On the theory of Jacobi forms. I

by

M. Eichler and D. Zagier

83 8§

Sonderforschungsbereich 40 » Max~Planck-Institut
Theoretische Mathematik fiir Mathematik
Beringstrafe 4 Gottfried-Claren-Strafie 26
D-5300 Bonn 1 | D-5300 Bonn 3

MP1/SFB 83-8



On the theory of Jacobi forms. I

by

M. Eichler and D. Zagier

Introduction

Notations

I. Basic Properties

§t.
§2.
§3.

§4.

Jacobi forms and the Jacobi group
Eisenstein series and cusp forms

Taylor eipansions of Jacobi forms
Application: Jacobi forms of index one

Hecke operators

II. Relations with other types of modular forms

§5.
§é6.

§7.

Jacobi forms and modular forms of half-integral weight

Pourier-Jacobi expansions of Siegel modular forms and
the Saito-Kurokawa conjecture

Jacobi theta series and a theorem of Waldspurger

III. The ring of Jacobi forms

§8.
§9.

510.

Basic structure theorems

Explicit description of the space of Jacobi forms
Examples of Jacobi forms of index greater than one

Discussion of the formula for dim J

k,m

§11. Zeros of Jacobi forms

Biblioggaggz

16

27
36

40

55

69

79

87

97
108

117

126

133



Introduction

The functions studied in this paper are a cross between elliptic

functions and modular forms in one variable. Specifically, we define a

Jacobi form on sr.z(z) to be a holomorphic function

¢: HxC—¢C ( H=ypper half-plane)

satisfying the two transformation equations

2wimcz?
(M W@ I o ersd)® e T (o, (@ Hes,@),
-2 mi 2
@) e, zerren) = o HROTTAR) L, (A wez?)
and having a Fourier expansion of the form
(3) #taz) = 3V ol o2¥i(nt+rz) )
n=0 r

r’gfmn

Here k and m are natural numbers, called the weight and index of ¢, respec

¢ eeme - e -

tively. Note that the function ¢(t,0) 1is an ordimiry modular form of weight

k , while for fixed t the function z - ¢(t,z) is a function of the type

normally used to embed the elliptic curve C€/ZT+L into a projective space.
if m=0 , then ¢ is independent of 2z and the definition reduces

to the usual notion of modular forms in one variable. We give three other

examples of situations where functions satisfying (1) - (3) arise classically:

{. Theta series. Let Q: ZN —»Z be a positive definite integer—

valued quadratic form and B the associated bilinear form. Then for any
vector xuezR the theta series

(%) exo(‘r,z) - szN e2:i(Q(x)r+B(x,x°)z)

is a Jacobi form (in general omn a congruence subgroup of SL, (Z)) of
weight N/2 and index Q(xo) ; the condition rzslmn in (3) arises from

the fact that the restriction of Q to Zx +Zx, is a positive definite



binary quadratic form. Such theta series (for N=1) were first studied

by Jacobi [10], whence our general name for functions satisfying (1) and (/

2. Fourier coefficients of Siegel modular forms. Let F(Z) bea

Siegel modular form of weight k and degree 2. Then we can write Z a
(: :.) with z€€, Tt,t'€eH (and Im(z)2< Im(t)Im(c')) , and the func
tion F 1is periodic in each variable t, z and <t'. Write its Fourier
expansion with respect to t' as

) F@ = ] ¢ (x,2) VT
m=0

then for each m the function ‘m is a Jacobi form of weight k
and index m, the condition lmmi:tz in (3) now coming from the fact that

F has a Fourier development of the form zc(T) e2u Tr(12)

where T
ranges over positive semi-definite symmetric 2x2 matrices. The expansior
(5) (and generalizations to other groups) was first studied by Piatetski-

Shapiro [26], who referred to it as the Fourier-Jacobi expansion of F

and to the coefficients ¢m as Jacobi functions, a word which we will
reserve for (meromorphic) quotients of Jacobi forms of the same weight
and index, in accordance with the usual terminology for modular forms and

functions.

3. The Weierstrass p-function. The function

(6) plt,z) = z 2.4 “;m((zm)‘z - u‘?)

is a meromorphic Jacobi form of weight 2 and index 0 ; we will see latft
how to express it as a quotient of holomorphic Jacobi forms (of index !

and weights 12 and 10).

Despite the importance of these examples, however, no systematic

theory of Jacobi forms along the lines of Hecke's theory of modular for®s
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seems to have been attempted previously*. The authors' interest in
constructing such a theory arose form their atiempts to understand and
extend Maass' beautiful work on the '"Saito~Kurokawa conjecture”. This
conjecture, formulated independently by Saito and by Kurokawa L15] on
the basis of numerical calculations of eigenvalues of Hecke operators
for the (full) Siegel modular group, asserted the existence of a "lifting"
from ordinary modular forms of weight 2k-2 (and level ome) to Siegel
modular formg of weight k (;nd also level one); in a more precise
version, it said that this lifting should land in a specific subspace of
the space of Siegel modular forms (the so-called Maass "Spezialschar",
deéined by certain identities among Pourier coefficients) and should in

fact be an isomorphism from “2kr2(sL2(2)) onto this space, mapping

Eigsenstein series to Eigenstein series, cusp forms to cusp forms, and
Hecke eigenforms to Hecke eigenforms. Most of this conjecture was proved
by Maass [21 » 22 23], another part by Andrianov [2 ], and the

remaining part by one of the authors [40] » It turns

out that the conjectured correspondence is the composition of three

isomorphisms

Maass "Spezialschar" < Mk(sPA(Z))
ll
Jacobi forms of weight k and index 1
n h
Kohnen's 'I'"-space (M) e Mk_*(l‘ou))
4
My (5L, (2))

*Shimura (31,32] has studied the same functions and also their higher-dimen-
sional generalizations. By multiplication by appropriate elementary factors
they become modular functions in <t and elliptic (resp. Abelian) functioms
in z , although non-analytic ones. Shimura used them for a new foundation
of complex multiplication of Abelian functions. Because of the different
aims Shimyra's work does not overlap with ours. We also mention the work of
R. Berndt [ 3,4 ], who studied the quotient field (field of Jacobi functions)
from both an algebraic~geometrical and arithmetical point of view. Here, too,
the overlap is slight since the field of Jacobi functions for SL,(Z) is
eagily determined (it is generated over € up to the modular invariant j(t)
and the Weierstrass p-function p(t,z)); Berndt's papers concern Jacobi
functions of higher level. Finally, the very recent paper of Feingold and
Frenkel (Math. Ann. 263, 1983) on Kac-Moody algebras uses functions equiva-
lent to our Jacobi forms, though with a very different motivation; here
there is some overlap of their results and our §9 (in particular, our
Theorem 9.2 seems to be equivalent to their Corollary 7.11).
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the first map associates to each F the function ¢1 defined by (5),
the second is given by

§ cta) Q2¥inT ) ) c(4n~r2) o 2™ (nT+rz)

nz0 .n20 r2sén
and the third is the Shimura correspondence [29,30] between modular
forms of integral and half-integral weight, as sharpened by Kohnen [11]
for the case of forms of level 1 .

One of the main purposes of this paper will be to explain

diagram (7) in more detail and to discuss the extent to which it generalizes
to Jacobi forms of higher index. This will be carried out in Chapters
I and 1I, in which other basic elements of the theory (Eisenstein series,
Hecke operators,...) are also developed. In Chapter III we will study
the bigraded ring of all Jacobi forms on SL,(Z). This is much more
complicated than the usual situation because, in contrast with the
classical isomorphism M*(SLZ(Z)) - G[E,‘,Bs] » the ring J*’* = kem Jk,m
( Jk,m = Jacobi forms of weight k and index m ) is not finiteiy
generated. Nevertheless, we will be able to obtain considerable informa-
tion about the structure of J*’ . In particular, we will find upper

*
and lower bounds for dim Jk o which agree for k sufficiently large

k]

(k2m), will prove that J*,n -?Jk,m is a free module of rank 2m

over the ring M (SL,(Z)) , and will describe explicit algorithms for

finding bases of J as a vector space over € and of J as a
k,m % ,m

module over H*(SLZ(Z)) . The dimension formula obtained has the form

' m
(8) dim %em " rZO dimM _, - N

for k even (and sufficiently large), where N(m) is given by
m rz
Nm) = 1} l——] ( [x] = smallest integer 2x ) -
r=0 lm

We will show that N(m) can be expressed in terms of class numbers of

imaginary quadratic fields and that (8) is equivalent to the formula



9 dim 0 = dim M3eY, (T @),

where Mgizz(ro(m))+ is the space of new forms of weight 2k-2 on

lb(m) which are invariant under the Atkin-Lehner (or Fricke) involutiom

£(t) - m—k*i r-2k+2 new

f(-1/mt) and Jk o 2 suitably defined space of
?

"new" Jacobi forms.

Chapter IV, which will be published as the second part of this
paper, goes more deeply into the Hecke theory of Jacobi forms. 1In
particular, it is shown with the aid of a trace formula that the equality
of dimensions (9) actually comes from an isomorphism of the corresponding
spaces as modules over the ring of Hecke operators.

Another topic which will be treated in a latéf paper (by
B.‘Gross, W. Kohnen and the second author) is the relationship of Jacobi
forms to Heegner points. These are specific points on the modular curvé
xo(no - H/Pb(mﬂ U{cuapa} (namely, those satisfying a quadratic equation
with leading coefficient divisible by m ). It turns out that for each
n and r with r2'<4nm one can define in a natural way a class
P(n,r) € Jac(xo(m))(Q) as a combination of Heegner points and cusps

and that the sum X

P(n,r) qn ;r is an element of Jac(xo(m))(Q) Gb.l
n,r

One final remark. Since this is the first paper on ;hé theory
of Jacobi forms, we have tried to give as elementary and understandable
an exposition as possible. This means in particular that we have always
preferred a more classical to a more modern approach (for instance,
Jacobi forms are defined by transformation equations in Hx= € rather
than as sections of line bundles over a surface or in terms of the
representation theory of Weil's metaplectic group), that we have often
given two proofs of the same result if the shorter one seemed to be too

uninformative or to depend too heavily on special properties of the

2,m
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full modular group, and that we have included a good many numerical
examples. Presumably the theory will be developed at a later time from

a more sophisticated point of view.

*

This work originated from a much shorter paper by the first author,
submitted for publication early in 1980. In this the Saito-Kurokawa
conjecture was proved for modular (Siegel and elliptic) forms on PO(N)
with arbitrary level N . However, the exact level of the forms in the

bottom of diagram (7) was left open. The procedure was about the same as

. ———— - —

here iﬁ 554-6: The second author persuaded the first to withdraw his
paper and undertake a joint study in a much btcégﬁf frame. Sections 2 and
8-10 are principally due to the second author, ;hile sections 1, 3~7 and 1!
are joint work.

The authors would 1like to thank G. van der Geer for his criti

reading of the manuscript.



Notations

We use N to denote the set of natural numbers, ']No for
N {0}. We use Knuth's notation |x] (rather than the usual [x])
for the greatest~integer function max {neZ | n$x} and similarly
[x] = min{neZ |n2x} = -|-x] . The symbol O denotes any square
number. By d||ln we mean d|n and (d,%)-l . In sums of the

ad=%

form } or 2 it is understood that the summation is over
din
positive divisors only. The function } d° (deN) 1is denoted cv(n) .
din

. .
2®ix

The symbol e(x) denotes e , while e™(x) and em(x)

(meN) denote e(mx) and e(x/m) , respectively. In e(x) and
e™(x) , X 1s a complex variable, but in em(x) it is to be taken in

Z/mZ ; thus em(ab-1) means em(n) with bn=a (modm) , and not
e(a/bm) .

We use M and I; for the i:ranspose of a matrix and for the

nxn identity matrix, respectively. The symbol [a,b,c] denotes the
quadratic form ax2+bxy*cy2 .

H denotes the upper half-plane {recC| Im(t)>0} . The letters
T and z will always be reserved for variables in H and € ,
respectively, with T = utiv, 2z = xtiy, q=e(t) , ¢ = e(z) . The
group SLZ(Z) ) will often be denoted by 1‘1 and the space of modular
(resp. cusp) forms of weight k on l'l by M (resp. Sk) . The
normalized Eisenstein series Bk."'k (k24 even) are defined in the

usual way; in particular one has M, =M - C[EA,BG] vith
- n
Bl; '+240203(n)q , Eﬁ - 1-5°4Z°S(n) qn

The symbol " :=" means that the expression on the right is
the definition of that on the left.



Chapter I. Basic Properties

§ 1. Jacobi forms and the Jacobi group

The definition of Jacobi forms for the full modular
group I“ = SLZ(Z) was already given in the introduction. In order
to treat subgroups T eT 1 wvith more than one cusp, we have to
rewrite the definition in terms of an action of the groups SLZ(Z’)
and 22 on functions ¢: H x € + €. This action, analogous to the

action

(1) ELM (D) = cre)™ £EED) e Der))

“in the usual theory of modular forms, will be important for several
later constructions (Eisenstein series, Hecke operators). We fix

integers k and m and define

2
a by . -k m,~c2z at+b k]
) “lk,n [c d] )(‘F,z) = (ct+d) e (c‘nd) ¢ (c't+d , c‘r+d)

ab
(C P&t
and

(3) “'mD u])(t,2) = e®(22r + 222) ¢(t,z + At + y)
(Gwezd ,

2ximx

where e"(x) = e (see "Notations"). Thus the two basic trans-

formation laws of Jacobi forms can be written

2
¢|k’mu- ¢  (Mer), ¢/ x=4¢ (xe2),

where we have dropped the square brackets around M or X to lighten

the notation. One easily checks the relations

(ﬂk,mu) lk,mn' - "k,m(m')' (¢|EX) I-X' - ’lm(x + X",
(4)

Ol ol 00 = D] M Muar, Xx'e ) .



They show that (2) and (3) jointly
define an action of the semi-direct product I": 1= I'1 [ 4 22

(= set of products (M,X) with MeTl , Xe 22 and group law

1‘
(M,X)(M',X') = (MM', XM' + X') ; notice that we are writing our
vectors 43 row vectors, S0 I" acts on the right), the (full)

Jacobi group. We will discuss this action in more detail at the end

of this section.

We can now give the general definition of Jacobi forms.

Definition. A Jacobi form of weight k and

index m (k,m«N) on a subgroup T < I‘1 of finite index is a

holomofphic function ¢: Hx¢€¢ -+ ¢ satisfying
i ¢l M=¢ (MeD
i) o x =¢ e |
iii) for each M erl 1’ dk’mu- has a Fourier development of the
form Zc(n.r)qncr (q = e(7),2 = e(z)) with c(n,r) = 0 unless
n& tzllm . If ¢ satisfies the stronger condition c(n,r) # 0 -yn>t2/4m,
it is called a cusp form.

The vector space of all such functions ¢ is

denoted Jk’él') s If T = Ty we write simply Jk,,n for ka(l'1).

Remarks: Ve could also define Jacobi forms with character, Jk él‘ X ,
by inserting a factor x(M) in i) in the usual way. Also, we' could
replace 22 by some other lattice invariant under I (e.g. by imposing
congruence conditions modulo N # T = I'(N) );if we did this, then the
exponents n and r in iii) would in general be rational numbers
but we would still require 4mm 2 rz as the condition of holomorphy
at the cunpn-“; It would therefore be more proper to refer

to functions satisfying i) - iii) as Jacobi forms on the Jacobi



group rla T o 22 (rather than on T). Bowéver, we will not worry
about this since most of the time we will be concerned only with

the full Jacobi group.

Our first main result is

Theorem 1.1. The space Jkp(r) is finite~dimensional.

This will follow from two other results, both of independent

interest : .

Theorem 1.2. Let ¢ be a Jacobi form of index m . Then for

fixed Tt € H , the function z ~ ¢(1,2) , if not identically zero, has

exactly 2m zeros (counting multiplicity) in_any fundamental domain for

the action of the lattice Zt +Z om €.

Proof: It follows easily from the transformation law ii) that

¢ _(t,2)
! z = = -a—¢ = 3 C/Z«t
21i§ #(t,z) dz = 2m (¢z 32 ° F = fundamental domain for

(the expression -2-:—{ %‘ is invariant under z + z + 1 and changes
by 2m when one replaces z by z +t) , and this is equivalent to the
statement of the theorem. Notice that the same proof works for ¢ mero~
morphic (with "number of zeros" replaced by "number of zeros minus number
of poles") and any meZ. A consequencé is that there aré no holomorphic

Jacobi forms of negative index, and that a holomorphic Jacobi form of index

is independent.-of z (and hence simply an ordinary modular form of weight ¥

in T1).

Theorem 1.3.. Let ¢. .be a Jacobi form on T' of weight k and index m

snd A,u rational. numbers. Theam. the function, ,h f(t) = em(kzr) ¢(t,At # W

is_a modular form (of weight k and on some subgroup of T, of finite

index depending only on T and on A,u).
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For A=pu= 0 it is clear that t -+ ¢(t,0) is a modular
form of weight k on T. We will prove the general case later on in
this section, when we have developed the formalism of the action of the
Jacobi group further. Note that the Fourier development of £(71)
at infinity is

2 c(n,r) e((mlz;rhn)r) .

n,l‘
so that the conditions n3 0, rzs 4mn in the definition of Jacobi forms

are exactly what is required to ensure the holomorphicity of f at =
in the usual sense.

To deduce 1.1, we pick any 2m pairs of rational numbers
(Ai,ui)cqz with (Ai,ui) #(Aj,uj) (mod 22) for i # j. Then the functions
fi(t) - e“'(xizr) ¢(r,xit + "i) lie in Mk(l'i) for some subgroups
I, of T, and the map ¢ -’{fi}i is injective by Theorem 1.2.
Thereforel dim Jk,m(r) < i.Zdim Hk(f']." ) ; this proves Theorem 1.1 and also

shows that J, (M) is 0 for k<0 unless k=m=0, in which case it

reduces to the constants.
To prove Theorem 1.3, we would like to apply >(3)
to (A,u) € Qz . However, we find that formula (3) no

longer defines a group action if we allow non-integral A and u , since

Gl DD w2 =
- e"(x'z-; + 2\'z. + Azr + 2A(z+A't+u"))  $(t,z+d"Tru' +Az+n)
= eQap) (@ (A’ wru'D(x,2)
and e(2mr'uy) will not in general be equal to 1 . Similarly, the third
equation of (4) breaks down if X is not in 22 . Hex;ce if we want to

extend our actions to SLZ(Q) (or SI.Z(R)) and Qz (or Rz), we must

wodify the definition of the group action.
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The verification of the third equation in (4) depends

on the two elementary identities

z . awmb AT,
ct4d “crvd ¥ ct+d  °?
2
A Tu)
2 at+p N 1 cz 2 c(z+ 1 1
Mot T ema A N Az - Ay,

where (A' uI) = (A u)(: :). Thus to make this equation hold for arbitrary

M= (: :)‘SLZG) and X = Qu)caz we should replace (3) by

(5) (4] n[x s (1,2) := (A 2r+22z+2p) ¢(1,z+AT+y)

(2 per?)

this is compatible with (3) because e"(\u) = 1 for ALuel .

Unfortunately, (5) still does not define a group action; we now find

6) (ﬂmx).lmx' = " (Au'-1'"p) ¢|m(X+X') (X=Q ), X=X ,u')tnz)

To absorb the extra factor, we must introduce a scalar action of the

group R by

(¢)) (¢|m[=])(t,z) = e(mx) #(t,2) (x&R)
_ and then make a central extension of Bz by this group R , i.e. replace

Bz by the Heisenberg group

g = ([Aw,x] | Ower? ,cem),

[ WLkl [(F 1) k] = [(a" wen®), wex'+hu'=2'y].



_12-

(This group is isomorphic to the group of upper triangular unipotent

3 x3 mpatrices via

[(A w,k]

o
-
-
.
L

o
o
-—

The subgroup (‘h tm {[(0 0) ,oc], xeR} 1is the center of HR and
HR/CR o Rz . We can now combine (5) and (7) into an action of

HR l;y set:cing.
(¢|[(l u) ,K])(‘l’,z) = em(kzt-o-uzﬂuﬂ:) ¢(t,z+AT+y) ,

and this now is a group action because the extra factor
e®(A'u-Ap') in (6) is compensated by the twisted group law in HR .
;,u‘.‘) and the determinant

is preserved by SL, , the group SL,(R) acts on on the right by
2 2

Because this twist involves Apu'=A'uy = det(

2

(.M = [04,c]  (ReR, ceR, MesL,@R));

the above calculations then show that all three identities (4) remain
true if we now take M,M'e SLZ(R) and x,x'eux and hence that equations
(2), (5) and (7) together define an action of the semidirect product
SLzm)u BR .

In the situation of usual modular forms, we write H as
G/K where G = SLZG) contains I as a discrete subgroup with Vol(M&)
finite and K = S0(2) is a meximal compact subgroup of G . Here we would
like to do the same. However, the group SLZ(R) x HR contains
PJ = Ix 2’2 with infinite covolume (because of the extra R in HB ) and

its quotient by the maximal compact subgroup S0(2) is HxE€xR rather
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than Hx€ . To correct this, we observe that the subgroup 2¢R
acts trivially in (7) , so that (2),(5) and (7) actually define

an action of the quotient group

I .. '
6" := SL,0R) & H/C, .

Here it does not matter on which side of th we urite c2 , 8ince C

is central in H ; the quotient Bn/(:z is a central extension of Rz

by S'={z€€| Jg| =1} (gz=e(x)) and will also be denoted BZ-S' .

Now I° is a discrete subgroup of G with Vol(l"\c’)< = , and if wve

choose the maximal compact subgroup

J

K’ := soc2) x s

J
< ¢ = sL,® x(@®-s!)
then GJ/ l(J can be identified naturally with B x € via

ab, . : J ai+h  Aiey
(@ owele~ 5. 39 -

The above discussion now gives

Theorem 1.4. Let G> be the set of triples [M,X,c]

(MesL, ®), XeB?, [ e € |z|=1). Then ¥ _is a group via

(M,X,c] (M',x",2'] = [, XM'ex" ,;z'e"(det(%:))]

and the formula

@ | (@ 2.0w.den

& B c(zﬂrw)z 2 aT+h  ztAtty,,

m
g (ct+d) prre mndhg ACT+22z+An) ‘(c'r w4’ ored

defines an action of GJ on {¢ : Hx€C +C} . The functions ¢ satisfying.

the transformation laws i) and i.i) of Jacobi forms
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are precisely those invariant with respect

. J
to this action under the discrete subgroup ' = ez’ of G,

and the gpace of such ¢ can be identified via

F(g) := (¢|g)(i,0)

J

with the set of functions F : G° -+ € left invariant under I‘J and

transforming on the right by the representation

cos @ sin © m ikO.
FGg* [(C33h0 cns o) »(0 0,5] ) = ¢"e™F

(g)

J
of the maximal compact subgroup KJ = S0(2) x s of G .

Thus the two integers k and m in the definition of Jacobi
forms appear, as che'y should;as the parameters for the irreducible (and here
one-dimensional) representations of a maximal compact subgroup of GJ .

- As an application of all this formalism, we now give the
proof of 1.3. The function f£(r) in that theorem is up f:o a constant
(namely e™(ip)) equal to ¢X(r) := (¢]X)(1,0) , where X = (A u)ell2
and ¢|X is defined by (5) (from now on we often omit the indices

k,n' on the sign | ). For X' = (A' u‘)czz we have
byegr (D) = € O0'2"0) ¥y (1)

by (6) , so ¢ depends up to a scalar factor only on X (mod 22) and

2

itself depends only on X (mod N2°) if X & N 'Z* . For

¥
M= (: :)el‘ we have
-k at+b
(ct+d) = 4 (Cg) = (¢|x|M) (x,0)
= (/M| (xM)) (7,0)
= (¢| (X)) (x,0)

- ¢m(1) ’



80 ¢x behaves like a modular form with respect to the congruence

subgroup
2 X
Mer| xMsM (mod 27) , m-det(y, )e2}

of T (this group can be written explicitly
(P - 2 2
(c d)c Tl (a=1)A+cu, bA+(d~1u, mlcu“+(d-a) Au~-br“)e 2

2
and hence contains TI'mn l‘(-?r?m) if NX e 22). Finally, if M is any

element of I‘1 then

(4g] W (7) = (s|u|R0) (,0)
- e“(xfnx’u')(¢|u)(x,xlr+u')
where (A, ) = XM , and since ¢|M has a Fourier development containing

qn:r only for lonn-ktz » this contains only'non-ncgativo powers of

e(t) by the same calculation as given for M~Id after the statement

of 1.3.

We end with one other simple, but basic, property of Jacobi

forms.

Theorem 1.5. The Jacobi forms form a bigraded ring.

Proof: That the product of two Jacobi forms 01 and ¢, of
weight k, and kz and index m, and B, , respectively, transforms

like a Jacobi form of weight k=k +k2 and index n=no,m, is clear;

1
we have to check the conditiom at infinity. One way to see this is to use
the converse of Theorem 1.3, i.e. to observe that the conditions at infinity
for a Jacobi form ¢(t,z) of index m is equivalent to the condition

that f£(t) = c‘(xzr)o(x-c-m) be holomorphic at « (in the usual sense)

for all A, u € @ ; this condition is clearly satisfied for ¢(t,2) =

Q‘(t,z)oz(t.:) with f£(t) = ft(r)fz('r) . A more dir::t proof is to write

L
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the (n,r)-Fourier coefficient of ¢ as

c¢(n,r) = Y c1(n1,r') cz(nz.rz) ,
n;+n,=n
r,+r,=r
where the ¢, are the Fourier coefficients of 2 (the sum is finite

since n, sn, ri s 4nimi) and deduce the inequality r2 S &nm from

the identity

2 2 2
_(r,+r,)? . T 5, (m,r,-m,r )
i e Y v =z * (@) e Gmag)

This identity also shows that (as for modular forms) the product ¢1¢q
rs

is a cusp form whenever either ¢I or ¢2 is one but that (unlike the
situation for modular forms) ¢1¢2 can be a cusp form even if neither 9
nor ¢2 1s.

The ring J, ., = @ Jk o of Jacobi forms will be the object cf
?
N

study of Chapter III.
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§ 2. Eisenstein series and cusp forms

As in the usual theory of modular forms, we will obtain our
first examples of Jacobi forms by constructing Eisenstein series.

In the modular case one sets (for k>2)

Ek('r) - Z i'k = ';- Z (et*d)-k ,

YET\T, c,dezZ
(c,d)=1
vhere T = {t(:) ?)In‘Z} is the subgroup of I‘1 of elements

Y with 1|ky = {1 , where 1| denotes the constant function. Similarly,

here we define

(1) (t,2) := - il v
Bk:m Y‘ri\r': k,l

where

r - {Ycl‘fl 1ly=1}

= { [t.(:) ?), (0 u)] | n,ne2}.
Explicitly, this is
' 2
1 2 , Z <k mg 2 at+b z__ ez
(2) ak,nx(‘""') 2 c,de2 re2 (ct+d) € (A ct+d + 2 ct+d T
(c,d)=1
where a,b are chosen so that (: :) ¢P1 . As in the case of modular

forms, the series converges absolutely for k24 ; if 1is zero if k

is odd (replace c¢,d by =-c, ~d). The invariance of Ek,m under

l“J is clear from the definition and the absolute convergence. To check
the cusp condition, and in order to have an explicit example of a form
in Jk,m » We must calculate the Fourier development of Ek,m , which we

now proceed to do.



-17-

As with Ek » Wwe split the sum over ¢ , d into two parts,
according as ¢ is O or not. If c=0 , then d=t1 ; these terms

give a contribution

(3) Z em(lzt + 2)z) = Z. qu chA
AeZ AeZ

(q = e21l’1‘l’ , &= eZ'nz) . This is a linear combination of qncr with
4nm = 1:2 and corresponds to the constant term of the usual Eisenstein

series. If ¢ # 0 , we can assume c¢>0 (since k is even'); using the

identity
2 2 2
2 at+b z_ _ cz - - c(z=A/c) al
A ct+d +2 ct+d cT+d ct+d * c (c$0)

we can write these terms as

2 2 2

-k Z di-k m, (z=A/¢) a

c Z (rt +2) (- + ) .

c-zl G fa’'’Y ¢ T+d/c c
(d,c)=1

Note that d — d+¢ and A - A+c correspond to z -+ z+1 and

T = t+1 , so this part equals

) 2. ™ é:. 2. ecma P @+ 4, 22
c=1 d (mod ¢) 2 (mod c) »> e ¢

(d,c)=1
with e. as in "Notations" and
2
’ P, q¢Z
the function F is periodic in Tt and z , so (4) makes sense.

k,m

Now the usual Poisson summation formula gives

e - 3 v
»

n, reX
with

Y(n,r) = j. T-ke(-n") j e(-nz% -rz) dz dt
Im(‘c)-cl In&)-cz

(c,>0, C, arbitrary). The inner integral is standard and equals
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1
(/2im)? e(rzt/lm). Hence
y
7 ri-4m

v(n,r) = J- % @/2im) e(=7=—1) dr
Iatde G

0 - _ if rz‘a‘lmn

akm‘-k(lsnn-rz)k-ut if ri<éom

with
. - -yk/2 /2
%2 F (k=)

(if rzz 4um, we can deform the paﬁh of 'inﬁegratioh to +ise, so y=0; if

1.'2 24nm we deform it to a path from -i® to -iee circling O once in 2

clockwise direction and obtain a standard integral representation of 1/T(

Substituting the Fourier development of P a into (4) gives the expressi-
]

Z .k,ll(n’r) qn Cr

n,reZ
4om> r®

with
oo

3
k-
(5) e ln(n.r) -—:k_-‘ (lmur-rz) 2z Zc'k Z e (md"xz-rxmd).
’ m c=1 A,d(mod ¢) ©

(d,c)=1

(for d-1 , see "Notations"). To calculate this, we first replace A by

dA in the inner double sum (since (d,c)=1 , this simply permutes the
summands) ;- then the summand becomes ec(dQ(i\)) ‘with Q(A) := nlz'ﬂ:km .
We now use the well~known identity

S eam - 2 n s,

d(mod c) © a|(c,N)
(d,c)=1

where u is the MSbius function (so-called Ramanujan sum; ses

Hardy-Wright or most other number theory texts); them the inner double
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sum in (5) becomes

ZadHe D 1.
ajlc A(mod ¢)
Q(1) 30(mod a)

Now the condition Q(A)s0(mod a) depends only on 2 (mod a), so the inmer

sum is % times Na(Q) , where
N_(Q) := #{)(mod a)| Q(A) 2 0(mod a)} .

Hence the triple sum in (5) simplifies to

ow _ - * N (Q
2 ' 7‘_'. W) N (@ = gk-1) 1> =
ajc

c=1 a=1 ak.‘

(the last equality follows by writing c=ab and using

Ju(v) b® - C(s)-i). To calculate the Dirichlet series, we first
calculate Na(Q) for (a,m)=1 ; this will suffice completely if w=1
and (using the obvious multiplicativity of N8 ) will give the Dirichlet
series up to a finite Euler product involving the prime divisors of m

in general. If (a,m)=1 , then
N (Q) = #{A(mod a)| m2+rl4~n30(mod a)}
= #{A(mod a)| (me\-m:')2 = rz-lom(mod 4a)}
- N_(r?-4m) ,

where

N (D) := #{x(mod 2a) | x> 2 D (mod 4a)} .

It is a classical fact that

-8 _ z(s)
(6) Z Na(D)a - 029) LD(S) .

as=1

if D=1 or if D is the discriminant of a real quadratic field, where
LD(s) - L(l,(%)) is the Dirichlet .L-series associated to D . It was

shown in [39,p.130] that the same formula holds for all DEZ if Ly(s) is
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defined by
& if DE0,1 (mod 4)
Ip(s) = 'ﬁ £(2s-1) if D=0 ,
LLDo(s).d%f u(d)‘(%)d?sat-zs(f/d) if D=0,1 (mod 4)

where in the last line D has been written as Dofz with £ €N and
D0 = discriminant of Q(/D) (the finite sum i_.n this case can also be

written as a finite Buler product over the prime divisors
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of £) . Inserting (6) into the preceding equations, we find
that we have proved

3
2

k—
ek,‘(n,r) = a.kll)l l:(2k-2)-1 LD(k-l)

if m=1 and D-r2-4n<0 , while for m arbitrary there is a similar
formula (now with D-rz-lomn) but multiplied by an Euler factor invol-
ving the prime divisors of m . Using the functional equations of

LD(s) and 7(s) we can rewrite this formula in the simpler .fom
ek’i(n.r) = L (2-k)/3(3-2k) ,

where now all wnumerical factors have disappeared. The values LD(Z-k)
(D<0, k even) are well-known to the rational and non-zero; they have
been studied extensively by Cohen [ 6 ] , who denoted them

H(k-1,|D|) . Summarizing, we have proved

Theorem 2.1. The series F.k o (k24 even) converges and defines a
)

non~zero element of Jk,m' The Fourier development of Ek,m is given

by
(t,z) = (n,r) qn * ,
B n’Zm °k,m

4nm2x?
where e, (n,r) for 4nmer? equals 1 if rsO0(mod 2m) and O
14

otherwise, while for lmm>r2, we have

2
H(k-1, 4n-r")
e, (8 = 2 (3-2%)

(H(k=1,N) = L_N(Z-k) s Cohen's function) and

2
e pln,r) = a(k.kal-‘;sr L. TT (elementary p-tactor) .
? p'n

In particular, ek'm(n,r) €Q .
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One can in fact complete the calculation of L in general

with little extra work; the result for m square-free is

) (a,r) = = R a7V g(g-1, AmEI)
®,m'® Z-20 d|G,r.m) P T2 .

However, we do not bother to give the calculation since this result
will follow from the properties of Hecke~type operators introduced

in § 4 (Theorem 4.3).

For m=1 and the first few values of k we find, using the

tables of H(k-1,N) given in [ 6 ] , the expansions

B, , = 1+ (z%+565+126+560 '+t 2)q + (12627
1 4
+ 576¢+756+5765 ' +126¢ 2 q” + (565°+7565>
+ 15120+2072+15128 147568 2+568 )q° + ... ,

2

By, = 1+ (57-882-330-887 't 2)q + (-330¢

-4224;—7524-422“-'—330C-2)q2 * eee

1

By =1+ (22+562+366+567 '+ 2)q> + ...
»

We will give tables of the coefficients of ‘these and other Jacobi

forms of index 1 at the end of § 3.

In the formula for the Fourier coefficients of Bk 10 it is
]
striking that e 1(n,r) depends only on lm-tz . We now slww that this
1

is true for any Jacobi form of index 1 ; more gemerally, we have

Theorem 2.2. Let ¢ be a Jacobi form of index m with Fourier development

Zc(n,r)qn;r . Then c¢(n,r) depends only on lmn-rz‘” and on r(mod 2m).

If x is.ci(nn and. m = 1 of m is prime, then c(n,r) depends only

on lmn-rz. If m=1 and k in odd, then ¢ is identically zero.
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Proof. This is essentially a restatement of the second transformation

law of Jacobi forms: we have

2c(n,r)q tt = ¢(t,2) = em(A2t+2Az) $(T,z+AT+Y)

2
A E* Dea,r) tgghT
Z n+r)‘+m)u2 r+2m\
=2,c(n,r) q 4

and hence

c(n,r) = c(n+rA+mA2 , T+2mA) ,

.

i.e. c¢{(n,r) = c(n',r') whenever r'sr(mod 2m) and 4n'm—r'2 - 4mrr2 "
as stated in the theorem. If k 1is even, then we also have c(n,-r) = c(n,r)
(because applying the first transformation law of Jacobi forms to

-1261'1 gives ¢(t,~2z) = (--1)k ¢$(t,2z) ), so if m is 1 or a prime

then

Tlm'm-r'z = lmm-rz = r'm r(mod 2m) =» c(n,r) = c(n',r") .

Finally, if m=1 and k is odd then ¢»0 because c(n,-r) = -c(n,r)

but 4om --»(--r)2 = lmm-tz and -r sy (mod 2m) in this case.

Remark: Theorem 2.2 is the basis of the relationship between Jacobi

forms and modular forms of half-integral weight (cf. § 5).

In the definition of Jacobi cusp forms, there were apparently
infinitely many conditions to check, namely c(n,r)=0 for all n , r
with lmm-rz . Theorem 2.2 tells us in particular that we in fact need
only check this for a set of representatives of r(mod 2m). The nuwber of
: tesid;xe classes r(mod 2m) with rzl O(mod 4m) is b , where b2 is
the largest square dividing uw (namely if m-ab2 with a square—free

then lmlrz &9 2ab|r ). Thus for ¢ & Jk,m ve have
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¢ a cusp form &5 c(asz,Zabs)-O for s=0,1,.,..,b-1 ;

in particular, the codimensiomn of JEUEP in 5 is at most b .
k,m k’m

Using c(n,~r) = (-1)k c(n,r) we see that in fact it suffices
to check the condition c(asz,Zabs)-rO for 3-0,1,...,[%_1 if k

is even and s~1,2,...,[%lj if k is odd. Hence we have

. . cusp . .
Theorem 2.3. The codimension of Jk,n in Jk,m is at most

l%jﬂ if k is even (resp. [P%l] if k is odd) , where b is

the largest integer such that b2|m.

On the other hand, if k>2 them for each integer s we can
construct an Eisenstein series

2 .
(8) E, _ (1,2) := Z. g2 23bs|
k,m,s T Jd
ver \l

(m"tlb2 as above), where the summation is the same as in the definition
of B " E ,m,0 - Then repeating the beginning of the proof of

Theorem 2.1 we find that

2
1 r/ém .r_ . . \kp-r
(9) Ek,n,s'fgz‘ q &+ + ... ,
r » 2abs(mod 2m)

where "..." (the contribution from all terms in the sum with c#0 )
has a Fourier development consisting only of terms qn‘r with
4mrr2>0 . It is them clear that B os depends only on s(mod b),
sily
k . .
n(= th
that Ek,m,-s (-1) Bk,m,s' and that the series Ek,m,s wi

0s sslz’- (k even) or O0<s <% (k-odd) are linearly independent.

Comparing this with 2.3, we see that the bound giventhere is sharp and

that we have proved:
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- 1Cusp is cusp .
Theorem 2.4. If k>2 , then Jk‘,m Jk,m D Ji,m , where Jk,m is

Eis
k,m k,m

. . . . b
functions Ek,m,s . The functions Bk,m,s with 0Ss sf (k even) or

b ) . is
0<s <-2- (k odd) ‘form a basis of Ji,m .

the space of cusp forms in J and J the space spanned by the

We will not give the entire calculation of the Fourier develop-

ments of the functions Ek a.s here, since it is tedious and we do not
gty
need the result. However, we make some remarks. In §4 we will introduce
certain operators q‘ and Yi which map Jacobi forms to Jacobi forms
of higher index. These will act in a simple way on Fourier developments
and will send Eisenstein series to Eigenstein series. Hence certain
combinations of the s ("old forms") have Fourier coefficients
which can be given in a’simple way in terms of the Fourier coefficients
of Eisenstein series of lower index (compare equation (7), wvhere the
coefficients of Ek are simple linear combinations of those of Ek ),
’m ’1

and we need only consider the remaining, "new," forms. A convenient

basis for these is the set of forms

(10) El(‘x) 1= Z. x(s) Ek,m,s (m=£2)

o s (wod £)
of index fz , where X is a primitive Dirichlet character (mod £) with
)((--1)-'(--1)k . Then a calculation analogous to the proof of Theorem 2.1

69

for the case m=1 shows that the coefficient of qncr in Ek B,X
| 2t

is given by
(1) O (a,r) = elx) x(r) L (2-k, T)
*%,m "™ r2-4nm » X

if (r,f) =1, where LD(s,x) is the convolution of LD(s) and L(s,x)
and e(x) a simple constant (essentially a quotient of Gauss sums attached
to x and x2 divided by L(3-2k, x-z) ); in particular, the coefficients
are algebraic (in Q(X) ) and non-zero. If (r,f)>1, then e‘(‘ﬁ(n,i‘) is
given by a formula like (11) with the right-hand side multiplied by a

finite Buler product extending over the common prime factors of r and f.
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If k=2 , then the Eisenstein series fail to converge; however,
by the same type of methods as are used for ordinary modular forms

("Hecke' ergence trick” o . . . .
one can show that for X non-principal there is an Eisaenstein series

E el

2,m,x having a Fourier development given by the same formula
t Ak

2,m .
.8in
as for k>2 . Since yx must be even (x(-1) = (-1)k) and(there exists

an even non-principal character (mod b) only if b=5 or b27 , such

series exist only for m divisible by 25, 49, 64 ... .

There is one more topic from the theory of cusp forms in the
classical case which we want to generalize, namely the characterization

of cusp forms in terms of the Petersson scalar product. We write
T = u+iv (v>0) , z -.xﬂ’.y
and define a volume element dV on Hx€ by

(12) aVi= v 3 dx dy du dv .

If is easily checked that this is invariant under the action of GJ

on HxC defined in §1 and is the unique C{invariant measure up to &

constant. {(The form v.z'du dv is the usual SLZ(R)-invarian: volume form
orn H ; the form v.' dxdy 1is the translation-invariant volume form on

€ , normalized so that the fibre €/Zt+Z has volume 1 .) If ¢ and
v transform like Jacobi forms of weight k and index m, then

the expression

2
vk e 4wy /v ¢(t,2) tzt,zs
is easily checked to be invariant under l"J s+ 80 we can define the
Petersson scalar product of ¢ and ¢ by

2
(13) (9,9) := J I vk .‘“ﬂY Iv «t,z) vit,z) d4v .
r \ ix¢ .
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Then we have

Theorem 2.5. The scalar product (13) is well-defined and finite for

Y € J@ sdat least one of ¢ and ¢ a cusp form. It is positive-

definite on J:::p and the orthogonal complement of Jeusp

¥,m with

. Eis
respect to ( , ) is Jk,m .

This will follow from the results in §5 concerning the connection

between Jacobi forms and modular forms of half-integral weight.



§ 3. Taylor expansions of Jacobi forms

-

The restriction of a Jacobi form ¢(t,z) to 2z=0 gives a
modular form of the same weight. In §1 we proved an analogous statement
for the restriction to z = Ar+y (A,u rational) and used it to show
that Jk AI‘) is finite~-dimensional. Ano:hér and even more useful way
to get modular forms is to consider the Taylor development of ¢ around
z=0 ; by forming certain linear combinations of the coefficients ome
obtains a series of modular forms Dv¢_ . (Dv for "L development
coefficient) with D,¢= ¢(1,0) and D”¢ a modular form of weight

k+2v . The precise result is

Theorem 3.1. For vclio, keN define a homogeneous polyunomial

pg“) of two variables by
- -k+‘
M (2\(,“;\:3', Pg l)(t,n) = coefficient of t2” in (l-runcz)

Then for ¢eJk ér) a Jacobi form with Fourier development
»

J c(n,r)q"z% , the function
n,r

@
@ Dy =) (Z,'p§§"’ (x,om) c(a,5)) "
Nn=Q*r

is a modular form of weight k+2v on I . If v0 , it is a cusp form.

Explicitly, one has
Doé = X(Zc(n,r)) <,
ar

Dyé = r)i(g(krz-hmx) c(n,r)) ¢,

D¢ = Z():((kﬂ)(k-pz)r“ - 12(k+1)r2nn + 12n2m2)c(n,t)) <.
nr
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Notice that the summation over r is finite since c¢(n,r)$0 =» rzslmm .

The polynomial pg:—q) is given explicitly by
(k~1) . _yi __(2v)! (k+2v-u=2)! 2v=2u b
) Ppy  (Fom) ,-Zo( Ry o= N (T ) N "

“and is, up to a change of notation and
normalization, the so-called Gegenbauer or "ultraspherical" polymomial,

studied in any text on orthogonal polynomials); we have chosen the

normalization given so as to make pg—” a polynomial with integral
coefficients in k,r,n in a minimal way (actually, 717 times pg_”

would still have integral coefficients as a function of r and n for

fixed k @N). The characteristic property of the polynomial p(k—1) is

2v
that the function p.‘(,t-”(B(x,y) ,Q(x)Q(y)) , where Q 1is a quadratic form
in 2k variables and B the associated bilinear form, is a spherical
function of x and y with respect to QA (Theorem 7.2).
ﬁlere is a similar resul.t: in\;bl;ing odd polynomials and giving
modular forms D1¢, D3¢,... weight k+1, k+3, ... (simply take
vt% +llo and replace (k+v-2)! by (k+v-—g-)l in (1) and (3)) , but,

as ve shall see, this can be reduced to the even case in a trivial way,

so we content ourselves with stating the latter case.

As an example of Theorem 3.1 we apply it to the function F.k 1
3

studied in the last section; using the formula given there for the Fourier

coefficients of Ek y ve obtain

Corollary (Cohen (6, T™.6.2] ). Let k be even and H(k-1,N)

(N GNO) be Cohen's function

L_N(Z-k) if N>0 , Nz20 or 3(mod 4) ,
H(k-1,N) = $(3-2k) if N=O ,

0 if Ns? or 2(mod 4) .
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Then for each v tN the function

c‘(tv)(t) = ) ( 2 pék 1)(r n) H(k-1,4n-t )) q

n20 l:2 $4n

is a modular form of weight k+2v opn the full modular group 1‘1 .
If v>0 , it is a cusp form.

Cohen's proof of this result used modular forms of half-integral
weight; the relation of this to Theorem 3.1 will be discussed in §5 .
Yet another proof was given in [39 ] , where it was shown that Cl(‘v) b
the property that its scalar prcdﬁct with a Hecke eigenform
f= {a(n)qn e Sk+2 v is equal, up to a simple numerical factor, to
the value of the Rankin series ):a(n) "% at s = 2k+2v-2 . This
property characterizes the form qg v) ‘and also shows (since the value
of the Rankin series is non-zero) that it generates sk+2v (resp.

Hk if v=0 ) as a module over the Hecke algebra; an application of

this will be mentioned in §7 .

To prove Theorem 3.1, we first develop ¢('r,z) in a Taylor

expansion around z=Q :

(4) #(t,z) = 2, X, (1) z’
v=0

and then apply the transformation equation

2
at+b cz

(5) “c‘r*d’ c‘t+d) (c'H-d) (c't+d) ¢(t,z)

to get

(6) & b) - (crﬁ)kw( (t)+211mc (1) __(Zumc) (1

xv ct+d X cttd -2 Xy-4

i.e. Xy transforms under T 1like a modular form of waeight k+v modul

corrections coming from previous coefficients. The first three cases
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of (6) are
XoGmp = (e x (™)
G = ! x (1)

REE = ©rd)? % (0 + 2mimeend) T g @ |

Differentiating the first of these equations gives

(ar+b) -

ket k+2
xo(orrg ke(ct+d) <" xo(r) + (ct+d) xb(r) s

and subtracting a multiple of this from the third equation gives

. _ 2mim _,

Proceeding in this way, we find that for each & the function

' . (c2mim) P keveu=2) (W)
@) £,(1) ¢ Oz;‘—’ DT 5l )g)_zp(t)
2

transforms like a modular form of weight k+v on T . The algebraic
manipulations required to obtain the éppropriate.coefficients in (7)
directly (i.e. like what we just did for v=2 ) are not very difficult
and can be made quite simple by a judicious use of generating series,

but we will in fact prove the result in a slightly different way in

a moment .'Z

2 c(n,r) qu ;t , then xv--;l!-%:(g(zwir)v c(n,r)) qn and hence

n,r

If ¢ 1is periodic in 2z and has a Fourier development

‘ - Y (ktv=p=2)! (-mn)"r¥" Zu) n
(8) £,(1) = (2ni) n;O(X é%i! v T ST T/ ¢ e,
so

- =2V (k+2w-2)1 (2v) L
(9 D2v¢(1) (2%i) G 1 EZv(t) .

Thus Theorem 3.1 follows from the following more general result:
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Theorem 3.2. Let ¢(t,z) be a formal power series in z as in (4)

with coefficients X, which satisfy (6) for all

a g) €l and : are holomorphic everywhere

(including the cusps of T ). Then the function £, defined by (7)

is a modular form of weight k+v on T .

tr;gf: Let Hk, ln(l‘) denote the set of all functions ¢ satisfying the
conditions of the theorem. (Note that HK lll(I‘) is isomorphic to
Hki(r) vif z + /mz .) Since g, involves only x,, with v' s v(mod 2)
we can split up Hk m(I‘) into odd and even power series, say
Hk,g') = H;ér) ® H.;_&I') and look at the two parts separately (this
corresponds to adjoining -Iz to I' and looking at the action of

-1, on ¢ ; if I already contains -1, » then Mk“‘l‘) - H§ ‘) ).

2
1f ¢cnh () , then ¢ = z¢‘ with ¢1 e ukﬂ’m(r) and the functions
P F’v for ¢ and ¢1 are the same except for the shift
=+ y=1_ k-+k+ 1, Hence it suffices to look at H;él‘). We

. ?

now introduce the differential operators

2
L= 8rin = - 2
* 3:2

(the heat operator) and

-y et D
Lk' L z iz

The operator L is natural in the coantext of Jacobi forms because it
acts on monomials q°g' by multiplication by (Zwi)z(lomrrz) and
hence, in view of Theorem 2.2, preserves the second transformation lavw

of Jacobi forms; this can also be seen directly by checking that
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(10 LGl X = W] X x er?) .

If L satisfied a similar equation with respect to the operation of
Sl.zm) , then it would map Jacobi forms to Jacobi forms. Unfortunately,

this is not quite true; when we compute the difference between

L“lk,mm and (L¢)|k+2’mu we find that most of the terms cancel
. . c
but there is = one term 4¥im(2k-1) E-;?(ﬂk’nu) (t,2)
left .over . (unless k --;- , in which case L really does
map Jacobi forms to Jacobi forms of weight -i- and the same index m ;

examples are the Jacobi theta-series, which are annihilated by L ).
To correct this we replace L by Lk , which no longer satisfies (10)

but does satisfy

(1n L (4l 0 = W |y, oM (M @SL,®) ,

as one checks by direct computation. Because of the 2z in the
denominator, Lk only acts on povwer series with no linear term; in
+ +
i i r r
particular it acts on Mk,ns ) and (because of (11) ) maps Mk,ng )

+ .
to Hk+2,ni(m ~. Explicitly, we have

2
: . A
L xgox* 27 .,‘Z;:o(snmxi-t.(m ) (Jvfk)x,m)z2 )

Iterating this formula v times, we find by induction omn v that

the composite map

e

naps lezu to

M, N )

+ +
Hk+2,m(r) R — }&c+2v,m(r)

Vv
v=y . My (Arv=p) 1 (A+ke2v-p=2)1 (W) 2
Ago(g.o(-l.) (8'1“) (u) Xl (A"'k"'\’-z) 1 XAW-H(T) z ’

and composing this with the map

* ) -+ (r) (¢(r,r) - 0(1,0),
Mk+2v,m Mk-'-Z\o
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gives &2\’ € Mk+2vu‘) . This proves Theorem 3.2 and hence also

Theorem 3.1 except for the assertion about cusp forms. But the latter is
clearly true, e=1)
because the constant term of (2) is Py (0,0) ¢(0,0) , which is 0

for v>0 , and the expansion of Dv¢ at the other cusps is given
by a similar formula applied to “k mM, Mer, .
k]
By mapping an even (resp. odd) function ¢eMk ér) to
»

(50,52,54,...) (resp. to (E1,£3,..;) ), we obtain maps

+ -
Mk,m(r) - \}:g M1(-0-2\;(1’) 4 Mk,m(r) - \E(‘; M1;:1»2\;<|-l(r) )

It is clear that these maps are isomorphisms: one can express X, in

terms of Ev by inverting (7) to get

@nim " (erv=2u=1) 1 (W)
(12) xv(r) = OS\.IZSV (k+v=y=1)!  ul v—ng(T)

2
and then the transformation equations (6) of the %, follow from

Ev“’k*v(r) . In particular, taking €0=f » 5,20 (v>1) and w=l
we obtain the following result, due (independently of one another)

to Kuznetsov and Cohen:

Theorem 3.3 (Kuznetsov [16] , Cohen [ 7 ] ): Let £(t) be a modular

form of weight k on r . Then the funct:i.on

o .\ V
(13) T,z = ] LR £V S
v=0 ’

satisfies the transformation equa:ion

(14) TETD

k
ctd C‘t+d) = (ctrd)

) Fee,2) (G Ner) .

c-r+d
We mention a corollary which will be used later.

Corollary (Cohen (6 ,Th. 7.1] ): Let f‘,fz be modular forms on

I' of weight k1 and k, ectively, vcllo . Then the function

l"(k +») P(k +v) )
‘. -v v-u (w) ((v-¥
F,(£,08)) (271) uZO( n (v) I‘(k ) Fﬂt,w-v) N
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is a modular form of weight k‘+k2+2v on T and is a cusp form if

v>0 .

(We have modified Cohen's definition by a factor (27i) "’  to make the
Fourier coefficients of Fv(fl’fz) rational in those of f1 and fz.)
The corollary follows by computing the coefficient of zZv in

f1 (t,i)?z(tjz) , which by Theorem 3.3 transforms like a modular form

of weight k1+k2 under T.

We observe that the known result 3.3 could also have been used to prove
3.1 and 3.2. (We pteferred to give a direct proof in the context of the theory
of Jacobi forms, especially as the use of :the differential operators Lk
: v)
makes the pl_:oqf.racher natural.) Indeed,.let. Mk,m be the subspace of Mx,m
of functions ‘¢ which are. O(zY) , iL.e. have a development

xv(‘r)zv*'xv ”('r)zvﬂ‘t-... o From (6) it is clear that the leading coefficient

Xy is then a modular form of weight k+v and we get an exact sequence

(v+1) v)

(14) 0 — :M'lgn "M

in which the first arrow is the inclusion and the second is ¢ Xy

On the other_hand, H,S:z Mk+v,m by division by z’ (this was al-

ready used for v=1 when we reduced the study of Hk.,m to that of
+

%

this shows that the last map in (15) is surjective and gives an

) , and 3.3 gives a map Mkw—-» Mkw o by f »—r 'f'(r,/tiz) H
b ]

explicit splitting. To get the sequence of modular forms 50,51, cee
associated to ¢ @ uk,m we now proceed by induction: having found

50,51, ’Ev-1 such that

¢(e,z) - Z 13 ,(t,/mz )zv" 0 (mod z")
. vi<v ¥ ‘
define Ev(t) as the leading coefficient (coefficient of z¥ )

in the expression on the left-hand side; then ¢ = ¥ fv(r,/u-az) z’
v
as a formal power series and this is equivalent to the series of



We have gone into the meaning of the development coefficients
D vé fairly deeply because they play an important role in the study
of Jacobi forms and because the relation with the identity (14)
of Kuznetsov and Cohen concerning T (which is not a Jacobi form)
seemed striking. In particular, we should mention that (13) can be

written
- Jk_1(.4n’n-;5 z)

F(t,z) = a(0) + (k-1)t ) a(n) CmnF T "

n=1

if £=) a(n) q®  (this is the form in which Kuznetsov gave the

identity). To see where the Bessel functions come from, note that the
funetion h(z) = (k-1)1 J_ (xz)/(2x2)" ' satisfies the ordimary differ

2k~
—-;-!- h'*(’lf h =0 and is the only solution holomorph

tial equation h" +
at the origi.n and with h(0)=1. By separation of variables we see tha
£(v,2) = ? a(n) h(/nz) o 2vin® is the unique solution of the parial
differential equation Lk? = 0 satisfying the boundary conditions
f(v+1,2) = E(v,2) and ?(1',0)'-f(t) » and this uniqueness together with
the fact that L, commutes with the operation of SL,(R) (eq. (11))
immediately implies that £ has the property (14).

As afirst épplicatim of the mips D y O Jacobi forms, we have

a second proof and sharpening of Theorem 1.1:

2m
Th 3.4: i i i
eorem dim Jk,n(r) S dim Hk(l') + \21 dim skw(r) .

Indeed, &0 .= EZm = 0 implies Xg Teee® Xop * 0 or

= 0(22m+1 ), so Theorem 1.2 implies that the map
2m
D= :
30 D, : Ju(r) — 4D s, ()&...¢ 5,0

is injective. Note that half of the spaces ka(l') are 0 if "1251' ;

in particular, for T = l" we have

dim Hk+din Siag*es - +dim +23 (k even)
(1s) dim § . §

dim sk-c-l +dim shso-...'rdin szn_‘ (k odd)
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Here the second estimate can even be strengthened to

(16) dim J < dim S + ... +dim S

k,m k+1 k+2m-3 °*

because an odd Jacobi form must vanish at the three 2-division points

-;-, -12':, —‘-;—t and hence cannot have more than a (2m-3)~fold zero at z =0,

Application: Jacobi forms of index omne

?heorm 3.4 is the basis Afoithe analysis of the structure of J*’*-k?n .o
as given in Chapter III, to which the reader may now skip if he so desires
(the results of §§ 4~7 are not used there). As an example, we now treat

the case wm=1 , which is particularly easy and will be used in Chapter II.

Equations (15) and (16) (or Theorem 2.2) give

Jk,1=0 (k odd) , dim JkJ s dim Mk + dim sk+2 (k even).
On the other hand, the Fourier developments of Ea 1 and 26 - as
] ?

given after Theorem 2.1, show that the quotient

E6 1('t,z)

-1
m' 1 - (1440 + 456 + 1440 ')q + ...

depends on 2z and hence is not a quotient of two modular forms, so the

map

Mes @ M 6 4y

(£,8) —£E, (1,2) + g(DE (1,2)

is injective. Since dim M, tdimM . =din M +dim S for all

k+2
k (this follows from the well-known formula for dim Mk ), we deduce

Theorem 3.5. The space of Jacobi forms of index 1 on SLZ(Z)

is a free module of rank 2 over M. , with generators F . and E, , .
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Dy @D, : J , = M @5,

(D

0° D2 as in Th. 3.1) is an isomorphism .

In particular, we find that the space J is one—dimensional,

8,1

E, °E (E, = 1 + 240 q +... the Eisenstein

8,1~ "4 4,1 74

series in M, ), vhile the first cusp forms of index 1 are the forms

with genera'tor E

1 )
Gan %10,1 " 745 Bo B4y “Ei Eg ) 0 %12y =775 By B41 " B B,y

of weight 10 and 12 , respectively (the factor 144 has been inserted

to make the coefficients of ®0 ' and ¢‘2 integral and coprime).
9 ?

1
We have tabulated the first coefficients e of B (k = 4,6,8) and
’1 ,‘
.1 ©°f ¢ , (k =10,12) in Table 1; notice that it
b} L4
suffices to give a single sequence of coefficients c(N) (N20, Ns0,3(mod 4)
since by 2.2 any Jacobi form of index 1 has Fourier coefficients of the
form c(n,r) = c(bn-rz) for some {c(N)} . To compute the c(N) , we
can use either assertion of Th. 3.5, e.g. for ¢‘° 1 ¢12 , ve can
1 4

either use (17) and the known Fourier expansions of Ek and Ek a °F
. b d

else (what is quicker) use the expansions

(18) Po #10,1 70 » Dy #1g,4 =208, Dy 8, 4= 124,04 0

12,1

[} o
(a=gqg nn1(1-qn)24 = 21t(n) q" ) to obtain the identities
L J n.

> 0.1 (4n~r?) = 0 , 2. 2 (4o=x2) = t(n) ,

|z]<2/m Occ<aa | 10,1
Z c (‘m-tz) = 12t (n) , Z rz c (Im-rz) = nt(n)
|rl<26 12’1 . 0‘“25 12,'

and then solve these recursively for the e 1(N) .
?

The functions
o " (c-2+z")q + (2:2-16c+36-16c"+2c’z)q2 L SN
]

12,1 = (t+10+¢"')q + (10z2-88¢-132-88¢" w100 Dq2 + ...
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n eu(n) ec(n) -es(n) cm(n) °12(n)
0 1 1 1 0 0
3 56 -88 56 1 1
L 126 -330 366 -2 10
T 576 -h22h 14016 -16 -88
8 756 ~-7524 33156 36 -132
11 1512 -30600 260712 99 1275
12 2072 -46552 Lk62392 =272 136
15 ko32 -130944 1987392 -2ko -8oko
16 4158 -169290 2998638 1056 -2880
19 554l -355080 9090984 -253 24035
20 7560 -46hook -1800 13080
23 12096 -899712 * 2736 -14136
2k 11592 1052040 * -146h -54120
27 13664 ~1732192 . -4284 -1288u44
28 16704 ~-2099328 1254} 115456
31 2h192 -3421440 -6816 389520
32 2k9oh8 ~-3859812 ~-19008 38016
35 27216 -559310L 27270 -256410
36 31878 -6522450 -455h -697950
39 Lh352 -9651840 -686L -806520
40 39816 -104335Lk 39880 963160
k3 41832 -1400282L -66013 1892363
bk 5504k  -1618TLOO. -26928 938400
WT 72576 -224294L0 LLo6k -1227600
48 66584 -23836120 1254k -2309120
51 67536 -30320400 108102 -813450
52 76104k -33965Lk8 -93T0L ~2813096
55 100800 -45141888 -22000 2311640
56 99792 -47828880 8078 5549040
59 10130k -58659480 -281943 ~3336015
60 116928 -650T79168 188160 10548480
63 145728 -8348T7360 -36432 6141960
64 133182 -86676810 -295424  -20142080
6T 126504 -103023624 659651  ~11654893
68 160272 -114521616 193392 -10887888
71 205632 - -14363T120 -8k816 5100360
T2 177660 -14TL929T72 -390420 24801876
75 176456 -1T1930088 -635225 31406575
76 205128 -187837320 68816 17689760
79 249984 -230334720 -109088 -47059760
80 24ok80 -238495752 950400 -376T040
83 234360 -2T723220T2 22455 ~37384T1
84 265104 -295334160 -484368 -64883280
87 326592 -35680550k4 1050768 -5321448
88 281736 -362360328 143176 26020696
91 277200 -4LOBBTS280 195910 66711190
92 350784 -LL4T15686L4 -2145024 18546432
95 k23360 -532388736 -370800 96031320
96 382536 -539696520 172992 15586560
99 355320 -599851800 -1073655 -239563575
100 390726 —6hh325330 - 2832950 118753250

Table 1. Coefficients of Jacobi forms of index 1
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have several beautiful properties and will play a role in the structure

theory developed in Chapter III. Here we mention only the following:

Theorem 3.6. The quotient

-1
¢‘2"(T,z) T+10+Z

-1
= — + 12(5-2+4% ')q + ...
910,172 op.p! |

is —3/12 times the Weierstrass p-function p(t,z) .

Indeed, since ‘10 1 vanishes doubly at z=0 and (by Theorem 1.2)
’

nowhere else in ¢€/2t+2 , and since by (18)

(19) ‘10 1" (Z'Iri.)2 A(T) z2 + O(za) . = 12 A(T) + O(zz) ’

%121

the quotient in question is a doubly periodic function of z with a double po’

with principal part 3 z-2 at 2=0 and no other poles in a period parallelogr™
(2xi)
80 must equal _ 12 3 p(t,z) .
(27i)

Finally, we note that, just as the two Eisenstein series Elo 1 and
. ?

36,1 form a free basis of J,,‘,1 over M, , the two cusp forms 010,1 and

¢12’1 form a basis of J:“:p over M, , i.e. we have an isomorphism
?

cus
Meo10 @My = Jey
£ , 8 f(r)¢10’1(r,z) +g(r)¢,2’|(r,z) .

Thus the Jacobi forms

B, (0 Eg(D)° b5 1(1.2) (a,b20, j€{10,12}, 4ar6b+j=k)
b4
form an additive basis of the space of Jacobi cusp forms of weight k and

r.,
index 1 . Each of them has a Fourier expansion of the form Xc(lm-rz)qnc ’

the coefficients c(N) for N$20 and all weights k$50 are given in

Table 2.
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k a b j el ctd) i cidl ¢t} et ¢ils cila) ct19} ci2)}
10 0 ¢ 10 1 -2 -1 38 9 =213 -24§ 1655 -233 -1800
12 0 0 12 { 10 -g8 -132 1275 738 -304y -2380 24033 13080
141 0 10 1 -2 2% -4 -1581 4348 -5320 94 §3587 -129060
18 01 10 { -2 -520 1044 -3409 14848 33069 -214656 -%0973 628200
16 1 0 12 § 10 152 2268 -17685 -9344 114660 -44160 2745585 199800
18 2 0 10 i -1 464 924 54339 -104832 105800 -864 -2962973 5619000
1801 12 i 10 -592  -5172 28995  -9908s 590050 591849 -6840445 129000
21110 i -2 -280 564 131109 251088 -305:040 3590454 159107 -11836920
20 2 0 12 1 10 392 4648 20955 S54974  -37T94TH0 2679360 -3382045 -15165480
23 0 10 { =2 704 -1404 137959 -332912 14157120  -27649824 143274847 -231589800
20210 1 -2 -1024 2052 234979 -478064 12687040  -24815%04 157306227 -265458600
211 12 { 10 -352  -2172 -110925 -{3}8738 4375800 -34285920 217428035 -106371000
24 21 10 1 -2  -40 B4 -196149 392128 -35120280 69454384  -1018050013 1897579540
2 3 0 12 { 10 832 7088 117195 1498494 2087880 146407480  -872209885 1861429240
402 12 1 10 -1096 -10212 310731 2341312 -4200312 135307008  -7a457622% 1980045624
28 4 0 10 L =2 943 -1884 338979  -474192 53970440 -~110594784 1908309507  -75946107400
212 10 b -2 -784 1§72 -b6L 10096 57356880 -135132384 3755208707  -7240133400
2 21 12 1 10 -112  -372 -193245 -1962414 -20996800 -356702880 1505914115 -11201914200
28 3110 1 =2 200 -39 -203589 407948 -B2275720 163735104  -9870850333 19414437440
803 10 1 =2 -1528 3060 735443 -1479008 -89542184 182245440 -10153799945 19941534148
28 40 12 { 10 872 9468 271035 416416 315BAS20 569380800  -113712925 40715895940
B 12 12 ! 10 -B836 -7812 49851 -87958 58014483 475231148  -1108819741 39442512024
350 19 I -2 1184 -2364 5487699 -~1130672 139371340 -276463744 18079318947 -J5407805800
2210 1 -2 -S4 1092 -192821 383056 64281120 -129327264 19949307587 -39639575400
W I L 100 128 2028 -217945 -2030096 -67612800 -B28419040  -3951942205 -1010517484600
303 12 { 10 -1600 -15232 B46483 7321840 -142703040 -875098016 -3681447997 -103904883960
324110 L =2 40 -876 -133429 308408 -130498360 260778624 -30055413633 59589577320
3213 10 1 -2 -1288 2580 371883 -748928 83810375 -156120320 -30087457985 4605048412548
325 0 12 1 10 1112 11868 482475 5710336 98525140 1409838720 8058344835 184810546680
322212 110 -616 -5412 -153429 -1941248 78134483 437312128 15314400739 2012556460024
460 10 I -2 1424 -2844 BS4019 -1702352 278183280 -552954704 52743149187 -104422077000
W32 10 i -2 -304 512 -321021 640814 156883740 -35048544 34937076847 -69843414600
404 10 1 -2 -2032 4048 1489923 -2987984 -433518735 677017504 22944715395  -47686445640
341 12 1 10 368 4428 -135085 1529776 -119641200 -1311194400 -20448940925 -304243522200
#1312 1 10 -1350 -12852 464643 3882940 57003400 848266404 -36112508797 -298435351440
BS5S 110 ! -2 680 -1354 -454A9 94048 -168564200 332938944 -51751452573 122837118600
36 23 10 1 -2 -1048 2100 54923  -134048 170282936 -340303480 -9178338205 19037153928
3% 8 0 12 I 10 1352 14268 75151 85802546 214727800 2806021440 32754039395 535584093400
%3 2 12 110 -376  -3012 -299109 -3218528 39989458 159789888 33733829219 149981281624
36 0 4 12 1 10 -2104 -20292 1634251 14842528 -542842248 -4313843872  S4358407779 21774197589

Table 2. Coefficients of Jacobi cusp forms of index 1
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ka b j e ) ) cf® clD) c1d) ctid) ci1s) cf19) ci2m
@70 10 =2 1664 -3324 1197939 -2389232 484230400 -967565864 121381404227 -240829833000
4 I T U] -2 -3 132 -391821  79337¢ -50B11200 120055775  38I1I7ASAT  -748h6825000
B4 boo=2 1192 3 1004403 -20153984 -82319616 168674784 -76355185085 134371011600
3511 I 10 508 5828  -94605  -4374556 163260000 1666788960 -49760122045 -822187283000
B 23 12 110 -1120 -10452 140403 520080 145587040 1704483744 -21437137597  -87002594920
0 41 10 b -2 920 -1836 119691 -235712 -175049240 352568044 -101820918493 202935441480
W33 16 1 -2 -808 1620 -1B4437 385632 1B3b11496 -347952540 3182373075 -62911195992
0 05 10 1 -2 -2336 5076 2497419 -5004992-1152765680 2315548416 217935113507 -440504318880
07 0 12 110 1592 15568 1078155 12028176 4G0UIB440 3895158960  BA4010B67S5 1227040548120
0 4 2 12 Y10 -136 -612 -387189 -3919808 -32501912 -619095552 42682759699 381358758824
01 4 12 I 10 -1864 -17892 1135451 9994048 -154a79928 -795420672 -72403550941 -785661679944
28 0 10 b -2 1904 -3B04 159945% -3191312 777335720 1548294524 240675448067 -478257505800
25210 1 =2 176 -348 -405021 810736 -154979760 308337696 22872314627  -443b0494500
2.2 410 1 -2 -1332 3108 575483 -1159t84 154873104 -307424736 -95954407165 192522510840
2061 12 110 848 9228 53475 1222854 -1B4645200 -1758962720 -B9142745385 -1023115479000
2 33 12 110 -880 -8052 -126237 -1846800 194871280 1830793824 18599513603 323342812200
2 0 5 12 i 10 -2508 -25332 2680035 24903376-1332642000-11458231200 300994982915 2147358543400
4 71 10 1 -2 1180 -2316 342651 -6B0s72 -145329480 292017784 -143808003613 287031285940
4 43 10 1 =2 -38 1140 378197 750117 137008056 -278715200 75486697955 -150419213112
4 15 1 1 -2 -2296  A59% 1B9OYIY -3791072 -538857140 1125301056 -53351489033 104448594120
4 8 0 12 110 1832 19068 1452395 16048096 662221080 7818521280 184745042915 2428829922840
w35 2 12 110 104 1788 -417659 -4045088 -125814312 -1361104192 34021086179 224305113624
424 12 110 -1624 -15492 4688251 5721568 113328792 1544571328 -107090988061 -955095356584
% 9 610 1 -2 2144 -4284 2058579 -4108592 1165325240 -2322439564 430703904707 -856767047400
¥ 62 10 I =2 416 -828 -350621 722896 -251797920  S02149216 -15194472893 293893468400
3 4 10 1 -2 -1312 2628 206163 -417584 289883424 -578929056 -57550070845 116257587480
% 0 &8 10 1 =2 -3040 5084 3758931 -7930032-2369410080 4753886304 757703781827 -1524922854120
% 71 12 116 1038 11828 259155 3459184 159972800 -1443475580 -133334391483 -1442082958200
6 43 12 I 10 -640 -5652 -3I5277 -3777680 164680320 1345436705 45570052803 758447107720
Bt 5 12 I 10 -2388 -22932 2056275 13845296 -895060140 -S535070880 -13047729725 -548795708280
8 81 10 1 -2 1400 -27% 623211 -1240832 -60SBO92C 123640754 -177939139933 355629752040
85310 -2 -38 860 -510357 1019392 46100614 -94239350 107694246435 -215202993432
8 2 35 10 1 -2 -2055 4116 1342059 -2692352 -109984440 225357496 -183406190813 3646362962120
48 9 0 12 110 2072 21468 1904235 20646016 1017159720 11711318400 346849203875 4340067229540
85212 I 1w 3 4168 -390549 -3594308 -225823512 -2527994032 2924202659 -159085091976
83412 110 -1334 -13092 300451 2075088 275007912 2904352128 -78416351581 -567343782024
8 0 8 12 110 -3112 -30372 3977835 37504304-7040125350-23589440640 928392397475 7511428019320
5010 0 10 1 -2 234 -AT64 2575299 -5141072 1664022950 3317768544 714843158147 -1423055929800
w72 10 1 -2 656 ~-1308 -258621 519855 -337441680 673842334 -75404102013 151461036600
50 4 4 10 I -2 -1072 2148 -106557 208816 3365385344 -573484176 12430463875  -23549742280
50 1 & 0 1 -2 -2000 5604 3031491 -5074192-1473826320 2959806624 197144242307 -400214160840
0 8112 1 10 1328 14028 522435 6271504 -105418800 -5BB0S7840 -173562759805 -1780966968500
05 312 L 10 -400 -3252 -488717 -S11250 82838150 446652304 104354848003 1078154321640
002 5 12 110 -2128 -20532 1490115 13303216 -206662320 -1062665760 -175456509555 -1834900807960

Table 2. Coefficients of Jacobi cusp foyms bf index 1 (contd.)



§ 4. Hecke operators.

We define operators Uy Voo Ty (2>0) on functions ¢: HxC-=C by
(1) (¢!k mul) (T,z) = ¢(T,£Z),
2
k-1 -k mf,~cz at+b Lz
(2) “lk,mvz)("’Z) = 2 . b'; ; (crtd) " e (c-r+d) ¢(c-c+d , c'r+d)’
(. d)¢P1\M2(2)
ad~-be=¢

€) Bl gTp) (122) = 27 Z; MX ,

Mel‘i\M (z) Xe2 /9.2

det M-'!.
g.c.dM)=[1]

where the symbols. Ik ¥ Im X have the same meanings as in §1

9
(except that for M € GL;m) one first replaces M by (det u)"”zu € SLZQR))
and g.c.d.(M)=[] means that the greatest common divisor of the entries

of M is a square. Then we have

Theorem 4.1. Theoperators U!.’ Vz, '1‘2 are well-defined (i.e. independent

of the choice of representatives) on Jk;n and map Jk,m to J ome? Jk oL

and Jk,m » respectively.

Proof: The well-definedness and the fact that ¢|V£, ¢|V£ » #IT,
transform correctly follow by straightforward calculations from the pro-
perties of the Jacobi group given in §1 ; the conditioms at
infinity will follow from the explicit Fourier expansions given below.

Before proceeding to give the properties of the operators U,V,T ,
we explain the motivation for the definitions given. The operator U! is

an obvious one to introduce, corresponding to the endomorphism "multiplicatjon



by £ " on the elliptic curve €/27t + 2 . As to the other two, we

would like to define Hecke—operators as in the theory of modular forms by
replacing ¢ by ¢|n » where M runs over a system of representatives
of matrices of determinent 2 modulo left multiplication by elements of
l‘1 . Doing this would produce a new function transforming like a Jacobi

form with respect to T, . However, since ¢{[M] is a multiple of

at+b /2 z
(4) ¢(m ’ -c—-?;-d-)

M= (: :) o2 = det M) , and /2 is in general irrationmal, the function
¢|[M] transforms in =z for translations by a lattice incommensurable
with 2¢ + T , and there is no way to make a Jacobi form of the same
index out of it. However, replacing v¢ by £ in (4) restores the

rationality; since this is formally the operator U /B and U multiplies

2
the index by 12 , we obtain in this way an operator which multiplies
indices by L . This explains the definition (2). Finally, if ¢ is a
square then the function (4) transforms like a Jacobi form with respect
to translations in the sublattice Y2(2t+®) of 2t + Z , so we get
a function with the right translations properties by averaging over the
quotient lattice. This explainas (3) except for the condition on
g.c.d.(M) , which was introdﬁced for later purposes: If we define '1':
by the same formula as (3) but with the condition "M primitive”
(i.e. g.c.d.(M) = 1 ), then T, and '1': are related by
(5) T, = L::‘.dzk"" ™, .

a?ls £/d
Eventually we want to show that the Jacobi-Hecke operators 'r’. corres~
pond to the usual Hecke operators Tl. on modular forms of weight 2k-2,
and equation (5) is prgc%ne}y the relation between these Hecke operators

and the corresponding operaﬁors defined with pr‘in‘nitive matrices,
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Our main goal is to describe the action of our operators on
Fourier coefficients and to give their commutation relations. We start with

U and V_ since they are much easier to treat.

2 2

Theorem 4.2. i) Let ¢¢Jk o’ ¢ = 2 c(n,r) qncr . Then

(6) o0, = I e,/ q” o

n,r

(with the convention c(m,r/%) = 0 if 24r ) and

0 oy, = 1 (2@, H)
n,r a|(nm,r,2)

ii) The operators Ul , Vz satisfy the relations

(8) Upg = U = Uppr »

9) | Uzovz, = Vl'o Uf.’

(10) VeV, = D 4 Uge ¥y 0/q2 -
d|(e,2")

In particular, all of these operators commute.

Renark. ?ormla (7) nearly makes sense for £ =0 and suggests the

definition
n
$lv, = (0,0 [ o + fo a ]

with some constant <y Since ¢|V° should belong to Jk,O ’Mk , we

take e =" Big' so that ¢|V, is a multiple of the Eisenstein series
2k
of weight k . This definition will be used later.

Proof. Bquation (6) 'is obvious. For (7) take the standard set of

representatives

(11) G ';) , a,d>0 , b(modd) , ad=t

for the matrices in (2). Then
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Z Z a‘r+b‘ , az)

(¢I vl) (T,Z)
ad=2 b(mod d)

an

k Z ! ct,r) ¢ 37 e, (nb)
ad=2¢ b(mod d) u,r

Zd -k Z c(a,r) q%g. d

d-!. n,r
ns0 (mod d)

- ak--l z c(-——, ) qan ar ,
ajt n,r

which is equivalent to (7) . Eq. (8) is obvious. By (6) and (7), we have

]
™
(-9

coefficient of anr in ('HU,'NV,.-

k~t  n&' r
- a c(—-,: Ty )
aj(n,r,2')

{ 0 if Yr
Z & e@ L ) if e

= coefficient of ¢ ¢¥ in (NV!.) U,

Finally, using (7) we find

coefficient of q° ¢* in (QIVL)IV",

- - 1]
. Z: o1 2: pk-! (@M &,

HEED e

- Z N(e) ek.1 c(—ez— ’ L3
by 2

where N(e) is the numbhar og ways of "ri‘{‘;& e as a*b in the precedins
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s . y e )
sum. If such a decomposition exists then e|f%a and hence a = .0
for some integer § ; writing down the conditions on a and b=e/a we

find the formula

] 1 '
N(e) = number of divisors § of (n,ls’-'-ev%&’n: ’2': ’n:;: )

(=0 unless e|(nf,n2',82") , ezlnu' ). On the other hand, using

the calculation just given for U, .V we find

L e

coefficient of qn ;r in Z dk-i(ﬂUd)‘Vu'/dz

al(e,e")
. k-1 > : k-1 nfL' r
1(!.2,;') ‘ a|(n.§,—§é) s eCET 2D
., k-1 nt2' r
-Zﬂ(e)e c(—sz—,z),

vhere now N’(e) consits the decompositions of e as a-d satisfying

ers . . e -
the conditions in the sum; from elnd we find m divides d , and
writing d as -GEETG we obtain for N’(e) the same formula as for N(e).
This proves (10) (another proof could be obtained by combining the Corollary

below with the multiplicative properties of ordinary Hecke operators) and

completes the proof of Theorem 4.2.

As a consequence of the formula for the actiom of Vt on

Fourier coefficients we have the following

Corollary. For ¢eJ and veN. , 26N , one has
k,m — 0 ———

Dv(”k,n v!.) = (Dv’) k+v T!. !

wvhere T" . the right denoges the usual Hecke operator on modular forms.

Notice that this 'propcrty characterizes V,. completely, since
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we have

D
Jk,m —'—'*HkO Sk+19 cee B sk*N
i

Tz T!' . T’.

t

i

|

v
Temt ™ M @Sy @ - B Sy
and the horizontal maps are injective for N22me (cf. Theorem 3.4).

To prove it, we calculate

cn[(nvwlkﬂ-v T!-]. ; " cnl(nv”
din,2 3z

2, &V, ED e B eBgor)
d|n,2 r

vhere c denotes "coefficient of qn in" and c(n,r) is the coefficie
of q"t* in ¢ . Replacing r by rMd in this sum and using the

(k~1)

homogeneity of P, we find

(k-1)
c {9 T.] = (r,ntm) 2 : °("2‘ ,
L@ |k“' o Ep" dl(n,r,t) L

- Cn[Dv(¢|k’n v")]
as was to be shown. Another proof comes from observing that the map
Tt + .
- 3.2)
L : Hk,m —_— uk+2,n used to construg:t D2 v (cf. proof of Theorem
is equivariant with respect to the action of V on M+ (this follows
from (11) of §3 since V

3

acts as Tl on the constant term ¢(t,0) of a form ¢ in

maps ¢ to B (4, @ (r,/T2) ) and that V,
H*,* .
As another application of Theorem 4.2 we have

Theorem 4.3. Let Ek n denote the Eisenstein series of §2. Then for

m square free we have

(12) Eko1|vm N ak.l Sm) Bkan )

Thus the Fourier coefficients of E'k o Aare as in ea. (7) of §2.
1 4
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Indeed, we have

5 - gk Z' (cted) ¥ oF Z(ymm“k
1

M’(“CLA) CT+d G A€Z

2.2 2
2., mz(ct+td) _ ym z"/(ct+d)
x e[k M'MT+2A MT+s T+ 8 ]

where M runs over Q\{MGMZ(Z)I det M = m} and M' over

I'%\I'1 . Writing (: :) for the product MM' gives

2
By v = o< (aZ: (ct+d) ¥ Z, e[a2 alth , 9y mz _mez 7.

b) ez cT+d cT+d cT+d
cd

vhere now (: :) runs over TI_\{M|det M =m} . Now suppose m is
square~free. Then (c,d)= 6§ divides m and 6'-% is prime to 6 .
It follows that (: :) can be multiplied on the left by an element of

I, so as to make asb®0(mod §') , so

ro\{(: :) ’ ad-be=m, (c,d)=g} = ( z)\{(6 a ¢ b) aldl_blcv=1}

6d’
(o H\sL,@ ,
and hence
1 1
Ek 1IV = mk ! (ct+d) kz e[Az 8 a::g 2.‘.21_:(1
a b 1 62)\81. @) A€2 2
- cz m
ctT+d *

Replacing (: 3) by (é :)(: :) multiplies the final exponential by
e(326°/6) , and this is 1 only if 6|2 (since (6,6')=1 and 6 is

square-free), Therefore the terms with Gh can be omitted, so

' 2
1-k -k R % at+h Aoz ez

+2
r\T, res2 §et+d Tetwd

—_— ;J"k Ben(™?) = o _mE _(1,2) .
m ’ ’
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This proves (12); the
formula for the Fourier coefficients of Ek n DOV follows directly
]

from Theorem 4.2.

For m not square~free we find after a similar calculation the

more general result

(13) Bem = ® Skt TT (rap®tty” Zl:u(d) zk'tlud

plm d*lm Fia

yet more generally, we see that the space .{:’: defined in Theorem 2.4
is mapped by U, and V, to the corresponding .spaces with index m!.z
and m¢ , respec:ivcly, the precise formulas for the images of Bk,m, s
under u, and V" being easily ascertained by looking at the

"constant term" (terms qncr with lmm-rz) . One then sees by in-
duction that all Jacobi Eisenstein series can be writtem uniquely as a
linear combination of. B](‘)f:llﬂzovz. (2,2'@N, x a primitive Dirichlet
character modulo £ with x(.-l)-(--1)k , wefl . E\?f:l as in (10) of §2)-

Combining these remarks with the commutation relations of Theorem 4.2,

we obtain:

Theorem 4.4. Let

J:f:.dlzn &; Yem |u-v

a1

and similarly for J . Define JCUSP.DEV

k,m
in JEUSP  (yith respect to the Petersson

") k,m
scalar product) and Jii‘"“' as_the span of the functions xéx) (x

a primitive nirichh: clu:u;ur (mod £)) if -f and O otherwise. T0.

as the

cusp,old and J.Bkiu ,0ld
-

k,m
old
orthogonal complement of J,
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is Eis,new
X = ' ‘U Voo
,m L L k,m/z [ Sl T 3
?
22! |m
and
Jeusp = cupeny ‘ U‘V‘, .
k,m 2,2  k,m/2'22
222% |m
Eventually, we will show that the latter decomposition is also a
direct sum, bu.c this will be harder and will depend on using a

trace formula.

It remains to describe the action of the Hecke operators Tz on
the Fourier coefficients of Jacobi forms. We do this only for (2,m)=1 .
The formula obtained involves the Legendre symbol (—;'-) if 2 is an odd
prime; in the general case it involves a slightly generalized symbol
ED(n) » (D,n&Z) , which we now define.

If D is congruent to 2 or 3 (mod 4) we set en(n)so. For D=0

we set

r if n-rz, r20 ,
eo(n) =
0 if a2 .

Otherwise D can be written uniquely as D0 f2 where f21 and D0 is

the discriminant of Q(vD) . Then let x be the primitive Dirichlet charac-

ter (modDO) corresponding to Q(ﬁ) » 1.e. the multiplicative function

with

1 D.=1 (8)
Do 0 :
x(p) = (-p-) (p odd), x(2) ={ -1 DO-S (8 , x(~1) = signD

0 DonO %)

and set

x(n,) g if n=n 32 | £ (-f-n)-l
0 . 0 ] 8 1 S, o ]

(n) = L
o 0 Cif @,fH 20 .



The function €y which reduces to x if D=D,, occurs naturally when-

ever one studies non~fundamental discriminants; it has the properties
ep(n+D) = sn(n)

and (as shown in [13], p.188)
e« € (n)

nzi-gg— = L)

where Ln(s) is the L-series already introduced in connection with

Jacobi-Eisenstein series (eq.(6) of §2 and the following formula). We cau

now state the formula for the Fourier coefficients of ¢|'r£ .

Theorem 4.5. Llet ¢ = 2 c(n,r) qn t;r be a Jacobi form of weight k and

index m and & a positive integer prime to m . Then ¢|’1'£'Xc*(n,r) P
with

€t 4o (P nk.zc(n',r') s

(14) c*(n,r) - )

a
vhere the sum is over a with a|t?, a®|£ G%4om), a~222(r-4nm) =0, 1 (madd)
(15) r'z-lm'n - lz(rz-énn)/az , ar' s &r (mod 5) .

In particular, if rz-lmn is a fundamental discriminant and x the

corresponding quadratic character, then

- 2
(16) c*(n,r) = 2 x(d) clk 2 c(-:q-n,%r) .

dje
To see that (15) makes sense, note that .lzz and (f,m) =1 imply

(a,m) =1, so the second equation in- (15) defines r' uniquely
modulo 2m if m is even and modulo m if m 1is odd;
in the latter case, r' is determined (mod 2) by the mod 4 reduction

of the first of equations (15). Thus in both cases r' is uniquely

defined modulo 2m and satisfies
r'z s zz(rz-lmn) /a2 (mod 4m) ,

so the number n' defined by the first of equations (15) is integral;
that c(n',r') is independent of the choices made then follows from
Theoren 2.2,

Before proving Theorem 4.5 we state two consequences.
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Corollary 1. For ¢ and ' both prime to m one has

2k-3
T,eT,, = I d T,,, .
2’7 al (22 22" /d?

In particular, the operators Tz ((£,m) =1) all commute. Furthermore,

the operators T" commute with 'Vz, and U

gt for (2,%'m) =1.

Proof. Exercise.

Corollary 2. The spaces Jk o and Jﬁe: are spanned by common eigenforms
* »

of the Hecke operators T, ((e,m)=1).

Proof. This follows by a standard argument from Corollary 1 and the easily-
proved fact that the Hecke operators in question are hermitian with respect

to the Petersson scalar product defined in §2.

Proof of Theorem 4.5: We write the definitiom of T, as

k~2
N VL VO

vhere the sum is over all MCI“\HZ(Z) vith det(M) = 9.2 and g.c.d.(M)
a square and lm‘:‘- is the "averaging operator” which replaces a function

$(r,z) that transforms like a Jacobi form with respect to some sublattice
Le lz by
1

A 3 ¥ X
il [22:L] chzZ/L la

(Note that this is independent of the choice of L and projects L-inva-
riant functions to lz—invarian: functions; in (3) we took mez2 J

As in the usual computation of the action ;f Hecke operators on Fourier
coefficients we choose upper triangular represeﬁtatives M for the left
I -cosets; then ¢|Tz = ¢1| A where

k-2 ab
é, = 2 ¢| 0d
! ad}':z’ b(mtz)d ) “’“’( )

(asbad)'u
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=2 k at+bh Lz
= £ a 2 ¢( ’ =) -
ad=2? b{(mod d) d d
(a,b,d)=0

To get rid of the condition " (a,b,d) = 0" we use the identity
1 (n=0)
o - {
o 0 (ad)

with n=(a,b,d) , where A is Liouville's function (the multiplicative

function with A(p") = (~1)V ). This gives

9,(t,2) = 272 y a* ) A(8) 1 ¢(i?§.‘%z')
ad=2? 5| (a,d) b(mod d)
b=0(mod §)
= 127 1 a® I e e+t
ad=g? 6| (a,d) n,r
n=0(mod d/4)
- 1 I Med, g e o
ad=% n,r ’

n=0 (mod d/(a,d))

where
Aa,B) := ¥ A6 =L T Aa@y  (a,seN .
Sla, as™t8 * ylta,8) T)
. dn dr .
Replacing n and r by = and 5 8ives
k-1 n dn dr
a7y ¢(t,z2) = ) a Y A(a,d), ) ¢ (—,==) e(a1+r2) -
! ad=t?  nea(a,d)'z alad’ “"a2
retd*z

This gives the Fourier development of ¢1 (which, notice, involves
non-integral powers of 7 ). We still must apply the averaging operator

A . We can factor A as _A_1o52 where 51 is the averaging operator

with respect to 0xZ , {i.e.
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1
Vady = oy, L Vi X
= [Z:L] yeowzm @

for any sublattice L'e€Z such that § is invariant with respect to

O0xL' , and ;A_z (for a function invariant under a lattice chz

containing O0xZ ) is the averaging operator with respect to 22/0 xZ .

It is easily seen that the effect of A, 1is to leave any term qnz;r

1
with n and r in Z unchanged and to replace all terms qncr with
is

r¢Z by O . Hence we have ¢|TL = ¢2|52 vhere ¢2 = ¢ |A

1=t
obtained from ¢, by omitting all terms in (17) for which r¢Z , i.e.

. . £ 2
by replacing the condition rca-z by rcmz . Thus

k~1
¢ (t,z) = z a L (T,Z»)
2 adw2? 2,8
with
n dn dr, n _r
(18) ¢2’a(‘t,z) = 2 A((a,d),m) c(-a—’T ¢ .
n,TE€L
dn=0 (mod a)
dra0 (mod £)

To compute the coefficients c*(n,r) of ¢|T!. , we must still
determine the operation of the operator -‘52 on each ¢2,a . The operator
,3.2 acts by

(!HmAz) (1,2) = % Z em(lzr'!-ZXz) w(t , z+At) |,
A (mod N)
wvhere N is any integer such that 9|X=¢ for XE€NZxZ , i.e. such
that the coefficient of qn!:r in ¢y depends only on lmnx—r:2 and on
r (mod 2mN) . (Por. .¢-¢2’a one checks that N=(a,2) works.) Letting
C(r,r2-4mn) denote the coefficient of qncr in ¥ (so that C(r,a)
depends only on A€-N and on r&Z/2mNZ ) , we easily deduce that the

coefficient of q°¢° in ¢|§2 is’ C*(r, rz-lmm) with
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(19) c*(r,a) = ) C(R,A)
R (mod 2Nm)

R=r (mod 2m)

1
N

(vhich depends, as it should, only on A and on r (mod 2m) ). Applying
this to w-¢2 a Ve find that the coefficient of qnl:r in ¢l'r£ is

given by

(20) c*(,r) = ) 2! C:(r,rz—lmm)

ad=22

2
. . - - R
with C: related as in (19) to the coefficient C,(R,8) of q(R A)/ltmc

in ¢2 a® From eq. (18) we see that this coefficient is given by
?
C@A = A(a,d), h ) c(aRmb Ry
a’? > Zma/(a,d) A ma 2

with the convention that A(a,8) and c(n,r) are O unless a, 8, n

and r are integral. Set a=(a,d) ; then ad-!.z implies that

2 2 L [
a=xa, d=ya, L=xya, m'y’ m-x

for some x,ye&N with (x,y)=1. Then

R (L)' (a,d)' 4m
2
=» x|R, leA . -;A,-- (%) (mod 4) .

2

Conversely, if R=xr,, A=x"4,, Aonrf (mod 4), then

2
Ca(R,A) = Aa ,r—"En—A-l) c.(r:%y2 - Any2 s To¥) .
Hence (taking N=(a,2)=xx in (19))

2
C:(r.A) = 'xla- 2 Aa ,E-lz;ﬂ) c(riyz—AOyz,roy)

Ty (mod 2am)
xryar (mod 2m)
r§ = Ao (wod 4)

if A=x’a; apd Ch(r,0)=0 if x*}a (or if x *aw2or3 (mod 4)) .

Note that, since m is prime to zzt'ad by hypothesis, the conditions
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rlaa (mod 4m) and r% 54, (mod 4) already assure that r% 24, (mod 4m)

The fact that m is prime to £ also implies that the two numbers r

and r':=r,y= ryx--1 =r2/d determine one another (modulo 2m)

and that the number c(r:fyz-l&“y2

as the number c¢(n',r') in (14) (with A=r2-4nm ).

§-a
(21) ) Aa ’E’_l:m—o) = er(a)

ro (mod 2om)
xry=r (mod 2m)
r} =4, (mod 4)

as we will show in a moment, and substituting this into the last

and into (20) gives the desired formula (14), if we observe that

1 1 2 1
xa er (o) ‘xa erxz(ax ) a 8A(a) )

It remains to prove equation (21). From the definition of

and the fact that @ and m are relatively prime, we find that

hand side of (21) equals

WS X ) 1 .
y%a Yy e ro (mod 2om)

xrg st (mod 2m)

rg= Ao (mod 4y)

» Toy) in the last formula is the same

Moreover, we have

equation

A(a,B)

the left-

The inner sum equals %NY(Ao) with NY(Ao) as in the formula preceding

equation (6) of §2. That equation gives

z(2s) E N (4o) -3 v ~3
STy Y = L, (g) = e, (@) a
;(3) Y.I Y 0 Ao Q,ZI Ao

or (since the coefficient of n ° in z(2s8)/z(s)
M@ N (8) = £, (@) .
vla Y 0

This completes the proof.



- 55 -
Chapter II. Relations with other types of modular forms

§ 5. Jacobi forms and modular forms of half-integral weight

In §2 we showed that the coefficients c¢(n,r) of a Jacobi form
of index m depend only on the "discriminant” r2-4nm and on the value

of r(mod 2m), i.e.

(1) c(n,r) = cr(lmm-rz) . cr(N) = cr‘(N) for r'sr (mod 2m)

From this it follows w)ery easily, as we will now see, that the space
of Jacobi forms of weight k and index m is isomorphic to a certain
space of (vector-walued) modular forms of weight k --% in one variable;
the rest of this section will then be devoted to identifying this space with
more familiar spaces of modular forms of half-integral weight and studying
the correspondence more closely.

Equation (1) gives us coefficients c/.(N) for all yp€2/2m2 and
all integers N2 0 satisfying Ns -uz(mod 4m) (notice that pz is well-

defined modulo 4m if yu is given modulo 2m ), namely

(2) c/‘(N) im c(NZ: ,r) (any re2, rumu(mod 2m))

(since u 1is a residue class, one should more property write rey
rather than r=yu(mod 2m); we permit ourselves the slight abuse of notation)

We extend the’definit:ion to all N by setting cu(N)-O if N¢ -uz(mod 4o).

and set
(3) hﬂ(r) i= N-Z-O cﬂ(N) qwl’"l (ue 2/2m2)
and
2
(4) 2 (r,2) := Z. qr /bm I;r
m, re2

rsu(mod 2m)

(The 9m , are independent of the function ¢ ) Then

1 4

$(t,z) = Z. Z Z- c (lmn—rz) q -

u(mod 2m) re2 nrl/ém ¥
rs u@awm 2

Nap

- E 7 7. ¢:n(ti)c|l"n ;r

u(mod 2m) rsyu(2m) N20
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Thus knowing the (2m)-tuple (h’) of functions of one variable
p(mod 2m)

is equivalent to knowing ¢ . Reversing the above calculation, we see

that given any functions hu as in (3) witfx cu(N)-O for N3 -uz(mod 4m),
equation (5) defines a function ¢ (with Fourier coefficients as in (1))
which transforms like a Jacobi form with respect to 2z = z#dt+pu (A,pe€2)
and satisfies the right conditions at infinity. In order for ¢ to be a
Jacobi form, we still need a transformation law with respect to SLZ(Z) .
Since the- theta-series (4) have weight -;- and index m , while ¢ has
weight k and index m , we see from (5) that the hu must be modular
forms of weight k -% . To specify their precise transformation law, it
suffices to consider the generators G{) and (? 31) of r, . For the

1
first we have

2
6) By, (T2 = e 05 4 (r,2)
and
) h (te1) = e4n(-4) B (D),
as one sees either from the invariance of the sum (5) under T —> t+1

or from the congruence N:-uz (mod 4m) in (3). For the second we have

as an easy consequence of the Poisson summation formula the identity

: . 2
12 » 2%imz /T
(8) 9’,""("?:?) = /t/2mi e v(ﬁ) ezm(-uv ) %,v(r,z) R

so (5) and the transformation law of ¢ under (t,z) = (- %,—:—) give

k
(9) h (= 5) = o Z:. e, (w) h (1) .
TR 4 2o /L v(mod 2m) 2m v

We have proved

Theorem 5.1.: Equation (5) gives an isomorphism between J and the

K
space of vector valued modular forms (hu)u(m“ 2m) v SLZ(Z) satisfying

the transformation laws (7) and (9) and bounded as Im(t) + =» .
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When we speak of 'vector-valued" forms in Theorem 5.1, we

mean that the vector T\(-r) - (hu) satisfies

Kk~

(10) TMr) = (er+d) 2 U@ B M = (: :)el‘1)

u (mod 2m)

where U(M) = (UW(M)) is a certain 2mx 2m matrix (the map
u:r, - GLZm(c) is not quite a homomorphism because of the ambiguities
arising from the choice of square-~root in (10); to get a homomorphism one

must replace T, by a double cover). The result 5.1 would be more

1

pleasing if we could identify Jk a with a space of ordinary (i.e. scalar)
L]

modular forms of weight k--%- on some congruence subgroup of [‘1 . We
will do this below . in the cases m=! and m prime, k even,
and also discuss the general case a little. PFirst,

however, we look at some immediate consequences of Theorem 5.1.

First of all, by combining (5) with the equations 12“ _u(r,z) = 9:'11 u(r,‘

’

and ¢(t,~z) = (-1)k¢(r,z) we deduce the symmetry property
k
(11) h—u -1 hu (ue 2/2m2)

(this can also be proved by applying (9) twice), so that in fact (hu)

reduces to an (m+1)-tuple of forms (h +h"u) if k is even and
u Osusm

to an (m~1)-tuple (h ~h ) if k is odd. However, we can introduce
e O<u<m '

a finer splitting if m is composite. For each divisor m' of m with
(m',m/m')=1 (there are 2% such divisors, where t 1is the number of

distinct prime factors of m) choose an integer E-Em, satisfying
(12) Es{ (mod 2m/m') , E£3 -1(mod 2m') ;

such a £ clearly exists and is unique (mod 2m), and the set

of for all m'|| m is precisely {&(mod 2m)| 251 (mod 4m)} .

S
Now map the collection of (2m)-tuples '(h,.)u into itself by the per-
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(h

(13) (hu)u(nu‘ 2m) Eu)u(mod 2m)

Because 525 1(mod 4m) , if is clear that equations (7) and (9) are

preserved. Hence we deduce

Theorem 5.2. For each divisor m' of m with (m',m/fw)=1 there is an

operator Wm. from J to itself such that the coefficient of qn ;r

K

in ¢|Wm, is c(n',r') where r's-r (mod2m') , r'=r (mod2m/m') ,

4n'm-r'2 = 4om~r? . These operators are all involutions and together

: : t
form a group isomorphic to (2/22)t and generated by the wl’"‘ (m= Ipi"‘ ).
’ X iet

Next, we relate the expansion (5) to the Petersson product introduced

in §2.

Theorem 5.3. Let

"Ehugm,u s ¢ = Egu.sm’u

be two Jacobi forms in J, . Then

k=
-2

' k
(9,9) ‘7;; J. Z h (1) g (1) v 2 du dv .
R\H u(dod 2m) "

In oﬁ;er'yd'rds, the Petersson scalar product of ¢ and ¥ as defined
in §2 is equal (up' to‘ a constant) to the Petersson product in the usual
sense of the vector-valued modular forms (hu)u , (,_zu)u of weight

k - % . The assertions of Theorem 2.5 (that (¢,9) is well-c'!.efi:ned- and
is finite if ¢ or ¢ is cuspidal) now follow from the corres;ponding

statements for modular forms in one variable.

and z% in'

Proof: We first compute the scalar product of Sm v
” ?

'y

a fixed fiber ( teB fixed):
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2
f -3 IJ(T’Z) "m \):T’zj e-l”my Iv dx dy

¢/2t+2 W :

= f 2 , e{(rz-s%) e((r2t~szf)/4m) dx dy .
€/2t+2 r au(2m)
s = v(2m)
Using

I e(rz-sz) dx = § e—‘nrry
R/2 rs

we find that this equals

4ym rv,2
- 23y, IV
5 f Z. e vV @

wv R/v2 ray(mod 2m)

T -lmnyz/v d
= S e y
ny

= /v/ém §
uv

(here & _ is the Kronecker delta of r,s and J of , and ,
s uv

modulo 2m). It immediately follows that

2

1 E k-
(¢ "p) = r _Ty du dv
n I \H p (mod 2m) hu () gu v vZ
1

as claimed.

Since Wm, simply permutes the h/. s it follows from Theorem 5.3
that wm. » is Hermitian. From Theorem 4.5 it is clear that the Wm' commite

with all T ((,m)=1) . Hence we deduce

Corollary: Jk o -has a basis of simultaneous eigfnfoms for all
?

T, (@,m)=1) and W, (@' ).

Theorem 5.2 gives a splitting of J as @ R Saldiae s

k,m i .% k,m
where the sum is over all t-tuples of signs with product ("1)k ;
Theorem 5.3 shows that this splitting is orthogonal and that each

summand has a basis consisting of Hecke eigenforms.
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We now discmss the connection between Jacobi forms and
scalar-valued modular forms of weight k--% . We recall that modular
forms of half-integral weight are defined like forms of integral
weight, except that the automorphy factor describing the action of a
matrix (z :) involvs the Legendre symbol (-%) ; the easiest way to
specify the automorphy factor exactly is to say that for a modular form

- 2
k-1 » where e(r)-iq“ , is inva-

h(t) omn I‘o(lm) the quotient h/e2
riant under I'O(lnn) . We denote the space of such forms by
Mo % (I‘O(lun)) . Shimura developed an extensive theory of such forms
in [29] s [30] . In particular, he showed that one can define Hecke
operators Tp on Mk_*(f‘o(lm)) for all primes p{4m , that
Mk_i(l'o(‘m)) is spanned by simultaneous eigenforms of these operators,
and that the set of eigenvalues of an eigenform is the same as the set
of eigenvalues of a certain Hecke eigenform of.weight 2k-2 . (Shimura
used the notation T(pz) for the Hecke operators in half-integral
weight because they are defined using matrices of determinant p2 , but
we prefer to write Tp since these are the only naturally definable
operators and correspond to the operators Tp in weight 2k-2 .) His
conjecture that the eigenforms of integral weight obtained in this way
have level 2m was proved by Niwa [24]. For the case m=1 (and later
for the c#se of odd, square-free m [12]), Kohnen [11] showed how one
could get all the way down to level m by passing to the sxibspace
M;_i(lpm) ~ (heM_ (T Gm) | b = ) c(N) qV)

N=0O
(-1)“"'N30, 1 (mod 4)

of forms in M _ &(I’o(lun)) whogse N~th Fourier coefficient vanishes
for all N with (-1)k-1N congruent to 2 or 3 (mod4) . Following
Kohnen's notation in [12], we shall write simply "x-i(m) for M;_i(am)

and M“'i‘ instead of Mk‘i:“) . Then Kohnen's main result for m=1
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says that one can define commuting and hermitian Hecke operators TP

on Hk-"- for all p (agreeing with Shimura's operators if p#2) and
N

that H.k_ s then becomes isomorphic to HZk-Z as a module over the

ring of Hecke operators, i.e. there is a 1-1 correspondence between

eigenforms hcnk_ . and heM such that the eigenvalues of h
X

2k-2
~ k)
and h under Tp agree for all p . Explicitly, Tp: Hk"i—-uk'a':

(k even) is given by

(14) T : Z c(N) qN — 2 (c (Np2)+(:!)pk-zc(N)+p2k-3c%qz-)) qN .
P N20 N20 P
N0 or 3 (mod 4) N=0 or 3 (mod 4)

Observe also that M*-'k:'?uk-i is a module over M_ by h(r) —>

f (4t) h(x) (h eu*_ feM,).

* L4

We can now state:

Theorem 5.4. The correspondence

(15) I e — I etn-cd) T
N20 n, reZ
NeO, 3 (mod 4) 4nar?

gives an isomorphism between H'k- L and Jk,!

morphism is compatible with the Petersson scalar products, with the

(k even) . This iso-

actions of Hecke operators, and with the structures of M, #et and J*,,’1

as bundles over M, .

Proof: Demote the functions defined by the two Fourier series in (15)
by h(r) and ¢(r,z) and set bu(t) ~2cu(N) qN with

{c(N) N=-u2 (mod 4)
cu (N) = (o} otherwise ’

so that c(N) = co(N) *c, (N) (VN) and h(r) = ho(ln')+h‘(4'r) . By
Theorem 5.1, ¢ is a Jacobi form if and only if h, and h, satisfy

the transformation laws (7) and (8), which now become
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sl
By(ret) = ho(0) , hoG-L) = B2 @ en @),

(16)
. _l
hy(t+1) =-ih(t) , h (- 1‘1’ - -'—;l e (0 b (1)) .

These easily imply

h(r+1) = b(r) , hGED) = (brsD) ¥ En(n)

(for the three-line calculation, see [4Q], p.385), and since the matrices

11 10 .

(0 1) and (4 1) generate I‘O(4) , it follows that heuk_i(ro(z;)) and

hence he}ik_ i Conversely, if h‘“k-i , then reversing the same calcu-~
lation shows that h0 and h1 satisfy (16) and hence by Theorem 5.1 that

¢(t,2) 1is in Jk 1 This establishes the isomorphism claimed. To see
’ (up to a constant

that it preserves the Petersson scalar product/] we combine Theorem 5.3 with
the fact that (¢h,h) = conscKho,ho) + (hl’hl)] for h and hu related
as above. This fact follows easily from Rankin's method, which expresses
(h,h) as a multiple of Res ( Z |c(N)|2N-s) and similarly for h

s=k-4 N>0 0
and h1 (for more explicit formulas, look at the proof of Corollary 5 in
ﬁ3], pp.189-191, and take residues at s=1 in the identities proved there).
The compatibility with Hecke operators is clear from (14) and Theorem 4.5.
The compatibility with the structures of M2*—i and J*’1 as modules over

Ma 1is also clear.

Theorem 5.4 tells us that the spaces J, and M, _, are in
s ! . >

1 2

some sense identical: they are related by a canonical isomorphism preserving
their Hilbert space structures, their structures as modules over the Hecke
algebra and their structures as modules over the ring of modular forms of
integral weight, and such that the Fourier coefficients of corresponding
forms are the same (up to permutation). Combining this with results on

Jacobi forms proved earlier, we can obtain various (previously known) results

about forms of half-integral weight, im particular the following two:

Corollary 1. Let k24 be even and H(k-1,N) = L_.(2 1) as in Theorem 2.1.
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Then the function

B (0 = NZO H(k=1,N) ¢*

lies in Mk_ 4

This was proved by H. Cohen for both odd and even k in [6]; it
was Cohen's discovery of the existence of Eisenstein series half of whose
Fourier coefficients vanish which led to Kohnen's definition of the space
M;_i(lt) . Cohen's calculation of the coefficients of the two Eisenstein
series in Mk-iu'o(“)) is of the same order of complexity as the calculation
leading to Theorem 2.1, but our proof makes it clearer where the condition

-N 2 (3 (mod4) comes from. On the other hand, it does not apply at all to

the case of odd k.

Corollary 2. M- % is a free module of rank 2 over M, , with generators

L

This was proved by Kohnen [11. Prop.l] , who also gave the corre-
sponding result for H2*+i (it is also free, with generators 6 and liz );

our proof, which is a restatement of Theorem 3.5, works only for even k.

Conversely, by combining Theorem 5.4 with Kohnen's results as

quoted above, we obtain

Corollary 3. If ¢‘Jk,1 is an eigenvalue of all Hecke operators Tz ’

then there is a Hecke eigenfom in M with the same eigenvalues. The

2k~-2
correspondence

{eigenforms in 'Jk,l } /scalars «—> {normalized eigenforms in MZk-Z}
2

is bijective. More precisely, for fixed. n, and Ty with anOZro , there
is a map sno'rnz Ji-1 —> M, _, given by
' - 2
 ctn,r) g% ) e(a) d¥ zc(.'.‘.m!'. .!_."_’Z) q,’ s
=0 dje? a? » d

2|22 (4n,-r?)
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all of these maps are compatible with Hecke operators, and some combination

of them is an isomorphism.

The second statement follows from the explicit description of the
correspondence Mk_ 3 ‘_’HZk—Z and from the corresponding result for half-
integral weight, namely that the map

N
n20 121
a?| 22N

. a _ CH(k=1,N) k-2 (22N 2
Syt L e@q = ——5t=c(0) + ] ( d}zz ey@d “e dz) q
sends Mk"i to M, o for all N>0 and that some linear combination of
the SN is an isomorphism ([11] , Theorem 1, iii; Kohnen states the result

only for -N a fundamental discriminant). However, it also follows from

the first statement of the Corollary and from Theorem 4.5, by noting that the

map S is simpl
P Syt ply
T r L
¢ — ): (coefficient of q0C0 in ¢|1’2) q .
=0

Finally, by combining Theorem 5.4 with the main theorem of [13] ,
vwhich is a refinement for modular forms of level one of a theorem of

Waldspurger [B36,37] one gets:

cusp .
Corollary 4. Let ¢‘Jk,1 be an eigenform of all '1‘2 and f & Sop-2 the

corresponding normalized eigenform as in Corollary 3. Then for all n, r

with 1:2 <4n

le@,n|? = -‘%{3—'— (hn-r?yE E—::{%—L(f,erz_%,k—n .

where L(f,en,s) denotes the twisted L-series z eD(n) a(n)a °

(=Y ata)q") .

We mention one more result about the correspondences Jk 1 Mk-i .
»

Theorem 5.5. Let “Jk,t and h‘”’k—i be forms corresponding to one
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another as in Theorem 5.4 and v20 an_integer. Then

D, (¢) = Fv(e,h)ll!a ,

where D\) is the Taylor development operator of §3, Fv is Cohen's operator

2
as defined in the Corollary to Theorem 3.3, 0(t) = 2 qu , and Ua is the
operator Y ca) " r—s ¥ c(4n) <.

This can be checked easily by direct computation. The special case

. . (v) .
= = 1
$ Ek,l , h E’k—-! gives Cohen's function (:k as in the Corollary to

(v)
k

Theorem 3.1. (Indeed, Cohen proved that C belongs to uk+2v by defining

it as F (0,H ) | U, )

We now turn to the case of general m , where, however, we will
not be able to give such precise results as for m=1. By Theorem 5.2 we

have a splitting

£
an Jk,m = ? J .

where € runs over all characters of the group

= { £ (mod 2m) | 52: 1 (mod 4m)} = @/2&)°

with c(-1)'-(--1)k and J° (which was denoted JErrc® in the
k,m k,m

remark following the Corollary to Theorem 5.3) is the corresponding

. ) , : -1
eigenspace, i.e. if (hu)u (mod 2m) are the modular forms of weight k 3
associated to ¢6J:,m then hEu = ¢(E) hu for all E£E&€Z . In particular,
the map
(18) ¢$(t,2) = h(r) = ¥ h_(4wt)

p (mod 2m)

(which generalizes the map ¢ + hy(4t) +h;(41) used in the proof of

Theorem 5.4) annihilates all J: o with e¢#1 . For this map we can prove
]

the analogue of Theorem 5.4:

Theorem 5.6. The function h(tr) defined by (18) lies in Hk_*(m) . 1f
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m is prime and k even, then the map (18) defines an isomorphism between

+ . .
Jk,m and the space M.k_%(m) of modular forms in Mk_%(m) whose Nth Fourier

coefficient is zero for all N with (:f-) =-1 ,

+

(m)

More generally, the image of (18) is contained in the subspace Ml:-i
consisting of all modular forms of weight k-% on Po(lun) whose NtBR Fourier
coefficient vanishes unless -N is a square modulo 4m, and for m squarefree
the map (18) gives an isomorphism between Jll,m and M;;%'+(m) (note that
Jk,m'Jll,m for m prime and k even). The spaces M;_'_;'*(m) , and more gene-
rably ceptain spaces M:L;'*(m) < -Hk_%(m) defined 3s eigenap'_'aces of-:
appropriate operators, were studied (for m odd and square-
free) by Kohnen [12] » who showed that Mk _i(m) decomposes in a Hecke—invariant
way into the sum of these spaces. It is tempting to assume that this decompo-
sition correspdnds to the splitting (17) of Jk,m’
We discuss this in more detail below after proving Theorem 5.6.

but this is not the case.

Proof (Sketch): It follows from equatiom (9) that r-k'hi h(—-l;:; is a
multiple of ho(lun‘r) and hence invariant under <t~ t+ 1 ; this and the
invariance of h itself under twt+ 1 suffice to show that haMk_%(I'o(lun)) .
We have h = }c(N) qN with c(N) = Xcu(N) ; since cu(N) is non-zero only
for uzs-N (mod 4m) , this shows thacu h 1lies in M;__}+ . The map (18)

is clearly zero oun all Jli,m with €#1, but for m squarefree it is
injective on Jll,m' Indeed, for ¢¢J;’m we have ch(N) =cu(N) for all
§€Z, and for m squarefree this implies that cu(N) is independent of the
choice of the square-root u of -N (mod 4m) ; hence c(N) -Ztcu(N) and

therefore h=0 = ¢=0 . Finally, the surjectivity claimed in the theorem

results from the formula

(19) dim Jk,m = dim MZk_z(I‘*(m)) ( m prime, k even )

which will be proved in §§9-10 and the isomorphism H’:__l(m) =M2k_2(r*(m))
2
proved by Kohnen [12] , where TI*(m) denotes the normalizer of I‘o(m) in

SLZG). (Act:ually, (19) will be proved in §§9-10 only for k sufficiently
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large, but the inequality with = replaced by 2 will be proved for all k,
and that is sufficient for the aéplication here; it then actually follows
from Theorem 5.6 and Kohnen's work that one has equality in (19) for all k .)
This completes the proof.

Theorem 5.6 and the remarks following it describe the relation between
Jl,m and forms of half-integral weight. As we said, the situation for the
other eigenspaces J;,m is more complicated; the authors are indebted to
N. Skoruppa for the following remarks which clarify it somewhat.

Suppose that m is odd and square—free and let e: Z + {t1} be a

character as above. Write e = I ¢ with € a character on
plm
{£ (mod p) | €241 (mod p)} = Z/2Z and let f be the product of those

p for which ep is non-trivial. We extend & to a character & (mod f)
by taking & to be the product of arbitrary odd characters Ep (mod p)
for p|f and define
ha(t) = ) &(w) b (4ar)
u (mod 2m)
(thus hE is our old h for e€=1). Then

[
ii) the map ¢ h

-4k
i) h, 1lies in Hk_%(l‘ (4mf), x), where X = (—) & ;
o .
is 0 om all Je' for €'#¢ and is injective
e 8 k,m ]
s .
on Jk,m H
iii) the image of this map is the set of h in Hk__;(l‘o(lmf'),x) such
2
o~
that the representation of SLZG) ( = double cover of SLZG)) on

€C-h|y is isomorphic to C_ (orto0), where C_ isa
Y &SL, (T)

certainly explicitly known . irreducible representation of SLZ(Z)/I‘(lm) .
This set can be characterized in terms of Fourier expansions and its
dimension (resp. traces of Hecke operators) explicitly computed; it is
contained in but in general not equal to the space of modular forms in

Hk_i(l'o(lmf),x) with Fourier expansions of the form ) c(n) qN .
=N 20 (mod 4m)
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Notice that there is a choice involved in extending € to & but
that the different functions hE which are obtained in this way are twists
of one another. Skoruppa also has corresponding results for m arbitrary
(if m is not square-free, then one must restrict to the U-new part, i.e. the
. s . K
complement of the space (f?1 vk,m/d’lud ; if m is even, then we must take
g

9 tO be (:#9 of conductor 4 rather than 2 and thus f to be twice as

big as above; the level of h, in general is 4 times the smallest common

g

multiple of m and fz ) and has given a formula for dim J€

K,m- for arbitrary

m and ¢ [34].

Finally, the reader might want to see some numerical examples illustrating
the correspondence between Jacobi forms and modular forms of half-integral
weight. Examples of Jacobi forms of index 1 were given at the end of §3.
According to Theorem 5.4, these should correspond to modular forms in M*_& ’
so that the coefficients given in the Table in §3 should be the Fourier
coefficients of the Eisenstein series in Mk-% (k=4,6,8) and cusp forms
in Mk-% (k=10,12) ; one can check that this is indeed the case by comparing
these coefficients with the table in Cohen (‘7]. Numerical examples for
higher m ‘illus:rating Theorem 5.6 and the following discussion can be found

at the end of §9.
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§ 6. Fourier-Jacobi expansions of Siegel modular forms and the

Saito-Kurokawa conjecture

We recall the definition of Siegel modular forms. The Siegel upper
half-space of degree n is defined as the set H, of complex symmetric
t
n«n  matrices 2Z with positive-definite imaginary part. The group

0 1,

S (R) = (MaM, ®)|MI, M =3, ), 3 = (3 7).,

= {(ABy| a,8,c,0 « M_(R), AB =BA®, cD®=DC®, AD®-BCt=I}
CD n n

acts on Hn by
A B -1,
(¢ p)°Z = (AzeB)(CZ+D) ™ ;

a Siegel modular form of degree n and weight k with respect to the
full Siegel modular group r = szn(Z) is a holomorphic function

F: Bn - ¢ satisf'ying
(1) P(M-Z) = det(Cz+D)* 7 (2)

for all 2 € Hn and M = (g g)cl‘n. If n>1, such a function will

automatically possess a Fourier development of the form

2) F(2) = D A(T) eler T2) ,
T20

where the summation is over positive semidefinite semi-integral (i.e.
Ztij , tiicz) nxn matrices T ; if a=1 , of course, this sust be

posed as an extra requirement.

.‘.v) with t,7'€H , z&C , In(z)2< Im(t) Io

If n=2. wecan write Z as (:
and we write F(t,2,7') instead of F(Z) ; similarly we have
T= (r72 r£2) with n,r,me¢2 , n,m20 , rzslmm and ve write A(n,r,m)

for A(T) , so the Fourier development of F becomes
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3) F(t,z,Tt') = ;;2::, A(n,r,m) e(nT+rz+nt') .
n,r.mea
n,m,4nm -r220

The relation to Jacobi forms is given by the following
result, which, as mentioned in the Introduction, is contained in

Piatetski-Shapiro's work [ 26 ] .

Theorem 6.1. Let F be a S@ggel modular form of veighc k and degree
2 and write the Fourier development of F in _the form

(4)  F(r,z,t') = ) ¢m(r,z) e(mt?’) .
: - m=0

Then ¢m(r,z) is a Jacobi form of weight k and index m .

Proof: For (: 3)51‘1 and () p)ezz the matrices
_ a 0 b O 1 0 0 u
(5) 0 1 00 A1t u o
coda] ™ |gao 12
0 0 0 1 0 0 0 1
belong to P2 and act on Hz by

2
at+b _z . c2Z

] 2
! ‘#2272z +27°1) ,
ct+d’ cT+d’ c1+d)’ (ty.2, T0)r> (7, zrdTey, 10 202 ) .

(t,z, ') > (

respectively. Applying (1), we deduce the two transformation laws
of Jacobi forms for the Fourier coefficients ¢m ; the condition
at infinity follows directly from (3). Following Piatetski-Shapiro, we call

(4) the Fourier-Jacobi expansion of the Siegel modular form F .

Note that the proof of Theorem 6.1 still applies if Ty is replaced
by a congruence subgroup. Note, too, that the first collectiomn of

matrices in (5) from a group (isomorphic to SLZZ)
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but that the second do not; the group they generate has the form

- A,u,x & 2 }

OO0 -0
OCwx O
n

~
o> =

so that we again see the necessity of replacing 22 by the Heisenberg

group H, . The complete embedding at SL,(R) ¢ By into Sp“m) is

given by
a 0 b u
ab A1 TR
[(c d)’ aw, K] g c 0 d-x
0 0. 0 1

where (A' u') = (Ap) (: :) . However, we shall make no further use of this.

The real interest of the relation between Jacobi and Siegel modular
forms, and the way to the proof of the Saito-Kurokawa conjecture, is the

following result, due essentially to Maass [21] .

Theorem 6.2: Let ¢ be a Jacobi form of weight k .and index 1 . Then

the functions ¢|VIII (m20) defined in §4 are the Fourier-Jacobi coefficient!

of a Siegel modular form V¢ of weight k and degree 2.

Proof: Reversing the proof of Theorem 6.1, we see that the function
defined by (4) , where ¢m (my0) are any Jacobi forms of weight k and
index m , transforms like a Siegel modular form under the action of the

matrices (5). In particular, this holds for the function
Vo(t,z,t) = 2, (4] ) (1,2) e(mr') .
m20

On the other hand, Th. 4.2 gives the formula

2
(6) A(n,r,m) = Z, a1 c(%?:—) ( (n,r,m) # (0,0,0))
d|(a,r,m)

for the Fourier coefficients (defined asin (3) of V¢ , where
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c(n,r) qn;r is the Fourier expansion of ¢ , and since this
n2r /4m

is symmetric in n and m we deduce that V¢ 1is symmetric in T and 1’

i.e. transforms like a Siegel modular form with respect to the matrix

0100
100 0
0 00 0 1
0010

as well as the matrices (5). Since these matrices are known to generate

Pz » it follows that V¢ is indeed a Siegel modular form.

The same proof works for the standard congruence subgroups of Pz R
since these are known to be generated by the matrices (5) (now with
(: 2) in the corresponding subgroup of I‘1 ) and (7); nevertheless,

it would be nice to have a "real" proof of Theorem 6.2, i.e. a direct

verification of the transformation law of V¢ with respect to all elements

of Pz .
Theorems 6.1 and 6.2 give an injective map
FJ : Mk(r2) —_— Jk,o‘ Jk,l x Jk,Z‘
and a map

Vidg,y — K@)
such that the composite

-v—-rnk(rz)-——FLp s P, 3

J =0 k,m k,1

k, 1

is the identity. Thus V is injective and its image is exactly the set
of F with F= V(FJ(F)) , i.e. of Siegel modular forms whose Fourier-

Jacobi expansion (5) has the property ¢ = ¢1|Vm (Vm). This means
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that the Fourier coefficients A(n,r,m) (defined by (3) )

are given by the formula (6) , where

A(n,0,1) if N = 4n
(8) e(v) = {A(nﬂ,\) if N = 4n-1

(the last statement could be omitted, since the validity of (6) for
any sequence of numbers {c(N)} forces the c(N) to be given by this -
formula). Equivalently, we can characterize these functions by

the Fourier coefficient identity

) A(n,r,m) = Z &g T (Vo,rm .
d}{(n,r,m)

The space M:(I'z) of functions satisfying (9) was studied by Maass ([20], [21];
see also [17]) after the existence of Siegel forms satisfying these identities

had been discovered experimentally by Resnikoff and Saldafla [27] (whose
Tables IV and V should be compared to the tables in §3);

he called it the 'Spezialschar. We thus have established inverse iso-
morphisms

. FJ

M (I = ka1

comb‘ining these with the isomorphism Jk 1-=-» Mk % given in §5 we
. -

obtain

Corollaryi, If h(t) = Z.n c(N) qN is a modular form in Kohnen's
N20
N=0,3(mod 4)

"plus-gpace" M o_1> then the numbers A(n,r,m) defined by eq. (6) are
2

*
the coefficients of a modular form F in Maass' "Spezialschar" Mk(l'z) .

. . . * .
The map h»~—F is an isomorphism from l(k 1 to M (T,) , the inverse
2




-74 -

map being given in terms of Fourier coefficients by eq. (8).

From Theorem 3.5 (or Corollary 2 to Theorem 5.4) we also deduce:

Corollary 2. The “Spezialschar" M:(FZ) = & Mﬁ(rz) is free over
k even

M, (SL,@)) on two generators, of weights 4 and 6 .

This result was proved by Maass {21].[22}.

- Finally, we must check that the map V is compatible with the actiom
of Hecke opeartors in Jn 1 and Mk(rz) » 1.e. that there is an algebra map
2
13 ts 4>TJ from the Hecke algebra for Siegel modular forms of weight k and

degree 2 to the Hecke algebra for Jacobi forms of weight k and index 1

such that
(10) V)T = V(| (D)) : VTET, .

This will imply in particular that V maps Hecke eigenforms to Hecke eigenforms.
It is:well known (cf. Andrianov [1]') that 'Ts is generated by the
operators Ts(p) and Ts(pz) with p prime (until the end of the chapter we

write Ts(z) and TJ(L) for the Hecke operators in T_. and T, ). We use

S
the somewhat more convenient generators Ts(p) and Té(p) = Ts(p)z-Ts(pZ) .

Theorem 6.3. The map V: e g Mk(rz) is Hecke-equivariant (in the sense of
?

(10)) with respect to the homomorphism of Hecke algebras 1: T, =T, defined

on generators by

1(Ts(p) = TJ(p) + pk"1 + pk.z R

I(Té(p)) - (pk—1+pk-2) TJ(p) + 2p2k-3 + p2k~4

Proof: In [2 ], Andrianov proves that Maass' "Spezialschar" is invariant under
the Hecke algebra by calculating the Pourier coefficients of the two functionms

P, = Frg(® , F, = FIT5(R)
for F € M; and checking that they satisfy the identity (9). Since the Spezial-

schar is just the image of V , this says that for ¢ € I -
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= 1 -

VelTg(p) = Ve, , Ve|Ti(p) = V4,

for some ¢1 ’ ¢2 € Jk 1 with explicitly given coefficients, so to prove the
]

theorem we need only check that

b, = ol + o e

2k-3 2k-4
p

(11) - -
9, = ¢|((pk '+pk 2y T,(p) + 2p +

)

The coefficients of a Siegel modular form in the Spezialschar are determined

by a single function ¢(N) (N®=O, 3 (mod 4)) as in (6), (8). If c(N) , c,(N)
and cz(N) are the coefficients corresponding in this way to ¢, ¢1 and ¢2 R

then equations (13)-(16) of [ 2] (with D=-N, t=1, d=0) give

¢ = c™® +pem + P21+ Bem
if plN ,
c,(N) = e+ P le)  + p¥2(c) + P etv/p?)
if p2|N ,
e = e @em + 9 e + 2720 + et +2 e

+ pk-z(p - (%))c(pzn)

if pZIN , and

2

P k-l‘c(ﬂ) + Pz

3k-5

c(N/ pz)

22ewreh) + p*7eo™W)

¢, 3emn + p
+ 02 + p¥ e + p
if p2|N . In a unified not:ar.i.on; this can be written
e, @ = ™M + G +p 2 e P + 2 e
cz(N) - (pk-1 *pk. )c(pzN) + (2p2k-3 +p2k-4 + (p2k-3 +p2k-4) (%))C(N)
. (p3k-4+p3k-5)c(nlp2) -
with the usual convention c(N/pz) =0 if pzltl . On the other hand, from
Theorem 4.5 with m={ , f=p we find that the Nth coefficient for ¢|TJ(p)
is given by

2k—3c (N /pz)

(M + P + p
(cf. equation (14) of §5), and comparing this with the formulas for c, and

c, gives the desired identities (11).
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In [ 1], §1.3, Andrianov associates to any Hecke eigenform F € Sk(Pz)

the Euler product

-4, - 2k-3- 4k-6-4s, -1
2k k)p 23_Y p k-3 33-*p sy

-.s
Z = JI - -+ ? -
F(s) I (1 YoP (Yp P P

where F|T.(p) = YoF FlTé(p) - YI"F . If F=V¢ with ¢|TJ(p) =A,$ , then

it follows from Theorem 6.3 that

- - - k-2 2k-3 2k-4
Y, = A +pk’+pk2,7'=(pk’+p )p+ 2p +p
P P P
and hence
eyt o+ (y" - 2p26 02 -y p3 3, SRk
P P P
= (1 -Pk_it)(i -pk-zt)(l - lpt +p2k.3t2) .

By Corollary 3 of Theorem 5.4, there is a 1-1 correspondence between eigenforms

in M and J , the eigenvalues being the same. We deduce:
2k-2 ko1

_Corollagz 1 (Saito-Kurokawa conjecture). The space S;(rz) is spanned

by Hecke eigenforms. These are in 1-1 correspondence with normalized

Hecke eigenforms f &S

k=2 ° the correspondence being such that

(10) ZF(s) = r(s~k+1)r(s~k+2) L(f,s)

As stated in the Introduction, most of the Saito-Kurokawa conjecture
was proved by Maass [21,22,23]. 1In particular, he found the bijection between

functions in the Spezialschar and pairs of functions (hO’hI) satisfying

(16) of §5,
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. x - . . -
showed that dim M.k(I'z) dim MZk-Z » and established the ex:.stetfce of a
lifting from the Spezialschar to sz_z satisfying (10), without, however,
being able to show that it was an isomorphism. The statement that the
Spezialschar is spanned by eigenforms was proved by Andrianov [2] in the
paper cited in the proof of Theorem 6.3, and
the bijectivity of Maass' lifting by one of the authors [40].
See also- Kojima [110] . A detailed exposition of the proof of the con-
jecture (more or less along the same lines as the one given here) can be
found in [40].

A further consequence of Theorem 6.3 is

Corollary 2. The Fourier coefficients of the Eisenstein series

(2)
E,

(2 = ] det (Cz+D) ¥
{c,D} :

(sum over non-associated pairs of coprime symmetric matrices C, DCMZ(Z)) in

4 (T,) are given by

4nn—r2

n_ r/2 VHGer, B
d

k-.
A((r/2 o)} d

dl (n’r’m)

Indeed, since El(‘z)

is the unique eigenform of all Hecke operators
with A((g g)) = {1, it must equal V(Ek,I) , and the result follows. The

formula for the coefficients A(T) of Siegel Eisenstein series of degree 2
was proved by Maass ([18], correction in [19]), but his proof involved much

more work, especially in the case of non-primitive T.
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§ 7. Jacobi theta series and a theorem of Waldspurger

Perhaps the most important modular forms for applicatiomns to

arithmetic are the theta series

%) 0 (0) = 2 ™
X€A\

where Q 1is a positive—~definite rational-valued quadratic form on a
lattice A of finite rank. This series is a modular form of weight
-% rk(A) and some level; in the simplest case of unimodular Q (i.e.
Q 1is integer~valued and can be written with respect to some basis of
A as -% x*Ax with A a symmetric matrix with integer entries and
determinant 1) it is a modular form on the full modular group. As is
well-known, the theta-series (1) should really be considered as the
restriction to 2z=0 ("Thetanullwert”") of a function 6 (t,z) which
satisfies a transformation law for z = z+At+u and is, in fact,

a Jacobi form. (This fact, which goes back to Jacobi, is the primary

motivation for the definition of Jacobi forms.) We give a precise

formulation in the case of unimodular Q .

Theorem 7.1. Let Q(x) be a unimodular positive definite quadratic

form on a lattice A of rank 2k and B(x,y) the associated bilinear

form with Q(x) --% B(x,x)., Then for fixed y € A the series

(2) eQ y("Z) - Z qQ(x) CB(x,y)

Xxe

is a Jacobi form of weight k and index m = Q(y) on SLZ(Z).
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Proof: The transformation law with respect to %‘,)GSLZ(Z) is obvious

and that for (? B‘) an immediate consequence of the Poisson summation

formula, so that the modular properties of © are particularly easy

Q,x

in this case. The transformation law with respect to 2z > z+AT+U is

equally clear:

2o 200 J, QG Bxy) B
xéA

. 2, Q) By |

X&A

em(xzr+2u) 6. (t,z+AT+y) = q
Q,y

Q.y(r’z) :

Finally, as pointed out in the introduction, the conditions at infinity
are simply Q{x)20 , Q(y)20 , B(x.y)zsloq(x) Q(y) , which express

the fact that the restriction of Q to the (possibly degenerate) sublattic
2x + Zyep is positive (semi-)definite. .

If Q is not unimodular, then eQ,x will have a level and
character which can be determined in a well-known manner.

We recall two generalizations of the theta-series (1) and explain
their relation to the Jacobi theta-series (2) . First of all, one can
insert a spherical polynomial P(x) in front of the exponential in (1)
(recall that "spherical™ means AP=0 , where A is the standard Laplacidf
with respect to a basis of A-@®R for which Q is ‘ inz ); if P is

homogeneous of degree 2», then the series

D) ey ) = 2, ey 2

X€ A
is a modular form of weight k+2v (2k=rk A) and the same level as &,

and a cusp form if v > 0 (see for example Ogg [25 ]). We then have
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Theorem 7.2, Let A,Q,B,y be as in Theorem 7.1, \)dNo . Then the

polynomial
) = o (k=1)
(4) Pv’y(x) Py (B(x,y), mQ(x))
(p§§.1) as in Theorem 3.1) 1is a spherical polynomial of degree 2v and

Doy (8q,y) Sa.r,

Proof. The final formula is clear from the definition of D and this

2v °?

makes it morally certain that Pv y is spherical with respect to Q ,
3

since (3) is never modular unless P is spherical. To check that this
is really so, we use eq. (3) of §3 to get

-k+
Pv y(x) = const. x coefficient of t2v in Q(y-tx) ket
b J

(we may assume y#0, so m$0) , from which the assertion follows
2
. . 2 2 =k+1
= -tX
easily (choose a basis so Q Exi and compute (23222) Q(y-tx) ’

recalling that k = % tk A) .

The other generalization of (1) is the Siegel theta-series

(5) 6Py 1= Dr (D eCer T2) ,
Q 120 ¢

where rQ(T) is the number of representations of the binary quadratic
form T by Q (just as the coefficient of qn in (1) is the number of
representations of n, or of the unary form nxz, by Q). Explicitly,

we have

rQ (rt;z rl/nz)) - #{ (st)‘A "A‘ Q(X)'n: Q(y)-ma B(x,y)-r} ’

eéZ)(: :.) - Z. e(Q(x)7 + B(x,y)z+ Q(y)t") .

x,yeA
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Then the following is obvious.

Theorem 7.3. Let Q be as in Theorem 7.1. Then the mth Fourier—

Jacobi coefficient of 6(2) equals ;ZE: 0 .
Q — yeA Q,y

Q(y)=m

Theorems 7.2 and 7.3 show how the Jacobi theta-series fit into the
theory developed in §3 and §6, respectively. Their relation to §5 is
also easily described: the modular form of weight k - -;- associated

to is essentially the theta-series associated to the quadratic

%,y
form of rank 2k-1 obtained by restrieting Q to the orthogonal com~

plement of y . We illustrate this in the simplest example, with k=4

and o~1 . Then (A,Q) is the E, lattice (cf. Serre [28,5,1.4.3] ), i.e.

8 8
8., .8 ,1 1 .2
A={xaz VZ+g,....9)| i§1 x; €22} , Q-i§1 T

The form BQ is El; (since dim M, = 1); in particular, there are
240 choices of y with Q(y)=1 , but since they are all equivalent

under Aut(Q) we can choose y= (-;-,; ..,—;-) . Then

1, 2 2, 1

-f(x1+. . .+x8) -z-(x *ee .+x8)
q 4 ’
X€A

and since J 4.1 is one~dimensional this must equal E . Hence the
?

4,1
formula for the coefficient of qn t;r in Ek 1 (Th. 2.1) implies
*

H(3,4n-1)

=2r} = G

# (xei xf+...+x§s2n s X, to.. X

1

or more explicitly (replacing x; by -;-xi)

(6 # xa2®| x

43 +-cmxg(mod 2), Xxican, Xxi-ln: } = -252 H(3,

This first seems like an infinite family of identities, parametrized by

re2 , but in fact the identities depend only on r(mnd 2). Indeed, if F



- 83 -

is even then replacing x, by x; + -;—r replaces the left-hand side

of (6) by the same expression with n replaced by n - _21::2 and
r by 0, so (6) for any even r is equivalent to the theta-series

identity
2

%(x%*- .e .+x8) g
D) q =1-252 ] H(3,4n) q"

x¢28,x1+...+x8=0 n=1

xit...-xi(md 2) \

(= 1+126q + 756q> + 2072q° + ...) .

Similar remarks hold for r odd. except that now replacing- x; by

x; + %r replaces "xe 2Bn by "xe(-‘i-,....,-%-)+28"5 doubling the x;
then turns this condition into "xczs , all X odd, xia...;xs(mod &))",

so (6) for odd r is equivalent to

1, 2 2
F(xTr.. . rxg) s -
(8) > ¢ ! 8 2 - 252 | u@3,4n-1) ¢!
xe 28, x1+. ..+x8-0 n=1
x, odd, x,»...nx,(mod &)
i 1 8 (= 56q° + 576q" + 1512q'' + ... ).
Thus the Jacobi form identity © = E is equivalent to the

QY 4,1
modular-formof-half-integral-weight. identity Gq,-ll3 , where Q'

is the integer-valued quadratic form -;- zxi on the 7-dimensional

lattice {xezal zxiao » X, % ...mx (mod 4)} .

1

We end this section by combining various of the results of
Chapters I and II to oBtain a proof (related in content but different in
presentation from the original one) of a beautiful theorem of Waldspurger's
[35 ] ,» generalizing Siegel's famous theorem on theta-series. Siegel's

theorem [33 ], in the simplest case of forms of level 1, says
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h 1 h 1
(9) Z w— eQi = Z ;—- (k €42) .
Here (Ai’Qi) (1sish) denote the inequivalent unimodular positive-

definite quadratic forms of rank 2k and v, the number of automorphisms

of Q . Explicicly, (9) says

2
(10) 121 € T 1(n) =) Opnq @ (n>0)

(ei 1= w?/(w;‘*-...w;‘)) » L.e. it gives a formula for the average number
(with appropriate weights) of representations of an integer n by the
forms Qi . The number of representations by a single form, however,
remains mysterious. Waldspurger's result in this case is

2
(11) Z € t (n) eQi_ = m) Ckl'rn (n‘“o)

1'1 1

where C, (t) = (4 __, () 6(1))|04 is Cohen's function. Thus one has
explicit evaluations of weighted linear combinations of theta-series

with variable weights; in fact, since the clen are known to span Mk
(cf. discussion after the Corollary to Theorem 3.1), one gets all modular
forms in this way. Equation (9) follows from (11) by taking n=0 (with the

convention £|T = 25(1-k) -1

a(0) E, for £ = Za(n)q aMk) or by

computing the constant term of both sides; taking the coefficient of qm

on both sides gives

(12) I €,

i=1

2 k-1 4nm |

(n) r, (m) = Z. d 2 : H(k=1,=—7

i Tq, Q; (1K) d
1 d|(n,m) r254 /dz

Finally, Waldspurger has a generalization of (11) involving theta series with

spherical polynomials.
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To prove all of these results, we start with Siegel's own generali-

zation of (9) to Siegel modular forms of degree 2:

o .
: (2)
(13) e. 0_(z) = @ .
121 S "
(2)

Here Ek

the theta-series (5). We then

is the Eisenstein series of degree 2 and weight k and SQ.
: i

t ’ . . .
compute the m h Fourier-Jacobi coefficient of both sides of (13);

by Theorem 7.3 and (the proof of) Corollary 4 of Theorem 6.3, this gives

h
(14) ) € ‘ZE: ] (r,2) = (B ‘IV )(t,2z) ,
i=1 y & Ai Qiay » o
Qi(Y)"m

an identity of Jacobi forms of weight k and index m . We now apply

the development map D of §3 to both sides of (14). By Theorem 7.2,

2y
the left-hand side of the resulting identity is

)
€. ] v (T) ’
i=1 > QP g

v M .
where Pi,m yxs given by

(15) P: m(x) := ;Z;: p§:?1)(3i(x.y), m Qi(X))
b 4 y ‘ .

Q; ()=m

and is a spherical polynomial of degree 2v with respect to Qi .

By the Corollary to Theorem 4.2, the right-hand side is

D2v(Ek,1)l k+2v Tm °

But DZv(Ek l) is Cohen's function (v) as defined in §3 (Corollary to
’
Theorem 3.1). Hence we have the following identity, of which (11) is the

special case v=0 .
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Theorem 7.4. (Waldspurger [35 ]). Let Qi (i=1,...,h) be the

inequivalent unimodular quadratic forms of rank 2k (k>0, ksO(mod &)

and P: o (v20) the polynomials (15), p§5-1) as in (1) of §3. Then
?
h h
1 1 (v)
I == 8 o = (1 C.IT
i=1 jAut Qi' Qi’Pi,m (isliAut Qil) k m
(v)

is Cohen's function (as in the Corollary to Theorem 3.1)

where Ck

th .
and Tm the m Hecke operator in Mk+2v .

Since, as mentioned in §2, the c(“)[rm are known to span

sk+2v , one obtains

Corollary: For fixed k and v, the functions eQ.,P (i=t,...,h ,
i

P spherical of degree 2v with respect to Qi) span 5, ..

(resp. Mk if wv=0).

In particular, the theta-series associated to the E_-lattice

8

and to spherical polynomials of degree k-4 span Sk for every k .
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Chapter III. The ring of Jacobi forms

§8. Basic structure theorems

The object of this and the following section is to obtain as
much information as possible about the algebraic structure of the set of
Jacobi forms, in particular about

i) the dimension of Jk m (k, m fixed), i.e. the structure of this
9’

space as a vector space over C ;

ii) the additive structure of J, 2 =@ Jk o (m fixed) as a module
’ k ’

over the graded ring M, = f Hk of ordinary modular forms;

iii) the multiplicative structure of the bigraded ring J, , = k@ Jk o
’ ,m &

of all Jacobi forms.
We will study only the case of forms on the full Jacobi group P'1I
(and usually only the case of forms of even weight), but many of the
considerations could be extended to arbitrary [ .

The simplest properties of the space of Jacobi forms were already

given in Chapter I. There we showed that Jk n is finite-~dimensional for
?

all k and m and zero if k¥ or m is negative (Theorem 1.1 and its

proof) and obtained the explicit dimension estimate

m
dika+ Z:dimsk_'_zp ( k even ) ,
. y=1
m dim J, . < 1

2. dim S ( k odd )
L T Pk .

(Theorem 3.4 and the following remarks). We also proved that J* o reduces
b

to M, if m =0 and is free over M* on two generators E‘hi s E6,1

for m = 1 . The very precise result for J was obtained by comparing

*,1

the upper bound (1) with the lower bound coming from the linear independence

of the two special modular forms Ea 1 and 26 1 Similarly, we will
? 9
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get information for higher m by combining (1) with the following result.

y are algebraically independent

Theorem 8.1. The forms E and E
4,1 — 76,

over M* .

Proof: Clearly the theorem is equivalent to the algebraic independence
over M, of the two cusp forms 10,1 and 12,1 defined in §3, (17).
Suppose that these forms are dependent. Since both have index 1 and
any relation can be assumed to be homogeneous, the relation between them

has the form

m . .
2) 180 4y NCR IR TN ) b
J= ’ -9

for some m , where the gj are modular forms, not all zero. Let j,
be the smallest j for which gj is not identically zero. Substituting
into (2) the Taylor expansions given in §3, (19), we find that the left-

hand side of (2) equals
2j, 23 2],%+2
Jg £1g e )

(const.) A(T)™ gjo(t) + 0(z

and hence cannot vanish identically. This proves the theorem.

41 and 36 1 will play a basic
14 ?

we introduce the abbreviations A, B to

Since the two functions E

role in our analysis of I,

* ?
denote them. Thus A€J, ., BeJ, . and the theorem just proved says that
? 1
the map M*[k;Y] -+ J*,* gsending X to A and Y to ‘B is

injective. The (k,m)-graded compouent of this statement is that the map

Mk—4m * Hk—dm#Z X oo x-Hk--6m A Jk,m

(f w1 m

0’ 51 » a0 ’ fm) .—*foAm*f,A B+o.o+fmn

is injective. This implies:

Corollagz . dim Jk,m 2 dim “kréurlj .

1
j=0



-89..

We now show how this estimate can be combined with (1) to obtain algebraic

information about the ring of Jacobi forms.

Corollary 2. Fix an integer m20. Then the space JZ*,m of Jacobi

forms of index m and even weight is a module of rank m+! over M* .

Proof: The linear independence of the monomials AJB™ 3 (0 sjsm)
over M* implies that the rank is at least m+1. Using the two facts
dim Mk + o and dim M'k+0(1) = dim M+ 0(1) (we do not need the more

precise formula dim M = -1%4- 0(1) ), we can write Corollary 1 in the

weakened form

dim Jk,m 2 (mt1) dim Mk + 0(1) (k> =, k even )

If there were m+2 Jacobi forms of index m linearly independent over
M* » then the same argument used to prove Corollary ! would show that the

factor m+1 in this inequality could be replaced by m+2 , contradicting

the upper bound
dim Jk,m s (m*r1) dim M o+ o

coming from (1). Hence the rank is exactly m+1.

Corollary 3. Every Jacobi form can be expressed uniquely as a polynomial in .

and B with ‘coefficient:s which are meromorphic modular forms (quotients

of holomorphic modular forms).

Proof: 1If ¢¢J* o’ then the forms ¢, Am, Am-lB,..., B
 J

must be linearly dependent over M* by Corollary 2, and this lipear

relation must involve ¢ by the Theorem, i.e. we have a formula

m . .
(3) £(t) ¢(1,2) = Z £.() E, l('l:,zf.)ur-J Eg ](T,Z)J
j=0 J s ’
with £, fjcu* and £#0; dividing by f gives the assertion of the

corollary (the uniqueness follows at once from the algebraic independence

of A and B ).
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Looking more carefully at the proof just given, we can obtain
an estimate of the minimal weight of the form f in (3). 1Indeed, the

proof of Corollary 2 depended on the fact that the upper and lower bounds

we had obtained for dim Jk n ( m fixed) differ by a bounded amount, i.e.
?
m m
(dimM_+ ] dims§ ) = ( ] dimM_, ) s cC
v=1 v=0

for some constant C depending only on m ; using the explicit formulas

m(m1)
2

for all even k . Hence the codimension of M*[A,B]()Jk’m in Jk,m is

for dinm “k we see that this holds with C= and with equality

bounded by C for all k . Now if ¢6Jk a and there is no relation
14

of the form (3) with f of weight h, then the subspaces ¢-Mh and

M*[A’B]"Jk-fh,m of Jk-rh,m are disjoint and hence the dimension of Mh

is sSC. Therefore there is a relation of type (3) at latest in weight

h=12C= étm(m~1). (Later we shall obtain a much better bound.)

Corollary 3 #a;s that J*’*QK* , Where K*-C(E,‘,Es) is the
quotient field of M, , is a free polynomial algebra K,[A,B] over K, .
In particular, the quotient field of J’*'* is 6(24,86,A,B) . In view
of Theorem 3.6, this is equivalent to the statement that the field of
Jacobi functions ( = meromorphic Jacobi forms of weight O and index 0)
for SLZ(Z) is ¢(j(t),p(t,2)) , a fact which is more or less obvious from
the definition of Jacobi functions and the fact that every even elliptic
function on €/Zt+Z is a rational function of p(t,z) .
Before proceeding with the theory we would like to discuss
the case of forms of index 2 in some detail; this will both motivate
and illustrate our results. Here, of course, we do not need Theorem 8.1,
since we can check the linear independence of Az, AB and 32 (or of the
monomials Am, ee. B for any fixed m) directly by looking at the
first few terms of their Fourier expansions, as was done in the case o=
in §3. Thus we obtain the lower bound of Corollary 1 "by hand.” This

bound and the upper bound are given for small k by the table
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k Iz'aesloxz

dim H.k + dim Sk_‘_2 + dim Sk+4 0 1 1 2 2 3

dim Hk-8 + dim Mk—lO + dim "'k-12 0 0 o 1 1 2
Thus the upper and lower bounds no longer agree, as they did for m=1,

but now always differ by 1 . We will see that the upper bound is in

fact always the correct one. In §2 we showed that J # 0 for all
]
even k24 and all m21 . Hence there exist non-zero forms X€J4 2
’
Ye.)‘6 2 " By Corollary 2, there must be two linear relations over M
?

among the five Jacobi forms X, Y, Az, AB and B2 of index 2 . To find

them, we could calculate the leading Fourier coefficients of X and Y
(we didn't give complete formulas for the coefficients of Eisenstein

series of index >1 in §2, but from §4 we know that and E

E4,2 6,2
are proportional to 24 1|v2 and E6 IIVZ , from which the Fourier

? »
coefficients can be obtained painlessly). However, we prefer a different
method which illustrates the use of the Taylor development coefficients

D ¢ of §3. Since S = {0}, we must have DX=DY=0

6 sa - SIO _
for v=1,2; we normalize X and Y by assuming Dox = E4, DOY = -F.6
(thus X = E, 2» Y =-E 2) . Then equation (12) of §3 shows that the
» »

beginnings of the Taylor expansions of X, Y are

X = Ea+n'.E["z2 2; E‘l:zai'O(z).
Y = -26-2—’3@5&:2 "2'1 Ey 2+ 00%) ;

we do not need to go beyond 0(z6) since a Jacobi form of index 2

is determined by its Taylor development up to z" (by Theorem 1.2).

For convenience we introduce the abbreviations Q and R for 24 and

E, (just as we already are using A,B for E and E ), as well

6 4,1 6,1

as P for the near-Eisenstein series 1 - 24 201(“) q" (the notations
P,Q,R are those of Ramanujan). Then one has the well-known identities

P' = 2ni ( 21n.

5 £ (pq-R), R’ -2“(9& )

P?-q), Q' =
for the derivatives of P ,Q and R, so the above expansions become

X = Q-—-(pq-n)z+ (PQ+Q -2PR) z  + 0(z%) ,

Y = -R+—-.r(PR-Q)z --7.—(P R*QR—ZPQ): +0(z) .
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Similarly we find the expansions

2
A = Q- 13— (PQ-R) zz + (P2Q+Q2’2PR) Zl‘ + 0(86) ’

L

z i’
B = R-~- -1-'5- (PR—QZ) z:Z + :—8— (P2R+QE-2PQ2) z‘ + 0(z6)

for the two basic Eisenstein series of index 1 . Hence the five forms

¢=X, Y, A2, AB, 2 have Taylor expansions ¢ = Xoi-x2z2+-xbza+-0(z6)

with X, given by the table

¢ Xo 5T X2 325 Xy

X Q R-PQ P2qrq®-2PR

Y -R PR-Q° -p2R-qr+2PQ?

a? Q® qr-PQ> -;—(Q3+R2)+P2Q2—2PQR
AB QR %(Q3+R2)-pqn p2qr-PR2-PQ3+Q°R
B2 ’ R Q%R-PR? -;Q(Q3+R2)+P2R2-2PQ2R

If any linear combination of the rows gives 0 in the three columns
on the right, then the corresponding form ¢ is 0(26) and hence
identically zero. Therefore by linear algebra we find the formulas

Q%% - 2r 4B + o BZ ¢ - ®a%-20%an+RE’
3_ 2 ’ 32
Q>-r Q-Rr

expressing X and Y as polynomials in A and B as in Corollary 3.

At this point we can discard AB and Bz from our collection X, Y,

Az, AB, 82 since

AB = RX - QY , B2 = % - rY - QA% ;

we can also replace Az by the more convenient basis element

2 _ R%aZ-2qras«¢%8?
-8

(Z 1is a cusp form and is equal to 12 ¢fo '/A , where ¢

Z = QX-A

10,1 **
the cusp form of index 1 defined in §3). Then X, Y, Z are Jacobi
forms of index 2 and weights 4, 6 and 8, respectively, and since they

are clearly linearly independent over M we can imprave our lower

bound to
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dim Jk,2 2 dim Mk_4 + dim Mk-6 + dim Mk—B .
Since the right-hand side of this inequality is equal to the upper

bound (1), we deduce:

ieorem 8.2. The space J of Jacobi forms of index 2 and even weight is free

2x,2
wer M on three gemerators X, Y, Z of weight 4, 6 and 8, respectively.

The functions X, Y and Z are related to A and B by

X ® r q) [a? a2 Q o -1\/x

| = —3—'—2 R Q® R ||-2a8 -2aB] = [-R Q o}l ¥
QR 2 21\ .2 2

z R® &R @/ \B B \o -r q/\z

There are two striking aspects to this result: that the module
32*’2 is free over M_, i.e. that we need no more generators than are
required by Corollary 2, and that the only modular form we need to invert
in order to express these generators in terms of A and B is the
discriminant function A = 77%5 (Q3-R2) . We now show that these two

results hold in general.

Theorem 8.3. The ring J is contained in M*[%][A,B] . In other

2% &

words, the meromorphic modular forms occurring in Corollary 3 of Theorem 8.1

are holomorphic except at infinity.

. Proof: In the proof of Theorem 8.1 we used the fact that A(r1)
is not identically zero. Using the fact that A(tr) vanishes nowhere in

H , we find with the same proof thef;,

€the functions E, 1(to,z) and E, 1(t9,2) are algebraically
1 4
independent for each point t,®H . Indeed, replacing the functions gj(r)
in (2) by complex numbers cj » we find that the left-hand side equals

23, 2j,+2

+ 0(z )

(const.) A(ty)" c, 2
o

as z+0, where j, is the first j wnh cifo, and this cannot
vanish because A(t,) #0 . Now - suppose :ha; %ch @ 18 a nom-zero

3

Jacobi form and let £(t) be a modulsr form q{ minimal weight such that
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foe u*[A,B] s, i.e. such that there is a relation of the form (3) (we
have already proved that such an f exists). If f is not a power of 4,
then f vanishes at some point vt €H, and then fj(To) =0 for all j

by the algebraic independence of E, .(t,,z) and E6 ,(to,z) . But then
»

4,1
f and the fj have a common factor (namely E,‘ or E,L 1if T, is

6 0
wi/3

equivalent to e or i and E: -j(to)A otherwise), contradicting

the minimality of f .

Theorem 8.4. J is free as a module over M .
—_— *, % *

Proof: The proof is similar to those of 8.1 and 8.3. Let us
assume inductively that for some k>0 we have found Jacobi forms
By 0ee s 4'7: of weight k,, ces kr < k which are a free basis of J. 2
over M* in weights <k , i.e. such that every form in Jk' a for k'<k

- r b4
can be written uniquely as 2 f.(r) Q.(r,z) with f“"‘k'-k- . (This is
certainly true if k=1 or k is the smallest integer with J #0 )
If we can show that the ¢i are linearly independent over M* in weight
k also, i.e. that there is no non—~trivial linear combination Efi ¢i in
J, which vanishes, then we are done, for then the subspace ¢ Hk—
k,m 1
\\duec: sum, f
i - r
cee * ¢ Hk-k of J is and choosing a C-basis ’rﬂ s one ,¢ 0
its complemen: gives us a new collection of Jacobi foms ¢’ s tee s ¢
satisfying the induction hypothesis with k replaced by k+i1. So assume
that we have a relation ) £, ¢. =0 in J . Since k.<k, we have
i1 k,m i
weight(f;) =k-k; >0, so f; lies in the ideal (Q,R) of M = c[q.8] »

fi = Qgi-c- Rhi

fors
for some modular forms sieuk-lo-ki > hi‘"k—ﬁ-ki (vhere, of course,
of negative weight are zero). Then our relation becomes Q- Xgi %
+ Re ihi ¢; =0 . But arelation Qy, +Ré,=0 between Jacobi forms ¥,

and ¥, implies that ¥ =R, jzt-va for some holomorphic Jacobi
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¥ ¥
form ¢ of smaller weight (to see this, note that ¢ := Tl = - —Ql-

transforms like a Jacobi form, is holomorphic at all points t H not
equivalent to i because R(1) #0 and at all Tt not equivalent to
em'/3 because Q(t) #0, and satisfies the cusp condition because Q

and R are invertible near = ) ., Hence we have
Zgid’i:"'R*s Zhi¢i="Q¢’

for some Jacobi form ¢ of index m and weight k-10. Since k-10<k,
we can by our induction assumption write ¢ as a linear combination

zei ¢i with eieMk_w_“ki ; then the identities
L (g;-Re,)) 9. = 0, J(h;+Qep) ¢, = 0

in weights k-4 and k-6 (both <k) imply by the uniqueness part of
the induction assumption that gi-Rei , h=-Qei_ and hence ff_’ 0 for
all 1i.

Remark: The method of proof used for Theorem 8.4 would equally
show that other spaces of modular forms (e.g. modular forms of half-integral
weight, or modular forms of level N, with M*(I‘1) embedded into M*(I’O(N))
via either f£(t) I~ £(t) or £(t) r— £(Nt)) are free M*(I‘1)-modules.

This fact, although not at all deep, may be of practical interest in tabula-
ting modular forms, since it means that all modular forms of a given type
(e.g. of fixed level but arbitrary even, odd or half-integral weight) can
be described by tabulating the Fourier coefficients of a finite system of
free generators.
The results we have proved up to now have all been additive,
i.e. concerned with points i) and ii) in the introduction of this section.

We end with a simple result on the multiplicative nature of J*
?

Theorem 8.5. The ring of Jacobi forms is an infinitely generated ring

of transcendence degree 4 .

Proof: That the transcendence degree of J . n is 2 over
9 -

M, and hence 4 over €, is rlear since J, ., conrains the polynomial
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algebra M*[A,B] = c[Q,R,A,B] and is algebraic over it (the square of any
Jacobi form of odd weight has even weight, and we have proved that a Jacobi

>m ¢ of even weight actually satisfies a linear equation a9 +b=0 over M*IA,B] ,

where in fact we can take aeC[Q,R] or even aeC[Q3-R2] ). We show that

J*,* is not finitely generated. Consider any finite collection of non-
constant Jacobi forms ¢i€Jki’mi (i=1,...,r) . By the results of §1 we
know that mi?.O and ki >0. It follows that any monomial ¢‘:1“.¢:r
( Myyeeey nrRO) has a ratio m/k bounded by

m n,m,+,...4+0.m,. m.
= = $§ max —
Since m/k is unbounded in J (in §2 we constructed Eisenstein

*, %

series with k=4 and arbitrary m ), we deduce that ¢1"""r cannot

generate J*’* as a ring.

Theorem 8.5 is a negative result. In the next section we

will show how to embed J* in a slightly larger ring which is finitely

ok

generated,
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§9. Explicit description of the space of Jacobi forms

Our main tool for studying the structure of J_ _ in §8 was

the fact that we had estimates on dim Jk a from above and below which
9

differed by a bounded amount a3 k- with m fixed (at ieast in the
case of even weighiti for odd qeight we have so far given only an upper
boﬁnd). In this section we will improve both estimates, obtaining upper
and lower bounds which actually coincide for k sufficiently large.
This will not only permit a more accurate description of the ring J"‘ ’

but will also lead to an algorithm for computing J (actually, two

k,m
algorithms) which is effective and, for modest m, practical. The results
will apply to both even and 6dd weight.

WB begin with the upper bound. The bound used in §8, namely

m
‘dim Hk + vzl dim Sk*z\, ( k even)
q)) dim Jk,,nt < ¢ o=
w):'l dim S, ) (k odd) ,

was proved in §3 as a corollary of the injectivity of the map D from
Jk,m into the direct sum of the spaces whose dimensions appear on the
right of (1). We will now give a second proof of (1) which is even more
elementary than this proof (in that it does not make use of the Taylor
development operators Dv ) and leads to a sharper result; however, it
gives less precise information than the first proof in that it gives only
a filtration of Jk.m with successive quotients mapping injectively into
spaces ka » rather than an injective map of the whole of Jk,m into a
direct sum of spaces ,H.‘kw as we obtained before. The sharpening of (1)

ve will obtain is the following:

Theorem 9.!. The dimension of Jk a is_bounded above by
]

2 : o
dim Jk,n < v£o ux(dx- Hk+2v-{75l’°) (keven) ,
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’ m-1 vz
(3 dimJy < vzl max(d:.m Mewrumt " [T;;l' o) (k odd) .

Proof: For v20 let

i e ees | oz =0z") for z-0} ,
i.e (v) is the intersection of J and the space (v) introduced
ot k9 k,m Hk,m

after the Corollary to Theorem 3.3. Then we have a filtration

(0) (l) (2) .
Jk,m k, k, Jk,m 2 eee 3
moreover, (v) évﬂ) for vsk (mod 2) because the order of vanishing
9 ’

of a Jacobi form at z=0 has the same parity as the weight, and Jl(‘v;

for v>2m for all k and for v>2m~3 for k odd for the same reason

used to prove (1) in §3 (a Jacobi form has 2m zeros altogether in

C/Z+Zt , and for k odd three of these are at the non-zero 2-division

points). On the other hand, from the definition of Jacobi forms we see

that if a Jacobi form of weight k has an expansion ¢(t,z) = £(1) 2’ +
v+l

0(z° ') near z=0 the function £ is a modular form of weight k+v,

so we have an exact sequence

(V+i) (v)
(4 0 k m - Mk-w

$ = f
similar to (14) of §3. Together this gives filtratioms

5 422D 5 552 5 (2me2)

(2v), ((2v+2)
km-Jk,m= Jk,m kom 2Jk,m "0 Iy n/d = Mer2y

k,m k,m

for k even and

{21 (2\»1)
ko~ Tk,n >k, m e 2%,m 13y

=0, k m M[¢-'-2\:‘

for k odd, and this immediately gives (1) (with M instead of S ). T
get the sharper estimates (2) and (3), we must say something about the imagf

of the last map in (4). Consider first the case of even k . The Fourier
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expansion of a Jacobi form of index m can be written in the form

° 2giz, n

#(r,3) = ] P (eTF)q
n=0
. . . -1

where Pn(t;) is a polynomial in ¢ and ¢ of degree < Y4nm by
virtue of the condition at infinity. This polynomial is symmetric in
z and c-l for k even and hence can be written as a polynomial in

t+3 or, more convenieatly, in ¢ + ?;-' -2 (= -4 si.u2 xz) @

PO = Qg+T -2, Q(DECiT], degq < /Fma .

(2v)
oI

2niz

If $€J ) must be 0(22\») as

» then each coefficient Pn(e
z+Q0, so0 each polynomial Qn(T) is divisible by ™ . Hence Qn must

vanish identically if deg Q, <V, i.e.
(5) v >Vdnm = Qn =0 .

The last map in (4) sends ¢ to Z a q“ with

Ztiz)/zh - (21) 2y

a, = limP (e lim qn(r)/r" ,

n z+0 -0
2 .
and from (5) we see that this is 0 for n < -z; . Hence the image of

the last map in (4) is contained in

n} ,

{fe | £ = ) a gq
Hkﬂv n€z ©
n2vé/a
v2
and since the dimension of this space is max (din Hh_z - [7‘;] , o) ,
inequality (2) follows. The case of odd k 1is similar, the only difference

being that pow Pn(c) is odd and hence has the form (C-C-l) Qu(c+;-1-2)

for some polynowial Qn of degree < Yénm ~ 1 ; then ¢EJ‘(‘2:” implies
! |Q (T) and heace vngnq as before.

Corollary. For k > m we have the upper bounds

dim em S dim M, = N (m) ( k even ) ,

)
v=0
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m-1
dimJ g vz' dim M, . - N_(a) ( % odd ) ,
where
m 21. i o1 2
& N@ = ] [').’;] J N m) = ] [%;1 .
v=0 vsi

Proof: We must show that the "max" in formulas (2) and (3) is always

attained by the first argument. For k odd and 1<v<m~l we have

k+2v-3 vz k-m w3 v v2
M1 2702 " @t F AR 2

and the assertion follows. The same argument shows that dim Mk +2v

%:-; for k even and O<v<m-l; if v=m we use instead

kxmz o dimn,,, 2B R
k+2m

k=m, m¢l = Lkt2Zm¥2 (mod 12) - dim "’k+2n 2 97 :"'z‘ ’

proving the assertion in this case also.

We now turn to the lower bound; for this we have to construct

Jacobi forms. To do this we begin by enlarging the space of forms under

consideration.

Definition. A weak Jacobi form of weight k and index = is a function

satisfying the transformation laws of Jacobi forms of this weight and

index and having a Fourier expansion of the form

(7) ‘:(T’z) - Z Z c(n,r) qn ;l' .
n>0 r

The space of such forms is denoted 3k a "’
t
The space Jk,n is, of course, in general larger than Jk.n’
but it is still finite~dimensional. Indeed, a weak Jacobi form also has
2m zeros in a fundamental domain for C/Z+Ztr (since it satisfies the
same transformation law under z-+z +Atr+u as a true Jacobi form), and

its restrictionsto z=Aivr+u (A, u €Q) give modular forms in the same
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way as in Theorem 1.3 (the conditionsa at infinity are satisfied because
of the condition n>0 in the definition of weak Jacobi forms), so the
proof of Theorem 1.l carries over unchanged. Moreover, all of the content

of §3 also still applies, so we get maps

D: Jk'm -» erl&’zo.oo 0Hk+2m (k even),

®
D: Jk,m - Hk+l0Hk*39...6Hk+2m_3 (k odd)

and they are still injective. The only point that needs to be checked

in order for, for example, the map

Dy: L e(a,r) L - 1 (letn,n)) q°
| Y 4 n ) o

to make sense is that for a given n there are onlv finitely many r
with c(n,r) #0 . But this follows from the periodicity condition on
the coefficients c(n,r) (Theorem 2.2), which applies unchanged to weak
Jacobi forms, for given n and r we can choose an r' with Ir'l <m
and r's:r (mod 2m), and then

22_2 2 r,Z

= r -r - 3 -r— - em—
c(n,r) 2 c{(n+ lm) 0 if n 4m< o

by the condition defining a weak Jacobi form,so c¢(n,r) vanishes as
soon as rz-luinnnz .
The basic result on weak Jacobi forms is the following.

Theorem 9.2. The map (8) is an isomorphism for all k and m.

Notice that the statement of this theorem makes no reference to
k being positive, and hence shows that the weight of a weak Jacobi form
can be negative (but not less than -2m ). As a corollary of Theorem 9.2

ve get

Corollary. For all k and m we have the lower bounds

> vZO dim th“ - N+(m) ( k even ) ,

dim Jk,m
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w1

dimJ 2 v-z-l dimM ., = H_() (kodd),

with N*(n) as in (6). For k>m the inequality signs can be replaced
by equalities.

To prove the corollary, we note that there is an exact sequence

(9) 0 — Jk,n

- 7 -— BN*(')
k,m

in which the last map sends a weak Jacobi form 7 = Zc(n,r) qn Cr to
the collection of Fourier coefficients c(n,r) with O<srsm (resp.
O<r<m if k is odd) and O <n<r2/4n s if all of these coefficients
vanish, then it follows from the periodicity of the coefficients (Theorem
2.2) that all ¢(a,r) with bm<r2 vanish and hence that '; is a true
Jacobi form, as asserted in (9). The second statement, of course, follows

from the corollary to Theorem 9.1.

Proof of Theorem 9.2: We nud only prove the surjectivity of (8). To do
this, ve ‘will. replace 31;, a by an a priori larger space Ji’-. prove

the surjectivity of (8) with J' instead of '3'. and then show that in
fact J = J'. The space J". is defined as the set of all functions
¢'(t,z) satisfying the transformation law of Jacobi forms of index m
with respect to z+z+At+u (A, u€Z) and having a Fourier expansion

of the form (7), but with the transformation law under the action of SL,®

replaced by the weaker conditions

(10) o' C-z) = (=D §'(r.2) ,
arn '], - M (t,2) '- (1,2) { (mod 27 (i even) (VYMET,) .
$lea BT HEB A\ (ot 27y (k oda) 1

Equation (10) and the transformation law under Z +Zt show that
the coefficients c(n,r) of ¢' satisfy the periodicicy property of
Theorem 2.2, and the condition (11) implies that the development coefficien’

DO.'. Dz",ooo. nh" (rnp. D"'. D3’"""‘ Dh_30' if k is odd) are
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modular forms, since the proof that l)vttﬂ{kw in §3 used only the
Taylor development of ¢ up to order v. Hence the map (8) is still
defined if we replace T by J'. To show that it is surjective is now
a Juestion of linear :algcbra. Suppose k is even (the case of odd k

is similar). Then given a collection of modular forms Ev(t) - Zav(n) q"
of weight k+2v (0<v<m) we want to find a ¢'€J',m with D2v¢' -,

for all v, i.e. to find coefficicntl ¢(n,r) satisfying

a) c(n,r) =0 for n<0,

b) c(n,r) = e(n',r') for r'smir (mod 2m), r'z-lm'm-tz-lmn ’
c) ngt.l)(t.m) c(n,r) = a () for O<v<m, 020.
T

Because of b), we need only find c(n,r) for O<r<m, since the rest
are then determined by the periodicity condition; in terms of this we
can rewrite c) as

m
(k-1)
(12) rzocr Py, (r,nm) c(n,) + .00 = nv(n) .

where € is 1 or 2 depending whether r is O or not and "..."

denotes a linear combinatiom of coefficients c(n',r) with O<r<m and
n'<n. We can assume inductively that the equations have been solved for
n' <n and hence that the "..." denotes a known quantity; them (12) becomes

an (m+l) x (=*l) system of linear equations in the m+l unknowns c(n,r)

(k=1)
2v

matrix is invertible, since it is the product of the non-singular diagonal

(k~

2v

raduced to a Vandermonde determinant (tZ\a)r v by elementary row operations
]

e
because pi:-l)(r.m) is a polynomial of degree exactly 2v in r . Hence

(0<r<m) with coefficients €. P (r,om) (0<r,v <m). But this

matrix (e_ 8 ) and the matrix (p

N : .
r ©v'r,v (t'm))r.v » which can be

the equations can be solved inductively for all coefficients c(n,r) .
It remains to see that J = J'. But this is easy, because if

$'€J' and ME l’l » then the difference ¢' -9 ¥ transfoims like a

'
, ‘k.n
Jaccbi form with respect to translations z + z+Atr+yu (because of the
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compatibility of the actions of tz and SLZ(Z) proved in §1) and
vanishes to order >2v at z=0 by (11), so Theorem 1.2 shows that it

vanishes identically and hence that ¢' transforms correctly under I‘] .

We now prove a theorem which determines the structure of the

bigraded ring 3'“' completely.

- K
» k?ll k,m
k even

Theorem 9.3. The ring ng’*! is a polynomial algebra over M, on two
generators

¢ ¢
R T S IV
21 T TR €00 b 2 €9, ¢

cusp

1 (k=10,12) are the Jacobi forms constructed in §3.
]

where % l‘€ J

Proof: That ':_2 1 and .:0 | are weak Jacobi forms is clear, since
¢‘ 0.1 and ’12 1 being cusp forms, have FPourier developments containing
1 4 »
only positive powers of q and A(t) = q + O(qz) . Since ';_2 1 and
1]

3

0.] are algebraically independent over M by Theorem 8.1, the map
»

PP OM O O, — E'k’n. '
(fgs £ ween £ = L6, 35, %)
is injective, and combining this with the injectivity of the map (8) in
the other direction shows that both are in fact isomorphisms, thus proving
Theorems 9.2 (for even weight) and 9.3 at ome blow.

This proof of Theorem 9.2 is of course, much shorter than the one
ve gave before (and a similar proof .‘wcrka for odd weight, as we shall see
in a moment). Nevertheless, we preferred to give the direct proof of the
surjectivity of D because

a) in other situations (e.g. for congruence subgroups) one might not
happen to have enough explicit generators to deduce the surjectivity of
D purely by dimension considerations, and

b) the first proof given shows explicitly how to obtain a weak Jacobi

form mapping to a given (m+1)=tuple of modular forms by solving a system
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of recurrence relations. This and the proof just given for Theorem 9.3
then give two algorithms for computing the space of Jacobi forms of
given weight and index: we construct a basis of Tk,m either by picking
a basis of Hk ®... euhh and applying P or by picking a basis of
Hk@ cee @ Hk+2n\ and applying l).l as in the proof of Theorem 9.2; then

in both cases we compute the Fourier coefficients c(n,r) (0<r<m,

0<nz¢< tzllm ) of our basis elemeats and obtain J, p a3 the kernmel
~ N, (m) ’
cof the map Jk a” c . Both methods will be illustrated later.
]

Observe that Theorem 9.3 gives a considerable sharpening of
Theorem 8.3. There we showed that any Jacobi form, multiplied by a
suitable power of A , could be expressed as a polynomial in A and
B, and that in fact one can take E-g%ll as the exponent of A ,
where m is the index of the form. Here we show that Am¢ can be
written as a polynomial in A and B, and in fact as a polynomial in
RA-QB and Q?A-RB, for any Jacobi form or weak Jacobi form ¢ of
index m .

Theorem 9.3 gives the structure of J for. even weigiits. We
now find the corresponding result for odd weight. The upper and lower
bounds given in Theorems 9.1 and 9.2 and their corollaries agree for

k>m and also for m < 5; for m<6 we obtain the table
k

dmJon 3 s 7 9 11 13 15 17

m
1 (0 for all odd k)
2 0 o 0 0 1 0 1 1
3 0 V] 4] 1 i | 2 2
4 Q Q } | 2 2 3 3
5 0 1 1 2 3 3 4 S
6 0 Oorl! 1 2 3 3 5 S

In particular, there is a certain Jacobi form ¢. or werght 1! and

01'2
index 2 (we shall see how to construct it explicitly a little later).
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Since %12 is a cusp form (it follows from §2 that the smallest index
]
of a non-cusp form of odd weight is 9 ), the quotient ;-I 2 ™ ¢” 2/A
t ?
is a weak Jacobi form. Hence ‘:f_‘ 2 # {0} ; of course, this also follows
?

directly from Theorem 9.2. Then 7__! 2'3‘“' cT n for all k and
? ]

ya=2 k
m, and since Theorem 9.2 gives

dim Jk+l,r2 = dim Mkﬂ + dim Hk+3 + .00 + dim Hk-i-Zn-3 = dim Jk,m

for &k odd, this inclusion is in fact an equality. Hence we have
Jod,*."-l,z.‘lev,*’ i.e. the weak Jacobi forms of odd weight form a free
module of rank | over the ring of weak Jacobi forms of even weight,
with generator ‘;-l 9 * This gives the ring structure, too, for ;El 2
» *
lies in J
ev

. and can therefore be expressed as a polynomial in
»

3 and ¢ wvith coefficients in M, . Comparing indices and
-2’ ' o. l . 4

~ i

weights, we see that this polynomial has the form Z fi ‘;_12 1 ¢0 )
9

i=]
with fi ln M,. , and hence

fl-a, fz-o. .‘;3-8!4,£4-736

for some constants a, B8, Y. To find these constants, we observe that
. T & = . < £ 2
Dy: J_,, 24, = C by Theorem 9.2, so D, ¢.;,, 1s a conscanc and this

constant determines ‘;-l g+ We normalize by choosing D, 7_, o = 2; then
9 »

~ 2 (n-o) ]
¢ (T,Z) - (n,r) n Cr. rc(n,r) '{
-1,2 ngo E. cimer) 9 ,zo BTV o oy .

By the argument preceding the statement of Theorem 9.2, c(n,r)=0 for

% > 8+l ; in particular ¢(0,r) =0 for |r]>1 and therefore

i, = - e o+ Zl(polynominl ing, £ q".
n2

This already suffices to determine a, 8.and v , for comparing the
coefficients of qo in the two expressions for :_2l 2 gives
: 14
-1.2 - -1.3 -1.3 - -1y
(5=t H" = g2y (ge10067H + B(g-207) (gr100g ™Yy y(g20T)

Qr
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2

12447 = aT(T+12)3 + BT (THI2) + yTY

(T -c-ZH;-l ), from which u--a-:-l,-i. B==3a, Y=2a. We have proved:

Theorem 9.4. The ring J*’ - hasa the structure

2 1 3 2 3
3;.* = H'[a,b,c]/ ¢’ = za—z-a(b -3Qa™+2Ra") ,
where aEJ_z", beJo’l, cEJ_"z.

We make one remark about the relation just obtained. We
can vwrite it in the form

2 1 4.,b3 b
¢’ = 332 [(;) 3Q-a-+2R].

On the other hand, by Theorem 3.6 we have
3, ¢
b 0,1 12,1 3
-— - - - e p s
2 a0 Yo, ‘o

where p is the Weierstrass p-~function. Hence

e a— — e - - - o~ ———

4 ' 4 6
2 a 3  4x 8x
(2:1)6 3 4 27 6

where the expression in parentheses is ejual to p'z by Weierstrass'
equation. Thus the relation in Theorem 9.4 is just Weierstrass' equation
for p'2 as a cubic in p and the theorem can be interpreted as saying
that 3'*’* is the coordinate ring of the universal elliptic curve over the
modular curve (m_a leave this purposely vague); Ju,x itself, of course, is
not finitely generated and hence not the coordinate ring of anything. The
square root of the relation just obtained is c = -({;%F p'(t,z) or

¢
=1 __ 19!

2
) p'(t,2z)
(2riy’ B

1,2 *

-1 2 3 412,172
12 (2xi) o~ %10,1 3z 310,50

1222 T C *i2,1 *10,1 " %0, Y120 ) -

Substituting into this the expressions for ¢l° ‘ and ¢‘2 1 in terms
»

of A= 34 . and B = 36 (v find that the right-hand side is equal to

-2
12%%(5'3 = AB' ) . This proves the relation

(13) 28871 9,., a = g:’ . R. - P, LA N .
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This is a special case of the following easy fact, which gives a general

construction for Jacobi forms of odd weight from forms of even weight.

Theorem 9.5. Let ¢l and ¢2 be Jacobi forms of weight kl and kz

and index m, and m,, respectively. Then m,¢1¢, =~ m ¢, ¢, » where

' denotes differentiation with respect to z, is a Jacobi form of
index m, +m2 and weight k1 +k2+1 .

Proof: The derivative of a meromorphic Jacobi form of index O and weight &

is a meromorphic Jacobi form of index O and weight k+1 . Applying this to

¢?2 / ¢l;'1 proves the theorem (the conditions at infinity are trivial).

Examples of Jacobi forms of index > 1

We end with some numerical examples to illustrate the

techniques for computing Ja;:obi forms imé.lici: in the theorems of this
section. We give several types of examples with m>1 (the case m=1
having been treated in §3) to illustrate the results described at the
end of §5. We look only at cusp forms.

1. k even, m prime.

This situation, the one treated in Theorem 5.6, is the simplest
case after m=1 (because in the decomposition (17) of §5 there is only
the term e€=1). From the dimension formulas we see that the first
three cases are (m,k) = (2,8), (2,10) and (3,10) and that dim J;u:p_1

*

in all three cases.

For ¢ = zt‘-(n.r) qn cr <« J;‘:;p , the first two Taylor coefficients
D,é and D,é are cusp forms of weight 8 and 10 and hence vanish,
while D4¢ must be a multiple of A(x) . Also, c(n,r) depends only

on 8:1--1-2 by Theorem 2.2, so c(n,r) = c(8n-r2) for some sequence of

coefficients c(N) = cg 2(N) satisfying

) c(Bo-r2) = 0 s ) 2 c(8n-t2) = 0 Y £ c(8r-+2) = 24 t(n)
r r T

for all n (the constant 24 was chosen for convenience). These
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recursions can be solved uniquely (at each stage the numbers c¢(8n) ,

c(8n—-1) and c(8n-4) are expressed in terms of c(N) with NS3(n-t)).

We find the values

N 4 7 8 12 15 16 20 23 24 28 31 132
cg (| 1 -4 6 0 36 -64 -84 -84 252 512 -168 -384
t

N 36 39 40 44 47 48
c, ,(N)|-1107 972 28 o0 -504 O

8,2

These coefficients could also be calculated from the fact that

$ = —‘l,,- Z = ¢%0 ‘/A , where Z is the form of Theorem 8.2 and
L 1)

$ <J the cusp form given in §3. The most striking thing
10,1 10,1
in the table is the occurrence of zero entries. To explain them, we

note that the form zc(N) qN lies in the space

+ N
M15/2(2) = {h¢M15/2(P0(8)) | b = Ngo c(N) ¢ }
N=0,4,7 (8)

-

by Theorem 5.6 and is a new form (since M (1) = {0} ); it then

15/2
follows from the results of Kohnen [12] that c(N) =0 for all N of
the form 4°%(4r+3) .

For ¢ eJ‘;g’:g the same method works; now Do¢-0 ’ Dz¢- const.-A ,
040-0 and we find ¢ = fc‘o,z(sn—rz) q" z° with the first coefficients

given by

N |47812 15 16 20 23 26 28 31 32 36 139 40

40 Z(N)\ 1 8 -18 -120 120 -16 900 -1368 732 -2176 3408 288 2277 3432 -19940
?

This time there are no zero coefficients because ¢ is not a new form: it

is - -;- ¢10 '|V2 . By Theorem 4.2, this is equivalent to the formula
9

1 9
cIO,Z(N) = -3 (c10,1(N) -2 CIO,I(NM))

(vith the convention %10 1(n) =0 for a¢Z), and one can check this by
1 4

comparing the above vclues with those given in the Table in §3.
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Finally, for m=3 the first cusp form has weight 6 ; for this form
¢ we must have D0¢ = Dz¢ = D4¢ = Q0 and Ds¢ a multiple of A, so
0 (vs2)

¢ = 2c(12n—r2) <t , Z r2v c(12n—r2) = {

r 360 t(n) (v=3)

(again with 360 chosen for convenience), from which we get the values

N l3811 12 15 20 23 24 27 32 35 36
e 3(H) i 1 =6 15 =20 24 =24 -24 60 =81 216 =126 0
We could also compute ¢ as ¢30 1/A2 . Again the zero coefficient for -
}

+
11/2

form and the theory given in [12]; more generally, we would have c(N)=0

N=36 can be explained by the fact that Yev) qu M (3) is a new

for all N of the form 95(3r+1) .

2. k odd, m prime.

This is the next simplest example, since .again the decomposition of
Jk,m given in (17) of §5 reduces to a single term, but no longer with ¢
trivial. The first case occurring, as we saw in the discussion preceding
Theorem 9.4, is m=2, k=11. The con'esponding form ¢-¢“’2 is given
explicitly by (13), but although this formula can be used to cowpute the
Fourier ccefficients of ¢ it is easier to proceed as in the examples
above. Indeed, if we write ¢ = Zc(n,r) qﬂ z* then c(n,r)=-c(n,-r)
(since the weight is odd) and c(n,r) depends only on 8n-r2 and on
r (mod 4) ; together these facts imply that c(n,r) =0 for r even and
that c(n,r) can be written as (--1_5-) c(8n-r2) for‘some coefficients c(N)
which are non—zero at most for N=7 (mod 8) . Then D,¢€S,, = c-A implie
that Zrc(n,r) is a multiple of t(n), so (with a suitable normalization)
2

) ) r e(Bor
O<r<vV8n T

This recursion determines the c¢(N) uniquely and we get the table

= <t(n) .

N i 7 15 23 31 39 47

c (N) 1 -21 189 =910 2205 =-378 .
11,2
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But here we can do more. Indeed, equation (14) is equivalent to

N r
( ) c(n) q8 )( Y (::i)rqg) = Y t(n) < .
- N»>O r>0 n>0
N=a7 (mod 8)
The first factor on the left is n(r)3 by Jacobi's identity and the

expression on the right is A(t) = n(t)zl' . Hence we get, instead of

just a table, the closed formula

hy(r) = ™ & = s,

N>0

where & as in §5 is an extension of € to a Dirichlet character

€11,2

modulo 4 (here necessarily 2 = (:_l-‘-)) and h, the form of weight 10—;—

g
defined in §5. The fact that hE('rIB) is a modular form on all
SL2(l) (with multiplier) rather than on I‘o(16) is due to the fact that
the representation Ce of SLZW) mentioned at the end of §5 is one-

dimensional in this special case (in general for m prime and k odd

it would have dimension m-1 ).

3. k even, m a product of two primes

This is the first case where the decomposition of .Jk o has more
?
than one piece; we are interested in the summand Jk-m corresponding to
3
non-trivial e , since the space Jl?m can be understood by Theorem 5.6
?

and the following remarks. The first composite m is 6 and the first
weight k with J:’ﬁ # {0} is 12 . To see this, note that a function
¢¢J;:6 has a Fourier development of the form ) cr(24n-r2) q" ¢F where
cu(N) depends only cn u (mod 12) and changes sign if u is replaced by
Su or 7u . It follows that cu(N) =0 for uw not prime to 12 (since
then u 1is congruent to 5u or 7u modulo 12) and that in general cu(N)
can be written as (%) c(N) for some coefficients c(N) depending only
on N and vanishing unless N=223 (wod 24) . iIn particular, c, (0) =C for
all u, so ¢ is automticallf a cusp form, and since ¢ is devermined

by DO’ = Q(-r,O)ssk the first possible weight is k<12, For
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the form with k=12, and normalized by ¢(t,0) = 2 A(T) , we have

¢ = (—1-1-,2-) c(24n—r2) qnct ’ 2 (—11-_2) c(24n—r2) = t(n) ,
n,r r>0

which can be solved recursively to give the numerical values

N ‘ 23 47 71 95 119
¢.))

12,6 1 =23 230 -1265 3795

or explicitly in the same way as was done for the last example: we write

the recursion for c¢ as
N

rz
) (-1%) qzl‘)( I cv qu) - I @ {°
r>0 N>0 n>0

and observe that the first factor is n(tr) (Euler's identity), so

b (1) = y c) & = n(24)23 (e=3)
N>O
N=23 (24)

(again h§(1/24) is a modular form om all SLZC!) because Ce is one-

dimensional). Similarly, if ¢€J, ¢ with 7 4(r,0) = £(0) = Ja(n) g €M

then the recursion relation for the c(N) gives
2
(2 d3 o ’2”) (Z (™) q“’z") = Ja@ q¢°
r N n

or héégk) = n(t)’lf(t) . Since f is a cusp form we have f = Ag for
some ga&M _.,, and then hz(gz) = n(r)z'?'g(r) . It follows that ¢(t,2z)
is g(t) times ¢ (tr,z) , i.e. J, . is a free module of rank 1 over
12,6 *,6
M with generator ¢12 6 ° We could also have seen this by a direct
. _
argument ; more generally, it is not hard to modify the proof of Theorem 8.4

to show that J: - is a free module over M, for every character ¢ and

»

to give a formula for its rank.

b, k=2

The case of Jacobi forms of weight 2 is particular interesting, both
because this is the smallest ever weight occurring and because of the connecti
with Heegner points mentioned briefly in the Introduction. However, it is ald

the most difficult case, since we do not even have the F’eenstein series E |
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to get things off the ground. The lower bound for J2 o obtained from the

Corollary to Theorem 9.2 is

(14) o 25 37 43 49 53 61 64 67 73 79 81 83 85 89

dim Jz,mz 1 1 1 2 1 1 1 2 2 1 2 1 1 1

91 93 97 98 100
1 1 3 1 1

the bounds for the omitted m being zero or negative. The cases m=25, 49,
64, 81, 100 are accounted for by the kKisenstein series of weight 2 (cf. the
remarks following (11) of §2). The other dimensions are equal to those of
Stzmw(l‘*(m)) (given in [5 ], Table 5) when m is prime and one less when m
is a product of 2 primes, the first in accordance with the relation between
Jk,m and M, _,(I'*(m)) discussed in the Introdugtion (eq. (9)) and in §10.
This relation will be proved in Chapter IV by trace formula methods for x>2 ,
but the case k=2 presents extra difficulties, so the numbers (14) are not
necessarily the true values of Jz,m . In any case, they are lower bounds,

so we should be able to find, for instance, a Jacobi cusp form of weight

2 and index 37 .

Let us look for a cusn form ¢ €J2,37 . By Theorem 2.2, the
coefficient of qn;r in ¢ depends only on 148n-r2 , L.e. we have

¢(t,z) = Z c(148n-r2) qn ;r

n,r
148n>r? .

with some coefficients c(N) (N>0, N=0 or 3 (mod 4), -!-3!7-)-0 or 1) . How-
ever, to find these coefficients by either of the algorithms mentioned after
Theorem 9.3 would involve an impossible amount of computing. For instance,
using t:hc: Taylor—-development operator in (8) would invulve comstruciirg an
explicit map into the space 826840...8576 of dimension 102 and then solving

a 102x102 system of equations with coefficients which -:-e very large and hard
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to compute. We therefore use another method. The function

h(t) = I ec(W) qN
N>0

belongs to M3 /2(37) by Theorem 5.6, and an easy calculation shows that

the form

(15) h(r)0(1)104 = E a(n) " , a() = z c(lm-rz) ,

n=1 jrl <
is a cusp form of level 37 (and weight 2). Since SZ(P0(37)) is only
two~dimensional, and the Fourier coefficients of a basis have been tabulated
(e.g. in [5]), we have a good chance to get the coefficients a(n) , but at
first sight this seems insufficient to determine the c(N) , since the identi
(15) gives a recursion which at each new step involve.s two new coefficients
c(4n) and c(4n-1) . What saves us is that we know a priori that about 1/2

of the c(N) are 0 (namely those with N a quadratic non-residue of 37)

so that on the average this ome recursion for two coefficients c.(lon) , c(4n-

will suffice. Let us see how this works in practice. The first cases of our

recursion, combined with the vanishing of c(N) for (-%) =-1 , give

c(4) + 2c(3) = a(1) ,
2¢(7) + 2c(4) = a(2) ,
c(12) + 2e(11) + 2¢(3) = a(3) ,
c(16) + 2c(12) + 2¢(7) = a(4) ,
2c(16) + 2c(11) +2c(4) = a(5) ,

0 = a(6) .

Looking at the tables in [ 5], we see that the last equation determines the
form Z a(n)q“esz(ro(37)) up to J constant: it must be a multiple of the

eigenform

£,(2) = q+q3_zq4_q7_2q9+3qn_20_12_“13*“16*.,

At this stage we have 5 non-trivial equations involving 7 unknowns a(l)s
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c(3), c(4), c(7), c(11), c(12), c(16) . Proceeding further, we find that at
n=15 the number of equations overtakes the number of unknowns, so that we
suddenly get all c(N) up to N=60 . For various higher n , we again have
enough equations. However, evenﬁually we will have too few, since (15)

provides an average of one equation for every two c(N) with N=20 or 3 (mod4),
vhile the proportion of c¢(N) known a priori to vanish is only %<% . How-
ever, we have some excra information. Namely, for m prime the space

H;/Z(m) as defined in Theorem 5.6 is by Kohnen's work isomorphic as a Hecke
module to Hz(r*(m)) = {f EMZ(I‘O(m)) l lem-f} (cf. proof of Theorem 5.6).

For m=37 both spaces are 1-dimensional, so our form h(t) EM;/2(37) is a

Hecke eigenform with the same eigenvalues as the second eigenform

fz(z) = q - 2q2 - 3q3 + 2q4 - 2q5 + 6q6 - q7 + ...

in 82(1'0(37)) . This means that we can write all coefficients c(N) as
multiples of those with -N a fundamental discriminant, thus reducing the

number of unknown coefficients by a further factor of ¢:(2)“1

~0.61 . Using
this, we find that we now have a surfeit of equations to determine the
coefficients c¢(N) (so many, in fact, that we can simultaneously solve for
the coefficients of qp » P prime , in 51 and f2 and hence dispense with
the Antwerp tables entirely!). We tabulate the resulting values up to N=250 ,
since the example is of interest in comnection with recent work of B. Gross

and the second author on "Heegner points" and will be cited in a forthcoming

paper of theirs.
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cy,37(™

©y,37 (n)

127

132

136

139

144

-2

147

148

151

28

-2

152
155

40

159

<
!

160
164

—

- 0 O M N N O Y mMm

175
176

184

188

192
195

196
211

95

212
215
219

100
104
107

223
231

108

1

232
243
247

112

115

248

120
123

Table 3. Coefficients of the form in J2 37
]
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§10. Discussion of the formula for dim J

k,m

For k ,m&N set
m 2
} Caimm o - [E]) (keven)
v=0

j(kam) = o1 2 :
I (dimn .- =] (k odd) .
v=1

In §9 we showed that dim szj(k,m) for all k and dim Jk,;j(k,m)
for k sufficiently large (namely for k2m; this will be improved to
k23 in Chapter 1Y by means of a trace formula). The purpose of this

section is to write j(k,m) in terms of standard arithmetical functioms

- and to relate it to the dimensions of known spaces of modular forms. More

precisely, we will prove the following result.

Theorem 10.1. For k>2 and me&N define jo(k,m) inductively by

3} jlk,m) = } ( ;l 1) jak, 3D .
dim 2 d_ 0 d

k
Then jo(k,m) equals the dimension of thea space M‘;ifz(l'o(m))( R of

new forms of weight 2k~2 on I'O(m) with eigenvalue (—1)k under the

Fricke—Atkin-Lehner involution

R LI

R =

2
Similarly, if j““*P(k,m) is defined like j(k,u) but with [f=| replaced by

2
l—}:;j + 1, and jgusp by the obvious analogue of (1), then jgusP(k,m) equals

_\k
dim S;:‘_'z(l‘o(m))( R , the dimension of the coriesponding space of cusp forms.

Note that the difference j(k,m) -~ jcusp (k,m) is  the number of v
with 0sSvsm (resp. O0<v<m if k 1is odd) aund vzso (mod 4m) , which
equals I.!%-Z-J (res». l,g-i'l,l ), vhere b 1is the largest integer whose square
divides m, and this is just the dimension of Jﬁi’: (Theorems 2.3 and 2.4).
n view of Theorem 4.4, Theorem 10.1 has a plausible interpretation as saying

that the decomposition
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J = Jnew U V -
k,m dfm £’2|d k.ml L de~2

given there is direct and that there is an isomorphism between J::‘: : and
;Yz(ro(m)) preserving cusp forms. In Chapter IV we will prove that this

is indeed the case by proving the analogue of Theorem 10.1 with dimensions

replaced by traces of Hecke operators. Here we restrict ourselves to the

equality of dimensions.

Proof: We carry out the proof only for k even, leaving the entirely

4)

analogous case of odd k to the reader.

Our first objective is to write the formula defining j(k,m) in terms
of familiar arithmetic functions. It is convenient to replace the different
rounding functions in the definitions of j and of jcusp by their average.

We therefore use the notation

1 .
a-=% if xgZ+a, O<ac<t,
(x) = < - 1xl* Ix] - { 2 ’

2 0 if xeZ ;
then
n 2 2
(2) jk,m) = ] {dim uk*z“-%--;-»««z—m»_} . %lﬁzij
v=0 '

(b as above) and ;““*P(k,m) is given by a similar formula with the
sign of the last term reversed. We substitute into this the formula

. ° - k53 _ 1 -1
dim uk 3 3 x3(k-1) A Xa(k—l) ,
where )(3 and x4 denote the non-trivial Dirichlet characters modulo 3

and modulo 4, and calculate:

f(!:‘}._“ﬂ_v_’-l) . 2k=3) (m+1)

v 12 am 2 24 »
, m [ 1/3  if mak#2 (mod 3) ,
-3 1 Xq(kt2v=1) = { -1/3 if méka2(md 3) ,
v=0 L 0 othervise ,
o [ 1/4 if m is even, k=0 (mod &) ,
-3 ! xGe2v0) = { -1/4 if m is even, k=2 (mod 4),
v=0 | 0 if m is odd .
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2
Also, since ((x)) is periodic with period 1, the function ((ﬁ)) is

periodic with period 2m, so we can write

T Xy L SO i S 3. B
" cow— B = — [ ——. —-— .
ve0 4m 2 v (mod 2m) 4m 2 4
Finally, the last term in (2) equals %4--;— or %+7} depending whether or
not 4 divides m . Hence (2) can be written
8
(s) iG,m =} . (k,m)
i=1
with
. 2k-3 . 2k=-3
J1(k,m) = -_i-‘b—m ’ Jz(k'm) = ""i'r s
j3(k,m) = RHS of (3) , jl‘(k,m) = RHS of (4) ,
. 1 v2 . 1 ,m 1
jekm) = = 1 (), jek,m) = () = -=Xx, (0,
S ?'u(dem)‘m 6 ? 2% 8 %4
. o ) 1/4 if &4m ,
jo(k,m) = —DH Jolk,m) =
7 47 7 8 1/2 if 4|m ,

and jcusP(k,m) is given by the same formula but with the signs of j7

and j8 reversed. We have now practically achieved our goal of writing
j(k,m) in terms of femiliar arithmetical funcl;.ions, for all the ji. except
jS are extremely simple functions of m and k (periodic functions of m
and k or. prbduct:s of a polynomial in k and amultiolicative function of m).
We shall now see that the function j5 s which depends only on m, can also
be expressed in terms of a well-known — though less elementary — arithmetic

function.

Lemma. Define h'(d) for d#-3,-4 as the class number of positive definite

binary quadratic forms of discrisinant d (so h'(d)=0 if d>0 or

d£0, 1 (mod 4)), h'(=3)=1,/3, h'(~4)=1/2. Then for aay natural number N,

2
(6) I «n - - % n'-d) .
v (m0d N) d|N

In particular,
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h'(-d) .
dl24n~

Proof: Suppose N=p is a prime. If p=2 or pe1l (mod 4), then

&)

js(k.ﬂ) = =

both sides of (6) are zero, the left side because (( ) is an odd function
and -1 1is a quadratic residue of p, the right side because p has no
divisors congruent to 0 or 3 (mod 4). If p=3 (mod 4) , then the left-hand

side of (6) equals

I «3y 1 1 = T O«2y 0+
n (mod p) P v (mod p) n (mod p) P P
vimm (mod p)
2y &
n (nl);‘d p P P

p3! n i, (0
= 1 G-9 @

a=1 P
1 pi' (n)
= o - n »
P n=1 P

and this equals -h'(-p) by Dirichlet's class number formula. The case of
composite N can be handled similarly by expressing the square-roots of

n (mod N) as [ x(n) , where the sum is over all quadratic Dirichlet
characters x )((nod N) (this formula must be modified if (a,N)>1) and

applying Dirichlet's formula to each X separately.

Equation (5) and the Lemma give a very explicit formula for j(k,m) ;
to prove Theorem 10.1 we must relate it to the formula for the dimension

of My ,(ro@)*! . set
dle,m) = dimM (T (m) ,  wik,m) = cri K (T (@)

and vwrite dO » Yo for the corresponding numbers with Hk replaced by
H:g" . We have to show that

jglksm) = -;-(ao(zk-z,.) + wy(2k-2,m))

since this is the dimension of the (+1)-eigenspace of Vn. ’Equivalencly,

if we define
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1

') = 5 } ( 1) d4,(2%-2,m/2) ,
dim 2°|d
m
"km = 2 } CJ 1) wy(2k-2,m/d)
dlm £°|d '
(which equal one-half of the dimecsion and trace »f Wm on a space lying

w ..
between Mg:_z(ro(m)) and Mék_z(ro(m)) ), then we must show that j is

the sum of j' and j" . Rather than work out everytning in terms of new
forms, it is convenient to write (7) diiectly in terms of d and w instead

of. do and v As is well-known, d and ‘do are related by

d(k,m) = Z] ({_m 1) d fk,m')
m'|m ln—‘i

indeed, this is clear because Mk(ro(m)) has a basis consisting of the
funztions f£(1) = h(2t) with h a new (eigen)form of some level m'

dividing m and 2t a divisor of 55 . Similarly, w and w, are related by

W(k,m) = wo(k,m') 9
m'|m
m/m' = Q
because for h and £ as above we have

k/2
m m
hlwm, = ¢h = flwm - S(EFIT) héarit)

and therefore h gives a contributiom € to tr(wm) if 2.=;f§i and O
otherwise (since then the sum and difference of zklzh(zr) and Q;?E) zhﬁ§¥fr)
are non-zero eigenfunctions of Wm with opposite eigenvalues). Substituting
these two formulas into (7) and carrying out an easy exercise in multiplicative

functions, we deduce

1

@ i"km) = 3 f' AT d(2k-2,m")
m'|m m

9) i"(k,m) = -% % w(2k~2,m") ,
o' |m

where ) is the Liouville function ( A(npzi) = -%¥i). Into these



- 122 -

formulas we have to substitute the known formulas for d(k,m) and w(k,m)
and then compare j'+ j" with our formula for j .
The formula for d(k,m) is well-known (see e.g. [8]); for k>2 we

can write it as

4
(10) dik,m) = ] c (k) £ (m)

i=1
where
k=1 1 1 -1

and the fi are multiplicative functions:

£ (m) = mTT(i*-%) ’
plm

£y = T« p[»/zj . p[(v-ﬂ/zj)

pVin
v>0
, 1 if 9m
f3(n) = JT (1 + X3(p)) x { ’
plm 0 if 9|m
1 if 4im
f,(m) = TT (1 + X, (@) x { .
plm 0 if 4|m

These formulas can be written more uniformly as
v v-1
£, =TT ", &, Rt T £, =TT 0 GM +x,6” )
P P P
£, -];]'(, x4(pv)+x4(p“-1) )

where in each case the product is over primes p vdividing m and Vv is

the exponent of p in m . Thus each fi has the form

fi(m) = T;r( gi(pv) + gi(pv-')) = si(m)

m'le
m/m' squarefree
for some much simpler multiplicative fumction 8; *

v
81("‘) -, sz(m) "];rp 2 .y , 33(') = xa(m) R s,.(n) - x,‘(m)
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( b as before the largest integer such that bzlm'). On the other hand,

the inversion of (8) is

(11) d(2k-2,m) = 2 f‘ i'(k,m) ,
m'lm
m/m' squarefree

so this means that j'(k,m) is given by

4
i'km) = 3§ e (22) g (m)
L
(12) o
2k~3 1

20+ gb + x00%,@ - gx,@ .

The first zwo terms and the last are the functions j1 , j7 and j6 of
(5), respectively. (Note how much simpler (12) is than the more familiar
formula (10); the faet that each of the four multiplicative functionms
fi(m) occurring in the dimension formula (10) has a natural decomposition
parallel to (11) suggests that, in some respects at least, the theory of
Jacobi fcrms is simpler than the usual theory of modular forms of higher
‘level. We shall see the same phenomenon again in Chapter IV, where almost
every term of che trace formula is simpler for Jk,m than for either
My, (Tg@) or M (P (w) )

We still have to look at the formula for t:r(Wm) . Since this is
given in the literature only for cusp forms, we first consider the Eisenstein
series con:ribution separately. The term i=2 in (10) is the contribution
from the cusps ( fz(m) is the number of cusps of I‘o(m) ) and would change

sign if we replaced d(k,m) by dim S (I’O(m)) » just as the ter. j7(k,m)

k=2

in (5) to which it corresponded changes sign when we replace j by jc“sp .
The number fz(m) can be written d} ¢((d,§)) , where ¢ is the Euler
function; this formula arises by a::a:hing to a cusp -;-‘-e(QU {m})ll‘o(m)

(x,y coprime integers) the invariants d=(y,m) and x-% (mod (d,%)) .

To each cusp corresponds an Eisenstein series, so the trace of W, on

Mzzizz is just the number of fixed points of W, cn the set of cusps. Since

x - x . m m
Wm sends 7 to é--;- with. x'v-%, y'--a-x. d'=(y',m) =<, we see
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]
that a fixed point occurs only if d'% (so mtdz) and x'ya- = x% (mod d) ;

since on the other hand xy=-x'y' and x%— is prime to d, this can only

happen for d=1 or d=2 . Hence
. ) 1t if m=1or 4,
is
er (W, Mi (I‘o(m))) {

0 otherwise ,

and putting this into (9) gives a contribution

1/2 if 4im
{ = 2 ja(k,n)
1 if 4|m
to j"(k,m) , as required (notice that jB"s -2(j7+j8) in the notation
of equation (5)).
Finally, the formula for the trace of Wm on Sk(I'o(m)) (given in [38] and

for k=2 essentially going back to Fricke, who computed the number of
) RSN
m 0 )

Er Qi My (T @) = § er(i, MES, (T (m))

{--;-h'(-lm) --i-h‘(-m) if m= 3 (mod 4)
+

fixed points of ( on B/l‘o(u)) can be written

- -%—h'(-lm) otherwise
( 2/3 if m=3, 3|k
-1/3 if m=3, 34k
+ 9 1/2 if m=2, k=0 (mod 4)
-1/2 if m=2, k=2 (mod 4)
-3 1 . .
L T + 3 X3(k) if m 1

(the correction terms for m=2 and 3 come from extra fixed points of
Wm; the large correction for m=1, of course, comes from the fact that
W1 =1 and hence w(k,1)=d(k,1) ). Insertiag this into (9) we find

k/2 .
. D4 if 2|m
j“(k’m) - %jnzxs(k,ﬂ) - % lz h' (‘4d) + {
d|4m ] if 2jm
1/3  if 3|m, 3|k
B2 e Iy + | -6 if 3w, 34k

0 if 3m
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The firsct term on the right is j8 » by the discussion above, the second
equals j5 by the Lemma, and the third and fourth terms are jl; and j2’
respectively. Finally, the last two terms together with the so far
unaccounted-for term %x3(k) X3(m) in (12) together add up to j3 , as
one checks easily. This completes the proof of Theorem 10.1.

Notice that for m prime the Theorem gives

iCk,m) jo(k,m) + jo(k,i)

= -;—(do(Zk-Z,m) + w(2k-2,m) ) + d,(2k-2,1)
= -;—(d(Zk-Z,m) + w(2k-2,m) )

- aim o, , (To@)”’

= dimM, , (r*(m)) ,

where I'*(m) = I'o(m)u I'o(m) wm is the normalizer of I‘O(m) in SLZCR) :

this is the equation which we used in §4 (eq. (19)).
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§11. Zeros of Jacobi forms

To complete the theory developed in this section, we discuss the
sets of zeros of Jacobi forms. These zeros are divisors on the algebraic
surface (Hx€) /I"{ ,» and we could give a discussion in algebraic-geometric
terms, but we prefer to take a fuction-theoretic point of view more in
accordance with the rest of the paper.

Let, then, ¢€Jk’m be a non-zero Jacobi form. If o(ro,z)

vanishes identically in z for some t,€H , then we can write ¢ = £¢1

0
where £(t) is a modular form vanishing at T and 01 is still a holo-
morphic Jacobi form. Hence we can assume that the zero-divisor of ¢ contains
no fibres of =: (ch)ll“'I — !1/'1‘1 . We denote by v(t) the values of z at
which ¢(t,2) vanishes; then v(tr) is an infinitely many-valued functionm.
By Theorem 1.2, we know that v(t) has 2m values (counting multiplicity)

modulo ZT+Z ; near a given point T, of H we can number these ivl(r) ’

caes -"-'vm('r) so that
¢(1,2) =0 e» z =t +p 2 vj(‘r) for some A, u€Z, j€{1,...,m

(this numbering cannot be done globally because the restriction of = to the
divisor of ¢ is ramified). We want to see what kind of functions v

and the “j are. In particular, we will show that they are well-behaved at
infinity and that their second derivations are algebraic modular forms (i.e.

satisfy algebraic equations over the ring of mcdular forms) of weight 3.

Theorem 11.1. As t —> = , each branch of v(tr) has an expansion

3 2winét
¢ vi(r) = ar+ g+ 1 c e

n=1

for some a€Q , BEC, and S€Q,, . If M is the denominator of a,

then there are M-1 further branches of v(t) with the same a but B

replaced by a+% (Lo1,0..,M=1) .
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In other words, the branches of v(f) near infinity tend with

exponential rapidity to a subset of ¢ of the form

-1
g ((c:ts +Z)t + Bs + Ms zZ)

for some numbers M €N , a €M-1
s s S

Z and B_€C with )_'usazm; in a
s
fundamental parallelogram for the action of Zt+Z on € such a set could

look as in Figure 1 (where

T {47

m=5 =l s—l)
%75 2770 Imé) +

Proof. The method of

limiting

position of

zeros of ¢ -

proof will be to take
the expansion (1) as an

"Ansatz," substitute it

into the expansion of Y -
$(tr,z) =0 , and show Figure 1
that we obtain the full

number (i.e. 2m wmodulo translations by Zt+Z) in this way. Let

#t,2) = 2z cla,n) q" ¢f
(r,n)EC

be the Fourier expansion of ¢ , where C = {(r,n)€ 22 | c(n,r) #0} . Then

we want

(2) 0 = ¢(t,ar+B+0(1)) = I &2 ca,n) U (1+0(1))
(r,m)€C

where we have used o(1) to denote any function which is exponentially small
as 1 —» » ., This equation can hold only if the mimimum value of ar+n
((n,r) €C) 1is attained for at least two distinct pairs (m,vt) € C, i.e.

only if a =y - ar is a supporting line of C . Hence =-a must be the
slope of ona of the segments bounding the convex hull C of C . By the
properties of the coefficients c(n,r) , we know that C satisfies the two

properties
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D Celtm | a2kl , \

n

ii) C 1is invariant under the
map 6: (r,n) » (r+2m,n+r+m)

points *
of "C /

(cf. Pigure 2). It follows that
the boundary of C consists of
an infinite sequence of line

)s €z with

for some SEN
S r

and the numbering chosen so that

gsegments (Ps ,1’s+1

O(Ps) = Ps-i-

Figure 2
Ps=-(rs,ns) with ...<rs<rs+1<... .

Let a, denote the negative slope of this segment, i.e.

a = = Ba+1 "%
] r' + - ts
Then
a - = (ns+l+rs+1m) B (nsﬂ'sm) - a -1
- o ]
s+S (1's +1 +2m) G:s+2m s

so the numbers a_ repeat periodically (modulo 1) with period S . If we
set

Y = asrs'l-ns = ar ..+n

s s s+1 s+1 ’

then the right-hand side of (2) with a=a, equals -

Y

3 q s X c¢(n,r) eanS + o(1) .
(r,n)E[Ps,Psﬂ]
. (] . Z‘I'iB [ 3

This can vanish only if e is a root of the polynomial

t'wl-l-'rs j
(4) 2 c(n,-aj,r +i) x

j=0

of degree Tge1 ~Tg ° Conversely, given any such B8 , we can choose the
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§ and c in (1) to make the o0(1) terms in (3) vanish (Puiseux expansion

principle). Thus we get exactly Topq ~ T solutions (modulo tramslation of

+1
B8 by Z ) of the form (1) with a=a_ . Since Y (r
s
s (mod S)
this accounts for all branches of v(t) (mod ZT+Z) . The translation invariance

B — B+§1- (Ms - denom(as)) follows from the fact that the only non-zero

s
coefficients in (4) are those with ns—asj €XZ or j=0 (mod Ms) , so that (4)

s+1-rs) =r g Tg" 2m ,

. . Tg4q- . Lot .
is actually a polynomial of degree -S'1 'S in x % and its roots there-

eZwi/Ms

fore invariant under multiplication by . This completes. the proof.

It is not hard to see from the proof of Theorem {1.{ that we have
the following converse: any collection of 2m points (a,B) € Q x ¢/z?
invariant under (a,8) — (-a,-8) and (a,B) — (a,6+a) occurs as the
limiting position of the zeros of some Jacobi form of index m . Another
converse is that any m—valued section of (HxC) /I"1I (i.e. any m—valued
function v(t) € (€C/Z7T+Z)/(*1) satisfying the transformation equation (5)
below) whose behaviour at infinity is as described in Theorem 11.1, is the
zero-divisor of some holomorphic Jacobi form ¢ of index m . Indeed, if the
branches of *v(t) (mod ZtT+Z) an:mber:ecl v’(r), ey vm(-t) with vj(t)
identically zero for j‘s m'+t, ..., m , then Theorem 3.6 and a little thought

imply that we can take

. m
O(T,Z) = f(r)¢10"(r’z)m j|11(#12’1(fsz)+%p(7’vj(r))¢1o’1(T,z))

for some modular form f .
We now consider the behaviour of v(tr) in the interior of H .
From the transformation law of ¢ uuder I‘1 it is clear that
z b .
${t,2) =0 o> ¢(Hr,m) =0 for any M = (: d) €I‘1 , S0 we have the equality

of many-valued fumctious

(s v(::::") - (cT+d) ! WD)

or, written out explicitly,
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(6) vj(n-r) = i(c-r+d)—1vj.(r)+m-r+u (j=1,...,m)

for some j'€{1,...,m} and A, u€Z . Since the infinitely-many~valuedness
of v arises from the addition of linear functions At+u (A, u€Z) , the

2
second derivative v"(t) = -a%v('g) is only finitely many-valued. An easy

calculation from (5) or (6) gives

v"(%g—g) - (c'l'-rd)3 v(Tt)

or

vg(-:-::—:) . *(cTHd) > W)

In other words, v"(t) transforms under I, like a (2m-valued) modular form

1
-of weight 3 and \:"(1’)2 like an m-valued modular form of weight 6 . We

can eliminate the remaining many-valuedness by setting

%) RO RN E LR Gl (GG=tyeeoom)

- where aj denotes the j':h elementary-symmetric polynomial; then *j is

single-valued and transforms under T 1 like a modular form of weight 6j .
However, *j is not necessarily ﬁolomrphic in general: at a ramification
point of 'J(T)o the function v'(t) can have a pole of rational order >-1

and v"(t) a pole of rational order >-2 (locally, v=c,te, ('c---to)A + oo

“2+A

with A a positive rational number, v" -c‘x(l-i)(r-r ) . Hence the

o

function (7) can have a pole of order >-4j at such a point T Near = ,

0 L]
it follows from Theorem 11.1 chat all \’:i'(‘l')2 are exponentially small, so the

same holds for *j (t) . We have proved:

Theorem 11.2. Let ¢(t,2z) be a Jacobi form of index m with zeros given by

z = 1\31.(1') (mod Z1+Z) (j=1,...,m) , and define functionme *j (r)  (3=t,..:o"

by (7). Then each *j (1) is a meromorphic modular form of weight 6j which

vanishes at o and nas no poles of order 24%j .

We can also state this by saying that the zeros of any Jacobi form
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of index m have the form

i
z = (A+a)T +u+ 82 [ (t-1) p(t) de (A, v€Z)
T

where p(t) (= v"('r)z) is a root of

p()™ - 1!1(1);:(?)“'-1 *eoty (=0,
i.e. p has weight 6 and is algebraic of degree m over the graded field
of modular functions. In the particular case m=1 , the function p{(T) =¢1(r)
is itself a meromorphic modular form of weight 6 . In this case we can make

Theorem 11.2 more precise:

Theorem 11.3. Let ¢(t,z) €J be a Jacobi form of index 1 which is not

k,1

divigsible in the ring of Jacobi forms by any modular fo.m of positive weight.

Then the zero-set of ¢ has the form

jo

9(1,2) =0 =z = t(a-r +8 + [ (t=1) %%%375 dé (mod ZT +Z)
T .

for some a€ {0, -12-} and BEC, where H is a modular form of weight

3k - 30 if ¢ 1ic a cusp form
k' =
3k -6 otherwise

and G a modular form of weight %k' +3 with ord (G) >-g— ord (H) .

Proof. The particular case ¢ = was treated in [ 9] (note that the

12,1
zeros of ¢12 1 and of p are the same, by Theorem 3.6): There k=12,
. 4

k'=6 (since ¢ is a cusp form), so H and G must be multiples of E6

and A , respectively. The formula actually obtained was

jo

1.1 6 A
plt,z) =0 ew z = AT+ :(z+ _°&§_15£_2Q + 144,1/5‘1 (t=-1) E;'((%Vi dt) (A u€Z)
The general case is similar. We write
#(t,2) = f(r)E"J(r,z) + }3(1)26’1(':.:) (€M _,, gEMk_6)

(Theorem 3.5) to get
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$,5(t,2) B (1)2g(T)+E (1) £(T)
T 300D | E D80 FE DI

#(1,2) = 0 = -3 p(r,2)

(Theorem 3.6). The only poles of v*(t)2 occur where the two branches
2v(tr) (mod ZT+Z) meet, i.e. at points vty where the zeoof ¢(t,z) is at a

2-division point z€-;-(21*z) ; at such a point, the cubic polynomial

6
230 - A B (p(r,0) - BB () = pt(n)?

vanishes. Substituting this into the above formula and clearing denominators,

we see that this is equivalent to the vanishing of

2 3 2 2 2 2 3
(Eag +E6f) 324(343 +86f) (Esg +1:4f) + 21;6(263 +84f) (36 EI‘)H(t) ’
where
.- 3 2.2 2 2_.3,3
H(T) : Bf™ + 3E,f7g + 3E,E.f8" + (286 34)3 ’

a modular form of weight k' =3k-6 . Any pole of v"('t)2 is simple or

1/2 3/2 locally), so 33

triple (since v 1looks like (1:-1'0) or (‘t-'to)
annihilates the poles of \:"(1’)2 or turns them into double zeros; awé.y from
ramification points, v(t) is locally holomorphic, so \a“('r)2 has zeros of
even order. Hence v"(-r)2 has the form G(‘t‘)z/n(‘l’)3 for some G of weight
3+§ k' . If ¢ is not a cusp form, then £(i®) $~g(i®) so H(iw) #0
and we are done ( G must be a cusp form because v"(r) vanishes at = ).

If ¢(r,0) 1is a cusp form, then we can write ¢ as f¢10’1 *3“’12,1 with
fGMk_w, gGMk_12 (cf. comments at tﬁe end of §3) gnd repeat the argument
to get

$(t,2) = 0, ramified e» Hi= f3 - 324f32 - 23683 =0 ,

where now H has degree 3k~30 . This completes the proof, and we have even
given an explicit formula for H in terms of f and g ; a formula for G
in terms of f and g and their derivatives of order s2 is given implicitly

in the last paragraph of [9].
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