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0. Introduction.

Let K be a local complete discrete valuation field with a perfect residue field &
of characteristic p > 0, K,¢, be a fixed separable closure of K| ' = Gal(K,.p/K)
be the absolute Galois group of K.

The group I has a decreasing filtration of normal subgroups {T'(")},50, where
for any v € Q, v > 0, I'*) is the ramification subgroup of T' in upper numbering,
[Se, ch.2].

We have: I{,r::) = Ky, is the maximal unramified extension of K, I = | r(v)
v>0
is the higher ramification subgroup, which is a pro-p-group (if char X' = p, then I

is a free pro-p-group), Kslep = Kr 1s the maximal tamely ramified extension of K.

Let char K = p and o be a fixed uniformizer of K. Then K can be identified
with the fraction field k((fo)) of the power series ring k[[to]).

Let k ~ F,. Under this assumption I' = T'(®)| and I is the Galois group of the
maximal p-extension of Ky.. In this paper we give an explicit description of the
image of the filtration {T(*)},5¢ of the group I under the natural map

I — I/CP(I),

where Cp(I) is the minimal closed subgroup of I containing all commutators of
order > p.

This result is applied to the study of the ramification filtrations of the Galois
group I'(p) of the maximal p-extension of K and of the Galois group I'y(p) of the
maximal p-extension of a field Ky = ko((f)), where ko =~ F,, is the finite field of
g = p™° elements. In these cases we obtain an explicit description of the filirations
{T(p)(® mod Co(T(p)) huso and {To(p)® mod Cy(To(p))}oso.

The paper is organized as follows.

In n.1 we assume that K is an arbitrary field of characteristic p > 0 and give
a version of Artin-Schreier theory, which permits to construct efficiently any p-
extension of K having Galois group of class of nilpotency < p. A special case of
this theory, which is ajusted to the study of p-extensions of K with Galois group
of exponent p (and of class of nilpotency < p), was constructed in [Al.

Qur construction is based on
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a) an equivalence of the category of finite Lie Z ,-algebras £ of class of nilpotency
< p and the category of finite p-groups of the same class of nilpotency, c.f. [B, ch.2,
n.8, exerc.4]. This equivalence is given by the functor

L G(L),

where G(L) = £ as a set and the operation on G(L) is given via the Hausdorff
series in the envelopping algebra of £:

li,lp € L — 1y oly = log(exp l; exp l3);

b) a construction of an absolutely unramified field £(K') of characteristic 0 having
the residue field K, where we fix a lifting o of the absolute Frobenius endormorphism
ao of the field K, c.f. [B-M.nn.1.1-1.3], [F, n.A1].

The formalism of this theory permits to fix an “arithmetical meaning” of gen-
erators of the Galois group of K modulo p-th commutators and to give explicitly
extensions of endormorphisms of K to field extensions of K having Galois group of
class of nilpotency < p.

Let K = k((5)) be the fraction field of the formal power series ring in a variable
to with coefficients in a field k ~ Fp. Then

Ky = K({to | € Q*(p)}),

where Qt(p) = {r € Q| r > 0,(r,p) = 1}. In n.2 we construct a profree Lie
Z-algebra £ and apply the theory of n.1 to construct an identification

P I/Cy(I) = G(L),

where £ = £/Cp(L) and Cp(L) is the closure of the ideal in £ generated by com-

mutators of order 2 p.
The Lie algebra £ appears as a prq;ectwe limit lim c r,~N,M, where R C Q*(p)
R,N,.M
is a finite subset, N > 1, M 2 0 are 1ntegers L'R N M is a free Lie Z /pM+1Z-algebra.

The extension of scalars L,y mt = Lr,N,u ® Wa(k) of this algebra has a natural
system of free generators

{Dyn|r€RneZ/NZ)}

(here Wy (k) are Witt vectors of length M + 1 with coefficients in k).
In n.3 we construct a decreasing filtration of ideals £*), v € Q,v > 0, of the Lie
algebra £. By definition,

,C(v) == llm [':RNM’
RNM

where E(I{J‘)N'M are ideals of the Lie algebra Lp oy m = ER,N,M/Cp(ER,N,M)- The
ideals L3y p ® War(k) of the Lie algebra Lg,n,u ® Wa(k) are given by explicit
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generators Fg n m(7v,n1), where v € Q,v 2 v,n; € Z/NZ. The expressions of
these generators consist of terms of form

7](0, ma, ---ams)Pirl [---[Dr'1,ﬂ1 ) Df'z,nz]i ey D"uﬂ.]'

Each of these terms corresponds to a presentation of a rational number v in the
form

where 1 € s < p,r1,...,75 € R,z and 0 = m; < my € ... £ my < N are integers.
Here mimod N = ny —n; for 2 € ¢ < 3, and the appearance of the coefficients
n(0, ma,...,m,) € Q*(p) is related to the existence of groups of equal elements in
the sequence my,mo, ..., m,.

In n.3.4 we formulate the main theorem, which states that the image of the ram-
ification filtration {T(*")},5¢ in I/Co(I) corresponds to the filtration {G(L(*)}y50
under the identification ¥ of n.2.

In n.3.5 we consider a version of this theorem for the case of p-extensions of the
field K. Here we have the induced identification

%(p) : T(p)/ Cy(T(p)) = G(L(p)),

where L(p) = im LN, L£a,N,um are the Lie algebras from n.2 and A is a finite
AN M
subset in Z*(p) = Q*(p) N Z. In this situation, for any v > 0,v € Q, the ideal

L(p)® is presented in the form I(iLn.C(p)g\';), where E(p)g::) is an ideal of the Lie
N
algebra L(p)n = @EA,N,M. As a consequence of the main theorem we obtain an

AM
explicitly given system of generators of the ideals E(p)g\',’) @ W(k) in the Lie algebra
L(p)n ® W (k).

The proof of the main theorem (n.3.6 and n.4) is given only modulo 3-rd com-
mutators. This case gives sufficiently full illustration of our method. In general
case (i.e. modulo p-th commutators) the proof requires more careful calculations
(c.f. [A], where this was done for extensions of exponent p) and will be given in a
forthcoming paper.

Let Ky = ko((f)), where ko = Fyp,q0 = p™o, Ny > 1. If Ty(p) is the Ga-
lois group of the maximal p-extension of the field Ky, then there exists a natural
homomorphism

v : T(p)/Cp(T(p)) — To(p)/Cp(To(p)),

which is compatible with ramification filtrations. In n.5 we construct an identifica-
tion

%o : To(p)/Cp(To(p)) = G(L),

where L = L/Cy(L) and L is a free Lie pro-p-algebra over Z,. In this case L has a
natural system of generators, which can be interpreted modulo 2-nd commutators
in the terms of local class field theory. The homomorphism ~ can be described via
some morphism of Lie algebras 6 : £(p) — L, which is constructed in nn.5.3-5.4.
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In nn.5.5-5.6 we apply the explicit construction of the above morphism ¢ to
describe the filtration {L(”)}U>0, which corresponds to the ramification filtration
under the identification 1. This description does not require a passage to limit:
we construct generators of ideals L(*) @ W(F,, ) of the Lie algebra L @ W(F,, ).

In the following paper there will be given an application of this theory to the
study of the ramification filtration of the Galois group of a local field of character-
istic 0 modulo p-th commutators.

This paper was done during my stay (Febr.-Sept., 1993) in the research group of
Prof. H. Koch (MPG, Arbeitsgruppe “Algebr. Geom. u. Zahlentheorie”, Berlin).
I express my gratitude to this organisation and especially to Prof. H. Koch and
Prof. E.-W. Zink for numerous discussions.

1. Artin-Schreier theory for extensions of class of nilpotency < p.
1.1. Groups and Lie algebras.

Let Lo be a free Lie algebra over Q with free generators U,V and Ag be its
envelopping algebra. Ag is a free associative algebra with generators U, V and
there exists a natural embedding Lo C Aqg. For a natural number n > 1 denote
by Cn(Lq) the ideal in Lg, generated by all commutators of order > n. Define a
degree of any monomial in Ag by setting degU = deg V' = 1 and denote by C,(Ag)
the ideal of Ag generated (as @Q-module) by monomials of degree > n. We set
Lq =limLq/Cn(Lq), Ag = h‘_r__nAq/Cn(AQ). For any n > 1 we have

n 1

Cu(Ag) N Lo = Ca(Ly),

therefore, there exists a natural imbedding ﬁQ C fiQ induced by the above imbed-
ding Lo C Ag.
Consider the Hausdorff series

H(U,V) =log(expUexp V) € Ag.

We have the following properties.

1.1.1. H{U,V) € Lg.

This fact 1s very well-known as the Campbell-Hausdorff formula. In particular,
one has

H(U,V) = U +V + 30, V]+ (0,0, V] + 551V, [V, U]~

_52RLUCHLvﬂ]modCﬂ£QL

cf. [B, ch.2, n.6, remark 2].

1.1.2. The composition law [} ol = H(l1,13), where I;,l, € ﬁq, gives the
structure of the group G(ﬁq) on the set ﬁQ. With respect to this structure the
zero element of L:,Q is the neutral element, and —! is the inverse element for any

l e Lo = G(Ly).



Any ideal J of the Lie algebra Lg can be considered as a normal subgroup G(J)
of G(Lg) and J — G(J) gives one-to-one correspondence between the set of ideals
of Lie algebra [:'Q and the set of normal subgroups of the group G(Lg).

1.1.3. Let £ be a free Lie Z-algebra with free generators U,V , then Lo = LB Q.
If p is some prime number and £z, = £ @ Z,, then in evident notation one has:

for any I;,12 € ﬁzp yholy € [Ezp mod C,(Lg), cf. [B, ch.2, exerc.4 of n.8].

1.1.4. Let A be a Zp-algebra and £ be a Lie A-algebra of class of nilpotency
< p,i.e. Cp(L) =0. As a consequence of the above considerations the composition
law l1,lp — lyoly = H(l1, 1), where 1,13 € L, gives the group structure on the set
L. Denote this group by G(L). Obviously, the group G(£) and the Lie algebra £
have the same class of nilpotency.

If A = Z, then the correspondence £ — G(L) gives an equivalence of the
category of Lie Z j-algebras of a given class of nilpotency < p and the category of
p-groups of the same class of nilpotency, c.f. [B, ch.2, exerc.4 of n.8].

We remark that any morphism f : £ — £ of Lie A-algebras £1, £, (of class of
nilpotency < p) is automatically a morphism of groups G(L1) — G(L3). If £ is a
free finitely generated Lie Z,-algebra, £ = E/CP(E), then G(£) ~ I'/C,(T'), where
I’ is finitely generated free pro-p-group and C,(T") is its normal closed subgroup
generated by all commutators of order > p.

1.2. Some facts about liftings.

1.2.1. We follow the paper [B-M, n.1.1-1.3].

Let p be a fixed prime number and L be a field of characteristic p. For nonnega-
tive integer M denote by Op(L) a lifting of L modulo pM+!. By definition Ops(L)
is a flat Z /pM+1Z-algebra such that Opr(L)/pOnr(L) 2 L. These conditions char-
acterize Op(L) unigielly up to an isomorphism. A construction of Op(L) can be
given in the terms of p-basis of the field L as follows.

Let {z;}ie; be a p-basis of the field L, Wy (L) be the Z/pM+'Z-algebra of
Witt vectors of length M + 1 with coefficients in L, [a] € Wy (L) be Teichmuller
representative of a € L. Then Opm(L) is the Z/pM*1Z-subalgebra of Wy (L),
generated by elements of the form

R | [ER

el

where a € 4,0 < j < M,0 < a;; < pM¥177 and for any fixed value of j almost all
a;;j are equal to 0. In particular, one has {z;] € Oym(L) for any ¢ € I.

For nonnegative integers M; > M;, a lifting Op,(L) can be identified with
the quotient Oy, (L)/pM1~M2044, (L). A limit of this projective system of liftings
O(L) = I{EIOM(L) is the valuation ring of a complete absolutely unramified field

M
E(L) of characteristic 0 with the residue field L ( £(L) is absolutely unramified =
p is the uniformising element of £(L)).

Let o¢ be the absolute Frobenius endomorphism of L, i.e. o¢(l) = I? for any ! €
L. Denote by ¢ some lifting of 59 to Op(L). This means that ¢ is an endomorphism
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of the Z/pM+1Z-algebra Op(L) and omodp = oy. Any such lifting is a flat
morphism of Z/pM+1Z-modules, [B-M, 1.3].

In the terms of the above explicit construction of a lifting Os(L), the lifting o
is uniquelly defined by conditions

o([zi]) = v,

where 7 € I and y; are arbitrary elements of O (L) such that y; = [z:]” mod p.
1.2.2. From the above explicit construction of O(L) it follows that

Wu(LP)={ Y pla;"" | ao,...am € L} € Om(L).
0<j<M '

It is easy to show that if ¢ is an arbitrary lifting of the Frobenius morphism,
then

oMOM(L) C Wi (LP™)),

and the restriction of o to Wiy (L(pM)) gives the standard Frobenius endomorphism
of Witt vectors.

1.2.3. Let K be a given field of characteristic p. Fix a separable closure I,y
and some p-basis {z;}ies of the field K.

Let L be a field such that K C L C K,ep. Then {z;}ics is a p-basis of L. For
any integer M > 0 denote by Op (L) the lifting of L modulo pM*? related to the
p—basis {:B.'},‘E].

Under these assumptions there is a natural action of the Galois group I' =
Gal(Kyep/K) on Ops(K,ep) and

OM(Kaep)H = OM(L)a

where H C T is the subgroup, such that K ﬁp = L. In particular, we use the
identification

Om(Kaep)' = Op(K).

So, we have the system of liftings Ops(L) which is compatible on L and on M
(cf. n.1.2.1). As earlier, set O(L) = limOp(L) and denote by £(L) the field of

M
fractions of the ring O(L).

Following the paper [F, n.Al] fix some lifting ¢ of the absolute Frobenius mor-
phism of the field K to O(K). This gives a compatible system of liftings ¢ to
all Op(K). It is easy to show that for any separable extension L of K and any
integer M > 0 there exists a unique lifting o as of the absolute Frobenius mor-
phism of L to Op(L) such that o, a1 |0,, (k)= 0. So, o can be extended uniquelly
to all Op(K,ep) and O(K,ep). We use the same symbol o for these extensions.
Obviously, o commutes with the action of I" on O(K,,,).

From flatness of ¢ it follows that

Om(Ksep) lo=ia:={ a € OM(K,EP) | ca=a} = W (Fy) (= Z/pM+1Z).

6



Let & be some perfect subfield of I and M > 0 be any integer. Then any a € &
has Teichmuller representative [a] in Opr(K). This element [a] can be characterized
by the properties: [¢|modp = a and o([a]) = [a]’. Theset { [a] | a € k }
generates over Z/pMT1Z a lifting of £ modulo pM*! which can be identified with
the Z /p™+1Z-algebra of truncated Witt vectors Wy (k).

1.3. Main theorem.

Let A be a field of characteristic p > 0.

We use assumptions of n.1.2 and all above notation.

Let £ be a finite Lie algebra over Z, having class of nilpotency < p. For any
separable extension L of K we set

L1 = LBww,) O(L).
Remark that if pM+! £ = 0 for some integer M > 0, then
Lr=LOwer, Om(L).

Let G(Lk,.,) be the group related to Lg,,, (c.f. n.1.1). It is clear that ¢ and T
act on G(Lk,,,) by functoriality.

We have the following properties:

a) 0:G(Lk,,,) — G(Lk,.,) is a homomorphism and

G(LK,,) lo=ia= G(£L) (= G(Lx,));
b) if L/K is the Galois extension then the action of I'y/x = Gal(L/K) on Ly,
commutes with ¢ and one has G(L1) =/ = G(L).
Definition. Let aq,a; € G(Lx). Then a4 ~a; if there exists b € G(L g ) such that
az =(—b)oay o(ob).
Obviously, R is an equivalence relation on G(Lk).

Theorem. There exists one-to-one map

7 : G(Lk)/R — { conjugacy classes of Hom(T', G(L)) }.

Remarks.

a) It follows from the proof of this theorem (c.f. below) that « is functorial on
L and (in an obvious sense) on a pair (K, o).

b) Let £ be one-dimensional Lie algebra over F,. By choosing some generator of
the Fy-module £ one gets identifications: G(L) = Z/pZ, G(Lk) = K. Therefore,
G(Lk)/R = K/(c —1d)K, and our theorem gives the isomorphism

K/(o —id)K ~ Hom(T", Z /pZ)

of Artin-Schreier theory.

c) If £ is a free commutative Lie algebra of rank 1 over Z /pM*1Z, then we obtain
Witt theory of cyclic p-extensions of K, c.f. [W], [F, n.A.2.4].
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d) If p£ = 0, then our theorem gives a version of Artin-Schreier theory, which
was applied in [A] to the study of arbitrary extensions of K having Galois group
of exponent p and class of nilpotency < p (the group of p-diagonal elements in the
envelopping algebra of Ly, which we use in [A], can be identified with the group
G(L k) by the truncated logarithm).

Proof of theorem.
Fix an integer M > 0 such that p¥+1£ = 0.
1.3.1. Lemma. Let e € G(Lk), then

{feGLk.,) | of =foe}#0.

Proof of lemma.

We use induction on the length of Z/p™+1Z-module £. It is well-known that
there exists an ideal J of the Lie algebra £ such that |J| = p. Consider the exact
sequence of Lie algebras

00— J—L— L —0.

It gives the exact sequence of p-groups

1 — G(Jxk,.,) — G(Lk,.,) — G(Lk,,,) — 1

(we use the flatness of Op(Kyep) over Z/pH+17Z).
Let

fle{fe G(ﬁ'}(.ep) | of =foé },
where ¢’ € G(L' ) is the image of € under the natural projection G(Lx) — G(L).
If fi € G(Lk,.,) be such that a(f1) = f', then
O'fl =f1 OE+Bj,
where j is some generator of J and

B € Ker(p: Opm(Kiep) — OM(Kyep)) = Oo(Kyep) = Ksep

(we use that J is in the center of £ and Op(R,ep) is a flat Z/pMT1Z-module).
Let z € K,ep be such that 2 — z = B (its existence follows from Artin-Schreier
theory). Set

f =f1 +$j e G(CKacp)'
Then
foe=fioc+sj,
of =ofi +xPj

and, therefore,

fe{feGllk,,) | of=foel,
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q.e.d.
1.3.2. Construction of 7.
Construction of ws(e) € Hom(T, G(L)).
Let ¢ € G(Lk) and

fe{feGLx,,) | of=foe}

If 7 €T, then o(7f) = 7(cf) = 7(f o e) = 7f o e. Therefore,
o(rfo(=f))=0a(rfloo(-f)=1(ef)o(-of) =

=7foeo(—e)o(—f)y=71fo(-f).

SO) Tf © (_f) € G(EKOQP) |U=id: G(E)
Obviously, the correspondence 7 — 7 f o(— f) gives the element of Hom(I', G(L£))
which we denote by 7 ¢(e).

Dependence on f.
Let

he{feGLk,,) | of =foel.
Then
o(fio(=f)) =o(fi)o(—of)=fioeco(—e)o(=f) = fio(-f),
so, f1 = g o f for some g € G(L). By this reason, for any r € T

75 (e)(1) = gomp(e)(T)o(~g).

Therefore, 74, (¢) and 7¢(e) are in a same conjugacy class of Hom(T', G(£)) and the
correspondence e — w¢(e) gives the map

7 : G(Lk) — { conj. classes of Hom(T', G(L)) }.

Dependence on R.
Let e1,e2 € G(Lk) and e; ~ ez, ie. e = (—b)oeyo(ob) for some b € G(L).
Then for
fie{feG(Llk,,) | of =foei},

where ¢ = 1,2, one has (—~fy)oofi = (—=b)o(—~f2)o(of2)o(ob), ie.

faobo(=fi) =g € G(Lk,.,) ls=ia= G(L).
So, for any 7 € T,

mhle)(r) =1he(-fo)=go(tfi)o(=b)obo(—-fi)o(-g) =

=goms(e)(r)e(~g)
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and 7 defines the map
7 :G(Lk)/R — { conj. classes of Hom(T', G(£)) }.

1.3.3. Injectivity of .
Let e),e2 € G(L k) be such that #(e;) = 7(ep). If, for 1 =1, 2,

fie{feG(Lxk,,) | of =foei },
then for some g € G(£) and any 7 € T
mr(en) () =gomp(e2)(T) o (~g).
This means that 7/ 0 (—f1) = gorfa0(—f2)0(—g), ie.
(—f2)o(=g) o fi =h€ G(Lx,,,)" = G(Lk).

Therefore, fi = go f 0 h,0f; =goaf, coh and
e1 = (=fi)o(cfi)=(-h)o(~fa)o(~g)ogofacerooh=(—~h)oez00h.
So, 1 ~ ez and 7 is injective.

1.3.4. Surjectivity of .
We proceed by induction on the length of £ and use notation of n.1.3.1. Let

n € Hom(T', G(L))

and

n' € Hom(T, G(L"))

be its image under the projection

Hom(T, G(£)) — Hom(T, G(L')).
Then there exist ' € G(L') and

fle{fe6Ly,,) lof=foc')
such that '(r) = (v f") o (= f').

Let e € G(Lk) be some preimage of the €' under the projection G(Lx) —
G(LY). It follows from the proof of Lemma 1.3.1 that the natural map of sets

{feGLk,,) | of =foe} —{feCG(Ly,,) | of=foe'}

is surjective. Therefore, there exists f € G(Lk,,,) such that of = foe and
mr(e)(t) = n(r)mod G(J) for any 7 € T

10



Therefore,
n(r) = ms(e)(T) +cxJ,
for some ¢, € F, (as in n.1.3.1 we use tha.t'J is in the center of £ and Ou(F,) is a
flat module).
Obviously, 7 — ¢, defines the element of Hom(T',F,). From Artin-Schreier

theory it follows the existence of 2 € K,¢p such that ¢; = 7z —z for any 7 € I.
Let f* = f+zj € G(Lk,,,)- Then n(r) = (7f*)o(—=f*). On the other hand

(=f)o(of*)=(a? —z)jo(=f)o(of) =e+(z" —z);.
For any 7 € T,
(@ —z)=(c+c;)P —(z+er)=2P -z,

therefore, for e* = e + (z? — 2)j € G(L k), we have

fre{feGLk,,) | of =foe"}
and n="mgs (e").
Theorem is proved.

1.4. Corollary. Let (in notation of n.1.3) n € Hom(T', G(L)). Then there exist
e € G(Lx) and
fe{GLk,,) | of =foe}

such that n = n¢(e).

1.5. In notation of n.1.3 let e € G(Lk) be such that the conjugacy class 7(e)
(cf. theorem of n.1.3) contains an epimorphism  : ' — G(L£) (and, therefore,
all elements of n(e) are epimorphic maps I' — G(£)). Set K, = K:f;;”’, then 7
defines the isomorphism of the groups Gal(K./K) and G(L).

Let b be an automorphism of the field K, b be an extension of b to some auto-
morphism of K,p.

Let M > 0 be an integer, such that p+!£ = 0. Cenerally, there is no lifting
of b to an automorphism of O (), which commutes with o (but, if such lifting
exists then it is defined uniquelly). Nevertheless, there exists a lifting of b| (., to
a morphism

MO (K) — Ou(K).
This morphism commutes with ¢ and is induced by the embeddings (c.f. n.1.1.2)
eMOM(K) C Wi (K@) c Oy (K)
and the morphism
War (Bl jeomry) s Wag (K™Y — W (™),

We shall use the same symbol b for this lifting. Analogously, we use the same
notation b for the lifting of the above chosen extension b of the automorphism b.

If a 1s an automorphism of the Lie algebra £, then we use the same symbol a for
extension of scalars £;, — L, of the morphism a (L is some field of characteristic
p). Clearly, actions of a and ¢ on £}, commute one with another.
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1.5.1. Proposition. In the above notation the following statements are equiva-
lent:

1. H(K.) = K.;

2. There exists an automorphism a of the Lie algebra L, such that b(aMe)fEa(e).

Proof.

Let (K.) = K..

Choose f € G(Lk,.,,) such that ¢ f = foe and 5 = 7s(e) (c.f. n.1.4). Then for
any T € I'x we have n{r) =1fo(~f).

Let f; = b(cM™ f). Then o(f)) = f1 0 b(cMe). For any 7 € 'k we have

mr(0(aMe))(r) = Tfro(=fi) = b[(b rb)oM fo (=M f)] =

= H@E 7B f o (=f)] = n(b'7h),

The equality B(Ke) = K, gives f;‘](Kern)f) = Ker, therefore, there exists an
automorphism a of the group G(L) (which is also an automorphism of the Lie
algebra L), such that 7y, (b(cMe)) = na.

Forany r € T'g

(i) o (=fi) = 7 (MM e))(7) = a(n(1)) = a(rf o (= f)) = 7(af) 0 (=af).

Therefore,

(—af)o fi =c€ G(Lx,,,)" = G(Lk).
Applying the morphism o to the equality f; = (af) o ¢ one obtains
ofi = fio(bleMe)) = (af) oco (b(aMe)),
ofi =o(af)ooc={(af)o(ae)ooc.
Therefore, b(cMe) = (—c) 0 a(e) 0 a(c), i.e. blaMe) ~ a(e).

Inversely, let
b(aMe) = (—c) o ale) 0 a(c)

for some ¢ € G(L k). From the equality of; = f1 0 b(cMe) one has
o(fi 0 (=€) = fi o (~c) o ale)
Now the equality o(af) = a(f)o a(e) gives the existence of ¢y € G(L), such that
fro(=c)=cooal(f).
This means that
m(b(oMe)) = 7(fi) o (= f1) = eo o [T(af) 0 (—af)] o (—co)-
Now it is clear that
reKern& 7f=f & r(af) =af & 7€ Kermy (bloMe)).

12



Proposition is proved.

1.5.2. Remark.
Let b can be extended to some automorphism of the algebra Op(K), which
commutes with o. Denote this extension by the same symbol b. Then

boMe) = oM (be) ~ b(e).

In addition, let a be an automorphism of the Lie algebra £ and ¢ € G(Lk) be
such that b(e) = (—c) o a(e) o o(c). Then the correspondence f — a(f)oc gives an
explicit description of liftings of b to automorphisms of the field I,.

1.5.3. Corollary. Let (in the above notation) K be the Galois extension of its
subfield K,. Then the following properties are equivalent:

1. K./K, is the Galois extension.

2. For any b € Gal(K/K,) there exists an automorphism a; of the Lie algebra
L such that b{(cMe) > ap(e).

1.5.4. Remark.
Let b € Gal(K/K;). Consider a morphism a; from the above corollary as an

automorphism of the group G(£). Then there exists a lifting b € Gal(K,.p/ K1) of
b and an epimorphism 5 € w(e), such that for any 7 € ' one has

m(b7'78) = ay(n(r)).

This means that a, gives a description of the action of the quotient Gal(K/K;)
on the subgroup Gal(K./K) by conjugation with respect to the identification
Gal(K./K) = G(L), given by the epimorphism 7.

2. Case of a local field.

2.1. Let K be a local complete discrete valuation field of characteristic p > 0
with a residue field & which is isomorphic to an algebraic closure F, of F,. Then K

is isomorphic to k((f)) - the fraction field of the power series ring in one variable
to over k.
Let K,.p, be a fixed separable closure of K and I' = Gal(K,.,/K). If

Q*(p)={reQ | r>0,(r,p)=1}

and K, C K, is the maximal tamely ramified extension of K, then
Ke=K{% | re Q@) D).

Here { 7o | r € Q¥(p) } is a compatible system of fraction powers of 5 (this
means that for any r € QT (p),m € Z*(p) = Q*(p) N Z, one has the equality
(to )" =1t )

Let I be the higher ramification subgroup of I'. Then I is a free pro-p-group.

We want to apply the arguments of n.1 to the study of the extension K ..,C:,,‘;,(I) of K.
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Fix absolutely unramified field £(K,ep) (c.f. n.1.2) and consider its valuation ring
O(Ksep). Let H be an open subgroup of T, L = K], and M be some nonnegative
integer, then

On(L) = O(Kpep) ! [pM 1 O(K sep)”

is a lifting of L modulo pM+1.

Let ¢ be some fixed lifting of the uniformising element 1, € K to O(K,p).
Then Op(K) can be identified with the Z/p™*'Z-algebra of Laurent series in one
variable ¢ with coefficients in Was(k).

We can fix some lifting ¢ of the absolute Frobenius morphism of the field K by
choosing some ot € O(K4ep), which satisfies the condition

~

ot =% mod P
(in fact, we use below the simplest choice of such a lifting, which is given by the
equality ot = E’p).

2.2. Let M > 0, N > 1 be integers, R be a finite subset of Q% (p). Set ¢ = p™¥ and
introduce a free Z/p**'Z-module L, 5, with fixed (free) generators D7, r € R.

Denote by Lg n um the free Lie Z/p™+1Z-algebra with the Z/pM+1Z-module of
free generators

Ly p ® Hom(Wy(Fy ), W (Fp))

(here Wy (F,) and W (F, )(~ Z/pM+1Z) are the groups of truncated Witt vectors
having length M +1 and coefficients from F, and F,, respectively).

Let ERl Ni, M, and ﬁRj,N?,ﬂ'f? be such Lie algebras, where Ry C Ry, N2|N] and
M, < M,. We have the natural map of their modules of free generators:

7,m, @ Hom(Wiy, (Fyny ), Wi, (Fp)) — L, a1, ® Hom(Was, (Fpwe ), Wi, (Fp)).
This map is uniquelly defined by the following conditions:
D? — D, ifr € Ry,
D} — 0, ifr € R\ R,

Fo Flwag, v,

where f € Hom(Wis, (Fp~, ), Wa, (Fp)) and Wiy, (F,w, ) is considered as a subgroup
of Wy, (F,~, ) via the natural imbeddings:

WMz(]FpN;) C W, (szvl) = le_M2 I’VMI(IFPNI ) C WMl(]Fle )

The above maps give uniquelly defined morphisms of the Lie algebras c Ri,Ny M, —
L, N, M,. So, we have a projective system of Lie algebras {Lp n a}. Obviously,



is the free Lie pro-p-algebra over Z,.
2.3. Let N _
Lrnm = Lrnm/Cpo(LrNm)
We obtain a projective system {L RN M} of Lie algebras of class of nilpotency < p.

If£= lim Lpnm,then £ = [,/Cp(ﬁ) (here C,,(E) is the closure of the ideal in
RIN.M

L generated by all commutators of order > p).

We want to apply main theorem of n.1 to the projective system {Lgr N a}.

K r e Rand f € Hom(Wp(F;), War(F;)), we use notation D, s for the image
of

D2 ® f € L 3y ® Hom(W (F,), Wnt(F,)) C Lr,w,m

n ER,N,M-
Let {a,-}lg,-g,\r be some WM(]Fp )—basis of WM(FQ) and {ff}1SfSN be dual basis
of the Wa(F,)-module Hom(Wa (F; ), Wm(F,)). Consider

ER,N,M = Z ait"Dr 5, € G(Lr,N,M,K.,)
1<IigN

re?t

(we use all notation of n.1), where ¢t = § (c.f. n.2.1). This element er n m does
not depend on the above choice of a basis in Wy (FF, ), because

ER,NM = (Z "Dy @ ( Z a; ® fi)

reR 1<i<N

and Y «; ® fi corresponds to idWM(Fq) under the identification
1<i<N

Wit (Fy) ® Hom(War (Fy ), Wit (F, ) = Hom(War (Fy ), War (Fy )).

So, we have the element {er v a} of the projective system {G(Lr N um kK, )},
which gives

€= lﬂ eR;N;M e G(‘CKtr) = ]ii_]_E' G(£R,N,M,K“.)-
R,N,M ’,N,M

2.4. Let
Mpnm={f€G(Lprnmk,,) | of =Ffoernm}.
Obviously, {Mg ~,m} is a projective system of sets and

M= lim MpgnNum #0.
R,N,M

Let f € M and fgr,~n,am be its projection to Mp n am. Consider the homomorphism
VRN M = Tfnnp (eR,NM) : T — G(LR,N,M)
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from the proof of the main theorem of n.1 (here I = Gal(X,ep/K¢r)). In the same
way as in [A,n.2.3], we obtain:

a) all ¥ g N ,m are epimorphisms;

b) the system {¥r n,a} is a projective system, compatible (in an obvious sense)
with the projective system {G(Lgr,~,m)};

c) the homomorphism

Y= lim $rnum:I— G(L)
R,N,M

induces the isomorphism

b I/C,(I) = G(L).
We use ¥ below for identification of the groups I/C,(I) and G(L).

2.5. Omne can apply remarks of n.1.5 for a description of the action of the Ga-
lois group Gal(K../F,((fo)) on I/Cp(I) in the terms of the identification . For
simplicity we assume that the lifting o is given by the condition ot =1".

The group TI'y; has two generators ¢y and 79, which satisfy the unique relation
78 = ¢35 T9¢0. One has

a) ¢o is the lifting of the absolute Frobenius morphism of the extension k/F,,
uniquelly determined by the condition ¢ (%) = to.

b) 7 is some generator of the procyclic group I, = Gal(K,./K) C Ty, 7o acts
trivially on k, 7oy = (idg , where r € Q*(p),¢r € k.

The system of elements {¢, | r € Q*(p)} satisfies the following two conditions:

)G =1

2) for any r1 € Q*(p),m € Z*(p) = QT (p) N Z, one has (™ = (.

It is easy to see that a fixing of such a system of elements (,,» € Qt(p), is
equivalent to the choice of some generator 7y of the group Ii,.

The automorphisms ¢y and 79 can be lifted to automorphisms ¢ and 7 of the
algebra O(Ky, ), which are defined by the following conditions:

Slwy = Wido), o(t)=1;

Tlway =id, () =[G

Obviously, ¢ and 7 commute with the action of ¢ on O(K,,.).
Consider the element e = 1£1 er,~n,m from n.2.3. From the relations
R,N,M

$lernm)= Y o(a)t' Dy, Tlernm)= »_ ol¢:]T Dy,

reh reR
1<i<N 1<1<N

one gets
a) ¢(e) = ag(e), where ay is the automorphism of the Lie algebra £ such that

ag(Dy,) = Dy g (1)

16



where D, ¢ € Lr n a and ¢*(f)(w) = f(¢w) for any w € W(F,~ );
b)r(e) = a-(e), where a, is the automorphism of the Lie algebra L, such that
ar('Drzf) = Dryfr(f)’
where D, ¢ € Lg,n,m,7(pY —1) € Nand 7.(f)(w) = f([¢r]Jw) for any w € W(F,~ ).

Therefore (c.f. remark 1.5.2), we can fix liftings ¢, 7 € Gal(K,ep/Fp((40)))/Cp(I)
of the automorphisms ¢y and 75 by the following conditions:

$(f) =as(f), #(f)=a-(f)
Applying remark 1.5.4 one gets for any g € I/Cp{I):

B3 9¢) = ag(¥(9)),  B(F71g7) = ar(b(g)).
3. Statement of the main theorem.

In this section we define a decreasing filtration {E(”)},,)U of ideals £(") of the
Lie algebra £ from n.2.3, where v € @, v > 0. This filtration will be related to the
image of the ramification filtration {I'(*)},5¢ of T in I/Cy(I).

3.1. Let ER,N,M be some Lie algebra from the projective system {ER,N,M} (c.t.
n.2.3). Then Lr N M @wy (F,) Wa(k) has the Wi (k)-module of free generators

Ly p ® Hom(Wiy (Fy), W (Fp)) @ Wag(k) =
= L% pr ® Hom(Wy (F, ), Wy (F;)) @w,, v,y W (k) =
= L% y ® Homuy,, g, ) (Wa(Fy) @ Wy (Fy ), Wp(F,)) ®wyr,) Wa(k) =

= 0 Hom(Wa(F,), War(Fy))n @w Wi (k),
neS?NZ R,M® Om( M( 11) M( ‘-’1)) ®HM(FP) M()

where Hom(Was(F,), War(Fy))n,n € Z/NZ, is the Wy (F,)-module of o™-linear
homomorphisms W (F,) — Wy (F,). Obviously, each module
Hom (Wt (F, ), Wi ()

has Was([F, )-rank 1 and the canonical generator o™.

Therefore, the Lie Wys(k)-algebra Lp N px = LrR M, N QW (F,) Wi (k) has the
canonical system of free generators

{D;®oc" |r€R,neZ/NZ}.

Denote by D, ,, where r € R,n € Z/NZ, the image of D? ® o™ under the

canonical projection

Lrum Nk ~— LRMN

Remark.

Let ay and a, be the automorphisms of the Lie algebra £, which were introduced
earlier to describe the action of the Galois group Gal(K,»/F,((f0))) (c.f. n. 2.5) on
I1/C,(I). Extension of scalars of these automorphisms defines automorphisms of the
Lie algebra L, which we denote by the same symbols. In the terms of generators
{Drn | € Ryn € Z/NZ } the action of ay and a, is given on Lg n ark by the
following conditions:

a) ag(Drn) = Drnyi;

b) ar(Dr,n) = [Cr]anr,n,

where r € R,r(pN —1) € Nand n € Z/NZ.

32 Let 1<s<p.
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Definition. If my,...,m, 2 0 are integers, we set

( ) -
My, ., My) = ;
nm : s11(s2 — sy )l (s1 — s1-1)!

fmy = 0= my < Myyp1 = oo = My, < ... < My, = ... = My, Where
1<s8 <...<8=38,and

n{my,...,my) =0,
otherwise.
Let N € N and ny,...,n, € Z/NZ.

Definition. For indices 1 <1,5 < s, n;; will denote the integer uniquelly defined
by the following conditions: n;;mod N = n; —n;,0 <n;; < N.

Definition. 7{(n,...,n,) = n(n11,n12,...,N1s).

Remark. 7(ny,...,n,) # 0 & the sequence of points {62_'1;72"}19-53 is “ordered” on
a unit circle {z€ C | |z|=1}.

3.3. Let L N,ar be some Lie algebra from the projective system {Lgr nar} (c.f.
the beginning of n.2.3). For any v € Q,v > 0, and n; € Z/NZ introduce elements
Fr,n,m(v,m1) € LrRn Mk (= Lrnm @ W (k)):

FrNm(y,m1) =

= Z (_1)8 2 pirlﬁ(nla"':ns)[“'[DT1.n1+irDT:,”:-H])"'5Drn,no+f]'
1<s<p T1,.., T, €N
na,...,n, EL/NZ
€2,i>0
' (f1+ ;!';'ﬁ"!-----i*;;rh):'}‘

Definition. Let v € Qv > 0. Denote by L%y » , the ideal of the Lic Ws(k)-

algebra Lr N, a &, which is generated by all Fg n m{vy,n), where vy 2 v and n €
Z|NZ.

Let

LRI;NI:MI ’ £Rz,N2,M2a

where Ry C Ry, NojNy, My < M, be the connecting morphism of the projective
system of Lie algebras {ER,N,M}. If Ny = Nj, then this morphism, obviously,
induces the epimorphic mapping of ideals

(v) {v)
‘CRuNhM1 LR:.Nz,Ma’

for any v > 0,v € Q. This property, generally, is not valid for Ny # N;. Neverthe-
less, we have the following proposition.
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3.3.1. Proposition. For any v € Q,v > 0, and a finite subset R C Q*(p), there
exists a natural number N = N(R,v) such that the system

(£ 0 | N2 N(Rv) }rnm

is a projective system of Lie algebras, whose connecting morphisms are epimor-
phisms, induced by connecting morphisms of the projective system {Lr N M} RN M-

Proof.
The proof of this statement is a slight modification of the proof of Proposition
4.4 of [A].

Let y € Q,v > 0.
We call a presentation of v in the form

o Ty Ty
T=P (7‘1 + pm2 ot pMs

)

R-admissible, if 1 € s < p, r1,...,75 € R, ;,m; = 0,mq,...,m, are nonnegative
integers, and m, < ... <my,. It is easy to see that the set of different R-admissible
presentations of the given rational number 7 is finite.

Asin [A, loc.cit.], one can prove the existence of a finite set M(R,v) of rational
numbers v 2 v, having the following property:

if vy € Qv 2 vand

T 7

i 2 ’
71=p(r1+pm2+...+ )

is R-admissible presentation of 7;, then there exist v = ¥(y1) € M(R,v) and an
index $; = s3(1) < s such that

a)
T2 ?‘81 .
s

m,1

Y= Pi('f'l +

b)if ¥ = p* (r¥ + —fn;;- +...+ —’,'n'.—r) is any R-admissible prersentation of v, then
P P

my < My, 41.

Let N (R,v) be a natural number, satisfying the following implication:

if y € M(R,v) and

T Ts

pm )

2 4+
2

Y =Pi(7'1 +
P

is some R-admissible presentation of v, then m, < N (R,v).

It is clear, that such N(R, v) exists.
Now following [A, loc.cit.] one can show that if N > N(R,v), then

1) the ideal 'CS;,)N.M,I: is generated by the finite set of elements Fr v m(y,n1),
where v € M(R,v) and ny € Z/NZ;

2) if Ny, N2 2 N(R,v), N2|Ny, My < M,y € M(R,v),n € Z/N1Z, then
-7'-R,N1,M1(’Y,ﬂ) — fR,N,,M,(v,nmod N3)
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under the connecting morphism Lgr n, a1, — LR, N, M, and, therefore, Cg”)‘\,l Mok

is mapped onto £g,)N2,Mz,k'
Proposition is proved.

Remark. Let 1 < s < p. One can consider the projective system
{Lr,n,mmod Coy1(Lr,N,M)}R,N,M

and the analogous statement for the system of ideals
(L5 31 0d Cogr (LN, M)} RN, M-

As in the above Proposition it is sufficient to find a natural number N,(R,v)
such that, for any Ny, Ny > N,(R,v), N2|N, and M, < M, the epimorphic map
Lr,N, M, — LR N, M, induces the epimorphism

L(I;,)Nl,ﬂ'fl,k mOd C’+1(£R|N1 1M11k) - E(I';)')NQ’M2’k mOd C3+1(£R:N21M2:k)'
It is clear that JA\;S,(R,U) = ﬁ(R,v) satisfies this implication, but for a given value
of s this choice can be done more economically.

One can verify, for example, that N1(R,v) =1 and

ﬁg(R,v) =max{n € N | Iry,r, € R,7 € Z,7 > 0 such that

pi(ry + ) > v,p'ry < v, piry < v}

pn—]

3.3.2. Using the above Proposition, for any v € Q,» > 0, one can define the

ideals ) )
Ly’ = lin K'R,N,M,k
R,NM

of the Lie algebra £y = L Qo(F, ) O(k)

Let £V = ﬁl(,:’) |o=ia, where the action of o on ﬁ(kv) 1s given by its standard
action as the Frobenius automorphism on O(k) ~ W(k) and by the equalities
0Drn = Dynt1, wherer € R,n € Z/NZ, and D, , are the topological generators
of Eiv), introduced in n.3.1.

Obviously, all £(*) are ideals of the Lie Z y-algebra £, L O(k) = Li”) in L and
{£M}y50 is a decreasing filtration of L.

Remark.

Let v > 0,v € Q and E%!N,M be the image of the ideal £(*) under the canonical
map

L= lim L — L .
um LpNM R,N,M
R,N,M

It follows now that the ideal E[é'} N,M,x 15 generated by
'FFI,N,M(7sn1) = anlfﬁ,N,M(Ff?O):
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where v € Q,vy 2 v,n; € Z/NZ and
f;Z,N,M("Y’ 0) =

= Z (—l)apirln(o,m%"'1m8)["'[DT1,jN(f)’Drz.jN(f—mz)]’""D".,jx(i—m.)]'

Here 7 is function defined in the beginning of n.3.2 and for any integer m jn(m)
is the notation for the residue of m modulo N.

3.4. We use notation and assumptions of n.2.1. In addition we assume, that
the lifting o is given by the condition ot = P

Let {F(")},,Zo be the ramification filtration of the Galois group I' = Gal(K,.p/K)
of our local field K in upper numbering, cf. [Se, 2° part.]. This filtration is
a decreasing filtration of normal subgroups I'*),v» € Q,v > 0, and the higher

ramification subgroup I equals to |J .
v>0
Let £ be the Lie pro-p-algebra from n.2.3 and % : I — G(L) be the homomor-

phism of groups which we use in n.2.4 for the identification
B I/C,(I) ~ G(L).

Let {£(*},50 be the decreasing filtration of ideals of the Lie algebra £ introduced
in 0.3.3. Then {G(£")}y>0 is a decreasing filtration of the group G(L) by its
normal subgroups G(£(*)).

Theorem. For any v > 0,v € Q,
¢(F(”)) — G(ﬁ(v))’
i.e. the image of the ramification filtration {I‘(")}U>0 in I/Cy(I) and the filtration

{G(L™)} 50 coincide under the identification .

Remarks.

a) The definition of ramification subgroups I'(*) and ideals £{*) can be given for
any real v € R, v > 0. Also, the proof of the above Theorem is valid for all real
positive values of v. But this does not give more general result, because of the
left-continuty of these two filtrations. Indeed, for any vy € R,ve > 0, the equality

r(ve) — ﬂ '

0<v <y
is a formal consequence of the equalities
(vo) _ (v)
PL/OK ﬂ Uik
0<v<yg
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for all finite Galois extensions L/ K, which are valid by definition, {Se, loc.cit.]. The
filtration {£("},5¢ is left-continuos by the same reason.
b) Let Lo = £ ®z, Fp, then the identification ¢ induces the identification

o : I/IPCy(I) = G(Lo).

If 1o is the composition of 1y with the natural projection I — I/IPC,(I)

and {ﬁ,g")},»o is the image of the filtration {£(*},5¢ under the natural projection
£ — Ly, then our Theorem gives for any v € Q,v > 0, the following equality

Yo(T™) = G(LY).

So, we obtain a description of the ramification filtration of the maximal p-
extension of K, with Galois group of exponent p and class of nilpotency < p. This
statement was proved in [A] where we use more general choice of identification of

the groups I/IPCp(I) and G(Lo).

3.5. Case of p-extensions of the field K.

Before proving the above Theorem we give some of its corollaries related to the
ramification filtration of the Galois group of the maximal p-extension of K.

3.5.1. Let {La n m} be the subsystem of the projective system of Lie algebras
{Lr,~nm} from n.2.3. Here A C Z*(p) = QT (p) N Z is arbitrary finite set, N >
1,M 2 0 are integers.

Let £L(p) = lim LA n,nm and

—
AN,M

m(p) : L — L(p)

be the natural projection. It is clear that

w(p) = lim =(p)r,n,m,
R,N,M

where the morphisms

m(P)R,N, Mk = T(P)r,N M @ W (k) : La,nmr — La(r).N Mk

are given by the following conditions
Dy n— 0, if r € R\ Z*(p);

Dy Dy, if r € A(RY = RNZT(p).

3.5.2. Let I'(p) be the Galois group of the maximal p-extension of K, j(p) :

I — T'(p) be the natural projection. Then there exists a unique homomorphism
¥(p) : I'(p) — G(L(p)) such that

a) m(p) - ¥ = ¥(p) - i (p)

(here % is the homomorphism from n.2.4);
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b) ¥(p) belongs to the equivalence class related by Theorem of n.1.3 to the
element

e(p) = lim Y *Dao € G(L(P)K);
AN Mea€A

c) if f(p) = (p)k,.,(f), where f € G(Lk,,,) is the element from n.2.4, then for
any T € ['(p) one has:
Y(p)(7) =7f(p) o (- f(p)).
d) 4(p) = (p) mod C,(T'(p)) defines the identification of the groups I'(p)/C»(T(p))
and G(L(p)).
3.5.3. Let L(p) = imL(p)n, where L(p)n = Lim L4 n,». Remark that L(p)n k =

N AM
L(p)n @ W(k) is a pro-p-algebra with the set of topological generators

{Dan|a€ Z*(p),n € Z/NZ}.

For any v € Q,v > 0, denote by {L(p)(*)},>0 the filtration related to the image
of the filtration {T'(p)(*) },>0 in the group I'(p)/CH(T(p)) via the identification 3 (p).

Let {E(P)S\lr))}wo and {E(P)E;,)N,M }v>0 be the images of the filtration {£(p)(" } >0
under the canonical projections L(p) — L(p)n and L(p) — LA N M-

For any v € Q,v > 0, the set of elements

{Fanmlvsma) v 2 v,m € Z/NZ}

generates the ideal E(p)SJ,)N’M,k = E(p)(}f’)N’M ® W(k) in the Lie algebra £a n, sk
(cf. n.3.3.2).

Using the explicit expressions for the elements 773 y 14(7,71), one can obtain
the following lemma:

Lemma. If1 < sp < p,a € AC Z*(p),m € Z/NZ, p'a > sv, then

P'Dam € LO)Gn p1,x m0d Copre1 (L(p)4,N,0,8)-

3.5.4. As earlier, for any | € Z jn(l) is the residue of [ modulo N.

Proposition. For any v € Q,v > 0, the ideal E(p)g\‘,’?k = L',(p)g.:,') ® W(k) is gener-
ated by the following elements:
a) p' Dy n, where a € Z(p),i > 0 is an integer, n € Z/NZ and p'a > (p — 1)v;
b) Fno(y,n1) = 0™ Fn o(7,0), where y 2 v,n, € Z/NZ and

fN,v(‘Ya 0) =

= Z (wl)“p‘aln(O, m2a---ams)[“'[Dal,ju(i),Da;,jn(i-mg)]:-“;Da.,jN(i—m,)]-
1€s<p

0‘1,--.,0, €z+ (P)
1,ma,...,m, 20

Pt (o1t 33y ot 5 ) =7
Plar,...,p'a,<(p—s)v
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Proof.

From Lemma of n.3.5.3 it follows that the ideal ﬁ(P)S,,)N, M. 18 generated by the
following elements:

a) p' Dq n, where a € A and p'a > (p — 1)v;

b) Fi'n p(vsn1) = 0™ F3'y p(7,0), where v 2 v,ny € Z/NZ, and the expres-
sion for 73"y 3,(7,0) is obtained from the expression of F3 y 4(7,0) by introducing
the restrictions p'a;,...,p'a, < (p — s)v.

In order to finish the proof one need only remark that for sufficiently large set
A C Z*(p) and a natural number M (e.g. A D [1,(p—1)v )NZ*(p) and p™ > )
the sequence

{Fin m(r,m)}am

is stationary and its limit is equal to Fn o(7,n1).
3.5.5. Analogously, one can obtain the following proposition:

Proposition. Let 1 € sg < p,v € Q,v > 0. Then the ideal

L)k mod Cgr1 (L(P)N 1)
is generated by the following elements: '
a) p' Dy n, wherei 2 0,a € Z7(p),n € Z/NZ and p'a > sqv;
b) FN,v,s0(7,11) = 0" FN,v,5,(7,0), where y 2 v,ny € Z/NZ and

fN,v,so(’)’, 0) =

Z (wl)spialn(o, ma, ..., ms)[...[Dath(,'),Dath(,'_mz)], ceny Da.,jn(i—m,)]-

1€9<90
ay,...,a, €ZY (p)

1,my,...,m, 20
xv'.(al+;‘,‘,if;+...-+-;a,e,-)=T
p.al y~~,P.ﬂ. <(80+1—8)v

3.6. Restatement of the main theorem.
For any finite extension L/K define its “largest upper ramification number”
v(L/K) by the following condition:
') acts trivially on L/K < v > v(L/K).

Existence of v(L/K) follows from the left-continuty of the image {I‘(Lv/) K Ju>o of
the filtration {T{®},50 in Tk (c.f. Remark a) of n.3.4).

Let £ = {in Lpr,n,m as in n.2.3 and
R,N,M
Yrnm I — G(LR,N M)

be the homomorphism from n.2.4. If

K
Kpnm = Ky v,
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then Kp N am is (in an obvious sense) the field of definition of the element fr v m €
G(LR,N,M,K,.,) Which was chosen in n.2.4.

If J is any ideal of Lgr n, a, then the image fr ny pm modJ of fr n a under the
natural projection

G(Lp,N M K,.,) — GU(LrR,NM/T)K,.,

defines by functorial property of the statement of Theorem n.1.3 a homomorphism
I — G(La,nm/T).

This homomorphism is equal to the composition of ¥g v s and the natural
projection

G(Lrnm) — G(LrNm/T).

Obviously, the field of definition of fr v ar mod J equals to K g(g )M
For vg € Q,vo > 0, denote by Lr, n m(vo) the ideal of Lz v a such that

YR m(T) = G(Lr,nm(v0)) C G(Lrw, ).
Then the above arguments give the following minimal property:

(P) Lr,nm(vo) 38 the minimal element in the family of ideals T of Lp,n m
such that the field of definttion of fr N pmodJ has the largest upper ramification
number < vy.

Let £ = clvo) o=id, Where the ideals £ were defined in 1n.3.2.
RN, M RN, Mk R,N, Mk
Now Theorem of n.3.4 can be restated as follows:

3.6.1. Proposition. Let R C Q% (p) be a finite subset, M € Z,M > 0,vy €
Q,vo > 0. Then there exists a natural number No(R, M,vq) such that for any

N > No(R, M, vo) the ideal L3, \, of Lg n a satisfies the above property (P).
R,N.M 1Y

Let 1 < s < pand Cy41(Lr,N,31) be (as usually) the ideal of £ g v a generated by
commutators of order > s+ 1. One can consider the minimal property (P,) taking
in the minimal property (P) ideals J, which satisfy the additional requirement
J D Coy1(LR,N,M)-

Obviously, the above proposition is equivalent to the following one:

3.6.2. Proposition. For 1l < s < p and R, M, vy as above, there exists a natural
number N,(R, M,vo) such that for any N > N,(R,M,v) the ideal

L%t + Corr(Lr,n M)
satisfies the property (P,).

Remarks.

a) In fact the proof of our Theorem modulo I? in [A] (c.f. remark b) of n.3.4)
was obtained as the proof of statements analogous to Proposition 3.6.2 by induction
on s.

b) One can be not worry about a minimal possible value of N,(R, M, v). If
proposition is proved for some choice of this constant then it will be automatically

valid for all ¥ > N s(R,vo), where N s(R,v9) is the natural number from remark to
proposition 3.3.1.
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Example.
The above statements give:
a) If s = 1, then Lp N, m,k(vo)mod Co(Lr N m k) is generated by elements of the
set
{PDrn | T€ERNELINEIEL,i>0,pr 200 }.

b) If s = 2, then Lg n mi(vo)modCs(Lp N a k) is generated (as ideal) for
N > No(R,M,vy) by the elements Fr n m(v,n1) where vy € Q,v > 0,ny € Z/NZ

and

Froum(1,m1) = (VD mtin— P p'r17i(n1,m2) [Dry s is Dra nati]

ri ,TQER
2 GZ/NZ,IZO

p"(r1+;§ﬁ-)=‘r

Here, e{v) = 0, if v is not p-entier, and &(v) = v, otherwise;

r(v) € Qt(p) and I(y) € Z are uniquelly defined from the equality v = p'r(y);

(n1,n2) = 1if ny # ne, and 7j(n(,ny) = 1/2 otherwise;

ni12 € Z is uniquelly defined by the conditions: 0 < nj2 < N and ny;mod N =
n] — na.

4. Proof of the main theorem modulo C3(L).

In this section we prove Theorem of n.3 modulo C3(L), i.e. we give the proof of
proposition 3.6.2 for s < 2. We use all notation and assumptions of nn.3.4 and 3.6.

4.1.Case s = 1.
Lemma. Let X € Op(K,ep) be such that

oX - X =wt’
where w € Wiy (k) and K(X) is the field of definition of X. Then
o(K(X)/K)=max{rp' | 1€Z,1>0,pw#0}.
Proof.
We can assume, that w € Wy (F,, ) for some ¢; = p™'. Consider the embedding
71 OM(Kyep) — War(Ksep),

which transforms o to the standard Frobenius morphism of Witt vectors (c.f. for
example [F, n.A1.3.2]). Therefore, j transforms ¢t to Teichmuller representative
of { modp = o (because of =1 ). Now one can use Shafarevich's basis of the

group K*, [Sh], and Witt explicit reciprocity law, [W], to get the conclusion of our
lemma.
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Proposition. Let £(® be a commutative Lie Z /pM*+'Z-algebra,

o= t"Ar € G(LY)),

re€ER

where A, € E(O),fo € G(CY ) is such that 7y, (eo) € m(eo) (c.f. notation of
k Kyep fo

n.1) and K(fo) = Ko ™0 is the field of definition of fo. Then the following
statements are equivalent:

a) v(K(fo)/K) < vo;
b)ifr € R,s € Z,s > 0 and p°r 2 vy, then p’A, =0.

Proof.

Let {B;}iesr be a special system of generators of Z/pM+1Z-module £, which
satisfies the following condition:

if ¥ aiBi=0 for a;€Z/pM*'Z,i€ T thena;B;i=0forVie L.
=y
Let A,- = EairBi and fo = ZX,'B,‘, where all air € WM(k) and all X.’ €
iel el
Oum(Kgep). Then

cX;—X; = Z airt’.
réeR

Let K; be the field of definition of X;,7 € I. We have:

(K (fo)/K) <vo & v(K;/K)<wvgforalliel,

because K is the composite of all K;,1 € 1.
It follows from the above Lemma that

v(Ki/K)=max{ rp' | r € R,p'a;r #0}.

So, v(K;/K) < v for all « € I, if and only if the following implication is true:
if r € R and 7p' > vg, then p'a;r =0 for alli € I.

But the condition “p'a;r = 0 for all i € I” is equivalent to the condition p' 4, = 0,
because of the above special choice of generators B;,7 € I. Lemma is proved.

Corollary.
Proposition of n.3.6.2 is valid for s = 1.

Proof.

Let J be an ideal of L n ar such that J D C3(Lr,n M) and Ly = Lpnm/T.
Denote by ey and f7 theimagesof er v m and fr nym in G(Ly k,,) and G(L 7 k,., ),
respectively. Then ey = ) pt" D, where D, = Dyomod Ji. Let K(f7) be
the field of definition of f7 over K.

Now the above Proposition gives:
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o(K(f7)/K) < vo & ¥r € R, if rp' > vy, then p D, 0=
&= Vr € R, if rp! > vy, then p'D,y € T @ Wy (k)
< Vr e R,Vn € Z/NZ, if rp' > vy, then p'D, , € T ® War(k)

<= L N.mi(vo)mod Co(Lr N mk) is generated by the elements p'D, ., where
r € R,n € Z/NZ and p'r > v,.

4.2. Auziliary construction.
As earlier, K = k((f)),N > 1,¢ = pV
4.2.1. Let r* € Q% (p) be such that r*(g — 1) € Z.

Following [A, n.6.3] introduce a separable extension K’ of K such that
a) [K': K] =g

b) K'Kyr = K;(T), where T9 ~ T =1,
Herbrandt function of this extension is equal to

brryxc(x) = { et

Remark. The graph of function ¢ sk () ha.s the unique edge point (r*,r*) (there-
fore v(K'/K) =r*).

4.2.2. Let

._.r.

for0<z<r*

for z > r*.

E(z) =exp(z + 2 /p+ ... +a” [p"+..) € Z,([z]]
be Artin-Hasse exponential.

Lemma. There exists a uniformizer 55’ of the field K' such that
~ 1 ~ ~
f E( forrta= ”):to.

Proof.

One can assume that T'=u~" for some uniformizer u of K’. Therefore,

w1 =y e DYy =14, rr ,

~

ui(l—u" ("_1))"/’” = 1o,
u?(1 4 —gur.(q_l)) = to mod(ut27 4" O ),
T

Now Hensel Lemma gives the existence of f{;l € O such that

o = u mod(u! 7 =0 k)

~ 1~ ~
tOIqE( i m*{q— 1)) _ tOg

and

q.e.d.

4.2.3. Clearly, Op(K') D Opr(K). Considert € Op(K)suchthat? modp =t
and ot =1" (cf. n.3.4).
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Lemma. There existst € Om(K'") such that # modp =1f, (c.f. n.4.2.2) and

g (lf‘"“q—”) -7
fr*

Proof.

This follows easily from Lemma of the above n.4.2.2 and Hensel Lemma.

—inM
4.24. Let Ky, = k((tolp )). Then K3, is the subfield of K’ and K' is a purely
inseparable extension of K}, of degree p™
As was mentioned in n.2.1, Op(K') can be identified with Z /pM+1Z-algebra of

Laurent series in the variable f with coefficients in Was(k). Therefore, one can
identify Op(K},) with the Z /pM *1Z-subalgebra of Op(K') consisting of Laurent

series n the variable #; = &7 Clearly, {; mod p is a uniformizer of K}, and
oty =4 in Oum(K)y) (indeed, o' = P mod pOp(K'), therefore, ot?™ = Mt
in Op(K")).

~—

4.2.5. Let ty =1, € Op(K',) and (as carlier) t =1 € Op(K).

Lemma.

Proof.

This equality is a formal consequence of Lemma of n.4.2.3 and of the following
formulae: E(z)? = exp(pz)E(z”), E(z)**" = E(z®" )mod pM+1, {'~ . t; and
" = 2 modptt! for 0< s < M.

4.3. One reduction.

4.3.1. Let 7 C Lgr,n,m beanyideal, Ly = Lp n /T, es and f7 be the images

of er v p and fr n,m under the maps

G(Lr,nmk,.) — G(L7 K,.)

and
G(LrNMK,.,) — G(L7K,.,)

respectively.

Let K(f7) be the field of definition of f7 over K and K(c™ f7) be the field
of definition of o™ f7 over K. Then K(f7) = K(c™ fz). This follows from the
evident equivalence e ~ oMein G(Lr N M K., )

— M
Let Kp = k((fo’ )). Then Kp C K and K is purely inseparable extension of
K of degree pM. o™ induces the isomorphism of fields K — Ky which sends
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o~ M .
o to to" . This isomorphism can be extended to the isomorphism KS,’;,(I)

K7D by the following conditions fr, ny,a1, = 0™ fry vy, m,. Obviously, for any

ideal J C Lg,N,m there is an isomorphism of the extensions K(eMf7)/K and
Kun(o?*M£7)/ Ky (here Kp(0*M f7)/ K is the field of definition of 62 f7 over
Kpr).

So, for any ideal J C Lg,n,um there is an equality of the largest upper ramifica-
tion numbers

W(K(f7)/K) = v(Kp(0*™ f7)/Kum).
Let

1
vy = Y 11 Dro € G(LaN,m,K )
reR

and f;Z,N,M € G(‘CR’NiM:KM,.ep) be such that

ofrnm = FrNMOCRN M

(the morphism ¢ on Opm(K)y g, ) is given by the restriction of ¢ from Op(K")
to Op(K}y), cf. n.4.2.4). As above, define for any ideal J C Lg,n,m the element

ffy € G(E’JsKju,.ep)‘ Then
o(Ku(f7)/ Kig) = oKy (o™ £7)/ K}y,

4.3.2. Clearly, K}, is separable over K, and one can define X € G(Lr,n,M,Kp.,0p)
from the equality

oM fp vy =Ml o X

Therefore, for the image X7 of X in G(L7 k,,,.,) one has
oM fr =oMtNflL 0 X,

Proposition. Let vg € Q,vg > 0, J be an ideal of Lg n m and K},(X7) be the
field of definition of X g7 over K},. If v* < vg, then

WK (f7)/K) <vo & v(Ehy(X7)/Kn) < vo.

Proof.
We use the following lemma.

Lemma. Let vy = v(K(f7)/K) and v¥% = v(K};(f)/Kum). Then either vy and
v’ are both < vy, or vy <vyzy.

Proof of Lemma.

We use arguments of [A, n.7.4].
The correspondence t +— ¢, defines the isomorphism of fields

a: K — K.
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This gives the isomorphism of liftings Op(K) and Opm(K,). Since ot = t?
and ot; = tf, the correspondence fs +— f; defines the extension of a to the
isomorphism of fields

K(f7) — Kyu(fy)
Let ¢1(z) and ¢2(z) be Herbrandt functions of the extensions K{(f7)/K and

K} (f7)/ Ky, respectively. Then function ¢;(z} coincides with Herbrandt function
of the extension K},(f%)/K},; and, therefore,

$2(z) = Sy, sx0p ($1(2)),

where ¢ /K, () is Herbrandt function of the extension K}, /K.

On the one hand, (¢7'(v7),v7) and (¢; ' (v%), v} ) are the last edge points of the
graphs of the functions ¢1(z) and $2(z), respectively. On the other hand, ¢ ;x,,
coincides with Herbrandt function of the extension K'/K, c.f. n.4.2.1.

Therefore,

vy = max{ r*, r* + ot 1.
Now, if v7 < 7%, then v < r* and, in this case, vy and v% are both < wp.
If vy > 7r*, then

1)3—7‘*
vy =1"+

<vg,

g.e.d.

Continue the proof of our Proposition.
It follows from the definition of X 7 that

Kiy(X7) C Ky (o*Mf2) Ky (a¥+N £y,

By arguments of n.4.3.1 one has (in notation of the above Lemma)

o(Kiy(X7)/Kna) < max{ 07,05 }.
Obviously, the above Lemma gives the implication
W(K(f7)/K)<vy = v(I{}(X7)/Enm) < vo.

The inverse implication can be obtained similarly. Indeed, let v( Ky, (X 7)/Knm) <
vg and vz > vg. One has from the definition of X 7

vy < max{vy, v(Kp(X7)/Ku)}.
Therefore, vy < vz < v%, but this is impossible because of our Lemma.

4.3.3. Corollary. Ifr* < vy and 1< 8 < p, then Lp, N m(vo) + Cot1(Lr N, M) IS
the minimal element in the family of ideals J of Lr n a, such that

a) J D Co1(Lr,N,M);

b) U(I{IM(XJ)/KM) < Vg,

4.4, Some calculations.

Let vp € Q,v0 > 0, R be a finite subset in Q*(p) and M be a nonnegative
integer.
For any natural number N we use the notation ¢ = p®.
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4.4.1. Lemma. There exists a natural number N2(R, M, v) such that for any
N 2 Nyo(R,M,v) thereexist r* = r*(N, R, M, vo) € Qt(p) and a* = a*(N,R,M,vp) €
Q*(p) such that
a)r* < vg;
b)r*(¢—1) € N;
c) if r € R,r < vy, then gp™r — ga* < —a*;
d) ifr € R and p'r < vg for some i € Z,1 > 0, then

gp'r — (g — 1) € —a*;

e) if p'(ry + %) < v for some ry,72 € R and integers i,n 2 0, then
1 T2 *
gp'(r1 +F)—(q—1)?‘ <0.

Proof.

Let 8, = 61(R,vy) be the minimum of all positive values of the expression vo—p'r,
where 7 € Z,i > 0 and r € R.
Let 62 = 62(R,vp) be the minimum of all positive values of the expression

i T2
vo—plrn+— 1/,
P

where ¢, n are nonnegative integers and ry, 7, € R.
Clearly, é; and 63 exist and 0 < §; < 6;.
Take a natural number N = No(R, M, vg) such that for ¢o = pN2 and

~ {fh +2pM
vy = max { —————
g2 — 1

(w0 — 61), —2—(vo — 52)}

g2 —1

one has the following inequality

5 2
vg — VU
0 0 1
If N > N, then for
) M
'u=max{q P (0-—61), g (90—62)}
g—1
one has .
v—1vy 2 vy — Uy > > )
0 0 0 a—1-7-1
Therefore, there exists m € N such that
m m-+1 G( )
g 11 q 1 v,V



At least one of these two fractions should be an element of QT (p) which we shall
denote by r*.

Clearly, the requirements a) and b) of our Lemma are satisfied.

If r;,r € R,i,n >0 and p'(r, + %%) < vy, then

ap' ("1 +;%) —(g=1)r" <q(vo—b2) = (g ~1pp <0

(c.f. the above definition of v) and the requirement e) is also valid.
Let a* € Q*(p) be such that

q%lpM(‘vo —_ 61) S (1.* S 2pM('UO —_ 51)

IfreR,r <wvp, then r < vy — §; and

gpMr < qp™M (v — &) < (¢ — 1)a*,

therefore, ¢) is valid.
If » € R and p'r < v for some : > 0, then p'r < vy — §; and the requirement d)
is obtained as follows

gp'r — (g = 1) S q(vo — 81) —v(g — 1) < q(vo — 1) — (¢ +2p")(v0 — 61) < —a”.

Lemma is proved.

4.4.2. For fixed vo, R, M and a natural number N > N,(R, M,v) we use until
the end of n.4 the following more simple notation:

L = Lgnnm and analogously Ly = Lrnmk,Lir = LpN MK
LrN MKy,
L{vo) = Lp,~n,m{(vo) and analogously L(vg)sep = Lr N MK, up(vo);
13,-,0 = D, oy for any r € I;
M o~ M ~~
E=0Mepnm=3 trp’ D,y and E| = UMG,R,N,M = S t1" Dyp;
rer reR
F = O'ZMfR,N,M i~ Lsep and F| = UMf;Z,N,M S Lsep.

F(v,0) = Frn m(v, 2M)mod C3(Li) =

= E TP‘Dr,i - § ﬁ(na0)r1p1[Dr1,i;Dr2,i—n]-
TGR,I>0 rl,f‘zeR
rpt=~ 0_{\11(121,:'20
P (ritah)=v

Lsep =

i
M,tr’

Denote by Wy (k){t1} the Was(k)-algebra of Laurent series in one variable f.
Then Op(K)yy) ~ Wy (k){t1} and
Om(Khp) = lim Wa(k){E'"}.

(n,p)=1
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Consider its subalgebra of “power series”

i/n

HE

e = lim Wag(R)[E
(n,p)=1
This subalgebra can be identified with a lifting of the valuation ring Ok, of

the fleld K} ,, modulo pMti,
We also use more simple notation O'(Ly,) for the Lie O}, , -algebra L @ O}y ..

Inductive assumption.
One can assume that Proposition 3.6.2 is valid (for s = 2) for the Lie algebra
LR N M-1, Wwhere N > No(R, M — 1,vp). As

Nz(R, M, 'Uo) 2 NZ(R, M - 1, ’Ug),
we can assume that for N > No(R, M, vp) the ideal
L(vo)x mod(p™ Ly + C3(L4))
of the Lie algebra Ly mod(p™ Ly + C3(L4)) is generated by the elements
0" F(v,0)mod pM Ly + Cs(Ly),
where n € Z/NZ,~v > vy.
4.4.3. Let A, € L, be such that E = ¢V E, + A;. Then (c.f. n.4.2.5)
A=Y (€~ 1)Dn,
r€ER
where
&€=k (‘i*tl_r.pM(q_l)) Il e (—%P”tl-r.pm.(q-l)) .
T 1<s<M r
As in n.4.3, consider X € L,¢p such that F = oV Fy 0 X. Obviously,
oX — X = Aymod Cy(Lyep)-

Proposition.

a) A € L(Uo)sep + tl_a‘ o,(Ltr) + C2(Lsep);'
b) [X,0N Ey] =

_— E [0’"A1 ) O'NEl] mod ([L(Uo)sep, Lsep] + tl_a- O,(Llr) + 03(L33P)) .
ogn<N

Proof.

]_ —_* M—> _
E, = exp (—T—*p’tl HEN 1))

£ = E (__l_t—-r'PM(q—l)) ‘

r* 1

for 1 <s< M and
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Lemma. For any r € R and 0 < s < M one has
M —~ *
I (E7 = 1)Dyo € L(vo)sep + 17 O'(Ler) + Co(Lyep)-

Proof of lemma.

Let rp®* 2 vo. Then N
P’ Do € L(vo)x + Ca(Ly),

c.f. n.4.1. Therefore, if s = 0, then

M ~
thrp (86- - I)Dr,o € L(”O)aep + C2(L3ep)~
Ifl1<s< M, then

T Mot . ;
& —1=exp (—=p't ) — 1€ p OM (K uey)
and again
r M r i~
t1" (€5 = 1)Dro € L(vo)sep -+ Co(Lsep)-
Let rp® < wvg. If 1 £ s < M, then
* M=»
t(];rPM (S: _ 1) — tnlerM [exp (_ l*p’tl—r P (q—l)) _ 1] €
r
etgrpM_r-pM—l(q_l)O, ’trctl_pM-la- ’

—a*
M M tr - tl OM,tr

(we use the inequality d} of Lemma 4.4.1).
This means that

9P (67 — 1) D € 47%° O (Lyy).
If s =0, then

& -1={a (- 567" 0) < 1 modt; P N0y,
As 7 < vp, the enequality d) of Lemma 4.4.1 gives that
(g - e T OO0y L 0, C 47 O
and, therefore, t" (& — 1)Dro € 17 Oy ..
Lemma is proved.

Continue the proof of our Proposition.

a) As [[ &I € O)y,,, the above Lemma gives
a<igM '

Av= 3 |0PE - 1)Dro [ & € Lwo)sep + 17 O'(Ltr) + Cof Luep)-

reR s<i<M
0<s<M
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b) From n.a) it follows that for n > N
0" A1 € L(vo)sep + tl_qa.o’(Ltr) + C2(Lsep)-
Then

NE =S " Do = Y " Do mod L(vo)sep + Co(Lucy),

réR rch
r<vg

because ﬁr,(} € L(vo)x + C2(Ly) for r 2 wy.
With respect to ¢) of Lemma 4.4.1, grp™ < (¢ — 1)a* for r < vy, therefore,

oNEr € L(vo)sep + 1377V O'(Lur) + CoLyep).
So,forn 2 N
(6" A1, 0N B} € L(vg)aep + £7% O'(Lir) 4 Cs(Lyep).
In order to finish the proof one needs only remark that

=— Z " &y mod(L(vg)sep + C2(Lsep))s
n20

by the part a) of our Proposition, which was proved earlier.

Proposition is proved.
4.4.4. Let A € G(Ly,) be such that E = 0V E; 0 A. Then

1
A=A — E[JNEI, A1]mod C3(Lyep).

Applying ¢ to the both sides of the cquality F = oV F} 0 X, one gets
cF=FoE=0"FioXoo"E 0A

and
c(e"FioX)=c¥FooVE 00X,

Therefore,
cX =X o{X,osVE } o A,

where { , } is a commutator in the group G(Lgep).
Obviously,
{X,0VE 1} =X, 0" E;]mod C3(Lyep)

and by n.b) of Proposition n.4.4.3 one has
{Xa JNEl } =
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=— ¥ [o"Ay, 0" Eymod ([L(vo),ep,Lsep]+t;‘“.0'(Ltr)+Cg(Lsep)).
ogn<N

Proceeding in the same way we obtain

1
XoA=X+A+§[X,A]z

1 1 1
=X +4 - E[arNEl,Al] + 3K A = X+ 480 - §[aNEl,A.]]

mnod ({L(s0)seps Brer) + 47 O'(Ler) + CalLuey))

because X and A; are in L(vg)sep + t7° O'(Lir) + Ca(Laep), c.f. n.4.4.3.

Therefore,
1
cX -X=A - E[aNEl,Al] +[X,cNEy] =
=Ar— ) ii(n,0)0"A, 0N T E)
ogn<N
mod ([L(vo)se,,, Lyep] + 7% O'(Ler) + Cg(Lse,,)) ,
where

1, f0<n< N

.0
i, 0) {1/2, ifn=0.

4.4.5. Proposition.

M ~
A] = Z tgrp (5: - 1)-IDr,O

reR
0gsEM

mod (pL(UO)sep + [L(Uﬂ)sep, Lsep] + tl_a. o’(Llr) + CB(Laep)) .

Proof.

We use notation of 1.4.4.3. Let r€ Rand 0 <s < M.
a) If p*r < v, then

17" (eT —1)Drp € 472 O' (L),

c.f. proof of Lemma n.4.4.3.
b) ¥ s > 1 and p°r > pug, then

M o~
t1" (€] — 1)Dro € pL(vo)sep + [L(v0)seps Lsep] + C3(Lsep)-
This is implied by the following Lemma.
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Lemma. Ifr € R, i > 0,7 € Z and p'r > v, then

ptD,o € pL{ve)k + [L(vo)k, Li] + Cs(Lx).

Proof of Lemma.

By the inductive assumption of n.4.4.2 one has

f'(p"r, 0) = pirﬁ’”,"— Z ﬁ(n,O)pilrl [D"l,anrz,ﬁ—n] € L(Uo)k+pMLk+C3(Lk)'

r,m2€R
0<n<N, iy 20

P (rit S)=pr

Therefore, p.7"=(pi7‘,0) € pL(vo)x + Cs(L).
If the summand

pi1+177(na 0)7'1 [Drl )i Drz,il —n]

appears in the expression of pf':(p"r, 0), then it belongs to [L(vg)k, Li] + Ca(Lx).

Indeed, at least one of two numbers p'1*!'r; and p"**1r; should be > vy (other-
wise, p' (r; + =) < 2 < yg). Therefore, p* 1D, ; or p"*1D,, ; _, belongs to
L(vo)s + CalLy).

Lemma is proved.

Now our Proposition follows from the identity

II &-1= I & -0 -

0gs<M 1<IKM
Os.s; <...<8[€M

4.4.6. Proposition. Let §, be a rational number from the proof of Lemma 4.4.1.
Then

e n —n ~ (?‘1+}—:ﬁ- M , ~ ~
Z T](R,O)O’ [AlsaN El] = Z T’(n:o)t;} ” (881 _1)[DT1 ,0>D"2,—"]

o<n<N r,r2€R
0gn< N 0KsgM
UOSP'("1+£})$2(‘UD-51)

mod ([L(0)sep Lnep) + 7% O'(Lus) + CollLuer) -

Proof.
Indeed,
Z ﬁ(n,O)g"[Al,gN—"El]:
o<n<N
—~ M M4eN— n~
- <2Nn(n,0)a" [Zt{ﬁp (& ..€D —1) rlO,Zf T ,2,_,1} -
ogn< r
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- +58)pY r ~ =
= Y i, 0d T g e — 1)[Dry 0, Dry o).
T

Then, as in n.4.4.5, we obtain
a) If p*(r1 + f&) < vy, then

M, o f =~ n "
tzp ( 1+;ﬁ‘)(£:1 - 1)[Dr1.0:D1"1,—"] € tl'—u OI(LM).

b) If p*(r1 + ;’}) > 2(vo — 61), then either p®r; > vg — &1, or p°ry > vg — 6. Let,
for example, p®r; > vo — 6. Then p°ry 2 vy, it gives

paﬁrl 0 € L{vo)k + Co(Li)
and, therefore, 5 5
pa[Drl ,0) -Di'z,—ﬂ] e [L(vo)kj Lk] + 03(Lk)'

Remark, that £]* — 1 = 0 mod p°.
Now one can finish the proof of our Proposition in the same way as it was done
in the proof of Proposition n.4.4.5.

4.4.7. Proposition.

Al - Z ﬁ(n,O)O'n[Al,O'N_nEl] =

ogn<N
1 o e phf—l o
== ¥ [T By
r TER
0<sEM
1 pM-a
~ g(rit+5R)p" =r" (g—1) = ~
+r_* Z rlp"n(n,O) [tl 7 ] [DH,U’DH,-"]
rlerGR
0gsgM
ogn<N

IDOdpL(UO)sep + [L(Uo)scp, Lsep] + tl-.a. O'(Ltr) + CS(Lsep)-

Proof.

- _ M—s
It is easy to see that the changement of £]* —1 by the first member — Z-¢," (a=1)p

of 1ts expansion in powers of t; does not affect the expression for

Z 7(n,0)0™[Ay, 0V " Ey]
ogn<N

from Proposition 4.4.6 modulo 7% @(L,,). In order to finish the proof one needs
only show that this procedure can be done with the expression of A; from the

Proposition 4.4.5. This is implied by the following lemma.
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Lemma. Ifr € R,pa?“ > 2(’00 - 51), then psfjr'o € L(’Uo)k + Cg(Lk)
Proof.
Let p®try be the largest number such that r € R, p®try > 2(vg — 1) and

p“ﬁrl,o ¢ L(vo)x + C3(Lg).

From inductive assumption it follows that

p315r1 0 € L{vo)x + +pMLk + C3(L).

Further, in the expansion

A= > (0,000 AL 0N T E) = Y P Ay
0gn<N T EZY (p)
meZ,m20
where all A, » € Li, one has
1) Ay, .m € L(vo)x + C3(L) for v > qp*'r1 —7*(g — 1);
2) Ayyom € L(vg)r + C3(Lg) for y1 = gp*'ry —7* (g — 1),m # M — s;.
Therefore, if Kj;(X(v,)) is the field of definition of

X mod L(vg )sep + C3(Lsep),

then the largest upper ramification number v(K}, (X y,))/ K}y ) is equal to 71 and,
therefore,

WKy (Xugun)/ Kp) = B 77 = 7,
But the inequality p*'r1 > 2(vo — §1) 2 vo — 6; implies the inequality p*iry 2 vy.
This is impossible because of v(K}; (X 1(v0))/Knr) < vo.

This contradiction proves our Lemma.
4.4.8. It is easy to see that for any ideal J of the Lie algebra L such that

J D pL(vo) + [L{vo), L] + C3(L),

the field of definition of X mod J,e, coincides with the field of definition of Y mod Js.p,
where Y € L,., and satisfies the equation

oY =Y = Z rpstgrpt_r'(Q—l)ﬁr's_

reR
DgsM
~ g(ri+o8)p"—r* (¢-1) =~ ~
- Z r1p"7(n, 0)t ’ [Dry 6 Dry,5—n)-
rl,Y’QER
0gsM
ogn<N

So,

Y -Y= Y 4T Ey ),
vEQ >0
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cf. n4.4.2.
4.5. The end of the proof of theorem.

Let Jy = L(;,"g,,M. We must prove, that
Jo + C3(L) = L(vo) 4+ C3(L).
From n.4.4.1 it follows that
Jo mod C2(L) = L(ve) mod Cy(L).

By the induction assumption one has

Jomod(pM L + C3(L)) = L(vo) mod(p™ L + C3(L)).
Therefore,

J(),K;‘,,,,cp D pL(vo)sep + [L(v0)seps Lsep) + C3(Lsep)-
Now the last formula of n.4.4.8 gives that

Ky (X1) C Kpp g

and therefore

Jomod C3(L) D L(vp) mod C3(L).

Conversely, let

yo = max{ v € Q | 7> vo, Fyo ¢ L(vo)r }-

Now the last formula of n.4.4.8 and Lemma n.4.1 give

V(K p (X o))/ Epr) = 10 — 7" (g = 1).

Now the following inequality

. . —-r*(¢g—-1)—1r" *
o(Kyy (X nony )/ Ena) = 12 “; )T = 2 v

gives the contradiction to the Corollary of n.4.3.3.
Theorem of n.3.4 is proved (modulo 3-rd commutators).

5. The case of a local field with finite residue field.

Let Ny be a fixed natural number, K, be a complete discrete valuation field of
characteristic p > 0 with finite residue field Fy,, where go = p™°. Fix a uniformizer
to of the field Ky, then a fixed embedding F,, C k = F, defines the embedding
Ko = Fpy ((}0)) € K, where K = k((15)) is a local field from n.2.1.

Let ' = Gal(K,ep/Ko), o = Gal(K,.p/Ko) and To(p) (respectively, I'(p)) be
the Galois group of the maximal p-extension of the field K, (respectively, of the
field K) in Ko,sep = Kaep-
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In n.5.1 we apply the generalisation of Artin-Schreier theory from n.l to the
construction of an identification

$° : To(p)/Cp(To(p)) = G(L),

where L = E/Cp(f), and L is a free pro-p-algebra Lie over Z,.
In n.5.2 we describe (in the terms of the identification ¥°) the action of the
Galois group Gal(Ko/Fp((to)) ) on Te(p)/Cp(To(p)) by conjugation.

Let
P(p) : T(p)/Cp(T(p)) = G(L(p))

be the identification from n.3.5.2. Consider the homomorphism of groups

7 : T(p)/Cp(T(p)) — To(p)/Cp(To(p)),

defined by the imbedding I' C Ty. With respect to the identifications ¥° and
¥(p) the homomorphism v can be described in the terms of some morphism of Lie
Z p-algebras

6:L(p) — L.

In nn.5.3-5.4 we give an explicit construction of this morphism.

Let {L£(p)"}y>0 and {L{”},5¢ be the filtrations of the Lie algebras £(p) and
L, corresponding to the ramification filtrations {T'(p)"”)},50 and {To(p)*},>0, re-
spectively. For any v € Q,v > 0, the equality T'(p)(®) = ['y(p)(*) implies the equality
§(L(p)®) = L. Therefore, the explicit construction of § with the description of
the filtration {£(p)(*)}y>0 from n.3.5.3 permit us to give in n.5.5 a description of
the image of the ramification filtration of the group I's in I'o(p)/C,(To(p))-

5.1. Construction of identification 1°.
As earlier, let

Z*+(p) = {a €N | (a,p) = 1}.

For any finite subset A C Z*(p) and an integer M > 0 introduce the free Lie
Z/pM+1Z -algebra L4 p with the module of free generators

?A Hom(Wn (Fy, ), Wat(Fp))a © WM(FP)%'

The system {L A,M} is a projective system of Lie algebras with respect to con-
necting morphisms EADMI -— EA,‘M,, defined for A; C Ay and M, < M (these
homomorphisms are induced by the projection Wiy, (Fgy ) — Wi, (F,,) and the
correspondence Vy — V;). Clearly, L = 1‘1_1_ni A,M 15 a profree Lie Z,p-algebra with

AM
the set of topological generators

H Hom(W(Fy, ), W(F,)). ® W(F, )170-
a€Z* (p)
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Set Lay = EA,M/CP(EA'M), L= E/C,,(E) and denote by V; f (respectively, Vy)
the images of the generator f € Hom(W(F,,), W(F,))s,a € ZT(p), respectively,
17;) in these algebras. As earlier, for any subfield K, C K, use the notation
Ly, = L ® O(K,) for extension of scalars of the Lie algebra L and introduce the
natural system of free generators

{(Van |a € ZH(p),n € Z/NOZ yu{Ve}

of the Lie algebra Ly, .

Fix « € W(F,, ), such that Tra = 1, where Tr : W(F,,) — W(F,) is induced
by the trace of the extension Fy, over F,. It is easy to see, that a ¢ (¢ —1d)W(F,, ),
where ¢ is the absolute Frobenius morphismn of the ring of Witt vectors W([F,, ).

For any finite subset A C Z*(p) and an integer M > 0 consider the elements

hap = (D t*Vao) o (aVe) € G(Lam k,)-
at A

and elements g4 p € G(Lam Kk
1) oga,m = gam 0 ham;
2) the system of elements {ga, s} is compatible in the projective system {L 4, a,x,., }-

), such that

sep

The choice of a such system of elements {ga, a} defines the compatible system
of epimorphisms

Yam  To(p) — G(La,m),
(for any 7 € T'o(p) one has 3 5(7) = Tga,m 0 (—ga,m)).
Taking
¥ = lm S+ To(p) — G(D),
AM

we obtain the identification
° : To(p)/Cp(To(p)) = G(L).

Ifg= !‘iLngA,M, h = l‘iiihA‘M, then og = g o h and for any 7 € I'y(p) one has:
AM AM

»°(r) =Tg0 (—9).

Remaerk.

Let ¢, : K§ — To(p)/C2(To(p)) be the homomorphism appearing from the
reciprocity map of local class field theory. Via Witt explicit reciprocity law, [W],
one can show that

a) ep(to) = (¥°) ! (Vo) mod Co(To(p));

b) if E(X) is Artin-Hasse exponential (cf. n.4.2.2), a € Z*(p),8 € W(F,,),
then

ep(E(Bt")) = (9°) 7" (Va,f,) mod Co(To(p))-
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Here the homomorphism fg € Hom(W(F,, ), W(F,)) is such that for any « €
W(F,,) one has fg{a) = Tr(fa), where

Tr: W(F,, ) — W(F,)

is induced by the trace of the extension F,, /F,.
5.2. Let ¢o € Gal(Ko/F5((f5))) be such that ¢o(fo) = fp and ¢oly,, be the

absolute Frobenius automorphism of the extension Fy /F,. It is clear, that ¢,
generates the Galois group Gal(Ko/F,((t0))).

Denote by a4, the automorphism of the Lie algebra L, given on the set of gen-
erators

{Van | @ € Z7(p),n € Z/NoZ} U {V0}
of the Lie algebra Lg, by the following conditions:

: Va,n — explo”aad(Vo) ) (Vi ng1)
ag, : Vo — Vo

(here exp(X) = 3. X"/n!lis the truncated exponential).
0<n<p
Proposition.

a) do(h) ~ ago(h);

b) the correspondence g — ag,(g) o (aVy) defines an extension o of the auto-
morphism ¢q to the field Kﬁ‘;f Yo (which coincides with the maximal p-extension of
Ky having Galois group of class of nilpotency < p);

c) The action of $, on To(p)/Cp(To(p)) by conjugation corresponds under the
identification ¥? to the automorphism a4, of the Lie algebra Ly, .

Proof.
Indeed, a} is implied by the following calculation:

go(h)=( > t*Va1) 0 (0aVh) ~ (aVo) o ( Y t*Va) =

a€Zt (p) a€Z* (p)
= [(@Ve)o( 3O #Vas)o(—aVh)]o(aVs) =
aGZ"‘(p)
adV
=y ey o an) =
a€Z* (p)
0<m<p

Y thexp(aad(Vo))(Van) o (aVo) = ag,(h).

a€Z¥ (p)
ogm<p

(we use the identity

exp(X) exp(Y) exp(~X) = exp(3 (ad X)"Y)
nxo
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in an associative Q-algebra with generators XY, c.f. [B, ch.2, n.6, exerc.1}).
From this calculation it follows that

$o(h) = (—aVp) 0 ag,(h) o (caVp).

Now the part b) follows from remark 1.5.2.

The part c) of our Proposition follows from remark 1.5.4.

5.3. Let Iy C [y(p) be the higher ramification subgroup. Consider the restriction
1™ of the morphism %° to the subgroup Iy:

P =9°|y, : Ip — G(L).

In according with the decomposition L = l(ii’lL A,m one has the decomposition
AM
P* o= l‘iiu,b:“q’ Mm> Where 9% »/ is a compatible system of homomorphisms
AM

¢:4,M Z Ig —_ G(LA,M)

Proposition. There exists § € W(k), such that
of-B=q
2) if g4 pm = gam o (—BW) and

=0 Y Ewyrmaone

m!
a€A 0<m<p~1

then ¢} py = mgs , (% pr), 1.6 (in notation of the Corollary 1.4) for any t € Iy it
holds: '

Yam(T) = T(QZ,M) °© (—QR,M)
09:1,M =ga,m 0" m
Proof.

Let L° be the free commutative Lie Z, -algebra with the generator V. For an
integer M 2 0 set L}, = L°/pM*'L°. Consider the morphism of Lie Z,-algebras

Tam : Lam — Ly,
given in the terms of generators by the following conditions V, s — 0 and V5 —» W
foralla € A C ZH(p), f € Hom(Wp(Fy, ), W (F,p)).

The epimorphisms 74 ps define the epimorphism

7= limn L — L°,
hma,m
AM

Clearly, if L* = Kerw, then Im¢*(I) = G(L*) C G(L).

Consider the extension of scalars of the morphism :
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o
Tr[(‘ep : LK"JP - LK.ep'

Then 7g,,,(9) = BVo, where § € W(k) is such that
o —f=a.

It is clear, that # generates the maximal unramified p-extension of the field Kj.
Set g = g* o (BVo) in G(Lkg,,,). If g* = ](j_n_lgle, then ga,m = g% pr 0 (BVp) and
AM

’/’Z,M(T) = T:b%,M(T) =7(9am)0(—gam) = T(QE,M) © (_Q:A,M)'
Introduce by € G(Lg,) by the equality
h = hy o (aVp).
The following equalities
cg=goh=g"o(8Vy)oh;o(aVy),

og =0g" o(6fVy) =0cg* o (BVs) o (aVh)
give
ot =g* o ht,

where h* = (V) o hy o (=fVy) € G(Lk).
Let A* = Limh} pp, h1 = l(iLn(hl)A,M. Then
AM AM

(h)am = Y t°Vag
acA
and, therefore,

Bt = BV 0 (X tVag)o (-6%) = Y0 Do n(aa o) (Vag)

aCA a€A
0<m<p

Proposition is proved.
5.4. Construction of the morphism §.

As was proved earlier the morphism
P =9°| 1 Io — G(L)

is given by the correspondence 7 (7¢*) o (~g*), where og* = ¢g* o h*.
On the other hand, the morphism

¥(p) : T'(p) — G(L(p))
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(c.f. n.3.5.2) is given by the correspondence

r o rf(p) o (~ (),

where f(p) € Lk,.,, of(p) = f(p)oe, e(p) =limea,nn and e nm = 2t Dap
a€A
(as usually, A C Z*(p) is a finite subset, N > 1, M > 0 are integers).

Therefore, an explicit form of the morphism 6 : £L(p) — L can be obtained from
the conditions
bx(e) =h*, bk, (f(p)) =g"
Let L4, n,a be the Lie algebra from n. 2.3 and

{Dsn|a€eAnecZ/NZ}

be the standard basis of its extension of scalars L4 v am k.
Proposition. If N = 0mod(pM*1Ny), then there exists a unique morphism of Lie
Z,-algebras
ba,nm L(p)anm — Lam,
which satisfies the following condition:

St i(Dao) = Voo + 3 Lo (ad Vo)™ (Vao) = &5(8 ad(Ve))(Va o)

1<m<p

(here 6a n.mx = 6an Mm@ W(k)).
Proof.
One should check up that the morphism of Lie algebras
baN Mk Lanmrk — Lampi,

which is given by the relation 64 N am k(Dan) = 0"64 N M k(Dap) for 0 < n <
N,a € A, commutes with the action of ¢ on these Lie algebras.
It is sufficient to prove that

N (a8 ME(Da)) = 4N 8 k(Da)-

This fact is implied by the following lemma,

Lemma.
If N = 0mod(pM*1Ny), then o™V (f) = fmod pM+!,
Proof.
One has
oMB=B+a+..+oVM la=8+Tra=8+1.
Therefore,

N
oVB =B+ — = BmodpM*.
Ny
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Corollary.
a)

b= l('i_{l_l(SA'N’M.

b) if N = 0modp™+1Ny,a € Z*t(p),l € Z, then one has in the Lie algebra
Lanmik=Lay®W(k) the equality

§anmk(Dainy) = exp(a'p ad(Vo))(Va,jn, ()

(here jn(1) and jn,(1) are the residues of | modulo N and Ny, respectively).
Proof.

From the above propositions of nn.5.3, 5.4 it follows that for N = 0 mod(p**+1 Ny)
84,N,M Kk transforms

ea,n,m(p) = Z t“Doo € G(La,NM,K..)
acA

to % ar € G(La,m k). Therefore,
Hméa,n,mK = Ok,

and we obtain the part a) of the above statement.
Using the commutativity of § and o we obtain the formula of the part b) of our
Corollary.

5.5. Let {L("},50 be a filtration of the Lie algebra L, which corresponds to the
ramification filtration of the Galois group I'y(p) under the identification °.

5.5.1. Let ¢o € Gal(Ko/F,((f3))) be the automorphism from n.5.2 and ¢ be
its extension to an automorphism of the maximal p-extension of the field Ky with

Galois group of class of nilpotence < p from the Proposition 5.2 ¢).
Forany l € Ly = L @ W(k) set

¢0 = ad,o(l),

where ag, 1s the automorphism of the Lie algebra I from n.5.2. As was proved in
the Proposition 5.2, the morphism [ + ¢g * [,1 € Ly, gives (in the terms of Lie
algebras) the action of the lifting ¢o on the group To(p)/ Cp(To(p)) by conjugation.
For any m € Z denote by ¢7* the m-th iteration of the morphism [ — ¢q * I.
552. Let v € Qv > 0. For any v € Q,v > 0, consider the elements
Gu(v) € Lg,,, which are given by the following expressions:

gv('r):
= Y.~ an(0,ma, e m) [ (B4 Vay 0,85 " K Vagol, s 857 * Ve, o)
1gs<p
a,...,a,EZ (p)

LR FYRRRRLLY ?0

pilart by .t gl =
play,...,pta,<(p—s)v
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5.5.3. Theorem. In notation of n.5.5.2 L% is the minimal ideal of the Lie
algebra L, such that L(") @ W(F,,) contains the following elements:

a) p'Vap, if p'a 2 (p— L)v;

b) gv(’)’): ify2v.
5.6. Proof of Theorem 5.5.3.

5.6.1. For any M 2> 0 set Ly = limL 4 a7, then L = limL .
— —

A M
Analogously, let E(P)N,M = Eif_nﬁA,N,Ma then .C(p) = ﬁﬂﬁ(p)N,M.
A N,M
For N = 0mod NopM*! consider the morphism

bn,p =limba, N p L{p)Nn M — Lum
A

(cf. n.5.4).
It follows from n.3.5.4, that £(p)(*) = l(il_nﬁ(p)(,:;’)M, and the ideals ﬁ(p)f,:,’,)M are
N,M
the minimal ideals of the Lie algebra £(p)n, ar such that C(p)g\?’)M ® W (k) contains
the elements
a) p'Da o, where a € Z¥(p),i 2 0,p'a > (p — 1)v;
b) Fn,o(7,0) for v 2 v.

Therefore, LSC;) is the minimal ideal of the Lie algebra L s, such that LS&) QW(k)
contains the elements

a) p'6n m(Da ), where p'a > (p — L)v;

b) én,M(FnN,u(7,0)), where v 2 v.

5.6.2. As earlier, for any ! € Z denote by jn(!) the residue of { modulo N.

Lemma. For any a € Z*(p) and | € Z in the Lie algebra Ly x we have the
equality:
6n,m,k(Da iy (1) = €xp(B ad Vo)(df * Vo).

Remark. The automorphism ! +— ¢g * | of the Lie algebra Ljs i has the order
NopM+! (cf. the proof of the Lemma n.5.4), therefore, the element ¢ * Va0
depends only on the residue jn({).

Proof.
For any ! € Z one has (c.f. the Corollary n.5.4)

6NvM!k(Da,JN(’)) = é—}[T)(oIﬂ a’d(VO))(Va,J}vo(l))'
Let I = [ymod N, where I; € Z,0 < Iy < N. Now the statement of our Lemma
follows from the following identities:
o'B-B=cf-PB=a+oa+..+ 1" lamodpMt!;
2) &p((@ +oa+ ..+ o a)ad(Vo))(Vajwy ) =

i i
fred 1 o VG,O = éo %* Va,D-
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5.6.3. If N = 0mod NopM*! a € Z*(p),i € Z,: 2 0, then the above Lemma
gives in the Lie algebra Lz g the following equality

6n M k(P D) = exp(B ad Vo)(p' Vay).
For any 1,13 € Ly i one has the following identity

exp(Bad Vp)[l1, l2] = [exp(B ad Vo)1, exp(B ad Vp)la).
Therefore, for any v € Q,v > 0, in L we have the equality

6N M (FN,w(7,0)) = &xp(fad Vo )Gu (7).
The operator exp(f ad V) is inversible on Ly &, therefore, it follows from n.5.6.1
that th_e ideal L%‘,}ik = LSC}) ® W (k) is generated by the elements
a) p'Va o, for p'a 2 (p — 1)v;
b) Gy (), for 7 > v.

Now it is sufficient to remark that these elements are in the algebra Ly @ W (F,, )
and do not depend on M.
Theorem is proved.

5.7. As in n.3.5, we have the following version of the Theorem 5.3.3.

Theorem. Let 1 < so < p, v € Q,v > 0. Then the ideal L") mod C,,11(L) is the
minimalideal of the Lie algebra L mod Cy,41(L) such that L{"@W (F,, ) mod Cyyt1(Lg,, )
contains the following elements:

1) p'Vayo, where i > 0,a € Z1(p), p'a > sov;

2) gv,-‘lo(’ﬂ =

= Y (D P an(0,my, ) GV 0, 65 Va0, oy 6 Vi, o],
1<s€9%0
al!"'!al€z+(p)
1,M,...,M,; 20

(a1t g+t i)=Y

par,..pla,<(so+1-25)v

where v > v.

REFERENCES

[A] V.A.Abrashkin, Ramification filiration of the Galois group of a local field, (to appear in
Adv. Sov. Math.).

[B] N.Bourbaki, Lie groups end Lie algebras, Part I: Chapters 1-3, Hermann, 1975.

[B-M] P. Berthelot, W. Messing, Théorie de Deudonné Cristalline III: Théorémes d’Equivalence
el de Pleine Fidélité, The Grotendieck Festschrift (P.Cartier ctc., eds.), A Collection of
Articles Written in Honor of 60th Birthday of Alexander Grothendieck, vol. 1, Birkhauser,
1990.

[F] J.-M. Fontaine, Représentalions p-adiques des Corps Locauz, The Grotendieck Festschrift
(P.Cartier etc., eds.), A Collection of Articles Written in Honor of 60th Birthday of Alexan-
der Grothendieck, vol. 2, Birkhauser, 1990.

[Sh] LR. Shafarevich, A general reciprocoty law, Mat. Sb. 26 (68) (1950), 113-146.

[Se] J.-P.Serre, Local fields, (Graduate texts in math.; 67 ). Springer-Verlag, Berlin-Heidelberg-
New York. Translation of Corps Locaux, 1979.

[W]  E. Witt, Zyklische Korper und Algebren der Charakteristik p vom Grad p™, J.Reine Angew.
Math 176 (1937), 126-140.

50



