0
-f. ?T uM -+ Ux -f. uX/M -f.

and Amaxo~ = ?T*AmaxO~f 0 AmüXO~/M' (c) is a direct consequence of the multiplicity of the

Euler characteristic resp. of the Xy -genus (cf. [Borei] = [Hirzebruch] App. 11.8) and Xy(T) = O.

The ehern classes come frOIll downstairs because 8 x is an extension of a trivial sheafby ?T*8.u .
The first equation in (d) holds because transition functions act triviallyon the cohomology of a

fibre l the rest is is an easy consequence. For (e) observe that since the bundle is locally trivial,

locally (Oll M) eM(U) @ H~i is a direct summand of Hi (?T- 1 (U)l e:d in a canonical way.

Therefore R i 7f*8x -f. SM @ H~i is surjective. 0

1.5. Invariants. Tbc relevant information on tbc bundle X~M is contained in tbe following

invariants of a T -prillcipal bundle:

(a) Tbe extension dass of tbe seqllence 0 -+ O~f -+ ?T*O~ -+ GM 0 H~o -+ 0 1 tlIat is

I E Ext1 (0 AI @ H~O 1 O~f) = H1 (Ok) (9 (H~o)V 01' eqllivalently

(b) Tbe transgression oE tbe fibre bundle, i.e. the first possibly nontrivial d2 -bomomorphism

E2
0 ,1 -+ E2

2
,O in the Leray spectral sequence oE tbe constant sheaf Cs

Together witb the transgressioIlB in integral cohOlnology and bOlnology tbeTe are

H1(T,C)

H1(Tl Z)

H2 (M,Z)
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I . HO.1 HO,2 IE. T ------+ M

(e)

(d)

The firs t possibly nOll trivial d2 -homomorphism HO (R l 1r*0 x) -+ H2 (1r*0 x) in the Leray

spectral seqllence oE 0 X

Tbe characteristic dasses cZ E H2 (M, A) and c E H2 (M, C) 0 V oE the bundle as defined

in 1.3.

All these invariants are related to each other, they determine Bodge and Betti numbers 3,lld also

the space of illfinitesilnal clefonnatiolls of X. The main general results that we will prove in this

paper are:

1.6. Theorem. Let X ~ M be a T-principal bundle as described above. Tllen:

(a) Borel's spectral sequence p,q E;,t = L H:{,;-i ® H;.-i.t-p+i wmch computes the Hodge

numbers of X degenerates on E 3 -level, and the d2 -differential is determined by E and ,

(4.3).

(b) Tbe same holds for Borel's spcctral sequence computing tbe cobomology h-(8 x ) (14.7).

(e) Leray spectral seqllence E 2
8

,t = H"(M, C) ® Ht(T, C) whicb computes tbe Betti DUlubers

oE X degenerates on E3 -level) and tbe d2 -differential is determined by 8 (5.1).

(d) Under tbe identiEcation H1 (T, Z) = Hom(A, Z) the ebaracteristic dass cZ E H2(M, Z) ® A

and tbe map 8Z: BI (T, Z) -+ H2 (M, Z) coincide (6.1).

(e) 8 is obtained from 8z by scalar extension (6.2).

(f) Assume that H2 (M) is bas a Hodge decOlnposition. Tben 8 deterllUlles E and "'I, and

vice versa (Cbapter 6).

8 somehow measures the twisting of the bundle modulo torsion, and it also appears in

1.7. Blanchard's Theorem. [Blanehard]

AssuDle that the base space M is a Kähler lllanifold. Tben tbe total space X is a Kähler

manifold iE and only if 8 = o. 0

According to (c) and (cl) of the previous theorem, 8 = 0 if and only if the characteristic dass cZ

is torsion, and then all the invariants behave like for a trivial bundle. So from our point of view l

this is the less interesting case. In contrary, we will construct simply-connected spaces (which

requires a simply-eonnected base and 8 injective, see Chapter 11), mainly as elliptic principal

bundlcs over algebraic surfaces (Chapter 12, Chapter 13), where the topological structure of X

is determined by simple invariants.

2. Example: Calabi-Eekmann manifolds. These are (non-Kähler) principal bundles with

fibre T = C/(Zff)rZ) over a product M = pml X p1112 of complex projective spaces whose total

space is diffeomorphic to a product of spheres s2m 1 +1 X S2111 2+1. If (XQ : .•. : X m1 j Yo : ... : Ym 2)

are homogenous coordinates of M, the bundle is trivial over the standard affine coordinate

patches Uij = {Xi #- 0, Yj "# O} and the transition functions are given by
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tj>ij.kl ([xL [y]) =
1

21Ti (
Xk Yl)log - + T • log - .
Xi Yj

Since T tf. R it is easy to show that the bundle is diffeomorphic to s2m 1 +1 X S 2m2+ 1 C

Cml +1 X Crn 2+ 1 with thc standard projection to pm) X p m 2 via

The Hodge algebra has been investigated in [BoreiL 11.9. The Hodge nwnbers are (0 ~ 7121 ~

1122)

{

1 if p ~ 1121 and q = p,p + 1
h~q = 1 if p > n12 and q = p, p - 1

o otherwisc

(see 9.4). In 4.3 we investigate the spectral sequence that Borel used for his eomputation.

1n1 = 0 defines 30 Hopf manifold. In the easiest sirnply connected case 1121 = 1112 = 1 we get a

a complex threefold diffeonlOrphic to 8 3 X 83 with Hodge numbers

1
0 1 0

0 0 0
0 1 0 2

0 0 0
1 0 0

1

Akao has studied the s111a11 deforrnations in [Akao). He starts from thc description of Calabi­

Ecktnann manifolds as a. quotient of (cm1 +1 - 0) X (cm2 +1 - 0) by an action of the additive

group C via diagonal Inatriees (e t .!, et . r .I ). Deforming the identity Inatriees to pairs (A, B)

and dividing out sealar nlultiples (J-LA, J-LB) (defining biholomorphically isomorphie manifolds)

oue gets all small defonnations (see 15.4).

3. Example: Iwasawa manifold. (cf. [Nakalnura]) Let C be the eomplex Lie group

biholomorphie to C3 hut with multiplication defined by

Adenotes the lattiee of Gaussian integers Z Ef) i . Z, and r is the discrete subgroup of G

eonsisting of those matrices with all entries in A. Then via (Z1, Z2: Z3) H (Z1, Z2) we get a map

X := c/r M := C/A x C/A = T x T.

This is an analytic T -prineipal bundle, T = C/A aeting by the matrices of the fonn a1 = a2 =

0, a3 E T. Fixing a loeallifting Z2 for the coordinate Z2 on T Ioeal trivializations are

-;r-1(U) 3 (Z1, z2, Z3)

nlod r
(Z1, z2: t) = (Z1: Z2: z3 - Z1Z2) E U X U x T

mod A x A x A
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The inverse mapping is given by Z3 = t + ZlZ2. So the transition funetions are <Pij = Zl . Aij

for some Aij E A representing the differenee between two liftings of Z2. The G -invariant

holomorphic I-form -zl dz2 + dZ3 on G descends to a form w on X whieh in local bundle

coordinates is

The invariants are ([Nakamura] or Chapter 10)

3 2
3 6 2

1 6 6 1
2 6 3

2 3
1

1
4
8
10
8
4
1

Another example of Nakamura shows that our results hold only for principal bundles. He

constuets a parallelizable manifold with h~l = 1 which is a non-principal 2-torus bundle over

an elliptic curve. But by 7.4 we know h~l = 3 in the principal bundle case.

4. Spectral sequence of r2\".

4.1. Bundle coordinates. Dnder a change of bundle coordinates as deseribed in 1.2, the

leading t.enn of a differential form w = dz[ /\ dEI /\ dtJ1\ dtJ remains unchanged hut there are

addit.ional eOluponents coming from the derivatives of <Pij:

<pij w dz[ /\ dEj /\ dtJ /\ dlJ + L f]{KLLdz]{ /\ dEi.; /\ dtL /\ dir
KI{LL

with of course IKI + ILI = 111 + IJl1 IKI + ILI = 111 + jJI, but only summands with higher base

degree oeeur, i.e. only those with IKI + IKI > 111 + 111 and IKI 2:: 111, jKI;::: 1]1·

4.2. Borel spectral sequence. n~ can be resolved by the Dolbeault complex (A~·,8) of

C OO
- (P, .) -fonns. The direct image complex 1r*A~· can by filtered by the base degree of the

fonus: F87r*A~q consists of those fonus that in local bundle coordinates (Z, t) can be written

as a linear combination of dz[ /\ dZj /\ dtJ /\ dEJ with 111 + III ;::: s.

=p,q E 8,t
r

Taking global sections A~q = r A~q we get a filtered cOluplex (A~~·: D) of modules and from this

the spectral sequence as usual. This is the filtration introduced in [Borei) 4.1, and we keep the

notation from there. The usual spectral sequence graduation is given by (8: t) , corresponding

to the filtration, i.e. to the total base and fibre degree of different.ial forms. We also include

(P, q) denoting the (8,8)- type hut p is canstaut in each of the sequenees and we always have

p + q = s + t.

p,q E 8,t
r

p,q+l E 8+r,t-r+l
r

= EB P,lJE:.;t

8+t=P+q
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Note that p is not changed by the differential, and q is determined by p + q = s + t, so in fact

there is a single spectral sequence for each p, computing thc cohomology of n~,

Let A~iM denote the bundle of global Coc - (i,j) -forms on the fibres. Then the first levels can

be interpreted as follows [Borei]:

p,q E s,t

°
= ffi r (Ai,s-i ® AP-i,t-P+i)

'\I7 AI X/M
i

p,q E .'J.t
1

p,q E .'J,t
2

q =0: p,O E .'J,t =2

p=o: O,q E .'J,t
2

EB A~-i 0 Hj-i,t-P+i

The map from A~q to p,q Eo·'· is given by locally taking only the well-defined terms with lowest

base degree in each fibre; these are glued together to a section of A~i 0Ar;;/~-j, The differential

do is then a in fibre direction, so the map to p,q E1s,t is taking Dolbeault cohomology on the

torus. The bundle consisting of the Hodge spaces H~~l(z) is trivial, and we are left with a

fonn on M times a cohomology dass of T. The next differential d l equals aof these forms in

base direction. These facts are described in [Borel]. We will now investigate d2 in OUT special

situation. The basic maps are

C
', O,lE 0,1 _ HO,l d';l 0,2 E 2,0 _ HO,2

2 - T----+ 2 - M

'V •• l,oEo,l _ H1,0 d2 l,lE 2,O _ Hl,l
I 2 - T ----+ 2 - M'

4.3. Proposition.

(a) d2 is a derivation on tbe product of Hodge algebras L:p+q=s+t Li H~;-i ® Hj-i,q-8+i :

d2 (w /\ 1]) = d2w /\ 1] + w /\ d21].

(b) d2(H~1) = o.
(c) ,: H~o -+ Ht.l is tbe invariant introduced in 1.5(a).

(d) c: H~l -+ H~2 is tbe invariant introduced in 1.5(c), i.e, tbe d2 map from Leray spectral

sequence for CJx. It vanishes if and only if tbe spectral sequence for p = 0 degenerates at

E 1 1 , 'f hO,q '"'" hO,i hO,q-i2 - eve , I.C. 1 X = w M· T .

(e) dr = 0 for T > 2.

Proof. d2 (w) is computed by lifting the cohomology dass to a global Coc form on X, then

taking aand projecting back to E 2 . Since the projection respects wedge products, d2 behaves

like a differential. This proves (a). Because w E H:J cau be lifted to the 8-closed form w*w,

all dr (w) vanish for r ;::: 2. So (b) holds, (e) follows because statements (a) and (b) hold also

for r > 2, and the generators dti and dti of H~· are not affected by higher d r because of

their degrees.

(c): We resolve
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by

O AI,e se AG,e 10\ HI,a 0
--+ M ~ ~ M'öI T ~

where sq(U) eonstists of those (I, q) -forms on 7r*(U) that are harmonie in fihre direction,

i.e. whieh in loeal bundle coordinates cau be written as E Wi 1\ dti + 7J with Wi and 7J beillg

forms on M. The map to A~[q ® HiP is the (well-defined) projectioll to L Wi 1\ dtj. Thell , as

defined in 1.5 is the eonnecting homomorphism HO (A~e ® H~o) ~ H1 (A~e ) 1 it is the obstuction

to lifting dti to aglobai seetion of 7r*O\-: Locally on a system of trivializing neighbourhoods

(UoJ for the bundle on M, it can be lifted to dtj, and the difference of two liftings on Uoß is

dti - 4>:ßdti and defines a 1-cocycle in A~o which lllUSt be a boundary since the aheaf is acyclic.

Thus there is a o-chain (Pa) E HO (Ai'i) such that (dti - Pa) is a global form, the lifting to

rso, and its differential apo is ,(dti)' But this is exactly how the differential in the spectral

sequence works.

So it relnains to show (d): The d2 differential HO(M, Rl 7r.L'Jx) ~ H2 (7r*Ox) of Leray spectral

sequence luay be computed by using the same resolution of 0x as above: R7r*CJx = (7r*A~e, 8).
An elelnent of HO(M, Rl 7r*Ox) is represented by a cocycle (ß't/Jo) where 't/Jo: E r(7r- 1Uo,A~o).
Its inlage in H2 (7r*Ox) is represented by the cocycle (8'lj;) = (Xaß), Xaß E r(7r- I (Uo n

Uß), A~o). The Sallie argumentation as in (c) but with dti instead of ni proves the assertion.

o

4.4. Corollary. The spectral sequence degcnerates at E3 -level and the d2 -differential is

wbolly deternlined by tlle two maps H~o ~ H~:l and H~l ----=--.. H~?

4.5. Remark. The Leray spectral sequence for O~ also converg"es to H~q hut has E 2 -term

Ed,j = Hi(Rj7r*O~J. Except for p = 0 the higher direct iInage sheaves are non-trivial, the

twisting heing measured hy f. The d2 -differential, on the other hand, is detennined by E, and

the Leray spectral sequence should degenerate if E = O.

5. Leray spectral sequence of Cx . Taking de RlIam cohomology (with complex valued

forms) instead of Dolbeault cohomology, we get the usual Leray spectral sequence converging to

He (X, C). Here the constant sheaf Cx is resolved by the de Rham complex (Ax,d) of CCO_

forms, the filtration is again defined by base degree. Everything works like descrihed above, now

defining a spectral sequencc with

The basic lnap is 8: EZO,1 = H1(T, C) ~ E2
2,o = H2 (M, C). With the same arguments as in

4.3 we get:
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5.1. Proposition.

(a) d2 is a derivation on the product ofcobolnology rings H- (M, C)0H-(T, C), i.e. d2 (wUry) =

d2w U 11 + w U d27].

(h) d2(H 8 (M, C)) = 0.

(c) dr = 0 for r > 2.

5.2. Proposition. Tlle following statements are equivalent:

(i) Tlle Leray spectral sequence for Cx degenerates at E2 -level

(ii) 8: H1 (T, C) ~ H2 (M, C) is the zero nlap

(iii) Tbe restrictioll lllap H2 (X, C) ~ H2 (T, C) takes a non-zero value in H~l

By Blancbard's Theorenl (1.7), for a Kähler base space tbese statements are equivalent to X

being a Käbler manifold.

Proof. All the R i 7r+CX are eonstant~ and any elelnent of H~l C H2 (T, C) = HO(M, R21f*Cx)

is a Kähler dass and therefore induees isomorphisnls in the eohomology of the fibres. So

(i) {:} (ii) {:} (iii) is the statcnlCut of [Deligne), (2.11). Ö

5.3. Proposition. Let 1.: T ~ X denote the inclusion of a fihre.

(a) For each p there is an exact sequence

where d2 (w ® 0) = w U 8(0).

(b) There is an exact sequence

(e) Tf 8 is non-zero, then the pull-back 11'"+: H2m(M, C) --+ H2m (X, C) fronl top dimensional

cohOlnology oE tbe base space (m = dime M) is tbe zero map.

Proof. The puH back map oeeurs in Leray spectral sequence as the eomposite HP(M) = E.J·o ~

El:;° t.......+ HP(X) ([Whitehead], XIII. 7.2·). Sinee the speetral sequenee degenerates on E3 -level,

the first map only divides out the image of f: E!-2,1~E.f·o. For p = 2 we ean extend the

sequence to the left by the standard spectral sequence argument. In top dimension, sinee the

target space is one-dimensional, it suffiees to show that f is non-zero. But if b E H1 (T) is any

element with 8(b) =I- 0, and a E H2m- 2 (M) is the Poincare dual of 8(b) ([Dold] VIII.8.13),

then J(a (8) b) = aU b is non-zero in H2m (M). 0

5.4. Leray-Serre spectral sequence in (integral) homology. (see [Whitehead], XIIIA.9,

XIII.7) This is a first quadrant spectral sequellee with E~.q = Hp(X, Hq(F)) (Hq(F) the

loeal coefficient systeul of the fibration) convergillg to the homology of X with differentials

10



dr : E;,q -i' E;-2,q+l. Always E5,q = Hq(T) and: sinee Ho(F) is trivial, E;,o = Hp(M). There

is a commutative diagram ([Whitehead] XIII.7.S: 7.9)

H2 (X: T)
'lr* ./ '\. 8*

H2 (X) HI(T)

I1 11

E~,o
d2

E5I--+ ,

where 71'"* is the surjeetive ([Whitehead] XIII.7.3) projeetion map to H.(X,pt) = H.(X) in rela­

tive hOlllOlogy and 8* is the eonnecting homoIDorphism from thc long exact homology sequenee

of the pair (X, T). The transgression is by definition the (well-defined) map 8* 0 'lr;I.

5.5. Leray-Serre spectral sequence in integral cohomology. This is dual to 5.4. The

transgression is now the eoulposition of the eonneeting hOffiOlHorphism HI (T, Z) -+ H2 (X, Tj Z)

and the inverse of the injective IDap H2 (M, Z) = H2 (M,pt; Z) ~ H2(X, T; Z).

Since there are uo higher differentials or possibly nontrivial loeal coefficient systems involved,

statement 5.3(b) holds also in integral cohomology and homology:

5.6. Proposition. Tbere are exact sequences

(a) 0 --+ HI(M, Z) ...:s. HI (X, Z) ~ BI(T: Z) ~ H2 (M, Z) ~ H2 (X: Z).

(b) H2 (X,Z) ~ H2 (M,Z) ~ HI(T,Z) ~ HI(X,Z) ~ HI(M,Z) --+ 0

5.7. Corollary. C1(X) = 7r*cI(M) js zero jE and only jE c1(M) E im5z .

6. Relations between the invariants

6.1. Theorem. Under tlle identificatjon H1 (T, Z) = HOln(A, Z) tbe characteristic dass

cz E H2 (M, Z) (SI A and the lllap 5z : HI (T, Z) -+ H2 (M, Z) coincide.

Proof. We resolve Cx by the de Rham complex and cOlupute 5z analogous to the proof of

4.3(d). It is easy to see that this eorresponds to a Ceeh eocycle representing cZ . <>

6.2. Proposition. .5 is obtained fron] 5z by scalar extension:

In particular, 5 COIllillutes witl1 cOlnplex conjugation.

Proof. This follows from the universal coeffieient theorem (e.g. [Dold], VI.7.S) beeause 5 and

5z are the transgressions in cohOlnology with complex and integral coeffieients (Chapter 5). <>

11



6.3. Theorem. Assulne tbat H2 (M) is has a Hodge decomposition. Let -;- denote cOlnplex

conjugation. Then identifying HI (T, C) with H~o EB H~l we can write

=

pr02 o61 Ho.l
T

pru 061H i ,Q

T

=

P1'oof: All the lllaps follow the same pattern: Take a closed I-form w on T, lift it to aglobai

I-form w on X that locally can be written as WI 1r -lUQ
= w + 770' where TJO; is a 1-form on

U0;' Then the exterior derivatives of the TJo define a closed global 2-fonn on the base which

represents the image of w. For 6 we have to take de Rham cohomology while E and , are

defined by Dolbeault COhOIll010gy. The claims follow from

6(dtj)

8(dtj)
= d(TJ~)

d(TJ~)

= 8(TJ~) + 8(1J~)

8(1J~) + a(1J~)

E(dtj) + ,(dt;)

,(dtj) + E(dtj)

6.4. Corollary.

(a) 8=0 <==>
(h) E injective

(c) 8 injective

f = 0 and E = O.

~ 8 injective.

<==> 8z injective.

Proof. (a) and (e) are obvious. (b):O = 6(a) = 6(a lO + aO I )::::} E(aIO ) = 0, E(aOI ) = 0 ~ a10 =

a OI = 0 => a = O. So 6 is injective. <>

The first Hodge nUlubers are

h~l = h~l + dimkerc:

h~o h~o + dimker,

bdX) = bl(M) + dimker6

6.5. Relation between integral and complex structure on the torus. (cf. [GH] p. 300

ff 01' [Wells] VI.1.6) We have to connect integral stnletu1'e and Hodge decomposition of the

cohomology of the torus.

Let (Al ... A2n) be a basis of A = BI (T, Z), elnbcdded in the cOlllplex vector space V with basis

(eI ... en) and cor1'esponding complex coordinates (tl ... in)' Let n = (w ü ,) be the (n x 2n)

period matrix, i.e. its v -th column contains the t -coordinates of Av ' So n is the matrix of the

C -linear map

induced by the inclusion A C V with respect to the bases (Al ... A2n) of A 0 C and (eI ... en)

of V. If (Xl ... X2n) is the real coordinate system of V whose unit vectors are the Av, then the

coordinate change is

12



Coordinates of V descend to coordinates of T = V / A. So we get two bases of the de Rham

cohomology BI (T, C). The first one consists of (dXI ... dxz,J and refiects the integral structure

BI (T, Z) C HI (T, C), it is dual to the basis (Al ... Azn ) of A ® C = HI (T, C). The second basis

is fonned by (dt l ... dt n1 dtl ... dtn ), where the first vectors span H~o and the last oues span

H~I. The differential forms are transformed as

dti = L wü.Axv

dEi = L Wivdxv

So the change of basis H~o EB B~I ~ BI (T, C) is described by tö = (in to) , where tn and

to correspond to the injections of H~o and H~l, respectively. The inverse of n is usually

denoted by TI = (II I II), II = (1Tv i)' So n· II = In: n· II = 0, II· n + fi .n= 12n, aud

dx l.' = L 1Tl.'idti + L7rl.' i dli'

Let cl = L: ~kvOk ® Al.' E HZ (M, Z) 0 A be the characteristic dass, i.e. 8l : H1 (T, Z) -t HZ (M, Z)

is given by the integral (bz(M) x 2n) -matrix D := (~kl.') with respect to the dual basis of

(Al ... Az n ) and some basis (0:'1.'. O:'b2 ) of HZ(M, Z) (ignoring torsion) (6.1).

8 is described by D with respect to the (dxv) (6.3) and by D· t 0 with respect to the (dtj, dli ) :

8(dtj) L (L ~kl.'Wil.') O:'k = L (kiO:'k
k v k

where «k;) is the (bz(M) x n) -matrix D· tn.

cl E H2 (M: Z) ® A cau be considered as an element of H2 (M, C) 0 c (A ® C). The invariant c

defined in 1.3 is then c = id ® 'ljJ(cz ) E HZ(M, C) 0 V, i.e.

e = L ~kvO:'k 0 'ljJ(A l.' ) L €kvWivO:'k 0 Ci = L (kjO:'k ® Ci·

Now assume that HZ (M) has a Bodge decomposition: the projections to the different compo­

nents being described by matrices P20, Pn, P02 with respect to the (O:'k) and some bases of the

Bodge components such that P02 = P20' Then the composite matrix has the form

P . D . tn = (~~~). D . (tn tn) = (~ g)
~2 0 E

where E and C describe E and 1: respectively (6.3). The sYlumetry in the matrix comes from

the fact that 8 commutes with complex conjugation.

Cl had been defined by the cohomology sequence of 0 -t A -t CJ}.f ® V -t CJM(T) ~ O. Since

the first indusion of sheaves factorizes over A C V C CJ M CO V, in cohomology we have

---t BI(OM(T)) ~ B2(M,A) -L H~120V ----t

'\. /
H2 (M,C)0V

Thus the obstruction map for a given cl being the characteristic dass of some bundle sees only

c = 2: (kiO:'k CO Ci and projects the HZ (M, C) -part to its (0,2) -component. In matrix notation

this is P02 . D . tn, i.e. the O-block in the matrix for p. D . tn above. This proves

13



6.6. Proposition. Consider any elelnent cl E H2 (M, Z) ®A 01', equivalently, 8Z
: Hl (T, Z) ---t

H2 (M 1 Z). This is the characteristie class oE SOllle T -prineipa! bundle on M iE and only iE the

obs tructiOll

= HO,2
-----lo 11{

6.7. On the other hand, if we start with two luaps 1': H~o ---t H~ and i: H~l ---t H~f2 1

we define 8: Hl (T, C) ---t H2(M, C) by the fonnula in 6.3. Then these invariants come from a

blmdle iff 5= "81 ® idl{; for sorne 81 : H1 (T, Z) ---t H2 (M l Z).

7. Bundles with E = O.

7.1. Proposition. There is an injective Illap

compatible witb taking characteristic classes, i. e. iE l:.c i 0 Ai is a combination oEline bund!es in

Pie(M) ® Athen tbe characteristic class cl oE <I> (E.c i ® Ad equals L Cl (.ci) 0 Ai E H2 (M, A).

Pic(M) ® A

1 cJ0id

4>
'--t Hl (CJ M (T))

1 cZ

Proof. Consider the following diagram of Z -modules (with exact rows) obtained by tellSoring

the exponential sequence by A and applying the inclusion A C-.....+ V. Thc rightillost vertical

homomorphism maps LXj 0 Aj E C'" ®z A to L log (j . Aj E V mod A.

11

o -----lo A ----+

!
V

1
T -----lo 0

Sheafifying over M and taking cohomology yield the following diagram. Short diagranl chasing

shows that ~ is injective.

HO,l0 A
AI z

1
HO,l tOo. V

AI 'OIe

H l (CJM)®z A

! 4>

Hl(OM(T))

14
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7.2. Corollary. If H2 (M) has a Hodge decOlllposition; then the image oE 4>, i.e. the set oE

isolllorphism c1asses oE principal bundles constructed in the previous proposition, equais

im ~ = {Isomorphism dasses oET-principal bUlldles with cZ E (H~1 n H2 (M, Z» ® A}

{Isomorpllislll dasses oE T -principal bllildles wi th t = O}

Moreover, any cZ E (H~f1 n H2(M, Z» ® A is tbe characteristic dass oE such a bundle.

Proof. This follows from from Cl (H 1(OM)) = H~1 n H2 (M, Z), 6.2, 6.3, and 6.6.

7.3. Remark. The torus itself does not play any particular role here.

7.4. Fibre bundles over curves. Ir dirn M = 1, then c vanishes for dimension reasons. So

the Hodge numbers h~q behave like for a product. The Betti nunlbers, however, can be smaller:

Consider for example the primary Kodaira surfaces (cf. [BPV] p.147) which are bundles over

an elliptic curve with h~l = 2 and bl (X) = 3.

7.5. Elliptic fibre bundles over pm. Here of course c = 0, so in the non-trivial case 'Y nltlst

be a surjective map onto Ht-1 ~ C. But then multiplication by l'(dt) is an isomorphism except

. first d t h 1 f pm Thi hO,O} 0,1 hm,m+l h m +Lm+1 1 thIn an op co omo ogy 0 . s means X = ~X = X = X =, e

other Hodge numbers are zero.

8. Bundles with E i O.

8.1. The image of the rnap H2 (M, Z) ~ H~} induced by thc illclusion Z L....+ 0M is an additive

subgroup A = (H2 (M, Z» 02 C H~f2. Usually A is dense in H~,i2.

H1 (T, C)

"\.

\0
HI(T, Z)

16Z

H2 (M, Z)

/

HO,1
T

/
A'

\,1
A
~

HO,2
T

The above diagrarn implies

8.2. Proposition.

Let A' = prO! (HI (T, Z» c H~I be the duallattice oi A. Then E(A') C A n E(H~I). 0

So the cohomology classes connected to bundles with E i 0 are those not coming from line

bundles on M.

For fixed M, there is a restriction on the periods of a torus T which is the fibre of a principal

bundle over M with E =F 0 : The duallattice must be nlapped to the (countable) set A. This

nlearlS that in contrast to 'Y for a given M there are ouly few possible tori T for which a

T -principal bundle with, say, illjective t exists.
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9. Fibrations by elliptic curves.

9.1. Now suppose the fibres are I-dimensional. Then after choosing a generator dt for H~o

the d2 differentials become (up to sign) multiplication by ,(dt) and c(dt) in the Hodge algebra

of M (4.3). The only possibly non-zero terms and differentials are

p,q-l Ep+q-3,2 HP-l,q-2 0 H1,1
2 M T

p,q Ep+q-l,l
2

p,q+l E p+q+l,O
2

"( / ~-e;

H~q-l 0 H~l EB H~~l,q 0 H~o

e ~ /"(

HP,q+l tO\ HO,Q
Al '01 T

The HT- are al1 I-dimensional but they help to remernber thc effect of d2 on the HM-: The

map starting at H~ (9 H~l is multiplication by c(dt) , the one starting at H~ (9 H~o multiplies

by 'Y(dt) and the last one starting at H~ 0 H~l by 'Y(dt) - c(dt).

9.2. We take (1, r) as basis of A, 1 as a generator of V and use the notation from 6.5. The

change of bases is now

~ (7 . dt - r . df'
T-T '-')

= ~(-dt+df'.T-T '-')dX2

dt = dXl + r . dX2

df dx 1 + 7 . dX2

Thus any A E A can be written as

A = 7A - r X. 1 + 5. - A . r.
7-r 7-r

With cZ = a (9 1 + b 0 r E H2 (M, Z) 0 A and c = "70 1 E H2 (M, C) 0 V we can write the

relations between the invariants as follows. ß is thc obstruction for cZ being the characteristic

dass cf a bundle (6.6).

8:

E:

,:

cZ a®1 + b®r = 1'·2- T .Tj 0 1 + 2-ry 0 r
T-T T-T

C (a+r·b)01 = 1101

ß (a+r·b)02 11
02

dXl f-+ a 1 (- -)
1'-T r' 11 - r . 11

dX2 I---t b T~T ( -11 + 17)

dt I---t a+ r' b 11

df I---t a+ 7' b = ij

dt I---t (a+7·b)02 = -02
11

dt I---t (a+r·b)l1 = 1]11

9.3. In order to construct an elliptic principal btmdle with E =I=- 0, we have to find a, b E

H2 (M, Z) and r E C - R such that ß = (a + r . b)02 = °and E(dt) = (a + T . b)02 =I=- 0, i.e.

a02 = -r· b02 but b02
=I=- 0. This is equivalent to finding a, b E H2(M, Z) such that a02 and b02

are linear dependent over C but independent over R, and r is the ratio between them.
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9.4. Elliptic bundles over M= prnl X p rn 2. Since hr;;/ = h~2 = 0, the characteristic dass

map is bijective in this case. Ir we vary the transition functions defining the Calabi-Eckmann

manifolds by parameters Al = 11 + k 1T, A2 = 12 + k 2 T E A

4>ij,kl ([x], [y]) = 1 ( Xk Yl)-. Al' log - + A2 . log -
271'"t Xi Yj

we get a family of fibre blll1dles with characteristic dasses

where H 1 and H 2 are generators for the integral cohomology of the two factors (the Chern

dasses of the hyperplane bundles). These are all elliptic principal bundles over M. Now e = °
and ,(dt) = A1Hl + A2H2 E H~l.

Since the Hodge numbers of M are concentrated in the diagonal

{

r + 1 0:::; r ~ m1
h';:; 1n1 + 1 1n1 < r < m2

1n1 + 1112 - r + 1 1111::; r :::; ml + m2

(assUIning 1n1 ~ 111.2 ), for a given p the only contributions to the spectral sequence are

P,P E2p-2,2
2

p,p-1 E2p-2,1
2

HP-1,p-1 lOt H1 ,1
AI \()I T

= HP- 1,p-1 lOt H1 ,O
M \()I T

HP,P lOt HO,l
.Al \()I T

H~f =

p,p+1 E 2p.1
2

p,pE 2p ,o
2

Both are multiplication by ,(dt) in the first factor. So if Al and A2 are both non-zero, the

maps are injective for p :::; 1n2 and surjective for ]J ~ 1n1 + 1 which implies the result stated in

Chapter 2 (even if m1 = 0).

10. Iwasawa manifold.

10.1. We are now able to compute the invariants of the bundle introduced in Chapter 3. The

global holomorphic form w is a lifting of dt with ßw = 0 which means , = 0 in the spectral

sequence. On the other hand; if superscripts distinguish between the two factors of M = T x T;
- - :i1.:i'2 02 :i1. :i'2 02for the complex conjugate OW = ow = -dt /\ dt E HAf : so 8(dt) = c(dE) = -dt /\ dt E HA!

and 8(dt) = E(dl) = -dt1 /\ dt2 E H~fO in this example. We can compute the characteristic dass:

8(dx 1) = ~8(dt + dE)

= _~(dt1 /\ dt 2 + dP /\ dt:)

= -~ ((dxi + i· dx~) /\ (dxi + i· dx~) + (dxi - i . dx~) 1\ (dxI - i· dx~))

= -dxi A dXI + dx~ /\ dx~

8(dx2) = -;i b(dt - dE)

= -;i (-dt1
/\ dt2 + dP /\ dP)

= :/ (-(dxi + i . dx~) /\ (dxI + i . dx~) + (dxi - i . dx~) 1\ (dxI - i . dx~))

= -dxi /\ dx~ - dx~ 1\ dXI

17



Thus

10.2. T-bundles over T x T. Let us investigate to which extent the Gauß lattice can be

replaced by a different one in the above constnlction. So we start with an elliptic CUfVe T, set

M = T x T and ask if there is a T-principal bundle on M with / = 0 and E # O. Thus

cZ = a 0 1 + b 0 r with a, b E (H~ EB H~i2) n H2(M, Z) such that a02 + rb02 = 0 but b # 0

(see 9.2). Ir we write

then by dt i = dxf + rdx~ and Ci' + rß = 0 the integrality cOllclition is equivalellt to

fß+rß
rf(ß + 13)

rf(rß + fß)

E Z
E Z
E Z

ß+ß E Z
rß+fß E Z

r 2ß+ f2ß E Z

Sirrce the equations are hOlllogenous, it suffices to find ß E C such that all the expressions are

rational. One of ß + 13, rß + fß must be non-zero, so the latticc must satisfy the conditions

r+fEQ rf E Q.

These are also sufficient because r 2ß+ f2ß2 = (7 + f)(rß + rß) - 27r(ß + 13), any 0::/= ß E Z

with rrß and (r + r)ß integral will do.

The invariallts can be computed from the spectral sequellce (9.1), see 13.6. They are the same

as for the Iwasawa mallifold (with r = i and ß = -1) given in Chapter 3.

11. Topology of the total space. We will now investigate hOlnotopy and homology prop­

erties of the bWldle. Since ?Tl (T) is the only nontrivial homotopy group of a torus, the long

exact homotopy sequence of tbe bundle yields

11.1. Proposition.

sequence

?Ti(X) ~ 1fi(M) for i ~ 3. Tbe first bOlDotopy groups fit in the exact

11.2. Proposition.

(a) IE b1 (M) = 0, then there is an exact sequence
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(b) IE 7rdM) = 0, tben tbere are exact sequences

Proof. Ir bdM) = 0, then we can extend the sequence from 5.3(b) one step further to the fight

because E2
1

,1 = 0 (Serre spectral sequence, [Whitehead] XIII 7.10). But for Z-coeffieients (5.6)

we must assllIne that the base space is simpIy connected in order to conclude that the Ioeal

coefficient system is trivial. 0

11.3. Proposition.

(a) b1 (X) = 0 iE and only iE bdM) = 0 and 0: H1 (T, C) ----; H2 (M, C) is injective.

(b) In that case, tllC restnction to the fibre H2 (X, C) ----; H2 (T, C) is zero, the pull-back

H2 (M, C) -+ H2 (X, C) is surjective, and

Proof. (a) follows directly from the preceerung theorem. For (b) note that with 0 = d2: E2
0

•
1

----;

E2
2

,O also d2 : E2
0

.
2

----; E2
2

•
1 is injective. Thus b2 (X) = b2 (M) - b1(T), and H2 (M, C) ----;

H2 (X, C) is surjective. 0

11.4. Corollary. If b!CX) = 0, tllen 1n-fold products H2 (X, C)0" '0H 2 (X, C) ----; H2m (X, C)

are zero. In particular, tbere is no Kähler structure on tbe topological nla.nifold ullderlying X.

Proof. By the proposition, all those produets eome from downstairs. So (m + 1) -fald produets

vanish for dimension reasons. By 5.3 this holds already for m. 0

11.5. Proposition.

(a) X is sünply conIlected iE and only iE 1r1 (M) is zero and Oz is swjective.

°(b) In tbat ca...,e tbe inc1usion oE a fibre induces zero in bomology: H2 (T, Z) -----; H2 (X, Z) , tbus

H2 (X, Z) = keroz.

Proof: If M is l-cOImected, theo Oz coincides with 1r2(M) ----; 7rl (T) in the homotopy sequence.

So (a) follows frOlll 11.1. The proof of (b) is dual to the proof of 11.3. 0

AnalogousIy:

11.6. Proposition. Assurne tbat M is simply-connected. Then H1(M, Z) = 0 iE and only if

8z is injective, and in that case H2 (X, Z) ~ H2 (T, Z) is zero. 0

Note that by thc universal eoeffieient theorem (e.g. [Dold], VI.7.S) if M is simpIy-cOImected

then OZ is the dual of oz. So if Oz is surjective: then 8z is injective. The converse is by 00

19



means tnw, howevcr. But if 6z an injection ooto a direct sumlnand of H2 (M, Z), then 6z IS

surjective.

11.7. In general: if we only assume that M is simply connected: then the universal covering X
of X is also a fibre bundle over M, with connected fibres since 1rl(T) generates 1rdX). The

fibre t is a covering space of T, it is cOlnpact exactly if this covering is finite, i.e. if X has finite

fundamental group. In fact, t is an Abelian complex Lie group, and X -? M is a t -principal

bundle. If: for exaluple, T is an elliptic curve, then X is the quotient of a C" -bundle (total

space of a line bundle with zero SectiOIl reIlloved) by a linear Z-action exactly if 7rl (X) is not

finite. The most extrcIlle case is that b1 (X) equals thc fibre diInension n. Then t is CH and

the bundle is the quotient of an affine principal bundle by the lattice A.

If, on the other hand, ?TdX) is finite, then we can replace the torus T by a finite covering t
which is a compact cOInplex torus again and get a principal bundle with simply-cOllllected total

space.

12. Elliptic fibrations over surfaces

This might be the easiest interesting case. Since the total space is a complex 3-manifold, we can

use C.T.C. Wall's results on the topology of real 6-manifolds:

12.1. Theorem (C.T.C. Wall's classification of 6-manifolds). Let X ~ M and

X' Ä M' be two elliptic principal bundles witb structure groups T and T' over compact

complex surEaces M and M'. Assunle that X alld X' are sinlply-connected witll torsion­

free bOInology and tbat tbe second StieEel- Wbitney classes oE tlle underlying real 6-maniEolds

(W2(X) = 1r* Cl (M) liod 2, W2 (X') = ?T'. cdM') mod 2) are zero. Then tbe following statements

are equivalent:

(a) X alld X' are diffeomorphic.

(b) X and X' are (orientend) bomotopy eqwvalent.

(c) b2(X) = b2(X /) and b3 (X) = b3 (X').

Proof. This is [WallL Thm. 5 and 6, applied to our situation. Here tripie products in H2 (X)

are always zero (11.4). Since the characteristic dasses of X are pull-backs frOll1 M and the

pull-back Illorphism H4(M) -? H4(X) is zero (5.3), the first Pontrjagin dass always vanishes.

Therefore the Betti llmnbers ~ and b3 are the only ren1aining parameters in the classification.

12.2. Theorem (Almost complex structures on 6-manifolds) ([Wall], Thm. 9). Tbe

bomotopy dasses oE alnlos t-complex structures on the 6-maniEold ullderlying a cOlnpact complex

3-maniEold X are in 1-1 correspondence to elements in H2 (X: Z) that reduce to the second

Stiefel- Wllitney dass oE X.
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12.3. Proposition. Let X be an elliptic principal bundle over a simply-connected compact

COlllplex surEace M and assume tbat the transgression 5z : H2 (M, Z) ---+ HdT, Z) is surjec­

tive wi tb torsion-Eree kernel (01' that 8z : Hl (T, Z) ---+ H2 (M, Z) is an injection OlltO a direct

swnllland). Then:

(a) 7rl (X) = O.

(b) H2 (X~ Z) is a Eree abelian group oE rank b2 (X) = b2 (M) - 2.

(c) H3 (X, Z) is a Eree abelian group oE rank b3 (X) = 2 . b2 (M) - 2.

(d) X is dilfeonlOrplIic to a connected sum (83 X 8 3) # ... # (53 X 53) # Y wbere Y lS

obtained from 8 6 by disjoint surgery operations S3 x D 3 ---+ B6.
(e) There is DO Käbler maniEold diifeomorphic to X.

Proof. (a) and (b) follow from 11.5. Poincare duality and Universal Coefficient Theorem ([Dold],

VIlL8.1, VI.7.10) imply H3 (X, Z) ~ H3 (X, Z) 9! (H 3 (X, Z))V EBExt(H2(X, Z), Z), so from (b) we

deduce that H3 (X, Z) is torsion-free. The rank is deternunded by e(X) = O. (d) is contained

in [Wall], (e) is 11.4. <>

12.4. Remark. So in order to construct interesting bundles on a simply-connected surface M,

we start with a candidate for a characteristic dass cZ = al 0 Al + a2 0 A2 E H2(M, Z) ® A. A

corresponding principal bundle exists iff the obstruction ~ = Al . aY2 + A2 . a~2 E H~i2 vanishes

(6.6). This is always fulfilled if the ai are Chern dasses of line bundles.

By the preceeding proposition, X will be simply-colluected if al, a2 form a basis of a direct

summand of H2 (M, Z). Moreover, if CI (M) is in the span of the ai then cdX) will be zero

(5.7). Then by 12.1 the diffeomorphism dass of the total space is deternlined only by b2 (M).

Ir H2 (M) has a Hodge decompositioIl, then E and , are determined by cZ (9.2).

12.5. Computation of the Bodge numbers. According to 9.1 the only non-trivial terms in

the spectral sequence of 0 X are O,q E2
q

-
l

,1 ---+ O,q+l E 2
q

,0. Contributions come from

0,3 E2,1 = HO,2 0 HO,l
2 M T

0,2 E 1,1 HO,l ® HO,l
2 AI T

0.1 E 1,0 HO,l
2 AI

0,0 E 0,0 C2

0.1 E 0,1 HO,l ~ HO,2 0,2 E2.0= ----+ =2 T M 2

Thus

hO,O - 1x - hO,l hO,l + di kx = AI m erE hO,2 hO.l + hO,2 d.im'
X = M AI - UllE ho,3 _ hO,2

X - AI

The other Hodge llUlllbers are not so easy to compute, because nlultiplication in the Hodge ring

of M is involved. For p = 1 the infonnation is contained in (see 9.1):
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1,q-1 E q-2,2
2

1,q E q,l
2

=

=

HO,q-2 <8> H1,1
M T

1 ./ ~-~

H 1,q-1 tOt HO,l ffi HO,q tOt H1,O
M "0' T \;LI M \CI T

~ ~ ./1
H1,q+1 ,0., HO,O

AI '<Y T

12.6. Surfaces with h}J° = h~l = O. In this case, the only nontrivial tenns in the spectral

sequcnce of n\ appear in

1,3 E 0,2
2

1.1 EO,2
2

l'OE O,l
2

HO,2 tOt H1,1
M '<Y T

H1 ,1
T

H1 ,O
T

= 1,2 E2,1
2

1,1 E2,O
2

The morphism ,EB -E is injective iff one of the maps is nonzero~ Le. iff 8 i=- O. Assuming this

(otherwise all Hodge numbers equal those of M x T) we get

/ 1.0 di k1..Y = In er, h1.1 ,1,1 di .x = l.M - mIm, / 1,2 _ h1,1 + ho,2 _ 1
l.x - M M h1,3 _ hO,2

X - M'

If moreover 0: H1 (T, C) ---T H2 (M, C) is injective, thc Betti numbers are determined by 11.3

(and e(X) = 0). Then the invariants are (with e;= dirnimE, g:= dimim,)

l-g

1

1-e

1

o

2b2(M)-2

1-e l-g °
1

13. Examples of elliptic fibrations over surfaces.

13.1. Surfaces with bt = °and b2 = 2. Let M be a compact complex sulface with b1 = 0

and b2 = 2, consequently with Euler characteristic e = C2 = 4. A look on thc classification table

((BPV] 1 Chapter VI) shows us that Miyaoka-Yau inequality ci ::; 3· C2 holds, and that x(0 AI) =

1 - h~'/ + h~f2 must be positive (in the algebraic case this is clear because 2hilo = bdM) = 0,

and for the possibly non-algebraic elliptic surfaces we know X > 0 unless alle fibres are (possibly

multiple) non-singular elliptic curves, which would imply e(M) = 0 ([BPV], III.l1.4, V.12.2 and

the remark prcceeding it)). Together with Noether's formula 112 (er + C2) = X(O.H) E Z this

only leaves the invariants
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2-8Cl - , C2 = 4, } 1,0 h2 .0 0
"L M = if = .

So M is either rational, i.e. a (simply-connected) Hirzebruch smface Er (for T = 1 a blown-up

p2, otherwise M is lninimal), or it is a surface of general type with these special invariants. In

the latter case M can either be the blow-up of a ball-quotient surface with q = 9, C2 = 3 (the

only known example being Mumford's fake p2) which lllust have infinite fundamental group, or

it is minimal. For minimal surfaces of general type with those invariants two constructioos due to

Beauville and Kuga (cf. [BPV], VII.II) are known, but both lead to infinite fundamental groups.

In any case for a bundle with I =I- 0 the invariants are those of Calabi-Eckmann manifolds:

I I
0 I 0

0 0 0
0 I 0 2

0 0 0
0 0

I

13.2. Bundles over Hirzebruch surfaces. Let M be ooe of the Hirzebruch sUTfaces Er'

Then 7f1 (M) = 0, h~fO = 0, and b2 (M) = 2. So for auy given characteristic dass in H2 (M, Z)0A

there is a unique bundle. If fJz is an isomorphism, then the total space of this bundle is

diffeomorphic to 8 3 X 8 3 and the Hodge llumbers are the same as in the Calabi-Eckmann case.

Such bundles have been eonstructed by Maeda, also in higher dimensions over base spaces whieh

are p m2-bundles over pml ((Maeda)).

13.3. Bundles over other rational surfaces. Every blow-up adds a direet summand Z

to H2(M, Z). Let a: M ~ Er be a k-fold blow-up of Er. Ir we take the pull-back of the

characteristic dass of a bundle on Er and add all the dasses of exeeptional divisors (in order

to kill cdX)), we ean define a lot of simply-connected bundles with torsion-free homology and

Cl (X) = °on M. The invariants are

1

o 1 o

o
o ~(M)-l 0

b2 (M)-1 b2 (M)-1

o b2(M)-1 0

o
1

o
~(M)-2

2·b2(M)-2

~(AJ)-2

o

with b2 (M) = k + 2, the diffeomorphism type is detennined by this invariant.

13.4. Simply connected surfaces. Sirrce the minünal model M of a simply eonneeted COffi­

pact eomplex surfaee M is again simply eonneeted, the Enriques-Kodaira dassllcation ([BPV],

Chapter VI) teIls us that the minimal model must be either rational or K3 or proper elliptic

(i.e. of Kodaira dimension I'\, = 1) or of general type. In any ease ~(M) ~ b2(M) ~ 1. Since

there is always a rational surface with isomorphie seeond eohomology (the intersection form

does not play any role here), the total spaee of any sinlply-eonnected elliptic prineipal bundle
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(with torsion-free homology and W2 = 0) over any simply-collllected surface is diffeolllOrphic

to a btmdle over a rational surface, which means that there are complex structures of different

Kodaira diInension on the same differentiable manifold. If the second Stiefel-Whitney classes

coincide, they are even homotopic as almost-complex structures.

13.5. Remark. If X is auy complex 3-fold diffeonlorphic to 8 3 X 8 3 with Kodaira dimension

K.(X) = 2, then its algebraic dimension is also 2 and by [Akao] Part I, Theorem 1 and (the proof

of) Corollary 3, it admits a torus action with possibly singular quotient space M of general type

whose miniInal resolution is a (then simply-connectcd) surface M with h~~2 = 0. By [Akao],

Corollary 4, thc rational cohomology ring of M equals the oue of pI x pI.

13.6. Bundles over an abelian surface. Now we consider an elliptic fibre bundle over an

abelian surface, assuIning fJ =I=- O. As before, we set e := rankE, g:= rank,. But 1l0W we also

have to consider the map H~:/ 0H~o -+ H~!2, multiplication by ,(dt). Its rank h can take the

values 0 (<=> 9 = OLl (e.g. ,(dt) = dt1 /\ dF ), 01' 2 (e.g. 1'(dt) a Kähler form). Furthennore

we need f := rank(H~Jo ffi H~ ---+ Hif2 ) (induced by multiplication by E(dt) Oll the fu'st and by

,(dt) on the second summand). But f = 2 if e = 1 and f = h if e = 0, and 9 is detennined

by h, so the pa.rameters for the spectral sequence are only e E {O, I} and h E {O, 1, 2}, not

both zero. Then the invariants are:

1 1

5-/-g 3-e 4

3-h 8-1-g 3-e 8

1 6-h 6-h 10

3-e 8-1-g 3-h 8

3-e 5-1-g 4

For E =I=- 0, i.e. e = 1, there are three possible sets of Hodge numbers, and they ail occur for

smail deforulatiollS of the Iwasawa manifold, see 14.6.

13.7. Fibrations over a K3 surface. According to 12.6, the invariants of a bundle with 5

injective can take three different sets of values depending on the ranks 9 aud e of , and E. In

auy case X is simply-connected with trivial canonical blllldie.

1

1-g l-e 0

1 20-g l-e 20

20 20 42

l-e 20-9 20

l-e l-g 0

For example, one can take the Calabi-Eckmann fibration over pI X pI and pull it back to a

K3-surface which is a 2-sheeted cover ramified along a smooth curve of bidegree (4,4).
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But this is only oue example. The most interesting ones lnay be those with E "# 0, which should

be quite numerous if the Picard nwnber is small.

14. Infinitesimal Deformations.

14.1. We will now study the space Hl (8x) of infinitesimal deformations of X. Combining

the exact sequence frOln Leray spectral sequence for eX/AI, 8x and 7r*8M (horizontal) and

COhOlllOlogy sequences from 1.4(e) we obtain the diagrarn

0 --t HO(8M ) --t HO(7r*8M) --t 0

! ! !

0 --t H l (1r*8x /M ) --t Hl(eX / M ) --t HO (Rl 1r*8x /M ) --t H2(7r*8x /.M )

! ! ! !

0 --t H1 (7r*8x) --t Hl (8x) --t HO(R11r*8x) --t H2(7r*8x )

! 1 1 1

0 --t Hl(8M ) --t H1 (7r*6M) ---t HO (Rl 7r*1r*8]1,[) --t H2 (8M)

! 1 !
--t H2(7r*8x /M ) --+ H2 (8x /M) H1 (R11r*8x /M )

1

H2 (7r*8x)

14.2. With all the isomorphisms from above this becomes

0 ---t HO(8Ad --t HO(8 M ) ---t 0

! -/' 1 !

0 H~l®V H~/®V H~10V
.!3

H~20V---.. ---t --t ---t

1 1 1 1

0 ---t Hl (1r*8x) ---t Hl (8x) --t H~l 0 HO(8x) --t H2 (7r*8x)

1 1 ! 1

0 H1 (8M) H1(7r*8M) H~l 0 HO(8M )
.!2

H2 (8M)---t --t ---t ---t

! 1''' ! ! ,,1

E
3

HO,2 0 V H~20V HO,l 0 V 0 HO,l--t --tM T M

1

H2 (7r*8x )

14.3. Remark. The vertical connecting homomorphisms ,1, ,4, ,5 are induced by (the dual

of) 'Y (1.5(a), 1.4(e», /5 is /1, tensored by the identity of H~l. The horizontal d2 -map E3 is
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c:0idv. The maps with a superseript oeeur in Borel speetral sequence whieh we will investigate

in 14.7.

14.4. In the mueh more general situation of a holOlIlorphie Seifert fibre space Suwa eonsiders

thc following deeolupositioll of H1 (ex) derived frOlli the above diagrmn [SuwatJ:

0 0 0

1 1 1
0 ~ AT ~ D ~ A F -----t 0

1 1 1

0 --+ I --+ H1(8x } --t J --+ 0

1 1 1
0 --+ Ap --t G --t AD -----t 0

1 1 1
0 0 0

Here

AT .- coker ,5
A F .- kerc:3

Ap .- ker,4

AD .- ker,l n ker c:2

deformations preserving the T-action with quotient spaee M
deformations of T
defonnations of M preserving the fibration
deformations destroying the fibre structure

AT is the space of infinitesimal :twist deformations\ i.e. deformatiolls whieh are still T­

prineipal bundles with the same strueture group over the fixed base spaee M. All of them are

Ullobstrueted ([Suwad, Tlull. 3.3). c:3 is the obstruction map for a defonuation of T inducing

a global infinitesimal deformation. The defonnations in AT EB AF EB A p are still torus principal

bundles.

14.5. Invariants of the deformations. Dnder a deformation in A := AT EB A F EB A p ,

the characteristic dass cl (and therfore also 8) remains unchanged if the cohomology of the

deformed manifolds M' mld T' is identified with that of M and T, respectively. For AT ­

deformations M and T are not changed, so c: and 'Y also rema.ll the same.

14.6. Deformations of the Iwasawa manifold. For the Iwasawa manifold the computatiolls

are very easy because thc tangent sheaf is trivial wld 'Y is O. The connecting homomorphisIDs in

the vertieal sequenees are also 0, and we compute dinl H1 (8x) = dim H1
( 11'"*ex) = 6, dim AT =

2, dimA p = 4 and A F = AD = O. Therefore each infinitesimal defonnatioll of M induces

an infinitesimal defonnation of X which is still a T -principal bundle. But defonnations of T

callilOt be globalized - anyway A is a very speeiallattice. In fact, the Slllall defonnations have

been computed by KodaiI'a and Nakamura, see [Nakamura], Sect. 3. The Hodge numbers of

the defonnations are also given there. E remains nonzero in all eases while 'Y eau take different

values, see 13.6. Depending on , (i.e. h = 0, 1,2 in 13..6), three different sets of values for the

Hodge numbers oeeur (AT, A p - 0, and the eOluplelnent):
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1 1
3 2 2 2 2 2 4

3 6 2 2 5 2 5 2 8
1 6 6 1 1 5 5 1 1 4 4 10

2 6 3 2 5 2 2 5 1 8
2 3 2 2 2 2 4

1 1 1

(Recall that while Bodge numbers are constant in complex-analytic families of Kähler nlanifolds,

they are only upper-semicontinuous in the non-Kähler case, see [Wells], V.6.5, V.6.ß.)

14.7. Spectral sequence converging to Hr(8x ).In general we cau compute H i (8x)

Hrn-n+i (0\ 0 1r*KM) v using Borel spectral sequence for p = 1 but with a twist by KM' Such

twists with vector bundles on the base space have been included in [Borei). Writing the twisted

Badge space Hq (O~I 0 KM) as H~Iq (K M) the spectral sequence is (again p + q = s + t but only

considering the case p = 1)

1,q.fj; s,t H~/ (/CM) <81 H~t-1 EB H~-1 (KM) 0 H~t2

( H~[rn-s <81 Hn-t+1 (eT ) EB H rn - s+ 1 (eAJ) 0 H~n-t )v

= ( HO,m-8 <81 HO,n-t+l 0 V EB H m -s+1(8 Ar) <81 H~n-t )V
M T

EB 1,qE:,.;t

s+t=1+q

( .v here Ineans Serre duality.) The spectral sequence has no ring stnlcture auy more but still a

Hi1-module structure H~l (KM) <81 H~fs ---+ H~~r,j+s (KM)' With the sanlC arguments like in 4.3

olle cau show

14.8. Proposition. Let E: H~ ---+ H~f2 ® H~j-1 and 1': H~ ---+ H~:/ <81 H~-1,j be tbe

iterates derived [rom E and 'Y by Leiblliz' nlle. Tben J2 (w 019) = w· (i('t9) +1'(19». Tlw higher

differentials are zero.

The differential is thus

1,qF;s,t
2

l.q+1 jj;s+2,t-l
2

= H'l1(K M ) ® H~t-l EB Hi;-l (KM) <81 H~t

1i '\.1' 1 i

H~;+2 (KAr) ® H~t-2 EB Hiis+1 (KM) 0 H~t-1

HO,m-s-2 0 HO,n-t+2 0 V EB H m-s-1(eM) ® H~n-t+1
M T

1 i;V /' -yV 1i V

H~m-s 0 H~n-t+1 (3) V EB Hm-s+1 (eM) <81 H~n-t

A careful cOllsideration of those maps shows
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14.9. Proposition.

(a) i V is tbe connecting homomorphisIll in tbe COholIlOlogy sequence oE l.4(e).

(b) i V is tbe d2-morphisln H~fm-s-2 0 H~n-t+2 --'t H~fm-8 ® H~n-t+l from tbe spectral

sequence oE 0 x, tensored by idF .

(c) i V is not so easy to describe but it vanisbes iE E = 0.

In ordertocompute H1(8x) wehave to take s+t-l=q=n+m-l. Sinceonly s~m+l

and t ~ n + 1 can give contributioll5, we need to consider only s = 111 - 1,1n, 7n + 1 and get

the followillg spaces and d2 -differentials (first in spectral scquence notation, then their duals):

l.n+m-2 Em-l.n
2

l,n+m-2Em-2,n+l
2

o

H~,im-l (KM) 0 H~n-l

EB H~fm-2 (KM) 0 H~n

H~fm-2(KM) 0 H~n

o

l,n+m-l Em+l,n-l ---+ 02

l,n+m-l Em,n 02

1,n+m-l Em-l.ll+l l,n+mEm+l,n
2 2

H1,mUC ) 0 HO,n-l ---+ 0M AI T

H1fm(K M ) 0 H~n-l
---+ 0

EB Hii
m

-
l (KM) ® H~n

HO,m-l (K ) 0 Hl,n ---+ H~{m(KM)0 H~nAl M T

HO,l 0 HO,l 0 V EI H 2 (8M)
1'1 $,2

HO(8 M ) 0 H~l 0M T +-- +--

H~20V
e: 3 +1'oi

H~l0V EB Hl (8M) 0+-- +--

0 HO,l 0 V 1'6
HO(8M)+-- +--M

15. Special cases.

15.1. If the spectral sequence degellerates, the invariants are

L (n. C~l) . h~1 + (j) . hi+1(8Ad)
i+j=r-l

L (j) (n. h~1 + hi (8},d)
i+j=r

15.2. Remark. In the case h~'/ = 0 for q > 0, al1 the 'Y -differentials are zero. All remaining

differentials COille from E, but this is zero because h~'l = O. Therefore the spectral sequence

degenerates, and hr (8x ) = (;) + L C~Jhi(eM)'

28



15.3. Bundles over curves. In this case always E = 0, and

is non-zero only for 8 = 0, 1,2. The only possibly non-zero Iuaps are i't; H~fo (KM) ® H~t-l -t

Hit1(KM) ® H~t-l. Hut H~:t (KA:r) = Ho!! (KM) and Hl[8+1 (K:.~r) = Hs+ 1(K M
2

), so the only

case where both are non-zero is M an elliptie eurve: s = 0. Therefore the speetral sequence

degenerates for non-elliptic curves, and the eohomology is given by 15.1.

If M is an elliptic curve, the~ H~l (KM) = H~{ Thc first summand of l,q E;,t is the starting

point of i't (für s = 0) and the seeond olle receivcs i't-I (for s = 2), and i't is llOthing but
'd HI 0 HO t-I HI I HO t-l S· h t . 'al thi . . t''Y ~ I HO,t-l; T ® T -t AI 13> i . 0 III t e nOll- flVI case s map IS SUTJee Ive

T

with a kerne1 of dimension (n - 1) (t~1)' In the spectral sequenee we still have

l,qE- O,t .
00 •

1,qE~ l,t .
00 •

l,qE- 2,t .
00 •

ker i't
HO,1 tO.. H1,t-1 CD. H1,o tO.. HO,t

M'OI T W M'<Y T

eoker i'0,t+1

Depending on the genus 9 of the eurve, the result is thus

hr (8x )

hr (8x)

hr (8x)

hr (8x )

= (n+3)(~)

= (n+l)(71~I)

n(n;1)

n(;) + C~1) «n + 3)g - 3)

(g =0)

(g = 1, 1=0)

(g = 1, l' # 0)

(g ~ 2)

15.4. Calabi-Eckmann manifolds. Here hO(8M ) = TnI + 2m1 +~ +21n2, and hi (8 M ) = 0

if i > 0, and the spectral sequence degenerates by 15.2. Thus H1 (8x) ~ Hl e8T) EB

HO(8A-I). Only :fibre deformations' (dimAF = 1) and :fibre destroying deformations' (AD S!

HO(8Af ), dimAD = (mI + 2)111.1 + (7n2 + 2)7112) occur. While all small deformations have

Kodaira dimension -00, the algebraie dimension drops for the :fibre destroying defonnations'

([Akao], Part 11, Prop. 2 and 3).

15.5. Elliptic fibrations over manifolds with h~l = O. Here the diagram reduees to
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0 0

1 1

0 HO,l C
,"3 HO,2

X --+ --+ M

1 1 1 1
0 --+ HI (7r*8x) --+ H1(8x) --+ HO(8x ) --+ H2(7r*8x )

! ! ! 1

0 H1(8 M ) H1 (-7r*8M) HO(8M)
c'2

H2 (8M)--+ --+ --+ --+

! 1
4 ! !

0 --+ HO,2 --+ HO,2 --+ 0M X

!

H2(7r*8x )

If X is a nontrivial elliptic fibration with E = 0 over a K3-surface, hO (8x) = 1, h 1 (ex) = 20,

h2 (8x ) = 19, h3 (8x ) = O. Besides the I-dimensional AF only Ap-deforrnations coming from

the base space exist, hut ')'4 gives an obstruction for lifting those deforrnations to X.

15.6. lf M is a surface of general type with h~/ = h~2 = 0, then HO(8M) = 0 and X(8M) = 6

hy Hirzehruch-Riemann-Roch.

15.7. Rigid spaces. In order to constuct a rigid total space, we must get ')'1 EB c:2 and E3 + ')'4

injective and ')'5 surjective. Any bunclle on a rigid surface of general type with h~f1 = 0 such that

E: H~l -+ H~2 is non-zero will da, e.g. any hall quotient surface with 0 f:. Pg = X(OM) - 1 =
~c2(M) - 1.
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