PROFINITE EQUIVARIANT HIGHER ALGEBRAIC K-THEORY FOR THE ACTIONS OF ALGEBRAIC GROUPS

ADEREMI KUKU

ABSTRACT. Let G be an algebraic group over a field F. In this paper, we study and compute equivariant higher K-groups as well as profinite equivariant higher K-groups for some G-schemes when F is a number field or p-adic field.

For example, let ${}_{\gamma}\mathcal{F}$ be a twisted flag variety (see 1.2.3), and *B* a finite dimensional separable *F*-algebra. When *F* is a number field, we prove that $K_{2n+1}({}_{\gamma}\mathcal{F}, B)$ is a finitely generated Abelian group; $K_{2n}({}_{\gamma}\mathcal{F}, B)$ is torsion (see theorem 3.1.2); $K_{2n}^{\mathrm{pr}}(({}_{\gamma}\mathcal{F}, B), \hat{Z}_l)$ is *l*-complete and furthermore div $K_{2n}^{\mathrm{pr}}(({}_{\gamma}\mathcal{F}, B), \hat{Z}_l) = 0$ (see theorem 4.3.1). When *F* is a *p*-adic field, we prove that for all $n \geq 2 K_n({}_{\gamma}\mathcal{F}, B)_l$ is a finite group, $K_n^{\mathrm{pr}}(({}_{\gamma}\mathcal{F}, B), \hat{Z}_l) = K_n(({}_{\gamma}\mathcal{F}, B), \hat{Z}_l)$ is an *l*-complete profinite Abelian group and div $K_n^{\mathrm{pr}}(({}_{\gamma}\mathcal{F}, B), \hat{Z}_l) = 0$.

We obtain similar results for some other smooth projective varieties (see 3.1.5, 3.2.3, 4.3.5).

Contents

Introduction	2
Acknowledgements	2
1. Equivariant higher K-theory for schemes	3
1.1. Generalities	3
1.2. <i>K</i> -theory of twisted flag varieties	4
2. Profinite Higher K-Theory for Schemes — Definitions and	
Relevant Examples	6
2.1. Mod- l^s K-theory of \mathcal{C}	6
2.2. Profinite K-theory	7
3. Some Finiteness Results in Higher K -Theory of Twisted Smooth	
Projective Varieties	7
3.1. Finiteness results for twisted flag varieties	7
3.2. Finiteness results for some objects of the motivic category	
$\mathcal{C}(G).$	10
4. Profinite Equivariant K-Theory for G-Schemes	11
4.1. A general result	11
4.2. Remarks and examples	12
4.3. Some computations	13
References	16

INTRODUCTION

Let G be an algebraic group over a field F. The aim of this paper is to study equivariant K-theory as well as profinite equivariant K-theory for Gschemes with the goal of computing these K-theoretic groups for twisted flag varieties, Brauer–Severi varieties and some other smooth projective varieties over number fields and p-adic fields.

We start in section 1 by reviewing the equivariant higher algebraic Ktheory for schemes (à la Thomason, see [19]) with relevant examples including those that have appeared in the works of A. Merkujev [11] and I. Panin [13]. We note, however, that the equivariant categories involved are special cases of equivariant exact categories discussed in [10], even though we have focussed in this paper on the notations and terminologies of Thomason [19].

We prove at first some finiteness results in the K-theory of twisted flag varieties. More precisely, let \tilde{G} be a semi-simple connected and simply connected F-split algebraic group over a field F, \tilde{P} a parabolic subgroup of \tilde{G} , $\mathcal{F} = \tilde{G}/\tilde{P}$, $\gamma \mathcal{F}$ the twisted form of \mathcal{F} with respect to the 1-cocycle $\gamma : \operatorname{Gal}(F_{\operatorname{sep}}/F) \to G(F_{\operatorname{sep}})$ (see 1.2 or [13]), B a finite-dimensional separable F-algebra and $K_n(\gamma \mathcal{F}, B)$ the Quillen K-theory of the category $\mathcal{VB}_{\tilde{G}}(\gamma \mathcal{F}, B)$ of vector bundles on $\gamma \mathcal{F}$ equipped with left B-module structure. We prove that when F is a number field, $K_{2n+1}(\gamma \mathcal{F}, B)$ is a finitely generated abelian group and $K_{2n}(\gamma \mathcal{F}, B)$ is torsion and has no non-trivial divisible elements for all $n \geq 1$ (see theorem 3.1.2). When F is a p-adic field, we prove that $K_n(\gamma \mathcal{F}, B)_l$ is a finite group for all $n \geq 1$ (see theorem 3.1.5).

We obtain similar results for K-theory of Brauer-Severi varieties as well as for K-theory of twisted forms of some smooth projective varieties arising in the context of a motivic category constructed by I. Panin (see 3.2.3 or [13]).

In section 2 we introduce mod- l^s and profinite higher algebraic K-theory with copious examples relevant to this paper. We then prove that if Fis a number field, then for all $n \geq 1$, $K_{2n}^{\text{pr}}(({}_{\gamma}\mathcal{F}, B), \hat{\mathbb{Z}}_l)$ is *l*-complete and div $K_{2n}^{\text{pr}}(({}_{\gamma}\mathcal{F}, B), \hat{\mathbb{Z}}_l) = 0$ (see theorem 4.2.1).

When F is a p-adic field, we have that for all $n \geq 1$, $K_n^{\text{pr}}(({}_{\gamma}\mathcal{F}, B), \hat{\mathbb{Z}}_l) \simeq K_n(({}_{\gamma}\mathcal{F}, B)\hat{\mathbb{Z}}_l)$ are *l*-complete profinite groups, div $K_n^{\text{pr}}(({}_{\gamma}\mathcal{F}, B), \hat{\mathbb{Z}}_l) = 0$ and the kernel and cokernel of $K_n(({}_{\gamma}\mathcal{F}, B)) \longrightarrow K_n^{\text{pr}}(({}_{\gamma}\mathcal{F}, B), \hat{\mathbb{Z}}_l)$ are uniquely *l*-divisible (see theorem 4.2.4). Similar results are obtained for Brauer-Severi varieties.

Notes on Notation. For an additive abelian group A and a positive integer m, we write A/m for A/mA, and $A[m] = \{x \in A \mid mx = 0\}$. If l is a rational prime we denote by A_l the l-primary subgroup of A, i.e. $A_l = \bigcup A[l^s] = \lim_{l \to \infty} A[l^s]$.

Acknowledgements. Part of the work reported in this article was done while I was visiting University of Bielefeld, Germany and IHES, Paris. It was concluded and written up while visiting Max-Planck-Institut für Mathematik, Bonn, Germany. I like to thank the three institutions for hospitality and finantial support.

1. Equivariant higher K-theory for schemes

In this section, we briefly review equivariant higher algebraic K-theory for schemes as defined by R.W. Thomason in [19], as well as review some relevant examples. As remarked in the Introduction, the equivariant categories involved are special cases of equivariant exact categories discussed by this author in [10], even though we shall in this paper stick to the notations and terminologies of Thomason.

1.1. Generalities.

1.1.1. Let G be an algebraic group over a field F and $\operatorname{Rep}_F(G)$ the category of representations of G in the category $\mathcal{P}(F)$ of finite dimensional vector spaces over F. We denote $K_0(\operatorname{Rep}_F(G))$ by $R_F(G)$ or R(G,F) (or just R(G) when the context is clear). Note that R(G) is the free abelian group generated by the classes of irreducible representations and that R(G) also has a ring structure induced by tensor product. Call R(G) the representation ring.

Since $\operatorname{Rep}_F(G)$ is an exact category (see [16] or [13]) we denote $K_n(\operatorname{Rep}_F(G))$ by $K_n(G, F)$, which is also equal to $G_n(G, F)$ (see [10]). So, $G_0(G, F) = R_F(G) = K_0(G, F)$ (see 1.1.3 below).

1.1.2. Let G be a group scheme over a scheme Y (we shall mostly be interested in Y = Spec(F), F a field). A scheme X over Y is called a G-scheme if there is an action morphism $\theta : G \times X \to X$ (see [19] or [11]).

A *G*-module *M* over *X* is a coherent O_X -module *M* together with an isomorphism of $O_{G \times X}$ -modules $\rho : \theta^*(M) \to p_2^*(M)$ where $p_2 : G \times_Y X \to X$ is the projection satisfying the cocycle condition on $G \times_Y G \times_X X$:

$$p_{23}^*(\rho) \circ (\mathrm{id}_{\rho} \times \theta)^*(\rho) = (m \times \mathrm{id}_X)^*(\rho),$$

where $m: G \underset{Y}{\times} G \to G$ is the multiplication (see [11] or [19]).

1.1.3. Let $\mathcal{M}(G, X)$ denote the abelian category of *G*-modules over a *G*-scheme *X*. We write $G_n(G, X)$ for $K_n(\mathcal{M}(G, X))$. Note that when $X = \operatorname{Spec}(F)$ we recover $G_n(G, F)$ in 1.1.1.

Let $\mathcal{P}(G, X)$ be the full subcategory of $\mathcal{M}(G, X)$ consisting of locally free O_X -modules. We can write $K_n(G, X)$ for $K_n(\mathcal{P}(G, X))$. Note that:

- (a) if G is a trivial scheme, then $G_n(G,X) \simeq G_n(X)$; $K_n(G,X) \simeq K_n(X)$.
- (b) $G_n(G, -)$ is contravariant with respect to flat G-maps.
- (c) $G_n(G, -)$ is covariant with respect to projective G-maps.
- (d) $K_n(G, -)$ is contravariant with respect to any G-map.
- (e) $G_n(-,X)$ is contravariant with respect to group homomorphisms.
- (f) $K_n(-,X)$ is covariant with respect to group homomorphisms (see [19] or [11]).

1.1.4. We have the following generalization of 1.1.3 (see [11], [13]):

Let A be a finite dimensional separable F-algebra, G an algebraic group over F and X a G-scheme. A G-A-module over a G-scheme X is a G-module M which is also a left $A \otimes_F O_X$ -module such that $g(am) = ga \cdot gm$ for $g \in G$, $m \in M$.

Let $\mathcal{M}(G, X, A)$ be the Abelian category whose objects are *G*-*A*-modules and whose morphisms are $A \otimes_F O_X$ - and *G*-module morphisms. We write $G_n(G, X, A)$ for $K_n(\mathcal{M}(G, X, A))$. Note that $\mathcal{M}(G, X, F) \simeq \mathcal{M}(G, X)$, and so, $G_n(G, X, F) \simeq G_n(G, X)$.

Let $\mathcal{P}(G, X, A)$ be the full subcategory of $\mathcal{M}(G, X, A)$ consisting of locally free $O_{A\otimes O_X}$ -module. Write $K_n(G, X, A)$ for $K_n(\mathcal{P}(G, X, A))$. Hence $\mathcal{P}(G, X, F) \simeq \mathcal{P}(G, X), K_n(G, X, F) \simeq K_n(G, X).$

1.1.5. Let G be an affine algebraic group over F, X a G-scheme, $\mathcal{VB}_G(X)$ the category of G-equivariant vector bundles on X. If H is a closed subgroup of G, then we have an equivalence of categories

$$\operatorname{Rep}_F(H) \xrightarrow[]{\operatorname{res}} \mathcal{VB}_G(G/H),$$

where 'ind' and 'res' are defined as follows:

- ▷ res: For any vector bundle $E \xrightarrow{p} G/H$, $p^{-1}(\bar{e}) \in \operatorname{Rep}_F(H)$ (where $\bar{e} = eH = H$) since the stabilizer of H in $G/H = \bar{e}$.
- ▷ ind: Let $(V, \alpha : H \to \operatorname{Aut}(V)) \in \operatorname{Rep}_F(H)$. Then, one has a vector bundle $(G \times V)/H \to G/H$ where H acts on $(G \times V)/H$ by $(g, v)h = (g \cdot h, h^{-1}v)$, see [13]. We denote $(G \times V)/H$ by \widetilde{V} . Here $h^{-1}v := \alpha(h^{-1}v)$. So we get $K_n(\operatorname{Rep}_F(H)) \simeq K_n(\mathcal{VB}_G(G/H))$. We denote $K_n(\mathcal{VB}_G(G/H))$ by $K_n(G/H)$.

1.2. K-theory of twisted flag varieties. In this subsection we briefly introduce twisted flag varieties and their algebraic K-theory. Details can be found in [13]. We say enough here to develop notations for later use.

1.2.1. Let \widetilde{G} be a semi-simple connected and simply connected, F-split algebraic group over a field F. Let $\widetilde{T} \subset \widetilde{G}$ be a maximal F-split torus of \widetilde{G} , $\widetilde{P} \subset \widetilde{G}$ a parabolic subgroup of \widetilde{G} containing the torus \widetilde{T} . The factor variety $\mathcal{F} = \widetilde{G}/\widetilde{P}$ is smooth and projective (see [13], [2]). Call $\mathcal{F} = \widetilde{G}/\widetilde{F}$ a flag variety.

Let $N_{\widetilde{G}}(\widetilde{T})$ be the normalizer of \widetilde{T} in \widetilde{G} , $W := N_{\widetilde{G}}(\widetilde{T})/\widetilde{T}$ the Weyl group of G — a finite group. Let $W_{\widetilde{P}} := \{w \in W \mid w\widetilde{P}w^{-1} = \widetilde{P}\}$. Put $n(\mathcal{F}) = [W:W_{\widetilde{P}}]$. Note that $R(\widetilde{P})$ is a free $R(\widetilde{G})$ -module of rank $n(\widetilde{\mathcal{F}})$ (see [13]).

1.2.2. Let \widetilde{Z} be the center of \widetilde{G} and $\widetilde{Z}^* = \text{Hom}(\widetilde{Z}, G_m)$ the group of characters of \widetilde{Z} . Note that \widetilde{Z}^* is a finite group.

Let $x \in \widetilde{Z}^*$ and $\operatorname{Rep}_G^{\chi}(\widetilde{P})$ be the full subcategory of $\operatorname{Rep}_F(\widetilde{P})$ consisting of those $V \in \operatorname{Rep}_F(\widetilde{P})$ such that \widetilde{Z} acts on V by the character χ . The F-group scheme \widetilde{Z} acts on V by the character χ and hence on every $\widetilde{V} = (\widetilde{G} \times V)/\widetilde{P} \in \mathcal{VB}_{\widetilde{G}}(\mathcal{F})$ (see 1.1.5). Let $\mathcal{VB}_{\widetilde{G}}(\mathcal{F},\chi)$ be the full subcategory of $\mathcal{VB}_{\widetilde{G}}(\mathcal{F})$ consisting of those \widetilde{V} such that \widetilde{Z} acts on every fibre of \widetilde{V} by the character χ . Write $K_n(\mathcal{F},\chi)$ for $K_n(\mathcal{VB}_{\widetilde{G}}(\mathcal{F},\chi))$ and $R^{\chi}(\mathcal{P})$ for $K_0(\operatorname{Rep}_F^{\chi}(\mathcal{P}))$.

1.2.3. Let $\tilde{G}, \tilde{Z}, \tilde{T}, \tilde{P}$ be as in 1.2.1 and 1.2.2. Put $\tilde{G} = \tilde{G}/\tilde{Z}, P = \tilde{P}/\tilde{Z}, T = \tilde{T}/\tilde{Z}$ and $\mathcal{F} = \tilde{G}/\tilde{P} = G/P$. Put $\mathfrak{g} = \operatorname{Gal}(F_{\operatorname{sep}}/F)$ where F_{sep} is the separable closure of F. Let $\gamma : \mathfrak{g} \to G(F_{\operatorname{sep}})$ be a 1-cocycle (see [13]) and $\gamma \mathcal{F}$ the twisted form of \mathcal{F} corresponding to γ (see [11] or [13]). We write $K_n(\gamma \mathcal{F})$ for $K_n(\mathcal{VB}_G(\gamma \mathcal{F}))$.

Now, for $\chi \in \widetilde{Z}^* = \operatorname{Hom}(\widetilde{Z}, G_m)$, choose a non-trivial representation $V_{\chi} \in \operatorname{Rep}^{\chi}(\widetilde{G})$. Put $A_{\chi} = \operatorname{End}_F(V_{\chi})$. Then A_{χ} is an *F*-algebra equipped with a *G*-action by *F*-algebra automorphism (see [13]). Using the 1-cocycle γ , one gets a new \mathfrak{g} -action on $A_{\chi} \otimes_F F_{\operatorname{sep}}$ and hence a twisted form $A_{\chi,\gamma}$ of the algebra A_{χ} (see [13]).

1.2.4. As in 1.2.3, let $\gamma : \mathfrak{g} \to G(F_{sep})$ be a 1-cocycle and let ${}_{\gamma}\mathcal{F}$ be the twisted form of \mathcal{F} corresponding to the cocycle γ . Assume that char(F) = 0 or char(P) is prime to the order of \widetilde{Z}^* . Now consider the exact sequence

$$\{1\} \longrightarrow \widetilde{Z} \longrightarrow \widetilde{G} \longrightarrow \widetilde{G}/\widetilde{Z} \longrightarrow \{1\}$$

and the boundary map $\partial : H^1(F,G) \to H^2(F,\widetilde{Z})$. Then we have an element $\partial \gamma \in H^2(F,\widetilde{Z})$. Now, any $\chi \in \overline{Z}^* = \operatorname{Hom}(\overline{Z},G_m)$ induces a map $\chi_* : H^2(F,\widetilde{Z}) \to H^2(F,G_m) = \operatorname{Br}(F)$. Hence we now have a map

$$\beta: \widetilde{Z}^* \longrightarrow \operatorname{Br}(F)$$
$$\chi \longmapsto \chi_*(\partial \gamma)$$

1.2.5. Lemma (Tits, [20]). Assume that $\operatorname{char}(F) = 0$ or that $\operatorname{char}(F)$ is prime to the order of \widetilde{Z}^* , then $[A_{\chi,\gamma}] = \beta(\gamma) \in \operatorname{Br}(F)$.

- 1.2.6. Remarks.
 - (a) Note from 1.2.5, that $A_{\chi,\gamma}$ is a central simple *F*-algebra.
 - (b) We give one example of the structure above. Other examples can be found in [13]. Take $\tilde{G} = \operatorname{SL}_n$, $G = \operatorname{PGL}_n$, $\tilde{Z} = \mu_n$, the group scheme of n^{th} roots of unity, $\tilde{Z}^* = Z/nZ$ whose generator is the embedding $\mu_n \stackrel{\chi}{\to} G_m$. Let V_n be the regular *n*-dimensional representation of \tilde{G} . Then $V_n \in \operatorname{Rep}^{\chi}(\tilde{G})$. Take $V_{\chi^i} := V_n^{\otimes i} \in \operatorname{Rep}^{\chi^i}(\tilde{G})$, $A_i := \operatorname{End}_F(V_{\chi^i})$. Then $A_{\chi,\gamma}$ is a central simple *F*-algebra of degree *n* corresponding to γ , and $A_{\chi^i,\gamma} \simeq A_{\chi,\gamma}^{\otimes i}$ (for $i = 0, 1, \ldots, n - 1$). Put $P = \left\{ \left(\frac{a}{0} \frac{b}{c} \right) | \det(\underline{a}) \det(\underline{b}) = 1 \right\}$, $\underline{a} \in \operatorname{GL}_k$, $\underline{c} \in \operatorname{GL}_{n-k}$. Then $\tilde{G}/\tilde{P} = \operatorname{Gr}(k, n)$ is the Grassmannian variety of *k*-dimensional linear subspaces of a fixed *n*-dimensional space.

1.2.7. Let *B* be a finite dimensional separable *F*-algebra, *X* a smooth projective variety equipped with the action of an affine algebraic group *G* over *F*, $_{\gamma}X$ the twisted form of *X* via a 1-cocycle γ . Let $\mathcal{VB}_G(_{\gamma}X, B)$ be the category of vector bundles on $_{\gamma}X$ equipped with left *B*-module structure. We write $K_n(_{\gamma}X, B)$ for $K_n(\mathcal{VB}_G(_{\gamma}X, B))$.

2. Profinite Higher K-Theory for Schemes — Definitions and Relevant Examples

In this section we briefly introduce mod- l^s and profinite K-theory for exact categories with examples relevant to this paper. More details and examples can be found in [10, chapter 8] or [8].

2.1. Mod- l^s K-theory of C.

2.1.1. Let C be an exact category, l a rational prime, s a positive integer, $M_{l^s}^{n+1}$ the (n+1)-dimensional mod- l^s -space i.e. the space obtained from S^n by attaching an (n+1)-cell via a map of degree l^s (see [3], [12]).

If X is any H-space, write $\pi_{n+1}(X,\mathbb{Z}/l^s)$ for $[M_{l^s}^{n+1},X]$, the set of homotopy classes of maps from $M_{l^s}^{n+1}$ to X. If \mathcal{C} is an exact category and $X = BQ\mathcal{C}$, write $K_n(\mathcal{C},\mathbb{Z}/l^s)$ for $\pi_{n+1}(BQ\mathcal{C},\mathbb{Z}/l^s)$ for $n \ge 1$ and $K_0(\mathcal{C},\mathbb{Z}/l^s)$ for $K_0(\mathcal{C}) \otimes \mathbb{Z}/l^s$. Call $K_n(\mathcal{C},\mathbb{Z}/l^s)$ mod- l^s K-theory of \mathcal{C} .

2.1.2. Note from [10, 8.1.12] or [8] that the exact sequence

$$\cdots \longrightarrow K_n(\mathcal{C}) \xrightarrow{l^s} K_n(\mathcal{C}) \xrightarrow{\rho} K_n(\mathcal{C}, \mathbb{Z}/l^s) \xrightarrow{\beta} K_n(\mathcal{C}) \longrightarrow K_n(\mathcal{C}) \longrightarrow \cdots$$

induces a short exact sequence for all $n \ge 2$

$$0 \longrightarrow K_n(\mathcal{C})/l^s \longrightarrow K_n(\mathcal{C}, \mathbb{Z}/l^s) \longrightarrow K_n(\mathcal{C})[l^s] \longrightarrow 0.$$

2.1.3. Examples.

- (i) if A is a ring with identity, and $C = \mathcal{P}(A)$ the category of finitely generated projective A-modules, write $K_n(A, \mathbb{Z}/l^s)$ for $K_n(\mathcal{P}(A), \mathbb{Z}/l^s)$. Note that $K_n(A, \mathbb{Z}/l^s)$ is also $\pi_n(BGL(A)^+, \mathbb{Z}/l^s)$.
- (ii) If Y is a scheme and $C = \mathcal{P}(Y)$, the category of locally free sheaves of O_Y -modules, write $K_n(Y, \mathbb{Z}/l^s)$ for $K_n(\mathcal{P}(Y), \mathbb{Z}/l^s)$. Note that for $Y = \operatorname{Spec}(A)$, A commutative, we recover $K_n(A, \mathbb{Z}/l^s)$.
- (iii) Let A be a Noetherian ring and $\mathcal{M}(A)$ the category of finitely generated A-modules. We write

$$G_n(A, \mathbb{Z}/l^s)$$
 for $K_n(\mathcal{M}(A), \mathbb{Z}/l^s)$.

(iv) If Y is a Noetherian scheme, $\mathcal{C} = \mathcal{M}(Y)$ the category of coherent sheaves of O_Y -modules, write

$$G_n(Y, \mathbb{Z}/l^s)$$
 for $G_n(\mathcal{M}(Y), \mathbb{Z}/l^s)$

(v) Let G be an algebraic group over a field F, X a G-scheme and $\mathcal{C} = \mathcal{M}(G, X)$ as defined in 1.1.3. Write

$$G_n((G,X),\mathbb{Z}/l^s)$$
 for $K_n(\mathcal{M}(G,X),\mathbb{Z}/l^s)$.

(vi) If $\mathcal{C} = \mathcal{P}(G, X)$ as defined in 1.1.3, write

$$K_n((G,X),\mathbb{Z}/l^s)$$
 for $K_n(\mathcal{P}(G,X),\mathbb{Z}/l^s)$.

(vii) If $\mathcal{C} = \mathcal{VB}_G({}_{\gamma}X, B)$ as in 1.2.7 we write

$$K_n((\gamma X, B), \mathbb{Z}/l^s)$$
 for $K_n(\mathcal{VB}_G(\gamma X, B); \mathbb{Z}/l^s).$

(viii) If $\mathcal{C} = \mathcal{M}(G, X, A)$ as defined in 1.1.4, write

 $G_n((G, X, A), \mathbb{Z}/l^s)$ for $K_n(\mathcal{M}(G, X, A), \mathbb{Z}/l^s)$.

(ix) If $C = \mathcal{P}((G, X, A), \mathbb{Z}/l^s)$ as in 1.1.4, we write $K_n((G, X, A), \mathbb{Z}/l^s)$ for $K_n(\mathcal{P}(G, X, A), \mathbb{Z}/l^s)$.

2.2. Profinite K-theory.

2.2.1. Let \mathcal{C} be an exact category, l a rational prime, s a positive integer. Put $M_{l^{\infty}}^{n+1} = \varinjlim M_{l^s}^{n+1}$. We define the profinite K-theory of \mathcal{C} by $K_n^{\mathrm{pr}}(\mathcal{C}, \hat{\mathbb{Z}}_l) := [M_{l^{\infty}}^{n+1}; BQ\mathcal{C}]$. We also write $K_n(\mathcal{C}, \hat{\mathbb{Z}}_l)$ for $\varinjlim_s(\mathcal{C}, \mathbb{Z}/l^s)$. Note that for all $n \geq 1$, we have an exact sequence

For more information see [10] or [8].

2.2.2. Examples.

- (i) If $C = \mathcal{P}(A)$ as in 2.1.3(i), we write $K_n^{\text{pr}}(A, \hat{\mathbb{Z}}_l)$ for $K_n(\mathcal{P}(A), \hat{\mathbb{Z}}_l)$ and $K_n(A, \hat{\mathbb{Z}}_l)$ for $K_n(\mathcal{P}(A), \hat{\mathbb{Z}}_l)$.
- (ii) If $\mathcal{C} = \mathcal{P}(Y)$ as in 2.1.3(ii) we write $K_n^{\mathrm{pr}}(Y; \hat{\mathbb{Z}}^l)$ for $K_n^{\mathrm{pr}}(\mathcal{P}(Y), \hat{\mathbb{Z}}_l)$ and $K_n(Y, \hat{\mathbb{Z}}_l)$ for $K_n(\mathcal{P}(Y), \hat{\mathbb{Z}}_l)$.
- (iii) If $\mathcal{C} = \mathcal{M}(A)$ as in 2.1.3(iii) we write $G_n(A, \hat{\mathbb{Z}}_l)$ for $G_n^{\mathrm{pr}}(\mathcal{M}(A), \hat{\mathbb{Z}}_l)$ and $G_n(A, \hat{\mathbb{Z}}_l)$ for $K_n(\mathcal{M}(A), \hat{\mathbb{Z}}_l)$.
- (iv) If $C = \mathcal{M}(Y)$ as in 2.1.3(iv) write

 $G_n^{\mathrm{pr}}(Y, \hat{\mathbb{Z}}_l)$ for $K_n^{\mathrm{pr}}(\mathcal{M}(Y), \hat{\mathbb{Z}}_l)$.

(v) If $\mathcal{C} = \mathcal{M}(G, X)$ as in 2.1.3(v) write

$$G_n^{\mathrm{pr}}((G,X),\mathbb{Z}_l)$$
 for $K_n^{\mathrm{pr}}(\mathcal{M}(G,X),\mathbb{Z}_l)$.

(vi) If $\mathcal{C} = \mathcal{P}(G, X)$ as in 2.1.3(vi) write

$$K_n^{\mathrm{pr}}((G,X),\hat{\mathbb{Z}}_l)$$
 for $K_n^{\mathrm{pr}}(\mathcal{P}(G,X),\hat{\mathbb{Z}}_l)$.

(vii) If $\mathcal{C} = \mathcal{VB}_G(\gamma X, B)$ as in 2.1.3(vii), write

$$K_n^{\mathrm{pr}}((\gamma X, B), \mathbb{Z}_l)$$
 for $K_n^{\mathrm{pr}}(\mathcal{VB}_G(\gamma X, B), \mathbb{Z}_l).$

(viii) If $\mathcal{C} = \mathcal{M}(G, X, A)$ as in 2.1.3(viii) write

$$G_n^{\mathrm{pr}}((G, X, A), \hat{\mathbb{Z}}_l)$$
 for $K_n^{\mathrm{pr}}(\mathcal{M}(G, X, A), \hat{\mathbb{Z}}_l)$.

(ix) If $C = \mathcal{P}(G, X, A)$ as in 2.1.3(ix) write

$$K_n^{\mathrm{pr}}((G, X, A), \hat{\mathbb{Z}}_l)$$
 for $K_n^{\mathrm{pr}}(\mathcal{P}(G, X, A), \hat{\mathbb{Z}}_l)$.

3. Some Finiteness Results in Higher K-Theory of Twisted Smooth Projective Varieties

In this section, we prove some finiteness results in the K-theory of twisted flag varieties as well as K-theory of twisted forms of some other smooth projective varieties over number fields and p - adic fields.

3.1. Finiteness results for twisted flag varieties.

3.1.1. Let \widetilde{G} be a semi-simple, simply connected and connected F-split algebraic group over a field F, \widetilde{P} a parabolic subgroup of G, γ the 1-cocycle γ : $\operatorname{Gal}(F_{\operatorname{sep}}/F) \to \widetilde{G}(F_{\operatorname{sep}}), \gamma \mathcal{F}$ the twisted form of \mathcal{F} . Let B be a finite dimensional separable F-algebra. We write $K_n(\gamma \mathcal{F}, B)$ for K_n of the category $\mathcal{VB}_G(\gamma \mathcal{F}, B)$ of vector bundles on $\gamma \mathcal{F}$ equipped with left B-module structure. We prove the following result.

3.1.2. **Theorem.** Let F be a number field. Then for all $n \ge 1$,

- (a) $K_{2n+1}(\gamma \mathcal{F}, B)$ is a finitely generated Abelian group.
- (b) $K_{2n}(\gamma \mathcal{F}, B)$ is a torsion group and has no non-trivial divisible elements.

In order to prove 3.1.2, we first prove the following

3.1.3. **Theorem.** Let Σ be a semi-simple algebra over a number field F. Then for all $n \ge 1$

- (a) $K_{2n+1}(\Sigma)$ is finitely generated Abelian group.
- (b) $K_{2n}(\Sigma)$ is torsion and has no non-zero divisible elements.

Proof. (a) Let R be the ring of integers of F. It is well-known that any semi-simple F-algebra contains at least one maximal R-order (see [10], [16] or [4]). So let Γ be a maximal order in Σ . From the localization sequence

$$\cdots \to \bigoplus_{\underline{p}} G_{2n+1}(\Gamma/\underline{p}\Gamma) \to G_{2n+1}(\Gamma) \to G_{2n+1}(\Sigma) \to \bigoplus_{\underline{p}} G_{2n}(\Gamma/\underline{p}\Gamma) \to \cdots$$
(I)

(whose p ranges over all prime ideals of R) we have

$$G_{2n}(\Gamma/\underline{p}\Gamma) \simeq K_{2n}((\Gamma/\underline{p}\Gamma)/\operatorname{rad}(\Gamma/\underline{p}\Gamma))$$

where $(\Gamma/\underline{p}\Gamma)/\operatorname{rad}(\Gamma/\underline{p}\Gamma)$ is a finite semi-simple ring which is a direct product of matrix algebras over finite fields. So, $G_{2n}(\Gamma/\underline{p}\Gamma) = 0$. Note that since Γ and Σ are regular, $K_n(\Gamma) \simeq G_n(\Gamma)$ and $K_n(\Sigma) \simeq G_n(\Sigma)$ for all $n \ge 0$. But $K_{2n+1}(\Gamma)$ is finitely generated (see [10, theorem 7.1.13] or [7]). Hence $K_{2n+1}(\Sigma)$ is finitely generated as a homomorphic image of $G_{2m+1}(\Gamma)$. \Box

(b) Recall from the proof of (a) that $G_{2n}(\Gamma/\underline{p}\Gamma) = 0$. Hence Quillen's localization sequence yields

$$0 \to G_{2n}(\Gamma) \to G_{2n}(\Sigma) \to \bigoplus_{\underline{p}} G_{2n-1}(\Gamma/\underline{p}\Gamma) \to SK_{2n-1}(\Gamma) \to 0.$$
(II)

Also recall that since Γ , Σ are regular, $K_n(\Gamma) \simeq G_n(\Gamma)$ and $K_n(\Sigma) \simeq G_n(\Sigma)$ for all $n \ge 0$. But $G_{2n}(\Gamma) \simeq K_{2n}(\Gamma)$ is a finite group for all $n \ge 1$ (see [10] theorem 7.1.12 or [6]). Also, $\bigoplus G_{2n+1}(\Gamma/\underline{p}\Gamma)$ is a torsion group as a direct sum of finite groups, see [10, 7.1.12]. Hence it follows from the diagram (II) above that $G_{2n}(\Sigma) \simeq K_{2n}(\Sigma)$ is a torsion group.

Also from one sequence (II), $\bigoplus G_{2n-1}(\Gamma/\underline{p}\Gamma)$, as a direct sum of finite groups has no non-trivial divisible elements. So any divisible element in $K_{2n}(\Sigma)$ must come from $G_{2n}(\Gamma) \simeq K_{2n}(\Gamma)$. But $K_{2n}(\Gamma)$ is a finite group and also has no non-trivial divisible elements. Hence $G_{2n}(\Sigma)$ has no nontrivial divisible elements. Proof of 3.1.2. (a) It was proved in [13] that for all $n \ge 0$ $K_n(A_{\chi,\gamma} \otimes_F B) \simeq K_n({}_{\gamma}\mathcal{F}, B)$. So, it suffices to prove that $K_{2n+1}(A_{\chi,\gamma} \otimes_F B)$ is finitely generated. Now, as discussed in 1.2.4–1.2.6, $A_{\chi,\gamma}$ is a central simple *F*-algebra. Also *B* being separable is also semi-simple. So, $A_{\chi,\gamma} \otimes_F B$ is a semi-simple *F*-algebra (see [14, p. 136]). Hence by theorem 3.1.3(a) $K_{2n+1}(A_{\chi,\gamma} \otimes_F B)$ is finitely generated. Hence $K_{2n-1}(\gamma \mathcal{F}, B)$ is finitely generated.

(b) follows from theorem 3.1.3(b) by substituting $A_{\chi,\gamma} \otimes_F B$ for Σ . \Box

3.1.4. Remarks.

- (a) One can also see that $K_{2n+1}(\gamma \mathcal{F})$ is finitely generated as a special case of 3.1.2(a). However one can also prove it directly as follows: Since $\bigoplus_{1}^{n(\mathcal{F})} K_{2n+1}(F) = K_{2n+1}(\gamma \mathcal{F})$ (see [13]), we only have to see that $K_{2n+1}(F)$ is finitely generated (since we have a finite direct sum of $K_{2n+1}(F)$). Now by Quillen's result, $K_{2n+1}(R)$ is finitely generated and by Soule's result $K_{2n+1}(R) \simeq K_{2n+1}(F)$ is finitely generated.
- (b) To see that $K_{2n}(\gamma \mathcal{F})$ is torsion it suffices to show that $K_{2n}(F)$ is torsion since $\bigoplus_{1}^{n(\mathcal{F})} K_{2n}(F) \simeq K_{2n}(\gamma \mathcal{F})$. The arguments are similar to the proof of 3.1.3(b) applied to the short exact sequence

$$0 \longrightarrow K_{2n}(R) \longrightarrow K_{2n}(F) \longrightarrow \bigoplus_{\underline{p}} K_{2n-1}(R/\underline{p}) \longrightarrow 0$$

of Soule, realizing that $K_{2n}(R)$ is finite and each $K_{2n-1}(R/\underline{p})$ is also finite.

We now turn attention to the local structure.

3.1.5. **Theorem.** Let F be a p-adic field, l a rational prime such that $l \neq p$. Then for all $n \geq 1$ and any separable F-algebra B, $K_n(\gamma \mathcal{F}, B)_l$ is a finite group.

Proof. As noted before, $A_{\chi,\gamma} \otimes_F B$ is a semi-simple *F*-algebra and so, it suffices to prove that for any semi-simple *F*-algebra Σ , $K_n(\Sigma)_l$ is a finite group for any $n \geq 1$. To do this, it suffices to show that for any central division algebra *D* over some *p*-adic field *F*, $K_n(D)_l$ is a finite group.

Now, D has at least one maximal order Γ , say (see [4]). Let <u>m</u> be the unique maximal ideal of Γ . Then, from the localization sequence

$$\cdots \to K_n(\Gamma/\underline{m}, \mathbb{Z}/l^s) \to K_n(\Gamma, \mathbb{Z}/l^s) \to K_n(D, \mathbb{Z}/l^s) \to K_{n-1}(\Gamma/\underline{m}, \mathbb{Z}/l^s) \to \cdots$$
(III)

we know that $K_n(\Gamma, \mathbb{Z}/l^s) \simeq K_n(\Gamma/\underline{m}, \mathbb{Z}/l^s)$ for all $n \ge 1$. (See [18, corollary 2 to theorem 2]).

Now, the groups $K_n(\Gamma/\underline{m}, \mathbb{Z}/l^s)$, $n \geq 1$ are finite groups with uniformly bounded orders (see [18]). Hence, so are the groups $K_n(D, \mathbb{Z}/l^s)$ and $K_n(\Gamma, \mathbb{Z}/l^s)$ (from the exact sequence (III)). Also from 2.1.2, we have an exact sequence

$$0 \longrightarrow K_{n+1}(D)/l^s \longrightarrow K_n(D, \mathbb{Z}/l^s) \longrightarrow K_n(D)[l^s] \longrightarrow 0$$
 (IV)

where $K_{n+1}(D, \mathbb{Z}/l^s)$ is finite group having uniformly bounded orders (as shown above). So the groups $K_n(D)[l^s]$ are equal for $s \ge \text{some } s_0$. But $K_n(D)_l = \bigcup_{n=1}^{\infty} K_n(D)[l^s]$. Hence $K_n(D)_l$ is finite.

3.1.6. Remarks. Let V be a Brauer-Severi variety over a field F, and A the finite dimensional central division F-algebra associated to V. D. Quillen shows in [15] that

$$K_n(V) = \bigoplus_{s=0}^{\dim V} K_n(A^{\otimes s}).$$

for all $n \ge 1$.

- (a) Suppose that F is a number field, then $K_{2n+1}(V)$ is a finitely generated Abelian group. Again, this follows from theorem 3.1.3.
- (b) If F is a p-adic field then for all $n \ge 1$ $K_n(V)_l$ is a finite group if l is a prime $\neq p$.

3.2. Finiteness results for some objects of the motivic category $\mathcal{C}(G)$.

3.2.1. Let G be an algebraic group over a field F. By considering a smooth projective G-scheme as an object of a category $\mathcal{C}(G)$ defined below, we have similar finiteness results to those of 3.1 for $K_n(\gamma X, B)$ where γ is a 1-cocycle, γX is the γ -twisted form of X and B is a separable F-algebra.

3.2.2. The category $\mathcal{C}(G)$ is constructed as follows (the construction is due to I. Panin, see [13], or [11]):

The objects of $\mathcal{C}(G)$ are pairs (X, A) whose X is a smooth projective G-scheme and A is a finite dimensional separable F-algebra on which G acts by F-algebra automorphisms. Define

$$\operatorname{Hom}_{\mathcal{C}(G)}((X,A),(Y,B)) := K_0(G, X \times Y, A^{\operatorname{op}} \otimes_F B).$$

Composition of morphisms is defined as follows: If $u : (X, A) \to (Y, B)$, $v : (Y, B) \to (Z, c)$ are two morphisms, then the composite is defined by

$$v \circ u := p_{13}^*(p_{23}^*(v) \otimes_B p_{12}^*(u)),$$

where $p_{12} : X \otimes Y \otimes Z \longrightarrow X \otimes Y$, $p_{13} : X \otimes Y \otimes Z \longrightarrow X \otimes Z$, and $p_{23} : X \otimes Y \otimes Z \longrightarrow Y \otimes Z$.

The identity endomorphism of (X, A) in $\mathcal{C}(G)$ is the class $[A \otimes_F O_\Delta]$ (where $\Delta \subset X \times X$ is the diagonal) in $K_o(G, X \times X, A^{(\gamma)} \otimes_F A) = \operatorname{End}_{\mathcal{C}(G)}(X, A)$. We now have the following results.

3.2.3. **Theorem.** Let $\alpha : C \xrightarrow{\sim} X$ be an isomorphism in the category $\mathcal{C}(G)$, i.e., $\alpha : (\operatorname{Spec}(F), C) \xrightarrow{\sim} (X, F)$. For every 1-cocycle $\gamma : \operatorname{Gal}(F_{\operatorname{sep}}/F) \to G_{F_{\operatorname{sep}}}$ and any finite dimensional separable F-algebra B, let $K_n(\gamma Y, B)$ be as defined in 1.2.3.

- (a) If F is a number field, then for $n \ge 1$,
 - (i) $K_{2n+1}(\gamma X, B)$ is a finitely generated Abelian group and has no non-trivial divisible elements.
 - (ii) $K_{2n}(\gamma X, B)$ is a torsion group and has no non-trivial divisible elements.
- (b) If F is a p-adic field, l a rational prime such that $l \neq p$, then for all $n \geq 1$ and any separable F-algebra B, $K_n(\gamma X, B)_l$ is a finite group.

Proof. From [13], we have that for all $n \ge 1$ $K_n(C_\gamma \otimes_F B) \simeq K_n(\gamma X, B)$ where F is any field and $C_\gamma \otimes_F B$ is a semi-simple F-algebra Σ , say.

If F is a number field, (a)(i),(ii) follows from 3.1.3(a),(b). IF F is a p-adic field it suffices to prove that for all $n \ge 1$, $K_n(\Sigma)_l$ is a finite group. But this is done already in the proof of 3.1.5.

4. Profinite Equivariant K-Theory for G-Schemes

4.1. A general result. We first prove the following general result for later use

4.1.1. **Theorem.** Let C, C' be exact categories and $f : C \to C'$ an exact functor which induces an Abelian group homomorphism $f_* : K_n(C) \to K_n(C')$, for each $n \ge 0$. Let l be a rational prime, s a positive integer

(a) Suppose that f_* is injective (resp. surjective, resp. bijective), then so are the induced maps

$$\hat{f}_* : K_n(\mathcal{C}, \mathbb{Z}/l^s) \longrightarrow K_n(\mathcal{C}', \mathbb{Z}/l^s)$$
 and
 $f_*^{\operatorname{pr}} : K_n^{\operatorname{pr}}(\mathcal{C}, \hat{\mathbb{Z}}_l) \longrightarrow K_n^{\operatorname{pr}}(\mathcal{C}', \hat{\mathbb{Z}}_l).$

(b) If f_* is split surjective (resp. split injective) then so is

$$\hat{f}_*: K_n(\mathcal{C}, \mathbb{Z}/l^s) \longrightarrow K_n(\mathcal{C}, \mathbb{Z}/l^s).$$

Proof. Consider the following commutative diagram (I) where the rows are exact and the vertical arrows are induced from f_* .

Now, f_* injective (resp. surjective, resp. bijective) implies that \bar{f}_* , f'_* are injective (resp. surjective, resp. bijective). So by applying the five lemma to diagram (I), we have that \bar{f}_* , f'_* injective (resp. surjective, resp. biyective) imply that \hat{f}_* is injective (resp. surjective, resp. biyective). Hence f_* injective (resp. surjective, resp. bijective) implies that \hat{f}_* is injective (resp. surjective, resp. bijective). Hence f_* is injective, resp. bijective). This proves the first part of (a).

Now consider the following commutative diagram

where \hat{f}'_* and \hat{f}''_* are induced by \hat{f}_* in diagram (I). Note that,

$$K_n(\mathcal{C}, \hat{\mathbb{Z}}_l) := \varprojlim_s K_n(\mathcal{C}, \mathbb{Z}/l^s) \text{ and } K_n(\mathcal{C}', \hat{\mathbb{Z}}_l) := \varprojlim_s K_n(\mathcal{C}, \mathbb{Z}/l^s).$$

Now if \hat{f}_* is injective (resp. surjective, resp. biyective) in diagram (I), then \hat{f}'_* and \hat{f}_* are both injective (resp. surjective, resp. bijective) in diagram (II).

Also by applying the five lemma to diagram (II) we find that if \hat{f}'_* and \hat{f}''_* are both injective (resp. surjective, resp. bijective), then $f^{\rm pr}_*$ is injective (resp. surjective, resp. bijective). Hence if f_* is injective (resp. surjective, resp. bijective) then so is \hat{f}_* and this implies that $f^{\rm pr}_*$ is injective (resp. surjective, resp. bijective) as required.

(b) We prove here only that f_* split surjective implies that f_* is split surjective since proving that f_* split injective implies that \hat{f}_* is split injective is similar.

First observe that the horizontal sequences in diagram (I) are split exact (see [10] or [1]) since l is an odd prime. Hence there exist a map $\hat{\delta} : K_n(\mathcal{C}, \mathbb{Z}/l^s) \to K_n(\mathcal{C})/l^s$ such that $\hat{\delta}\delta = 1_{K_n(\mathcal{C}/l^s)}$, as well as a map $\hat{\delta}' : K_n(\mathcal{C}', \mathbb{Z}/l^s) \to K_n(\mathcal{C}')/l^s$ such that $\hat{\delta}'\delta' = 1_{K_n(\mathcal{C}'/l^s)}$. Also, f_* split surjective implies that \bar{f}_* is split surjective. So, there exists \bar{f}'_* such that $\hat{f}_*\hat{f}'_* = 1_{K_n(\mathcal{C})/l^s}$. Put $\hat{f}'_* = \delta \bar{f}'_*\hat{\delta}'$. Then for any $x \in K_n(\mathcal{C}', \mathbb{Z}/l^s)$,

$$\hat{f}_* \hat{f}'_*(x) = \hat{f}_* \delta \bar{f}'_* \hat{\delta}'(x)$$

= $\delta' \bar{f}_* \bar{f}'_* \hat{\delta}'(x)$, by the commutativity of the left-hand square,
= x .

Hence $\hat{f}_* \hat{f}'_* = \operatorname{id}_{K_n(\mathcal{C}', \mathbb{Z}/l^s)}$ i.e. \hat{f}_* is split surjective.

4.1.2. *Remark.* This author is not able to use the procedure above to show that f_* split surjective (resp. split injective) implies that

$$f^{\mathrm{pr}}_*: K^{\mathrm{pr}}_n(\mathcal{C}, \hat{\mathbb{Z}}_l) \longrightarrow K^{\mathrm{pr}}_n(\mathcal{C}, \hat{\mathbb{Z}}_l)$$

is split surjective (resp. split injective). This is because it is not known (to the author) that the sequence

$$0 \longrightarrow \varprojlim_{s} {}^{1}K_{n+1}(\mathcal{C}, \mathbb{Z}/l^{s}) \longrightarrow K_{n}^{\mathrm{pr}}(\mathcal{C}, \hat{\mathbb{Z}}_{l}) \longrightarrow K_{n}(\mathcal{C}, \hat{\mathbb{Z}}_{l}) \longrightarrow 0$$

is split.

4.2. **Remarks and examples.** Theorem 4.1.1 applies notably in the following situations

- (a) Let *B* be a split solvable group, $T \subset B$ a split maximal torus, *X* a *B*-scheme. Then, by [11], $G_n(B, X) \longrightarrow G_n(T, X)$ is an isomorphism. So, by 4.1.1, $G_n^{\text{pr}}((B, X), \hat{\mathbb{Z}}_l) \longrightarrow G_n^{\text{pr}}((T, X), \hat{\mathbb{Z}}_l)$ is an isomorphism.
- (b) Let G be an algebraic group over a field F, H a closed subgroup of G such that $G/H \simeq \mathbb{A}_F^1$ and X a G-scheme. It is known (see [11]) that $G_n(G, X) \simeq G_n(H, X)$. Hence $G_n^{\mathrm{pr}}((G, X), \hat{\mathbb{Z}}_l) \simeq G_n^{\mathrm{pr}}((H, X), \hat{\mathbb{Z}}_l)$.
- (c) Let G be a split reductive group with $\pi_1(G)$ torsion free and X a smooth projective G-scheme. Then the restriction homomorphism $G_n(G, X) \longrightarrow G_n(X)$ is surjective (see [11]). Hence, by 4.1.1 follows that $G_n^{\rm pr}((G, X), \hat{\mathbb{Z}}_l) \longrightarrow G_n^{\rm pr}(X, \hat{\mathbb{Z}}_l)$ is surjective.

12

- (d) Let G be a reductive group defined over a field F such that G is factorial (i.e. for any finite field extension E/F, $\operatorname{Pic}(G_E)$ is trivial). Let X be a smooth projective G-scheme over F. Then the restriction homomorphism $G_n(G, X) \longrightarrow G_n(X)$ is split surjective (see [11]). Hence by 4.1.1 $G_n((G, X), \mathbb{Z}/l^s) \longrightarrow G_n(X, \mathbb{Z}/l^s)$ is split surjective and so $G_n((G, X), \hat{\mathbb{Z}}_l) \longrightarrow G_n(X, \hat{\mathbb{Z}}_l)$ is split surjective. (Recall that $G_n(\mathcal{C}, \hat{\mathbb{Z}}_l) = \lim_{k \to \infty} G_n(\mathcal{C}, \mathbb{Z}/l^s)$.)
- (e) Let G be an algebraic group over F and X a quasi-projective smooth G-scheme. Then $K_n(G, X, A) \simeq G_n(G, X, A)$ (see [11]). Hence by $4.1.1 \ K_n^{\rm pr}((G, X, A), \hat{\mathbb{Z}}_l) \simeq G_r^{\rm pr}((G, X, A), \hat{\mathbb{Z}}_l).$
- (f) Let U be a split unipotent group over F, X a U-scheme. Then the restriction homomorphism $G_n(U, X) \longrightarrow G_n(X)$ is an isomorphism (see [11]). Hence by 4.1.1, $K_n^{\rm pr}((U, X), \hat{\mathbb{Z}}_l) \simeq K_n^{\rm pr}(X, \hat{\mathbb{Z}}_l)$

4.3. Some computations. In this subsection, we obtain some *l*-completeness and other results for some twisted flag varieties as well as Brauer–Severi varieties over number fields and *p*-adic fields. Recall that if *l* is a rational prime, an Abelian group *H* is said to be *l*-complete if $H = \varprojlim H/l^s H$.

4.3.1. **Theorem.** Let F be a number field, \widetilde{G} a semi-simple, connected, simply connected split algebraic group over F, \widetilde{P} a parabolic subgroup of \widetilde{G} , $\mathcal{F} = \widetilde{G}/\widetilde{P}$, γ a 1-cocycle $\operatorname{Gal}(F_{\operatorname{sep}}/F) \longrightarrow \widetilde{G}(F_{\operatorname{sep}})$, $\gamma \mathcal{F}$ the γ -twisted form of \mathcal{F} , B a finite dimensional separable F-algebra. Then for all $n \geq 1$,

- (1) $K_{2n}^{\mathrm{pr}}((\mathcal{F}, B), \hat{\mathbb{Z}}_l)$ is an *l*-complete Abelian group.
- (2) div $K_{2n}^{\mathrm{pr}}((\mathcal{F}, B), \hat{\mathbb{Z}}_l) = 0.$

Proof. From [13] we have an isomorphism $K_n(A_{\chi,\gamma} \otimes_F B) \simeq K_n({}_{\gamma}\mathcal{F}, B)$ for all $n \geq 0$. Hence by 4.1.1 we also have $K_n^{\mathrm{pr}}((A_{\chi,\gamma} \otimes_F B), \hat{\mathbb{Z}}_l) \simeq K_n^{\mathrm{pr}}((\mathcal{F}, B), \hat{\mathbb{Z}}_l)$ So, it suffices to show that $K_{2n}^{\mathrm{pr}}((A_{\chi,\gamma} \otimes_F B), \hat{\mathbb{Z}}_l)$ is *l*-complete for all $n \geq 1$. As earlier explained in the proof of 3.1.2, $A_{\chi,\gamma} \otimes_F B$ is a semi-simple *F*algebra and so, by theorem 3.1.3, $K_{2n+1}(\Sigma)$ is a finitely generated Abelian group. Now it is proved in [10, lemma 2.8] or [8], that for all $m \geq 2$ and any exact category \mathcal{C} ,

$$\lim_{s} (K_m^{\rm pr}(\mathcal{C}, \hat{\mathbb{Z}}_l)/l^s \simeq K_m(\mathcal{C}, \hat{\mathbb{Z}}_l)$$

Hence for any $m \geq 2$

$$\lim_{s} K_m^{\rm pr}(\Sigma, \hat{\mathbb{Z}}_l) / l^s \simeq K_m(\Sigma, \hat{\mathbb{Z}}_l).$$
(III)

Also, for any $m \ge 2$ and any exact category C we have from [10, lemma 8.2.1] or [8] an exact sequence

$$0 \longrightarrow \varprojlim_{s}^{1} K_{m+1}(\mathcal{C}, \mathbb{Z}/l^{s}) \longrightarrow K_{m}^{\mathrm{pr}}(\mathcal{C}, \hat{\mathbb{Z}}_{l}) \longrightarrow K_{m}(\mathcal{C}, \hat{\mathbb{Z}}_{l}) \longrightarrow 0.$$

Hence we have an exact sequence (for $m \ge 2$)

$$0 \longrightarrow \varprojlim_{s} {}^{1}K_{n+1}(\Sigma, \mathbb{Z}/l^{s}) \longrightarrow K_{m}^{\mathrm{pr}}(\Sigma, \hat{\mathbb{Z}}_{l}) \longrightarrow K_{n}(\mathcal{C}, \hat{\mathbb{Z}}_{l}) \longrightarrow 0.$$
(IV)

Since $K_{2n+1}(\Sigma)$ is finitely generated for $n \geq 1$ then $K_{2n+1}(\Sigma, \mathbb{Z}/l^s)$ is a finite group and so, $\varprojlim_{s} {}^{1}K_{2n+1}(\Sigma, \mathbb{Z}/l^{s}) = 0$. Hence from (IV),

$$K_{2n}^{\mathrm{pr}}(\Sigma, \hat{\mathbb{Z}}_l) \simeq K_{2n}(\Sigma, \hat{\mathbb{Z}}_l). \tag{V}$$

Also from (III),

$$\lim_{s} K_{2n}^{\mathrm{pr}}(\Sigma, \hat{\mathbb{Z}}_l) / l^s \simeq K_{2n}(\Sigma, \hat{\mathbb{Z}}_l).$$
(VI)

From (V) and (VI) we now have

$$\lim_{s} K_{2n}^{\mathrm{pr}}(\Sigma, \hat{\mathbb{Z}}_l)/l^s \simeq K_{2n}^{\mathrm{pr}}(\Sigma, \hat{\mathbb{Z}}_l).$$

So, $K_{2n}^{\mathrm{pr}}(\Sigma, \hat{\mathbb{Z}}_l)$ is *l*-complete. Hence $K_{2n}^{\mathrm{pr}}(r\mathcal{F}, \hat{\mathbb{Z}}_l)$ is *l*-complete. (b) From [10, theorem 8.2.2(ii)] or [8], we have that for all $m \geq 2$ and any exact category \mathcal{C} ,

$$\varprojlim_{s} K_{m+1}(\mathcal{C}, \mathbb{Z}/l^{s}) = \operatorname{div} K_{m}^{pr}(\mathcal{C}, \hat{\mathbb{Z}}_{l})$$

Hence for all $m \geq 2$,

$$\underset{s}{\lim^{1}} K_{m+1}(\Sigma, \mathbb{Z}/l^{s}) = \operatorname{div} K_{m}^{\mathrm{pr}}(\Sigma, \hat{\mathbb{Z}}_{l}).$$

If m = 2n, then $K_{2n+1}(\Sigma)$ is finitely generated and so, $K_{2n+1}(\Sigma, \mathbb{Z}/l^s)$ is a finite group. Hence, $\underline{\lim}^{1} K_{2n+1}(\Sigma, \mathbb{Z}/l^{s}) = 0$. Hence div $K_{2n}^{\mathrm{pr}}(\Sigma, \hat{\mathbb{Z}}_{l}) = 0$ and so, div $K_{2n}^{\mathrm{pr}}(({}_{\gamma}\mathcal{F}, B), \overleftarrow{\hat{\mathbb{Z}}_l}) = 0.$

4.3.2. *Remarks.* The following results can be proved by procedures similar to those above.

- (a) If F is a number field, $\gamma \mathcal{F}$ as in 4.2.1, then $K_{2n}^{\mathrm{pr}}(\mathcal{F}, \hat{\mathbb{Z}}_l)$ is an *l*-complete Abelian group and div $K_{2n}^{\rm pr}(\gamma \mathcal{F}, \hat{\mathbb{Z}}_l) = 0$. The proof in this case is easier.
- (b) If V is a Brauer-Severi variety over a number field F, then for all $n \geq 2, K_{2n}^{\mathrm{pr}}(V, \hat{\mathbb{Z}}_l)$ is *l*-complete and div $K_{2n}^{\mathrm{pr}}(V, \hat{\mathbb{Z}}_l) = 0.$

Our next aim is to consider the situation when F is a p-adic field. 4.3.3.Before doing this, we make some general observations. Note that for any exact category \mathcal{C} , the natural map $M_{l^{\infty}}^{n+1} \to S^{n+1}$ induces a map

$$[S^{n+1}, BQ\mathcal{C}] \xrightarrow{\varphi} [M^{n+1}_{l^{\infty}}, BQ\mathcal{C}]$$

i.e.,

$$K_n(\mathcal{C}) \xrightarrow{\varphi} K_n^{\mathrm{pr}}(\mathcal{C}, \hat{\mathbb{Z}}_l)$$
 (VII)

and hence maps

$$K_n(\mathcal{C})/l^s \longrightarrow K_n^{\mathrm{pr}}(\mathcal{C}, \hat{\mathbb{Z}}_l)/l^s$$
 (VIII)

and

$$K_n(\mathcal{C})[l^s] \longrightarrow K_n^{\mathrm{pr}}(\mathcal{C}, \hat{\mathbb{Z}}_l)[l^s].$$
 (IX)

We shall denote the maps in (VIII) and (IX) also by φ by abuse of notation.

We now prove the following result.

4.3.4. **Theorem.** Let p be a rational prime, F a p-adic field, \widetilde{G} a semisimple connected and simply connected split algebraic group over F, \widetilde{P} a parabolic subgroup og \widetilde{G} , γ a 1-cocycle $\operatorname{Gal}(F_{\operatorname{sep}}/F) \longrightarrow \widetilde{G}(F_{\operatorname{sep}})$, $\gamma \mathcal{F}$ the γ -twisted form of \mathcal{F} , B a finite dimensional separable F-algebra, l a rational prime such that $l \neq p$. Then for all $n \geq 2$

- (a) $K_n^{\mathrm{pr}}(({}_{\gamma}\mathcal{F}, B), \hat{\mathbb{Z}}_l)$ is an *l*-complete profinite Abelian group.
- (b) $K_n^{\mathrm{pr}}(({}_{\gamma}\mathcal{F}, B), \hat{\mathbb{Z}}_l) \simeq K_n(({}_{\gamma}\mathcal{F}, B), \hat{\mathbb{Z}}_l).$
- (c) The map $\varphi : K_n({}_{\gamma}\mathcal{F}, B) \longrightarrow K_n^{\mathrm{pr}}(({}_{\gamma}\mathcal{F}, B), \hat{\mathbb{Z}}_l)$ induces isomorphisms (1) $K_n({}_{\gamma}\mathcal{F}, B)[l^s] \simeq K_n^{\mathrm{pr}}(({}_{\gamma}\mathcal{F}, B), \hat{\mathbb{Z}}_l)[l^s],$
 - (2) $K_n({}_{\gamma}\mathcal{F},B)/l^s \simeq K_n^{\mathrm{pr}}(({}_{\gamma}\mathcal{F},B),\hat{\mathbb{Z}}_l)/l^s.$
- (d) Kernel and cokernel of $K_n(({}_{\gamma}\mathcal{F}, B)) \longrightarrow K_n^{\mathrm{pr}}(({}_{\gamma}\mathcal{F}, B), \hat{\mathbb{Z}}_l)$ are uniquely *l*-divisible.
- (e) div $K_n^{\mathrm{pr}}(({}_{\gamma}\mathcal{F},B),\hat{\mathbb{Z}}_l)=0$ for $n\geq 2$.

Proof. (a), (b). Since $K_n(A_{\chi,\gamma} \otimes_F B) \simeq K_n((\gamma \mathcal{F}, B))$ and $A_{\chi,\gamma} \otimes_F B$ is a semi-simple *F*-algebra Σ , say, it suffices for the proof of (a) to show that $K_n^{\mathrm{pr}}(\Sigma, \hat{\mathbb{Z}}_l)$ is *l*-complete profinite Abelian group. To do this it suffices to prove that $K_n^{\mathrm{pr}}(D, \hat{\mathbb{Z}}_l)$ is an *l*-complete profinite Abelian group for a central division algebra over a *p*-adic field *F*. From the proof of 3.1.5, we saw already that $K_n(D, \mathbb{Z}/l^s)$ is a finite group. Hence, in the exact sequence

$$0 \longrightarrow \underset{s}{\lim}{}^{1}K_{n+1}(D, \mathbb{Z}/l^{s}) \longrightarrow K_{n}^{\mathrm{pr}}(D, \hat{\mathbb{Z}}_{l}) \longrightarrow K_{n}(D, \hat{\mathbb{Z}}_{l}) \longrightarrow 0$$

we have $\lim_{l \to \infty} K_{n+1}(D, \mathbb{Z}/l^s) = 0$. Hence

$$K_n^{\rm pr}(D,\hat{\mathbb{Z}}_l) \simeq K_n(D,\hat{\mathbb{Z}}_l) \tag{X}$$

proving (b).

Now, for any exact category \mathcal{C} , we have $\lim_{l \to \infty} K_n(\mathcal{C}, \mathbb{Z}/l^s) \simeq K_n(\mathcal{C}, \hat{\mathbb{Z}}_l)$ for all $n \geq 2$ (see [10, lemma 8.2.2] or [7]). So, we have

$$\lim_{s} K_n^{\rm pr}(D,\mathbb{Z})/l^s \simeq K_n(D,\hat{\mathbb{Z}}_l). \tag{XI}$$

From (X) and (XI) we now have $\lim_{l \to \infty} K_n^{\text{pr}}(D, \mathbb{Z})/l^s \simeq K_n^{\text{pr}}(D, \hat{\mathbb{Z}}_l)$ — proving (a). It is profinite because $K_n^{\text{pr}}(D, \hat{\mathbb{Z}}_l) = \lim_{l \to \infty} K_n(D, \mathbb{Z}/l^s)$, where $K_n(D, \mathbb{Z}/l^s)$ is a finite group.

(c),(d). Recall that $K_n(\gamma \mathcal{F}, B)$ is by definition the K_n of the (exact) category of vector bundles on $\gamma \mathcal{F}$ equipped with left *B*-module structure. Recall also from theorem 3.1.5 that for all $n \geq 1$, $K_n(\gamma \mathcal{F}, B)_l$ is a finite group and hence has no non-zero divisible subgroups. Hence, (c) follows from [10, theorem 8.2.1] or [8] and (d) follows from [10, corollary 8.2.1] or [8].

(e). We saw in the proof of 3.1.5 that $K_n(D, \mathbb{Z}/l^s)$ is a finite group for all $n \geq 2$. Hence $\varprojlim^1 K_n(D, \mathbb{Z}/l^s) = 0$ for all $n \geq 2$. But by [10, theorem 8.2.2(ii)] or [8]

$$\lim^{1} K_{m+1}(D, \mathbb{Z}/l^{s}) \simeq \operatorname{div} K_{m}^{\mathrm{pr}}(D, \hat{\mathbb{Z}}_{l}).$$

Hence div $K_n^{\mathrm{pr}}(D, \hat{\mathbb{Z}}_l) = 0$ as required for all $n \ge 1$, so div $K_n^{\mathrm{pr}}((\gamma \mathcal{F}, B), \hat{\mathbb{Z}}_l) = 0$.

4.3.5. *Remarks.* (a) Let V be a Brauer-Severi variety over a p-adic field F. By a similar proof to that of 4.2.4, we have

- (i) $K_n^{\mathrm{pr}}(V, \hat{\mathbb{Z}}_l) \simeq K_n(V, \hat{\mathbb{Z}}_l)$ is an *l*-complete profinite Abelian group.
- (ii) $K_n(V)/l^s \simeq K_n^{\mathrm{pr}}(V, \hat{\mathbb{Z}}_l)/l^s$ and $K_n(V)[l^s] \simeq K_n^{\mathrm{pr}}(V, \hat{\mathbb{Z}}_l)[l^s].$
- (iii) Kernel and cokernel of $K_n(V) \to K_n^{\text{pr}}(V, \hat{\mathbb{Z}}_l)$ are uniquely *l*-divisible. (iv) div $K_n^{\text{pr}}(V, \hat{\mathbb{Z}}_l) = 0$.

(b) Finally, if $_{\gamma}X$ is as in 3.2.3, we have similar results to those of 4.2.4 for $K_n^{\mathrm{pr}}((_{\gamma}X, B), \hat{\mathbb{Z}}_l)$, etc.

References

- S. Araki and H. Toda. Multiplicative structures on mod-q cohomology. Osaka Math. J. (1963), 71–115.
- [2] A. Borel. *Linear Algebraic Groups*. Second enlarged edition. Graduate Texts in Math. Vol. 126. Springer, Berlin (1991).
- [3] W. Browder. Algebraic K-theory with coefficients Z/p. Lecture Notes in Math. 657. Springer, 40–84.
- [4] C. W. Curtis and I. Reiner. Methodsof Representation Theory. J. Wiley (1981).
- [5] J. E. Humphreys. Linear algebraic groups. Springer N.Y. (1975).
- [6] A. O. Kuku. K-theory of grouprings of finite groups over maximal orders in division algebras. J. Algebra 91 (1984), 18-31.
- [7] A. O. Kuku. K_n, SK_n of integral group rings and orders. Contemporary Math. AMS 55 (1986), 333–338.
- [8] A. O. Kuku. Profinite and continuous higher K-theory of exact categories, orders and group rings. K-theory 22 (2001), 367–392.
- [9] A. O. Kuku. Finiteness of higher K-groups of orders and group rings. K-Theory 36 (2005), 51–58.
- [10] A. O. Kuku. Representation theory and higher algebraic K-theory. Chapman and Hall (2007).
- [11] A. Merkurjev. Comparison of equivariant and ordinary K-theory of algebraic varieties. (Preprint).
- [12] J. Neisendorfer. Primary homotopy theory. Mem. Amer. Math. Soc. 232 (1980).
- [13] I. Panin. On the algebraic K-theory of twisted flag varieties. K-theory 8 (1994), 541-585.
- [14] V. P. Platonov and V.I. Yanchevskii. Finite dimensional division algebras. Enciclopedia of Math. Sc. Algebra IX. Springer (1996), 125–224.
- [15] D. Quillen. Higher Algebraic K-theory I. Lecture Notes in Math. 341. Springer-Verlag (1973), 85–149.
- [16] K. W. Roggenkamp and V. Huber-Dyson. Lattices over orders I. Lecture Notes in Math. 115. Springer-Verlag (1970).
- [17] C. Soule. Groupes de Chow et K-theorie de varieties sur un corps fini. Math. Ann. 268 (1984), 317–345.
- [18] A. A. Suslin and A. V. Yufryakov. K-theory of local division algebras. Soviet Math. Docklady 33 (1986), 794–798.
- [19] R. Thomason. Algebraic K-theory of group scheme actions. In: Algebraic Topology and Algebraic K-theory. Proceedings. Princeton, NJ (1987), 539–563.
- [20] J. Tits. Classification of semisimple algebraic groups. Proc. Symp. Pure Math. 9 (1966), 33–62.

MAX-PLANCK-INSTITUT FÜR MATHEMATIK, BONN, GERMANY *E-mail address*: kuku@mpim-bonn.mpg.de