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o. Introduction.

Let K be a local complete discrete valuation field with a perfect residue field k
of characteristic p > 0, K sep be a fixed separable closure of K, r = Gal(Ksep / K)
be the absolute Galois group of K.

The group r has a decreasing filtration of normal subgroups {r(v)}v>o, where
for any v E Q, v 2 0, r(v) is the ramification subgrollp of f in upper n~lnbering,
[Se, ch.21.

We have: I(;e(;) = Kur is the maxinlal ullramified extension of K, I = U r(v)
v>o

is the higher ramification subgroupl which is a pro-p-group (if char]( = p, then I
is a free pro-p-group), Klep = K tr is the maximal tamely ramified extension of ](.

Let char K = p and 4J be a fixed uniformizer of K. Then K can be identified
with the fraction field k((4J)) of the power series ring k[[4;]].

Let k c::: lFp • Under this assumption r = r(O) 1 and ] is the Galois group of the
lnaximal p-extension of !(tr. In this paper we give an explicit desCl'iption of thc
image of the filtration {r< v)} v>o of the group I under the natural map

where Cp(I) is the lninimal closed subgroup of I containing all conunutators of
order 2 p.

This result is applied to the study of the rarnification filtrations of the Galois
group r(p) of the maximal p-extension of ]( and of thc Galois group ro(p) of the
maximal p-extension of a field 1(0 = kO((~»' where ko ~ IFqO is the finite field of
q = pNo elements. In these cases we obtain an explicit description of the filtrations
{r(p)(v) modCp(r(p)}v>o and {ro(p)(v) modCp(fo(p)}v>o.

The paper is organized as follows.
In n.1 we assume that K is an arbi trary field of characteristic p > °and give

aversion of Artin-Schreier theory, which permits to construct efficiently any p
extension of !{ having Galois group of class of nilpotency < p. A special case of
this theory, which is ajusted to the st.udy of p-extensions of K with Galois group
of exponent p (and of class of nilpotency < p), was constructed in [Al.

Our construction is based on

Typeset by ANfS-'!EX
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a) an equivalence of the category of fini te Lie Z p-algebras .c of dass of nilpotency
< p and the category of finite p-groups of the same dass of nilpotency, c.f. [B, ch.2,
n.8, exerc.4]. This equivalence is given by the functor

.c t--t G(.c),

where G(.c) = .c as a set and the operation on G(.c) is given via the Hausdorff
series in the envelopping algebra of .c:

b) a construction of an absolutely unramified field E(K) of characteristic 0 having
the residue field K, where we fix a lifting a of the absolute Frobenius endormorphism
ao of the field K, c.f. [B-M.nn.1.1-1.3], [F, n.Al].

The formalism of this theory permits to fix an "arithmetical mealling" of gen
erators of the Galois group of K modulo p-th COlnmutators and to give explicitly
extensions of endormorphisms of K to field extensions of ]( having Galois group of
class of nilpotency < p.

Let K = k((~)) be the fraction field of the fonnal power series ring in a variable
4J with coefficients in a field k ~ Fp • Then

where Q+(pl = {r E Q Ir> 0, (r,p) = I}. In 0.2 we construct a profree Lie
Zp-algebra 12 and apply the theory of n.l to construct an identification

where .c = Z/Cp(Z) and Cp(Z) is the closure of the ideal in Z generated by COIll

mutators of order ~ p.
The Lie algebra lappears as a projective limit ~ ZR,N,M, where R c Q+(p)

R,N,M

is a finite subset, N ;::: 1, M ~ 0 are integers, ZR,N,M is a free Lie Z/pM+IZ-algebra.
The extension of scalars lR,N,M,k = lR,N,M ® WM(k) of this algebra has a natural
system of free generators

{Dr,n IrE R,n E Z/NZ}

(here WA1 ( k) are Witt vectors of length M + 1 wi th coefficients in k).
In n.3 we construct a decreasing filtration of ideals L(v), v E Q, v > 0, of the Lie

algebra.c. By definition,
.c( v) = lim L(v)

f--- R,N,M'
R,N,M

(v) --- ---
where LR,N,M are ideals of the Lie algebra LR,N,M = .cR,N,M /Cp(LR,N,M)' The

ideals L~?N,M QSl WM(k) of the Lie algebra LR,N,M QSl WM(k) are given by explicit
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generators FR,N,M("nl), where, E Q" ~ V,nl E Z/NZ. The expressions of
these generators consist of terms of forul

Each of these terms eorresponds to a presentation of a rational nUlnber I in the
form

where 1 :s;; 5 < p, rl, ... , r s E R, i and 0 = 1nl :s;; m2 :s;; ... :s;; m s < J\T are integers.
Here mj mod N = nl - nj for 2 :s;; i :s;; 5, and the appearance of the eoeffieients
11(0, m2, ... , m 8 ) E Q+(p) is related to the existence of groups of equal elements in
the sequenee mJ,m2, ... ,m8 •

In n.3.4 we formulate the main theoreln, whieh states that the image of the ram
ification filtration {r(v)}v>o in I/Gp(I) eorresponds to the filtration {G(L:(v»)}v>o
under the identifieation {J of n.2.

In n.3.5 we eonsider aversion of this theorem for the case of p-extcnsions of the
field K. Here we have the indueed identifieation

{J(p) : f(p)/Cp(r(p)) ::: G(L:(p)),

where L:(p) = Ern LA,N,M, LA,N,M are the Lie algebras from n.2 and A is a finite
t--

A,N,M
subset in Z+(p) = Q+(p) n Z. In trus situation, for any v > 0, v E Q, the ideal

L(p)(v) is presented in the form EmL(p)~), where L(p)~) is an ideal of the Lie
+-
N

algebra L:(P)N = ~ L:A,N,M. As a conscquence of the main theorem we obtain an
A,M

explicitly giyen system of generators of the ideals .c(p )~) 0 W (k) in the Lie algebra
L:(P)N i2) W( k).

The proof of the main theorem (n.3.6 and n.4) is given only modulo 3-rd COill

mutators. This case gives sufficiently full illustration of our method. In general
case (i.e. modulo p-th commutators) the proof requires lllorc careful calculations
(c.f. [A], where this was done for extensions of exponent p) and will be given in a
forthcoming paper.

Let 1(0 = ko((~)), where ko = IFqO ,qo = pN°,No ~ 1. If ro(p) is the Ga
lois group of the maximal p-extension of the field K o, then there exists a natural
homomorphism

which is cOlnpatible with ramification filtrations. In n.5 we construct an identifica
tion

{Ja : ro(p)jCp(ro(p)) ::: G(L),

where L = LjCp(L) anel L is a free Lie pro-p-algebra over Zp. In this case L has a
natural system of generators, which can be interpreted modulo 2-nd commutators
in the terms of loeal dass field theory. The homomorphism, can be described via
some morphism of Lie algebras 8 : .c(p)~ L, whieh is constructed in nn.5.3-5.4.
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In nn.5.5-5.6 we apply the explicit construction of the above morphism 8 to
describe the filtration {L(v)} v> 0, which corresponds to the ramification filtration
under the identification 7/;0, Trus description does not require a passage to limit:
we construct generators of ideals L(v) 0 W(IFqo ) of the Lie algebra L 0 W(IFqo )'

In the following paper there will be given an application of trus theory to the
study of the ramification filtration of the Galois group of a Iocal field of character
istic 0 modulo p-th commutators.

This paper was done during my stay (Febr.-Sept., 1993) in the research group of
Prof. H. I(och (MPG, Arbeitsgruppe "Algebr. Geom. u. Zahlentheorie", Berlin).
I express my gratitude to this organisation alld especially to Prof. H. Koch and
Prof. E.-W. Zink for numerous discussions.

1. Artin-Schreier theory for extensions of class of nilpotency < p.

1.1. Groups and Lie algebras.

Let .c.Q be a free Lie algebra over Q with free generators U, V and A..Q be its
envelopping algebra. AQ is a free associative algebra with generators U, V and
there exists a natural embedding LQ C AQ. For a natural number n 2:: 1 denote
by Cn(.c.Q) the ideal in .c.Q, generated by a11 commutators of order 2:: n. Define a

degree of any monomial in AQ by setting deg U = deg V = 1 and denote by Cn(AQ)
the ideal of AQ generated (as Q-module) by monolllials of degree 2:: n. We set

lQ = ~.c.Q/Cn(L:Q), kJ = ~/Cn(AQ)' For any n 2: 1 we have
n n

therefore, there exists a natural inlbedding f..Q C AQ incluced by the above imhed
ding .c.Q C AQ.

Consider the Hausdorff series

H(U, V) = log(exp U exp V) E ~.

We have the following properties.
1.1.1. H(U, V) E f..Q.

This fact is very well-known as the Campbell-Hausdorff formula. In particular,
one has

111
H(U, V) = U + V + 2[U, V] + 12 [U, [U, VJ] + 12 [V, [V, U]]-

1
- 24 [U, [V, [U, V]]] mod Cs(LQ),

c.f. [B, ch.2, n.6, remark 2J.

1.1.2. The composition law 11 0 12 = H(ll, 12 ), where I], 12 E [,Q, gives the
structure of the group G(iQ) on the set i Q. With resreet to this structure the
zero element of i Q is the neutral element, and -1 is the inverse element for any
1 E f Q = G(lQ).
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Any ideal :T of the Lie algebra f:.Q can be considered as anormal subgroup G(:J)
of G(.cQ) and J 1----+ G(:T) gives one-to-one correspondence between the set of ideals
of Lie algebra .cQ and the set of nonnal subgroups of the group G(~).

1.1.3. Let [, be a free Lie Z-algebra wi th free generators U, V, then f:.Q = f:. 0 Q.
If pis some prime number and f:.Zp = f:. 0 Zp, then in evident notation one has:

for any 11 ,12 E .cZp,lt 012 E.cZp modCp(.cQ), c.f. {B, ch.2, exerc.4 ofn.8].

1.1.4. Let A be a Zp-algebra and f:. be a Lie A-algebra of dass of nilpotency
< p, i.e. Cp(f:.) = O. As a consequence of the above cOllsidcrations thc composition
law lt, 12 I-t 11 012 = H(lI, 12 ), where 11 ,12 E f:., gives thc group structure on thc set
f:.. Denote this group by G(f:.). Obviously, the group G(f:.) and the Lie algebra f:.
have the same dass of nilpotency.

If A = Zp then the correspondence .c I-t G(L) gives an equivalence of the
category of Lie Z p-algebras of a given dass of nilpotency < p and the category of
p-groups of the same dass of nilpotency, c.f. [B, ch.2, exerc.4 of n.8].

We remark that any morphism f : LI ~ L2 of Lie A-algebras 121 ,122 (of dass of
nilpotency < p) is automatically a lllorphism of groups GeC l ) ----+ G(L2)' If l is a
free finitely generated Lie Zp-algebra, L = ljCp(l), then G(L) ~ r jCp(r), where
r is finitely generated free pro-p-group and Cp(r) is its normal dosed subgroup
generated by all conlffiutators of order ~ p.

1.2. Borne fact~ about lijtingJ.

1.2.1. We follow the paper [B-M, n.1.I-lo3].
Let p be a fixed prime number and L be a field of characteristic p. For nonnega

tive integer M denote by OM(L) a lifting of L modulo pM+l. By definition OM(L)
is a flat ZjpM+lZ-algebra such that OM(L)jpOM(L) ~ L. These conditions ehar
acterize OM(L) uniqielly up to an isomorphism. A construction of OM(L) can be
given in the terms of p-basis of the field L as follows.

Let {XdiEI be a p-basis of the field L, WM(L) be the ZjpM+lZ-algebra of
Witt vectors of length M + 1 with coefficients in L, [al E WM(L) be Teichmuller
representative of a E L. Then OM(L) is the ZjpM+IZ-subalgebra of WM(L),
generated by elements of the form

pi[a]pM+l- j I1[xdOij ,

iE!

where a E A, 0 ~ j ~ M,O ::; (Xij < pM+1- j and for any fixed value of j almost all
(Xij are equal to O. In particular, one has [Xi] E OM(L) for any i E [.

Für nonnegative integers MI ~ M2 , a lifting 0 M 2 (L) can be identified with
the quütientOM 1 (L ) j pM1

- M2 0 M 1 (L ). A limi t of this projective system üf liftings
O(L) = limOM(L) is the valuation ring üf a complete absülutely unramified field

~

M
&(L) üf characteristic 0 with the residue field L ([(L) is absolutely unramified
p is the uniformising element of [(L».

Let 0"0 be the absolute Frobenius endolllürphism of L, i.e. 0"0(1) = lP for any 1E
L. Denote by (J some lifting of (Ja to 0 M (L). This means that 0" is an endomorphism
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of the Z/pM+IZ-algebra OM(L) and 0" modp = uo. Any such lifting is a fiat
morphism of Z/pM+IZ-modules, [B-M, 1.3].

In the terms of the above explicit construction of a lifting 0 M (L ), the lifting CT

is uniquelly defined by conditions

where i E I and Yi are arbitrary elements of OM(L) such that Yi == [xdP modp.
1.2.2. From the above explicit construction of OM(L) it follows that

It is easy to show that if 0" is an arbitrary lifting of the Frobenius morphism,
then

O"M OM(L) C WM(L{p
M

),

and the restriction of 0" to W M(L(pM) gives the standard Frobenius endomorphism
of Witt vectors.

1.2.3. Let]{ be a given field of characteristic p. Fix a separable closure ](sep

and some p-basis {Xi}iEI of the field K.
Let L be a field such that ]{ C L C ]{sep. Then {XdiEI is a p-basis of L. For

any integer M ;::: 0 denote by OM(L) the lifting of L modulo pM+l related to the
p-basis {Xi }iEI.

Under these assumptions there is a natural action of the Galois group r =
Gal(Ksep/K) on OM(Ksep ) and

where Her is the subgroup, such that K~p = L. In particular, we use the
identification

So, we have the system of liftings OM(L) which is compatible on Land on M
(e.f. n.1.2.1). As earlier, set O(L) = limOM(L) and denote by E(L) the field of

of--

M
fractions of the ring O(L).

Following the paper [F, TI.AI] fix some lifting 0" of the absolute Frobenius mor
phisln of the field K to O(](). This g'ives a cOlllpatible system of liftings 0" to
all 0 M ( ](). It is easy to show that for any separable extension L of K anel any
integer M ;::: 0 there exists a unique lifting O'L,M of the absolute Frobenius mor
phism of L to OM(L) such that O'L,M 10M (I()= 0'. So, 0' cau be extended uniquelly
to all OM(](~ep) and O(Ksep ). We use the same symbol 0' for these extensions.
Obviously, 0" commutes with the action of r on O(]{$e]).

Prom flatness of a it follows that
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Let k be some perfeet subfield of !( and M 2 0 be any integer. Thcn any a E k
has Teichrnuller representative [al in OM(](). This eleluent [al eau be eharacterizcd
by the properties: [al modp = a and a([a]) = [a]P. The set {[al I a E k }
generates over ZlpM+IZ a lifting of k modulo pM+l which can be identified with
the Z IpM+1.z-algebra of truncated Wit t vectors WM ( k).

1.3. Main theorem.

Let K be a field of characteristic p > o.
We use assumptions of n.1.2 and all above notation.
Let ,c be a finite Lie algebra over Zp having dass of nilpotency < p. For any

separable extension L of K we set

Remark that if pM+l,C = 0 for some integer M 2 0, then

Let G(,C K.ep) be the group related to .c J(. ep (c.f. n .1.1). It is clear that a and r
act on G('cK

IeP
) by functoriality.

We have the following properties:
a) a : G('cK.ep) --t G('cK

IeP
) is a homomorphism aud

b) if LI]( is the Galois extension then the action of r LIK = Gal(LI I() on 'cL
eommutes with a and oue has G('cL)r L1K = G('cK).

Definition. Let al, a2 E G('cK). Then al f'Va2 if there exists b E G(l.K) such that
R

a2 = (- b) 0 al 0 (a b) .

Obviously, R is an equivalenee relation Oll G('cK).

Theorem. Tbere exists one-to-one map

1f : G(l.K)1R --t { conjugacy c1asses of Hom(r, G('c» }.

RemarkJ.
a) It follows from the proof of this theorem (c.f. below) that 1f is functorial on

,C and (in an obvious sense) on a pair (K, a).
b) Let ,C be one-dimensional Lie algebra over IFp • By choosing some generator of

the IFp-module .c one gets identifications: G(.c) = Zlp'Z, G(L.K) = K. Thereforc,
G('cK)1R = KI(a - id)K, and our theorem gives the isomorphislll

KI(a - id)]( ~ Hom(r, Zlp'Z)

of Artin-Schreier theory.
c) If ,c is a free commutative Lie algebra of rank lover Z IpM+1Z, then we obtain

Witt theory of eydic p-extensions of K, c.f. [W], [F, n.A.2.4].
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cl) If pL = 0, then our theorem gives aversion of Artin-Schreier theory, which
was appliecl in [A] to the study of arbitrary extensions of K having Galois group
of exponent p and class of nilpotency < p (the group of p-diagonal elements in the
envelopping algebra of L K 1 which we use in [A], can be identified with the group
G(LK) by the truncated logarithm).

Proof of theorem.

Fix an integer M ~ 0 such that pM+l L = O.

1.3.1. Lenuna. Let e E G(Ll(), then

Proof of lemma.

We use induction on the length of Z/pM+lZ-module L. It is well-known that
there exists an ideal J of the Lie algebra 12 such that IJI = p. Consider the exact
sequence of Lie algebras

o ---7 J ---7 12 ---7 LI ~ O.

It gives the exact sequence of p-groups

1 ---7 G(JKHP ) ---7 G(LKHP ) ~ G(L~,ep) ~ 1

(we use the fiatness of OM(Ksep ) over ZjpM+l71).
Let

f' E { I E G(L~HP) I a f = 1 o e' },

where el E G(L~) is the image of e under the natural projection G(Ll()~ G(LK)'
If 11 E G(L KHP ) be such that (Y(/l) = I', then

a fl = 11 0 e + Bj,

where j is some generator of J and

(we use that J is in the center of [, and OM(Ksep ) is a fiat 7l/pM+171-module).
Let x E !(lJep be such that x P - x = B (its existence follows from Artin-Schreier

theory). Set

Then
foe=ftoe+xj,

af = afl + xPj

and, therefore,
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q.e.d.

1.3.2. Construction of 'Tr.

Construction 0/ 'TrJ(e) E Hom(r, G(L)).

Let e E G(Ll<) and

/ E { f E G(l.l<up) I a f = f 0 e }.

If T Er, then a(TI) = T(a/) = T(! 0 e) = Tf 0 e. Therefüre,

o(Tf 0 (-I)) = O(T/) 00(- f) = T(af) 0 (-a/) =

= Tf 0 e 0 (-e) 0 (- I) = TI 0 (- f).

So, T /0 (- f) E G(l.K,t!J') IlT=id= G(l.).
Obviously, the correspondence T H- T f 0 (- f) gives the eleluent of Hom(r l G(l.))

which we denote by 'TrJ( e).

Dependence on /.
Let

Then

0(/1 0 ( - I)) = 0(/1) 0 ( -aI) = fl 0 e 0 ( -e) 0 ( - I) = h 0 ( - 1),

so, 11 = gof für some 9 E G(L). By this reason, for any T E r

'Trh (e)(r) = go 7rJ(e)(r) 0 (-g).

Therefore, 7rh (e) and 7rJ( e) are in a same conjugacy dass of Hom(r, G( l.)) and the
correspondence e H- 'TrJ( e) gives the map

7r : G(l.K) -4 { conj. classes of Hom(f, G(L)) }.

Dependence on R.
Let Cl, e2 E G(LK) and el '" e2, Le. el = (-b) 0 e2 0 (ab) for some b E G(Ll<)'

R
Then for

/i E { f E G( l. l<.ep) 1 0 f = 1 0 ei },

where i = 1,2, one has (-/1) 0 a/l == (-b) 0 (-/2) 0 (a!2) 0 (ab), i.e.

12 0 b0 (-11) = 9 E G(LK.ep) 100=id = G(.c).

So, for any T E r,

1("h(e2)(T) = 7/2 0 (-/2) = 9 0 (T11) 0 (-b) 0 b 0 (-h) 0 (-g) =

= 9 0 7rft (eI )(7) 0 (-g)
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and *defines the map

'Fr : G(l.K)/R~ { conj. classes of Hom(r, GeC)) }.

1.3.3. Injectivity 0/ 'Fr.

Let eh e2 E G(LK) be such that *(el) = n(e2)' If, for i = 1,2,

then for some 9 E G(L) and any T E r

This means that T/l 0 (-11) = go TI2 0 (-/2) 0 (-g), i.e.

Therefore, /l = go 12 0 h,a/l = go olz 0 oh and

el = (-/1)0(0/1) = (-h)a(-/2)o(-g)aga/2 aez aah = (-h) aez ooh.

So, el f'.J e2 and 'Fr is injective.
R

1.3.4. Surjectivity 0/7r.

We proceed by induction on the length of L and use notation of ll. 1.3.1. Let

1] E Hom(r, G(L))

and
1]' E Hom(r, G(L'))

be its image under the projection

Hom(r, G(l.)) ~ HOln(r, G(L')).

Then there exist e' E G(.c'p;) and

/' E { / E G(L~Hl» I 0 f = f 0 e' }

such that 7]' (T) = (r /') 0 ( - /').

Let e E G(LK) be some preimage of the e' under the projection G(LK) ~
G(.c'r;). It follows from the proof of Lemma 1.3.1 that the natural map of sets

is surjective. Therefore, there exists f E G(LK.ep ) such that 0 f = / 0 e and
'Frf(e)(T) =7](r) mocl G(J) for any r E r.
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Therefore,

.
for some Cr E IFp (as in n.1.3.1 we use that J is in the center of Land OM(IFp ) is a
flat module).

Obviously, T 1--+ Cr defines the element of Hom(r, IFp). From Artin-Schreier
theory it follows the existence of x E I(~ep such that Cr = TX - x for any T E r.

Let 1* = 1+ xj E G(.CKHP )' Then 1](T) = (TI*) 0 (-/*). On thc othcr hand

(- 1*) 0 (a f*) = (xp
- x)j 0 ( - f) 0 (a f) = e + (xp

- x)j.

For any T E r,

T( xP- x) = (x +c,)P - (x + cr ) = xP- x,

therefore, for e* = e + (xP - x)j E G(LK), we have

and 1] = 7r f* (e*).
Theorem is proved.

1.4. Corollary. Let (in notation oE n.l.3) 1] E Hom(r, G(L)). Tllen tllerc exist
e E G(.cl() and

such that 1] = 7rJ( e).

1.5. In notation of n.1. 3 let e E G(.cK) be such that the conjugacy dass 7t" (e)
(c.f. theorem of n.I. 3) contains an epimorphism 1] : r ~ G(.c) (alld, therefore,
all elements of 7t"(e) are epimorphic maps r ----+ G(.c)). Set K e = I(~~r71, then 1]

defines the isomorphism of the groups Gal(](e/I() and G(.c).
Let b be an automorphism of the ficld K, bbe an extension of b to some auto

morphism of ](lJep.

Let M ~ 0 be an integer, such that pM+l.c = O. Generally, there is no lifting
of b to an automorphism of 0 M(1(), which commutes with a (but, if such lifting
exists then it is defined uniquelly). Nevertheless, there exists a lifting of bIK(pM) to
a morphism

a''t'10M (K) ~ OM(K).

This morphism comnlutes with a and is induced by the embeddings (c.f. 11.1.1.2)

a M OM(1() C WM(K(pM») C OM(K)

and the morphism

W M(bIK(pM») : WM(K(pM») ----+ W M(I«(pM»).

We shall use the same symbol b for this lifting. Analogously, we use the same
notation bfor the lifting of the above chosen extension bof the autorl1orphislll b.

If a is an automorphism of the Lie algebra.c, then we use the same symbol a for
extension of scalars .cL ----+ .c L of the morphism a (L is same field of characteristic
p). Clearly, actions of a and a on .cL commute oue with another.
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1.5.1. Proposition. In the above notation the following statements are equiva
lent:

1. b(I(e) = Kei
2. There exists an automorphism a oftbe Lie algebra l, such that b(O' M e) ....... a(e).

R

Proof.

Let b(Ke ) = !(e.

Choose 1 E G(l[(up) such that O'f = f 0 e and Tl = 'lrf(e) (c.f. n.1.4). Then for
any T E r K we have TJ(T) = T f 0 (- I).

Let 11 = b(O' MI). Then 0'(/1) = 11 0 b( (J'M e). For any T E r K we have

'lrft (b(O' Me»(T) = T11 0 (-11) = b[(b-1Tb)O' M1 0 (_(J'M I)] =

= b[(b-1Tb)1 0 (-I)J = f/(b- 1Tb).

The equali ty b(!(e) = !{e gives b-1 (!(er 7] )b= !(er 17, therefore, there exists an
automorphism a of the group G(l) (which is also an automorphism of the Lie
algebra l), such that 'lrft (b(a M e» = TJa.

For any T E rK

T(/1 ) 0 ( - 11) = 'lrft (b(0' Me) )(T) = a(TJ (T» = a(TI 0 ( - I» = T(aI) 0 ( - af).

Therefore,
(-a/) 0 11 = c E G(J:.J<tlcp)r = G(J:.K).

Applying the morphism 0' to the equality /1 = (af) 0 C one obtains

all = 11 0 (b((J'M e» = (a/) 0 co (b((J'M e»,

(J'11 = a(af) 0 ac = (al) 0 (ae) 0 O'c.

Therefore, b(aM e) = (-c) 0 aCe) 0 O'(c), i.c. b(O' M e) l"Va(e).
R

Inversely, let
b(aM e) = (-c) 0 aCe) 0 a(c)

for some cE G(.c K ). From the equality all = 110 b(aMe) Olle has

a(/1 0 (-c» = ft 0 (-c) 0 aCe).

Now the equality O'(af) = a(f) 0 aCe) gives the existence of Co E G(L), such that

11 0 (-c) = Co 0 a(/).

This means that

Now i t i8 clear that

T E !(erTJ <=> TI = f <=> r(af) = af <=> T E Ker'lrh (b(a Me) ).

12



Proposition is proved.

1.5.2. Remark.
Let b ean be extended to some automorphism of the algebra OM(!{), whieh

commutes with a. Denote trus extension by the same symbol b. Then

In addition, let a be an automorphism of the Lie algebra.c and c E G(J:. K ) be
such that b(e) = (-c) 0 a(e) 0 a(c). Then the eorrespondence f 1-+ a(f) 0 c gives an
explicit description of liftings of b to automorphisms of the field !(e.

1.5.3. Corollary. Let (in tbe above notation) K be tbe Galois extension of its
subfield K]. Then tbe followillg properties are equivalellt:

1. J{e/K] is tbe Galois extension.
2. For any b E Gal(K/!(]) tbere exists an autolllorpbism ab of tbe Lie algebra

.c such tbat b(a M e) ,....., ab(e).
R

1.5.4. Remark.
Let b E Gal(I(/ J(]). Consider a morphism ab from the above corollary as an

automorphism of the group G(l.). Then there exists a lifting bE Gal(!{lJep/!(l) of
b and an epimorprnsln 1] E 7T"( e), such that for any T E r K one has

Trus means that ab gives a deseription of the action of the quotient Gal(](/ K 1 )

on the subgroup GaJ.(Ke / J{) by eonjugation with respect to the identification
GaJ(Ke / K) = G(.c), given by the epimorphism 1].

2. Case of a loeal field.

2.1. Let K be a loeal eOlllplete discrete valuation field of charaeteristic p > 0
with a residue field k whieh is isomorphie to an algebraie closure lFp of IFp . Then J(

is isomorphie to k((~)) - the fraction field of the power series ring in oue variable
fo over k.

Let K sep be a fixed separable closure of ]( and r = Gal(](sep/](). If

Q+ (p) = { T E Q Ir> 0, (r, p) = 1 }

and K tr C ](.!ep is the maximal tamely ramified extension of ](, then

Here { fo r I T E Q+ (p) } is a compatible systelll of fraction powers of fo (this
means that for any r E Q+(p), m E Z+(p) = Q+(p) n Z, Olle has the equality
(4 r

)m = 4mr
).

Let I be the higher ramification subgroup of r. Then I is a free pro-p-group.
We want to apply the arguments of n.l to the study of the extension ](~~(l) of ](.

13



Fix absolutely unramified field E(!(ttep) (c.f. n.1.2) and consider its valuation ring
O(K"ep). Let H be an open subgroup of r, L = !(~p and M be Bonle nonnegative
integer, then

is a lifting of L modulo pM+l.
Let t be same fixed lifting of the uniformising element ~ E !( to O(!<sep).

Then OM(!<) can be identified with the ZJpM+IZ-algebra of Laurent series in one
variable t with coefficients in WM( k).

We can fix some lifting a of the absolute Frobenius lllorphism of the field !( by
choosing same ai: E O(!(sep), which satisfies thc condition

""" ..... p
at t modp

(in fact, we use below the simplest choice of such a lifting, which is given by the
..... """P

equality at = t ).

2.2. Let M ~ 0, N ;::: 1 be integers, R be a fini te subset of Q+ (p). Set q = pN and
introduce a free ZJpM+IZ-module Ln. M with fixed (free) generators D~, r E R.

1

Denote by lR,N,M the free Lie ZJpM+IZ-algebra with the ZJpM+IZ-module of
free generators

LR,Al ® Hom(WM(IFq ), HfM(IFp ))

(here WM(IFq ) and WM(IFp)(~ZJpM+IZ) are thc groups of truncated Witt vectors
having length M +1 and coefficients from IFq and IFp , respectively).

Let ZR1lN1,!vf l and lR2,N21 A12 be such Lie algebras, wherc R2 C Rh N2 1NI and
M 2 :s; MI. We have the natural map of their modules of free generators:

This map is uniquelly defined by the following conditions:

D~ 1-+ 0, if l' E R1 \ R2 ,

f J-+ f IWM2(FpN2)'

where f E Hom(WMI (IFpNI ), WMI (IFp ») and WM 2 (IFpN 2 ) is considered as a subgroup
of W MI (IFpNl ) via the natural imbeddings:

The above maps give uniquelly defined morphislllS of the Lie algebras iRIlNI,MI -----?

lR2,N2,M2 • So, we have a projective system of Lie algebras {lR,N,M}. Obviously,

..... ---.c = lim L R N Al
~ "

R,N,M

14



is the free Lie pro-p-algebra over Zp.

2.3. Let
12R,N,M = lR,N,M /Cp(lR,N,M)'

We obtain a projective systelll {12R,N,M} of Lie algebras of dass of nilpotency < p.

If 12 = ~ .eR,N,M, then .e = l/cp(l) (here Cp(l) is the dosure of the ideal in
R,N,M

l generated by all commutators of order 2:: p).
vVe want to apply main theorem of n.I to the projective system {.cR,N,M}'
If r E Rand f E Hom(WM(IFq), WM(~p)), we use notation Dr,f for the irnage

of

in .eR N M·, ,
Let {ai}l~i~N be some WM(lFp )-basis of WM(IFq ) and {!i}l:5 i:5 N be dual basis

of the WM(IFp )-module Hom(WM(fq ), WM(IFp )). Consicler

--I
(we use all notation of n.I), where t = t (c.f. n.2.I). This element eR,N,M does
not depend on the above choice of a basis in WM (IFq ), because

eR,N,M = (L: t
r D;) 0 ( L: ai 01i)

rER l:5i:5N

and L: O:i <9 li corresponds to idwM(Fq ) under the identification
lSiSN

So, we have the elelnent {eR,N,M} of the projective system {G(.CR,N,M,Ktr )},

which gives

e = liln eR N M E G(.e Kt ) = EIn G(LR N M K t ).
~ " r ~ , , , r

R,N,M R,N,M

2.4. Let

MR,N,M = { f E G(12R,N,M,I<8ep) I a/ = f 0 eR,N,M }.

Obviously, {MR,N,M} is a projective system of sets and

M = lim MR N M -I- 0.
~ "r

R,N,M

Let f E M and f R,N,M be its projection to M R,N,M. Consider the hOInomorphisIll

15



from the proof of the main theorem of n.l (here l = Gal(l(8epj](tr )). In the same
way as in [A,n.2.3], we obtain:

a) all 7/JR,N,M are epimorphismsj
b) the system {'if;R,N,M} is a projective system, compatible (in an obvious sense)

with the projective system {G(.cR,N,M )}j
c) the homomorphism

'lj; = lim 7/J R NM: l --t G(L)
~ "

R,N,M

induces the isomorphism
{; : ] jep(l) ~ G(.c).

We use ;p below for identification of the groups llep(l) and G(L).

2.5. One can apply remarks of n.1.5 for a description of the action of the Ga
lois group Gal(I{tr/fp((~))on ljep(l) in the terms of the identification {;. For
simplicity we assume that thc lifting er is given by the condition eri = fP.

The group r tr has two generators 4>0 and TO, which satisfy the unique relation
T6 = 4>~

1
TO c/>o. One has

a) 4>0 is the lifting of the absalute Frabenius marphisrll of the extension k j JFP ,

uniquelly determined by the condition 4>0 (in) = ~.

b) TO is some generator of the procyclic group ltr = Gal( l{tr jK) c r tn TO acts
triviallyon k, T04/ = (r4J

r
, where r E Q+(p), (r E k.

The system of elements {(r IrE Q+ (p)} satisfies the following two conditions:
1) Cl = 1;
2) for any Tl E Q+(p), m E Z+(p) = Q+(p) n Z, one has (~ = (mr.
It is easy to see that a fixing of such a systerll of elements (r, l' E Q+ (p), is

equivalent to the choice of sorne generator 70 of the group I tr .
The automorphisms C/>O and 70 can be lifted to autornorphisms rP and 7 of the

algebra O(Ktr ), which are defined by the following conditions:

4>1 W(k) = lV(<po), 4>(t) = t;

Obviously, rj; and 7 commute with the action of er on O(I(tr).
Consider the element e = lim eR N M from n.2.3. From the relations

~ "
R,N,M

4>( eR,N,M) = 2:: er(o:;}trDr,Jn
rER

l5:.i$N

7(eR,N,M) = 2:: o:d(r]-ltrDr,/i
rE;R

l$I5:.N

aue gets
a) c/>( e) = al/>(e), where al/> is the automorphism of the Lie algebra L such that
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where Dr,J E ~R,N,M and 4>*(f)(w) = f(if>w) for aJ1Y w E W(IFpN);
b )T(e) = a r ( e), where ar is the autolnorphism of the Lie algebra .c, such that

ar(Dr,j) = Dr,r,.(J) ,

where DrJ E ~R,N,M,r(pN -1) E N and Tr(f)(w) = f([(r)w) for any w E W(IFpN).
Therefore (e.f. remark 1.5.2), we ean fix liftings~, f E Gal(I(8cp/IFp((~)))/Gp(I)

of the automorphisms 4>0 and TO by the following conditions:

~(f) = atjl(f), T(f) = ar(f)·

Applying remark 1.5.4 one gets for any gEI/Gp(I):

1/J(J-lgf) = atjl(~(g)), ;r;(f-1gT) = ar(;fi(g)).

3. Statement of the main theorem.

In this seetion we define a deereasing filtration {.c(v)}v>o of ideals .c(v) of the
Lie algebra.c from n.2.3, where v E Q, v > O. This filtration will be related to the
image of the ramification fil tration {r(v) }v> 0 of r in 1/Cp ( I).

3.1. Let lR,N,M be some Lie algebra from the projeetive system {ER,N,M} (e.f.

n.2.3). Then ER,N,M 0WM (F
p

) WM(k) has the WM(k)-lnodule of free generators

LR,M 0 Hom(WM(IFq), WM(IFp)) 0 WM(k) =

= LR,M 0 Hom(WM(IFq), WM(IFq)) @WM(Fq) vVM(k) =

=LR,M 0 HomwM(Fq)(WM(IFq) 0 WM(IFq), WM(Fq)) 0WM (Fq) lVM(k) =
- EB L RM 0 Hom(WM(IFq), WM(IFq))n 0~'M(F ) WM(k),

nEZjNZ ' p

where Hom(WM(IFq), WM(IFq))n,n E Z/NZ, is the WM(IFp)-module of on-linear
homomorphisrns W M (IFq) -----+ WM (IFq). 0 bviously, each module

Hom(WM(IFq ), WM(Fq ))n

has WM(lFp )-rank 1 and the canonical generator on.
Therefore, the Lie WM(k)-algebra ln,N,M,k = lR,M,N 0WM (Fp ) WM(k) has the

canonical system of free generators

{ D; 0 on IrE R, n E Z/NZ }.

Denote by Dr,n, where r E R, n E Z/NZ, the image of D~ 0 on under the
canonical projeetion

Remark.
Let atjl and ar be the autornorphisms of the Lie algebra.c, which were introdueed

earlier to deseribe the action of the Galois group Gal(l(tr/IFp((~)))(e.f. n. 2.5) on
I/Cp(I). Extension of sealars of these automorphisms defines automorphisms of the
Lie algebra .ck , whieh we denote by the same syulbols. In the terms of generators
{Dr,n IrE R, n E Z/NZ } the action of atjl and aT is given on .cR ,N,/l,1,k by the
following eonditions:

a) atjl(Dr,n) = Dr,n+l;
b) ar(DT,n) = [(r]pn Dr,n,
where r E R, r(pN -1) E N and n E Z/NZ.
3.2. Let 1 ::; s < p.
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Definition. If ml, ... , m 8 ;;:::: 0 are integers, we set

if ml = = m 81 < m 3t +l = ... = m8'J < ... < m,s,_l =
1 :::; SI < < SI = s, and

TJ(ml, ... ,m,s) = 0,

otherwise.

Let N E N and nI, ... ,n,s E Z/NZ.

mlj" where

Definition. For indices 1 ::; i, j ::; s, nij will denote the integer uniquelly defined
by the following conditions: nij modN = ni - nj, 0 ::; nij < N.

2,..-in·

Remark. Ti( nl , ... , nlj) =I=- 0 <=? the sequence of points {e~} 1~j~,s is "ordered" on
aunit circle {z E C 1 Izl = 1 }.

3.3. Let 1:,R, N, A1 be same Lie algebra from the projective system {L:R, N, Al} (c.f.
the beginning of n.2.3). For any , E Q" > 0, and 121 E Z/NZ introduce elements
FR,N,M(" nl) E L:R,N,M,k (= LR,N,M !Zl WM(k)):

= L (-lY
1~,,<p rt, ... ,r,ER

n'J, ... ,n. EZ/NZ
iEZ,i~O

pi (rl+~+..'+~ )=r

Definition. Let v E Q,V > O. Denote by L~)N M k the ideal of the Lie WM(k)
algebra LR,N,M,k, which is generated by all iR,~,~(" 11,), where , ~ v and n E

Z/NZ.

Let

where R2 C R1 , N2 1N1 , M 2 ::; MI, be the connecting lnorphism of the projective
system of Lie algebras {LR,N,M}. If NI = N2 , then trus morphism, obviously,
induces the epimorphic mapping of ideals

for any v > 0, v E Q. This property, generally, is not valid for NI =I=- N 2 • Neverthe
less, we have the following proposition.
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3.3.1. Proposition. For any v E Q, v > 0, and a finite subset R C Q+(p), there

exists a natural number N = N(R, v) such that the system

( ) -{.c;,N,M I N ~ N(R,v) }R,N,M

is a projective system of Lie algebras, whose connecting morphisms are epiInor
pbisms, induced by connecting morphisms oE thc projcc tive system {.cR, N, M } R, N, M .

Proof.

The proof of this statement is a slight modificat.ion of the proof of Proposition
4.4 of [A].

Let f E Q" > O.
We call a presentation of, in the form

R-admissible, if 1 ~ 8 < p, Tl, ... , r., E R, i, ml = O,7n2, ... , m!J are nonnegative
integers, and m2 ::; ... ::; m!J. It is easy to see that the set of different R-admissible
presentations of the given rational number , is finite.

As in [A, loc.ci t.], one can prove the existence of a fini te set M (R, v) of rational
lllunbers, ;.?; v, having the following property:

if ,1 E Q, ,1 ~ v and

is R-admissible presentation of ,I, then there exis t , = ,(,d E M (R, v) and an
index SI = 81 (,1) ::; 8 such that

a)

b) if , = pi- (rr + j. + ... + ~.) is any R-admissible prersentation of " then
p 2 p I

mj < 711"1 +1.

Let N(R, v) be a natural number, satisfying the following implication:
if 1 E M(R, v) and

is some R-admissible presentation of " then m!J < N(R, v).

It is c1ear, that such N(R, v) exists.
Now following [A, loc.cit.] one can show that if N ;.?; N(R, v), then

1) the ideal .c~?N,M,k is generated by thc finite set of elements fR,N,M("nl),
where, E M(R,v) and nl E ZJNZ;

2) if N1,N2 ~ N(R,v),N2 INI,M2 ::; Mb, E M(R,v),n E Z/N1Z, then
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under the connecting morphism [, H,N1 ,MI -----+ [, R,N2,M2 and, therefore, [,~?Nl ,MI ,k

. cl t .c(v)
IS mappe on 0 R,N2 ,M2 ,k'

Proposition is proved.

Remark. Let 1 ::; s < p. One can consider the projective system

and the analogous statement for the system of ideals

As in the above Proposition it is sufficient to find a natural nUlnber Ns(R, v)
such that, for any N1 , N2 ~ N3 (R, v), N2 1Nl and M2 ~ IvI1 the epimorphic map
[, R,NI ,MI -----+ .cR,N2,M2 induces the epimorphism

[,~?NI ,1'.11 ,k mod C"+1 ([,R,N1 ,Mi ,k) -----+ [,~?N2,M2,k mod Cs+1([,n,N2,M2,k).

It is clear that Ns(R, v) = N(R, v) satisfies trus implication, but for a given value
of s this choice can be done more economically.

One can verify, for exatnple, that N1(R, v) = 1 and

N2(R,v) = max{n E N I 3r],r2 E R,i E Z,i ~ 0 such that

3.3.2. Using the above Proposition, for any v E Q, v > 0, one can define the
ideals

.c
(v) l' r(v)
k = 1m J..,R N M k

+-- '"
R,N,M

of the Lie algebra [,k = .e 00(Fp ) O(k).
Let .e(v) = .e~v) IU=id, where the action of a on .eiv ) is given by its standard

action as the Frobenius automorphism on O(k) ~ W( k) anel by the equalities
aDr ,7l = D r,n+1, where r E R,n E ZjNZ, and Dr,n are thc topological generators

of .e1v), introduced in n.3.1.

Obviously, all.e(v) are ideals of the Lie Zp-algebra.e, [,<v)O(k) = .e1v
) in.e k and

{.e( v) }v>o is a decreasing filtration of .c.

Remark.
Let v > 0, v E Q and .c~]N M be the image of the ideal .c(v) under the canonical

I ,

map
.c = lim.eR N M -----+ .eR NM·ot- " , ,

R,N,M

It follows now that the ideal .c~~N,Mlk is generated by

:F~ N M Cl', n 1) = an 1 :FR N MCl',0),.. , , ,
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where 'Y E Q, 'Y ~ v, nl E Z/N71 and

l$s<p
rl , ,r. ER

i,m2, ... ,m. ~o

pi (r l +~+ +#-.- )=1

Here'Tl is function defined in the beginning of n.3.2 and for any integer m j N(m)
is the notation for the resiclue of m modulo N.

3.4. We use notation and assuluptions of n.2.1. In addition we assume, that

the lifting a is given by the condition at = i P
.

Let {r(v)} v>o be the ramifieation filtration of the Galois group r = Gal(l<sep/ I<)
of our loeal field K in upper numbering, e.f. [Se, 2e part.]. This filtration is
a decreasing filtration of normal subgroups r(v), v E Q, v > 0, and the higher
ramification subgroup I equals to U r(v).

v>o
Let ,c be the Lie pro-p-algebra from n.2.3 and 'ljJ : I ~ G(L) be the homolllor-

phism of groups which we use in n.2.4 for the identification

{; : I /Cp(f) ~ G(L).

Let {.c(v) } v> 0 be the clecreasing fil tration of ideals of the Lie algebra L introduced
in n.3.3. Then {G('c(v»)}v>o is a decreasing filtration of the group G(L) by its
normal subgroups G('c(v»).

Theorem. For any v > 0, v E tQ,

i.e. tbe image oE the ramification filtration {r(v)}v>o in f/ep(!) and tbe filtration
{G(L(v»)}v>o coincide illlder the idcntmcation;r;.

Remarks.
a) The definition of ranlification subgroups r(v) and ideals L(v) can be given for

any real v E IR, v ~ O. Also, the proof of the above Theareln is valid for all real
positive values of v. But this does not give nlore general result, bec.ause of the
left-continuty of these two filtrations. Indeed, for any Vo E IR, Vo > 0, the equality

r(vo) = n r(v)

O<v<vo

is a formal consequence of the equalities

r (vo) n r(v)
L/K - L/K

O<v<vo
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for all finite Galois extensions LI](, which are valid by definition, [Se, loc.cit.). The
filtration {L( v) }v>o is left-continuos by the same reason.

b) Let Lo = .c G9Zp IFp , then the identification 7/; induces thc identification

If 'l/;o is the corllposition of 7/;0 with the natural projection I ---+ I/ IPCp(I)
and {L~v)}v>o is the image of the filtration {.c(v)}v>o under the natural projection
I:. ---+ .co, then our Theorem gives for any v E Q, v> 0, the following equality

So, we obtain a description of the ramification filtration of the maximal p
extension of K tr with Galois group of exponent p and class of nilpotency < p. This
statement was provcd in [A] where we use more general choice of identification of
the groups 1/IPCp(I) and G(.co).

3.5. GaBe 0/ p-extensions 0/ the field ](.
Before proving the above Theorem we give some of its corollaries related to thc

ramification filtration of the Galois group of the maximal p-extension of K.
3.5.1. Let {L:A,N,M} be the subsystem of the projective systerll of Lie algebras

{LR,N,M} from n.2.3. Here A c Z+(p) = Q+(p) n Z iS,arbitrary finite set, N ;;?:
1, M ;;?: °are integers.

Let L(p) = lim .cA N M and
t-- "

A,N,M

7r(p) : .c ---+ I:.(p)

be the natural projection. It is clear that

7r(p) = ~ 7r(p)R,N,M,
R,N,A1

where the morphislllS

are given by the following conditions

Dr,n ~ 0, if r E R \ Z+(p)j

Dr,n ~ Dr,n, if r E A(R) = Rn Z+(p).

3.5.2. Let r(p) be the Galois group of the maximal p-extension of K, j (p)
I ---+ r(p) be the natural projection. Then there exists a unique homomorphisrll
'if;(p) : f(p) ~ G( L:(p)) such that

a) 7r(p) .1jJ = 'l/;(p) . j(p)
(here 7j; is the homomorphism from n.2.4);
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b) 'lj;(p) belangs ta the equivalence dass relatecl by Theorem of n.1.3 to the
element

e(p) = ~ L t a Da,o E G(L:.(p)K)j
A,N,M aEA

c) if f(p) = 1r(p)K. ep (f), where f E G(L:.K.ep) is the element from n.2.4, then for
any r E r(p) one has:

7f;(p)(r) = r f(p) 0 (- f(p)).

cl) 7f;(p) = 7f;(p) mod Cp(r(p)) defines the identification of the groups r(p)/Cp(r(p))
and G('c(p)).

3.5.3. Let L:.(p) = ~(p)N' where 'c(P)N = ~'cA.N,M' Reluark that 'c(P)N,k =
N A.M

'c(p)N ® W(k) is a pro-p-algebra with the set of topological generators

For any v E Q, v > 0, denote by {.c(p)(v) }v>o the filtration related to the image
of the filtration {r(p)(v) }v>o in the group r(p)/cp(r(p)) via the identification 1[J(p).

Let {.c(p)~)} v>o and {L:.(p)~)N M } v>o be the images of the filtration {.c(p)( v)} v>o
under the canonical projection~ [,(p) --. L:.(p)N and ,C(p) --. .cA,N,!I1'

For any v E Q, v > 0, the set of elements

generates the ideal .c(p)~?N,M,k = 'c(p)~?N,M 0 W( k) in the Lie algebra L:.A,N,M,k
(c.f. n.3.3.2).

Using the explicit expressions for the elements FA N M(" nl), one can obtain
the following len1ma: ' 1

Lemma. Hl ~ So < p,a E AC Z+(p),m E Z/N71, pia ;?; SoV, tben

3.5.4. As earlier, for any 1E 7l jN(l) is the residue of 1modulo N.

Proposition. For any v E Q, v > 0, tbe ideal ,C(p)~)k = L:.(p)~) 0 W( k) is gener-
ated by the following elements: '

a) piDa,n, where a E Z+(p), i ;?; °is an integer, n E Z/NZ and pi a ;?; (p - l)v;
b) FN,v("nl) = an1FN,v(" 0), where,;?; V,nl E ZjNZ and

L (-1)8p i al17 (O, m2, ... ,m,,)[ ... [Da1,jN(i), Da~ljN(i-m~)L... , Da,.iN(i-m.)].

l~s<p

al ,....a, EZ+ (p)
i,m2, ... ,m,~0

pi(al+~+"'+#.-)=1
pi al , ... ,pia, «p-,,)v
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Proof.

From Lemma of n.3.5.3 it follows that thc ideal L(p)~)N M k is generated by the, , ,
following elements:

a) piDa,n, where a E A and pia ~ (p - l)v;
b) FA*N M("nl) = anlFA*N M("O), where, ~ v,nl E ZINZ , and the expres

sion for FA~N M ( " 0) is obtain~dfrom the expression of FA N M ( , , 0) by introducing, , , ,
the restrietions pi a1 , ... ,pia~ < (p - s)v.

In order to finish the proof one need only remark that for sufficiently large set
A C Z+(p) and a natural numher M (e.g. A ~ [1, (p - l)v ) n Z+(p) and pM ~ ,)

the sequence

{FA:N,M(', nl)} A,M

is stationary and its limit is equal to F N,v(" nl).
3.5.5. Analogously, one can obtain the following proposition:

Proposition. Let 1 ~ So < P, V E Q, v > O. Then the ideal

is generated by tbe following elements:
a) piDa,n, where i ~ O,a E Z+(p),n E ZINZ and pia ~ sov;
b) FN,v,so(" nl) = anl FN,v,.'lo(', 0), where, ;::: v, nl E 711NZ and

u;;;~~~o

al,,,.,a. Ez+ (p)
i,m2, ... ,m.~0

pi (a l + p~2 +.,,+~ )="Y
pi a1 , ••• ,pi a. «so+l-s)v

3.6. Restatement 0/ the main theorem.

For any finite extension LI!( define its "largest upper ramification nUluher"
v(LI!() by the following condition:

r(v) acts triviallyon LI!( {:} v > v(LI j().

Existence of v (LIK) follows from the left-continuty of thc image {r ~v)K}v>o of

the filtration {r(v)}v>o in rL/I< (c.f. Remark a) of n.3A).
Let .c = lim LR N M as in n.2.3 and

f-- "
R,N,M

1f;n,N,M : I --+ G(LR,N,M)

be the hOlll0morphism from 11.2.4. If

I(R N A1 = I{Ker VJR,N,M
, , .'lCp ,
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then ]<R,N,M is (in an obvious sense) the field of definition of the element JR,N,M E

G('cR,N,M,I<.ep) which was chosen in n.2.4.
If:J is any ideal of 'cR,N,M' then the image fR,N,M mod:J of JR,N,M under the

natural projection

G('cR,N,M,K.ep) ---+ G(('cR,N,M / :J)K.ep)

defines by functorial property of the statement of Theorem n.1.3 a hOnlOrTIorphism

I ---+ G(LR,N,M / :1).

This homomorphism is equal to the composition of 1/JR,N,M and the natural
projection

G(.CR,N,M) ---+ G('cR,N,M / :J).

Obviously, the field of definition of JR,N,M mod:J equals to I{~,~?M'
For Va E Q, Va > 0, denote by LR,N,M(VO) the ideal of LR,N,M such that

'l/JR,N,M(r(vo») = G(LR,N,M(Va») C G('cR,N,M).

Then the above arguments give the following mininlal property:

(P) 'cR,N,M(va) is the minimal element in the family of ideals :J of LR,N,M
such that the field of definition of JR,N,M mod:J has the largeJt 1Lpper ramification
number < va.

Let L~% M = L~oJv M k 100=id, where the ideals L~o~ Al k were defined in n.3.2.
Now Th~r~m of n.3:4 'c~ be restated as folIows: ,"

3.6.1. Proposition. Let R C Q+(p) be a finite subset, MEZ, M ~ 0, Va E
Q, Va > O. Tben there exists a natural number Na(R, M, va) such tbat for any

N ~ No(R, M, va) tbe ideal L<;,o~,M of LR,N,M satisnes tbe above property (P).

Let 1 ~ s < p and C.9+1 ('cR,N,A1) be (as usually) the ideal of LR,N,M generated by
commutators of order 2: s + 1. Olle can consider the minimal property (P.9) taking
in the minimal property (P) ideals :J, which satisfy the additional requirement

:1 :> C.9+1(LR,N,M)'
Obviously, the above proposition is equivalent to the following one:

3.6.2. Proposition. For 1 ~ s < p and R, M, Va as above, there exists a natural
number N~(R,M, va) such tbat for any N 2 NlJ(R, M, va) the ideal

,c~% M + C.9+1(LR,N,M), ,

satisfies the property (Ps).

Remark~.

a) In fact the proof of our Theorem modulo IP in [A] (c.f. remark b) of n.3.4)
was obtailled as the proof of stateulcnts analogous to Proposition 3.6.2 by induction
on s.

b) One cau be not worry about a minimal possible value of N 8 (R, M, va ). If
proposition is proved for some choicc of this constant then it will be autonlatically
valid for all N 2: N~(R, vo), where N~(R,va) is the natural nurnber fronl remark to
proposition 3.3.1.
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Example.
The above statements give:
a) If s = 1, then .cR,N,M,k(vo) mod C2(.cR,N,M,k) is generated by elelnents of the

set
{piDr,n IrE R,n E Z/NZ,i E Z,i 2:: O,pi r 2:: Vo }.

b) If s = 2, then LR,N,M,k(vo)lnodC3 (.cR,N,M,k) is generated (as ideal) for
N 2:: N2(R,M,vo) by the elements FR,N,M("nl) where, E Q" > O,n] E Z/N71
and

rl,r2ER
n2 EZjNZ,i~O

pi(rl+~)=/

Here, c(,) = 0, if , is not p-entier, and c(,) = " otherwisej
r(,) E Q+(p) and 1(,) E Z are uniquelly defined from the equality, = pl(')r(,);
ij(nl' n2) = 1 if nl i- n2, and ij(n], n2) = 1/2 otherwise;
n12 E Z is uniquelly defined by the conditions: 0 S; n12 < N and n12 fiod N =

nl - n2·

4. Prüof of the main theorenl lllOdulü C3 (.c).

In this section we prove Theorenl of n.3 modulo C3 (L), i.e. we give the proof of
proposition 3.6.2 for s ::; 2. We use all notation and assumptions of nn.3.4 and 3.6.

4.1. Case s = 1.

Leulma. Let X E OM(Ksep ) be such tbat

aX -X = wir

where w E WM( k) and ]«(X) is the field of definition of .Y. Then

v(K(X)/K) = lnax{ rp' I 1E 'Z,l ~ 0, p1w =1= °}.
Proof.

We can assurne, that w E WM (IFq1 ) for some ql = pNI
• Consider the embedding

which transforms a to the standard Frobenius morphism of Witt vectors (c.f. for
example [F, n.A1.3.2]). Therefore, j transforms f to Teichmuller representative

...... ...... ............p
of t modp = to (because at = t ). Now oue can use Shafarevich's basis of the
group K*, [Sh], and Witt explicit reciprocity law, [W], to get the conclusion of our
lemma.
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Proposition. Let [,(0) be a commutative Lie Z/pM+IZ-algebra,

eo = L t r
Ar E G([,~;r)'

rER

where Ar E [,~o), 10 E G(L}~~ep) is such tbat 7r!o(eo) E 7r(eo) (c.f nota.tion of

n.l) and K(/o) = K~~r1t"/O(eo) is the neid of definition of /0, Tl1en the following

statements are equivalent:
a) v(K(fo)/J() < Vo;
b) if r E R, s E Z, S 2:: 0 and p"r 2: vo, then p!J Ar = O.

Proof·

Let {BdiEI be a special system of generators of Z/pM+IZ-1llodule [,(0), which
satisfies the following condition:

if L aiBi = 0 for ai E Z/pM+IZ, i E l then aiBi = 0 for Vi E l.
iEl

Let Ar = ~airBi and fo = ~XiBi, where all air E WM(k) and all Xi E
iEI iE!

oM(J(!Jep). Then

aXi - Xi = L airtr .
rER

Let Ki be the field of definition of Xi, i E I. We have:

v(]«(/o)/]() < Vo <=> V(I(i/K) < Vo für all i E I,

because !( is the composite of all !(i, i E I.
It follows from the above Lemma that

So, v(Ki / K) < Vo for all i E I, if and ünly if the following implication is true:

if r E R and rpl 2:: vo, then plair = 0 for all i E I.

But the condition "plair = 0 for all i E I" is equivalent to the condition pI Ar = 0,
because of the above special choice of generators Bi ,i E I. Lemma is proved.

Corollary.
Proposition of n.3.6.2 is valid for s = 1.

Proof.

Let 3 be an ideal of LR,N,M such that 3 :> C2(LR,N,M) and L3 = LR,N,M /3.
Deuote by e3 and f:r the inlages of eR,N,M and fR,N,M in G(L:r,Ktr ) and G([,:r,KHP )'

respectively. Then e:J = ~rER tr
D~,ol where D~,o = Dr,o mod3k. Let K(f3) be

the field of definition of f:J over K.
Now the above Proposition gives:
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v( /«/:J )//() < Vo {:} V1' E R, if Tpl ~ Vo l then pi D~.,o = 0

{:::=> V1' E R, if rpl ~ Vo, then plDr,a E :r 0 WM(k)

{:::=> Vr E R, Vn E Z/NZ, if rpl ~ Va, then plDr,n E :r 0 WM(k)

{::::::} .cR,N,M,k(vo)modC2 (.CR,N,h1,k) is generated by thc elements pIDr,n, whcre
r E R,n E Z/NZ and p'r ~ Va.

4.2. Auxiliary construction.

As earlier, K = k((ta)), N ~ 1, q = pN.

4.2.1. Let r* E Q+(p) be such that r*(q -1) E Z.
Following [A, n.6.3] introduce a separable extension /(' of ]( such that
a) [](' : ]{] = qj

•........ -r
b) K' K tr = ](tr(T), where Tq - T = t a .

Herbrandt function of trus extension is equal to

for 0 < x ::; 1'*
1JKI/K(X) = { rX~ + x-r.

q , for x > r*.

Remark. The graph of function 1J 1(' / K(x) has the unique cdge point (r* , r*) (there
fore v(K' / J() = r*).

4.2.2. Let

E(x) = exp(x + xP /p + ... + xpn /pu +...) E Zp[[x]]

be Artin-Hasse exponential.

Lemma. There exists a uniformizer t7J' of the fie1d ](' such tllat

....... ,q (1 ....... ,r.(q-l») ........
to E -ta = ta.

r*

Praof.

One can assume that T = u- r• for some uniformizer u of ]{'. Therefore,

u-qr• (1 _ Ur·(q-l») = fo- r
·,

u q(l - u r·(q-l»)-l/r· = ta,

u q(1 +~u r· (q-l») =t7J modeu q+2r· (q-l) 0 J{I ).

r*
Now Hensel Lemma gives the existence of fo' E 0 K' such that

....... 1 l+r-( -1)
t a == U lnod(u q 0 K' )

and

q.e.d.

4.2.3. Clearly, OM(K') =:) OM(J(). Considert E OM(]() such that t modp = ta
....... .......p

and at = t (c.f. n.3.4).
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"..., I "..., I "..., ,

Lemma. There exists t E 0 M(I(I) such tbat t fiod p = t o (c.f. n.4.2.2) and

"""'q (1 """'r- (q-l)) "...,t E -t = t .
r*

Proof.

This follows easily from Lemma of the above n.4.2.2 and Hensel Lemlna.
M

4.2.4. Let K~ = k((fo'p ». Then 1<~ is the subfield of 1{' and K' is a pul'ely
inseparable extension of KM of degl'ee pM.

As was mentioned in n.2.1, OM(K') can be identified with Z/ph1+1Z-algebl'aof
"..."

Laul'ent series in the variable t wi th coefficients in WM ( k). Thel'efol'e, one can
identify OM(KM) with the Z/pM+IZ-subalgebra of OM(I(') consisting of Laurent

M

series in the variable i;. = i'P . Clearly, i; mod p is a uniformizer of KM and
...., "...,p ,...... "..., ,...... AI ,...... M+l

at] = t] in OM(Kk) (indeed, at' _ t'P modpOM(I('), therefore, O't'P = t'P
in OM(K')).

......-1 "'-'-1
4.2.5. Let t] = t 1 E OM(I(fw) and (as carlier) t = t E OM(I().

Lemma.

Proof.

Trus equality is a formal consequence of Lemma of n.4.2.3 and of the following
2M M ...... ,_pM

formulae: E(x)P =exp(px)E(xP), E(x)P _E(xP )mod pM+l, t =t1 and
r*p

M
+. _ r* mod p s+l for 0 ~ s ~ M.

4.3. One reduction.

4.3.1. Let:r c .cR,N,M be any ideal,'c.:7 = 'cR,N,M/J, e.:7 and 1.:7 be the images
of eR,N,M and IR,N,M undel' the ]naps

and

respectively.
Let 1«(1.:7) be the field of definition oi l:r over ]( and K(aM l:r) be the field

of definition of aM 1.:7 over 1(. Then 1«(f.:7) = 1« aM f.:7)' Trus follows from the
evident equivalence e "'" a Me in G('cR N M Kr ).R ' , , ..

M

Let 11M = k((fc/ »). Then ](M C ]( and !( is purely inseparable extension of
I(M of degl'ee pM. a M induces the isomorphism of fields ]( ----+ KM which sends
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M

t a to ~ P This isomorphism can be extended to the isoillorphism K~p(I) ---+

!(~;:~ by the following conditions fRl,N1,M1 f-+ UM fJl1,N1,M t • Obviously, for any
ideal :J C LR,N,M there is an isoillorphism of the extensions !«(uM f.:J)/ K and
!(M(a2M I:J)/!<M (here ](M(a2M f:J)/KM is the field of definition of a2M f3 over

KM)'
So, for any ideal :J c .cR,N,M there is an equality of the largest upper ramifica

tion numbers

Let
e'R NM = ~ tr]Dra E G(.c R N M K 1 )," L-t., , , , M,tr

rER

and fk,N,M E G(.cR ,N,A1,Kk,up) be such that

f ' f' ,a - 0 eR,N,M - R,N,M R,N,M

(the morphism a on 0 M (KM1 K ) is given by the restrictioll of a from 0 M (JC)
, .ep

to 0 M(]<k), c.f. n.4.2.4). As above, define for any ideal :J c .cR,N,M the eleluent
f':1 E G(.c:J,KM,lCp)· Then

v(Kk(f':1)/Kk) = v(](k(aM +N 1':1)/!(k)·

4.3.2. Clearly, K~ is separableover KM, and Olle can define X E G(LR,N,M,KM,HJP)
from the equality

2Mf M+Nf' Xa R,N,M = a R,N,M 0 .

Therefore, for the image X:J of X in G(.c3,KM,.eP) one has

Proposition. Let Va E Q, Va > 0, :J be an ideal oI.cR,N,M and !(M(X:r) be the
field 01 definition of X:J Qver [(k. H r* < Va, then

Praa/.

We use the following lemma.

Lemma. Let V3 = v(K(f3)/K) and v:, == v(KM(I':1 )/KM). Then either v:J and
v:, are batb < Va, or vj < v:r.

Fraol 01 Lemma.

We use arglUllents of [A, n.7.4].
The correspondence t Ho t l defines the isomorphism of fields
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This gives the isomorphism of liftings OA-l(]() and OM(I(~1)' Bince at = t P

and at1 = ti, the eorrespondence I:J t---+ l':r defines thc extension of a to the
isomorphism of fields

[«(I:J) ---4 !(~(f':r).

Let <P1(x) and 1>2 (x) be Herbrandt fune tions of the extensions K (f:J )/ I< and
Kk(f'.:r)/KM, respectively. Then function if;1 (x) coincides with Herbrandt function
of the extension K~(I'.:r)/KM and, therefore,

1>2 (x) = 4>K~ / KM (<PI (x)),

where 4> K~f / KM (x) is Herbrandt function of the extension !(k/KM.
On the one hand, (4)-;1 (V:J), V:J) and (if;:;1 (v?r), v:,) are the last edgc points of thc

graphs of the functions 4>l(X) and 4>2(X), respectively. On the other hand, <PK~f/KM

coincides with Herbranclt function of the extension K' / K, c.f. n.4.2.1.
Therefore,

* * * V:J - r*v:J = max{ r l r + }.
q

Now, if V:J ~ r*, then v:' ~ r* and, in this case, V:J and vj are both < Va.
H V:J > r*, then

q.e.d.

Continue the proof of our Proposition.
It follows from the definition of X:r that

!(k(X:r) C K M(a2M f:J )J(k(aM +N I~)·

By arguments of nA.3.l one has (in notation of the above Lernnla)

V([(~(X:J)/I(M) ~ max{ V.J, v?J }.

Obviously, the above LeIllina gives the implication

V(I«f:J )/K) < Va ==> v(I(~(X:r)/ I(M) < Va.

The inverse implication can be obtained similarly. Indeed, let v(K~ (X:J )/ I(M) <
Vo and V:J ~ vo. Oue has from the defini tion of X:J

V,7 ~ max{vj, v(KM(X,7)/ I(M )}.

Therefore, Vo ~ V:r :::; v:" hut this is impossible hecause of our Lemlna.

4.3.3. Corollary. Hr* < Va and 1 ~ 8 < p, then .cR,N,M(Va) + C,,+l(.cR,N,M) is
the minimal element in the Iamily oI ideals J oI .cR,N,M, such tbat

a) :r => C.!+lCCR,N,M);
b) v(I(k(X,7)/KM) < Va.

4.4. Some calculations.

Let Va E Q, Va > 0, R be a finite subset in Q+ (p) and M be a nonnegative
integer.

For any natural number N we use the notation q = pN.
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4.4.1. Lemma. There exists a natural number N2(R, M, va) sueb that for any
N ~ N 2(R, M, va) there exist r* = r*(N, R, M, va) E Q+(p) BJ1d a* = a*(N, R, M, Va) E
Q+ (p) suel1 that

a) r* < Va;
b) r* (q - 1) E N;
c) iEr E R,r < Va, tben qpM r - qa* :::; -a*;

d) iE r E R and pi r < Va for son1e i E tE, i ~ 0, thell

e) if pi(rl + ~) < Va for some Tl, T2 E R, and integers i, n ~ 0, then

i( r2 ) ( ) *qp rl + - - q - 1 r < O.pn

Proof.

Let 81 = 81 (R, va) be the minimuln of an positive values of the expression Va _pi r ,

w here i E Z, i 2:: 0 and r E R.
Let 82 = 82 (R, va) be the nlinimum of a11 positive values of the expression

where i, n are nonnegative integers and Tl, T2 E R.
Clearly, 81 and 82 exist and 0 < 82 :::; 81 .

Take a natural nUlnber N 2 = N 2(R, M, va) such that for q2 = pN"l and

one has the following inequali ty

,..... 2
Va -va>-

q2 -1

If N 2:: N 2 , then for

{
q + 2pM q }

v = max (va - 81 ), --(va - 82 )
q-1 q-l

one has
,..... 2 2

v - Va :2:: Va - Va > > --
q2 -1 - q - l'

Therefore, there exists m E N such that

m m+1
--1' 1 E (v,vo),q- q-
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At least one of these two fractions should be an element of Q+ (p) which we shall
denote hy ,*.

Clearly, the requirements a) and b) of our Lemma are satisfied.
If '1,'2 E R,i,n '2: 0 and pi('1 +~) < Vo, then

(c.f. the above defini tion of V) allcl the requiremellt e) is also valid.
Let a* E Q+(p) be such that

If r E R, r < vo, then r ::; Vo - b1 and

therefore, c) is valid.
If r E Rand pi 1, < Vo for sorne i ~ 0, then pir ::; Vo - b1 and the requirernent cl)

is obtained as follows

Lemma is proved.

4.4.2. For fixed Vo, R, M and a natural number N :2: N2(R, M, vo) we use until
the end of n.4 the following more simple notation:

L = .eR N 1.1 and analogously L k = .eR N M k, L tr = Ln N M K' ,Lsep -, , , , , , , , M tr

.e N ' . 'R, ,A1,x:M ,up 1

~(VO) = .eR,N,M(VO) and analogously L(vO)sep = .eR,N,M,K~f,UP(VO);

Dr,o = D r,2M for any r E Rj
E 2M "trp2M D....... dEM 1 "trpMD.......= a en,N,M = L.J r,O an 1 = a eR,N,M = L.J I r,O;

rER rER

F = a 2M
fR,N,M E L sep and F I = a M

fk,N,M E Lsep .

j(-;"O) = FR,N,M("2M) IllOd C3 (Lk) =

L rpi Dr,i
rER,i~O

rpi=/,

L 1](n, O)rlpi[Drl ,i, Dr2 ,i-n].
rl ,r:;z ER

O~n<N,i~O

pi (rl + ift- )=,

Denote by WM(k){~} the WM(k)-algebra of Laurent series in oue variable i;..
Then OM(](M) ~ WM(k){i;} and

OM(KM,tr) = ~ WM(k){~l/n}.
(n,p)=l
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Consider its subalgebra of "power series"

O'M tr:= lim WM(k)[[~l/nJJ.
1 ---+

(n,p)=1

This subalgebra can be identified with a lifting of thc valuation ring 0 K' of
M,tr

the field I(M tr modulo pM+l.
We also u~e more simple notation O'(Ltr ) for the Lie O~ tr-algebra L 0 O~ tr', ,

Inductive a33umption.
One can assume that Proposition 3.6.2 is valid (for s = 2) for the Lie algebra

'cR,N,M-l, where N 2:: N2(R,M -1,'00). As

N2 (R, M, '00) 2:: N2(R, M -1, '00),

we can assume that for N 2:: N 2(R, M, vo) the ideal

L(VO)k Inod(pM Lk + C3 (Lk))

of the Lie algebra Lk Inod(pM Lk + C3 (Lk)) is generated by the elements
-..- M

an:F(" 0) lnodp Lk + C3 (Lk),

where n E Z/NZ, 12:: vo.
4.4.3. Let ßl E Ltr be such that E = aN EI + ßI. Then (c.f. n.4.2.5)

where

As in n.4.3, consider X E L~ep such that F = aNFI 0 X. Obviously,

aX - X = ß) fiod C2(L sep ).

Proposition_
a) ß) E L(Vo )sep + t-;a* Cy (L tr ) +C2 ( Lsep );
b) [X,a N EI]

- L (an ßt, aN EI] fiod ÜL( '00 )sep, L~ep] + t-;U- O'(L tr ) + C3 (L sep )) .
O~n<N

Proof.

Let

for 1 ~ s ~ M and
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Lemma. For any r E R and °:::; s :::; M one bas

Proo/ 0/ lemma.

Let rp8 ~ Va. Then
p~Dr,a E L(Va)k + C2(Lk),

c.f. n.4.1. Therefore, if s = 0, then

If 1 ~ s ~ M, then

and again

Let rp8 < va. If 1 ~ s ~ M, then

M • M-.( 1) M-. • •
E t qrp -r p q- 0' C t-P a 0' C t- a 0'

1 M,tr 1 M,tr 1 M,tr

(we use the inequality d) of Lemma 4.4.1).
This means that

If s = 0, then

er -1 = {- (_~t-r.pM(q-l))-1} dt- r • pM+
1
(q-l)O'Co - exp 1 mo ] M tr'r* ,

As r < Va, the enequality cl) of Lemma 4.4.1 gives that

M M • M( 1) M • •
t qrp (f"r - 1) E t qrp -r p q- 0' C t-P a 0' C t- a 0'

1 0 1 M,tr 1 M,tr] M,tr

M --- •
and, therefore, trrp (Eo- l)Dr,o E {la 0M,tr'

Lemma is proved.
Continue the proof of our Proposition.
a) As TI Er E 0M tr' the above Lemma gives

~<i~M '
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b) From n.a) it follows that for n ;:: N

Then

aNE 1 = L t~rpM Dr,o - L tr
pM

Dr,o modL(vo)sep + C2(L~ep),
rER rER

r<vo

because Dr,o E L(VO)k + C2(Lk) for r ~ VQ.

vVith respect to c) of Lemma 4.4.1, qrpM ~ (q - l)a* for r < Va, therefore,

So, for n ;:: N

In order to finish the proof one needs only remark that

x - - L an~1Inod(L(vo)8ep + C2(L8ep )),
n~O

by the part a) of our Proposition, which was proved earlier.
Proposition is proved.
4.4.4. Let ~ E G(L tr ) be such that E = aNE 1 o~. Then

Applying a to the both sides of the equality F = aNF1 0 X, one gets

and

Therefore,

where { , } is a comlnutator in the group G(L~ep).

Obviously,
{X, aNE 1 } = [X, aNE 1] mod C3(L sep )

and by ll. b) of Proposition n.4.4.3 one has
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L [OnßJ, ON EI} mod ([L(Vo)sep, Lsep}+ tja- O'(Ltr ) +C3(L sep )) .
O~n<N

Proceeding in the same way we obtain

1 N 1 1 N
- X + ßI - 2"[0 EI,ßI} + 2"[X,ßI] == X + ßI - 2"[0 EJ,ßI]

mod ÜL(vo)sep,Lsep] + t1a
- CJ'(L tr ) + C3 (L sep )) ,

because X and ßI are in L(VO)sep + t1
a

- (J'(L tr ) + C2 (L sep ), c.f. nAA.3.
Therefore,

- ßI - L 1f(n,O)an [ßI,aN- n EI J

O~n<N

where

4.4.5. Proposition.

1f(n,O) = { 1,
1/2,

if 0 < n < N

if n = o.

Proof·

We use notation of n.4.4.3. Let r E R alld 0 :s; s :s; M.
a) If p~r < Vo, then

c.f. proof of Lemma nA.4.3.
b) If s 2: 1 and p~r 2: puo, thell

This is implied by the following Lemma.
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Lenlma. Hr E R, i 2 0, i E Z and pi r ~ Vo, then

Praof of Lemma.

By the inductive assumption of n.4.4.2 one has

F(pir, O) = pirDr,i - L 1f(n, 0)pi1rtfDr1 ,i1, Dr~,il-n] E L(Vo )k+pM Lk+C3 (Lk).
rl,r2ER

O~n<N,il?il':O
pi l (rl +~ )=pi r

Therefore, pF(pir, O) E pL(VO)k + C3(L k ).

If the summand

appears in the expression of pF(pir, 0), then it belongs to [L(VO)k, Lk] + C3(Lk).
Indeed, at least one of two numbers pi l +l r1 and pi 1 +l rz shollld be 2 Vo (other-

. i 1 ( + 1:2.) ~ < ) Th ~ i 1 +1 D--- i 1+1 D--- bItWlse, p 11 pn < p Va· erelore, p rl,i l or P r2,i 1 -n e ongs 0

L(VO)k + C2 (L k ).

Lemma is proved.
Now our Proposition follows from the identi ty

TI (&;1 - 1)...(&;/ - 1).
l~I~M

O~~l < ...<sl~M

4.4.6. Proposition. Let 01 be a rational nunlber trom the prooE oE Lemlna 4.4.1.
Tben

L 1f(n,0)an [ßl,a N
-

nE1]-

05.:n<N rl,r~ER

O~n<N,O~,Il~M

Va ~p' (rl + ift-) ~2( Va -61)

Proa/.

Indeed,

L 1f(n,0)an[~1,aN-nEd =
O~n<N

L 7f(n,O)an [Lt~rlPM(&~l ...&~ -1)Dr1,alLt~~pM+N-ni5r~,_n] -
O~n<N rl r2
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Then, as in n.4.4.5, we obtain
a) If p"(r1 + ~) < vo, then

P

b) If p.!(r1 +~) > 2(Vo - 81 ), then either p8 r1 > Vo - 81 , 01' p8 1'2 > Va - 8]. Let,
for exaruple, p.!rl > Vo - 81 . Then p8 rI ~ vo, it gives

and, therefore,

Renlark, that &;1 - 1 = 0 lllOd p8.

Now one can finish the proof of our Proposition in the same way as it was done
in the proof of Proposition n.4.4.5.

4.4.7. Proposition.

~I - L 17(n,O)an[~I,aN-nEI] ==
O~n<N

1

r'"

M-,L rps [trrp'-r+(q-I)]P i5~,o+

rEH
O~8~M

Proof.

r·( 1) At-,
It is easy to see that the changenlent of &;1 -1 by the first member - ~t; q- P

of its expansion in powers of t 1 does not affect the expression for

L t](n,O)O"n{~l,aN-nEI]

O~n<N

from Proposition 4.4.6 modulo t 1a
• C]1(Ltr ). In order to finish thc proof one needs

only show that this procedure can be done with the expression of ~1 from the
Proposition 4.4.5. This is implied by the following lemma.
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Lemma. Hr E R,ps1' > 2(va - SI), tben pSDr,o E L(Va)k + Ca(Lk).

Proof.

Let p~l 1'1 be the largest number such that 7'1 E R, p~l rl > 2( Va - 01) and

From inductive assumption it follows that

Further, in the expansion

where al1 A'l,m E Lk, one has
1) A,t,rn E L(VO)k + Ca(Lk) for 11 > qpSlrl - r*(q - 1);
2) A,t,rn E L(VO)k + C3(Lk) for 11 = qp~lrl - r*(q -l),m i- M - sI

Therefore, if Kk(XL(vo») is the fie1d of definition of

X InodL(vo)sep + C3(L sep ),

then the largest upper rarnification number V(11M (XL(vo»)/KM) is equal to 11 and,
therefore,

*v(1(k(XL (vo»)/1{M) = 11 - r + r* = pSl Tl.
q

Eut the inequality p~lrl > 2(va - 81 ) ~ Va - 81 implies the inequality pSlTl ~ Va.
This is impossible because of V(11M(XL (vo»)/11M) < Vo.

This contradiction proves our Lemma.
4.4.8. It is easy to see that for any ideal J of the Lie algebra L such that

J ~ pL(vo) + [L(vo), LJ +C3 (L),

the field of definition of X fiod J~ep coincides with the field of definition of Y mod J8ep ,

where Y E L llep and satisfies the equation

- L

So,
aY-Y= L t~,-r·(q-l)j("O),

,EQ,,>O

40



e.f. n.4.4.2.
4.5. The end of the proof 0/ theorem.

Let Jo = .c~o~ M' We finst prove, that, ,

From n.4.4.1 it follows that

By the induetion assulllption one has

Therefore,

Now the last formula of n.4.4.8 gives that

and therefore

Conversely, let

10 = max{ I E Q I f;;::: Vo, i/o ~ L(VO)k}.

Now the last fornllua of n.4.4.8 and Lemma n.4.1 give

V(1{~(XL(vo»)/K~) = q,o - r*(q - 1).

Now the following inequality

gives the eontradietion to the Corollary of n.4.3.3.
Theorem of TI.3.4 is proved (modulo 3-rd commutators).

5. The ease of a loeal field with finite residue field.

Let No be a fixed natural number, K o be a complete discrete valnation field of
eharaeteristic p > 0 with finite residue field IFqo , where qo = pNo. Fix a uniformizer
4J of the field K o, then a fixed embedding IFqO C k = lFp defines the embedding
1(0 = IFqo ((4J)) c K, where K = k((4J)) is a loeal field frorn n.2.l.

Let r = Gal(KIJep/!(o), r o = Gal(!(sep/I(o) and ro(p) (respectivelYl r(p)) be
the Galois group of the maxirnal p-extension of the field K o (respectively, of the
field K) in !{O,tJep = !{sep.
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In n.5.l we apply the generalisation of Artin-Schreier theory frolll n.l to the
construction of an identification

where L = LjCp(i), and L is a free pro-p-algebra Lie over Zp.
In n.5.2 we describe (in the terms of the identification ;[,0) the action of the

Galois group Gal(KojIFp((~)) ) on fo(p)jCp(fo(p)) by conjugation.
Let

i[J(p) : f(p)jCp(f(p)) ~ G(.c(p))

be the identification from n.3.5.2. Consider the homomorphism of groups

defilled by the imbedding f C f o. With respect to thc identifications i[J0 and
i[J(p) the homomorphism / can be described in the terms of some Inorphism of Lie
Zp-algebras

8 : .c(p) ----+ L.

In nn.5.3-S.4 we give an explicit construction of this morphisln.
Let {.c(p)(v)}v>o and {L(v)}v>o be the filtrations of the Lie algebras .c(p) and

L, corresponding to the ramification filtrations {f(p)(v)}v>o and {fo(p)(v)}v>o, re
spectively. For any v E Q, v > 0, the equality f(p)(v) = fo(p)(v) iInplies the equality
8(L:(p)(v») = L(v). Therefore, the explicit construction of 6 with thc description of
the filtration {.c(p)(v) }v>o from n.3.5.3 pennit us to gjve in n.5.5 a description of
the image of the ramification filtration of the group f 0 in f °(p) jep (f0 (p) ).

5.1. Con3truction 01 identification 1[J0.
As earlier, let

z+(p) = { a E N I (a, p) = 1 }.

For any finite subset A C Z +(p) and an integer M ~ 0 introduce the free Lie
Z/pM+1Z -algebra LA,M with the lllodule of free generators

The system {LA,~} is a proj.:ctive system of Lie algebras with respect to con

necting morphisms LA1,M1 ----+ LA2 ,M2' defined for Az C Al and Mz :::; M1 (these
homomorphisms are induced by the projection WMI (IFqo ) -----+ WM 2 (IFqo ) and the
correspondence Vo I-t Vo). Clearly, L = ~LA,M is a profree Lie Zp-algebra with

A,M

the set of topological generators

rr Hom(W(IFqo ), lV(IFp))a EB W(IFp)Vo.

aEz+ (p)
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Set LA,M = LA,M /Cp(LA,M), L = L/cp(L) and denote by Va,! (respectively, Va)
the images of the generator f E Hom(W(IFqo )' W(IFp))a,a E Z+(p), respectively,

Va) in these algebras. As earlier, for any subfield ](] C ](sep use the notation
L K1 = L 0 O(li]) for extension of scalars of the Lie algebra L and introduce the
natural system of free generators

{Va,n I a E Z+(p), n E Z/NaZ } U {Va}

of the Lie algebra LF .
qO

Fix Cl' E W(IFqo ), such that Tl' a = 1, where Tl' : W(lFqo ) ---+ W(lFp ) is induced
by the trace of the extension IFqO over IFp' It is easy to see, that Cl' tt (<p - id)lV(IFqo),

where <P is the absolute Frobenius morphism of the ring of Witt vectors W(IFqo )'

For any finite subset A c Z+(p) and an integer M ~ 0 consider the elements

hA,M = (L tUVa,o) 0 (aVa) E G(LA,M,Ko )'

aEA

and elements 9A,M E G(LA,M,K.ep), such that
1) (J9A,M = gA,M 0 hA,M;
2) the system of elements {gA, M } is compatible in the projective system {LA, M,K, ep } •

The choice of a such system of elements {gA,M} defines the compatible systeln
of epimorphisms

,p~,M : ra(p) ---+ G(LA,M),

(for any r E ra(p) ODe has 'ljJA,M(r) = rgA,M 0 (-gA,M )).
Taking

'l/;0 = ~ 'l/;A,M : ra(p) ---+ G(L),
A,M

we obtain the identification

If 9 = ~9A,M, h = ~hA,M, then (Jg = go h and for any r E ra(p) one has:
A,M A,M

'if°(r) = rg 0 (-g).

Remark.
Let € p : l(0 ---+ r a(p) / C2(ra(p)) be the homomorphism appearillg from thc

reciprocity map of loeal class field theory. Via Witt explieit reciproeity law, [W],
one can show that

a) cp(~) = (~a)-] (Va) mod C2 (ra(p ));
b) if E(X) is Artin-Hasse exponential (e.f. n.4.2.2), a E Z+(p),ß E W(IFqo ),

then
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Here the homomorphism fß E Hom(W(fqo ), W(IFp )) is such that for any a E
W(IFqo ) one has fß(a) = Tr(ßa), where

Tr : lV(Fqo ) -4 W(iFp )

is induced by the trace of the extension FqO JIFp.
5.2. Let 1>0 E Gal(I(oJIFp((~))) be such that 1>o(to) = to and cPolFqo be the

absolute Frobenius automorphism of the extension IFqO JIFp. It is clear, that 1>0
generates the Galois group Gal(I{oJIFp((~))).

Denote by aq,o the automorphisln of the Lie algebra L, given on the set of gen
erators

{Va,n I a E Z+(p), n E ZJNa71} U {Va}

of the Lie algebra LFqo by the following conditions:

aq,o : Va,n 1---+ exp(an 0' ad(Va))(Va,n+t)

aq,o : Va 1---+ Va

(here exp(X) = I: x n /n! is the truncated exponential).
a~n<p

Proposition.
a) cPa(h) I"V a4Jo (h);

R

b) the corresponden ce 9 1---+ aq,o (g) 0 (aVa) defines an extension ~a oE tbe au to
morphism 1>0 to the neld I{;~~r tPo (whicb coincides with the maximal p-extensioll oE
K a having Galois group oE dass oE nilpotellcy < p);

c) Tbe action oE ~o on ra(p)/cp(ra(p)) by conjugation corresponds 1.Ulder tbe
identincation -{;a to the automorpmsm aq,o oE the Lie algebra Lr

qO
•

Proof·

Indeed, a) is implied by the following calculation:

cPa(h) = ( L taVa,l) 0 (aaVQ) R(aVo) 0 ( L tava,l) =
aEZ+ (p) aEzt (p)

= [CaVa) 0 ( L taVa,l) 0 (-aVa)) 0 (aVa) =
aEzt (p) .

a 0' m (ad Va) m
= ( L t m! Va,I) 0 (aVa) =

aEz+ (p)
O~m<p

L taexp(aad(Va))(Va,l) 0 (aVo) = af/>o(h).
aEzt (p)
a~m<p

(we use the identity

exp(X) exp(Y) exp(-X) = exp(L ~(adx)ny)
n.

n~a
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in an associative Q-algebra wi th generators X, Y, e.f. [B, eh.2, n.6, exere.lD.
From this ealeulation it follows that

1Jo(h) = (-aVo) 0 at/Jo(h) 0 (aaVo).

Now the part b) follows from remark 1.5.2.
The part c) of our Proposition follows from remark 1.5.4.
5.3. Let [0 C fo(p) be the higher ramification subgroup. Consider the restrietion

'lj;" of the morphism 'lj;0 to the subgroup Io:

In aecording with the decomposition L = limLA MOlle has the decomposition+-- I

A,M

'lj;* = lim 'lj;"A M' where 'lj;'A M is a cOlllpatible system of homomorphisms+-- I ,

A,M

'lj;A,M : Io -+ G(LA,M)'

Proposition. There exists ß E W( k), such tbat
1) aß - ß = er;
2) iE 9A,M = 9A,M 0 (-ßVo) and

then 'lj;'A M = 7rg• (hA M)' i.e. (in notation of tlle Corollary 1.4) for any'T E Io it
, A. ./'.1 ,

bolds:

* * h"agA M = gA MOA M'I , ,

Proof·

Let LO be the free commutative Lie Zp -algebra with thc generator Vo. For an
integer M ~ 0 set L M= LO /pM+l LO. Consider the morphislll of Lie Zp-algebras

given in thc terms of generators by the following conditions Va,! ~ 0 and Vo 1---7 Vo
for all a E A C Z+(p), f E Hom(WM(IFqo ), WM(IFp )).

The epimorphisms 7rA,M define the epimorphism

7r = lim rrAM: L --t L °.
+-- '
A,M

Clearly, if L" = Ker 7r, then Im 'lj;*(Io) = G(L*) c G(L).
Consider the extension of sealars of the morphism 7r:
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Then 1rK.ep(g) = ßVO, where ß E W(k) is such that

aß-ß=o:·

It is clear, that ß generates the maximal unramified p-extension of the field [{o.
Set 9 = g* 0 (ßVo) in G(LI<.ep)' If g* = ~gA,M' then 9A,M = gA,M 0 (ßVo) and

A,M

Introduce h1 E G(LKo ) by the equality

h = h1 0 (aVo).

The following equalities

ag =goh=g*o(ßVo)oh1 o (o:Vo),

ag = ag* 0 (aßVo) = ag* 0 (ßVo) 0 (aVo)

give
ag* = g* 0 h*,

where h* = (ßVo) 0 h1 0 (-ßVo) E G(LK)'
Let h* = ~hA,A1' h1 = ~(hl)A,M' Then

A,M A,M

(h 1 )A,M = I.: tava,o
aEA

and, therefore,

h~,M = ßVo 0 (I.: tava,o) 0 (-ßVo) = I.: ~ ta(ad Vo)m(Va,o)
aEA aEA

O=:;m<p

Proposition is proved.

5.4. ConJtruction 0/ tILe morphism 8.

As was proved earlier the morphism

'ljJ* = 7.jJ°llo : 10 --t G(L)

is given by the corrcspondence 7 Ho (7g*) 0 (-g*), where ag* = g* 0 h*.
On the other hand, the morphism

7.jJ(p) : r(p) -+ G(L:(p))
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(c.f. n.3.5.2) is given by the correspondence ..
T f4 T f (p) 0 ( - f (p)),

where f(p) E LK.ep, af(p) = f(p) 0 e, e(p) = ~eA,N,M and eA,N,M = L taDa,o
aEA

(as usually, A c Z+(p) is a finite subset, N ~ 1, M ;?:; 0 are integers).
Therefore, an explicit form of the morphism 8 : .c(p)~ L can be obtained fronl

the condi tions
t5K ( e) = h* , 8K. e p (f (p)) = g* .

Let LA,N,M be the Lie algebra from n. 2.3 and

{ Da,n I a E A, n E Z/NZ }

be the standard basis of i ts extension of scalars LA N M k.
I , 1

Proposition. If N = 0 mod(pM+l No), then tllere exists a unique morphisln oI Lie
Zp-aJgebras

t5A,N,M : L(p)A,N,M ----+ LA,M,

wbich satisfies the following condition:

OA,N,M,k(Da,o) = Va,o + L -:; (ad Vo)m(Va,O) = exp(ß ad(Vo))(Va,o)
l:::;:m<p

(here t5 A ,N,M ,k = 8A,N,M 0 W(k)).

Proof.

One should check up that the morphism of Lie algebras

which is given by the relation t5A,N,M,k(Da,n) = UnOA,NIM,k(Da,O) for 0 < n <
N, a E A, commutes with the action of U on these Lie algebras.

It is sufficient to prove that

This fact is implied by the following lemma

Leluma.
If N =Omod(pA1+1No), then aN(ß) == ßlnodpM+l.

Proof·

One has

Therefore,

47



Corollary.
a)

0= limoA NM.
of-- "

b) if N =Omod pM+l No, a E Z+(p),l E Z, then one has in the Lie algebra
LA,M,k = LA,M ® W( k) the equality

OA,N,M,k(Da,jN(I)) = exp(uIßad(Vo))(Va,jNo(l))

(here jN(l) and jNo(l) are the residues of I modulo N and No, respectively).

Proof.

From the above propositions of nn.5.3, 5.4 it follows that for N == 0 mod(pM+l No)
oA N M K transforms, , ,

eA,N,M(p) = L t
a

Da,o E G(.cA,N,M,Ktf')
aEA

to hA,M E G(LA,M,K ).Therefore,

limoANMK=OK,
of-- ",

and we obtain the part a) of the above statement.
Using the commutativity of 8 and a we obtain the fonnula of the part b) of our

Corollary.

5.5. Let {L(v)}v>o be a filtration of the Lie algebra L, which correspollds to the
ramification filtration of the Galois group r 0 (p) under thc idelltification ;r;o.

5.5.1. Let <Po E Gal(1(o/IFp((~))) be the autonlorphism froln n.5.2 and fo be
its extension to an automorphism of the maximal p-extellsion of the field 1(0 with
Galois group of dass of nilpotence < p froln the Proposition 5.2 c).

For any 1E L k = L 0 W (k) set

4>0 *1= atPo(l),

where a4>o is the automorphism of the Lie algebra L from n.5.2. As was proved in
the Proposition 5.2, the morphism I 1--7 <Po * 1,1 E L k , gives (in the tenns of Lie
algebras) the action of the lifting fo on the groupro (p) / cp (r0 (p)) by conjugation.

For any mEZ denote by <Po thc rn-th iteration of the morphisrn 11-+ cPo * 1.
5.5.2. Let v E Q, v > O. For any I E Q, I > 0, considcf the elements

Qv(I) E LFqo ' which are given by the following expressions:

L (-lrp i al 7](O, rn2, ... , rns)[· .. [</>t*Va1,o, if>~-m2*Va2'O], ... , <p~-m"*Va.,oJ.
l~ .. <p

al,···,a. Ez+ (p)
i,m2,.",m. ~o

pi(al+~+·"+p~.=,
pi Ul, ... ,pi a. «p-s)v
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5.5.3. Theorelu. In notation of 11.5.5.2 L(v) is tbe minimal ideal of tlle Lie
algebra L, such tbat L( v) ® W(lFqo ) contains tbe following elements:

a) piVa,o, if pi a ~ (p - l)v;
b) 9v ( I)' if, ~ v.

5.6. Proof of Theorem 5.5.3.

5.6.1. For any M ~ 0 set LM = limLA M, then L = limL M .
+-- ' ~
A M

Analogously, let J:.(p)N,M = ~J:.A,N,M, then J:.(p) = ~J:.(P)N,M.

A N,M
For N - 0 mod N opM+l consider the morphism

ON M = limoA NM: J:.(p)N M ---+ L M, ~" ,
A

(c.f. n.5.4).

It follows from n.3.5.4, that L:(p)(v) = limL:(p)~)M' and the ideals L:(P)~)M are
+-- ' I

N,M

the minimal ideals of the Lie algebra .c(P)N,M such that .c(P)~:M ® W(k) contains
the elements

a) piDa,o, where a E Z+(p), i ~ O,pi a ~ (p - l)v;
b) .rN,v(" 0) for , ~ v.

Therefore, L~) is the minimal ideal of the Lie algebra L /1.1, such that L~)®W (k )
contains the elements

a) piONIM(Da,O), where pi a ~ (p - l)v;
b) ON,M(.rN,v(1,0)), where 1 ~ v.

5.6.2. As earlier, for any I E JE denote by j N( I) the residue of I modulo N.

Lenllua. For any a E Z+(p) and 1 E Z in the Lie algebra LM,k we have t}le
equality:

Remark. The automorphism 1 Ho f/Jo * 1 of the Lie algebra LM,k has the order
NOpA'!+1 (c.f. the proof of thc Lemma n.5.4), therefore, thc elelnent f/J& * Va, 0

depends only on the residue j N(l).

Proof.

For any 1 E Z oue has (c.f. the Corollary n.5.4)

Let 1 = 11 fiod N, where 11 E Z, 0 ~ 11 < N. Now the statelnent of OUf Lemma
follows from the following identities:

1) olß - ß=olt ß - ß = a + oa + ... + 0It-1affiodpM +1 ;

2) exp((a + 00: + ... +olt-la)ad(Vo))(Va,jNo(l)) =
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5.6.3. If N =Onlod NopM+l, a E Z+(p), i E Z, i ~ 0, then the above Lemlua
gives in the Lie algebra LM,k the following equality

DN,M,k(pi Da,o) == exp(ß ad Vo)(piVa,o).

For any 11 ,12 E LM,k one has the following identity

exp(ß ad Vo)[/}, 12 ] == [exp(ß ad Vo)11, exp(ß ad VO)/2 ].

Therefore, for any , E Q" > 0, in LM,k we have the equality

DN,M,k(FN,v("O)) == exp(ßad Vo)Qv(')'

The operator exp(ß ad Vo) is inversible on LM,k, therefore, it follows from n.5.6.1

that the ideal L~) k == L~) «9 W (k) is generated by the elements,
a) piVa,o, for pia ~ (p - l)vj
b) 9v ( , ), for , ~ v.

Now it is sufficient to remark that these elements are in the algebra L M «9 W(IFqo )
and do not depend on M.

Theorem is proved.

5.7. As in n.3.5, we have the following version of the Theorem 5.3.3.

Theoreln. Let 1 ~ So < p, v E Q,v > O. Then the ideal L(v) modCso+1(L) is the
miniInal ideal ofthe Lie algebra L IllOd C"o+l (L) such that L(v)®W(IFqo )mod Cso+l(LFqo)
contains tbe following elements:

1) piVa,o, where i ~ 0, a E Z+(p),pi a ~ SoV;
2) QV,80(') ==

L
l~"~"o

al,. .. ,a,Ez+(p)
i,m2, ... ,m. ~o

pi(al+~+...+p;,f. )=,

pi at , ... ,pi a • «"o+l-s)v

wbere,2:: v.
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