PROFINITE EQUIVARIANT HIGHER ALGEBRAIC K-THEORY FOR THE ACTIONS OF ALGEBRAIC GROUPS

ADEREMI KUKU

Abstract

Let G be an algebraic group over a field F. In this paper, we study and compute equivariant higher K-groups as well as profinite equivariant higher K-groups for some G-schemes when F is a number field or p-adic field.

For example, let ${ }_{\gamma} \mathcal{F}$ be a twisted flag variety (see 1.2.3), and B a finite dimensional separable F-algebra. When F is a number field, we prove that $K_{2 n+1}\left({ }_{\gamma} \mathcal{F}, B\right)$ is a finitely generated Abelian group; $K_{2 n}\left({ }_{\gamma} \mathcal{F}, B\right)$ is torsion (see theorem 3.1.2); $\left.K_{2 n}^{\mathrm{pr}}\left({ }_{\gamma} \mathcal{F}, B\right), \hat{Z}_{l}\right)$ is l-complete and furthermore $\operatorname{div} K_{2 n}^{\mathrm{pr}}\left(\left({ }_{\gamma} \mathcal{F}, B\right), \hat{Z}_{l}\right)=0$ (see theorem 4.3.1). When F is a p-adic field, we prove that for all $n \geq 2 K_{n}\left({ }_{\gamma} \mathcal{F}, B\right)_{l}$ is a finite group, $K_{n}^{\mathrm{pr}}\left(\left({ }_{\gamma} \mathcal{F}, B\right), \hat{Z}_{l}\right)=K_{n}\left(\left({ }_{\gamma} \mathcal{F}, B\right), \hat{Z}_{l}\right)$ is an l-complete profinite Abelian group and $\operatorname{div} K_{n}^{\mathrm{pr}}\left(\left({ }_{\gamma} \mathcal{F}, B\right), \hat{Z}_{l}\right)=0$.

We obtain similar results for some other smooth projective varieties (see 3.1.5, 3.2.3, 4.3.5).

Contents

Introduction 2
Acknowledgements 2

1. Equivariant higher K-theory for schemes 3
1.1. Generalities 3
1.2. K-theory of twisted flag varieties 4
2. Profinite Higher K-Theory for Schemes - Definitions and Relevant Examples 6
2.1. Mod-l ${ }^{s} K$-theory of \mathcal{C} 6
2.2. Profinite K-theory 7
3. Some Finiteness Results in Higher K-Theory of Twisted Smooth Projective Varieties 7
3.1. Finiteness results for twisted flag varieties 7
3.2. Finiteness results for some objects of the motivic category $\mathcal{C}(G)$. 10
4. Profinite Equivariant K-Theory for G-Schemes 11
4.1. A general result 11
4.2. Remarks and examples 12
4.3. Some computations 13
References 16

Introduction

Let G be an algebraic group over a field F. The aim of this paper is to study equivariant K-theory as well as profinite equivariant K-theory for G schemes with the goal of computing these K-theoretic groups for twisted flag varieties, Brauer-Severi varieties and some other smooth projective varieties over number fields and p-adic fields.

We start in section 1 by reviewing the equivariant higher algebraic K theory for schemes (à la Thomason, see [19]) with relevant examples including those that have appeared in the works of A. Merkujev [11] and I. Panin [13]. We note, however, that the equivariant categories involved are special cases of equivariant exact categories discussed in [10], even though we have focussed in this paper on the notations and terminologies of Thomason [19].

We prove at first some finiteness results in the K-theory of twisted flag varieties. More precisely, let \widetilde{G} be a semi-simple connected and simply connected F-split algebraic group over a field F, \widetilde{P} a parabolic subgroup of $\widetilde{G}, \mathcal{F}=\widetilde{G} / \widetilde{P},{ }_{\gamma} \mathcal{F}$ the twisted form of \mathcal{F} with respect to the 1-cocycle $\gamma: \operatorname{Gal}\left(F_{\text {sep }} / F\right) \rightarrow G\left(F_{\text {sep }}\right)$ (see 1.2 or $\left.[13]\right), B$ a finite-dimensional separable F-algebra and $K_{n}\left({ }_{\gamma} \mathcal{F}, B\right)$ the Quillen K-theory of the category $\mathcal{V} \mathcal{B}_{\widetilde{G}}\left({ }_{\gamma} \mathcal{F}, B\right)$ of vector bundles on ${ }_{\gamma} \mathcal{F}$ equipped with left B-module structure. We prove that when F is a number field, $K_{2 n+1}\left({ }_{\gamma} \mathcal{F}, B\right)$ is a finitely generated abelian group and $K_{2 n}\left({ }_{\gamma} \mathcal{F}, B\right)$ is torsion and has no non-trivial divisible elements for all $n \geq 1$ (see theorem 3.1.2). When F is a p-adic field, we prove that $K_{n}\left({ }_{\gamma} \mathcal{F}, B\right)_{l}$ is a finite group for all $n \geq 1$ (see theorem 3.1.5).

We obtain similar results for K-theory of Brauer-Severi varieties as well as for K-theory of twisted forms of some smooth projective varieties arising in the context of a motivic category constructed by I. Panin (see 3.2.3 or [13]).

In section 2 we introduce mod- l^{s} and profinite higher algebraic K-theory with copious examples relevant to this paper. We then prove that if F is a number field, then for all $n \geq 1, K_{2 n}^{\mathrm{pr}}\left(\left({ }_{\gamma} \mathcal{F}, B\right), \hat{\mathbb{Z}}_{l}\right)$ is l-complete and $\operatorname{div} K_{2 n}^{\mathrm{pr}}\left(\left({ }_{\gamma} \mathcal{F}, B\right), \hat{\mathbb{Z}}_{l}\right)=0$ (see theorem 4.2.1).

When F is a p-adic field, we have that for all $n \geq 1, K_{n}^{\mathrm{pr}}\left(\left({ }_{\gamma} \mathcal{F}, B\right), \hat{\mathbb{Z}}_{l}\right) \simeq$ $K_{n}\left(\left({ }_{\gamma} \mathcal{F}, B\right) \hat{\mathbb{Z}}_{l}\right)$ are l-complete profinite groups, $\left.\operatorname{div} K_{n}^{\mathrm{pr}}\left({ }_{\gamma} \mathcal{F}, B\right), \hat{\mathbb{Z}}_{l}\right)=0$ and the kernel and cokernel of $K_{n}\left(\left({ }_{\gamma} \mathcal{F}, B\right)\right) \longrightarrow K_{n}^{\mathrm{pr}}\left(\left({ }_{\gamma} \mathcal{F}, B\right), \hat{\mathbb{Z}}_{l}\right)$ are uniquely l-divisible (see theorem 4.2.4). Similar results are obtained for Brauer-Severi varieties.

Notes on Notation. For an additive abelian group A and a positive integer m, we write A / m for $A / m A$, and $A[m]=\{x \in A \mid m x=0\}$. If l is a rational prime we denote by A_{l} the l-primary subgroup of A, i.e. $A_{l}=\bigcup A\left[l^{s}\right]=$ $\xrightarrow{\lim } A\left[l^{s}\right]$.

Acknowledgements. Part of the work reported in this article was done while I was visiting University of Bielefeld, Germany and IHES, Paris. It was concluded and written up while visiting Max-Planck-Institut für Mathematik, Bonn, Germany. I like to thank the three institutions for hospitality and finantial support.

1. Equivariant higher K-Theory for schemes

In this section, we briefly review equivariant higher algebraic K-theory for schemes as defined by R.W. Thomason in [19], as well as review some relevant examples. As remarked in the Introduction, the equivariant categories involved are special cases of equivariant exact categories discussed by this author in [10], even though we shall in this paper stick to the notations and terminologies of Thomason.

1.1. Generalities.

1.1.1. Let G be an algebraic group over a field F and $\operatorname{Rep}_{F}(G)$ the category of representations of G in the category $\mathcal{P}(F)$ of finite dimensional vector spaces over F. We denote $K_{0}\left(\operatorname{Rep}_{F}(G)\right)$ by $R_{F}(G)$ or $R(G, F)$ (or just $R(G)$ when the context is clear). Note that $R(G)$ is the free abelian group generated by the classes of irreducible representations and that $R(G)$ also has a ring structure induced by tensor product. Call $R(G)$ the representation ring.

Since $\operatorname{Rep}_{F}(G)$ is an exact category (see [16] or [13]) we denote $K_{n}\left(\operatorname{Rep}_{F}(G)\right)$ by $K_{n}(G, F)$, which is also equal to $G_{n}(G, F)$ (see $\left.[10]\right)$. So, $G_{0}(G, F)=$ $R_{F}(G)=K_{0}(G, F)$ (see 1.1.3 below) .
1.1.2. Let G be a group scheme over a scheme Y (we shall mostly be interested in $Y=\operatorname{Spec}(F), F$ a field). A scheme X over Y is called a G-scheme if there is an action morphism $\theta: G \underset{Y}{\times} X \rightarrow X$ (see [19] or [11]).

A G-module M over X is a coherent O_{X}-module M together with an isomorphism of $O_{G \times X^{-}}$-modules $\rho: \theta^{*}(M) \rightarrow p_{2}^{*}(M)$ where $p_{2}: G \underset{Y}{\times} X \rightarrow X$ is the projection satisfying the cocycle condition on $G \underset{Y}{\times} G \underset{Y}{\times} X$:

$$
p_{23}^{*}(\rho) \circ\left(\operatorname{id}_{\rho} \times \theta\right)^{*}(\rho)=\left(m \times \operatorname{id}_{X}\right)^{*}(\rho)
$$

where $m: G \underset{Y}{\times} G \rightarrow G$ is the multiplication (see [11] or [19]).
1.1.3. Let $\mathcal{M}(G, X)$ denote the abelian category of G-modules over a G scheme X. We write $G_{n}(G, X)$ for $K_{n}(\mathcal{M}(G, X))$. Note that when $X=$ $\operatorname{Spec}(F)$ we recover $G_{n}(G, F)$ in 1.1.1.

Let $\mathcal{P}(G, X)$ be the full subcategory of $\mathcal{M}(G, X)$ consisting of locally free O_{X}-modules. We can write $K_{n}(G, X)$ for $K_{n}(\mathcal{P}(G, X))$. Note that:
(a) if G is a trivial scheme, then $G_{n}(G, X) \simeq G_{n}(X) ; K_{n}(G, X) \simeq$ $K_{n}(X)$
(b) $G_{n}(G,-)$ is contravariant with respect to flat G-maps.
(c) $G_{n}(G,-)$ is covariant with respect to projective G-maps.
(d) $K_{n}(G,-)$ is contravariant with respect to any G-map.
(e) $G_{n}(-, X)$ is contravariant with respect to group homomorphisms.
(f) $K_{n}(-, X)$ is covariant with respect to group homomorphisms (see [19] or [11]).
1.1.4. We have the following generalization of 1.1.3 (see [11], [13]):

Let A be a finite dimensional separable F-algebra, G an algebraic group over F and X a G-scheme. A G - A-module over a G-scheme X is a G-module M which is also a left $A \otimes_{F} O_{X}$-module such that $g(a m)=g a \cdot g m$ for $g \in G$, $m \in M$.

Let $\mathcal{M}(G, X, A)$ be the Abelian category whose objects are G - A-modules and whose morphisms are $A \otimes_{F} O_{X^{-}}$and G-module morphisms. We write $G_{n}(G, X, A)$ for $K_{n}(\mathcal{M}(G, X, A))$. Note that $\mathcal{M}(G, X, F) \simeq \mathcal{M}(G, X)$, and so, $G_{n}(G, X, F) \simeq G_{n}(G, X)$.

Let $\mathcal{P}(G, X, A)$ be the full subcategory of $\mathcal{M}(G, X, A)$ consisting of lo-
 $\mathcal{P}(G, X, F) \simeq \mathcal{P}(G, X), K_{n}(G, X, F) \simeq K_{n}(G, X)$.
1.1.5. Let G be an affine algebraic group over F, X a G-scheme, $\mathcal{V} \mathcal{B}_{G}(X)$ the category of G-equivariant vector bundles on X. If H is a closed subgroup of G, then we have an equivalence of categories

$$
\operatorname{Rep}_{F}(H) \underset{\text { res }}{\stackrel{\text { ind }}{\rightleftarrows}} \mathcal{V B}_{G}(G / H)
$$

where 'ind' and 'res' are defined as follows:
\triangleright res: For any vector bundle $E \xrightarrow{p} G / H, p^{-1}(\bar{e}) \in \operatorname{Rep}_{F}(H)$ (where $\bar{e}=$ $e H=H)$ since the stabilizer of H in $G / H=\bar{e}$.
\triangleright ind: Let $(V, \alpha: H \rightarrow \operatorname{Aut}(V)) \in \operatorname{Rep}_{F}(H)$. Then, one has a vector bundle $(G \times V) / H \rightarrow G / H$ where H acts on $(G \times V) / H$ by $(g, v) h=$ $\left(g \cdot h, h^{-1} v\right)$, see [13]. We denote $(G \times V) / H$ by \widetilde{V}. Here $h^{-1} v:=$ $\alpha\left(h^{-1} v\right)$. So we get $K_{n}\left(\operatorname{Rep}_{F}(H)\right) \simeq K_{n}\left(\mathcal{V} \mathcal{B}_{G}(G / H)\right)$. We denote $K_{n}\left(\mathcal{V}_{G}(G / H)\right)$ by $K_{n}(G / H)$.
1.2. K-theory of twisted flag varieties. In this subsection we briefly introduce twisted flag varieties and their algebraic K-theory. Details can be found in [13]. We say enough here to develop notations for later use.
1.2.1. Let \widetilde{G} be a semi-simple connected and simply connected, F-split algebraic group over a field F. Let $\widetilde{T} \subset \widetilde{G}$ be a maximal F-split torus of $\widetilde{G}, \widetilde{P} \subset \widetilde{G}$ a parabolic subgroup of \widetilde{G} containing the torus \widetilde{T}. The factor variety $\mathcal{F}=\widetilde{G} / \widetilde{P}$ is smooth and projective (see [13], [2]). Call $\mathcal{F}=\widetilde{G} / \widetilde{F}$ a flag variety.

Let $N_{\widetilde{G}}(\widetilde{T})$ be the normalizer of \widetilde{T} in $\widetilde{G}, W:=N_{\widetilde{G}}(\widetilde{T}) / \widetilde{T}$ the Weyl group of G - a finite group. Let $W_{\widetilde{P}}:=\left\{w \in W \mid w \widetilde{P} w^{-1}=\widetilde{P}\right\}$. Put $n(\mathcal{F})=$ [$W: W_{\widetilde{P}}$]. Note that $R(\widetilde{P})$ is a free $R(\widetilde{G})$-module of $\operatorname{rank} n(\widetilde{\mathcal{F}})$ (see [13]).
1.2.2. Let \widetilde{Z} be the center of \widetilde{G} and $\widetilde{Z}^{*}=\operatorname{Hom}\left(\widetilde{Z}, G_{m}\right)$ the group of characters of \widetilde{Z}. Note that \widetilde{Z}^{*} is a finite group.

Let $x \in \widetilde{Z}^{*}$ and $\operatorname{Rep}_{G}^{\chi}(\widetilde{P})$ be the full subcategory of $\operatorname{Rep}_{F}(\widetilde{P})$ consisting of those $V \in \operatorname{Rep}_{F}(\widetilde{P})$ such that \widetilde{Z} acts on V by the character χ. The F-group scheme \widetilde{Z} acts on V by the character χ and hence on every $\widetilde{V}=$ $(\widetilde{G} \times V) / \widetilde{P} \in \mathcal{V}_{\widetilde{G}}(\mathcal{F})$ (see 1.1.5).

Let $\mathcal{V \mathcal { B } _ { \widetilde { G } }}(\mathcal{F}, \chi)$ be the full subcategory of $\mathcal{V B}_{\widetilde{G}}(\mathcal{F})$ consisting of those \widetilde{V} such that \widetilde{Z} acts on every fibre of \widetilde{V} by the character χ. Write $K_{n}(\mathcal{F}, \chi)$ for $K_{n}\left(\mathcal{V} \mathcal{B}_{\widetilde{G}}(\mathcal{F}, \chi)\right.$ and $R^{\chi}(\mathcal{P})$ for $K_{0}\left(\operatorname{Rep}_{F}^{\chi}(\mathcal{P})\right)$.
1.2.3. Let $\widetilde{G}, \widetilde{Z}, \widetilde{T}, \widetilde{P}$ be as in 1.2.1 and 1.2.2. Put $\widetilde{G}=\widetilde{G} / \widetilde{Z}, P=\widetilde{P} / \widetilde{Z}$, $T=\widetilde{T} / \widetilde{Z}$ and $\mathcal{F}=\widetilde{G} / \widetilde{P}=G / P$. Put $\mathfrak{g}=\operatorname{Gal}\left(F_{\text {sep }} / F\right)$ where $F_{\text {sep }}$ is the separable closure of F. Let $\gamma: \mathfrak{g} \rightarrow G\left(F_{\text {sep }}\right)$ be a 1-cocycle (see [13]) and ${ }_{\gamma} \mathcal{F}$ the twisted form of \mathcal{F} corresponding to γ (see [11] or [13]). We write $K_{n}\left({ }_{\gamma} \mathcal{F}\right)$ for $K_{n}\left(\mathcal{V} \mathcal{B}_{G}\left({ }_{\gamma} \mathcal{F}\right)\right)$.

Now, for $\chi \in \widetilde{Z}^{*}=\operatorname{Hom}\left(\widetilde{Z}, G_{m}\right)$, choose a non-trivial representation $V_{\chi} \in \operatorname{Rep}^{\chi}(\widetilde{G})$. Put $A_{\chi}=\operatorname{End}_{F}\left(V_{\chi}\right)$. Then A_{χ} is an F-algebra equipped with a G-action by F-algebra automorphism (see [13]). Using the 1-cocycle γ, one gets a new \mathfrak{g}-action on $A_{\chi} \otimes_{F} F_{\text {sep }}$ and hence a twisted form $A_{\chi, \gamma}$ of the algebra A_{χ} (see [13]).
1.2.4. As in 1.2 .3 , let $\gamma: \mathfrak{g} \rightarrow G\left(F_{\text {sep }}\right)$ be a 1-cocycle and let ${ }_{\gamma} \mathcal{F}$ be the twisted form of \mathcal{F} corresponding to the cocycle γ. Assume that $\operatorname{char}(F)=0$ or $\operatorname{char}(P)$ is prime to the order of \widetilde{Z}^{*}. Now consider the exact sequence

$$
\{1\} \longrightarrow \widetilde{Z} \longrightarrow \widetilde{G} \longrightarrow \widetilde{G} / \widetilde{Z} \longrightarrow\{1\}
$$

and the boundary map $\partial: H^{1}(F, G) \rightarrow H^{2}(F, \widetilde{Z})$. Then we have an element $\partial \gamma \in{\underset{\sim}{H}}^{2}(F, \widetilde{Z})$. Now, any $\chi \in \bar{Z}^{*}=\operatorname{Hom}\left(\bar{Z}, G_{m}\right)$ induces a map χ_{*} : $H^{2}(F, \widetilde{Z}) \rightarrow H^{2}\left(F, G_{m}\right)=\operatorname{Br}(F)$. Hence we now have a map

$$
\begin{aligned}
\beta: \widetilde{Z}^{*} & \longrightarrow \operatorname{Br}(F) \\
\chi & \longmapsto \chi_{*}(\partial \gamma)
\end{aligned}
$$

1.2.5. Lemma (Tits, [20]). Assume that $\operatorname{char}(F)=0$ or that $\operatorname{char}(F)$ is prime to the order of \widetilde{Z}^{*}, then $\left[A_{\chi, \gamma}\right]=\beta(\gamma) \in \operatorname{Br}(F)$.
1.2.6. Remarks.
(a) Note from 1.2.5, that $A_{\chi, \gamma}$ is a central simple F-algebra.
(b) We give one example of the structure above. Other examples can be found in [13]. Take $\widetilde{G}=\mathrm{SL}_{n}, G=\mathrm{PGL}_{n}, \widetilde{Z}=\mu_{n}$, the group scheme of $n^{\text {th }}$ roots of unity, $\widetilde{Z}^{*}=Z / n Z$ whose generator is the embedding $\mu_{n} \stackrel{\chi}{\longleftrightarrow} G_{m}$. Let V_{n} be the regular n-dimensional representation of \widetilde{G}. Then $V_{n} \in \operatorname{Rep}^{\chi}(\widetilde{G})$. Take $V_{\chi^{i}}:=V_{n}^{\otimes i} \in \operatorname{Rep}^{\chi^{i}}(\widetilde{G})$, $A_{i}:=\operatorname{End}_{F}\left(V_{\chi^{i}}\right)$. Then $A_{\chi, \gamma}$ is a central simple F-algebra of degree n corresponding to γ, and $A_{\chi^{i}, \gamma} \simeq A_{\chi, \gamma}^{\otimes i}($ for $i=0,1, \ldots, n-1$). Put $P=\left\{\left.\left(\frac{a}{0} \frac{b}{c}\right) \right\rvert\, \operatorname{det}(\underline{a}) \operatorname{det}(\underline{b})=1\right\}, \underline{a} \in \mathrm{GL}_{k}, \underline{c} \in \mathrm{GL}_{n-k}$. Then $\widetilde{G} / \widetilde{P}=\operatorname{Gr}(k, n)$ is the Grassmannian variety of k-dimensional linear subspaces of a fixed n-dimensional space.
1.2.7. Let B be a finite dimensional separable F-algebra, X a smooth projective variety equipped with the action of an affine algebraic group G over $F,{ }_{\gamma} X$ the twisted form of X via a 1-cocycle γ. Let $\mathcal{V} \mathcal{B}_{G}\left({ }_{\gamma} X, B\right)$ be the category of vector bundles on ${ }_{\gamma} X$ equipped with left B-module structure. We write $K_{n}\left({ }_{\gamma} X, B\right)$ for $K_{n}\left(\mathcal{V B}_{G}\left({ }_{\gamma} X, B\right)\right)$.

2. Profinite Higher K-Theory for Schemes - Definitions and Relevant Examples

In this section we briefly introduce mod- l^{s} and profinite K-theory for exact categories with examples relevant to this paper. More details and examples can be found in [10, chapter 8] or [8].

2.1. Mod- $l^{s} K$-theory of \mathcal{C}.

2.1.1. Let \mathcal{C} be an exact category, l a rational prime, s a positive integer, $M_{l^{s}}^{n+1}$ the $(n+1)$-dimensional mod- l^{s}-space i.e. the space obtained from S^{n} by attaching an $(n+1)$-cell via a map of degree l^{s} (see [3], [12]).

If X is any H-space, write $\pi_{n+1}\left(X, \mathbb{Z} / l^{s}\right)$ for $\left[M_{l^{s}}^{n+1}, X\right]$, the set of homotopy classes of maps from $M_{l^{s}}^{n+1}$ to X. If \mathcal{C} is an exact category and $X=B Q \mathcal{C}$, write $K_{n}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right)$ for $\pi_{n+1}\left(B Q \mathcal{C}, \mathbb{Z} / l^{s}\right)$ for $n \geq 1$ and $K_{0}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right)$ for $K_{0}(\mathcal{C}) \otimes \mathbb{Z} / l^{s}$. Call $K_{n}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right)$ mod- $l^{s} K$-theory of \mathcal{C}.
2.1.2. Note from [10, 8.1.12] or [8] that the exact sequence

$$
\cdots \longrightarrow K_{n}(\mathcal{C}) \xrightarrow{l^{s}} K_{n}(\mathcal{C}) \xrightarrow{\rho} K_{n}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right) \xrightarrow{\beta} K_{n}(\mathcal{C}) \longrightarrow K_{n}(\mathcal{C}) \longrightarrow \cdots
$$

induces a short exact sequence for all $n \geq 2$

$$
0 \longrightarrow K_{n}(\mathcal{C}) / l^{s} \longrightarrow K_{n}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right) \longrightarrow K_{n}(\mathcal{C})\left[l^{s}\right] \longrightarrow 0
$$

2.1.3. Examples.

(i) if A is a ring with identity, and $\mathcal{C}=\mathcal{P}(A)$ the category of finitely generated projective A-modules, write $K_{n}\left(A, \mathbb{Z} / l^{s}\right)$ for $K_{n}\left(\mathcal{P}(A), \mathbb{Z} / l^{s}\right)$. Note that $K_{n}\left(A, \mathbb{Z} / l^{s}\right)$ is also $\pi_{n}\left(B G L(A)^{+}, \mathbb{Z} / l^{s}\right)$.
(ii) If Y is a scheme and $\mathcal{C}=\mathcal{P}(Y)$, the category of locally free sheaves of O_{Y}-modules, write $K_{n}\left(Y, \mathbb{Z} / l^{s}\right)$ for $K_{n}\left(\mathcal{P}(Y), \mathbb{Z} / l^{s}\right)$. Note that for $Y=\operatorname{Spec}(A), A$ commutative, we recover $K_{n}\left(A, \mathbb{Z} / l^{s}\right)$.
(iii) Let A be a Noetherian ring and $\mathcal{M}(A)$ the category of finitely generated A-modules. We write

$$
G_{n}\left(A, \mathbb{Z} / l^{s}\right) \quad \text { for } \quad K_{n}\left(\mathcal{M}(A), \mathbb{Z} / l^{s}\right)
$$

(iv) If Y is a Noetherian scheme, $\mathcal{C}=\mathcal{M}(Y)$ the category of coherent sheaves of O_{Y}-modules, write

$$
G_{n}\left(Y, \mathbb{Z} / l^{s}\right) \text { for } \quad G_{n}\left(\mathcal{M}(Y), \mathbb{Z} / l^{s}\right)
$$

(v) Let G be an algebraic group over a field F, X a G-scheme and $\mathcal{C}=\mathcal{M}(G, X)$ as defined in 1.1.3. Write

$$
G_{n}\left((G, X), \mathbb{Z} / l^{s}\right) \quad \text { for } \quad K_{n}\left(\mathcal{M}(G, X), \mathbb{Z} / l^{s}\right) .
$$

(vi) If $\mathcal{C}=\mathcal{P}(G, X)$ as defined in 1.1.3, write

$$
K_{n}\left((G, X), \mathbb{Z} / l^{s}\right) \quad \text { for } \quad K_{n}\left(\mathcal{P}(G, X), \mathbb{Z} / l^{s}\right)
$$

(vii) If $\mathcal{C}=\mathcal{V B}_{G}\left({ }_{\gamma} X, B\right)$ as in 1.2 .7 we write

$$
K_{n}\left(\left({ }_{\gamma} X, B\right), \mathbb{Z} / l^{s}\right) \quad \text { for } \quad K_{n}\left(\mathcal{V} \mathcal{B}_{G}\left({ }_{\gamma} X, B\right) ; \mathbb{Z} / l^{s}\right) .
$$

(viii) If $\mathcal{C}=\mathcal{M}(G, X, A)$ as defined in 1.1.4, write

$$
G_{n}\left((G, X, A), \mathbb{Z} / l^{s}\right) \quad \text { for } \quad K_{n}\left(\mathcal{M}(G, X, A), \mathbb{Z} / l^{s}\right)
$$

(ix) If $\mathcal{C}=\mathcal{P}\left((G, X, A), \mathbb{Z} / l^{s}\right)$ as in 1.1.4, we write

$$
K_{n}\left((G, X, A), \mathbb{Z} / l^{s}\right) \quad \text { for } \quad K_{n}\left(\mathcal{P}(G, X, A), \mathbb{Z} / l^{s}\right) .
$$

2.2. Profinite K-theory.

2.2.1. Let \mathcal{C} be an exact category, l a rational prime, s a positive integer. Put $M_{l \infty}^{n+1}=\lim M_{l^{s}}^{n+1}$. We define the profinite K-theory of \mathcal{C} by $K_{n}^{\mathrm{pr}}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right):=\left[M_{l^{\infty}}^{n+1} ; B Q \mathcal{C}\right]$. We also write $K_{n}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right)$ for $\varliminf_{s}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right)$. Note that for all $n \geq 1$, we have an exact sequence

$$
0 \longrightarrow{\underset{s}{\lim }}^{1} K_{2 n+1}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right) \longrightarrow K_{n}^{\mathrm{pr}}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right) \longrightarrow K_{n}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right) \longrightarrow 0 .
$$

For more information see [10] or [8].

2.2.2. Examples.

(i) If $\mathcal{C}=\mathcal{P}(A)$ as in 2.1.3(i), we write $K_{n}^{\mathrm{pr}}\left(A, \hat{\mathbb{Z}}_{l}\right)$ for $K_{n}\left(\mathcal{P}(A), \hat{\mathbb{Z}}_{l}\right)$ and $K_{n}\left(A, \hat{\mathbb{Z}}_{l}\right)$ for $K_{n}\left(\mathcal{P}(A), \hat{\mathbb{Z}}_{l}\right)$.
(ii) If $\mathcal{C}=\mathcal{P}(Y)$ as in 2.1.3(ii) we write $K_{n}^{\mathrm{pr}}\left(Y ; \hat{\mathbb{Z}}^{l}\right)$ for $K_{n}^{\mathrm{pr}}\left(\mathcal{P}(Y), \hat{\mathbb{Z}}_{l}\right)$ and $K_{n}\left(Y, \hat{\mathbb{Z}}_{l}\right)$ for $K_{n}\left(\mathcal{P}(Y), \hat{\mathbb{Z}}_{l}\right)$.
(iii) If $\mathcal{C}=\mathcal{M}(A)$ as in 2.1.3(iii) we write $G_{n}\left(A, \hat{\mathbb{Z}}_{l}\right)$ for $G_{n}^{\mathrm{pr}}\left(\mathcal{M}(A), \hat{\mathbb{Z}}_{l}\right)$ and $G_{n}\left(A, \hat{\mathbb{Z}}_{l}\right)$ for $K_{n}\left(\mathcal{M}(A), \hat{\mathbb{Z}}_{l}\right)$.
(iv) If $\mathcal{C}=\mathcal{M}(Y)$ as in 2.1.3(iv) write

$$
G_{n}^{\mathrm{pr}}\left(Y, \hat{\mathbb{Z}}_{l}\right) \quad \text { for } \quad K_{n}^{\mathrm{pr}}\left(\mathcal{M}(Y), \hat{\mathbb{Z}}_{l}\right)
$$

(v) If $\mathcal{C}=\mathcal{M}(G, X)$ as in 2.1.3(v) write

$$
G_{n}^{\mathrm{pr}}\left((G, X), \hat{\mathbb{Z}}_{l}\right) \quad \text { for } \quad K_{n}^{\mathrm{pr}}\left(\mathcal{M}(G, X), \hat{\mathbb{Z}}_{l}\right) .
$$

(vi) If $\mathcal{C}=\mathcal{P}(G, X)$ as in 2.1.3(vi) write

$$
K_{n}^{\mathrm{pr}}\left((G, X), \hat{\mathbb{Z}}_{l}\right) \quad \text { for } \quad K_{n}^{\mathrm{pr}}\left(\mathcal{P}(G, X), \hat{\mathbb{Z}}_{l}\right) .
$$

(vii) If $\mathcal{C}=\mathcal{V}_{G}\left({ }_{\gamma} X, B\right)$ as in 2.1.3(vii), write

$$
K_{n}^{\mathrm{pr}}\left(\left({ }_{\gamma} X, B\right), \hat{\mathbb{Z}}_{l}\right) \quad \text { for } \quad K_{n}^{\mathrm{pr}}\left(\mathcal{V} \mathcal{B}_{G}\left(\gamma_{\gamma} X, B\right), \hat{\mathbb{Z}}_{l}\right) .
$$

(viii) If $\mathcal{C}=\mathcal{M}(G, X, A)$ as in 2.1.3(viii) write

$$
G_{n}^{\mathrm{pr}}\left((G, X, A), \hat{\mathbb{Z}}_{l}\right) \quad \text { for } \quad K_{n}^{\mathrm{pr}}\left(\mathcal{M}(G, X, A), \hat{\mathbb{Z}}_{l}\right)
$$

(ix) If $\mathcal{C}=\mathcal{P}(G, X, A)$ as in 2.1.3(ix) write

$$
K_{n}^{\mathrm{pr}}\left((G, X, A), \hat{\mathbb{Z}}_{l}\right) \quad \text { for } \quad K_{n}^{\mathrm{pr}}\left(\mathcal{P}(G, X, A), \hat{\mathbb{Z}}_{l}\right) .
$$

3. Some Finiteness Results in Higher K-Theory of Twisted Smooth Projective Varieties

In this section, we prove some finiteness results in the K-theory of twisted flag varieties as well as K-theory of twisted forms of some other smooth projective varieties over number fields and p-adic fields.

3.1. Finiteness results for twisted flag varieties.

3.1.1. Let \widetilde{G} be a semi-simple, simply connected and connected F-split algebraic group over a field F, \widetilde{P} a parabolic subgroup of G, γ the 1-cocycle $\gamma: \operatorname{Gal}\left(F_{\text {sep }} / F\right) \rightarrow \widetilde{G}\left(F_{\text {sep }}\right),{ }_{\gamma} \mathcal{F}$ the twisted form of \mathcal{F}. Let B be a finite dimensional separable F-algebra. We write $K_{n}\left({ }_{\gamma} \mathcal{F}, B\right)$ for K_{n} of the category $\mathcal{V} \mathcal{B}_{G}\left({ }_{\gamma} \mathcal{F}, B\right)$ of vector bundles on ${ }_{\gamma} \mathcal{F}$ equipped with left B-module structure. We prove the following result.
3.1.2. Theorem. Let F be a number field. Then for all $n \geq 1$,
(a) $K_{2 n+1}\left({ }_{\gamma} \mathcal{F}, B\right)$ is a finitely generated Abelian group.
(b) $K_{2 n}\left(\gamma^{\mathcal{F}}, B\right)$ is a torsion group and has no non-trivial divisible elements.

In order to prove 3.1.2, we first prove the following
3.1.3. Theorem. Let Σ be a semi-simple algebra over a number field F. Then for all $n \geq 1$
(a) $K_{2 n+1}(\Sigma)$ is finitely generated Abelian group.
(b) $K_{2 n}(\Sigma)$ is torsion and has no non-zero divisible elements.

Proof. (a) Let R be the ring of integers of F. It is well-known that any semi-simple F-algebra contains at least one maximal R-order (see [10], [16] or [4]). So let Γ be a maximal order in Σ. From the localization sequence

$$
\begin{equation*}
\cdots \rightarrow \bigoplus_{\underline{p}} G_{2 n+1}(\Gamma / \underline{p} \Gamma) \rightarrow G_{2 n+1}(\Gamma) \rightarrow G_{2 n+1}(\Sigma) \rightarrow \bigoplus_{\underline{p}} G_{2 n}(\Gamma / \underline{p} \Gamma) \rightarrow \cdots \tag{I}
\end{equation*}
$$

(whose \underline{p} ranges over all prime ideals of R) we have

$$
G_{2 n}(\Gamma / \underline{p} \Gamma) \simeq K_{2 n}((\Gamma / \underline{p} \Gamma) / \operatorname{rad}(\Gamma / \underline{p} \Gamma))
$$

where $(\Gamma / \underline{p} \Gamma) / \operatorname{rad}(\Gamma / \underline{p} \Gamma)$ is a finite semi-simple ring which is a direct product of matrix algebras over finite fields. So, $G_{2 n}(\Gamma / \underline{p} \Gamma)=0$. Note that since Γ and Σ are regular, $K_{n}(\Gamma) \simeq G_{n}(\Gamma)$ and $K_{n}(\Sigma) \simeq G_{n}(\Sigma)$ for all $n \geq 0$. But $K_{2 n+1}(\Gamma)$ is finitely generated (see [10, theorem 7.1.13] or [7]). Hence $K_{2 n+1}(\Sigma)$ is finitely generated as a homomorphic image of $G_{2 m+1}(\Gamma)$.
(b) Recall from the proof of (a) that $G_{2 n}(\Gamma / \underline{p} \Gamma)=0$. Hence Quillen's localization sequence yields

$$
\begin{equation*}
0 \rightarrow G_{2 n}(\Gamma) \rightarrow G_{2 n}(\Sigma) \rightarrow \bigoplus_{\underline{p}} G_{2 n-1}(\Gamma / \underline{p} \Gamma) \rightarrow S K_{2 n-1}(\Gamma) \rightarrow 0 \tag{II}
\end{equation*}
$$

Also recall that since Γ, Σ are regular, $K_{n}(\Gamma) \simeq G_{n}(\Gamma)$ and $K_{n}(\Sigma) \simeq$ $G_{n}(\Sigma)$ for all $n \geq 0$. But $G_{2 n}(\Gamma) \simeq K_{2 n}(\Gamma)$ is a finite group for all $n \geq 1$ (see [10] theorem 7.1.12 or [6]). Also, $\bigoplus G_{2 n+1}(\Gamma / \underline{p} \Gamma)$ is a torsion group as a direct sum of finite groups, see [10, 7.1.12]. Hence it follows from the diagram (II) above that $G_{2 n}(\Sigma) \simeq K_{2 n}(\Sigma)$ is a torsion group.

Also from one sequence (II), $\bigoplus G_{2 n-1}(\Gamma / p \Gamma)$, as a direct sum of finite groups has no non-trivial divisible elements. So any divisible element in $K_{2 n}(\Sigma)$ must come from $G_{2 n}(\Gamma) \simeq K_{2 n}(\Gamma)$. But $K_{2 n}(\Gamma)$ is a finite group and also has no non-trivial divisible elements. Hence $G_{2 n}(\Sigma)$ has no nontrivial divisible elements.

Proof of 3.1.2. (a) It was proved in [13] that for all $n \geq 0 K_{n}\left(A_{\chi, \gamma} \otimes_{F} B\right) \simeq$ $K_{n}\left({ }_{\gamma} \mathcal{F}, B\right)$. So, it suffices to prove that $K_{2 n+1}\left(A_{\chi, \gamma} \otimes_{F} B\right)$ is finitely generated. Now, as discussed in 1.2.4-1.2.6, $A_{\chi, \gamma}$ is a central simple F-algebra. Also B being separable is also semi-simple. So, $A_{\chi, \gamma} \otimes_{F} B$ is a semi-simple F-algebra (see [14, p. 136]). Hence by theorem 3.1.3(a) $K_{2 n+1}\left(A_{\chi, \gamma} \otimes_{F} B\right)$ is finitely generated. Hence $K_{2 n-1}(\gamma \mathcal{F}, B)$ is finitely generated.
(b) follows from theorem 3.1.3(b) by substituting $A_{\chi, \gamma} \otimes_{F} B$ for Σ.

3.1.4. Remarks.

(a) One can also see that $K_{2 n+1}\left({ }_{\gamma} \mathcal{F}\right)$ is finitely generated as a special case of 3.1.2(a). However one can also prove it directly as follows: Since $\bigoplus_{1}^{n(\mathcal{F})} K_{2 n+1}(F)=K_{2 n+1}\left({ }_{\gamma} \mathcal{F}\right)$ (see [13]), we only have to see that $K_{2 n+1}(F)$ is finitely generated (since we have a finite direct sum of $\left.K_{2 n+1}(F)\right)$. Now by Quillen's result, $K_{2 n+1}(R)$ is finitely generated and by Soule's result $K_{2 n+1}(R) \simeq K_{2 n+1}(F)$ is finitely generated.
(b) To see that $K_{2 n}\left({ }_{\gamma} \mathcal{F}\right)$ is torsion it suffices to show that $K_{2 n}(F)$ is torsion since $\bigoplus_{1}^{n(\mathcal{F})} K_{2 n}(F) \simeq K_{2 n}(\gamma \mathcal{F})$. The arguments are similar to the proof of 3.1.3(b) applied to the short exact sequence

$$
0 \longrightarrow K_{2 n}(R) \longrightarrow K_{2 n}(F) \longrightarrow \underset{\underline{p}}{\bigoplus} K_{2 n-1}(R / \underline{p}) \longrightarrow 0
$$

of Soule, realizing that $K_{2 n}(R)$ is finite and each $K_{2 n-1}(R / \underline{p})$ is also finite.
We now turn attention to the local structure.
3.1.5. Theorem. Let F be a p-adic field, l a rational prime such that $l \neq p$. Then for all $n \geq 1$ and any separable F-algebra $B, K_{n}\left(\gamma^{\mathcal{F}}, B\right)_{l}$ is a finite group.

Proof. As noted before, $A_{\chi, \gamma} \otimes_{F} B$ is a semi-simple F-algebra and so, it suffices to prove that for any semi-simple F-algebra $\Sigma, K_{n}(\Sigma)_{l}$ is a finite group for any $n \geq 1$. To do this, it suffices to show that for any central division algebra D over some p-adic field $F, K_{n}(D)_{l}$ is a finite group.

Now, D has at least one maximal order Γ, say (see [4]). Let \underline{m} be the unique maximal ideal of Γ. Then, from the localization sequence
$\cdots \rightarrow K_{n}\left(\Gamma / \underline{m}, \mathbb{Z} / l^{s}\right) \rightarrow K_{n}\left(\Gamma, \mathbb{Z} / l^{s}\right) \rightarrow K_{n}\left(D, \mathbb{Z} / l^{s}\right) \rightarrow K_{n-1}\left(\Gamma / \underline{m}, \mathbb{Z} / l^{s}\right) \rightarrow \cdots$
we know that $K_{n}\left(\Gamma, \mathbb{Z} / l^{s}\right) \simeq K_{n}\left(\Gamma / \underline{m}, \mathbb{Z} / l^{s}\right)$ for all $n \geq 1$. (See [18, corollary 2 to theorem 2]).

Now, the groups $K_{n}\left(\Gamma / \underline{m}, \mathbb{Z} / l^{s}\right), n \geq 1$ are finite groups with uniformly bounded orders (see [18]). Hence, so are the groups $K_{n}\left(D, \mathbb{Z} / l^{s}\right)$ and $K_{n}\left(\Gamma, \mathbb{Z} / l^{s}\right)$ (from the exact sequence (III)). Also from 2.1.2, we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow K_{n+1}(D) / l^{s} \longrightarrow K_{n}\left(D, \mathbb{Z} / l^{s}\right) \longrightarrow K_{n}(D)\left[l^{s}\right] \longrightarrow 0 \tag{IV}
\end{equation*}
$$

where $K_{n+1}\left(D, \mathbb{Z} / l^{s}\right)$ is finite group having uniformly bounded orders (as shown above). So the groups $K_{n}(D)\left[l^{s}\right]$ are equal for $s \geq$ some s_{0}. But $K_{n}(D)_{l}=\bigcup_{n=1}^{\infty} K_{n}(D)\left[l^{s}\right]$. Hence $K_{n}(D)_{l}$ is finite.
3.1.6. Remarks. Let V be a Brauer-Severi variety over a field F, and A the finite dimensional central division F-algebra associated to V. D. Quillen shows in [15] that

$$
K_{n}(V)=\bigoplus_{s=0}^{\operatorname{dim} V} K_{n}\left(A^{\otimes s}\right)
$$

for all $n \geq 1$.
(a) Suppose that F is a number field, then $K_{2 n+1}(V)$ is a finitely generated Abelian group. Again, this follows from theorem 3.1.3.
(b) If F is a p-adic field then for all $n \geq 1 K_{n}(V)_{l}$ is a finite group if l is a prime $\neq p$.
3.2. Finiteness results for some objects of the motivic category $\mathcal{C}(G)$.
3.2.1. Let G be an algebraic group over a field F. By considering a smooth projective G-scheme as an object of a category $\mathcal{C}(G)$ defined below, we have similar finiteness results to those of 3.1 for $K_{n}\left({ }_{\gamma} X, B\right)$ where γ is a 1-cocycle, ${ }_{\gamma} X$ is the γ-twisted form of X and B is a separable F-algebra.
3.2.2. The category $\mathcal{C}(G)$ is constructed as follows (the construction is due to I. Panin, see [13], or [11]):

The objects of $\mathcal{C}(G)$ are pairs (X, A) whose X is a smooth projective G scheme and A is a finite dimensional separable F-algebra on which G acts by F-algebra automorphisms. Define

$$
\operatorname{Hom}_{\mathcal{C}(G)}((X, A),(Y, B)):=K_{0}\left(G, X \times Y, A^{\mathrm{op}} \otimes_{F} B\right)
$$

Composition of morphisms is defined as follows: If $u:(X, A) \rightarrow(Y, B)$, $v:(Y, B) \rightarrow(Z, c)$ are two morphisms, then the composite is defined by

$$
v \circ u:=p_{13}^{*}\left(p_{23}^{*}(v) \otimes_{B} p_{12}^{*}(u)\right),
$$

where $p_{12}: X \otimes Y \otimes Z \longrightarrow X \otimes Y, p_{13}: X \otimes Y \otimes Z \longrightarrow X \otimes Z$, and $p_{23}: X \otimes Y \otimes Z \longrightarrow Y \otimes Z$.

The identity endomorphism of (X, A) in $\mathcal{C}(G)$ is the class $\left[A \otimes_{F} O_{\Delta}\right.$] (where $\Delta \subset X \times X$ is the diagonal) in $K_{o}\left(G, X \times X, A^{(\gamma)} \otimes_{F} A\right)=\operatorname{End}_{\mathcal{C}(G)}(X, A)$.

We now have the following results.
3.2.3. Theorem. Let $\alpha: C \xrightarrow{\sim} X$ be an isomorphism in the category $\mathcal{C}(G)$, i.e., $\alpha:(\operatorname{Spec}(F), C) \xrightarrow{\sim}(X, F)$. For every 1 -cocycle $\gamma: \operatorname{Gal}\left(F_{\text {sep }} / F\right) \rightarrow$ $G_{F_{\text {sep }}}$ and any finite dimensional separable F-algebra B, let $K_{n}(\gamma Y, B)$ be as defined in 1.2.3.
(a) If F is a number field, then for $n \geq 1$,
(i) $K_{2 n+1}\left({ }_{\gamma} X, B\right)$ is a finitely generated Abelian group and has no non-trivial divisible elements.
(ii) $K_{2 n}\left({ }_{\gamma} X, B\right)$ is a torsion group and has no non-trivial divisible elements.
(b) If F is a p-adic field, l a rational prime such that $l \neq p$, then for all $n \geq 1$ and any separable F-algebra $B, K_{n}(\gamma X, B)_{l}$ is a finite group.

Proof. From [13], we have that for all $n \geq 1 K_{n}\left(C_{\gamma} \otimes_{F} B\right) \simeq K_{n}\left({ }_{\gamma} X, B\right)$ where F is any field and $C_{\gamma} \otimes_{F} B$ is a semi-simple F-algebra Σ, say.

If F is a number field, (a)(i),(ii) follows from 3.1.3(a),(b). IF F is a p-adic field it suffices to prove that for all $n \geq 1, K_{n}(\Sigma)_{l}$ is a finite group. But this is done already in the proof of 3.1.5.

4. Profinite Equivariant K-Theory for G-Schemes

4.1. A general result. We first prove the following general result for later use
4.1.1. Theorem. Let $\mathcal{C}, \mathcal{C}^{\prime}$ be exact categories and $f: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ an exact functor which induces an Abelian group homomorphism $f_{*}: K_{n}(\mathcal{C}) \rightarrow K_{n}\left(\mathcal{C}^{\prime}\right)$, for each $n \geq 0$. Let l be a rational prime, s a positive integer
(a) Suppose that f_{*} is injective (resp. surjective, resp. bijective), then so are the induced maps

$$
\begin{aligned}
& \hat{f}_{*}: K_{n}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right) \longrightarrow K_{n}\left(\mathcal{C}^{\prime}, \mathbb{Z} / l^{s}\right) \quad \text { and } \\
& f_{*}^{\mathrm{pr}}: K_{n}^{\mathrm{pr}}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right) \longrightarrow K_{n}^{\mathrm{pr}}\left(\mathcal{C}^{\prime}, \hat{\mathbb{Z}}_{l}\right)
\end{aligned}
$$

(b) If f_{*} is split surjective (resp. split injective) then so is

$$
\hat{f}_{*}: K_{n}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right) \longrightarrow K_{n}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right) .
$$

Proof. Consider the following commutative diagram (I) where the rows are exact and the vertical arrows are induced from f_{*}.

Now, f_{*} injective (resp. surjective, resp. bijective) implies that $\bar{f}_{*}, f_{*}^{\prime}$ are injective (resp. surjective, resp. bijective). So by applying the five lemma to diagram (I), we have that $\bar{f}_{*}, f_{*}^{\prime}$ injective (resp. surjective, resp. biyective) imply that \hat{f}_{*} is injective (resp. surjective, resp. biyective). Hence f_{*} injective (resp. surjective, resp. bijective) implies that \hat{f}_{*} is injective (resp. surjective, resp. biyective). This proves the first part of (a).

Now consider the following commutative diagram

where \hat{f}_{*}^{\prime} and $\hat{f}_{*}^{\prime \prime}$ are induced by \hat{f}_{*} in diagram (I).
Note that,

$$
K_{n}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right):=\underset{s}{\lim } K_{n}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right) \quad \text { and } \quad K_{n}\left(\mathcal{C}^{\prime}, \hat{\mathbb{Z}}_{l}\right):=\underset{s}{\lim _{s}} K_{n}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right) .
$$

Now if \hat{f}_{*} is injective (resp. surjective, resp. biyective) in diagram (I), then \hat{f}_{*}^{\prime} and \hat{f}_{*} are both injective (resp. surjective, resp. bijective) in diagram (II).

Also by applying the five lemma to diagram (II) we find that if \hat{f}_{*}^{\prime} and $\hat{f}_{*}^{\prime \prime}$ are both injective (resp. surjective, resp. bijective), then $f_{*}^{\text {pr }}$ is injective (resp. surjective, resp. bijective). Hence if f_{*} is injective (resp. surjective, resp. bijective) then so is \hat{f}_{*} and this implies that $f_{*}^{\text {pr }}$ is injective (resp. surjective, resp. bijective) as required.
(b) We prove here only that f_{*} split surjective implies that \hat{f}_{*} is split surjective since proving that f_{*} split injective implies that \hat{f}_{*} is split injective is similar.

First observe that the horizontal sequences in diagram (I) are split exact (see [10] or [1]) since l is an odd prime. Hence there exist a map $\hat{\delta}: K_{n}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right) \rightarrow K_{n}(\mathcal{C}) / l^{s}$ such that $\hat{\delta} \delta=1_{K_{n}\left(\mathcal{C} / l^{s}\right)}$, as well as a map $\hat{\delta}^{\prime}: K_{n}\left(\mathcal{C}^{\prime}, \mathbb{Z} / l^{s}\right) \rightarrow K_{n}\left(\mathcal{C}^{\prime}\right) / l^{s}$ such that $\hat{\delta}^{\prime} \delta^{\prime}=1_{K_{n}\left(\mathcal{C}^{\prime} / l^{s}\right)}$. Also, f_{*} split surjective implies that \bar{f}_{*} is split surjective. So, there exists \bar{f}_{*}^{\prime} such that $\hat{f}_{*} \hat{f}_{*}^{\prime}=1_{K_{n}(\mathcal{C}) / l^{s}}$. Put $\hat{f}_{*}^{\prime}=\delta \bar{f}_{*}^{\prime} \hat{\delta}^{\prime}$. Then for any $x \in K_{n}\left(\mathcal{C}^{\prime}, \mathbb{Z} / l^{s}\right)$,

$$
\begin{aligned}
\hat{f}_{*} \hat{f}_{*}^{\prime}(x) & =\hat{f}_{*} \delta \bar{f}_{*}^{\prime} \hat{\delta}^{\prime}(x) \\
& =\delta^{\prime} \bar{f}_{*} \bar{f}_{*}^{\prime} \hat{\delta}^{\prime}(x), \quad \text { by the commutativity of the left-hand square } \\
& =x
\end{aligned}
$$

Hence $\hat{f}_{*} \hat{f}_{*}^{\prime}=\operatorname{id}_{K_{n}\left(\mathcal{C}^{\prime}, \mathbb{Z} / l^{s}\right)}$ i.e. \hat{f}_{*} is split surjective.
4.1.2. Remark. This author is not able to use the procedure above to show that f_{*} split surjective (resp. split injective) implies that

$$
f_{*}^{\mathrm{pr}}: K_{n}^{\mathrm{pr}}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right) \longrightarrow K_{n}^{\mathrm{pr}}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right)
$$

is split surjective (resp. split injective). This is because it is not known (to the author) that the sequence

$$
0 \longrightarrow{\underset{s}{\lim }}^{1} K_{n+1}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right) \longrightarrow K_{n}^{\operatorname{pr}}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right) \longrightarrow K_{n}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right) \longrightarrow 0
$$

is split.
4.2. Remarks and examples. Theorem 4.1.1 applies notably in the following situations
(a) Let B be a split solvable group, $T \subset B$ a split maximal torus, X a B scheme. Then, by [11], $G_{n}(B, X) \longrightarrow G_{n}(T, X)$ is an isomorphism. So, by 4.1.1, $G_{n}^{\mathrm{pr}}\left((B, X), \hat{\mathbb{Z}}_{l}\right) \longrightarrow G_{n}^{\mathrm{pr}}\left((T, X), \hat{\mathbb{Z}}_{l}\right)$ is an isomorphism.
(b) Let G be an algebraic group over a field F, H a closed subgroup of G such that $G / H \simeq \mathbb{A}_{F}^{1}$ and X a G-scheme. It is known (see [11]) that $G_{n}(G, X) \simeq G_{n}(H, X)$. Hence $G_{n}^{\mathrm{pr}}\left((G, X), \hat{\mathbb{Z}}_{l}\right) \simeq G_{n}^{\mathrm{pr}}\left((H, X), \hat{\mathbb{Z}}_{l}\right)$.
(c) Let G be a split reductive group with $\pi_{1}(G)$ torsion free and X a smooth projective G-scheme. Then the restriction homomorphism $G_{n}(G, X) \longrightarrow G_{n}(X)$ is surjective (see [11]). Hence, by 4.1.1 follows that $G_{n}^{\mathrm{pr}}\left((G, X), \hat{\mathbb{Z}}_{l}\right) \longrightarrow G_{n}^{\mathrm{pr}}\left(X, \hat{\mathbb{Z}}_{l}\right)$ is surjective.
(d) Let G be a reductive group defined over a field F such that G is factorial (i.e. for any finite field extension $E / F, \operatorname{Pic}\left(G_{E}\right)$ is trivial). Let X be a smooth projective G-scheme over F. Then the restriction homomorphism $G_{n}(G, X) \longrightarrow G_{n}(X)$ is split surjective (see [11]). Hence by 4.1.1 $G_{n}\left((G, X), \mathbb{Z} / l^{s}\right) \longrightarrow G_{n}\left(X, \mathbb{Z} / l^{s}\right)$ is split surjective and so $G_{n}\left((G, X), \hat{\mathbb{Z}}_{l}\right) \longrightarrow G_{n}\left(X, \hat{\mathbb{Z}}_{l}\right)$ is split surjective. (Recall that $\left.G_{n}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right)=\lim _{s} G_{n}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right).\right)$
(e) Let G be an algebraic group over F and X a quasi-projective smooth G-scheme. Then $K_{n}(G, X, A) \simeq G_{n}(G, X, A)$ (see [11]). Hence by 4.1.1 $K_{n}^{\mathrm{pr}}\left((G, X, A), \hat{\mathbb{Z}}_{l}\right) \simeq G_{r}^{\mathrm{pr}}\left((G, X, A), \hat{\mathbb{Z}}_{l}\right)$.
(f) Let U be a split unipotent group over F, X a U-scheme. Then the restriction homomorphism $G_{n}(U, X) \longrightarrow G_{n}(X)$ is an isomorphism (see [11]). Hence by 4.1.1, $K_{n}^{\mathrm{pr}}\left((U, X), \hat{\mathbb{Z}}_{l}\right) \simeq K_{n}^{\mathrm{pr}}\left(X, \hat{\mathbb{Z}}_{l}\right)$
4.3. Some computations. In this subsection, we obtain some l-completeness and other results for some twisted flag varieties as well as Brauer-Severi varieties over number fields and p-adic fields. Recall that if l is a rational prime, an Abelian group H is said to be l-complete if $H=\underset{\stackrel{y}{s}}{\lim _{s}} H / l^{s} H$.
4.3.1. Theorem. Let F be a number field, \widetilde{G} a semi-simple, connected, simply connected split algebraic group over $F \widetilde{\mathcal{P}}$ a parabolic subgroup of \widetilde{G}, $\mathcal{F}=\widetilde{G} / \widetilde{P}, \gamma$ a 1 -cocycle $\operatorname{Gal}\left(F_{\text {sep }} / F\right) \longrightarrow \widetilde{G}\left(F_{\text {sep }}\right), \gamma \mathcal{F}$ the γ-twisted form of \mathcal{F}, B a finite dimensional separable F-algebra. Then for all $n \geq 1$,
(1) $K_{2 n}^{\mathrm{pr}}\left((\mathcal{F}, B), \hat{\mathbb{Z}}_{l}\right)$ is an l-complete Abelian group.
(2) $\operatorname{div} K_{2 n}^{\mathrm{pr}}\left((\mathcal{F}, B), \hat{\mathbb{Z}}_{l}\right)=0$.

Proof. From [13] we have an isomorphism $K_{n}\left(A_{\chi, \gamma} \otimes_{F} B\right) \simeq K_{n}\left({ }_{\gamma} \mathcal{F}, B\right)$ for all $n \geq 0$. Hence by 4.1 .1 we also have $K_{n}^{\mathrm{pr}}\left(\left(A_{\chi, \gamma} \otimes_{F} B\right), \hat{\mathbb{Z}}_{l}\right) \simeq K_{n}^{\mathrm{pr}}\left((\mathcal{F}, B), \hat{\mathbb{Z}}_{l}\right)$. So, it suffices to show that $K_{2 n}^{\mathrm{pr}}\left(\left(A_{\chi, \gamma} \otimes_{F} B\right), \hat{\mathbb{Z}}_{l}\right)$ is l-complete for all $n \geq 1$. As earlier explained in the proof of 3.1.2, $A_{\chi, \gamma} \otimes_{F} B$ is a semi-simple F algebra and so, by theorem 3.1.3, $K_{2 n+1}(\Sigma)$ is a finitely generated Abelian group. Now it is proved in [10, lemma 2.8] or [8], that for all $m \geq 2$ and any exact category \mathcal{C},

$$
{\underset{s}{\lim }}\left(K_{m}^{\mathrm{pr}}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right) / l^{s} \simeq K_{m}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right)\right.
$$

Hence for any $m \geq 2$

$$
\begin{equation*}
{\underset{s}{\lim }}^{K_{m}^{\mathrm{pr}}\left(\Sigma, \hat{\mathbb{Z}}_{l}\right) / l^{s} \simeq K_{m}\left(\Sigma, \hat{\mathbb{Z}}_{l}\right)} \tag{III}
\end{equation*}
$$

Also, for any $m \geq 2$ and any exact category \mathcal{C} we have from [10, lemma 8.2.1] or [8] an exact sequence

$$
0 \longrightarrow{\underset{s}{s}}_{\lim ^{1}} K_{m+1}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right) \longrightarrow K_{m}^{\mathrm{pr}}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right) \longrightarrow K_{m}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right) \longrightarrow 0
$$

Hence we have an exact sequence (for $m \geq 2$)

$$
\begin{equation*}
0 \longrightarrow \underset{s}{\lim _{s}^{1}} K_{n+1}\left(\Sigma, \mathbb{Z} / l^{s}\right) \longrightarrow K_{m}^{\mathrm{pr}}\left(\Sigma, \hat{\mathbb{Z}}_{l}\right) \longrightarrow K_{n}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right) \longrightarrow 0 \tag{IV}
\end{equation*}
$$

Since $K_{2 n+1}(\Sigma)$ is finitely generated for $n \geq 1$ then $K_{2 n+1}\left(\Sigma, \mathbb{Z} / l^{s}\right)$ is a finite group and so, $\lim _{{ }_{s}}{ }^{1} K_{2 n+1}\left(\Sigma, \mathbb{Z} / l^{s}\right)=0$. Hence from (IV),

$$
\begin{equation*}
K_{2 n}^{\mathrm{pr}}\left(\Sigma, \hat{\mathbb{Z}}_{l}\right) \simeq K_{2 n}\left(\Sigma, \hat{\mathbb{Z}}_{l}\right) \tag{V}
\end{equation*}
$$

Also from (III),

$$
\begin{equation*}
{\underset{\leftrightarrows}{\lim }} K_{2 n}^{\mathrm{pr}}\left(\Sigma, \hat{\mathbb{Z}}_{l}\right) / l^{s} \simeq K_{2 n}\left(\Sigma, \hat{\mathbb{Z}}_{l}\right) \tag{VI}
\end{equation*}
$$

From (V) and (VI) we now have

$$
{\underset{s}{\leftrightarrows}}_{\lim _{2 n}} K_{\mathrm{pr}}^{\mathrm{pr}}\left(\Sigma, \hat{\mathbb{Z}}_{l}\right) / l^{s} \simeq K_{2 n}^{\mathrm{pr}}\left(\Sigma, \hat{\mathbb{Z}}_{l}\right)
$$

So, $K_{2 n}^{\mathrm{pr}}\left(\Sigma, \hat{\mathbb{Z}}_{l}\right)$ is l-complete. Hence $K_{2 n}^{\mathrm{pr}}\left(r \mathcal{F}, \hat{\mathbb{Z}}_{l}\right)$ is l-complete.
(b) From [10, theorem 8.2.2(ii)] or [8], we have that for all $m \geq 2$ and any exact category \mathcal{C},

$$
{\left.\underset{s}{\lim _{s}^{1}} K_{m+1}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right)=\operatorname{div} K_{m}^{p r}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right), ~\right)}
$$

Hence for all $m \geq 2$,

If $m=2 n$, then $K_{2 n+1}(\Sigma)$ is finitely generated and so, $K_{2 n+1}\left(\Sigma, \mathbb{Z} / l^{s}\right)$ is a finite group. Hence, $\lim ^{1} K_{2 n+1}\left(\Sigma, \mathbb{Z} / l^{s}\right)=0$. Hence div $K_{2 n}^{\mathrm{pr}}\left(\Sigma, \hat{\mathbb{Z}}_{l}\right)=0$ and so, $\operatorname{div} K_{2 n}^{\mathrm{pr}}\left(\left({ }_{\gamma} \mathcal{F}, B\right), \overleftarrow{\mathbb{Z}}_{l}\right)=0$.
4.3.2. Remarks. The following results can be proved by procedures similar to those above.
(a) If F is a number field, $\gamma_{\gamma} \mathcal{F}$ as in 4.2.1, then $K_{2 n}^{\mathrm{pr}}\left(\mathcal{F}, \hat{\mathbb{Z}}_{l}\right)$ is an l-complete Abelian group and $\operatorname{div} K_{2 n}^{\mathrm{pr}}\left({ }_{\gamma} \mathcal{F}, \hat{\mathbb{Z}}_{l}\right)=0$. The proof in this case is easier.
(b) If V is a Brauer-Severi variety over a number field F, then for all $n \geq 2, K_{2 n}^{\mathrm{pr}}\left(V, \hat{\mathbb{Z}}_{l}\right)$ is l-complete and $\operatorname{div} K_{2 n}^{\mathrm{pr}}\left(V, \hat{\mathbb{Z}}_{l}\right)=0$.
4.3.3. Our next aim is to consider the situation when F is a p-adic field. Before doing this, we make some general observations. Note that for any exact category \mathcal{C}, the natural map $M_{l \infty}^{n+1} \rightarrow S^{n+1}$ induces a map

$$
\left[S^{n+1}, B Q \mathcal{C}\right] \xrightarrow{\varphi}\left[M_{l \infty}^{n+1}, B Q \mathcal{C}\right]
$$

i.e.,

$$
\begin{equation*}
K_{n}(\mathcal{C}) \xrightarrow{\varphi} K_{n}^{\mathrm{pr}}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right) \tag{VII}
\end{equation*}
$$

and hence maps

$$
\begin{equation*}
K_{n}(\mathcal{C}) / l^{s} \longrightarrow K_{n}^{\mathrm{pr}}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right) / l^{s} \tag{VIII}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{n}(\mathcal{C})\left[l^{s}\right] \longrightarrow K_{n}^{\mathrm{pr}}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right)\left[l^{s}\right] . \tag{IX}
\end{equation*}
$$

We shall denote the maps in (VIII) and (IX) also by φ by abuse of notation.
We now prove the following result.
4.3.4. Theorem. Let p be a rational prime, F a p-adic field, \widetilde{G} a semisimple connected and simply connected split algebraic group over F, \widetilde{P} a parabolic subgroup og \widetilde{G}, γ a 1 -cocycle $\operatorname{Gal}\left(F_{\text {sep }} / F\right) \longrightarrow \widetilde{G}\left(F_{\text {sep }}\right),{ }_{\gamma} \mathcal{F}$ the γ-twisted form of \mathcal{F}, B a finite dimensional separable F-algebra, l a rational prime such that $l \neq p$. Then for all $n \geq 2$
(a) $K_{n}^{\mathrm{pr}}\left(\left({ }_{\gamma} \mathcal{F}, B\right), \hat{\mathbb{Z}}_{l}\right)$ is an l-complete profinite Abelian group.
(b) $\left.\left.K_{n}^{\mathrm{pr}}\left({ }_{\gamma} \mathcal{F}, B\right), \hat{\mathbb{Z}}_{l}\right) \simeq K_{n}\left({ }_{\gamma} \mathcal{F}, B\right), \hat{\mathbb{Z}}_{l}\right)$.
(c) The map $\left.\varphi: K_{n}\left({ }_{\gamma} \mathcal{F}, B\right) \longrightarrow K_{n}^{\mathrm{pr}}\left({ }_{\gamma} \mathcal{F}, B\right), \hat{\mathbb{Z}}_{l}\right)$ induces isomorphisms
(1) $\left.K_{n}\left(\gamma^{\mathcal{F}}, B\right)\left[l^{s}\right] \simeq K_{n}^{\mathrm{pr}}\left({ }_{\gamma} \mathcal{F}, B\right), \hat{\mathbb{Z}}_{l}\right)\left[l^{s}\right]$,
(2) $\left.K_{n}\left({ }_{\gamma} \mathcal{F}, B\right) / l^{s} \simeq K_{n}^{\mathrm{pr}}\left({ }_{\gamma} \mathcal{F}, B\right), \hat{\mathbb{Z}}_{l}\right) / l^{s}$.
(d) Kernel and cokernel of $K_{n}\left(\left({ }_{\gamma} \mathcal{F}, B\right)\right) \longrightarrow K_{n}^{\mathrm{pr}}\left(\left({ }_{\gamma} \mathcal{F}, B\right), \hat{\mathbb{Z}}_{l}\right)$ are uniquely l-divisible.
(e) $\left.\operatorname{div} K_{n}^{\mathrm{pr}}\left({ }_{\gamma} \mathcal{F}, B\right), \hat{\mathbb{Z}}_{l}\right)=0$ for $n \geq 2$.

Proof. (a), (b). Since $K_{n}\left(A_{\chi, \gamma} \otimes_{F} B\right) \simeq K_{n}\left(\left({ }_{\gamma} \mathcal{F}, B\right)\right)$ and $A_{\chi, \gamma} \otimes_{F} B$ is a semi-simple F-algebra Σ, say, it suffices for the proof of (a) to show that $K_{n}^{\mathrm{pr}}\left(\Sigma, \hat{\mathbb{Z}}_{l}\right)$ is l-complete profinite Abelian group. To do this it suffices to prove that $K_{n}^{\mathrm{pr}}\left(D, \hat{\mathbb{Z}}_{l}\right)$ is an l-complete profinite Abelian group for a central division algebra over a p-adic field F. From the proof of 3.1.5, we saw already that $K_{n}\left(D, \mathbb{Z} / l^{s}\right)$ is a finite group. Hence, in the exact sequence
we have $\lim ^{1} K_{n+1}\left(D, \mathbb{Z} / l^{s}\right)=0$. Hence

$$
\begin{equation*}
K_{n}^{\mathrm{pr}}\left(D, \hat{\mathbb{Z}}_{l}\right) \simeq K_{n}\left(D, \hat{\mathbb{Z}}_{l}\right) \tag{X}
\end{equation*}
$$

proving (b).
Now, for any exact category \mathcal{C}, we have $\lim K_{n}\left(\mathcal{C}, \mathbb{Z} / l^{s}\right) \simeq K_{n}\left(\mathcal{C}, \hat{\mathbb{Z}}_{l}\right)$ for all $n \geq 2$ (see [10, lemma 8.2.2] or [7]). So, we have

$$
\begin{equation*}
\varliminf_{s}^{\lim _{s}} K_{n}^{\mathrm{pr}}(D, \mathbb{Z}) / l^{s} \simeq K_{n}\left(D, \hat{\mathbb{Z}}_{l}\right) \tag{XI}
\end{equation*}
$$

From (X) and (XI) we now have $\lim _{\leftrightarrows} K_{n}^{\mathrm{pr}}(D, \mathbb{Z}) / l^{s} \simeq K_{n}^{\mathrm{pr}}\left(D, \hat{\mathbb{Z}}_{l}\right) —$ proving (a). It is profinite because $K_{n}^{\mathrm{pr}}\left(D, \hat{\mathbb{Z}}_{l}\right)=\lim K_{n}\left(D, \mathbb{Z} / l^{s}\right)$, where $K_{n}\left(D, \mathbb{Z} / l^{s}\right)$ is a finite group.
(c),(d). Recall that $K_{n}(\gamma \mathcal{F}, B)$ is by definition the K_{n} of the (exact) category of vector bundles on ${ }_{\gamma} \mathcal{F}$ equipped with left B-module structure. Recall also from theorem 3.1.5 that for all $n \geq 1, K_{n}\left(\gamma^{\mathcal{F}}, B\right)_{l}$ is a finite group and hence has no non-zero divisible subgroups. Hence, (c) follows from [10, theorem 8.2.1] or [8] and (d) follows from [10, corollary 8.2.1] or [8].
(e). We saw in the proof of 3.1.5 that $K_{n}\left(D, \mathbb{Z} / l^{s}\right)$ is a finite group for all $n \geq 2$. Hence $\lim ^{1} K_{n}\left(D, \mathbb{Z} / l^{s}\right)=0$ for all $n \geq 2$. But by [10, theorem 8.2.2(ii)] or [8]

$$
\lim _{\rightleftarrows}^{1} K_{m+1}\left(D, \mathbb{Z} / l^{s}\right) \simeq \operatorname{div} K_{m}^{\mathrm{pr}}\left(D, \hat{\mathbb{Z}}_{l}\right)
$$

Hence $\operatorname{div} K_{n}^{\mathrm{pr}}\left(D, \hat{\mathbb{Z}}_{l}\right)=0$ as required for all $n \geq 1$, so $\operatorname{div} K_{n}^{\mathrm{pr}}\left((\gamma \mathcal{F}, B), \hat{\mathbb{Z}}_{l}\right)=$ 0.
4.3.5. Remarks. (a) Let V be a Brauer-Severi variety over a p-adic field F. By a similar proof to that of 4.2.4, we have
(i) $K_{n}^{\mathrm{pr}}\left(V, \hat{\mathbb{Z}}_{l}\right) \simeq K_{n}\left(V, \hat{\mathbb{Z}}_{l}\right)$ is an l-complete profinite Abelian group.
(ii) $K_{n}(V) / l^{s} \simeq K_{n}^{\mathrm{pr}}\left(V, \hat{\mathbb{Z}}_{l}\right) / l^{s}$ and $K_{n}(V)\left[l^{s}\right] \simeq K_{n}^{\mathrm{pr}}\left(V, \hat{\mathbb{Z}}_{l}\right)\left[l^{s}\right]$.
(iii) Kernel and cokernel of $K_{n}(V) \rightarrow K_{n}^{\mathrm{pr}}\left(V, \hat{\mathbb{Z}}_{l}\right)$ are uniquely l-divisible.
(iv) $\operatorname{div} K_{n}^{\mathrm{pr}}\left(V, \hat{\mathbb{Z}}_{l}\right)=0$.
(b) Finally, if ${ }_{\gamma} X$ is as in 3.2.3, we have similar results to those of 4.2.4 for $\left.K_{n}^{\mathrm{pr}}\left({ }_{\gamma} X, B\right), \hat{\mathbb{Z}}_{l}\right)$, etc.

References

[1] S. Araki and H. Toda. Multiplicative structures on mod-q cohomology. Osaka Math. J. (1963), 71-115.
[2] A. Borel. Linear Algebraic Groups. Second enlarged edition. Graduate Texts in Math. Vol. 126. Springer, Berlin (1991).
[3] W. Browder. Algebraic K-theory with coefficients \mathbb{Z} / p. Lecture Notes in Math. 657. Springer, 40-84.
[4] C. W. Curtis and I. Reiner. Methodsof Representation Theory. J. Wiley (1981).
[5] J. E. Humphreys. Linear algebraic groups. Springer N.Y. (1975).
[6] A. O. Kuku. K-theory of grouprings of finite groups over maximal orders in division algebras. J. Algebra 91 (1984), 18-31.
[7] A. O. Kuku. $K_{n}, S K_{n}$ of integral group rings and orders. Contemporary Math. AMS 55 (1986), 333-338.
[8] A. O. Kuku. Profinite and continuous higher K-theory of exact categories, orders and group rings. K-theory 22 (2001), 367-392.
[9] A. O. Kuku. Finiteness of higher K-groups of orders and group rings. K-Theory $\mathbf{3 6}$ (2005), 51-58.
[10] A. O. Kuku. Representation theory and higher algebraic K-theory. Chapman and Hall (2007).
[11] A. Merkurjev. Comparison of equivariant and ordinary K-theory of algebraic varieties. (Preprint).
[12] J. Neisendorfer. Primary homotopy theory. Mem. Amer. Math. Soc. 232 (1980).
[13] I. Panin. On the algebraic K-theory of twisted flag varieties. K-theory 8 (1994), 541-585.
[14] V. P. Platonov and V.I. Yanchevskii. Finite dimensional division algebras. Enciclopedia of Math. Sc. Algebra IX. Springer (1996), 125-224.
[15] D. Quillen. Higher Algebraic K-theory I. Lecture Notes in Math. 341. SpringerVerlag (1973), 85-149.
[16] K. W. Roggenkamp and V. Huber-Dyson. Lattices over orders I. Lecture Notes in Math. 115. Springer-Verlag (1970).
[17] C. Soule. Groupes de Chow et K-theorie de varieties sur un corps fini. Math. Ann. 268 (1984), 317-345.
[18] A. A. Suslin and A. V. Yufryakov. K-theory of local division algebras. Soviet Math. Docklady 33 (1986), 794-798.
[19] R. Thomason. Algebraic K-theory of group scheme actions. In: Algebraic Topology and Algebraic K-theory. Proceedings. Princeton, NJ (1987), 539-563.
[20] J. Tits. Classification of semisimple algebraic groups. Proc. Symp. Pure Math. 9 (1966), 33-62.

Max-Planck-Institut für Mathematik, Bonn, Germany
E-mail address: kuku@mpim-bonn.mpg.de

