RAMIFICATION FILTRATION OF THE GALOIS GROUP OF A LOCAL FIELD. II

Victor A. Abrashkin

AG "Algebraische Geometrie und Zahlentheorie"
Jägerstraße 10-11
10117 Berlin
Germany

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
53225 Bonn
Germany

RAMIFICATION FILTRATION OF THE GALOIS GROUP OF A LOCAL FIELD. II

Abrashein Victor A.
Arbeitsgruppe "Algebraische Geometrie und
Zahlentheorie" Jägerstraße 10-11, 10117 Berlin

0 . Introduction.

Let K be a local complete discrete valuation field with a perfect residue field k of characteristic $p>0, K_{s e p}$ be a fixed separable closure of $K, \Gamma=\operatorname{Gal}\left(K_{s e p} / K\right)$ be the absolute Galois group of K.

The group Γ has a decreasing filtration of normal subgroups $\left\{\Gamma^{(v)}\right\}_{v \geq 0}$, where for any $v \in \mathbb{Q}, v \geq 0, \Gamma^{(v)}$ is the ramification subgroup of Γ in upper numbering, [Se, ch.2].

We have: $K_{\text {sep }}^{\Gamma^{(0)}}=K_{u r}$ is the maximal unramified extension of $K, I=\bigcup_{v>0} \Gamma^{(v)}$ is the higher ramification subgroup, which is a pro- p-group (if char $K=p$, then I is a free pro- p-group), $K_{\text {sep }}^{I}=K_{t r}$ is the maximal tamely ramified extension of K.

Let char $K=p$ and $\widetilde{t_{0}}$ be a fixed uniformizer of K. Then K can be identified with the fraction field $k\left(\left(\widetilde{t_{0}}\right)\right)$ of the power series ring $k\left[\left[\tilde{t_{0}}\right]\right]$.

Let $k \simeq \overline{\mathbb{F}}_{p}$. Under this assumption $\Gamma=\Gamma^{(0)}$, and I is the Galois group of the maximal p-extension of $K_{t r}$. In this paper we give an explicit description of the image of the filtration $\left\{\Gamma^{(v)}\right\}_{v>0}$ of the group I under the natural map

$$
I \longrightarrow I / C_{p}(I)
$$

where $C_{p}(I)$ is the minimal closed subgroup of I containing all commutators of order $\geq p$.

This result is applied to the study of the ramification filtrations of the Galois group $\Gamma(p)$ of the maximal p-extension of K and of the Galois group $\Gamma_{0}(p)$ of the maximal p-extension of a field $K_{0}=k_{0}\left(\left(\tilde{t_{0}}\right)\right)$, where $k_{0} \simeq \mathbb{F}_{q_{0}}$ is the finite field of $q=p^{N_{0}}$ elements. In these cases we obtain an explicit description of the filtrations $\left\{\Gamma(p)^{(v)} \bmod C_{p}(\Gamma(p))\right\}_{v>0}$ and $\left\{\Gamma_{0}(p)^{(v)} \bmod C_{p}\left(\Gamma_{0}(p)\right)\right\}_{v>0}$.

The paper is organized as follows.
In n. 1 we assume that K is an arbitrary field of characteristic $p>0$ and give a version of Artin-Schreier theory, which permits to construct efficiently any p extension of K having Galois group of class of nilpotency $<p$. A special case of this theory, which is ajusted to the study of p-extensions of K with Galois group of exponent p (and of class of nilpotency $<p$), was constructed in [A].

Our construction is based on
a) an equivalence of the category of finite Lie \mathbb{Z}_{p}-algebras \mathcal{L} of class of nilpotency $<p$ and the category of finite p-groups of the same class of nilpotency, c.f. [B, ch.2, n .8 , exerc.4]. This equivalence is given by the functor

$$
\mathcal{L} \mapsto G(\mathcal{L}),
$$

where $G(\mathcal{L})=\mathcal{L}$ as a set and the operation on $G(\mathcal{L})$ is given via the Hausdorff series in the envelopping algebra of \mathcal{L} :

$$
l_{1}, l_{2} \in \mathcal{L} \mapsto l_{1} \circ l_{2}=\log \left(\exp l_{1} \exp l_{2}\right)
$$

b) a construction of an absolutely unramified field $\mathcal{E}(K)$ of characteristic 0 having the residue field K, where we fix a lifting σ of the absolute Frobenius endormorphism σ_{0} of the field K, c.f. [B-M.nn.1.1-1.3], [F, n.A1].

The formalism of this theory permits to fix an "arithmetical meaning" of generators of the Galois group of K modulo p-th commutators and to give explicitly extensions of endormorphisms of K to field extensions of K having Galois group of class of nilpotency $<p$.

Let $K=k\left(\left(\widetilde{t_{0}}\right)\right)$ be the fraction field of the formal power series ring in a variable $\tilde{t_{0}}$ with coefficients in a field $k \simeq \overline{\mathbb{F}}_{p}$. Then

$$
K_{t r}=K\left(\left\{\tilde{t_{0}} \mid r \in \mathbb{Q}^{+}(p)\right\}\right),
$$

where $\mathbb{Q}^{+}(p)=\{r \in \mathbb{Q} \mid r>0,(r, p)=1\}$. In $n .2$ we construct a profree Lie \mathbb{Z}_{p}-algebra $\widetilde{\mathcal{L}}$ and apply the theory of $n .1$ to construct an identification

$$
\bar{\psi}: I / C_{p}(I) \simeq G(\mathcal{L})
$$

where $\mathcal{L}=\tilde{\mathcal{L}} / C_{p}(\widetilde{\mathcal{L}})$ and $C_{p}(\widetilde{\mathcal{L}})$ is the closure of the ideal in $\widetilde{\mathcal{L}}$ generated by commutators of order $\geqslant p$.

The Lie algebra $\tilde{\mathcal{L}}$ appears as a projective limit $\underset{R, N, M}{\lim } \tilde{\mathcal{L}}_{R, N, M}$, where $R \subset \mathbb{Q}^{+}(p)$ is a finite subset, $N \geqslant 1, M \geqslant 0$ are integers, $\widetilde{\mathcal{L}}_{R, N, M}$ is a free Lie $\mathbb{Z} / p^{M+1} \mathbb{Z}$-algebra. The extension of scalars $\widetilde{\mathcal{L}}_{R, N, M, k}=\widetilde{\mathcal{L}}_{R, N, M} \otimes W_{M}(k)$ of this algebra has a natural system of free generators

$$
\left\{D_{r, n} \mid r \in R, n \in \mathbb{Z} / N \mathbb{Z}\right\}
$$

(here $W_{M}(k)$ are Witt vectors of length $M+1$ with coefficients in k).
In $n .3$ we construct a decreasing filtration of ideals $\mathcal{L}^{(v)}, v \in \mathbb{Q}, v>0$, of the Lie algebra \mathcal{L}. By definition,

$$
\mathcal{L}^{(v)}=\lim _{R, N, M} \mathcal{L}_{R, N, M}^{(v)}
$$

where $\mathcal{L}_{R, N, M}^{(v)}$ are ideals of the Lie algebra $\mathcal{L}_{R, N, M}=\widetilde{\mathcal{L}}_{R, N, M} / C_{p}\left(\widetilde{\mathcal{L}}_{R, N, M}\right)$. The ideals $\mathcal{L}_{R, N, M}^{(v)} \otimes W_{M}(k)$ of the Lie algebra $\mathcal{L}_{R, N, M} \otimes W_{M}(k)$ are given by explicit
generators $\mathcal{F}_{R, N, M}\left(\gamma, n_{1}\right)$, where $\gamma \in \mathbb{Q}, \gamma \geqslant v, n_{1} \in \mathbb{Z} / N \mathbb{Z}$. The expressions of these generators consist of terms of form

$$
\eta\left(0, m_{2}, \ldots, m_{s}\right) p^{i} r_{1}\left[\ldots\left[D_{r_{1}, n_{1}}, D_{r_{2}, n_{2}}\right], \ldots, D_{r_{\boldsymbol{r}}, n_{\mathbf{2}}}\right]
$$

Each of these terms corresponds to a presentation of a rational number γ in the form

$$
\gamma=p^{i}\left(r_{1}+\frac{r_{2}}{p^{m_{2}}}+\ldots+\frac{r_{s}}{p^{m_{e}}}\right)
$$

where $1 \leqslant s<p, r_{1}, \ldots, r_{s} \in R, i$ and $0=m_{1} \leqslant m_{2} \leqslant \ldots \leqslant m_{s}<N$ are integers. Here $m_{i} \bmod N=n_{1}-n_{i}$ for $2 \leqslant i \leqslant s$, and the appearance of the coefficients $\eta\left(0, m_{2}, \ldots, m_{s}\right) \in \mathbb{Q}^{+}(p)$ is related to the existence of groups of equal elements in the sequence $m_{1}, m_{2}, \ldots, m_{s}$.

In n.3.4 we formulate the main theorem, which states that the image of the ramification filtration $\left\{\Gamma^{(v)}\right\}_{v>0}$ in $I / C_{p}(I)$ corresponds to the filtration $\left\{G\left(\mathcal{L}^{(v)}\right)\right\}_{v>0}$ under the identification $\bar{\psi}$ of n .2 .

In n. 3.5 we consider a version of this theorem for the case of p-extensions of the field K. Here we have the induced identification

$$
\bar{\psi}(p): \Gamma(p) / C_{p}(\Gamma(p)) \simeq G(\mathcal{L}(p))
$$

where $\mathcal{L}(p)=\underset{A, N, M}{\underset{\leftrightarrows}{\lim }} \mathcal{L}_{A, N, M}, \mathcal{L}_{A, N, M}$ are the Lie algebras from n .2 and A is a finite subset in $\mathbb{Z}^{+}(p)=\mathbb{Q}^{+}(p) \cap \mathbb{Z}$. In this situation, for any $v>0, v \in \mathbb{Q}$, the ideal $\mathcal{L}(p)^{(v)}$ is presented in the form ${\underset{N}{\lim } \mathcal{L}}_{\log }^{(p)}{ }_{N}^{(v)}$, where $\mathcal{L}(p)_{N}^{(v)}$ is an ideal of the Lie algebra $\mathcal{L}(p)_{N}=\underset{A, M}{\lim _{A, N}} \mathcal{L}_{A, N, M}$. As a consequence of the main theorem we obtain an explicitly given system of generators of the ideals $\mathcal{L}(p)_{N}^{(v)} \otimes W(k)$ in the Lie algebra $\mathcal{L}(p)_{N} \otimes W(k)$.

The proof of the main theorem (n .3 .6 and $n .4$) is given only modulo 3 -rd commutators. This case gives sufficiently full illustration of our method. In general case (i.e. modulo p-th commutators) the proof requires more careful calculations (c.f. [A], where this was done for extensions of exponent p) and will be given in a forthcoming paper.

Let $K_{0}=k_{0}\left(\left(\tilde{t_{0}}\right)\right)$, where $k_{0}=\mathbb{F}_{q_{0}}, q_{0}=p^{N_{0}}, N_{0} \geqslant 1$. If $\Gamma_{0}(p)$ is the Galois group of the maximal p-extension of the field K_{0}, then there exists a natural homomorphism

$$
\gamma: \Gamma(p) / C_{p}(\Gamma(p)) \longrightarrow \Gamma_{0}(p) / C_{p}\left(\Gamma_{0}(p)\right)
$$

which is compatible with ramification filtrations. In $n .5$ we construct an identification

$$
\bar{\psi}_{0}: \Gamma_{0}(p) / C_{p}\left(\Gamma_{0}(p)\right) \simeq G(L)
$$

where $L=\widetilde{L} / C_{p}(\widetilde{L})$ and \widetilde{L} is a free Lie pro-p-algebra over \mathbb{Z}_{p}. In this case L has a natural system of generators, which can be interpreted modulo 2-nd commutators in the terms of local class field theory. The homomorphism γ can be described via some morphism of Lie algebras $\delta: \mathcal{L}(p) \longrightarrow L$, which is constructed in nn.5.3-5.4.

In nn.5.5-5.6 we apply the explicit construction of the above morphism δ to describe the filtration $\left\{L^{(v)}\right\}_{v>0}$, which corresponds to the ramification filtration under the identification $\bar{\psi}_{0}$. This description does not require a passage to limit: we construct generators of ideals $L^{(v)} \otimes W\left(\mathbb{F}_{q_{0}}\right)$ of the Lie algebra $L \otimes W\left(\mathbb{F}_{q_{0}}\right)$.

In the following paper there will be given an application of this theory to the study of the ramification filtration of the Galois group of a local field of characteristic 0 modulo p-th commutators.

This paper was done during my stay (Febr.-Sept., 1993) in the research group of Prof. H. Koch (MPG, Arbeitsgruppe "Algebr. Geom. u. Zahlentheorie", Berlin). I express my gratitude to this organisation and especially to Prof. H. Koch and Prof. E.-W. Zink for numerous discussions.

1. Artin-Schreier theory for extensions of class of nilpotency $<p$.

1.1. Groups and Lie algebras.

Let $\mathcal{L}_{\mathbb{Q}}$ be a free Lie algebra over \mathbb{Q} with free generators U, V and $A_{\mathbb{Q}}$ be its envelopping algebra. $A_{\mathbb{Q}}$ is a free associative algebra with generators U, V and there exists a natural embedding $\mathcal{L}_{\mathbf{Q}} \subset A_{\mathbf{Q}}$. For a natural number $n \geq 1$ denote by $C_{n}\left(\mathcal{L}_{\mathbf{Q}}\right)$ the ideal in $\mathcal{L}_{\mathbf{Q}}$, generated by all commutators of order $\geq n$. Define a degree of any monomial in $A_{\mathbf{Q}}$ by setting $\operatorname{deg} U=\operatorname{deg} V=1$ and denote by $C_{n}\left(A_{\mathbf{Q}}\right)$ the ideal of $A_{\mathbf{Q}}$ generated (as \mathbb{Q}-module) by monomials of degree $\geq n$. We set

$$
C_{n}\left(A_{\mathbb{Q}}\right) \cap \mathcal{L}_{\mathbb{Q}}=C_{n}\left(\mathcal{L}_{\mathbb{Q}}\right)
$$

therefore, there exists a natural imbedding $\hat{\mathcal{L}}_{\mathbb{Q}} \subset \hat{A}_{\mathbb{Q}}$ induced by the above imbed$\operatorname{ding} \mathcal{L}_{\mathbf{Q}} \subset A_{\mathbf{Q}}$.

Consider the Hausdorff series

$$
H(U, V)=\log (\exp U \exp V) \in \hat{A}_{\mathbf{Q}}
$$

We have the following properties.
1.1.1. $H(U, V) \in \hat{\mathcal{L}}_{\mathrm{Q}}$.

This fact is very well-known as the Campbell-Hausdorff formula. In particular, one has

$$
\begin{aligned}
H(U, V)=U+V+ & \frac{1}{2}[U, V]+\frac{1}{12}[U,[U, V]]+\frac{1}{12}[V,[V, U]]- \\
& -\frac{1}{24}[U,[V,[U, V]]] \bmod C_{5}\left(\mathcal{L}_{\mathbf{Q}}\right),
\end{aligned}
$$

c.f. [B, ch.2, n.6, remark 2].
1.1.2. The composition law $l_{1} \circ l_{2}=H\left(l_{1}, l_{2}\right)$, where $l_{1}, l_{2} \in \hat{\mathcal{L}}_{\mathrm{Q}}$, gives the structure of the group $G\left(\hat{\mathcal{L}}_{\mathbf{Q}}\right)$ on the set $\hat{\mathcal{L}}_{\mathbf{Q}}$. With respect to this structure the zero element of $\hat{\mathcal{L}}_{\mathbf{Q}}$ is the neutral element, and $-l$ is the inverse element for any $l \in \hat{\mathcal{L}}_{\mathbb{Q}}=G\left(\hat{\mathcal{L}}_{\mathbb{Q}}\right)$.

Any ideal \mathcal{J} of the Lie algebra \mathcal{L}_{Q} can be considered as a normal subgroup $G(\mathcal{J})$ of $G\left(\hat{\mathcal{L}}_{\mathbf{Q}}\right)$ and $\mathcal{J} \mapsto G(\mathcal{J})$ gives one-to-one correspondence between the set of ideals of Lie algebra $\hat{\mathcal{L}}_{\mathrm{Q}}$ and the set of normal subgroups of the group $G\left(\hat{\mathcal{L}}_{\mathrm{Q}}\right)$.
1.1.3. Let \mathcal{L} be a free Lie \mathbb{Z}-algebra with free generators U, V, then $\mathcal{L}_{\mathbb{Q}}=\mathcal{L} \otimes \mathbb{Q}$. If p is some prime number and $\mathcal{L}_{\mathrm{Z}_{p}}=\mathcal{L} \otimes \mathbb{Z}_{p}$, then in evident notation one has:
for any $l_{1}, l_{2} \in \hat{\mathcal{L}}_{\mathbf{Z}_{p}}, l_{1} \circ l_{2} \in \hat{\mathcal{L}}_{\mathbf{Z}_{p}} \bmod C_{p}\left(\hat{\mathcal{L}}_{\mathbf{Q}}\right)$, c.f. [B, ch.2, exerc. 4 of n.8].
1.1.4. Let \mathcal{A} be a \mathbb{Z}_{p}-algebra and \mathcal{L} be a Lie \mathcal{A}-algebra of class of nilpotency $<p$, i.e. $C_{p}(\mathcal{L})=0$. As a consequence of the above considerations the composition law $l_{1}, l_{2} \mapsto l_{1} \circ l_{2}=H\left(l_{1}, l_{2}\right)$, where $l_{1}, l_{2} \in \mathcal{L}$, gives the group structure on the set \mathcal{L}. Denote this group by $G(\mathcal{L})$. Obviously, the group $G(\mathcal{L})$ and the Lie algebra \mathcal{L} have the same class of nilpotency.

If $\mathcal{A}=\mathbb{Z}_{p}$ then the correspondence $\mathcal{L} \mapsto G(\mathcal{L})$ gives an equivalence of the category of Lie \mathbb{Z}_{p}-algebras of a given class of nilpotency $<p$ and the category of p-groups of the same class of nilpotency, c.f. [B, ch.2, exerc. 4 of n.8].

We remark that any morphism $f: \mathcal{L}_{1} \longrightarrow \mathcal{L}_{2}$ of Lie \mathcal{A}-algebras $\mathcal{L}_{1}, \mathcal{L}_{2}$ (of class of nilpotency $<p$) is automatically a morphism of groups $G\left(\mathcal{L}_{1}\right) \longrightarrow G\left(\mathcal{L}_{2}\right)$. If $\widetilde{\mathcal{L}}$ is a free finitely generated Lie \mathbb{Z}_{p}-algebra, $\mathcal{L}=\widetilde{\mathcal{L}} / C_{p}(\widetilde{\mathcal{L}})$, then $G(\mathcal{L}) \simeq \Gamma / C_{p}(\Gamma)$, where Γ is finitely generated free pro- p-group and $C_{p}(\Gamma)$ is its normal closed subgroup generated by all commutators of order $\geq p$.

1.2. Some facts about liftings.

1.2.1. We follow the paper [B-M, n.1.1-1.3].

Let p be a fixed prime number and L be a field of characteristic p. For nonnegative integer M denote by $O_{M}(L)$ a lifting of L modulo p^{M+1}. By definition $O_{M}(L)$ is a flat $\mathbb{Z} / p^{M+1} \mathbb{Z}$-algebra such that $O_{M}(L) / p O_{M}(L) \simeq L$. These conditions characterize $O_{M}(L)$ uniqielly up to an isomorphism. A construction of $O_{M}(L)$ can be given in the terms of p-basis of the field L as follows.

Let $\left\{x_{i}\right\}_{i \in I}$ be a p-basis of the field $L, W_{M}(L)$ be the $\mathbb{Z} / p^{M+1} \mathbb{Z}$-algebra of Witt vectors of length $M+1$ with coefficients in $L,[a] \in W_{M}(L)$ be Teichmuller representative of $a \in L$. Then $O_{M}(L)$ is the $\mathbb{Z} / p^{M+1} \mathbb{Z}$-subalgebra of $W_{M}(L)$, generated by elements of the form

$$
p^{j}[a]^{p^{M+1-j}} \prod_{i \in I}\left[x_{i}\right]^{\alpha_{i j}}
$$

where $a \in A, 0 \leq j \leq M, 0 \leq \alpha_{i j}<p^{M+1-j}$ and for any fixed value of j almost all $\alpha_{i j}$ are equal to 0 . In particular, one has $\left[x_{i}\right] \in O_{M}(L)$ for any $i \in I$.

For nonnegative integers $M_{1} \geq M_{2}$, a lifting $O_{M_{2}}(L)$ can be identified with the quotient $O_{M_{1}}(L) / p^{M_{1}-M_{2}} O_{M_{1}}(L)$. A limit of this projective system of liftings $O(L)=\underset{M}{\lim _{M}} O_{M}(L)$ is the valuation ring of a complete absolutely unramified field $\mathcal{E}(L)$ of characteristic 0 with the residue field $L(\mathcal{E}(L)$ is absolutely unramified \equiv p is the uniformising element of $\mathcal{E}(L)$).

Let σ_{0} be the absolute Frobenius endomorphism of L, i.e. $\sigma_{0}(l)=l^{p}$ for any $l \in$ L. Denote by σ some lifting of σ_{0} to $O_{M}(L)$. This means that σ is an endomorphism
of the $\mathbb{Z} / p^{M+1} \mathbb{Z}$-algebra $O_{M}(L)$ and $\sigma \bmod p=\sigma_{0}$. Any such lifting is a flat morphism of $\mathbb{Z} / p^{M+1} \mathbb{Z}$-modules, [B-M, 1.3].

In the terms of the above explicit construction of a lifting $O_{M}(L)$, the lifting σ is uniquelly defined by conditions

$$
\sigma\left(\left[x_{i}\right]\right)=y_{i}
$$

where $i \in I$ and y_{i} are arbitrary elements of $O_{M}(L)$ such that $y_{i} \equiv\left[x_{i}\right]^{p} \bmod p$.
1.2.2. From the above explicit construction of $O_{M}(L)$ it follows that

$$
W_{M}\left(L^{\left(p^{M}\right)}\right)=\left\{\sum_{0 \leq j \leq M} p^{j}\left[a_{j}\right]^{p^{M-j}} \mid a_{0}, \ldots, a_{M} \in L\right\} \subset O_{M}(L) .
$$

It is easy to show that if σ is an arbitrary lifting of the Frobenius morphism, then

$$
\sigma^{M} O_{M}(L) \subset W_{M}\left(L^{\left(p^{M}\right)}\right)
$$

and the restriction of σ to $W_{M}\left(L^{\left(p^{M}\right)}\right)$ gives the standard Frobenius endomorphism of Witt vectors.
1.2.3. Let K be a given field of characteristic p. Fix a separable closure $K_{\text {sep }}$ and some p-basis $\left\{x_{i}\right\}_{i \in I}$ of the field K.

Let L be a field such that $K \subset L \subset K_{\text {sep }}$. Then $\left\{x_{i}\right\}_{i \in I}$ is a p-basis of L. For any integer $M \geq 0$ denote by $O_{M}(L)$ the lifting of L modulo p^{M+1} related to the p-basis $\left\{x_{i}\right\}_{i \in I}$.

Under these assumptions there is a natural action of the Galois group $\Gamma=$ $\operatorname{Gal}\left(K_{\text {sep }} / K\right)$ on $O_{M}\left(K_{\text {sep }}\right)$ and

$$
O_{M}\left(K_{s e p}\right)^{H}=O_{M}(L)
$$

where $H \subset \Gamma$ is the subgroup, such that $K_{s e p}^{H}=L$. In particular, we use the identification

$$
O_{M}\left(K_{s e p}\right)^{\Gamma}=O_{M}(K) .
$$

So, we have the system of liftings $O_{M}(L)$ which is compatible on L and on M (c.f. n.1.2.1). As earlier, set $O(L)=\underset{M}{\underset{\leftrightarrows}{\lim } O_{M}}(L)$ and denote by $\mathcal{E}(L)$ the field of fractions of the ring $O(L)$.

Following the paper [F, n.A1] fix some lifting σ of the absolute Frobenius morphism of the field K to $O(K)$. This gives a compatible system of liftings σ to all $O_{M}(K)$. It is easy to show that for any separable extension L of K and any integer $M \geq 0$ there exists a unique lifting $\sigma_{L, M}$ of the absolute Frobenius morphism of L to $O_{M}(L)$ such that $\left.\sigma_{L, M}\right|_{O_{M}(K)}=\sigma$. So, σ can be extended uniquelly to all $O_{M}\left(K_{\text {sep }}\right)$ and $O\left(K_{\text {sep }}\right)$. We use the same symbol σ for these extensions. Obviously, σ commutes with the action of Γ on $O\left(K_{s e p}\right)$.

From flatness of σ it follows that

$$
\left.O_{M}\left(K_{\boldsymbol{s e p}}\right)\right|_{\sigma=\mathrm{id}}:=\left\{a \in O_{M}\left(K_{\text {sep }}\right) \mid \sigma a=a\right\}=W_{M}\left(\mathbb{F}_{p}\right)\left(=\mathbb{Z} / p^{M+1} \mathbb{Z}\right)
$$

Let k be some perfect subfield of K and $M \geq 0$ be any integer. Then any $a \in k$ has Teichmuller representative $[a]$ in $O_{M}(K)$. This element [a] can be characterized by the properties: $[a] \bmod p=a$ and $\sigma([a])=[a]^{p}$. The set $\{[a] \mid a \in k\}$ generates over $\mathbb{Z} / p^{M+1} \mathbb{Z}$ a lifting of k modulo p^{M+1} which can be identified with the $\mathbb{Z} / p^{M+1} \mathbb{Z}$-algebra of truncated Witt vectors $W_{M}(k)$.

1.3. Main theorem.

Let K be a field of characteristic $p>0$.
We use assumptions of n.1.2 and all above notation.
Let \mathcal{L} be a finite Lie algebra over \mathbb{Z}_{p} having class of nilpotency $<p$. For any separable extension L of K we set

$$
\mathcal{L}_{L}=\mathcal{L} \otimes_{W\left(\mathbf{F}_{\mathrm{p}}\right)} O(L) .
$$

Remark that if $p^{M+1} \mathcal{L}=0$ for some integer $M \geq 0$, then

$$
\mathcal{L}_{L}=\mathcal{L} \otimes_{W\left(\mathbb{F}_{p}\right)} O_{M}(L) .
$$

Let $G\left(\mathcal{L}_{K_{\text {e ep }}}\right)$ be the group related to $\mathcal{L}_{K_{\text {eep }}}($ c.f. n.1.1). It is clear that σ and Γ act on $G\left(\mathcal{L}_{K_{1, \text { ep }}}\right)$ by functoriality.

We have the following properties:
a) $\sigma: G\left(\mathcal{L}_{K_{\text {ép }}}\right) \longrightarrow G\left(\mathcal{L}_{K_{\text {epp }}}\right)$ is a homomorphism and

$$
\left.G\left(\mathcal{L}_{K, \text { ep }}\right)\right|_{\sigma=\mathrm{id}}=G(\mathcal{L})\left(=G\left(\mathcal{L}_{\mathbf{F}_{p}}\right)\right) ;
$$

b) if L / K is the Galois extension then the action of $\Gamma_{L / K}=\operatorname{Gal}(L / K)$ on \mathcal{L}_{L} commutes with σ and one has $G\left(\mathcal{L}_{L}\right)^{\Gamma_{L / K}}=G\left(\mathcal{L}_{K}\right)$.

Definition. Let $a_{1}, a_{2} \in G\left(\mathcal{L}_{K}\right)$. Then $a_{1} \underset{R}{\sim} a_{2}$ if there exists $b \in G\left(\mathcal{L}_{K}\right)$ such that $a_{2}=(-b) \circ a_{1} \circ(\sigma b)$.

Obviously, R is an equivalence relation on $G\left(\mathcal{L}_{K}\right)$.
Theorem. There exists one-to-one map

$$
\pi: G\left(\mathcal{L}_{K}\right) / R \longrightarrow\{\text { conjugacy classes of } \operatorname{Hom}(\Gamma, G(\mathcal{L}))\}
$$

Remarks.

a) It follows from the proof of this theorem (c.f. below) that π is functorial on \mathcal{L} and (in an obvious sense) on a pair (K, σ).
b) Let \mathcal{L} be one-dimensional Lie algebra over \mathbb{F}_{p}. By choosing some generator of the \mathbb{F}_{p}-module \mathcal{L} one gets identifications: $G(\mathcal{L})=\mathbb{Z} / p \mathbb{Z}, G\left(\mathcal{L}_{K}\right)=K$. Therefore, $G\left(\mathcal{L}_{K}\right) / R=K /(\sigma-\mathrm{id}) K$, and our theorem gives the isomorphism

$$
K /(\sigma-\mathrm{id}) K \simeq \operatorname{Hom}(\Gamma, \mathbb{Z} / p \mathbb{Z})
$$

of Artin-Schreier theory.
c) If \mathcal{L} is a free commutative Lie algebra of rank 1 over $\mathbb{Z} / p^{M+1} \mathbb{Z}$, then we obtain Witt theory of cyclic p-extensions of K, c.f. [W], [F, n.A.2.4].
d) If $p \mathcal{L}=0$, then our theorem gives a version of Artin-Schreier theory, which was applied in [A] to the study of arbitrary extensions of K having Galois group of exponent p and class of nilpotency $<p$ (the group of p-diagonal elements in the envelopping algebra of \mathcal{L}_{K}, which we use in [A], can be identified with the group $G\left(\mathcal{L}_{K}\right)$ by the truncated logarithm).
Proof of theorem.
Fix an integer $M \geq 0$ such that $p^{M+1} \mathcal{L}=0$.
1.3.1. Lemma. Let $e \in G\left(\mathcal{L}_{K}\right)$, then

$$
\left\{f \in G\left(\mathcal{L}_{K_{\text {sep }}}\right) \mid \sigma f=f \circ e\right\} \neq \emptyset
$$

Proof of lemma.
We use induction on the length of $\mathbb{Z} / p^{M+1} \mathbb{Z}$-module \mathcal{L}. It is well-known that there exists an ideal J of the Lie algebra \mathcal{L} such that $|J|=p$. Consider the exact sequence of Lie algebras

$$
0 \longrightarrow J \longrightarrow \mathcal{L} \longrightarrow \mathcal{L}^{\prime} \longrightarrow 0
$$

It gives the exact sequence of p-groups
(we use the flatness of $O_{M}\left(K_{\text {sep }}\right)$ over $\mathbb{Z} / p^{M+1} \mathbb{Z}$).
Let

$$
f^{\prime} \in\left\{f \in G\left(\mathcal{L}_{K_{\bullet e p}}^{\prime}\right) \mid \sigma f=f \circ e^{\prime}\right\}
$$

where $e^{\prime} \in G\left(\mathcal{L}_{K}^{\prime}\right)$ is the image of e under the natural projection $G\left(\mathcal{L}_{K}\right) \longrightarrow G\left(\mathcal{L}_{K}^{\prime}\right)$. If $f_{1} \in G\left(\mathcal{L}_{K_{\text {sep }}}\right)$ be such that $\alpha\left(f_{1}\right)=f^{\prime}$, then

$$
\sigma f_{1}=f_{1} \circ e+B j
$$

where j is some generator of J and

$$
B \in \operatorname{Ker}\left(p: O_{M}\left(K_{s e p}\right) \longrightarrow O_{M}\left(K_{s e p}\right)\right)=O_{0}\left(K_{s e p}\right)=K_{s e p}
$$

(we use that J is in the center of \mathcal{L} and $O_{M}\left(K_{\text {sep }}\right)$ is a flat $\mathbb{Z} / p^{M+1} \mathbb{Z}$-module).
Let $x \in K_{\text {sep }}$ be such that $x^{p}-x=B$ (its existence follows from Artin-Schreier theory). Set

$$
f=f_{1}+x j \in G\left(\mathcal{L}_{K_{\text {ecp }}}\right)
$$

Then

$$
\begin{aligned}
f \circ e & =f_{1} \circ e+x j, \\
\sigma f & =\sigma f_{1}+x^{p} j
\end{aligned}
$$

and, therefore,

$$
f \in\left\{f \in G\left(\mathcal{L}_{K_{\bullet<p}}\right) \mid \sigma f=f \circ e\right\}
$$

q.e.d.
1.3.2. Construction of π.

Construction of $\pi_{f}(e) \in \operatorname{Hom}(\Gamma, G(\mathcal{L}))$.
Let $e \in G\left(\mathcal{L}_{K}\right)$ and

$$
f \in\left\{f \in G\left(\mathcal{L}_{K ı \iota p}\right) \mid \sigma f=f \circ e\right\}
$$

If $\tau \in \Gamma$, then $\sigma(\tau f)=\tau(\sigma f)=\tau(f \circ e)=\tau f \circ e$. Therefore,

$$
\begin{gathered}
\sigma(\tau f \circ(-f))=\sigma(\tau f) \circ \sigma(-f)=\tau(\sigma f) \circ(-\sigma f)= \\
\quad=\tau f \circ e \circ(-e) \circ(-f)=\tau f \circ(-f) .
\end{gathered}
$$

So, $\left.\tau f \circ(-f) \in G\left(\mathcal{L}_{K_{\text {© } \boldsymbol{~}}}\right)\right|_{\sigma=\text { id }}=G(\mathcal{L})$.
Obviously, the correspondence $\tau \mapsto \tau f \circ(-f)$ gives the element of $\operatorname{Hom}(\Gamma, G(\mathcal{L}))$ which we denote by $\pi_{f}(e)$.

Dependence on f.
Let

$$
f_{1} \in\left\{f \in G\left(\mathcal{L}_{K, \text { op }}\right) \mid \sigma f=f \circ e\right\} .
$$

Then

$$
\sigma\left(f_{1} \circ(-f)\right)=\sigma\left(f_{1}\right) \circ(-\sigma f)=f_{1} \circ c \circ(-e) \circ(-f)=f_{1} \circ(-f)
$$

so, $f_{1}=g \circ f$ for some $g \in G(\mathcal{L})$. By this reason, for any $\tau \in \Gamma$

$$
\pi_{f_{1}}(e)(\tau)=g \circ \pi_{f}(e)(\tau) \circ(-g)
$$

Therefore, $\pi_{f_{1}}(e)$ and $\pi_{f}(e)$ are in a same conjugacy class of $\operatorname{Hom}(\Gamma, G(\mathcal{L}))$ and the correspondence $e \mapsto \pi_{f}(e)$ gives the map

$$
\tilde{\pi}: G\left(\mathcal{L}_{K}\right) \longrightarrow\{\text { conj. classes of } \operatorname{Hom}(\Gamma, G(\mathcal{L}))\}
$$

Dependence on R.
Let $e_{1}, e_{2} \in G\left(\mathcal{L}_{K}\right)$ and $e_{1}{\underset{R}{R}}^{e_{2}}$, i.e. $e_{1}=(-b) \circ e_{2} \circ(\sigma b)$ for some $b \in G\left(\mathcal{L}_{K}\right)$. Then for

$$
f_{i} \in\left\{f \in G\left(\mathcal{L}_{K_{\bullet \bullet p}}\right) \mid \sigma f=f \circ e_{i}\right\},
$$

where $i=1,2$, one has $\left(-f_{1}\right) \circ \sigma f_{1}=(-b) \circ\left(-f_{2}\right) \circ\left(\sigma f_{2}\right) \circ(\sigma b)$, i.e.

$$
f_{2} \circ b \circ\left(-f_{1}\right)=\left.g \in G\left(\mathcal{L}_{K_{\iota \subset \mathrm{p}}}\right)\right|_{\sigma=\mathrm{id}}=G(\mathcal{L}) .
$$

So, for any $\tau \in \Gamma$,

$$
\begin{gathered}
\pi_{f_{2}}\left(e_{2}\right)(\tau)=\tau f_{2} \circ\left(-f_{2}\right)=g \circ\left(\tau f_{1}\right) \circ(-b) \circ b \circ\left(-f_{1}\right) \circ(-g)= \\
=g \circ \pi_{f_{1}}\left(e_{1}\right)(\tau) \circ(-g)
\end{gathered}
$$

and $\tilde{\pi}$ defines the map

$$
\pi: G\left(\mathcal{L}_{K}\right) / R \longrightarrow\{\text { conj. classes of } \operatorname{Hom}(\Gamma, G(\mathcal{L}))\}
$$

1.3.3. Injectivity of π.

Let $e_{1}, e_{2} \in G\left(\mathcal{L}_{K}\right)$ be such that $\tilde{\pi}\left(e_{1}\right)=\tilde{\pi}\left(e_{2}\right)$. If, for $i=1,2$,

$$
f_{i} \in\left\{f \in G\left(\mathcal{L}_{K_{\bullet \in p}}\right) \mid \sigma f=f \circ e_{i}\right\}
$$

then for some $g \in G(\mathcal{L})$ and any $\tau \in \Gamma$

$$
\pi_{f_{1}}\left(e_{1}\right)(\tau)=g \circ \pi_{f_{2}}\left(e_{2}\right)(\tau) \circ(-g)
$$

This means that $\tau f_{1} \circ\left(-f_{1}\right)=g \circ \tau f_{2} \circ\left(-f_{2}\right) \circ(-g)$, i.e.

$$
\left(-f_{2}\right) \circ(-g) \circ f_{1}=h \in G\left(\mathcal{L}_{K \cdot \text { ©p }}\right)^{\Gamma}=G\left(\mathcal{L}_{K}\right)
$$

Therefore, $f_{1}=g \circ f_{2} \circ h, \sigma f_{1}=g \circ \sigma f_{2} \circ \sigma h$ and

$$
e_{1}=\left(-f_{1}\right) \circ\left(\sigma f_{1}\right)=(-h) \circ\left(-f_{2}\right) \circ(-g) \circ g \circ f_{2} \circ e_{2} \circ \sigma h=(-h) \circ e_{2} \circ \sigma h
$$

So, $e_{1} \underset{R}{\sim} e_{2}$ and π is injective.
1.3.4. Surjectivity of π.

We proceed by induction on the length of \mathcal{L} and use notation of n.1.3.1. Let

$$
\eta \in \operatorname{Hom}(\Gamma, G(\mathcal{L}))
$$

and

$$
\eta^{\prime} \in \operatorname{Hom}\left(\Gamma, G\left(\mathcal{L}^{\prime}\right)\right)
$$

be its image under the projection

$$
\operatorname{Hom}(\Gamma, G(\mathcal{L})) \longrightarrow \operatorname{Hom}\left(\Gamma, G\left(\mathcal{L}^{\prime}\right)\right)
$$

Then there exist $e^{\prime} \in G\left(\mathcal{L}_{K}^{\prime}\right)$ and

$$
f^{\prime} \in\left\{f \in G\left(\mathcal{L}_{K \bullet \bullet p}^{\prime}\right) \mid \sigma f=f \circ e^{\prime}\right\}
$$

such that $\eta^{\prime}(\tau)=\left(\tau f^{\prime}\right) \circ\left(-f^{\prime}\right)$.
Let $e \in G\left(\mathcal{L}_{K}\right)$ be some preimage of the e^{\prime} under the projection $G\left(\mathcal{L}_{K}\right) \longrightarrow$ $G\left(\mathcal{L}_{K}^{\prime}\right)$. It follows from the proof of Lemma 1.3.1 that the natural map of sets

$$
\left\{f \in G\left(\mathcal{L}_{K, \epsilon_{\mathrm{p}}}\right) \mid \sigma f=f \circ e\right\} \longrightarrow\left\{f \in G\left(\mathcal{L}_{K, e \mathrm{p}}^{\prime}\right) \mid \sigma f=f \circ e^{\prime}\right\}
$$

is surjective. Therefore, there exists $f \in G\left(\mathcal{L}_{\text {© © } \mathcal{P}}\right)$ such that $\sigma f=f \circ e$ and $\pi_{f}(e)(\tau) \equiv \eta(\tau) \bmod G(J)$ for any $\tau \in \Gamma$.

Therefore,

$$
\eta(\tau)=\pi_{f}(e)(\tau)+c_{\tau} j
$$

for some $c_{\tau} \in \mathbb{F}_{p}$ (as in n.1.3.1 we use that J is in the center of \mathcal{L} and $O_{M}\left(\mathbb{F}_{p}\right)$ is a flat module).

Obviously, $\tau \mapsto c_{\tau}$ defines the element of $\operatorname{Hom}\left(\Gamma, \mathbb{F}_{p}\right)$. From Artin-Schreier theory it follows the existence of $x \in K_{\text {sep }}$ such that $c_{\tau}=\tau x-x$ for any $\tau \in \Gamma$.

Let $f^{*}=f+x j \in G\left(\mathcal{L}_{K_{\text {eep }}}\right)$. Then $\eta(\tau)=\left(\tau f^{*}\right) \circ\left(-f^{*}\right)$. On the other hand

$$
\left(-f^{*}\right) \circ\left(\sigma f^{*}\right)=\left(x^{p}-x\right) j \circ(-f) \circ(\sigma f)=e+\left(x^{p}-x\right) j .
$$

For any $\tau \in \Gamma$,

$$
\tau\left(x^{p}-x\right)=\left(x+c_{\tau}\right)^{p}-\left(x+c_{\tau}\right)=x^{p}-x
$$

therefore, for $e^{*}=e+\left(x^{p}-x\right) j \in G\left(\mathcal{L}_{K}\right)$, we have

$$
f^{*} \in\left\{f \in G\left(\mathcal{L}_{K, \text { op }}\right) \mid \sigma f=f \circ e^{*}\right\}
$$

and $\eta=\pi_{f^{*}}\left(e^{*}\right)$.
Theorem is proved.
1.4. Corollary. Let (in notation of n.1.3) $\eta \in \operatorname{Hom}(\Gamma, G(\mathcal{L})$). Then there exist $e \in G\left(\mathcal{L}_{K}\right)$ and

$$
f \in\left\{G\left(\mathcal{L}_{K_{\text {eep }}}\right) \mid \sigma f=f \circ e\right\}
$$

such that $\eta=\pi_{f}(e)$.
1.5. In notation of n.1.3 let $e \in G\left(\mathcal{L}_{K}\right)$ be such that the conjugacy class $\pi(e)$ (c.f. theorem of n.1.3) contains an epimorphism $\eta: \Gamma \longrightarrow G(\mathcal{L})$ (and, therefore, all elements of $\pi(e)$ are epimorphic maps $\Gamma \longrightarrow G(\mathcal{L})$). Set $K_{c}=K_{\text {sep }}^{\text {Ker } \eta}$, then η defines the isomorphism of the groups $\operatorname{Gal}\left(K_{e} / K\right)$ and $G(\mathcal{L})$.

Let b be an automorphism of the field K, \hat{b} be an extension of b to some automorphism of $K_{\text {sep }}$.

Let $M \geqslant 0$ be an integer, such that $p^{M+1} \mathcal{L}=0$. Generally, there is no lifting of b to an automorphism of $O_{M}(K)$, which commutes with σ (but, if such lifting exists then it is defined uniquelly). Nevertheless, there exists a lifting of $\left.b\right|_{K^{\left(p^{M}\right)}}$ to a morphism

$$
\sigma^{M} O_{M}(K) \longrightarrow O_{M}(K)
$$

This morphism commutes with σ and is induced by the embeddings (c.f. n.1.1.2)

$$
\sigma^{M} O_{M}(K) \subset W_{M}\left(K^{\left(p^{M}\right)}\right) \subset O_{M}(K)
$$

and the morphism

$$
W_{M}\left(\left.b\right|_{K^{\left(p^{M}\right)}}\right): W_{M}\left(K^{\left(p^{M}\right)}\right) \longrightarrow W_{M}\left(K^{\left(p^{M}\right)}\right)
$$

We shall use the same symbol b for this lifting. Analogously, we use the same notation \hat{b} for the lifting of the above chosen extension \hat{b} of the automorphism b.

If a is an automorphism of the Lie algebra \mathcal{L}, then we use the same symbol a for extension of scalars $\mathcal{L}_{L} \longrightarrow \mathcal{L}_{L}$ of the morphism a (L is some field of characteristic p). Clearly, actions of a and σ on \mathcal{L}_{L} commute one with another.
1.5.1. Proposition. In the above notation the following statements are equivalent:

1. $\hat{b}\left(K_{e}\right)=K_{e}$;
2. There exists an automorphism a of the Lie algebra \mathcal{L}, such that $b\left(\sigma^{M} e\right) \underset{R}{\sim} a(e)$.

Proof.
Let $\hat{b}\left(K_{e}\right)=K_{e}$.
Choose $f \in G\left(\mathcal{L}_{K_{\text {e } e p}}\right)$ such that $\sigma f=f \circ e$ and $\eta=\pi_{f}(e)$ (c.f. n.1.4). Then for any $\tau \in \Gamma_{K}$ we have $\eta(\tau)=\tau f \circ(-f)$.

Let $f_{1}=\hat{b}\left(\sigma^{M} f\right)$. Then $\sigma\left(f_{1}\right)=f_{1} \circ b\left(\sigma^{M} e\right)$. For any $\tau \in \Gamma_{K}$ we have

$$
\begin{aligned}
\pi_{f_{1}}\left(b\left(\sigma^{M} e\right)\right)(\tau) & =\tau f_{1} \circ\left(-f_{1}\right)=\hat{b}\left[\left(\hat{b}^{-1} \tau \hat{b}\right) \sigma^{M} f \circ\left(-\sigma^{M} f\right)\right]= \\
= & \hat{b}\left[\left(\hat{b}^{-1} \tau \hat{b}\right) f \circ(-f)\right]=\eta\left(\hat{b}^{-1} \tau \hat{b}\right) .
\end{aligned}
$$

The equality $\hat{b}\left(K_{e}\right)=K_{e}$ gives $\hat{b}^{-1}(\operatorname{Ker} \eta) \hat{b}=\operatorname{Ker} \eta$, therefore, there exists an automorphism a of the group $G(\mathcal{L})$ (which is also an automorphism of the Lie algebra $\mathcal{L})$, such that $\pi_{f_{1}}\left(b\left(\sigma^{M} e\right)\right)=\eta a$.

For any $\tau \in \Gamma_{K}$

$$
\tau\left(f_{1}\right) \circ\left(-f_{1}\right)=\pi_{f_{1}}\left(b\left(\sigma^{M} e\right)\right)(\tau)=a(\eta(\tau))=a(\tau f \circ(-f))=\tau(a f) \circ(-a f)
$$

Therefore,

$$
(-a f) \circ f_{1}=c \in G\left(\mathcal{L}_{K_{\bullet \bullet p}}\right)^{\Gamma}=G\left(\mathcal{L}_{K}\right) .
$$

Applying the morphism σ to the equality $f_{1}=(a f) \circ c$ one obtains

$$
\begin{gathered}
\sigma f_{1}=f_{1} \circ\left(b\left(\sigma^{M} e\right)\right)=(a f) \circ c \circ\left(b\left(\sigma^{M} e\right)\right), \\
\sigma f_{1}=\sigma(a f) \circ \sigma c=(a f) \circ(a e) \circ \sigma c .
\end{gathered}
$$

Therefore, $b\left(\sigma^{M} e\right)=(-c) \circ a(e) \circ \sigma(c)$, i.e. $b\left(\sigma^{M} e\right) \underset{R}{\sim} a(e)$.
Inversely, let

$$
b\left(\sigma^{M} e\right)=(-c) \circ a(e) \circ \sigma(c)
$$

for some $c \in G\left(\mathcal{L}_{K}\right)$. From the equality $\sigma f_{1}=f_{1} \circ b\left(\sigma^{M} e\right)$ one has

$$
\sigma\left(f_{1} \circ(-c)\right)=f_{1} \circ(-c) \circ a(e) .
$$

Now the equality $\sigma(a f)=a(f) \circ a(e)$ gives the existence of $c_{0} \in G(\mathcal{L})$, such that

$$
f_{1} \circ(-c)=c_{0} \circ a(f) .
$$

This means that

$$
\pi_{f_{1}}\left(b\left(\sigma^{M} e\right)\right)=\tau\left(f_{1}\right) \circ\left(-f_{1}\right)=c_{0} \circ[\tau(a f) \circ(-a f)] \circ\left(-c_{0}\right) .
$$

Now it is clear that

$$
\tau \in \operatorname{Ker} \eta \Leftrightarrow \tau f=f \Leftrightarrow \tau(a f)=a f \Leftrightarrow \tau \in \operatorname{Ker} \pi_{f_{1}}\left(b\left(\sigma^{M} e\right)\right) .
$$

Proposition is proved.

1.5.2. Remark.

Let b can be extended to some automorphism of the algebra $O_{M}(K)$, which commutes with σ. Denote this extension by the same symbol b. Then

$$
b\left(\sigma^{M} e\right)=\sigma^{M}(b e) \underset{R}{\sim} b(e)
$$

In addition, let a be an automorphism of the Lie algebra \mathcal{L} and $c \in G\left(\mathcal{L}_{K}\right)$ be such that $b(e)=(-c) \circ a(e) \circ \sigma(c)$. Then the correspondence $f \mapsto a(f) \circ c$ gives an explicit description of liftings of b to automorphisms of the field K_{e}.
1.5.3. Corollary. Let (in the above notation) K be the Galois extension of its subfield K_{1}. Then the following properties are equivalent:

1. K_{e} / K_{1} is the Galois extension.
2. For any $b \in \operatorname{Gal}\left(K / K_{1}\right)$ there exists an automorphism a_{b} of the Lie algebra \mathcal{L} such that $b\left(\sigma^{M} e\right) \underset{R}{\sim_{b}}(e)$.

1.5.4. Remark.

Let $b \in \operatorname{Gal}\left(K / K_{1}\right)$. Consider a morphism a_{b} from the above corollary as an automorphism of the group $G(\mathcal{L})$. Then there exists a lifting $\hat{b} \in \operatorname{Gal}\left(K_{\text {sep }} / K_{1}\right)$ of b and an epimorphism $\eta \in \pi(e)$, such that for any $\tau \in \Gamma_{K}$ one has

$$
\pi\left(\hat{b}^{-1} \tau \hat{b}\right)=a_{b}(\eta(\tau))
$$

This means that a_{b} gives a description of the action of the quotient $\operatorname{Gal}\left(K / K_{1}\right)$ on the subgroup $\operatorname{Gal}\left(K_{\mathrm{e}} / K\right)$ by conjugation with respect to the identification $\operatorname{Gal}\left(K_{e} / K\right)=G(\mathcal{L})$, given by the epimorphism η.

2. Case of a local field.

2.1. Let K be a local complete discrete valuation field of characteristic $p>0$ with a residue field k which is isomorphic to an algebraic closure $\overline{\mathbb{F}}_{p}$ of \mathbb{F}_{p}. Then K is isomorphic to $k\left(\left(\tilde{t_{0}}\right)\right)$ - the fraction field of the power series ring in one variable $\tilde{t_{0}}$ over k.

Let $K_{\text {sep }}$ be a fixed separable closure of K and $\Gamma=\operatorname{Gal}\left(K_{\text {sep }} / K\right)$. If

$$
\mathbb{Q}^{+}(p)=\{r \in \mathbb{Q} \mid r>0,(r, p)=1\}
$$

and $K_{t r} \subset K_{\text {sep }}$ is the maximal tamely ramified extension of K, then

$$
K_{t r}=K\left(\left\{\tilde{t}_{0}^{r} \mid r \in \mathbb{Q}^{+}(p)\right\}\right)
$$

Here $\left\{\tilde{t_{0}}{ }^{r} \mid r \in \mathbb{Q}^{+}(p)\right\}$ is a compatible system of fraction powers of $\tilde{t_{0}}$ (this means that for any $r \in \mathbb{Q}^{+}(p), m \in \mathbb{Z}^{+}(p)=\mathbb{Q}^{+}(p) \cap \mathbb{Z}$, one has the equality $\left.\left({\tilde{t_{0}}}^{r}\right)^{m}={\tilde{t_{0}}}^{m r}\right)$.

Let I be the higher ramification subgroup of Γ. Then I is a free pro- p-group. We want to apply the arguments of $n .1$ to the study of the extension $K_{s e p}^{C_{p}(I)}$ of K.

Fix absolutely unramified field $\mathcal{E}\left(K_{s e p}\right)$ (c.f. n.1.2) and consider its valuation ring $O\left(K_{\text {sep }}\right)$. Let H be an open subgroup of $\Gamma, L=K_{\text {sep }}^{H}$ and M be some nonnegative integer, then

$$
O_{M}(L)=O\left(K_{\text {sep }}\right)^{H} / p^{M+1} O\left(K_{\text {sep }}\right)^{H}
$$

is a lifting of L modulo p^{M+1}.
Let \tilde{t} be some fixed lifting of the uniformising element $\tilde{t_{0}} \in K$ to $O\left(K_{\text {sep }}\right)$. Then $O_{M}(K)$ can be identified with the $\mathbb{Z} / p^{M+1} \mathbb{Z}$-algebra of Laurent series in one variable \tilde{t} with coefficients in $W_{M}(k)$.

We can fix some lifting σ of the absolute Frobenius morphism of the field K by choosing some $\sigma \widetilde{t} \in O\left(K_{s e p}\right)$, which satisfies the condition

$$
\sigma \tilde{t} \equiv \tilde{t}^{p} \bmod p
$$

(in fact, we use below the simplest choice of such a lifting, which is given by the equality $\sigma \tilde{t}=\tilde{t}^{p}$).
2.2. Let $M \geq 0, N \geq 1$ be integers, R be a finite subset of $\mathbb{Q}^{+}(p)$. Set $q=p^{N}$ and introduce a free $\mathbb{Z} / p^{M+1} \mathbb{Z}$-module $L_{R, M}^{\circ}$ with fixed (free) generators $D_{r}^{\circ}, r \in R$.

Denote by $\widetilde{\mathcal{L}}_{R, N, M}$ the free Lie $\mathbb{Z} / p^{M+1} \mathbb{Z}$-algebra with the $\mathbb{Z} / p^{M+1} \mathbb{Z}$-module of free generators

$$
L_{R, M}^{\circ} \otimes \operatorname{Hom}\left(W_{M}\left(\mathbb{F}_{q}\right), W_{M}\left(\mathbb{F}_{p}\right)\right)
$$

(here $W_{M}\left(\mathbb{F}_{q}\right)$ and $W_{M}\left(\mathbb{F}_{p}\right)\left(\simeq \mathbb{Z} / p^{M+1} \mathbb{Z}\right)$ are the groups of truncated Witt vectors having length $M+1$ and coefficients from \mathbb{F}_{q} and \mathbb{F}_{p}, respectively).

Let $\widetilde{\mathcal{L}}_{R_{1}, N_{1}, M_{1}}$ and $\widetilde{\mathcal{L}}_{R_{2}, N_{2}, M_{2}}$ be such Lie algebras, where $R_{2} \subset R_{1}, N_{2} \mid N_{1}$ and $M_{2} \leq M_{1}$. We have the natural map of their modules of free generators:

$$
L_{R_{1}, M_{1}}^{\circ} \otimes \operatorname{Hom}\left(W_{M_{1}}\left(\mathbb{F}_{p^{N_{1}}}\right), W_{M_{2}}\left(\mathbb{F}_{p}\right)\right) \longrightarrow L_{R_{2}, M_{2}}^{\circ} \otimes \operatorname{Hom}\left(W_{M_{2}}\left(\mathbb{F}_{p^{N_{2}}}\right), W_{M_{2}}\left(\mathbb{F}_{p}\right)\right)
$$

This map is uniquelly defined by the following conditions:

$$
\begin{gathered}
D_{r}^{\circ} \mapsto D_{r}^{\circ}, \text { if } r \in R_{2}, \\
D_{r}^{\circ} \mapsto 0, \text { if } r \in R_{1} \backslash R_{2}, \\
\left.f \mapsto f\right|_{W_{M_{2}}\left(\mathbf{F}_{p} N_{2}\right)},
\end{gathered}
$$

where $f \in \operatorname{Hom}\left(W_{M_{1}}\left(\mathbb{F}_{p^{N_{1}}}\right), W_{M_{1}}\left(\mathbb{F}_{p}\right)\right)$ and $W_{M_{2}}\left(\mathbb{F}_{p^{N_{2}}}\right)$ is considered as a subgroup of $W_{M_{1}}\left(\mathbb{F}_{p^{N_{1}}}\right)$ via the natural imbeddings:

$$
W_{M_{2}}\left(\mathbb{F}_{p^{N_{2}}}\right) \subset W_{M_{2}}\left(\mathbb{F}_{p^{N_{1}}}\right)=p^{M_{1}-M_{2}} W_{M_{1}}\left(\mathbb{F}_{p^{N_{1}}}\right) \subset W_{M_{1}}\left(\mathbb{F}_{p^{N_{1}}}\right) .
$$

The above maps give uniquelly defined morphisms of the Lie algebras $\widetilde{\mathcal{L}}_{R_{1}, N_{1}, M_{1}} \longrightarrow$ $\widetilde{\mathcal{L}}_{R_{2}, N_{2}, M_{2}}$. So, we have a projective system of Lie algebras $\left\{\widetilde{\mathcal{L}}_{R, N, M}\right\}$. Obviously,

$$
\tilde{\mathcal{L}}=\lim _{R, N, M} \tilde{\mathcal{L}}_{R, N, M}
$$

is the free Lie pro- p-algebra over \mathbb{Z}_{p}.
2.3. Let

$$
\mathcal{L}_{R, N, M}=\widetilde{\mathcal{L}}_{R, N, M} / C_{p}\left(\tilde{\mathcal{L}}_{R, N, M}\right) .
$$

We obtain a projective system $\left\{\mathcal{L}_{R, N, M}\right\}$ of Lie algebras of class of nilpotency $<p$. If $\mathcal{L}=\underset{R, N, M}{\underset{\sim}{\lim }} \mathcal{L}_{R, N, M}$, then $\mathcal{L}=\widetilde{\mathcal{L}} / C_{p}(\widetilde{\mathcal{L}})$ (here $C_{p}(\widetilde{\mathcal{L}})$ is the closure of the ideal in $\tilde{\mathcal{L}}$ generated by all commutators of order $\geq p$).

We want to apply main theorem of n .1 to the projective system $\left\{\mathcal{L}_{R, N, M}\right\}$.
If $r \in R$ and $f \in \operatorname{Hom}\left(W_{M}\left(\mathbb{F}_{q}\right), W_{M}\left(\mathbb{F}_{p}\right)\right)$, we use notation $D_{r, f}$ for the image of

$$
D_{r}^{\circ} \otimes f \in L_{R, M}^{\circ} \otimes \operatorname{Hom}\left(W_{M}\left(\mathbb{F}_{q}\right), W_{M}\left(\mathbb{F}_{p}\right)\right) \subset \widetilde{\mathcal{L}}_{R, N, M}
$$

in $\mathcal{L}_{R, N, M}$.
Let $\left\{\alpha_{i}\right\}_{1 \leqslant i \leqslant N}$ be some $W_{M}\left(\mathbb{F}_{p}\right)$-basis of $W_{M}\left(\mathbb{F}_{q}\right)$ and $\left\{f_{i}\right\}_{1 \leq i \leq N}$ be dual basis of the $W_{M}\left(\mathbb{F}_{p}\right)$-module $\operatorname{Hom}\left(W_{M}\left(\mathbb{F}_{q}\right), W_{M}\left(\mathbb{F}_{p}\right)\right)$. Consider

$$
e_{R, N, M}=\sum_{\substack{1 \leqslant i \leqslant N \\ r \in R}} \alpha_{i} t^{r} D_{r, f i} \in G\left(\mathcal{L}_{R, N, M, K_{t r}}\right)
$$

(we use all notation of n.1), where $t=\tilde{t}^{-1}$ (c.f. n.2.1). This element $e_{R, N, M}$ does not depend on the above choice of a basis in $W_{M}\left(\mathbb{F}_{q}\right)$, because

$$
e_{R, N, M}=\left(\sum_{r \in R} t^{r} D_{r}^{\circ}\right) \otimes\left(\sum_{1 \leq i \leq N} \alpha_{i} \otimes f_{i}\right)
$$

and $\sum_{1 \leq i \leq N} \alpha_{i} \otimes f_{i}$ corresponds to $\mathrm{id}_{W_{M}\left(\mathbf{F}_{q}\right)}$ under the identification

$$
W_{M}\left(\mathbb{F}_{q}\right) \otimes \operatorname{Hom}\left(W_{M}\left(\mathbb{F}_{q}\right), W_{M}\left(\mathbb{F}_{p}\right)\right)=\operatorname{Hom}\left(W_{M}\left(\mathbb{F}_{q}\right), W_{M}\left(\mathbb{F}_{q}\right)\right)
$$

So, we have the element $\left\{e_{R, N, M}\right\}$ of the projective system $\left\{G\left(\mathcal{L}_{R, N, M, K_{\mathrm{tr}}}\right)\right\}$, which gives
2.4. Let

$$
\mathcal{M}_{R, N, M}=\left\{f \in G\left(\mathcal{L}_{R, N, M, K_{\text {oep }}}\right) \mid \sigma f=f \circ e_{R, N, M}\right\} .
$$

Obviously, $\left\{\mathcal{M}_{R, N, M}\right\}$ is a projective system of sets and

$$
\mathcal{M}=\underset{R, N, M}{\underset{\lim }{\stackrel{\lim }{*}}} \mathcal{M}_{R, N, M} \neq \emptyset
$$

Let $f \in \mathcal{M}$ and $f_{R, N, M}$ be its projection to $\mathcal{M}_{R, N, M}$. Consider the homomorphism

$$
\psi_{R, N, M}=\pi_{f_{R, N, M}}\left(e_{R, N, M}\right): I \longrightarrow G\left(\mathcal{L}_{R, N, M}\right)
$$

from the proof of the main theorem of n .1 (here $I=\operatorname{Gal}\left(K_{\text {sep }} / K_{t r}\right)$). In the same way as in [A,n.2.3], we obtain:
a) all $\psi_{R, N, M}$ are epimorphisms;
b) the system $\left\{\psi_{R, N, M}\right\}$ is a projective system, compatible (in an obvious sense) with the projective system $\left\{G\left(\mathcal{L}_{R, N, M}\right)\right\}$;
c) the homomorphism

$$
\psi=\underset{R, N, M}{\lim _{\underset{\sim}{*}}^{\stackrel{1}{*}}} \psi_{R, N, M}: I \longrightarrow G(\mathcal{L})
$$

induces the isomorphism

$$
\bar{\psi}: I / C_{p}(I) \simeq G(\mathcal{L})
$$

We use $\bar{\psi}$ below for identification of the groups $I / C_{p}(I)$ and $G(\mathcal{L})$.
2.5. One can apply remarks of n.1.5 for a description of the action of the Galois group $\operatorname{Gal}\left(K_{t r} / \mathbb{F}_{p}\left(\left(\tilde{t_{0}}\right)\right)\right.$ on $I / C_{p}(I)$ in the terms of the identification $\bar{\psi}$. For simplicity we assume that the lifting σ is given by the condition $\sigma \tilde{t}=\tilde{t}^{p}$.

The group $\Gamma_{t r}$ has two generators ϕ_{0} and τ_{0}, which satisfy the unique relation $\tau_{0}^{p}=\phi_{0}^{-1} \tau_{0} \phi_{0}$. One has
a) ϕ_{0} is the lifting of the absolute Frobenius morphism of the extension k / \mathbb{F}_{p}, uniquelly determined by the condition $\phi_{0}\left(\tilde{t_{0}}\right)=\tilde{t_{0}}$.
b) τ_{0} is some generator of the procyclic group $I_{t r}=\operatorname{Gal}\left(K_{t r} / K\right) \subset \Gamma_{t r}, \tau_{0}$ acts trivially on $k, \tau_{0}{\widetilde{t_{0}}}^{r}=\zeta_{r}{\tilde{t_{0}}}^{r}$, where $r \in \mathbb{Q}^{+}(p), \zeta_{r} \in k$.

The system of elements $\left\{\zeta_{r} \mid r \in \mathbb{Q}^{+}(p)\right\}$ satisfies the following two conditions:

1) $\zeta_{1}=1$;
2) for any $r_{1} \in \mathbb{Q}^{+}(p), m \in \mathbb{Z}^{+}(p)=\mathbb{Q}^{+}(p) \cap \mathbb{Z}$, one has $\zeta_{r}^{m}=\zeta_{m r}$.

It is easy to see that a fixing of such a system of elements $\zeta_{r}, r \in \mathbb{Q}^{+}(p)$, is equivalent to the choice of some generator τ_{0} of the group $I_{t r}$.

The automorphisms ϕ_{0} and τ_{0} can be lifted to automorphisms ϕ and τ of the algebra $O\left(K_{t r}\right)$, which are defined by the following conditions:

$$
\begin{aligned}
& \left.\phi\right|_{W(k)}=W\left(\phi_{0}\right), \quad \phi(\tilde{t})=\tilde{t} \\
& \left.\tau\right|_{W(k)}=\mathrm{id}, \quad \tau\left(\tilde{t}^{r}\right)=\left[\zeta_{r}\right] \tilde{t}^{r}
\end{aligned}
$$

Obviously, ϕ and τ commute with the action of σ on $O\left(K_{t r}\right)$.
Consider the element $e=\underset{R, N, M}{\underset{\sim}{\underset{\sim}{*}} \underset{R, N, M}{ }} e_{R}$ from n.2.3. From the relations

$$
\phi\left(e_{R, N, M}\right)=\sum_{\substack{r \in R \\ 1 \leq i \leq N}} \sigma\left(\alpha_{i}\right) t^{r} D_{r, f_{i}}, \quad \tau\left(e_{R, N, M}\right)=\sum_{\substack{r \in R \\ 1 \leq i \leq N}} \alpha_{i}\left[\zeta_{r}\right]^{-1} t^{r} D_{r, f_{i}}
$$

one gets
a) $\phi(e)=a_{\phi}(e)$, where a_{ϕ} is the automorphism of the Lie algebra \mathcal{L} such that

$$
a_{\phi}\left(D_{r, f}\right)=D_{r, \phi^{*}(f)}
$$

where $D_{r, f} \in \mathcal{L}_{R, N, M}$ and $\phi^{*}(f)(w)=f(\phi w)$ for any $w \in W\left(\mathbb{F}_{p^{N}}\right)$;
b) $\tau(e)=a_{\tau}(e)$, where a_{τ} is the automorphism of the Lie algebra \mathcal{L}, such that

$$
a_{\tau}\left(D_{r, f}\right)=D_{r, \tau_{r}(f)},
$$

where $D_{r, f} \in \mathcal{L}_{R, N, M}, r\left(p^{N}-1\right) \in \mathbb{N}$ and $\tau_{r}(f)(w)=f\left(\left[\zeta_{r}\right] w\right)$ for any $w \in W\left(\mathbb{F}_{p^{N}}\right)$.
Therefore (c.f. remark 1.5.2), we can fix liftings $\hat{\phi}, \hat{\tau} \in \operatorname{Gal}\left(K_{\text {sep }} / \mathbb{F}_{p}\left(\left(\tilde{t_{0}}\right)\right)\right) / C_{p}(I)$ of the automorphisms ϕ_{0} and τ_{0} by the following conditions:

$$
\hat{\phi}(f)=a_{\phi}(f), \quad \hat{\tau}(f)=a_{\tau}(f)
$$

Applying remark 1.5.4 one gets for any $g \in I / C_{p}(I)$:

$$
\bar{\psi}\left(\hat{\phi}^{-1} g \hat{\phi}\right)=a_{\phi}(\bar{\psi}(g)), \quad \bar{\psi}\left(\hat{\tau}^{-1} g \hat{\tau}\right)=a_{\tau}(\bar{\psi}(g))
$$

3. Statement of the main theorem.

In this section we define a decreasing filtration $\left\{\mathcal{L}^{(v)}\right\}_{v>0}$ of ideals $\mathcal{L}^{(v)}$ of the Lie algebra \mathcal{L} from n .2 .3 , where $v \in \mathbb{Q}, v>0$. This filtration will be related to the image of the ramification filtration $\left\{\Gamma^{(v)}\right\}_{v>0}$ of Γ in $I / C_{p}(I)$.
3.1. Let $\widetilde{\mathcal{L}}_{R, N, M}$ be some Lie algebra from the projective system $\left\{\tilde{\mathcal{L}}_{R, N, M}\right\}$ (c.f. n.2.3). Then $\widetilde{\mathcal{L}}_{R, N, M} \otimes_{W_{M}\left(\mathbf{F}_{\mathfrak{p}}\right)} W_{M}(k)$ has the $W_{M}(k)$-module of free generators

$$
\begin{gathered}
L_{R, M}^{\circ} \otimes \operatorname{Hom}\left(W_{M}\left(\mathbb{F}_{q}\right), W_{M}\left(\mathbb{F}_{p}\right)\right) \otimes W_{M}(k)= \\
=L_{R, M}^{\circ} \otimes \operatorname{Hom}\left(W_{M}\left(\mathbb{F}_{q}\right), W_{M}\left(\mathbb{F}_{q}\right)\right) \otimes_{W_{M}\left(\mathbf{F}_{q}\right)} W_{M}(k)= \\
\left.=L_{R, M}^{\circ} \otimes \operatorname{Hom}_{W_{M}\left(\mathbf{F}_{q}\right)}\right)\left(W_{M}\left(\mathbb{F}_{q}\right) \otimes W_{M}\left(\mathbb{F}_{q}\right), W_{M}\left(\mathbb{F}_{q}\right)\right) \otimes_{W_{M}\left(\mathbf{F}_{q}\right)} W_{M}(k)= \\
=\underset{n \in \mathbf{Z} / N \mathbf{Z}}{\oplus} L_{R, M}^{\circ} \otimes \operatorname{Hom}\left(W_{M}\left(\mathbb{F}_{q}\right), W_{M}\left(\mathbb{F}_{q}\right)\right)_{n} \otimes W_{M}\left(\mathbf{F}_{p}\right) W_{M}(k),
\end{gathered}
$$

where $\operatorname{Hom}\left(W_{M}\left(\mathbb{F}_{q}\right), W_{M}\left(\mathbb{F}_{q}\right)\right)_{n}, n \in \mathbb{Z} / N \mathbb{Z}$, is the $W_{M}\left(\mathbb{F}_{p}\right)$-module of σ^{n}-linear homomorphisms $W_{M}\left(\mathbb{F}_{q}\right) \longrightarrow W_{M}\left(\mathbb{F}_{q}\right)$. Obviously, each module

$$
\operatorname{Hom}\left(W_{M}\left(\mathbb{F}_{q}\right), W_{M}\left(\mathbb{F}_{q}\right)\right)_{n}
$$

has $W_{M}\left(\mathbb{F}_{p}\right)$-rank 1 and the canonical generator σ^{n}.
Therefore, the Lie $W_{M}(k)$-algebra $\widetilde{\mathcal{L}}_{R, N, M, k}=\tilde{\mathcal{L}}_{R, M, N} \otimes W_{M}\left(\mathbf{F}_{\mathrm{p}}\right) W_{M}(k)$ has the canonical system of free generators

$$
\left\{D_{r}^{\circ} \otimes \sigma^{n} \mid r \in R, n \in \mathbb{Z} / N \mathbb{Z}\right\}
$$

Denote by $D_{r, n}$, where $r \in R, n \in \mathbb{Z} / N \mathbb{Z}$, the image of $D_{r}^{\circ} \otimes \sigma^{n}$ under the canonical projection

$$
\tilde{\mathcal{L}}_{R, M, N, k} \longrightarrow \mathcal{L}_{R, M, N, k} .
$$

Remark.

Let a_{ϕ} and a_{r} be the automorphisms of the Lie algebra \mathcal{L}, which were introduced earlier to describe the action of the Galois group $\operatorname{Gal}\left(K_{t r} / \mathbb{F}_{p}\left(\left(\tilde{t_{0}}\right)\right)\right)$ (c.f. n. 2.5) on $I / C_{p}(I)$. Extension of scalars of these automorphisms defines automorphisms of the Lie algebra \mathcal{L}_{k}, which we denote by the same symbols. In the terms of generators $\left\{D_{r, n} \mid r \in R, n \in \mathbb{Z} / N \mathbb{Z}\right\}$ the action of a_{ϕ} and a_{τ} is given on $\mathcal{L}_{R, N, M, k}$ by the following conditions:
a) $a_{\phi}\left(D_{r, n}\right)=D_{r, n+1}$;
b) $a_{\tau}\left(D_{r, n}\right)=\left[\zeta_{r}\right]^{p^{n}} D_{r, n}$,
where $r \in R, r\left(p^{N}-1\right) \in \mathbb{N}$ and $n \in \mathbb{Z} / N \mathbb{Z}$.
3.2. Let $1 \leq s<p$.

Definition. If $m_{1}, \ldots, m_{s} \geqslant 0$ are integers, we set

$$
\eta\left(m_{1}, \ldots, m_{s}\right)=\frac{1}{s_{1}!\left(s_{2}-s_{1}\right)!\ldots\left(s_{l}-s_{l-1}\right)!}
$$

if $m_{1}=\ldots=m_{s_{1}}<m_{s_{1}+1}=\ldots=m_{s_{2}}<\ldots<m_{s_{i-1}}=\ldots=m_{s_{1}}$, where $1 \leq s_{1}<\ldots<s_{l}=s$, and

$$
\eta\left(m_{1}, \ldots, m_{s}\right)=0
$$

otherwise.
Let $N \in \mathbb{N}$ and $n_{1}, \ldots, n_{s} \in \mathbb{Z} / N \mathbb{Z}$.
Definition. For indices $1 \leq i, j \leq s, n_{i j}$ will denote the integer uniquelly defined by the following conditions: $n_{i j} \bmod N=n_{i}-n_{j}, 0 \leq n_{i j}<N$.

Definition. $\widetilde{\eta}\left(n_{1}, \ldots, n_{s}\right)=\eta\left(n_{11}, n_{12}, \ldots, n_{1 s}\right)$.
Remark. $\widetilde{\eta}\left(n_{1}, \ldots, n_{s}\right) \neq 0 \Leftrightarrow$ the sequence of points $\left\{e^{\frac{2 \pi i n_{j}}{N}}\right\}_{1 \leq j \leq s}$ is "ordered" on a unit circle $\{z \in \mathbb{C}||z|=1\}$.
3.3. Let $\mathcal{L}_{R, N, M}$ be some Lie algebra from the projective system $\left\{\mathcal{L}_{R, N, M}\right\}$ (c.f. the beginning of n .2 .3). For any $\gamma \in \mathbb{Q}, \gamma>0$, and $n_{1} \in \mathbb{Z} / N \mathbb{Z}$ introduce elements $\mathcal{F}_{R, N, M}\left(\gamma, n_{1}\right) \in \mathcal{L}_{R, N, M, k}\left(=\mathcal{L}_{R, N, M} \otimes W_{M}(k)\right):$

$$
\begin{aligned}
& \mathcal{F}_{R, N, M}\left(\gamma, n_{1}\right)=
\end{aligned}
$$

Definition. Let $v \in \mathbb{Q}, v>0$. Denote by $\mathcal{L}_{R, N, M, k}^{(v)}$ the ideal of the Lie $W_{M}(k)-$ algebra $\mathcal{L}_{R, N, M, k}$, which is generated by all $\mathcal{F}_{R, N, M}(\gamma, n)$, where $\gamma \geqslant v$ and $n \in$ $\mathbb{Z} / N \mathbb{Z}$.

Let

$$
\mathcal{L}_{R_{1}, N_{1}, M_{1}} \longrightarrow \mathcal{L}_{R_{2}, N_{2}, M_{2}},
$$

where $R_{2} \subset R_{1}, N_{2} \mid N_{1}, M_{2} \leq M_{1}$, be the connecting morphism of the projective system of Lie algebras $\left\{\mathcal{L}_{R, N, M}\right\}$. If $N_{1}=N_{2}$, then this morphism, obviously, induces the epimorphic mapping of ideals

$$
\mathcal{L}_{R_{1}, N_{1}, M_{1}}^{(v)} \longrightarrow \mathcal{L}_{R_{2}, N_{2}, M_{2}}^{(v)}
$$

for any $v>0, v \in \mathbb{Q}$. This property, generally, is not valid for $N_{1} \neq N_{2}$. Nevertheless, we have the following proposition.
3.3.1. Proposition. For any $v \in \mathbb{Q}, v>0$, and a finite subset $R \subset \mathbb{Q}^{+}(p)$, there exists a natural number $\widetilde{N}=\widetilde{N}(R, v)$ such that the system

$$
\left\{\mathcal{L}_{R, N, M}^{(v)} \mid N \geq \tilde{N}(\dot{R}, v)\right\}_{R, N, M}
$$

is a projective system of Lie algebras, whose connecting morphisms are epimorphisms, induced by connecting morphisms of the projective system $\left\{\mathcal{L}_{R, N, M}\right\}_{R, N, M}$.

Proof.

The proof of this statement is a slight modification of the proof of Proposition 4.4 of [A].

Let $\gamma \in \mathbb{Q}, \gamma>0$.
We call a presentation of γ in the form

$$
\gamma=p^{i}\left(r_{1}+\frac{r_{2}}{p^{m_{2}}}+\ldots+\frac{r_{s}}{p^{m_{\bullet}}}\right)
$$

R-admissible, if $1 \leqslant s<p, r_{1}, \ldots, r_{s} \in R, i, m_{1}=0, m_{2}, \ldots, m_{s}$ are nonnegative integers, and $m_{2} \leq \ldots \leq m_{s}$. It is easy to see that the set of different R-admissible presentations of the given rational number γ is finite.

As in [A, loc.cit.], one can prove the existence of a finite set $\mathcal{M}(R, v)$ of rational numbers $\gamma \geqslant v$, having the following property:
if $\gamma_{1} \in \mathbb{Q}, \gamma_{1} \geqslant v$ and

$$
\gamma_{1}=p^{i}\left(r_{1}+\frac{r_{2}}{p^{m_{2}}}+\ldots+\frac{r_{s}}{p^{m_{\mathbf{\imath}}}}\right)
$$

is R-admissible presentation of γ_{1}, then there exist $\gamma=\gamma\left(\gamma_{1}\right) \in \mathcal{M}(R, v)$ and an index $s_{1}=s_{1}\left(\gamma_{1}\right) \leq s$ such that
a)

$$
\gamma=p^{i}\left(r_{1}+\frac{r_{2}}{p^{m_{2}}}+\ldots+\frac{r_{s_{1}}}{p^{m_{\iota_{1}}}}\right) ;
$$

b) if $\gamma=p^{i^{*}}\left(r_{1}^{*}+\frac{r_{2}^{*}}{p^{m_{2}^{*}}}+\ldots+\frac{r_{i}^{*}}{p^{m_{i}^{*}}}\right)$ is any R-admissible prersentation of γ, then $m_{l}^{*}<m_{s_{1}+1}$.

Let $\tilde{N}(R, v)$ be a natural number, satisfying the following implication:
if $\gamma \in \mathcal{M}(R, v)$ and

$$
\gamma=p^{i}\left(r_{1}+\frac{r_{2}}{p^{m_{2}}}+\ldots+\frac{r_{s}}{p^{m,}}\right)
$$

is some R-admissible presentation of γ, then $m_{s}<\tilde{N}(R, v)$.
It is clear, that such $\widetilde{N}(R, v)$ exists.
Now following [A, loc.cit.] one can show that if $N \geqslant \tilde{N}(R, v)$, then

1) the ideal $\mathcal{L}_{R, N, M, k}^{(v)}$ is generated by the finite set of elements $\mathcal{F}_{R, N, M}\left(\gamma, n_{1}\right)$, where $\gamma \in \mathcal{M}(R, v)$ and $n_{1} \in \mathbb{E} / N \mathbb{Z}$;
2) if $N_{1}, N_{2} \geqslant \widetilde{N}(R, v), N_{2} \mid N_{1}, M_{2} \leq M_{1}, \gamma \in \mathcal{M}(R, v), n \in \mathbb{Z} / N_{1} \mathbb{Z}$, then

$$
\mathcal{F}_{R, N_{1}, M_{1}}(\gamma, n) \mapsto \mathcal{F}_{R, N_{2}, M_{2}}\left(\gamma, n \bmod N_{2}\right)
$$

under the connecting morphism $\mathcal{L}_{R, N_{1}, M_{1}} \longrightarrow \mathcal{L}_{R, N_{2}, M_{2}}$ and, therefore, $\mathcal{L}_{R, N_{1}, M_{1}, k}^{(v)}$ is mapped onto $\mathcal{L}_{R, N_{2}, M_{2}, k}^{(v)}$.

Proposition is proved.
Remark. Let $1 \leq s<p$. One can consider the projective system

$$
\left\{\mathcal{L}_{R, N, M} \bmod C_{s+1}\left(\mathcal{L}_{R, N, M}\right)\right\}_{R, N, M}
$$

and the analogous statement for the system of ideals

$$
\left\{\mathcal{L}_{R, N, M}^{(v)} \bmod C_{s+1}\left(\mathcal{L}_{R, N, M}\right)\right\}_{R, N, M}
$$

As in the above Proposition it is sufficient to find a natural number $\tilde{N}_{s}(R, v)$ such that, for any $N_{1}, N_{2} \geq \widetilde{N}_{s}(R, v), N_{2} \mid N_{1}$ and $M_{2} \leq M_{1}$ the epimorphic map $\mathcal{L}_{R, N_{1}, M_{1}} \longrightarrow \mathcal{L}_{R, N_{2}, M_{2}}$ induces the epimorphism

$$
\mathcal{L}_{R, N_{1}, M_{1}, k}^{(v)} \bmod C_{s+1}\left(\mathcal{L}_{R, N_{1}, M_{1}, k}\right) \longrightarrow \mathcal{L}_{R, N_{2}, M_{2}, k}^{(v)} \bmod C_{s+1}\left(\mathcal{L}_{R, N_{2}, M_{2}, k}\right)
$$

It is clear that $\tilde{N}_{s}(R, v)=\widetilde{N}(R, v)$ satisfies this implication, but for a given value of s this choice can be done more economically.

One can verify, for example, that $\widetilde{N}_{1}(R, v)=1$ and

$$
\begin{aligned}
& \widetilde{N}_{2}(R, v)=\max \left\{n \in \mathbb{N} \mid \exists r_{1}, r_{2} \in R, i \in \mathbb{Z}, i \geq 0\right. \text { such that } \\
& \\
& \left.p^{i}\left(r_{1}+\frac{r_{2}}{p^{n-1}}\right) \geq v, p^{i} r_{1}<v, p^{i} r_{2}<v\right\}
\end{aligned}
$$

3.3.2. Using the above Proposition, for any $v \in \mathbb{Q}, v>0$, one can define the ideals

$$
\mathcal{L}_{k}^{(v)}=\lim _{R, N, M} \mathcal{L}_{R, N, M, k}^{(v)}
$$

of the Lie algebra $\mathcal{L}_{k}=\mathcal{L} \otimes_{O\left(\mathbf{F}_{p}\right)} O(k)$.
Let $\mathcal{L}^{(v)}=\left.\mathcal{L}_{k}^{(v)}\right|_{\sigma=i d}$, where the action of σ on $\mathcal{L}_{k}^{(v)}$ is given by its standard action as the Frobenius automorphism on $O(k) \simeq W(k)$ and by the equalities $\sigma D_{r, n}=D_{r, n+1}$, where $r \in R, n \in \mathbb{Z} / N \mathbb{Z}$, and $D_{r, n}$ are the topological generators of $\mathcal{L}_{k}^{(v)}$, introduced in n.3.1.

Obviously, all $\mathcal{L}^{(v)}$ are ideals of the Lie \mathbb{Z}_{p}-algebra $\mathcal{L}, \mathcal{L}^{(v)} O(k)=\mathcal{L}_{k}^{(v)}$ in \mathcal{L}_{k} and $\left\{\mathcal{L}^{(v)}\right\}_{v>0}$ is a decreasing filtration of \mathcal{L}.
Remark.
Let $v>0, v \in \mathbb{Q}$ and $\mathcal{L}_{R, N, M}^{[v]}$ be the image of the ideal $\mathcal{L}^{(v)}$ under the canonical map

$$
\mathcal{L}=\lim _{R, N, M} \mathcal{L}_{R, N, M} \longrightarrow \mathcal{L}_{R, N, M}
$$

It follows now that the ideal $\mathcal{L}_{R, N, M, k}^{[v]}$ is generated by

$$
\mathcal{F}_{R, N, M}^{*}\left(\gamma, n_{1}\right)=\sigma^{n_{1}} \mathcal{F}_{R, N, M}^{*}(\gamma, 0)
$$

where $\gamma \in \mathbb{Q}, \gamma \geqslant v, n_{1} \in \mathbb{Z} / N \mathbb{Z}$ and

$$
\begin{aligned}
& \mathcal{F}_{R, N, M}^{*}(\gamma, 0)= \\
& =\sum_{\substack{1 \leq s<p \\
r_{1}, \ldots, r_{s} \in R \\
i, m_{2}, \ldots, m_{\boldsymbol{t}} \geqslant 0}}(-1)^{s} p^{i} r_{1} \eta\left(0, m_{2}, \ldots, m_{s}\right)\left[\ldots\left[D_{r_{1}, j_{N}(i)}, D_{r_{2}, j_{N}\left(i-m_{2}\right)}\right], \ldots, D_{r_{s}, j_{N}\left(i-m_{s}\right)}\right] .
\end{aligned}
$$

Here η is function defined in the beginning of $n .3 .2$ and for any integer $m j_{N}(m)$ is the notation for the residue of m modulo N.
3.4. We use notation and assumptions of n.2.1. In addition we assume, that
the lifting σ is given by the condition $\sigma \tilde{t}=\tilde{t}^{p}$.
Let $\left\{\Gamma^{(v)}\right\}_{v \geq 0}$ be the ramification filtration of the Galois group $\Gamma=\operatorname{Gal}\left(K_{\text {sep }} / K\right)$ of our local field K in upper numbering, c.f. [Se, 2^{e} part.]. This filtration is a decreasing filtration of normal subgroups $\Gamma^{(v)}, v \in \mathbb{Q}, v>0$, and the higher ramification subgroup I equals to $\bigcup_{v>0} \Gamma^{(v)}$.

Let \mathcal{L} be the Lie pro- p-algebra from n .2 .3 and $\psi: I \longrightarrow G(\mathcal{L})$ be the homomorphism of groups which we use in $n .2 .4$ for the identification

$$
\bar{\psi}: I / C_{p}(I) \simeq G(\mathcal{L})
$$

Let $\left\{\mathcal{L}^{(v)}\right\}_{v>0}$ be the decreasing filtration of ideals of the Lie algebra \mathcal{L} introduced in n.3.3. Then $\left\{G\left(\mathcal{L}^{(v)}\right)\right\}_{v>0}$ is a decreasing filtration of the group $G(\mathcal{L})$ by its normal subgroups $G\left(\mathcal{L}^{(v)}\right)$.
Theorem. For any $v>0, v \in \mathbb{Q}$,

$$
\psi\left(\Gamma^{(v)}\right)=G\left(\mathcal{L}^{(v)}\right)
$$

i.e. the image of the ramification filtration $\left\{\Gamma^{(v)}\right\}_{v>0}$ in $I / C_{p}(I)$ and the filtration $\left\{G\left(\mathcal{L}^{(v)}\right)\right\}_{v>0}$ coincide under the identification $\bar{\psi}$.
Remarks.
a) The definition of ramification subgroups $\Gamma^{(v)}$ and ideals $\mathcal{L}^{(v)}$ can be given for any real $v \in \mathbb{R}, v \geq 0$. Also, the proof of the above Theorem is valid for all real positive values of v. But this does not give more general result, because of the left-continuty of these two filtrations. Indeed, for any $v_{0} \in \mathbb{R}, v_{0}>0$, the equality

$$
\Gamma^{\left(v_{0}\right)}=\bigcap_{0<v<v_{0}} \Gamma^{(v)}
$$

is a formal consequence of the equalities

$$
\Gamma_{L / K}^{\left(v_{0}\right)}=\bigcap_{0<v<v_{0}} \Gamma_{L / K}^{(v)}
$$

for all finite Galois extensions L / K, which are valid by definition, [Se, loc.cit.]. The filtration $\left\{\mathcal{L}^{(v)}\right\}_{v>0}$ is left-continuos by the same reason.
b) Let $\mathcal{L}_{0}=\mathcal{L} \otimes \mathbf{z}_{p} \mathbb{F}_{p}$, then the identification $\bar{\psi}$ induces the identification

$$
\bar{\psi}_{0}: I / I^{p} C_{p}(I) \simeq G\left(\mathcal{L}_{0}\right)
$$

If ψ_{0} is the composition of $\bar{\psi}_{0}$ with the natural projection $I \longrightarrow I / I^{p} C_{p}(I)$ and $\left\{\mathcal{L}_{0}^{(v)}\right\}_{v>0}$ is the image of the filtration $\left\{\mathcal{L}^{(v)}\right\}_{v>0}$ under the natural projection $\mathcal{L} \longrightarrow \mathcal{L}_{0}$, then our Theorem gives for any $v \in \mathbb{Q}, v>0$, the following equality

$$
\psi_{0}\left(\Gamma^{(v)}\right)=G\left(\mathcal{L}_{0}^{(v)}\right)
$$

So, we obtain a description of the ramification filtration of the maximal p extension of $K_{t r}$ with Galois group of exponent p and class of nilpotency $<p$. This statement was proved in [A] where we use more general choice of identification of the groups $I / I^{p} C_{p}(I)$ and $G\left(\mathcal{L}_{0}\right)$.
3.5. Case of p-extensions of the field K.

Before proving the above Theorem we give some of its corollaries related to the ramification filtration of the Galois group of the maximal p-extension of K.
3.5.1. Let $\left\{\mathcal{L}_{A, N, M}\right\}$ be the subsystem of the projective system of Lie algebras $\left\{\mathcal{L}_{R, N, M}\right\}$ from n.2.3. Here $A \subset \mathbb{Z}^{+}(p)=\mathbb{Q}^{+}(p) \cap \mathbb{Z}$ is arbitrary finite set, $N \geqslant$ $1, M \geqslant 0$ are integers.

Let $\mathcal{L}(p)={\underset{A, N, M}{\lim }}^{\mathcal{L}_{A, N, M}}$ and

$$
\pi(p): \mathcal{L} \longrightarrow \mathcal{L}(p)
$$

be the natural projection. It is clear that

$$
\pi(p)=\underset{R, N, M}{\underset{\lim }{\leftrightarrows}} \pi(p)_{R, N, M}
$$

where the morphisms

$$
\pi(p)_{R, N, M, k}=\pi(p)_{R, N, M} \otimes W_{M}(k): \mathcal{L}_{R, N, M, k} \longrightarrow \mathcal{L}_{A(R), N, M, k}
$$

are given by the following conditions

$$
\begin{gathered}
D_{r, n} \mapsto 0, \text { if } r \in R \backslash \mathbb{Z}^{+}(p) ; \\
D_{r, n} \mapsto D_{r, n}, \text { if } r \in A(R)=R \cap \mathbb{Z}^{+}(p) .
\end{gathered}
$$

3.5.2. Let $\Gamma(p)$ be the Galois group of the maximal p-extension of $K, j(p)$: $I \longrightarrow \Gamma(p)$ be the natural projection. Then there exists a unique homomorphism $\psi(p): \Gamma(p) \longrightarrow G(\mathcal{L}(p))$ such that
a) $\pi(p) \cdot \psi=\psi(p) \cdot j(p)$
(here ψ is the homomorphism from n .2 .4);
b) $\psi(p)$ belongs to the equivalence class related by Theorem of n.1.3 to the element

$$
e(p)=\lim _{A, N, M} \sum_{a \in A} t^{a} D_{a, 0} \in G\left(\mathcal{L}(p)_{K}\right)
$$

c) if $f(p)=\pi(p)_{K_{\text {ep }}}(f)$, where $f \in G\left(\mathcal{L}_{K_{\text {e }}}\right)$ is the element from n.2.4, then for any $\tau \in \Gamma(p)$ one has:

$$
\psi(p)(\tau)=\tau f(p) \circ(-f(p))
$$

d) $\bar{\psi}(p)=\psi(p) \bmod C_{p}(\Gamma(p))$ defines the identification of the groups $\Gamma(p) / C_{p}(\Gamma(p))$ and $G(\mathcal{L}(p))$.
3.5.3. Let $\mathcal{L}(p)=\underset{N}{\underset{\leftrightarrows}{\lim } \mathcal{L}}(p)_{N}$, where $\mathcal{L}(p)_{N}=\underset{A, M}{\lim _{A, N}} \mathcal{L}_{A, M}$. Remark that $\mathcal{L}(p)_{N, k}=$ $\mathcal{L}(p)_{N} \otimes W(k)$ is a pro- p-algebra with the set of topological generators

$$
\left\{D_{a, n} \mid a \in \mathbb{Z}^{+}(p), n \in \mathbb{Z} / N \mathbb{Z}\right\}
$$

For any $v \in \mathbb{Q}, v>0$, denote by $\left\{\mathcal{L}(p)^{(v)}\right\}_{v>0}$ the filtration related to the image of the filtration $\left\{\Gamma(p)^{(v)}\right\}_{v>0}$ in the group $\Gamma(p) / C_{p}(\Gamma(p))$ via the identification $\bar{\psi}(p)$.

Let $\left\{\mathcal{L}(p)_{N}^{(v)}\right\}_{v>0}$ and $\left\{\mathcal{L}(p)_{A, N, M}^{(v)}\right\}_{v>0}$ be the images of the filtration $\left\{\mathcal{L}(p)^{(v)}\right\}_{v>0}$ under the canonical projections $\mathcal{L}(p) \longrightarrow \mathcal{L}(p)_{N}$ and $\mathcal{L}(p) \longrightarrow \mathcal{L}_{A, N, M}$.

For any $v \in \mathbb{Q}, v>0$, the set of elements

$$
\left\{\mathcal{F}_{A, N, M}^{*}\left(\gamma, n_{1}\right) \mid \gamma \geqslant v, n_{1} \in \mathbb{Z} / N \mathbb{Z}\right\}
$$

generates the ideal $\mathcal{L}(p)_{A, N, M, k}^{(v)}=\mathcal{L}(p)_{A, N, M}^{(v)} \otimes W(k)$ in the Lie algebra $\mathcal{L}_{A, N, M, k}$ (c.f. n.3.3.2).

Using the explicit expressions for the elements $\mathcal{F}_{A, N, M}^{*}\left(\gamma, n_{1}\right)$, one can obtain the following lemma:
Lemma. If $1 \leqslant s_{0}<p, a \in A \subset \mathbb{Z}^{+}(p), m \in \mathbb{Z} / N \mathbb{Z}, p^{i} a \geqslant s_{0} v$, then

$$
p^{i} D_{a, m} \in \mathcal{L}(p)_{A, N, M, k}^{(v)} \bmod C_{s_{0}+1}\left(\mathcal{L}(p)_{A, N, M, k}\right)
$$

3.5.4. As earlier, for any $l \in \mathbb{Z} j_{N}(l)$ is the residue of l modulo N.

Proposition. For any $v \in \mathbb{Q}, v>0$, the ideal $\mathcal{L}(p)_{N, k}^{(v)}=\mathcal{L}(p)_{N}^{(v)} \otimes W(k)$ is generated by the following elements:
a) $p^{i} D_{a, n}$, where $a \in \mathbb{Z}^{+}(p), i \geqslant 0$ is an integer, $n \in \mathbb{Z} / N \mathbb{Z}$ and $p^{i} a \geqslant(p-1) v$;
b) $\mathcal{F}_{N, v}\left(\gamma, n_{1}\right)=\sigma^{n_{1}} \mathcal{F}_{N, v}(\gamma, 0)$, where $\gamma \geqslant v, n_{1} \in \mathbb{Z} / N \mathbb{Z}$ and

$$
\begin{aligned}
& \mathcal{F}_{N, v}(\boldsymbol{\gamma}, 0)= \\
& =\sum_{1 \leqslant s<p}(-1)^{s} p^{i} a_{1} \eta\left(0, m_{2}, \ldots, m_{s}\right)\left[\ldots\left[D_{a_{1}, j_{N}(i)}, D_{a_{2}, j_{N}\left(i-m_{2}\right)}\right], \ldots, D_{a_{\&}, j_{N}\left(i-m_{s}\right)}\right] . \\
& a_{1}, \ldots, a, \in \mathbf{Z}^{+}(p)
\end{aligned}
$$

$$
\begin{aligned}
& p^{i} a_{1}, \ldots, p^{i} a_{0}<(p-s) v
\end{aligned}
$$

Proof.

From Lemma of n.3.5.3 it follows that the ideal $\mathcal{L}(p)_{A, N, M, k}^{(v)}$ is generated by the following elements:
a) $p^{i} D_{a, n}$, where $a \in A$ and $p^{i} a \geqslant(p-1) v$;
b) $\mathcal{F}_{A, N, M}^{* *}\left(\gamma, n_{1}\right)=\sigma^{n_{1}} \mathcal{F}_{A, N, M}^{* *}(\gamma, 0)$, where $\gamma \geqslant v, n_{1} \in \mathbb{Z} / N \mathbb{Z}$, and the expression for $\mathcal{F}_{A, N, M}^{* *}(\gamma, 0)$ is obtained from the expression of $\mathcal{F}_{A, N, M}^{*}(\gamma, 0)$ by introducing the restrictions $p^{i} a_{1}, \ldots, p^{i} a_{s}<(p-s) v$.

In order to finish the proof one need only remark that for sufficiently large set $A \subset \mathbb{Z}^{+}(p)$ and a natural number M (e.g. $A \supset[1,(p-1) v) \cap \mathbb{Z}^{+}(p)$ and $\left.p^{M} \geqslant \gamma\right)$ the sequence

$$
\left\{\mathcal{F}_{A, N, M}^{* *}\left(\gamma, n_{1}\right)\right\}_{A, M}
$$

is stationary and its limit is equal to $\mathcal{F}_{N, v}\left(\gamma, n_{1}\right)$.
3.5.5. Analogously, one can obtain the following proposition:

Proposition. Let $1 \leqslant s_{0}<p, v \in \mathbb{Q}, v>0$. Then the ideal

$$
\mathcal{L}(p)_{N, k}^{(v)} \bmod C_{s_{0}+1}\left(\mathcal{L}(p)_{N, k}\right)
$$

is generated by the following elements:
a) $p^{i} D_{a, n}$, where $i \geqslant 0, a \in \mathbb{Z}^{+}(p), n \in \mathbb{Z} / N \mathbb{Z}$ and $p^{i} a \geqslant s_{0} v$;
b) $\mathcal{F}_{N, v, s_{0}}\left(\gamma, n_{1}\right)=\sigma^{n_{1}} \mathcal{F}_{N, v, s_{0}}(\gamma, 0)$, where $\gamma \geqslant v, n_{1} \in \mathbb{Z} / N \mathbb{Z}$ and

$$
\mathcal{F}_{N, v, s_{0}}(\gamma, 0)=
$$

$=\sum_{1 \leqslant s \leqslant s_{0}}(-1)^{s} p^{i} a_{1} \eta\left(0, m_{2}, \ldots, m_{s}\right)\left[\ldots\left[D_{a_{1}, j_{N}(i)}, D_{a_{2}, j_{N}\left(i-m_{2}\right)}\right], \ldots, D_{a_{0}, j_{N}\left(i-m_{s}\right)}\right]$.
$a_{1}, \ldots, a, \in \mathbf{Z}^{+}(p)$
$p^{i}\left(a_{1}+\frac{a_{2}}{p^{m}}+\ldots+\frac{a_{2}}{p_{2}}+\ldots, a_{0}^{m_{0}}\right)=\gamma$
$p^{i} a_{1}, \ldots, p^{i} a_{0}<\left(s_{0}+1-s\right) v$

3.6. Restatement of the main theorem.

For any finite extension L / K define its "largest upper ramification number" $v(L / K)$ by the following condition:

$$
\Gamma^{(v)} \text { acts trivially on } L / K \Leftrightarrow v>v(L / K) .
$$

Existence of $v(L / K)$ follows from the left-continuty of the image $\left\{\Gamma_{L / K}^{(v)}\right\}_{v>0}$ of the filtration $\left\{\Gamma^{(v)}\right\}_{v>0}$ in $\Gamma_{L / K}$ (c.f. Remark a) of n.3.4).

Let $\mathcal{L}=\underset{R, N, M}{\lim _{\stackrel{(1}{*}}} \mathcal{L}_{R, N, M}$ as in n.2.3 and

$$
\psi_{R, N, M}: I \longrightarrow G\left(\mathcal{L}_{R, N, M}\right)
$$

be the homomorphism from n.2.4. If

$$
K_{R, N, M}=K_{s e p}^{\mathrm{Ker} \psi_{R, N, M}},
$$

then $K_{R, N, M}$ is (in an obvious sense) the field of definition of the element $f_{R, N, M} \in$ $G\left(\mathcal{L}_{R, N, M, K_{\text {sep }}}\right)$ which was chosen in n.2.4.

If \mathcal{J} is any ideal of $\mathcal{L}_{R, N, M}$, then the image $f_{R, N, M} \bmod \mathcal{J}$ of $f_{R, N, M}$ under the natural projection

$$
G\left(\mathcal{L}_{R, N, M, K_{\iota \epsilon p}}\right) \longrightarrow G\left(\left(\mathcal{L}_{R, N, M} / \mathcal{J}\right)_{K_{\iota \epsilon p}}\right)
$$

defines by functorial property of the statement of Theorem n.1.3 a homomorphism

$$
I \longrightarrow G\left(\mathcal{L}_{R, N, M} / \mathcal{J}\right)
$$

This homomorphism is equal to the composition of $\psi_{R, N, M}$ and the natural projection

$$
G\left(\mathcal{L}_{R, N, M}\right) \longrightarrow G\left(\mathcal{L}_{R, N, M} / \mathcal{J}\right)
$$

Obviously, the field of definition of $f_{R, N, M} \bmod \mathcal{J}$ equals to $K_{R, N, M}^{G(\mathcal{J})}$.
For $v_{0} \in \mathbb{Q}, v_{0}>0$, denote by $\mathcal{L}_{R, N, M}\left(v_{0}\right)$ the ideal of $\mathcal{L}_{R, N, M}$ such that

$$
\psi_{R, N, M}\left(\Gamma^{\left(v_{0}\right)}\right)=G\left(\mathcal{L}_{R, N, M}\left(v_{0}\right)\right) \subset G\left(\mathcal{L}_{R, N, M}\right) .
$$

Then the above arguments give the following minimal property:
(P) $\mathcal{L}_{R, N, M}\left(v_{0}\right)$ is the minimal element in the family of ideals \mathcal{J} of $\mathcal{L}_{R, N, M}$ such that the field of definition of $f_{R, N, M} \bmod \mathcal{J}$ has the largest upper ramification number $<v_{0}$.

Let $\mathcal{L}_{R, N, M}^{\left(v_{0}\right)}=\left.\mathcal{L}_{R, N, M, k}^{\left(v_{0}\right)}\right|_{\sigma=\text { id }}$, where the ideals $\mathcal{L}_{R, N, M, k}^{\left(v_{0}\right)}$ were defined in n.3.2. Now Theorem of n.3.4 can be restated as follows:
3.6.1. Proposition. Let $R \subset \mathbb{Q}^{+}(p)$ be a finite subset, $M \in \mathbb{Z}, M \geqslant 0, v_{0} \in$ $\mathbb{Q}, v_{0}>0$. Then there exists a natural number $N_{0}\left(R, M, v_{0}\right)$ such that for any $N \geqslant N_{0}\left(R, M, v_{0}\right)$ the ideal $\mathcal{L}_{R, N, M}^{\left(v_{0}\right)}$ of $\mathcal{L}_{R, N, M}$ satisfies the above property (\mathbf{P}).

Let $1 \leq s<p$ and $C_{s+1}\left(\mathcal{L}_{R, N, M}\right)$ be (as usually) the ideal of $\mathcal{L}_{R, N, M}$ generated by commutators of order $\geq s+1$. One can consider the minimal property $\left(P_{s}\right)$ taking in the minimal property (\mathbf{P}) ideals \mathcal{J}, which satisfy the additional requirement $\mathcal{J} \supset C_{s+1}\left(\mathcal{L}_{R, N, M}\right)$.

Obviously, the above proposition is equivalent to the following one:
3.6.2. Proposition. For $1 \leq s<p$ and R, M, v_{0} as above, there exists a natural number $N_{s}\left(R, M, v_{0}\right)$ such that for any $N \geq N_{s}\left(R, M, v_{0}\right)$ the ideal

$$
\mathcal{L}_{R, N, M}^{\left(v_{0}\right)}+C_{s+1}\left(\mathcal{L}_{R, N, M}\right)
$$

satisfies the property $\left(P_{s}\right)$.
Remarks.
a) In fact the proof of our Theorem modulo I^{p} in [A] (c.f. remark b) of n.3.4) was obtained as the proof of statements analogous to Proposition 3.6 .2 by induction on s.
b) One can be not worry about a minimal possible value of $N_{s}\left(R, M, v_{0}\right)$. If proposition is proved for some choice of this constant then it will be automatically valid for all $N \geq \widetilde{N}_{s}\left(R, v_{0}\right)$, where $\tilde{N}_{s}\left(R, v_{0}\right)$ is the natural number from remark to proposition 3.3.1.

Example.

The above statements give:
a) If $s=1$, then $\mathcal{L}_{R, N, M, k}\left(v_{0}\right) \bmod C_{2}\left(\mathcal{L}_{R, N, M, k}\right)$ is generated by elements of the set

$$
\left\{p^{i} D_{r, n} \mid r \in R, n \in \mathbb{Z} / N \mathbb{Z}, i \in \mathbb{Z}, i \geq 0, p^{i} r \geq v_{0}\right\}
$$

b) If $s=2$, then $\mathcal{L}_{R, N, M, k}\left(v_{0}\right) \bmod C_{3}\left(\mathcal{L}_{R, N, M, k}\right)$ is generated (as ideal) for $N \geq N_{2}\left(R, M, v_{0}\right)$ by the elements $\mathcal{F}_{R, N, M}\left(\gamma, n_{1}\right)$ where $\gamma \in \mathbb{Q}, \gamma>0, n_{1} \in \mathbb{Z} / N \mathbb{Z}$ and

Here, $\varepsilon(\gamma)=0$, if γ is not p-entier, and $\varepsilon(\gamma)=\gamma$, otherwise;
$r(\gamma) \in \mathbb{Q}^{+}(p)$ and $l(\gamma) \in \mathbb{Z}$ are uniquelly defined from the equality $\gamma=p^{l(\gamma)} r(\gamma)$;
$\tilde{\eta}\left(n_{1}, n_{2}\right)=1$ if $n_{1} \neq n_{2}$, and $\tilde{\eta}\left(n_{1}, n_{2}\right)=1 / 2$ otherwise;
$n_{12} \in \mathbb{Z}$ is uniquelly defined by the conditions: $0 \leq n_{12}<N$ and $n_{12} \bmod N=$ $n_{1}-n_{2}$.

4. Proof of the main theorem modulo $C_{3}(\mathcal{L})$.

In this section we prove Theorem of $n .3$ modulo $C_{3}(\mathcal{L})$, i.e. we give the proof of proposition 3.6.2 for $s \leq 2$. We use all notation and assumptions of nn.3.4 and 3.6.

4.1. Case $s=1$.

Lemma. Let $X \in O_{M}\left(K_{\text {sep }}\right)$ be such that

$$
\sigma X-X=w t^{r}
$$

where $w \in W_{M}(k)$ and $K(X)$ is the field of definition of X. Then

$$
v(K(X) / K)=\max \left\{r p^{l} \mid l \in \mathbb{Z}, l \geq 0, p^{l} w \neq 0\right\}
$$

Proof.

We can assume, that $w \in W_{M}\left(\mathbb{F}_{q_{1}}\right)$ for some $q_{1}=p^{N_{1}}$. Consider the embedding

$$
j: O_{M}\left(K_{s e p}\right) \longrightarrow W_{M}\left(K_{s e p}\right)
$$

which transforms σ to the standard Frobenius morphism of Witt vectors (c.f. for example [F, n.A1.3.2]). Therefore, j transforms \tilde{t} to Teichmuller representative of $\tilde{t} \bmod p=\tilde{t_{0}}$ (because $\sigma \tilde{t}=\tilde{t}^{p}$). Now one can use Shafarevich's basis of the group $K^{*},[\mathrm{Sh}]$, and Witt explicit reciprocity law, [W], to get the conclusion of our lemma.

Proposition. Let $\mathcal{L}^{(0)}$ be a commutative Lie $\mathbb{Z} / p^{M+1} \mathbb{Z}$-algebra,

$$
e_{0}=\sum_{r \in R} t^{r} A_{r} \in G\left(\mathcal{L}_{K_{t r}}^{(0)}\right)
$$

where $A_{r} \in \mathcal{L}_{k}^{(0)}, f_{0} \in G\left(\mathcal{L}_{K_{\text {, ep }}}^{(0)}\right)$ is such that $\pi_{f_{0}}\left(e_{0}\right) \in \pi\left(e_{0}\right)$ (c.f. notation of n.1) and $K\left(f_{0}\right)=K_{s e p}^{\mathrm{Ker}} \pi_{f_{0}}\left(e_{0}\right)$ is the field of definition of f_{0}. Then the following statements are equivalent:
a) $v\left(K\left(f_{0}\right) / K\right)<v_{0}$;
b) if $r \in R, s \in \mathbb{Z}, s \geq 0$ and $p^{s} r \geq v_{0}$, then $p^{s} A_{r}=0$.

Proof.

Let $\left\{B_{i}\right\}_{i \in I}$ be a special system of generators of $\mathbb{Z} / p^{M+1} \mathbb{Z}$-module $\mathcal{L}^{(0)}$, which satisfies the following condition:

$$
\text { if } \sum_{i \in I} a_{i} B_{i}=0 \text { for } a_{i} \in \mathbb{Z} / p^{M+1} \mathbb{Z}, i \in I \text { then } a_{i} B_{i}=0 \text { for } \forall i \in I \text {. }
$$

Let $A_{r}=\sum_{i \in I} a_{i r} B_{i}$ and $f_{0}=\sum_{i \in I} X_{i} B_{i}$, where all $a_{i r} \in W_{M}(k)$ and all $X_{i} \in$ $O_{M}\left(K_{\text {sep }}\right)$. Then

$$
\sigma X_{i}-X_{i}=\sum_{r \in R} a_{i r} t^{r}
$$

Let K_{i} be the field of definition of $X_{i}, i \in I$. We have:

$$
v\left(K\left(f_{0}\right) / K\right)<v_{0} \Leftrightarrow v\left(K_{i} / K\right)<v_{0} \text { for all } i \in I
$$

because K is the composite of all $K_{i}, i \in I$.
It follows from the above Lemma that

$$
v\left(K_{i} / K\right)=\max \left\{r p^{l} \mid r \in R, p^{l} a_{i r} \neq 0\right\}
$$

So, $v\left(K_{i} / K\right)<v_{0}$ for all $i \in I$, if and only if the following implication is true:
if $r \in R$ and $r p^{l} \geq v_{0}$, then $p^{l} a_{i r}=0$ for all $i \in I$.
But the condition " p l $a_{i r}=0$ for all $i \in I$ " is equivalent to the condition $p^{l} A_{r}=0$, because of the above special choice of generators $B_{i}, i \in I$. Lemma is proved.

Corollary.

Proposition of n.3.6.2 is valid for $s=1$.

Proof.

Let \mathcal{J} be an ideal of $\mathcal{L}_{R, N, M}$ such that $\mathcal{J} \supset C_{2}\left(\mathcal{L}_{R, N, M}\right)$ and $\mathcal{L}_{\mathcal{J}}=\mathcal{L}_{R, N, M} / \mathcal{J}$. Denote by $e_{\mathcal{J}}$ and $f_{\mathcal{J}}$ the images of $e_{R, N, M}$ and $f_{R, N, M}$ in $G\left(\mathcal{L}_{\mathcal{J}, K_{t r}}\right)$ and $G\left(\mathcal{L}_{\mathcal{J}, K_{\bullet \in p}}\right)$, respectively. Then $e_{\mathcal{J}}=\sum_{r \in R} t^{r} D_{r, 0}^{\prime}$, where $D_{r, 0}^{\prime}=D_{r, 0} \bmod \mathcal{J}_{k}$. Let $K\left(f_{\mathcal{J}}\right)$ be the field of definition of $f \mathcal{J}$ over K.

Now the above Proposition gives:

$$
\begin{gathered}
v\left(K\left(f_{\mathcal{J}}\right) / K\right)<v_{0} \Leftrightarrow \forall r \in R, \text { if } r p^{l} \geq v_{0}, \text { then } p^{l} D_{r, 0}^{\prime}=0 \\
\Longleftrightarrow \forall r \in R, \text { if } r p^{l} \geq v_{0}, \text { then } p^{l} D_{r, 0} \in \mathcal{J} \otimes W_{M}(k) \\
\Longleftrightarrow \forall r \in R, \forall n \in \mathbb{Z} / N \mathbb{Z}, \text { if } r p^{l} \geq v_{0}, \text { then } p^{l} D_{r, n} \in \mathcal{J} \otimes W_{M}(k)
\end{gathered}
$$

$\Longleftrightarrow \mathcal{L}_{R, N, M, k}\left(v_{0}\right) \bmod C_{2}\left(\mathcal{L}_{R, N, M, k}\right)$ is generated by the elements $p^{l} D_{r, n}$, where $r \in R, n \in \mathbb{Z} / N \mathbb{Z}$ and $p^{l} r \geq v_{0}$.

4.2. Auxiliary construction.

As earlier, $K=k\left(\left(\tilde{t}_{0}\right)\right), N \geq 1, q=p^{N}$.
4.2.1. Let $r^{*} \in \mathbb{Q}^{+}(p)$ be such that $r^{*}(q-1) \in \mathbb{Z}$.

Following [A, n.6.3] introduce a separable extension K^{\prime} of K such that
a) $\left[K^{\prime}: K\right]=q$;
b) $K^{\prime} K_{t r}=K_{t r}(T)$, where $T^{q}-T={\tilde{t_{0}}}^{-r^{*}}$.

Herbrandt function of this extension is equal to

$$
\phi_{K^{\prime} / K}(x)= \begin{cases}x, & \text { for } 0<x \leq r^{*} \\ r^{*}+\frac{x-r^{*}}{q}, & \text { for } x>r^{*}\end{cases}
$$

Remark. The graph of function $\phi_{K^{\prime} / K}(x)$ has the unique edge point $\left(r^{*}, r^{*}\right)$ (therefore $\left.v\left(K^{\prime} / K\right)=r^{*}\right)$.
4.2.2. Let

$$
E(x)=\exp \left(x+x^{p} / p+\ldots+x^{p^{n}} / p^{n}+\ldots\right) \in \mathbb{Z}_{p}[[x]]
$$

be Artin-Hasse exponential.
Lemma. There exists a uniformizer ${\tilde{t_{0}}}^{\prime}$ of the field K^{\prime} such that

$$
{\tilde{t_{0}}}^{\prime q} E\left(\frac{1}{r^{*}}{\tilde{t_{0}}}^{\prime r^{*}(q-1)}\right)=\tilde{t_{0}}
$$

Proof.
One can assume that $T=u^{-r^{*}}$ for some uniformizer u of K^{\prime}. Therefore,

$$
\begin{gathered}
u^{-q r^{*}}\left(1-u^{r^{*}(q-1)}\right)={\tilde{t_{0}}}^{-r^{*}} \\
u^{q}\left(1-u^{r^{*}(q-1)}\right)^{-1 / r^{*}}=\widetilde{t_{0}} \\
u^{q}\left(1+\frac{1}{r^{*}} u^{r^{*}(q-1)}\right) \equiv \tilde{t_{0}} \bmod \left(u^{q+2 r^{*}(q-1)} O_{K^{\prime}}\right)
\end{gathered}
$$

Now Hensel Lemma gives the existence of $\tilde{t}_{0}^{\prime} \in O_{K^{\prime}}$ such that

$$
\tilde{t}_{0}^{\prime} \equiv u \bmod \left(u^{1+r^{*}(q-1)} O_{K^{\prime}}\right)
$$

and

$$
{\tilde{t_{0}}}^{\prime q} E\left(\frac{1}{r^{*}} \tilde{t}_{0}^{\prime r^{*}(q-1)}\right)=\tilde{t_{0}}
$$

q.e.d.
4.2.3. Clearly, $O_{M}\left(K^{\prime}\right) \supset O_{M}(K)$. Consider $\tilde{t} \in O_{M}(K)$ such that $\tilde{t} \bmod p=t_{0}$ and $\sigma \tilde{t}=\widetilde{t}^{p}$ (c.f. n.3.4).

Lemma. There exists $\tilde{t}^{\prime} \in O_{M}\left(K^{\prime}\right)$ such that $\tilde{t}^{\prime} \bmod p={\tilde{t_{0}}}^{\prime}($ c.f. n.4.2.2) and

$$
\tilde{t}^{\prime q} E\left(\frac{1}{r^{*}} \tilde{t}^{\prime r^{*}(q-1)}\right)=\tilde{t}
$$

Proof.

This follows easily from Lemma of the above n.4.2.2 and Hensel Lemma.
4.2.4. Let $K_{M}^{\prime}=k\left(\left({\tilde{t_{0}}}^{\prime \prime} p^{M}\right)\right)$. Then K_{M}^{\prime} is the subfield of K^{\prime} and K^{\prime} is a purely inseparable extension of K_{M}^{\prime} of degree p^{M}.

As was mentioned in n.2.1, $O_{M}\left(K^{\prime}\right)$ can be identified with $\mathbb{Z} / p^{M+1} \mathbb{Z}$-algebra of Laurent series in the variable \tilde{t}^{\prime} with coefficients in $W_{M}(k)$. Therefore, one can identify $O_{M}\left(K_{M}^{\prime}\right)$ with the $\mathbb{Z} / p^{M+1} \mathbb{Z}$-subalgebra of $O_{M}\left(K^{\prime}\right)$ consisting of Laurent series in the variable $\widetilde{t_{1}}=\tilde{t}^{\prime p^{M}}$. Clearly, $\widetilde{t_{1}} \bmod p$ is a uniformizer of K_{M}^{\prime} and $\sigma \widetilde{t_{1}}=\widetilde{t_{1}}{ }^{p}$ in $O_{M}\left(K_{M}^{\prime}\right)$ (indeed, $\sigma \widetilde{t^{\prime}} \equiv \widetilde{t^{\prime p}} \bmod p O_{M}\left(K^{\prime}\right)$, therefore, $\sigma \widetilde{t^{\prime}} p^{p^{\prime}}=\widetilde{t^{\prime}} p^{M+1}$ in $O_{M}\left(K^{\prime}\right)$).
4.2.5. Let $t_{1}={\tilde{t_{1}}}^{-1} \in O_{M}\left(K_{M}^{\prime}\right)$ and (as carlier) $t=\tilde{t}^{-1} \in O_{M}(K)$.

Lemma.

$$
t^{p^{M}}=t_{1}^{q^{M}} E\left(-\frac{1}{r^{*}} t_{1}^{-r^{*} p^{M}(q-1)}\right) \prod_{1 \leqslant s \leqslant M} \exp \left(-\frac{1}{r^{*}} p^{s} t_{1}^{-r^{*}} p^{M-\boldsymbol{\theta}}(q-1)\right)
$$

Proof.

This equality is a formal consequence of Lemma of n.4.2.3 and of the following formulae: $E(x)^{p}=\exp (p x) E\left(x^{p}\right), E(x)^{p^{2 M}} \equiv E\left(x^{p^{M}}\right) \bmod p^{M+1}, \tilde{t}^{\prime-p^{M}}=t_{1}$ and $r^{* p^{M+}} \equiv r^{*} \bmod p^{s+1}$ for $0 \leq s \leq M$.
4.3. One reduction.
4.3.1. Let $\mathcal{J} \subset \mathcal{L}_{R, N, M}$ be any ideal, $\mathcal{L}_{\mathcal{J}}=\mathcal{L}_{R, N, M} / \mathcal{J}, e_{\mathcal{J}}$ and $f_{\mathcal{J}}$ be the images of $e_{R, N, M}$ and $f_{R, N, M}$ under the maps

$$
G\left(\mathcal{L}_{R, N, M, K_{t r}}\right) \longrightarrow G\left(\mathcal{L}_{\mathcal{J}, K_{\mathrm{tr}}}\right)
$$

and

$$
G\left(\mathcal{L}_{R, N, M, K_{\text {ı८p }}}\right) \longrightarrow G\left(\mathcal{L}_{\mathcal{J}, K_{\text {ıep }}}\right)
$$

respectively.
Let $K\left(f_{\mathcal{J}}\right)$ be the field of definition of $f_{\mathcal{J}}$ over K and $K\left(\sigma^{M} f_{\mathcal{J}}\right)$ be the field of definition of $\sigma^{M} f_{\mathcal{J}}$ over K. Then $K\left(f_{\mathcal{J}}\right)=K\left(\sigma^{M} f_{\mathcal{J}}\right)$. This follows from the evident equivalence $e \widetilde{R}^{\sim} \sigma^{M} e$ in $G\left(\mathcal{L}_{R, N, M, K_{\mathrm{tr}}}\right)$.

Let $K_{M}=k\left(\left({\tilde{t_{0}}}^{p^{M}}\right)\right)$. Then $K_{M} \subset K$ and K is purely inseparable extension of K_{M} of degree p^{M}, σ^{M} induces the isomorphism of fields $K \longrightarrow K_{M}$ which sends
$\widetilde{t_{0}}$ to ${\tilde{t_{0}}}^{p^{M}}$. This isomorphism can be extended to the isomorphism $K_{\text {sep }}^{C_{p}(I)} \longrightarrow$ $K_{M, \text { sep }}^{C_{p}(I)}$ by the following conditions $f_{R_{1}, N_{1}, M_{1}} \mapsto \sigma^{M} f_{R_{1}, N_{1}, M_{1}}$. Obviously, for any ideal $\mathcal{J} \subset \mathcal{L}_{R, N, M}$ there is an isomorphism of the extensions $K\left(\sigma^{M} f_{\mathcal{J}}\right) / K$ and $K_{M}\left(\sigma^{2 M} f_{\mathcal{J}}\right) / K_{M}$ (here $K_{M}\left(\sigma^{2 M} f_{\mathcal{J}}\right) / K_{M}$ is the field of definition of $\sigma^{2 M} f_{\mathcal{J}}$ over K_{M}).

So, for any ideal $\mathcal{J} \subset \mathcal{L}_{R, N, M}$ there is an equality of the largest upper ramification numbers

$$
v\left(K\left(f_{\mathcal{J}}\right) / K\right)=v\left(K_{M}\left(\sigma^{2 M} f_{\mathcal{J}}\right) / K_{M}\right)
$$

Let

$$
e_{R, N, M}^{\prime}=\sum_{r \in R} t_{1}^{r} D_{r, 0} \in G\left(\mathcal{L}_{R, N, M, K_{M, t r}^{\prime}}\right),
$$

and $f_{R, N, M}^{\prime} \in G\left(\mathcal{L}_{R, N, M, K_{M, \text { ecp }}^{\prime}}\right)$ be such that

$$
\sigma f_{R, N, M}^{\prime}=f_{R, N, M}^{\prime} \circ e_{R, N, M}^{\prime}
$$

(the morphism σ on $O_{M}\left(K_{M, K_{\text {ep }}}^{\prime}\right)$ is given by the restriction of σ from $O_{M}\left(K^{\prime}\right)$ to $O_{M}\left(K_{M}^{\prime}\right)$, c.f. n.4.2.4). As above, define for any ideal $\mathcal{J} \subset \mathcal{L}_{R, N, M}$ the element $f_{\mathcal{J}}^{\prime} \in G\left(\mathcal{L}_{\mathcal{J}, K_{M,, \text { © }}^{\prime}}\right)$. Then

$$
v\left(K_{M}^{\prime}\left(f_{\mathcal{J}}^{\prime}\right) / K_{M}^{\prime}\right)=v\left(K_{M}^{\prime}\left(\sigma^{M+N} f_{\mathcal{J}}^{\prime}\right) / K_{M}^{\prime}\right)
$$

4.3.2. Clearly, K_{M}^{\prime} is separable over K_{M}, and one can define $X \in G\left(\mathcal{L}_{R, N, M, K_{M, \text { e } P}}\right)$ from the equality

$$
\sigma^{2 M} f_{R, N, M}=\sigma^{M+N} f_{R, N, M}^{\prime} \circ X
$$

Therefore, for the image $X_{\mathcal{J}}$ of X in $G\left(\mathcal{L}_{\mathcal{J}, K_{M, ~}, \mathcal{P}}\right)$ one has

$$
\sigma^{2 M} f_{\mathcal{J}}=\sigma^{M+N} f_{\mathcal{J}}^{\prime} \circ X_{\mathcal{J}}
$$

Proposition. Let $v_{0} \in \mathbb{Q}, v_{0}>0, \mathcal{J}$ be an ideal of $\mathcal{L}_{R, N, M}$ and $K_{M}^{\prime}\left(X_{\mathcal{J}}\right)$ be the field of definition of $X_{\mathcal{J}}$ over K_{M}^{\prime}. If $r^{*}<v_{0}$, then

$$
v\left(K\left(f_{\mathcal{J}}\right) / K\right)<v_{0} \Leftrightarrow v\left(K_{M}^{\prime}\left(X_{\mathcal{J}}\right) / K_{M}\right)<v_{0} .
$$

Proof.

We use the following lemma.
Lemma. Let $v_{\mathcal{J}}=v\left(K\left(f_{\mathcal{J}}\right) / K\right)$ and $v_{\mathcal{J}}^{*}=v\left(K_{M}^{\prime}\left(f_{\mathcal{J}}^{\prime}\right) / K_{M}\right)$. Then either $v_{\mathcal{J}}$ and $v_{\mathcal{J}}^{*}$ are both $<v_{0}$, or $v_{\mathcal{J}}^{*}<v_{\mathcal{J}}$.

Proof of Lemma.

We use arguments of $[A, n .7 .4]$.
The correspondence $t \mapsto t_{1}$ defines the isomorphism of fields

$$
\alpha: K \longrightarrow K_{M}^{\prime} .
$$

This gives the isomorphism of liftings $O_{M}(K)$ and $O_{M}\left(K_{M}^{\prime}\right)$. Since $\sigma t=t^{p}$ and $\sigma t_{1}=t_{1}^{p}$, the correspondence $f_{\mathcal{J}} \mapsto f_{\mathcal{J}}^{\prime}$ defines the extension of α to the isomorphism of fields

$$
K\left(f_{\mathcal{J}}\right) \longrightarrow K_{M}^{\prime}\left(f_{\mathcal{J}}^{\prime}\right) .
$$

Let $\phi_{1}(x)$ and $\phi_{2}(x)$ be Herbrandt functions of the extensions $K(f \mathcal{J}) / K$ and $K_{M}^{\prime}\left(f_{J}^{\prime}\right) / K_{M}$, respectively. Then function $\phi_{1}(x)$ coincides with Herbrandt function of the extension $K_{M}^{\prime}\left(f_{\mathcal{J}}^{\prime}\right) / K_{M}^{\prime}$ and, therefore,

$$
\phi_{2}(x)=\phi_{K_{M}^{\prime} / K_{M}}\left(\phi_{1}(x)\right),
$$

where $\phi_{K_{M}^{\prime}} / K_{M}(x)$ is Herbrandt function of the extension K_{M}^{\prime} / K_{M}.
On the one hand, $\left(\phi_{1}^{-1}\left(v_{\mathcal{J}}\right), v_{\mathcal{J}}\right)$ and $\left(\phi_{2}^{-1}\left(v_{\mathcal{J}}^{*}\right), v_{\mathcal{J}}^{*}\right)$ are the last edge points of the graphs of the functions $\phi_{1}(x)$ and $\phi_{2}(x)$, respectively. On the other hand, $\phi_{K_{M}^{\prime} / K_{M}}$ coincides with Herbrandt function of the extension K^{\prime} / K, c.f. n.4.2.1.

Therefore,

$$
v_{\mathcal{J}}^{*}=\max \left\{r^{*}, r^{*}+\frac{v_{\mathcal{J}}-r^{*}}{q}\right\} .
$$

Now, if $v_{\mathcal{J}} \leq r^{*}$, then $v_{\mathcal{J}}^{*} \leq r^{*}$ and, in this case, $v_{\mathcal{J}}$ and $v_{\mathcal{J}}^{*}$ are both $<v_{0}$.
If $v_{\mathcal{J}}>r^{*}$, then

$$
v_{\mathcal{J}}^{*}=r^{*}+\frac{v_{\mathcal{J}}-r^{*}}{q}<v_{\mathcal{J}}
$$

q.e.d.

Continue the proof of our Proposition.
It follows from the definition of $X_{\mathcal{J}}$ that

$$
K_{M}^{\prime}\left(X_{\mathcal{J}}\right) \subset K_{M}^{\prime}\left(\sigma^{2 M} f_{\mathcal{J}}\right) K_{M}^{\prime}\left(\sigma^{M+N} f_{\mathcal{J}}^{\prime}\right)
$$

By arguments of n.4.3.1 one has (in notation of the above Lemma)

$$
v\left(K_{M}^{\prime}\left(X_{\mathcal{J}}\right) / K_{M}\right) \leq \max \left\{v_{\mathcal{J}}, v_{\mathcal{J}}^{*}\right\} .
$$

Obviously, the above Lemma gives the implication

$$
v\left(K\left(f_{\mathcal{J}}\right) / K\right)<v_{0} \Longrightarrow v\left(K_{M}^{\prime}\left(X_{\mathcal{J}}\right) / K_{M}\right)<v_{0}
$$

The inverse implication can be obtained similarly. Indeed, let $v\left(K_{M}^{\prime}\left(X_{\mathcal{J}}\right) / K_{M}\right)<$ v_{0} and $v_{\mathcal{J}} \geq v_{0}$. One has from the definition of $X_{\mathcal{J}}$

$$
v_{\mathcal{J}} \leq \max \left\{v_{\mathcal{J}}^{*}, v\left(K_{M}^{\prime}\left(X_{\mathcal{J}}\right) / K_{M}\right)\right\} .
$$

Therefore, $v_{0} \leq v_{\mathcal{J}} \leq v_{\mathcal{J}}^{*}$, but this is impossible because of our Lemma.
4.3.3. Corollary. If $r^{*}<v_{0}$ and $1 \leq s<p$, then $\mathcal{L}_{R, N, M}\left(v_{0}\right)+C_{s+1}\left(\mathcal{L}_{R, N, M}\right)$ is the minimal element in the family of ideals \mathcal{J} of $\mathcal{L}_{R, N, M}$, such that
a) $\mathcal{J} \supset C_{s+1}\left(\mathcal{L}_{R, N, M}\right)$;
b) $v\left(K_{M}^{\prime}\left(X_{\mathcal{J}}\right) / K_{M}\right)<v_{0}$.

4.4. Some calculations.

Let $v_{0} \in \mathbb{Q}, v_{0}>0, R$ be a finite subset in $\mathbb{Q}^{+}(p)$ and M be a nonnegative integer.

For any natural number N we use the notation $q=p^{N}$.
4.4.1. Lemma. There exists a natural number $N_{2}\left(R, M, v_{0}\right)$ such that for any $N \geqslant N_{2}\left(R, M, v_{0}\right)$ there exist $r^{*}=r^{*}\left(N, R, M, v_{0}\right) \in \mathbb{Q}^{+}(p)$ and $a^{*}=a^{*}\left(N, R, M, v_{0}\right) \in$ $\mathbb{Q}^{+}(p)$ such that
a) $r^{*}<v_{0}$;
b) $r^{*}(q-1) \in \mathbb{N}$;
c) if $r \in R, r<v_{0}$, then $q p^{M} r-q a^{*} \leqslant-a^{*}$;
d) if $r \in R$ and $p^{i} r<v_{0}$ for some $i \in \mathbb{Z}, i \geqslant 0$, then

$$
q p^{i} r-r^{*}(q-1) \leqslant-a^{*} ;
$$

e) if $p^{i}\left(r_{1}+\frac{r_{2}}{p^{n}}\right)<v_{0}$ for some $r_{1}, r_{2} \in R$, and integers $i, n \geqslant 0$, then

$$
q p^{i}\left(r_{1}+\frac{r_{2}}{p^{n}}\right)-(q-1) r^{*}<0 .
$$

Proof.
Let $\delta_{1}=\delta_{1}\left(R, v_{0}\right)$ be the minimum of all positive values of the expression $v_{0}-p^{i} r$, where $i \in \mathbb{Z}, i \geq 0$ and $r \in R$.

Let $\delta_{2}=\delta_{2}\left(R, v_{0}\right)$ be the minimum of all positive values of the expression

$$
v_{0}-p^{i}\left(r_{1}+\frac{r_{2}}{p^{n}}\right)
$$

where i, n are nonnegative integers and $r_{1}, r_{2} \in R$.
Clearly, δ_{1} and δ_{2} exist and $0<\delta_{2} \leqslant \delta_{1}$.
Take a natural number $N_{2}=N_{2}\left(R, M, v_{0}\right)$ such that for $q_{2}=p^{N_{2}}$ and

$$
\widetilde{v_{0}}=\max \left\{\frac{q_{2}+2 p^{M}}{q_{2}-1}\left(v_{0}-\delta_{1}\right), \frac{q_{2}}{q_{2}-1}\left(v_{0}-\delta_{2}\right)\right\}
$$

one has the following inequality

$$
v_{0}-\tilde{v_{0}}>\frac{2}{q_{2}-1}
$$

If $N \geq N_{2}$, then for

$$
v=\max \left\{\frac{q+2 p^{M}}{q-1}\left(v_{0}-\delta_{1}\right), \frac{q}{q-1}\left(v_{0}-\delta_{2}\right)\right\}
$$

one has

$$
v-v_{0} \geq v_{0}-\widetilde{v_{0}}>\frac{2}{q_{2}-1} \geq \frac{2}{q-1} .
$$

Therefore, there exists $m \in \mathbb{N}$ such that

$$
\frac{m}{q-1}, \frac{m+1}{q-1} \in\left(v, v_{0}\right) .
$$

At least one of these two fractions should be an element of $\mathbb{Q}^{+}(p)$ which we shall denote by r^{*}.

Clearly, the requirements a) and b) of our Lemma are satisfied.
If $r_{1}, r_{2} \in R, i, n \geq 0$ and $p^{i}\left(r_{1}+\frac{r_{2}}{p^{n}}\right)<v_{0}$, then

$$
q p^{i}\left(r_{1}+\frac{r_{2}}{p^{n}}\right)-(q-1) r^{*}<q\left(v_{0}-\delta_{2}\right)-(q-1) v \leq 0
$$

(c.f. the above definition of v) and the requirement e) is also valid.

Let $a^{*} \in \mathbb{Q}^{+}(p)$ be such that

$$
\frac{q}{q-1} p^{M}\left(v_{0}-\delta_{1}\right) \leq a^{*} \leq 2 p^{M}\left(v_{0}-\delta_{1}\right) .
$$

If $r \in R, r<v_{0}$, then $r \leq v_{0}-\delta_{1}$ and

$$
q p^{M} r \leq q p^{M}\left(v_{0}-\delta_{1}\right) \leq(q-1) a^{*}
$$

therefore, c) is valid.
If $r \in R$ and $p^{i} r<v_{0}$ for some $i \geq 0$, then $p^{i} r \leq v_{0}-\delta_{1}$ and the requirement d) is obtained as follows

$$
q p^{i} r-r^{*}(q-1) \leq q\left(v_{0}-\delta_{1}\right)-v(q-1) \leq q\left(v_{0}-\delta_{1}\right)-\left(q+2 p^{M}\right)\left(v_{0}-\delta_{1}\right) \leq-a^{*} .
$$

Lemma is proved.
4.4.2. For fixed v_{0}, R, M and a natural number $N \geq N_{2}\left(R, M, v_{0}\right)$ we use until the end of n .4 the following more simple notation:
$L=\mathcal{L}_{R, N, M}$ and analogously $L_{k}=\mathcal{L}_{R, N, M, k}, L_{t r}=\mathcal{L}_{R, N, M, K_{M, t r}^{\prime}}, L_{s e p}=$ $\mathcal{L}_{R, N, M, K_{M, O P P}^{\prime} ;} ;$
$L\left(v_{0}\right)=\mathcal{L}_{R, N, M}\left(v_{0}\right)$ and analogously $L\left(v_{0}\right)_{s e p}=\mathcal{L}_{R, N, M, K_{M, 0 \in p}^{\prime}}\left(v_{0}\right) ;$
$\widetilde{D}_{r, 0}=D_{r, 2 M}$ for any $r \in R$;
$E=\sigma^{2 M} e_{R, N, M}=\sum_{r \in R} t^{r p^{2 M}} \widetilde{D}_{r, 0}$ and $E_{1}=\sigma^{M} e_{R, N, M}^{\prime}=\sum_{r \in R} t_{1}^{r p^{M}} \widetilde{D}_{r, 0} ;$
$F=\sigma^{2 M} f_{R, N, M} \in L_{\text {sep }}$ and $F_{1}=\sigma^{M} f_{R, N, M}^{\prime} \in L_{\text {sep }}$.
$\widetilde{\mathcal{F}}(\gamma, 0)=\mathcal{F}_{R, N, M}(\gamma, 2 M) \bmod C_{3}\left(L_{k}\right)=$

Denote by $W_{M}(k)\left\{\tilde{t_{1}}\right\}$ the $W_{M}(k)$-algebra of Laurent series in one variable $\tilde{t_{1}}$. Then $O_{M}\left(K_{M}^{\prime}\right) \simeq W_{M}(k)\left\{\widetilde{t_{1}}\right\}$ and

$$
O_{M}\left(K_{M, t r}^{\prime}\right)=\underset{(n, p)=1}{\lim } W_{M}(k)\left\{\tilde{t}_{1}^{1 / n}\right\} .
$$

Consider its subalgebra of "power series"

$$
O_{M, t r}^{\prime}:=\underset{(n, p)=1}{\lim } W_{M}(k)\left[\left[\tilde{t}_{1}^{1 / n}\right]\right] .
$$

This subalgebra can be identified with a lifting of the valuation ring $O_{K_{M, t r}^{\prime}}$ of the field $K_{M, t r}^{\prime}$ modulo p^{M+1}.

We also use more simple notation $\mathcal{O}^{\prime}\left(L_{t r}\right)$ for the Lie $O_{M, t r}^{\prime}$-algebra $L \otimes O_{M, t r}^{\prime}$.
Inductive assumption.
One can assume that Proposition 3.6.2 is valid (for $s=2$) for the Lie algebra $\mathcal{L}_{R, N, M-1}$, where $N \geq N_{2}\left(R, M-1, v_{0}\right)$. As

$$
N_{2}\left(R, M, v_{0}\right) \geq N_{2}\left(R, M-1, v_{0}\right)
$$

we can assume that for $N \geq N_{2}\left(R, M, v_{0}\right)$ the ideal

$$
L\left(v_{0}\right)_{k} \bmod \left(p^{M} L_{k}+C_{3}\left(L_{k}\right)\right)
$$

of the Lie algebra $L_{k} \bmod \left(p^{M} L_{k}+C_{3}\left(L_{k}\right)\right)$ is generated by the elements

$$
\sigma^{n} \tilde{\mathcal{F}}(\gamma, 0) \bmod p^{M} L_{k}+C_{3}\left(L_{k}\right),
$$

where $n \in \mathbb{Z} / N \mathbb{Z}, \gamma \geq v_{0}$.
4.4.3. Let $\Delta_{1} \in L_{t r}$ be such that $E=\sigma^{N} E_{1}+\Delta_{1}$. Then (c.f. n.4.2.5)

$$
\Delta_{1}=\sum_{r \in R} t_{1}^{q r p^{M}}\left(\mathcal{E}^{r}-1\right) \tilde{D}_{r, 0}
$$

where

$$
\mathcal{E}=E\left(-\frac{1}{r^{*}} t_{1}^{-r^{*} p^{M}(q-1)}\right) \prod_{1 \leqslant s \leqslant M} \exp \left(-\frac{1}{r^{*}} p^{s} t_{1}^{-r^{*} p^{M-*}(q-1)}\right) .
$$

As in n.4.3, consider $X \in L_{\text {sep }}$ such that $F=\sigma^{N} F_{1} \circ X$. Obviously,

$$
\sigma X-X=\Delta_{1} \bmod C_{2}\left(L_{s e p}\right) .
$$

Proposition.

a) $\Delta_{1} \in L\left(v_{0}\right)_{s e p}+t_{1}^{-a^{*}} \mathcal{O}^{\prime}\left(L_{t r}\right)+C_{2}\left(L_{s e p}\right)$;
b) $\left[X, \sigma^{N} E_{1}\right] \equiv$

$$
\equiv-\sum_{0 \leqslant n<N}\left[\sigma^{n} \Delta_{1}, \sigma^{N} E_{1}\right] \bmod \left(\left[L\left(v_{0}\right)_{s e p}, L_{s e p}\right]+t_{1}^{-a^{*}} \mathcal{O}^{\prime}\left(L_{t r}\right)+C_{3}\left(L_{s e p}\right)\right)
$$

Proof.
Let

$$
\mathcal{E}_{s}=\exp \left(-\frac{1}{r^{*}} p^{s} t_{1}^{-r^{*} p^{M-\mathcal{A}}(q-1)}\right)
$$

for $1 \leq s \leq M$ and

$$
\mathcal{E}_{0}=E\left(-\frac{1}{r^{*}} t_{1}^{-\tau^{*}} p^{M}(q-1)\right)
$$

Lemma. For any $r \in R$ and $0 \leq s \leq M$ one has

$$
t_{1}^{q r p^{M}}\left(\mathcal{E}_{s}^{r}-1\right) \widetilde{D}_{r, 0} \in L\left(v_{0}\right)_{s e p}+t_{1}^{-a^{*}} \mathcal{O}^{\prime}\left(L_{t r}\right)+C_{2}\left(L_{s e p}\right)
$$

Proof of lemma.

Let $r p^{s} \geqslant v_{0}$. Then

$$
p^{s} \widetilde{D}_{r, 0} \in L\left(v_{0}\right)_{k}+C_{2}\left(L_{k}\right)
$$

c.f. n.4.1. Therefore, if $s=0$, then

$$
t_{1}^{q r^{M}}\left(\mathcal{E}_{0}^{r}-1\right) \widetilde{D}_{r, 0} \in L\left(v_{0}\right)_{s e p}+C_{2}\left(L_{s e p}\right)
$$

If $1 \leqslant s \leqslant M$, then

$$
\mathcal{E}_{s}^{r}-1=\exp \left(-\frac{r}{r^{*}} p^{s} t_{1}^{-r^{*} p^{M-*}(q-1)}\right)-1 \in p^{s} O_{M}\left(K_{M, s e p}^{\prime}\right)
$$

and again

$$
t_{1}^{q r p^{M}}\left(\mathcal{E}_{s}^{r}-1\right) \tilde{D}_{r, 0} \in L\left(v_{0}\right)_{s e p}+C_{2}\left(L_{s e p}\right)
$$

Let $r p^{s}<v_{0}$. If $1 \leqslant s \leqslant M$, then

$$
\begin{aligned}
& t_{1}^{q r p^{M}}\left(\mathcal{E}_{s}^{r}-1\right)=t_{1}^{q r p^{M}}\left[\exp \left(-\frac{r}{r^{*}} p^{s} t_{1}^{-r^{*} p^{M-s}(q-1)}\right)-1\right] \in \\
& \in t_{1}^{q r p^{M}-r^{*} p^{M-\cdot}(q-1)} O_{M, t r}^{\prime} \subset t_{1}^{-p^{M-a_{a}^{*}}} O_{M, t r}^{\prime} \subset t_{1}^{-a^{*}} O_{M, t r}^{\prime}
\end{aligned}
$$

(we use the inequality d) of Lemma 4.4.1).
This means that

$$
t_{1}^{q r p^{M}}\left(\mathcal{E}_{s}^{r}-1\right) \widetilde{D}_{r, 0} \in t_{1}^{-a^{*}} \mathcal{O}^{\prime}\left(L_{t r}\right)
$$

If $s=0$, then

$$
\mathcal{E}_{0}^{r}-1 \equiv\left\{\widetilde{\exp }\left(-\frac{r}{r^{*}} t_{1}^{-r^{*} p^{M}(q-1)}\right)-1\right\} \bmod t_{1}^{-r^{*} p^{M+1}(q-1)} O_{M, t r}^{\prime}
$$

As $r<v_{0}$, the enequality d) of Lemma 4.4.1 gives that

$$
t_{1}^{q r p^{M}}\left(\mathcal{E}_{0}^{r}-1\right) \in t_{1}^{q r p^{M}-r^{*} p^{M}(q-1)} O_{M, t r}^{\prime} \subset t_{1}^{-p^{M} a^{*}} O_{M, t r}^{\prime} \subset t_{1}^{-a^{*}} O_{M, t r}^{\prime}
$$

and, therefore, $t_{1}^{q r p^{M}}\left(\mathcal{E}_{0}^{r}-1\right) \widetilde{D}_{r, 0} \in t_{1}^{-a^{*}} O_{M, t r}^{\prime}$.
Lemma is proved.
Continue the proof of our Proposition.
a) As $\prod_{\bullet<i \leqslant M} \mathcal{E}_{i}^{r} \in O_{M, t r}^{\prime}$, the above Lemma gives
$\Delta_{1}=\sum_{\substack{r \in R \\ 0 \leq s \leq M}}\left[t_{1}^{q r p^{M}}\left(\mathcal{E}_{s}^{r}-1\right) \tilde{D}_{r, 0} \prod_{s<i \leq M} \mathcal{E}_{i}^{r}\right] \in L\left(v_{0}\right)_{s e p}+t_{1}^{-a^{*}} \mathcal{O}^{\prime}\left(L_{t r}\right)+C_{2}\left(L_{s e p}\right)$.
b) From n.a) it follows that for $n \geqslant N$

$$
\sigma^{n} \Delta_{1} \in L\left(v_{0}\right)_{s e p}+t_{1}^{-q a^{\bullet}} \mathcal{O}^{\prime}\left(L_{t r}\right)+C_{2}\left(L_{s e p}\right)
$$

Then

$$
\sigma^{N} E_{1}=\sum_{r \in R} t_{1}^{q r p^{M}} \widetilde{D}_{r, 0} \equiv \sum_{\substack{r \in R \\ r<v_{0}}} t_{1}^{q r p^{M}} \widetilde{D}_{r, 0} \bmod L\left(v_{0}\right)_{s e p}+C_{2}\left(L_{s e p}\right)
$$

because $\widetilde{D}_{r, 0} \in L\left(v_{0}\right)_{k}+C_{2}\left(L_{k}\right)$ for $r \geqslant v_{0}$.
With respect to c) of Lemma 4.4.1, $q r p^{M} \leqslant(q-1) a^{*}$ for $r<v_{0}$, therefore,

$$
\sigma^{N} E_{1} \in L\left(v_{0}\right)_{\text {sep }}+t_{1}^{(q-1) a^{*}} \mathcal{O}^{\prime}\left(L_{t r}\right)+C_{2}\left(L_{\text {sep }}\right)
$$

So, for $n \geqslant N$

$$
\left[\sigma^{n} \Delta_{1}, \sigma^{N} E_{1}\right] \in L\left(v_{0}\right)_{s e p}+t_{1}^{-a^{*}} \mathcal{O}^{\prime}\left(L_{t r}\right)+C_{3}\left(L_{s e p}\right)
$$

In order to finish the proof one needs only remark that

$$
X \equiv-\sum_{n \geqslant 0} \sigma^{n} \Delta_{1} \bmod \left(L\left(v_{0}\right)_{s e p}+C_{2}\left(L_{s e p}\right)\right)
$$

by the part a) of our Proposition, which was proved earlier.
Proposition is proved.
4.4.4. Let $\Delta \in G\left(L_{\text {tr }}\right)$ be such that $E=\sigma^{N} E_{1} \circ \Delta$. Then

$$
\Delta \equiv \Delta_{1}-\frac{1}{2}\left[\sigma^{N} E_{1}, \Delta_{1}\right] \bmod C_{3}\left(L_{s e p}\right)
$$

Applying σ to the both sides of the equality $F=\sigma^{N} F_{1} \circ X$, one gets

$$
\sigma F=F \circ E=\sigma^{N} F_{1} \circ X \circ \sigma^{N} E_{1} \circ \Delta
$$

and

$$
\sigma\left(\sigma^{N} F_{1} \circ X\right)=\sigma^{N} F_{1} \circ \sigma^{N} E_{1} \circ \sigma X
$$

Therefore,

$$
\sigma X=X \circ\left\{X, \sigma^{N} E_{1}\right\} \circ \Delta
$$

where $\{$,$\} is a commutator in the group G\left(L_{\text {sep }}\right)$.
Obviously,

$$
\left\{X, \sigma^{N} E_{1}\right\} \equiv\left[X, \sigma^{N} E_{1}\right] \bmod C_{3}\left(L_{\text {sep }}\right)
$$

and by n.b) of Proposition n.4.4.3 one has

$$
\left\{X, \sigma^{N} E_{1}\right\} \equiv
$$

$$
\equiv-\sum_{0 \leqslant n<N}\left[\sigma^{n} \Delta_{1}, \sigma^{N} E_{1}\right] \bmod \left(\left[L\left(v_{0}\right)_{s e p}, L_{s e p}\right]+t_{1}^{-a^{*}} \mathcal{O}^{\prime}\left(L_{t r}\right)+C_{3}\left(L_{s e p}\right)\right) .
$$

Proceeding in the same way we obtain

$$
\begin{gathered}
X \circ \Delta=X+\Delta+\frac{1}{2}[X, \Delta] \equiv \\
\equiv X+\Delta_{1}-\frac{1}{2}\left[\sigma^{N} E_{1}, \Delta_{1}\right]+\frac{1}{2}\left[X, \Delta_{1}\right] \equiv X+\Delta_{1}-\frac{1}{2}\left[\sigma^{N} E_{1}, \Delta_{1}\right] \\
\bmod \left(\left[L\left(v_{0}\right)_{s e p}, L_{s e p}\right]+t_{1}^{-a^{*}} \mathcal{O}^{\prime}\left(L_{t r}\right)+C_{3}\left(L_{s e p}\right)\right)
\end{gathered}
$$

because X and Δ_{1} are in $L\left(v_{0}\right)_{s e p}+t_{1}^{-a^{*}} \mathcal{O}^{\prime}\left(L_{t r}\right)+C_{2}\left(L_{s e p}\right)$, c.f. n.4.4.3.
Therefore,

$$
\begin{aligned}
\sigma X & -X \equiv \Delta_{1}-\frac{1}{2}\left[\sigma^{N} E_{1}, \Delta_{1}\right]+\left[X, \sigma^{N} E_{1}\right] \equiv \\
& \equiv \Delta_{1}-\sum_{0 \leqslant n<N} \tilde{\eta}(n, 0) \sigma^{n}\left[\Delta_{1}, \sigma^{N-n} E_{1}\right] \\
& \bmod \left(\left[L\left(v_{0}\right)_{s e p}, L_{s e p}\right]+t_{1}^{-a^{*}} \mathcal{O}^{\prime}\left(L_{t r}\right)+C_{3}\left(L_{s e p}\right)\right),
\end{aligned}
$$

where

$$
\tilde{\eta}(n, 0)= \begin{cases}1, & \text { if } 0<n<N \\ 1 / 2, & \text { if } n=0\end{cases}
$$

4.4.5. Proposition.

$$
\begin{gathered}
\Delta_{1} \equiv \sum_{\substack{r \in R \\
0 \leqslant s \leqslant M}} t_{1}^{q r p^{M}}\left(\mathcal{E}_{s}^{r}-1\right) \tilde{D}_{r, 0} \\
\bmod \left(p L\left(v_{0}\right)_{s e p}+\left[L\left(v_{0}\right)_{s e p}, L_{s e p}\right]+t_{1}^{-a^{*}} \mathcal{O}^{\prime}\left(L_{t r}\right)+C_{3}\left(L_{s e p}\right)\right) .
\end{gathered}
$$

Proof.

We use notation of n.4.4.3. Let $r \in R$ and $0 \leq s \leq M$.
a) If $p^{s} r<v_{0}$, then

$$
t_{1}^{q p^{M r}} r\left(\mathcal{E}_{s}^{r}-1\right) \widetilde{D}_{r, 0} \in t_{1}^{-a^{*}} \mathcal{O}^{\prime}\left(L_{t r}\right),
$$

c.f. proof of Lemma n.4.4.3.
b) If $s \geq 1$ and $p^{s} r \geq p v_{0}$, then

$$
t_{1}^{q p^{M} r}\left(\mathcal{E}_{s}^{r}-1\right) \widetilde{D}_{r, 0} \in p L\left(v_{0}\right)_{s e p}+\left[L\left(v_{0}\right)_{s e p}, L_{s e p}\right]+C_{3}\left(L_{s e p}\right) .
$$

This is implied by the following Lemma.

Lemma. If $r \in R, i \geq 0, i \in \mathbb{Z}$ and $p^{i} r \geq v_{0}$, then

$$
p^{i+1} \widetilde{D}_{r, 0} \in p L\left(v_{0}\right)_{k}+\left[L\left(v_{0}\right)_{k}, L_{k}\right]+C_{3}\left(L_{k}\right)
$$

Proof of Lemma.

By the inductive assumption of n.4.4.2 one has

Therefore, $p \tilde{\mathcal{F}}\left(p^{i} r, 0\right) \in p L\left(v_{0}\right)_{k}+C_{3}\left(L_{k}\right)$.
If the summand

$$
p^{i_{1}+1} \widetilde{\eta}(n, 0) r_{1}\left[D_{r_{1}, i_{1}}, D_{r_{2}, i_{1}-n}\right]
$$

appears in the expression of $p \tilde{\mathcal{F}}\left(p^{i} r, 0\right)$, then it belongs to $\left[L\left(v_{0}\right)_{k}, L_{k}\right]+C_{3}\left(L_{k}\right)$.
Indeed, at least one of two numbers $p^{i_{1}+1} r_{1}$ and $p^{i_{1}+1} r_{2}$ should be $\geq v_{0}$ (otherwise, $p^{i_{1}}\left(r_{1}+\frac{r_{2}}{p^{n}}\right)<\frac{2 v_{0}}{p}<v_{0}$). Therefore, $p^{i_{1}+1} \widetilde{D}_{r_{1}, i_{1}}$ or $p^{i_{1}+1} \widetilde{D}_{r_{2}, i_{1}-n}$ belongs to $L\left(v_{0}\right)_{k}+C_{2}\left(L_{k}\right)$.

Lemma is proved.
Now our Proposition follows from the identity

$$
\prod_{0 \leqslant s \leqslant M} \mathcal{E}_{s}^{r}-1=\prod_{\substack{1 \leqslant 1 \leqslant M \\ 0 \leqslant s_{1}<\ldots<s_{1} \leqslant M}}\left(\mathcal{E}_{s_{1}}^{r}-1\right) \ldots\left(\mathcal{E}_{s_{l}}^{r}-1\right)
$$

4.4.6. Proposition. Let δ_{1} be a rational number from the proof of Lemma 4.4.1. Then

$$
\begin{gathered}
\left.\sum_{0 \leq n<N} \widetilde{\eta}(n, 0) \sigma^{n}\left[\Delta_{1}, \sigma^{N-n} E_{1}\right] \equiv \sum_{\substack{r_{1}, r_{2} \in R \\
0 \leq n<N \\
v_{0} \leqslant p^{*}\left(r_{1}+\frac{+}{p^{\prime}} \boldsymbol{n}\right) \leq s \leq M}} \widetilde{\eta}(n, o) t_{1}^{q\left(r_{0}+\delta_{1}\right)} \boldsymbol{r _ { p }}\right) p^{M}\left(\mathcal{E}_{s}^{r_{1}}-1\right)\left[\widetilde{D}_{r_{1}, 0}, \widetilde{D}_{r_{2},-n}\right] \\
\bmod \left(\left[L\left(v_{0}\right)_{s e p}, L_{s e p}\right]+t_{1}^{-a^{*}} \mathcal{O}^{\prime}\left(L_{t r}\right)+C_{3}\left(L_{\text {sep }}\right)\right) .
\end{gathered}
$$

Proof.
Indeed,

$$
\begin{gathered}
\sum_{0 \leqslant n<N} \tilde{\eta}(n, 0) \sigma^{n}\left[\Delta_{1}, \sigma^{N-n} E_{1}\right]= \\
=\sum_{0 \leqslant n<N} \widetilde{\eta}(n, 0) \sigma^{n}\left[\sum_{r_{1}} t_{1}^{q r_{1} p^{M}}\left(\mathcal{E}_{0}^{r_{1}} \ldots \mathcal{E}_{M}^{r_{1}}-1\right) \widetilde{D}_{r_{1}, 0}, \sum_{r_{2}} t_{1}^{r_{2} p^{M+N-n}} \widetilde{D}_{r_{2},-n}\right]=
\end{gathered}
$$

$$
=\sum_{\substack{r_{1}, r_{2} \\ 0 \leqslant n<N}} \tilde{\eta}(n, 0) t_{1}^{q\left(r_{1}+\frac{r_{p}}{p}\right) p^{M A}}\left(\mathcal{E}_{0}^{\left.r_{1} \ldots \mathcal{E}_{M}^{r_{1}}-1\right)\left[\widetilde{D}_{r_{1}, 0}, \widetilde{D}_{r_{2},-n}\right] . ~ . ~ . ~}\right.
$$

Then, as in n.4.4.5, we obtain
a) If $p^{s}\left(r_{1}+\frac{r_{2}}{p^{n}}\right)<v_{0}$, then

$$
t_{1}^{q p^{M}\left(r_{1}+\frac{r_{2}}{p^{4}}\right)}\left(\mathcal{E}_{\boldsymbol{r}}^{r_{1}}-1\right)\left[\widetilde{D}_{r_{1}, 0}, \widetilde{D}_{r_{2},-n}\right] \in t_{1}^{-a^{*}} \mathcal{O}^{\prime}\left(L_{t r}\right)
$$

b) If $p^{s}\left(r_{1}+\frac{r_{2}}{p^{n}}\right)>2\left(v_{0}-\delta_{1}\right)$, then either $p^{s} r_{1}>v_{0}-\delta_{1}$, or $p^{s} r_{2}>v_{0}-\delta_{1}$. Let, for example, $p^{s} r_{1}>v_{0}-\delta_{1}$. Then $p^{s} r_{1} \geqslant v_{0}$, it gives

$$
p^{s} \widetilde{D}_{r_{1}, 0} \in L\left(v_{0}\right)_{k}+C_{2}\left(L_{k}\right)
$$

and, therefore,

$$
p^{s}\left[\widetilde{D}_{r_{1}, 0}, \widetilde{D}_{r_{2},-n}\right] \in\left[L\left(v_{0}\right)_{k}, L_{k}\right]+C_{3}\left(L_{k}\right) .
$$

Remark, that $\mathcal{E}_{s}^{r_{1}}-1 \equiv 0 \bmod p^{s}$.
Now one can finish the proof of our Proposition in the same way as it was done in the proof of Proposition n.4.4.5.

4.4.7. Proposition.

$$
\begin{gathered}
\Delta_{1}-\sum_{0 \leqslant n<N} \tilde{\eta}(n, 0) \sigma^{n}\left[\Delta_{1}, \sigma^{N-n} E_{1}\right] \equiv \\
\equiv-\frac{1}{r^{*}} \sum_{\substack{r \in R \\
0 \leqslant s \leqslant M}} r p^{s}\left[q_{1}^{q r p^{*}-r^{*}(q-1)}\right]^{p^{M-\cdot}} \tilde{D}_{r, 0}+ \\
+\frac{1}{r^{*}} \sum_{\substack{r_{1}, r_{2} \in R \\
0 \leqslant s \leqslant M \\
0 \leqslant n<N}} r_{1} p^{s} \widetilde{\eta}(n, 0)\left[t_{1}^{q\left(r_{1}+\frac{r_{2}}{\left.p^{n}\right) p^{*}-r^{*}(q-1)}\right]^{p^{M-9}}\left[\widetilde{D}_{r_{1}, 0}, \widetilde{D}_{r_{2},-n}\right]}\right. \\
\bmod p L\left(v_{0}\right)_{s e p}+\left[L\left(v_{0}\right)_{s e p}, L_{s e p}\right]+t_{1}^{-a^{*}} \mathcal{O}^{\prime}\left(L_{t r}\right)+C_{3}\left(L_{s e p}\right)
\end{gathered}
$$

Proof.

It is easy to see that the changement of $\mathcal{E}_{s}^{r_{1}}-1$ by the first member $-\frac{r_{1}}{r^{*}} t_{1}^{-r^{*}(q-1) p^{M-*}}$ of its expansion in powers of t_{1} does not affect the expression for

$$
\sum_{0 \leqslant n<N} \widetilde{\eta}(n, 0) \sigma^{n}\left[\Delta_{1}, \sigma^{N-n} E_{1}\right]
$$

from Proposition 4.4.6 modulo $t_{1}^{-a^{*}} \mathcal{O}^{\prime}\left(L_{t r}\right)$. In order to finish the proof one needs only show that this procedure can be done with the expression of Δ_{1} from the Proposition 4.4.5. This is implied by the following lemma.

Lemma. If $r \in R, p^{s} r>2\left(v_{0}-\delta_{1}\right)$, then $p^{s} \widetilde{D}_{r, 0} \in L\left(v_{0}\right)_{k}+C_{3}\left(L_{k}\right)$.
Proof.
Let $p^{s_{1}} r_{1}$ be the largest number such that $r_{1} \in R, p^{s_{1}} r_{1}>2\left(v_{0}-\delta_{1}\right)$ and

$$
p^{s_{1}} \widetilde{D}_{r_{1}, 0} \notin L\left(v_{0}\right)_{k}+C_{3}\left(L_{k}\right)
$$

From inductive assumption it follows that

$$
p^{s_{1}} \widetilde{D}_{r_{1}, 0} \in L\left(v_{0}\right)_{k}++p^{M} L_{k}+C_{3}\left(L_{k}\right)
$$

Further, in the expansion

$$
\Delta_{1}-\sum_{0 \leqslant n<N} \widetilde{\eta}(n, 0) \sigma^{n}\left[\Delta_{1}, \sigma^{N-n} E_{1}\right]=\sum_{\substack{\gamma_{1} \in \mathbf{Z}^{+}(p) \\ m \in \mathbf{Z}, m \geqslant 0}} t_{1}^{\gamma_{1} p^{m}} A_{\gamma_{1}, m},
$$

where all $A_{\gamma_{1}, m} \in L_{k}$, one has

1) $A_{\gamma_{1}, m} \in L\left(v_{0}\right)_{k}+C_{3}\left(L_{k}\right)$ for $\gamma_{1}>q p^{s_{1}} r_{1}-r^{*}(q-1)$;
2) $A_{\gamma_{1}, m} \in L\left(v_{0}\right)_{k}+C_{3}\left(L_{k}\right)$ for $\gamma_{1}=q p^{s_{1}} r_{1}-r^{*}(q-1), m \neq M-s_{1}$.

Therefore, if $K_{M}^{\prime}\left(X_{L\left(v_{0}\right)}\right)$ is the field of definition of

$$
X \bmod L\left(v_{0}\right)_{s e p}+C_{3}\left(L_{s e p}\right)
$$

then the largest upper ramification number $v\left(K_{M}^{\prime}\left(X_{L\left(v_{0}\right)}\right) / K_{M}^{\prime}\right)$ is equal to γ_{1} and, therefore,

$$
v\left(K_{M}^{\prime}\left(X_{L\left(v_{0}\right)}\right) / K_{M}\right)=\frac{\gamma_{1}-r^{*}}{q}+r^{*}=p^{s_{1}} r_{1}
$$

But the inequality $p^{s_{1}} r_{1}>2\left(v_{0}-\delta_{1}\right) \geqslant v_{0}-\delta_{1}$ implies the inequality $p^{s_{1}} r_{1} \geqslant v_{0}$. This is impossible because of $v\left(K_{M}^{\prime}\left(X_{L\left(v_{0}\right)}\right) / K_{M}\right)<v_{0}$.

This contradiction proves our Lemma.
4.4.8. It is easy to see that for any ideal J of the Lie algebra L such that

$$
J \supset p L\left(v_{0}\right)+\left[L\left(v_{0}\right), L\right]+C_{3}(L)
$$

the field of definition of $X \bmod J_{s e p}$ coincides with the field of definition of $Y \bmod J_{s e p}$, where $Y \in L_{\text {sep }}$ and satisfies the equation

$$
\begin{gathered}
\sigma Y-Y=\sum_{\substack{r \in R \\
0 \leqslant s \leqslant M}} r p^{s} t_{1}^{q r p^{*}-r^{*}(q-1)} \widetilde{D}_{r, s}- \\
-\sum_{\substack{r_{1}, r_{2} \in R \\
00 \leqslant \leqslant M \\
0 \leqslant n<N}} r_{1} p^{s} \widetilde{\eta}(n, 0) t_{1}^{q\left(r_{1}+\frac{r_{2}}{p}\right) p^{*}-r^{*}(q-1)}\left[\widetilde{D}_{r_{1}, s}, \widetilde{D}_{r_{2}, s-n}\right] .
\end{gathered}
$$

So,

$$
\sigma Y-Y=\sum_{\gamma \in \mathbf{Q}, \gamma>0} t_{1}^{q \gamma-r^{*}(q-1)} \tilde{\mathcal{F}}(\gamma, 0)
$$

c.f. n.4.4.2.
4.5. The end of the proof of theorem.

Let $J_{0}=\mathcal{L}_{R, N, M}^{\left(v_{0}\right)}$. We must prove, that

$$
J_{0}+C_{3}(L)=L\left(v_{0}\right)+C_{3}(L) .
$$

From n.4.4.1 it follows that

$$
J_{0} \bmod C_{2}(L)=L\left(v_{0}\right) \bmod C_{2}(L)
$$

By the induction assumption one has

$$
J_{0} \bmod \left(p^{M} L+C_{3}(L)\right)=L\left(v_{0}\right) \bmod \left(p^{M} L+C_{3}(L)\right)
$$

Therefore,

$$
J_{0, K_{M, s e p}^{\prime}} \supset p L\left(v_{0}\right)_{s e p}+\left[L\left(v_{0}\right)_{s e p}, L_{s e p}\right]+C_{3}\left(L_{s e p}\right)
$$

Now the last formula of n.4.4.8 gives that

$$
K_{M}^{\prime}\left(X_{J_{0}}\right) \subset K_{M, t r}^{\prime}
$$

and therefore

$$
J_{0} \bmod C_{3}(L) \supset L\left(v_{0}\right) \bmod C_{3}(L)
$$

Conversely, let

$$
\gamma_{0}=\max \left\{\gamma \in \mathbb{Q} \mid \gamma \geq v_{0}, \widetilde{\mathcal{F}}_{\gamma, 0} \notin L\left(v_{0}\right)_{k}\right\}
$$

Now the last formula of n.4.4.8 and Lemma n.4.1 give

$$
v\left(K_{M}^{\prime}\left(X_{L\left(v_{0}\right)}\right) / K_{M}^{\prime}\right)=q \gamma_{0}-r^{*}(q-1) .
$$

Now the following inequality

$$
v\left(K_{M}^{\prime}\left(X_{L\left(v_{0}\right)}\right) / K_{M}\right)=\frac{q \gamma_{0}-r^{*}(q-1)-r^{*}}{q}+r^{*}=\gamma_{0} \geq v_{0}
$$

gives the contradiction to the Corollary of n.4.3.3.
Theorem of n.3.4 is proved (modulo 3 -rd commutators).

5. The case of a local field with finite residue field.

Let N_{0} be a fixed natural number, K_{0} be a complete discrete valuation field of characteristic $p>0$ with finite residue field $\mathbb{F}_{q_{0}}$, where $q_{0}=p^{N_{0}}$. Fix a uniformizer $\tilde{t_{0}}$ of the field K_{0}, then a fixed embedding $\mathbb{F}_{q_{0}} \subset k=\overline{\mathbb{F}}_{p}$ defines the embedding $K_{0}=\mathbb{F}_{q_{0}}\left(\left(\tilde{t_{0}}\right)\right) \subset K$, where $K=k\left(\left(\tilde{t_{0}}\right)\right)$ is a local field from n.2.1.

Let $\Gamma=\operatorname{Gal}\left(K_{\text {sep }} / K_{0}\right), \Gamma_{0}=\operatorname{Gal}\left(K_{\text {sep }} / K_{0}\right)$ and $\Gamma_{0}(p)$ (respectively, $\Gamma(p)$) be the Galois group of the maximal p-extension of the field K_{0} (respectively, of the field K) in $K_{0, \text { sep }}=K_{\text {sep }}$.

In n.5.1 we apply the generalisation of Artin-Schreier theory from n. 1 to the construction of an identification

$$
\bar{\psi}^{\circ}: \Gamma_{0}(p) / C_{p}\left(\Gamma_{0}(p)\right) \simeq G(L)
$$

where $L=\widetilde{L} / C_{p}(\widetilde{L})$, and \widetilde{L} is a free pro- p-algebra Lie over $\mathbb{Z}_{\underline{p}}$.
In n.5.2 we describe (in the terms of the identification $\bar{\psi}^{0}$) the action of the Galois group $\operatorname{Gal}\left(K_{0} / \mathbb{F}_{p}\left(\left(\tilde{t}_{0}\right)\right)\right)$ on $\Gamma_{0}(p) / C_{p}\left(\Gamma_{0}(p)\right)$ by conjugation.

Let

$$
\bar{\psi}(p): \Gamma(p) / C_{p}(\Gamma(p)) \simeq G(\mathcal{L}(p))
$$

be the identification from n.3.5.2. Consider the homomorphism of groups

$$
\gamma: \Gamma(p) / C_{p}(\Gamma(p)) \longrightarrow \Gamma_{0}(p) / C_{p}\left(\Gamma_{0}(p)\right)
$$

defined by the imbedding $\Gamma \subset \Gamma_{0}$. With respect to the identifications $\bar{\psi}^{\circ}$ and $\bar{\psi}(p)$ the homomorphism γ can be described in the terms of some morphism of Lie \mathbb{Z}_{p}-algebras

$$
\delta: \mathcal{L}(p) \longrightarrow L
$$

In nn.5.3-5.4 we give an explicit construction of this morphism.
Let $\left\{\mathcal{L}(p)^{(v)}\right\}_{v>0}$ and $\left\{L^{(v)}\right\}_{v>0}$ be the filtrations of the Lie algebras $\mathcal{L}(p)$ and L, corresponding to the ramification filtrations $\left\{\Gamma(p)^{(v)}\right\}_{v>0}$ and $\left\{\Gamma_{0}(p)^{(v)}\right\}_{v>0}$, respectively. For any $v \in \mathbb{Q}, v>0$, the equality $\Gamma(p)^{(v)}=\Gamma_{0}(p)^{(v)}$ implies the equality $\delta\left(\mathcal{L}(p)^{(v)}\right)=L^{(v)}$. Therefore, the explicit construction of δ with the description of the filtration $\left\{\mathcal{L}(p)^{(v)}\right\}_{v>0}$ from n.3.5.3 permit us to give in $n .5 .5$ a description of the image of the ramification filtration of the group Γ_{0} in $\Gamma_{0}(p) / C_{p}\left(\Gamma_{0}(p)\right)$.
5.1. Construction of identification $\bar{\psi}^{\circ}$.

As earlier, let

$$
\mathbb{Z}^{+}(p)=\{a \in \mathbb{N} \mid(a, p)=1\}
$$

For any finite subset $A \subset \mathbb{Z}^{+}(p)$ and an integer $M \geqslant 0$ introduce the free Lie $\mathbb{Z} / p^{M+1} \mathbb{Z}$-algebra $\widetilde{L}_{A, M}$ with the module of free generators

$$
\underset{a \in A}{\oplus} \operatorname{Hom}\left(W_{M}\left(\mathbb{F}_{q_{0}}\right), W_{M}\left(\mathbb{F}_{p}\right)\right)_{a} \oplus W_{M}\left(\mathbb{F}_{p}\right) \tilde{V}_{0}
$$

The system $\left\{\widetilde{L}_{A, M}\right\}$ is a projective system of Lie algebras with respect to connecting morphisms $\widetilde{L}_{A_{1}, M_{1}} \longrightarrow \widetilde{L}_{A_{2}, M_{2}}$, defined for $A_{2} \subset A_{1}$ and $M_{2} \leq M_{1}$ (these homomorphisms are induced by the projection $W_{M_{1}}\left(\mathbb{F}_{q_{0}}\right) \longrightarrow W_{M_{2}}\left(\mathbb{F}_{q_{0}}\right)$ and the correspondence $\widetilde{V}_{0} \mapsto \widetilde{V}_{0}$). Clearly, $\widetilde{L}=\underset{A, M}{\lim _{\overparen{M}}} \widetilde{L}_{A, M}$ is a profree Lie \mathbb{Z}_{p}-algebra with the set of topological generators

$$
\prod_{a \in \mathbf{Z}^{+}(p)} \operatorname{Hom}\left(W\left(\mathbb{F}_{q_{0}}\right), W\left(\mathbb{F}_{p}\right)\right)_{a} \oplus W\left(\mathbb{F}_{p}\right) \widetilde{V}_{0}
$$

Set $L_{A, M}=\widetilde{L}_{A, M} / C_{p}\left(\widetilde{L}_{A, M}\right), L=\widetilde{L} / C_{p}(\widetilde{L})$ and denote by $V_{a, f}$ (respectively, V_{0}) the images of the generator $f \in \operatorname{Hom}\left(W\left(\mathbb{F}_{q_{0}}\right), W\left(\mathbb{F}_{p}\right)\right)_{a}, a \in \mathbb{Z}^{+}(p)$, respectively, $\left.\widetilde{V_{0}}\right)$ in these algebras. As earlier, for any subfield $K_{1} \subset K_{\text {sep }}$ use the notation $L_{K_{1}}=L \otimes O\left(K_{1}\right)$ for extension of scalars of the Lie algebra L and introduce the natural system of free generators

$$
\left\{V_{a, n} \mid a \in \mathbb{Z}^{+}(p), n \in \mathbb{Z} / N_{0} \mathbb{Z}\right\} \cup\left\{V_{0}\right\}
$$

of the Lie algebra $L_{\mathbf{F}_{90}}$.
Fix $\alpha \in W\left(\mathbb{F}_{q_{0}}\right)$, such that $\operatorname{Tr} \alpha=1$, where $\operatorname{Tr}: W\left(\mathbb{F}_{q_{0}}\right) \longrightarrow W\left(\mathbb{F}_{p}\right)$ is induced by the trace of the extension $\mathbb{F}_{q_{0}}$ over \mathbb{F}_{p}. It is easy to see, that $\alpha \notin(\phi-\mathrm{id}) W\left(\mathbb{F}_{q_{0}}\right)$, where ϕ is the absolute Frobenius morphism of the ring of Witt vectors $W\left(\mathbb{F}_{q_{0}}\right)$.

For any finite subset $A \subset \mathbb{Z}^{+}(p)$ and an integer $M \geqslant 0$ consider the elements

$$
h_{A, M}=\left(\sum_{a \in A} t^{a} V_{a, 0}\right) \circ\left(\alpha V_{0}\right) \in G\left(L_{A, M, K_{0}}\right) .
$$

and elements $g_{A, M} \in G\left(L_{A, M, K_{\text {sep }}}\right)$, such that

1) $\sigma g_{A, M}=g_{A, M} \circ h_{A, M}$;
2) the system of elements $\left\{g_{A, M}\right\}$ is compatible in the projective system $\left\{L_{A, M, K_{\bullet e p}}\right\}$.

The choice of a such system of elements $\left\{g_{A, M}\right\}$ defines the compatible system of epimorphisms

$$
\psi_{A, M}^{\circ}: \Gamma_{0}(p) \longrightarrow G\left(L_{A, M}\right),
$$

(for any $\tau \in \Gamma_{0}(p)$ one has $\psi_{A, M}^{\circ}(\tau)=\tau g_{A, M} \circ\left(-g_{A, M}\right)$).
Taking

$$
\psi^{\circ}=\lim _{A, M} \psi_{A, M}^{\circ}: \Gamma_{0}(p) \longrightarrow G(L)
$$

we obtain the identification

$$
\bar{\psi}^{\circ}: \Gamma_{0}(p) / C_{p}\left(\Gamma_{0}(p)\right) \simeq G(L) .
$$

$$
\psi^{0}(\tau)=\tau g \circ(-g)
$$

Remark.
Let $\varepsilon_{p}: K_{0}^{*} \longrightarrow \Gamma_{0}(p) / C_{2}\left(\Gamma_{0}(p)\right)$ be the homomorphism appearing from the reciprocity map of local class field theory. Via Witt explicit reciprocity law, [W], one can show that
a) $\varepsilon_{p}\left(\widetilde{t_{0}}\right)=\left(\bar{\psi}^{0}\right)^{-1}\left(V_{0}\right) \bmod C_{2}\left(\Gamma_{0}(p)\right)$;
b) if $E(X)$ is Artin-Hasse exponential (c.f. n.4.2.2), $a \in \mathbb{Z}^{+}(p), \beta \in W\left(\mathbb{F}_{q_{0}}\right)$, then

$$
\varepsilon_{p}\left(E\left(\beta{\tilde{t_{0}}}^{a}\right)\right)=\left(\bar{\psi}^{0}\right)^{-1}\left(V_{a, f_{\beta}}\right) \bmod C_{2}\left(\Gamma_{0}(p)\right)
$$

Here the homomorphism $f_{\beta} \in \operatorname{Hom}\left(W\left(\mathbb{F}_{q_{0}}\right), W\left(\mathbb{F}_{p}\right)\right)$ is such that for any $\alpha \in$ $W\left(\mathbb{F}_{q_{0}}\right)$ one has $f_{\beta}(\alpha)=\operatorname{Tr}(\beta \alpha)$, where

$$
\operatorname{Tr}: W\left(\mathbb{F}_{q_{0}}\right) \longrightarrow W\left(\mathbb{F}_{p}\right)
$$

is induced by the trace of the extension $\mathbb{F}_{q_{0}} / \mathbb{F}_{p}$.
5.2. Let $\phi_{0} \in \operatorname{Gal}\left(K_{0} / \mathbb{F}_{p}\left(\left(\tilde{t_{0}}\right)\right)\right)$ be such that $\phi_{0}\left(\tilde{t_{0}}\right)=\tilde{t_{0}}$ and $\left.\phi_{0}\right|_{\mathbf{F}_{9}}$ be the absolute Frobenius automorphism of the extension $\mathbb{F}_{q_{0}} / \mathbb{F}_{p}$. It is clear, that ϕ_{0} generates the Galois group $\operatorname{Gal}\left(K_{0} / \mathbb{F}_{p}\left(\left(\tilde{t_{0}}\right)\right)\right)$.

Denote by $a_{\phi_{0}}$ the automorphism of the Lie algebra L, given on the set of generators

$$
\left\{V_{a, n} \mid a \in \mathbb{Z}^{+}(p), n \in \mathbb{Z} / N_{0} \mathbb{Z}\right\} \cup\left\{V_{0}\right\}
$$

of the Lie algebra $L_{\mathbf{F}_{90}}$ by the following conditions:

$$
\begin{gathered}
a_{\phi_{0}}: V_{a, n} \mapsto \widetilde{\exp }\left(\sigma^{n} \alpha \operatorname{ad}\left(V_{0}\right)\right)\left(V_{a, n+1}\right) \\
a_{\phi_{0}}: V_{0} \mapsto V_{0}
\end{gathered}
$$

(here $\widetilde{\exp }(X)=\sum_{0 \leq n<p} X^{n} / n!$ is the truncated exponential).

Proposition.

a) $\phi_{0}(h) \underset{R}{\sim} a_{\phi_{0}}(h)$;
b) the correspondence $g \mapsto a_{\phi_{0}}(g) \circ\left(\alpha V_{0}\right)$ defines an extension $\hat{\phi}_{0}$ of the automorphism ϕ_{0} to the field $K_{s e p}^{\mathrm{Ker}} \psi_{0}$ (which coincides with the maximal p-extension of K_{0} having Galois group of class of nilpotency $<p$);
c) The action of $\hat{\phi}_{o}$ on $\Gamma_{0}(p) / C_{p}\left(\Gamma_{0}(p)\right)$ by conjugation corresponds under the identification $\bar{\psi}^{0}$ to the automorphism $a_{\phi_{0}}$ of the Lie algebra $L_{\mathbf{F}_{q_{0}}}$.

Proof.

Indeed, a) is implied by the following calculation:

$$
\begin{aligned}
\phi_{0}(h)= & \left(\sum_{a \in \mathbf{Z}^{+}(p)} t^{a} V_{a, 1}\right) \circ\left(\sigma \alpha V_{0}\right) \underset{R}{\sim}\left(\alpha V_{0}\right) \circ\left(\sum_{a \in \mathbf{Z}^{+}(p)} t^{a} V_{a, 1}\right)= \\
= & {\left[\left(\alpha V_{0}\right) \circ\left(\sum_{a \in \mathbf{Z}^{+}(p)} t^{a} V_{a, 1}\right) \circ\left(-\alpha V_{0}\right)\right] \circ\left(\alpha V_{0}\right)=} \\
& =\left(\sum_{\substack{a \in \mathbf{Z}^{+}(p) \\
0 \leq m<p}} t^{a} \frac{\alpha^{m}\left(\operatorname{ad} V_{0}\right)^{m}}{m!} V_{a, 1}\right) \circ\left(\alpha V_{0}\right)= \\
= & \sum_{\substack{a \in \mathbf{Z}^{+}(p) \\
0 \leqslant m<p}} t^{a} \widetilde{\exp }\left(\alpha \operatorname{ad}\left(V_{0}\right)\right)\left(V_{a, 1}\right) \circ\left(\alpha V_{0}\right)=a_{\phi_{0}}(h) .
\end{aligned}
$$

(we use the identity

$$
\exp (X) \exp (Y) \exp (-X)=\exp \left(\sum_{n \geqslant 0} \frac{1}{n!}(\operatorname{ad} X)^{n} Y\right)
$$

in an associative \mathbb{Q}-algebra with generators X, Y, c.f. [B, ch. 2, n. 6 , exerc.1]).
From this calculation it follows that

$$
\phi_{0}(h)=\left(-\alpha V_{0}\right) \circ a_{\phi_{0}}(h) \circ\left(\sigma \alpha V_{0}\right) .
$$

Now the part b) follows from remark 1.5.2.
The part c) of our Proposition follows from remark 1.5.4.
5.3. Let $I_{0} \subset \Gamma_{0}(p)$ be the higher ramification subgroup. Consider the restriction ψ^{*} of the morphism ψ° to the subgroup I_{0} :

$$
\psi^{*}=\left.\psi^{\circ}\right|_{I_{0}}: I_{0} \longrightarrow G(L) .
$$

In according with the decomposition $L=\underset{A, M}{\underset{\underset{A}{\lim }}{ } L_{A, M}}$ one has the decomposition $\psi^{*}=\underset{A, M}{\underset{\lim }{~}} \psi_{A, M}^{*}$, where $\psi_{A, M}^{*}$ is a compatible system of homomorphisms

$$
\psi_{A, M}^{*}: I_{0} \longrightarrow G\left(L_{A, M}\right)
$$

Proposition. There exists $\beta \in W(k)$, such that

1) $\sigma \beta-\beta=\alpha$;
2) if $g_{A, M}^{*}=g_{A, M} \circ\left(-\beta V_{0}\right)$ and

$$
h_{A, M}^{*}=\sum_{a \in A}\left(\sum_{0 \leq m<p-1} \frac{\beta^{m}}{m!}(\mathrm{ad})^{m}\left(V_{a, 0}\right)\right) t^{a},
$$

then $\psi_{A, M}^{*}=\pi_{g_{A, M}^{*}}\left(h_{A, M}^{*}\right)$, i.e. (in notation of the Corollary 1.4) for any $\tau \in I_{0}$ it holds:

$$
\begin{gathered}
\psi_{A, M}^{*}(\tau)=\tau\left(g_{A, M}^{*}\right) \circ\left(-g_{A, M}^{*}\right) \\
\sigma g_{A, M}^{*}=g_{A, M}^{*} \circ h_{A, M}^{*} .
\end{gathered}
$$

Proof.

Let L° be the free commutative Lie \mathbb{Z}_{p}-algebra with the generator V_{0}. For an integer $M \geqslant 0$ set $L_{M}^{\circ}=L^{\circ} / p^{M+1} L^{\circ}$. Consider the morphism of Lie $\mathbb{Z}_{p^{-} \text {-algebras }}$

$$
\pi_{A, M}: L_{A, M} \longrightarrow L_{M}^{\circ},
$$

given in the terms of generators by the following conditions $V_{a, f} \mapsto 0$ and $V_{0} \mapsto V_{0}$ for all $a \in A \subset \mathbb{Z}^{+}(p), f \in \operatorname{Hom}\left(W_{M}\left(\mathbb{F}_{q_{0}}\right), W_{M}\left(\mathbb{F}_{p}\right)\right)$.

The epimorphisms $\pi_{A, M}$ define the epimorphism

Clearly, if $L^{*}=\operatorname{Ker} \pi$, then $\operatorname{Im} \psi^{*}\left(I_{0}\right)=G\left(L^{*}\right) \subset G(L)$.
Consider the extension of scalars of the morphism π :

$$
\pi_{K_{\bullet e p}}: L_{K_{\text {etp }}} \longrightarrow L_{K_{\text {ep }}}^{\circ}
$$

Then $\pi_{K_{\text {e }}(g)}(g)=\beta V_{0}$, where $\beta \in W(k)$ is such that

$$
\sigma \beta-\beta=\alpha
$$

It is clear, that β generates the maximal unramified p-extension of the field K_{0}. Set $g=g^{*} \circ\left(\beta V_{0}\right)$ in $G\left(L_{K \text { e } p}\right)$. If $g^{*}=\underset{A, M}{\lim _{\overparen{A}}} g_{A, M}^{*}$, then $g_{A, M}=g_{A, M}^{*} \circ\left(\beta V_{0}\right)$ and

$$
\psi_{A, M}^{*}(\tau)=\psi_{A, M}^{0}(\tau)=\tau\left(g_{A, M}\right) \circ\left(-g_{A, M}\right)=\tau\left(g_{A, M}^{*}\right) \circ\left(-g_{A, M}^{*}\right)
$$

Introduce $h_{1} \in G\left(L_{K_{0}}\right)$ by the equality

$$
h=h_{1} \circ\left(\alpha V_{0}\right)
$$

The following equalities

$$
\begin{gathered}
\sigma g=g \circ h=g^{*} \circ\left(\beta V_{0}\right) \circ h_{1} \circ\left(\alpha V_{0}\right), \\
\sigma g=\sigma g^{*} \circ\left(\sigma \beta V_{0}\right)=\sigma g^{*} \circ\left(\beta V_{0}\right) \circ\left(\alpha V_{0}\right)
\end{gathered}
$$

give

$$
\sigma g^{*}=g^{*} \circ h^{*},
$$

where $h^{*}=\left(\beta V_{0}\right) \circ h_{1} \circ\left(-\beta V_{0}\right) \in G\left(L_{K}\right)$.
Let $h^{*}=\underset{A, M}{\lim _{\overleftarrow{A}}} h_{A, M}^{*}, \quad h_{1}=\underset{A, M}{\lim _{\overleftarrow{A}}}\left(h_{1}\right)_{A, M}$. Then

$$
\left(h_{1}\right)_{A, M}=\sum_{a \in A} t^{a} V_{a, 0}
$$

and, therefore,

$$
h_{A, M}^{*}=\beta V_{0} \circ\left(\sum_{a \in A} t^{a} V_{a, 0}\right) \circ\left(-\beta V_{0}\right)=\sum_{\substack{a \in A \\ 0 \leq m<p}} \frac{\beta^{m}}{m!} t^{a}\left(\operatorname{ad} V_{0}\right)^{m}\left(V_{a, 0}\right)
$$

Proposition is proved.

5.4. Construction of the morphism δ.

As was proved earlier the morphism

$$
\psi^{*}=\left.\psi^{\circ}\right|_{I_{0}}: I_{0} \longrightarrow G(L)
$$

is given by the correspondence $\tau \mapsto\left(\tau g^{*}\right) \circ\left(-g^{*}\right)$, where $\sigma g^{*}=g^{*} \circ h^{*}$.
On the other hand, the morphism

$$
\psi(p): \Gamma(p) \longrightarrow G(\mathcal{L}(p))
$$

(c.f. n.3.5.2) is given by the correspondence

$$
\tau \mapsto \tau f(p) \circ(-f(p))
$$

where $f(p) \in \mathcal{L}_{K_{\text {ıep }}}, \sigma f(p)=f(p) \circ e, e(p)=\lim _{\longleftarrow} e_{A, N, M}$ and $e_{A, N, M}=\sum_{a \in A} t^{a} D_{a, 0}$ (as usually, $A \subset \mathbb{Z}^{+}(p)$ is a finite subset, $N \geqslant 1, M \geqslant 0$ are integers).

Therefore, an explicit form of the morphism $\delta: \mathcal{L}(p) \longrightarrow L$ can be obtained from the conditions

$$
\delta_{K}(e)=h^{*}, \quad \delta_{K_{\text {epp }}}(f(p))=g^{*}
$$

Let $\mathcal{L}_{A, N, M}$ be the Lie algebra from n .2 .3 and

$$
\left\{D_{a, n} \mid a \in A, n \in \mathbb{Z} / N \mathbb{Z}\right\}
$$

be the standard basis of its extension of scalars $\mathcal{L}_{A, N, M, k}$.
Proposition. If $N \equiv 0 \bmod \left(p^{M+1} N_{0}\right)$, then there exists a unique morphism of Lie \mathbb{Z}_{p}-algebras

$$
\delta_{A, N, M}: \mathcal{L}(p)_{A, N, M} \longrightarrow L_{A, M}
$$

which satisfies the following condition:

$$
\delta_{A, N, M, k}\left(D_{a, 0}\right)=V_{a, 0}+\sum_{1 \leq m<p} \frac{\beta^{m}}{m!}\left(\operatorname{ad} V_{0}\right)^{m}\left(V_{a, 0}\right)=\widetilde{\exp }\left(\beta \operatorname{ad}\left(V_{0}\right)\right)\left(V_{a, 0}\right)
$$

(here $\delta_{A, N, M, k}=\delta_{A, N, M} \otimes W(k)$).
Proof.
One should check up that the morphism of Lie algebras

$$
\delta_{A, N, M, k}: \mathcal{L}_{A, N, M, k} \longrightarrow L_{A, M, k},
$$

which is given by the relation $\delta_{A, N, M, k}\left(D_{a, n}\right)=\sigma^{n} \delta_{A, N, M, k}\left(D_{a, 0}\right)$ for $0 \leq n<$ $N, a \in A$, commutes with the action of σ on these Lie algebras.

It is sufficient to prove that

$$
\sigma^{N}\left(\delta_{A, N, M, k}\left(D_{a, 0}\right)\right)=\delta_{A, N, M, k}\left(D_{a, 0}\right)
$$

This fact is implied by the following lemma

Lemma.

If $N \equiv 0 \bmod \left(p^{M+1} N_{0}\right)$, then $\sigma^{N}(\beta) \equiv \beta \bmod p^{M+1}$.

Proof.

One has

$$
\sigma^{N_{0}} \beta=\beta+\alpha+\ldots+\sigma^{N_{0}-1} \alpha=\beta+\operatorname{Tr} \alpha=\beta+1
$$

Therefore,

$$
\sigma^{N} \beta=\beta+\frac{N}{N_{0}} \equiv \beta \bmod p^{M+1}
$$

Corollary.

a)

$$
\delta=\lim _{\leftrightarrows} \delta_{A, N, M}
$$

b) if $N \equiv 0 \bmod p^{M+1} N_{0}, a \in \mathbb{Z}^{+}(p), l \in \mathbb{Z}$, then one has in the Lie algebra $L_{A, M, k}=L_{A, M} \otimes W(k)$ the equality

$$
\delta_{A, N, M, k}\left(D_{a, j_{N}(l)}\right)=\widetilde{\exp }\left(\sigma^{i} \beta \operatorname{ad}\left(V_{0}\right)\right)\left(V_{a, j_{N_{0}}(l)}\right)
$$

(here $j_{N}(l)$ and $j_{N_{0}}(l)$ are the residues of l modulo N and N_{0}, respectively).
Proof.
From the above propositions of nn.5.3, 5.4 it follows that for $N \equiv 0 \bmod \left(p^{M+1} N_{0}\right)$ $\delta_{A, N, M, K}$ transforms

$$
e_{A, N, M}(p)=\sum_{a \in A} t^{a} D_{a, 0} \in G\left(\mathcal{L}_{A, N, M, K_{t r}}\right)
$$

to $h_{A, M}^{*} \in G\left(L_{A, M, K}\right)$.Therefore,

$$
\lim _{\leftrightarrows} \delta_{A, N, M, K}=\delta_{K},
$$

and we obtain the part a) of the above statement.
Using the commutativity of δ and σ we obtain the formula of the part b) of our Corollary.
5.5. Let $\left\{L^{(v)}\right\}_{v>0}$ be a filtration of the Lie algebra L, which corresponds to the ramification filtration of the Galois group $\Gamma_{0}(p)$ under the identification $\bar{\psi}^{0}$.
5.5.1. Let $\phi_{0} \in \operatorname{Gal}\left(K_{0} / \mathbb{F}_{p}\left(\left(\tilde{t_{0}}\right)\right)\right)$ be the automorphism from $n .5 .2$ and $\hat{\phi}_{0}$ be its extension to an automorphism of the maximal p-extension of the field K_{0} with Galois group of class of nilpotence $<p$ from the Proposition 5.2 c).

For any $l \in L_{k}=L \otimes W(k)$ set

$$
\phi_{0} * l=a_{\phi_{0}}(l),
$$

where $a_{\phi_{0}}$ is the automorphism of the Lie algebra L from n.5.2. As was proved in the Proposition 5.2, the morphism $l \mapsto \phi_{0} * l, l \in L_{k}$, gives (in the terms of Lie algebras) the action of the lifting $\hat{\phi}_{0}$ on the group $\Gamma_{0}(p) / C_{p}\left(\Gamma_{0}(p)\right)$ by conjugation.

For any $m \in \mathbb{Z}$ denote by ϕ_{0}^{m} the m-th iteration of the morphism $l \mapsto \phi_{0} * l$.
5.5.2. Let $v \in \mathbb{Q}, v>0$. For any $\gamma \in \mathbb{Q}, \gamma>0$, consider the elements $\mathcal{G}_{v}(\gamma) \in L_{\mathbf{F}_{90}}$, which are given by the following expressions:

$$
\begin{gathered}
\mathcal{G}_{v}(\gamma)= \\
=\sum_{\substack{1 \leqslant s<p \\
a_{1}, \ldots, a, \in \mathbf{Z}^{+}(p) \\
i, m_{2}, \ldots, m_{s} \geqslant 0}}(-1)^{s} p^{i} a_{1} \eta\left(0, m_{2}, \ldots, m_{s}\right)\left[\ldots\left[\phi_{0}^{i} * V_{a_{1}, 0}, \phi_{0}^{i-m_{2}} * V_{a_{2}, 0}\right], \ldots, \phi_{0}^{i-m_{s}} * V_{a_{0}, 0}\right] . \\
p^{i}\left(a_{1}+\frac{a_{2}}{p^{m 2}+\ldots+p^{2}+1}=\gamma\right. \\
p^{i} a_{1}, \ldots, p^{i} a,<(p-s) v
\end{gathered}
$$

5.5.3. Theorem. In notation of n.5.5.2 $L^{(v)}$ is the minimal ideal of the Lie algebra L, such that $L^{(v)} \otimes W\left(\mathbb{F}_{q_{0}}\right)$ contains the following elements:
a) $p^{i} V_{a, 0}$, if $p^{i} a \geqslant(p-1) v$;
b) $\mathcal{G}_{v}(\gamma)$, if $\gamma \geqslant v$.
5.6. Proof of Theorem 5.5.3.
5.6.1. For any $M \geqslant 0$ set $L_{M}=\underset{A}{\lim } L_{A, M}$, then $L=\underset{M}{\underset{\leftrightarrows}{\lim } L_{M}}$.

For $N \equiv 0 \bmod N_{0} p^{M+1}$ consider the morphism

$$
\delta_{N, M}=\underset{A}{\lim } \delta_{A, N, M}: \mathcal{L}(p)_{N, M} \longrightarrow L_{M}
$$

(c.f. n.5.4).

It follows from n.3.5.4, that $\mathcal{L}(p)^{(v)}=\underset{N, M}{\lim _{\overparen{N}}} \mathcal{L}(p)_{N, M}^{(v)}$, and the ideals $\mathcal{L}(p)_{N, M}^{(v)}$ are the minimal ideals of the Lie algebra $\mathcal{L}(p)_{N, M}$ such that $\mathcal{L}(p)_{N, M}^{(v)} \otimes W(k)$ contains the elements
a) $p^{i} D_{a, 0}$, where $a \in \mathbb{Z}^{+}(p), i \geqslant 0, p^{i} a \geqslant(p-1) v$;
b) $\mathcal{F}_{N, v}(\gamma, 0)$ for $\gamma \geqslant v$.

Therefore, $L_{M}^{(v)}$ is the minimal ideal of the Lie algebra L_{M}, such that $L_{M}^{(v)} \otimes W(k)$ contains the elements
a) $p^{i} \delta_{N, M}\left(D_{a, 0}\right)$, where $p^{i} a \geqslant(p-1) v$;
b) $\delta_{N, M}\left(\mathcal{F}_{N, v}(\gamma, 0)\right)$, where $\gamma \geqslant v$.
5.6.2. As earlier, for any $l \in \mathbb{Z}$ denote by $j_{N}(l)$ the residue of l modulo N.

Lemma. For any $a \in \mathbb{Z}^{+}(p)$ and $l \in \mathbb{Z}$ in the Lie algebra $L_{M, k}$ we have the equality:

$$
\delta_{N, M, k}\left(D_{a, j_{N}(l)}\right)=\widetilde{\exp }\left(\beta \operatorname{ad} V_{0}\right)\left(\phi_{0}^{l} * V_{a, 0}\right)
$$

Remark. The automorphism $l \mapsto \phi_{0} * l$ of the Lie algebra $L_{M, k}$ has the order $N_{0} p^{M+1}$ (c.f. the proof of the Lemma n.5.4), therefore, the element $\phi_{0}^{l} * V_{a, 0}$ depends only on the residue $j_{N}(l)$.
Proof.
For any $l \in \mathbb{Z}$ one has (c.f. the Corollary n.5.4)

$$
\delta_{N, M, k}\left(D_{a, j_{N}(l)}\right)=\widetilde{\exp }\left(\sigma^{l} \beta \operatorname{ad}\left(V_{0}\right)\right)\left(V_{a, j_{N_{0}}(l)}\right)
$$

Let $l \equiv l_{1} \bmod N$, where $l_{1} \in \mathbb{Z}, 0 \leqslant l_{1}<N$. Now the statement of our Lemma follows from the following identities:

1) $\sigma^{l} \beta-\beta \equiv \sigma^{l_{1}} \beta-\beta=\alpha+\sigma \alpha+\ldots+\sigma^{l_{1}-1} \alpha \bmod p^{M+1}$;
2) $\stackrel{\exp }{\operatorname{ex}}\left(\left(\alpha+\sigma \alpha+\ldots+\sigma^{l_{1}-1} \alpha\right) \operatorname{ad}\left(V_{0}\right)\right)\left(V_{a, j_{N_{0}}(l)}\right)=$

$$
=\phi_{0}^{l_{1}} * V_{a, 0}=\phi_{0}^{l} * V_{a, 0} .
$$

5.6.3. If $N \equiv 0 \bmod N_{0} p^{M+1}, a \in \mathbb{Z}^{+}(p), i \in \mathbb{Z}, i \geqslant 0$, then the above Lemma gives in the Lie algebra $L_{M, k}$ the following equality

$$
\delta_{N, M, k}\left(p^{i} D_{a, 0}\right)=\widetilde{\exp }\left(\beta \operatorname{ad} V_{0}\right)\left(p^{i} V_{a, 0}\right)
$$

For any $l_{1}, l_{2} \in L_{M, k}$ one has the following identity

$$
\widetilde{\exp }\left(\beta \operatorname{ad} V_{0}\right)\left[l_{1}, l_{2}\right]=\left[\widetilde{\exp }\left(\beta \operatorname{ad} V_{0}\right) l_{1}, \widetilde{\exp }\left(\beta \operatorname{ad} V_{0}\right) l_{2}\right] .
$$

Therefore, for any $\gamma \in \mathbb{Q}, \gamma>0$, in $L_{M, k}$ we have the equality

$$
\delta_{N, M, k}\left(\mathcal{F}_{N, v}(\gamma, 0)\right)=\widetilde{\exp }\left(\beta \operatorname{ad} V_{0}\right) \mathcal{G}_{v}(\gamma)
$$

The operator $\widetilde{\exp }\left(\beta\right.$ ad $\left.V_{0}\right)$ is inversible on $L_{M, k}$, therefore, it follows from n.5.6.1 that the ideal $L_{M, k}^{(v)}=L_{M}^{(v)} \otimes W(k)$ is generated by the elements
a) $p^{i} V_{a, 0}$, for $p^{i} a \geqslant(p-1) v$;
b) $\mathcal{G}_{v}(\gamma)$, for $\gamma \geqslant v$.

Now it is sufficient to remark that these elements are in the algebra $L_{M} \otimes W\left(\mathbb{F}_{q_{0}}\right)$ and do not depend on M.

Theorem is proved.
5.7. As in n .3 .5 , we have the following version of the Theorem 5.3.3.

Theorem. Let $1 \leqslant s_{0}<p, v \in \mathbb{Q}, v>0$. Then the ideal $L^{(v)} \bmod C_{s_{0}+1}(L)$ is the minimal ideal of the Lie algebra $L \bmod C_{s_{0}+1}(L)$ such that $L^{(v)} \otimes W\left(\mathbb{F}_{q_{0}}\right) \bmod C_{s_{0}+1}\left(L_{\mathbf{F}_{9_{0}}}\right)$ contains the following elements:

1) $p^{i} V_{a, 0}$, where $i \geqslant 0, a \in \mathbb{Z}^{+}(p), p^{i} a \geqslant s_{0} v$;
2) $\mathcal{G}_{v, s_{0}}(\gamma)=$

$$
=\sum_{\substack{1 \leqslant s \leqslant s_{0} \\ a_{1}, \ldots, a, \ldots, \mathbf{Z}^{+}(p) \\ i, m_{2}, \ldots, m_{s} \geqslant 0}}(-1)^{s} p^{i} a_{1} \eta\left(0, m_{2}, \ldots, m_{s}\right)\left[\ldots\left[\phi_{0}^{i} * V_{a_{1}, 0}, \phi_{0}^{i-m_{2}} * V_{a_{2}, 0}\right], \ldots, \phi_{0}^{i-m_{t}} * V_{a_{\mathbf{t}}, 0}\right],
$$

where $\gamma \geq v$.

References

[A] V.A.Abrashkin, Ramification filtration of the Galois group of a local field, (to appear in Adv. Sov. Math.).
[B] N.Bourbaki, Lie groups and Lie algebras, Part I: Chapters 1-3, Hermann, 1975.
[B-M] P. Berthelot, W. Messing, Théorie de Deudonné Cristalline III: Théorèmes d'Équivalence et de Pleine Fidélité, The Grotendieck Festschrift (Р.Cartier ctc., eds.), A Collection of Articles Written in Honor of 60th Birthday of Alexander Grothendieck, vol. 1, Birkhauser, 1990.
[F] J.-M. Fontaine, Représentalions p-adiques des Corps Locaux, The Grotendieck Festschrift (P.Cartier etc., eds.), A Collection of Articles Written in Honor of 60th Birthday of Alexander Grothendieck, vol. 2, Birkhauser, 1990.
[Sh] I.R. Shafarevich, A general reciprocoty law, Mat. Sb. 26 (68) (1950), 113-146.
[Se] J.-P.Serre, Local fields, (Graduate texts in math.; 67). Springer-Verlag, Berlin-HeidelbergNew York. Translation of Corps Locaux, 1979.
[W] E. Witt, Zyklische Korper und Algebren der Charakteristikp vom Grad pn, J.Reine Angew. Math 176 (1937), 126-140.

