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Abstract

The aim of this paper is to construct asymptotic solutions to multidimensional
Fuchsian equations near points of their degeneracy. Such construction is based on the
theory of resurgent functions of several complex variables worked out by the authors
in the paper [1]. This theory allows to construct the explicit resurgent solutions to
Fuchsian equations and also to investigate the evolution equations {Cauchy problems)
with operators of Fuchsian type in their right-hand parts.

1 Introduction

In this paper we construct asymptotic solutions to equations of Fuchsian type in several
variables. By equations of Fuchsian type we mean equations of the form

p[u d=eIH (x,x%)u:[) (1)

where z = (z!,...,2") is a point in the Cartesian space R",

mi— :z:l—a— " 9
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and the function H(z,p) is a polynomial with respect to the variable p. Such operators were
studied earlier from different point of wiev by M. Kashiwara and T. Kawai {2}, V. Maslov
[3] R. Melrose [4], B.-W. Schulze {5] B. Ziemian [6], [7].

Evidently, this equation is degenerated on the union of coordinate planes {z* = 0} and,
hence, one can expect that the solutions will have singularities on this union. Our goal is to
construct asymptotic solutions to such an equation at points of its singularities.

We remark that the set of singularities, that is, the union of hyperplanes {z' = 0} can
be stratified in such a way that the strata are coordinate planes of different dimension.
Renumerating the coordinates, if necessary, one can write down the equation of each stratum
in the form

Ap = {zl=0,...,:rk=0} (2)

where k is codimension of the strata Ay,

If we are intended to construct the asymptotic solution (by smoothness) to equation (1)
in a neighbourhood of a point of stratum (2) then we can state that the group of variables
(z',...,z*) plays quite a different role than the group (z**!,...,z"). Indeed, the variables of
the first group are the variables transversal to the singularity manifolds {z* = 0,7 = 1, ..., k}
which pass through the considered point and, hence, these variables are parameters of the
asymptotic expansion under construction. At the same time, the variables of the second
group are not small near the considered point and can be considered simply as parameters.
To express this difference in the explicit form we shall slightly change the notation denoting
the variables of the first group by z = (z',...,z") and the variables of the second one by
y = (¥, ...,y*). Using this notation we can rewrite equation (1) in the form

A a
Hu=H (z,y,ma—x, a_y) u = 0. (3)

A
Further, from technical reason it is convenient to consider the operator H included in
the equation (3) as a differential operator of the form

3}
H (x,xa—x)

whose coefficients lie in the space of differential operators in variables y lying in the Cartesian
space R" or, more generally, on some smooth manifold. It is also convenient to complexify
the problem with respect to the variables z.

For constructing asymptotic solutions to the equation (3) we use the theory of resurgent
functions of several independent variables worked out by the authors (see {1}). We also
remark that the one-dimensional case of such construction was considered in the paper (8]
by B.-W. Schulze, B. Sternin, and V. Shatalov.

The outline of the paper is as follows. In Section 2 we construct asymptotic expansions of
the resurgent type for solutions to equation (3). In Section 3 we consider the corresponding
evolution equations. Finally, in Section 4 we present two concrete examples of the introduced
technique.



2 Statement of the problem

Let us proceed with exact definitions. Consider a Fuchsian equation of the form
i 1 (5,20 ) ) = (@) ()
I

A
where H is a differential operator of the form

fi= 3 anla) (552) ®)

la|<m

with analytical coefficients a,(z). Here x = (z',...,2") is a point of the Cartesian complex

space C",
9 _(pn2 0
s =\ 5T 5m

and we construct asymptotical solutions to equation (4) with respect to smoothness in a
neighbourhood of the origin. The coefficients a,(z) of operator (5) can be operator-valued
functions of z with values in the space of differential operators in Ct, vy = (v, ...,4%) or
more generally, in the space of differential operators on a smooth manifold Y; in the last
case we shall denote by y local coordinates on Y.

In this paper we present the approach to the construction of resurgent solutions to such
equations based on the theory of resurgent functions of several independent variables worked
out by the authors in the paper {1]. This approach gives explicit formulas for the asymptotic
solutions under consideration.

Under the above asumptions equation (4) can be written down in the form

A de 0 dJ
b (a2, 55) w(z,) = f(2,) ©)
where 9N\ / 5 \"
3 ay lal<m IwiSm “92) \y

Evidently, the singularities of solutions to equations (4) or (6) can have singularities on
the union of the coordinate hyperplanes

As we had already mentioned, the construction of asymptotic solutions to equations (4)
or (6) will be carried out with the help of the theory of multidimensional resurgent functions
worked out by the authors in the paper [1]. In order to apply this theory to equations (4)
or (6) we perform the change of variables

t=¢", i=1,..n. (7N



and expand the coefficients a,(z) into the Taylor’s series in variable z:
@)= Yt e = " aup e,
i8120 1820

where
Th=1f+ ..+ 1B,

and a.p are differential operators in the space C™. Then the considered equation becomes
r 7y def
5 Y e (57) utr) = 1) €t ®)
lo|<m 18120

This equation can be investigated with the help of the theory of resurgent functions of several
variables presented in the paper [1].

3 Construction of the resurgent solutions

Now we are able to apply the resurgent functions theory to the construction of asymptotic
solutions to equation {8). We recall [1] that a resurgent function of variables z is a function

of the form
()_IUQ)d_eer e*U(s,7) d (9)

where U(s, 7) is an analytic homogeneous hyperfunctlon (see [9]) of the variables (s,7) and
each I'; is a special contour surrounding some singular point s; = s;(7) of the hyperfunction
U. It is not needed that each singular point of the function U is surrounded by some contour
I';; the set of singular points included into expression (9) is called a support of the resurgent
function u (see [1]). The support of the resurgent function u will be denoted by

Q= 90Q(r);

we emphasize that the support of the resurgent function can depend on 7. The contours T';
are shown on Figure 1.
The following affirmation takes place.

Theorem 1 The commutation formulas between the operator | given by (9) and the differ-
entiation operators have the form



Figure 1:

Further, the formula
ePol=10T,p

is valid. Here T, 5 is the shift operator along the azis s:
(T.gU)(s,7) = U(s + 18,7).

Now we shall construct resAurgent solutions to equation (8) provided that its right-hand
part is a resurgent function. Applying the affirmation of the latter theorem to equation (8)
we obtain the equation for the function U(s, ):

Z Z aap Tep ’(%) ] %l U(s,7) = G(s,T) (10)

fel<m [8]20

where the function G(s, ) corresponds to g(7) under the action of the operator . Equation
(10) is considered as an equation in homogeneous hyperfunctions of the variable s.

'We remark that, since we search for the asymptotic solutions to equation (5) in a neigh-
bourhood of the origin, the variables

f=lnz, j=1,...,n (11)

vary in the region Re 77 < 0. Hence, we must construct asymptotic solutions with respect
to smoothness to equation (10) only in this region. We recall that the coefficients ang of
equation (10) are in general differential operators in variables y € CF.

Note that if a point s = S(7) is a singular point of the function U(s, 7) then the shifted
function T,z [U(s, 7)] has the singularity at the point

s = S(‘r)—-'riﬂ

lying to the right from the point of the original singularity.

5



Suppose that for some value of 7 the point s = So(7) is the very left point of the support
of the resurgent function u (such point will be referred as the main singularity of the function
U). Then the supports of all terms of the left-hand side of (10) except for that corresponding
to B = 0 lyes strictly to the right with respect to the main singularity.

This allows to use a recurrent procedure for constructing of a resurgent solution to the
equation (10). Namely, we denote by U%(s, ) a solution 4o the equation

> el(z) 7

lal<m

a

Ul(s, 1) = G(s,7), (12)

which is the 'main part’ of equation (10). Then we determine the subsequent functions
UP(s,T) as solutions to equations

2|8 8] v

laj€m
aN~'al® o
(a) -5;] U (s,T) (13)

e Z Z aaﬂ‘ TfﬁJ
lalgm g'+6"=p
where the sum in the right do not contain the term with ' = 0. Ordering the set of functions
{U(s,7), B20} (14)

in such a way that the product 78 decreases along this ordering, we see that system of
equations (12), (13) determine a recurrent procedure for the set of functions (14) with one
and the same principal part.

Now we denote by #?(7) the resurgent functions corresponding to the functions U(s, 7).
Certainly, for doing so we must determine the supports of these resurgent functions. To begin
with, we determine these supports in a neighbourhood of some fixed value of 7. The support
of the function U°(s, ) can be chosen in arbitrary way but provided that it is contained in a
sector of angle less than = bisected by the positive direction of the real axis in the complex
plane s.The supports of the functions u’(7), 8 > 0 are chosen in such a way that these
functions satisfy the equations

Y e (%)auﬁ(r) ==Y Y ape” (%)auﬁ"(f).

lal<m lal]<m 5‘-}-,6”:13

Evidently, this requirement uniquely determines the supports of u?(r).

In order to determine the supports of the resurgent function u?(r) for all values of = one
must perform the procedure of analytic continuation of the constructed resurgent function
along paths in the complex plane C,. This procedure can be performed in a way usual in
the theory of resurgent functions with the help of the so-called transition homomorphism
(see, for example [10]). We shall not describe here this construction in detail.

6



We remark, that if the functions u®(7) are determined as it was described above, the

u(r) =Y uf(r) (15)

520

converge in the space of resurgent function since we consider the domain in the space C}
where Re 78 < 0 and, hence, the supports of the terms of this series lye in the half-plane
Re s > N for any value of N if |8} is sufficiently large. The function (15) is exactly the
required resurgent solution to the equation (8).

Note that since we search for resurgent solution of the initial equation, we must solve
equation (12) for the microfunction U%(as well as the subsequent equations for microfunctions
U®) in the class of infinitely-continuable microfunctions. To investigate the existence of such
solutions we use the §/ds-transformation of ramifying analytic functions (see [11]). Applying

this transformation to equation (12) we obtain the following equation for the image U° (s, p)
of the function U%(s, ) under this transformation:

> acor® U° (5,9) =G (s5,7). (16)

lal<m

The latter equation is a family of operator equations in the space of functions of the variables
y with parameters p € C,. Note that the latter equation must be solved in the space of
microfunctions, that is, we must solve equation (16) modulo holomorphic functions of (s, p).
Similar to the case of differential equations with constant (numerical) coefficients, the set of

singularities of solution U? (s,p) is determined by the set of points p € C, such that the
operator

H(p)= ) aup

lofjsm
is not invertible in the considered space of functions of variable y . We denote this set by

A

char H= {p H (p) is not invertible} (17)

A
and call it the characteristic set of the operator . We input the following requirement on

A
the operator H.

A
Condition 1 The set char H is an analytic set in the space C,,.

Under this condition the set of singularities of a solution to equation (12) is the union of

A
some set which is characteristic with respect to the operator H with the set of singularities
of the right-hand part G(s,7). Suppose that the main singularity s = Sp(7) of solution is



not determined by some singularity of the function G(s,7). Then the function So(7) must
be a solution of the Hamilton-Jacobi equation

6.5'0 A
{p. p—F}CcharH.

Now we are able to prove the existence of infinitely-continuable solutions to equation

(12).

A
Theorem 2 Suppose that the operator H satisfies Condition 1. Then equation (12) is solv-
able in the space of resurgent functions.

Proof. To construct a solution to equaion (12) we choose a submanifold which is not ev-
erywhere characteristic with respect to this equation. Then a solution to any Cauchy problem
with resurgent Cauchy data on this manifold will be a resurgent solution to equation (12).
The existence of infinitely-continuable solution for such a problem (under the condition that
the Cauchy data are infinitely-continuable) can be proved with the help of an explicit formula
for solutions which has the same form as in the case of constant (numerical) coefficients (see
[11]). The proof of the fact that this formula determines an infinitely-continuable solution to
the Cauchy problem is quite similar to that in the cited book and we leave it to the reader.
This proves the theorem.

To conclude this section, we present the form of constructed asymptotic solutions in
the case when this solution has simple singularities. We recall that the resurgent function
(9) has simple singularities if the corresponding function U(s,7) can be represented in a
neighbourhood of its singular points in the form

ao(7) = (s - S(r)Y

Uls,) = ;g7 +1nls = 5() ; () (18)
where s = S§(7) is an equation of the singularity set of U and the series in the right converge
in a neighbourhood of s = S(v) . From the homogeneity properties of the function U it
follows that the function S(7) is a homogeneous function of the variables 7 of degree 1 and
the functions a;4+,(7) are homogeneous functions of order —(j + 1). It is known that if the
function u(7) is a resurgent function with simple singularities then the point s = S(r) of
singularity corresponds to the term

SIS ay(r) (19)

7=0

of the asymptotic expansion of this function for large values of |7|. Performing the change
of variables (11) we come to the asymptotic expansion of the initial function u(z) which is

the sum of the following terms
[eu]

¢~ Snz) Z a;(Inx)

=0
where § and a; are homogeneous functions of degree 1 and —; correspondingly.

8



4 Evolution equations.

In this section we consider the Cauchy problem

am _ A
a =H v . -
ult:O = u0($)7 teey thi t=0 = um—l(lL'),

A
where the operator H is an operator of the type (5). As above, using exponential change

A
of variables (7) and expanding the coefficients of the operator H into Taylor series in z, we
reduce problem (20) to the form

3’"u — E 2 a T 3 “
m - aff € u,
N A 1 (3?) (21)
g™y

= Um-1(T)-

tlmp = Uo(T)s oy =T o

Remark 1 We recall that asp in the latter equation are supposed to be differential op-
erators in variable y € C*. More generally, we can assume that these operators contain
differentiations with respect to ¢ of order not more than m — 1. In any case orders of the
operators aqg are supposed to be less or equal to m — |a].

Similar to the previous section we search for a solution to the problem (21) in the form
of resurgent function (see equation (9)):

u(t,7) = Z e *U(s,t,1) ds,
-1

where U(s,t,7) is an infinitely-continuable analytic function in s. The corresponding Cauchy
problem for the function U(s,t,7) has the form

- = ()7 (3)]

lal<m {5120
= Un—1(s,7).

(22)

m-—1
Ulymo = Us(s,7), -, Gf

We shall construct a solution to the problem (22) with the help of a recurrent procedure.
Namely, we define the function U%(s,t,7) as a solution of the following Cauchy problem

T = < o |(&) ()] v

laj<m

(23)

m-—17r70
UDlt:O = UO(S: T)1 ) %}E‘_yl_ i—o = Una (S,T).

9



Then, for each multiindex 8 # 0 we determine the function U?(s,t,7) as a solution to the
Cauchy problem

’

G- e ) @) v
| +!°IZS:mﬁ‘+%':' =B af’ v [(383) (?J'??)] v, (24)
\ Ua|t=0=0,...,égt;mgft=0=0,

where the last sum do not contain the term with 8° = 0. Since Re(78) < 0, the second term

in the right-hand part of the equation in (24) contains the functions us’ only with Re(rﬁ") >
Re (7). Hence, if we order the set of functions {U”, > 0} in such a way that Re(r8) do
not increase, the set of Cauchy problems determines a recurrent procedure for determining
these functions. Certainly, for problems (23), (24) were solvable in the class of infinitely
continuable functions, one has to impose some requirements on the operator included into
the right-hand part of problem (23); such requirements will be imposed below. However, if
we assume that the recurrent system (23), (24) is solvable in the required functional class,

then the series
u(t,7) = Z uP(t, 1) (25)

820

converges in the space of resurgent functions (here u?(t,7) are resurgent functions corre-
sponding to the functions UP(s,t,7) ) since the supports of terms ©?(¢,7) move to the left
along the described ordering. The resurgent function (25) evidently is a resurgent solution
to the problem (21).

Now let us formulate the condition under which equation (23) is solvable in classes of
infinitely-continuable functions. To do this, we apply the 3/0s-transformation [11] to the
problem (23). Denoting by

UP (s,t,p) = Fp/0, (U'o(s,t,‘r)) (26)
we come to the following Cauchy problems
' m 70 ~
a?t'[’{ = Z a0 P° U07
ﬁ lof<m ~ (27)
0 T am-tyo 7
UPl =Uo (8,P)s» “gpm1-| =Um-1(s,p);
\ =0 t=0
¢ Nﬁ - ~
¢ . la[<m 1 NB lel<m g' 46" =p (28)
vt =o,., U —g
= ot
\ t=0 t=0

10



for the functions (26). Evidently, the solvability of the proble- (23) is equivalent to the
solvability of the problem (27), so we must impose the following condition.

Condition 2 The resolvent operator for problem (27) exists for each value of p € C,, and
determines an analytical family of operators with parameter p.

Let us describe a situation in which Condition 2 will be valid. Suppose that the order of
the operator! a,o equals to m — || and that the operator
om "
agm %
is strictly hyperbolic (see Remark 1 above). Then it is evident that Condition 2 is valid.
To conclude this section we shall investigate the singularities of the functions U?(s,1,7)

provided that the Cauchy data U;(s, ) of problem (23) have simple singularities. This means
that the functions U;(s,7), 7 = 1,...,m — 1 can be represented in the form

) = 722 s - s 3 TS ) (29)

=0
near each point s = S(7), where the series on the right of the latter equality converges.
Then, as it follows from the stationary phase formula for 8/9s-transformation (see [11], [12],
[13]), the functions UJ; (s, p) have the same form

U (s,7) = 221 tu(s= 3 (9) Y oSO 5, )

_ao(p)
- 5(»)
near singular points s =§' (p) where the function S (p) is a Legendre transform of the

function S(7). Now the singularities of the functions U? (s,¢,p) can be computed in a usual
way with the help of the Hamilton flow along the trajectories of the operator included in
problems (27) and (28). Note that, opposite to the case considered in Section 3 the operator
itself does not originate any singularities of solution; all singularities are originated by the
singularities of the Cauchy data.

5 Examples

In this section we consider two examples of constructing of a resurgent solution to stationary
equation and to a Cauchy problem correspondingly.
Ezample 1. Let us consider the equation

a\’ a\* 2
[(5*) +(+3) +§3] u(=ehy) =0,

1We recall that a,g are supposed to be differential operators in variables y.

11



where z! and z? belong to a neighbourhood of the origin in the space C? and y belongs to
the unit circle S*. The corresponding characteristic set (17) for this equation is the union of
sets

A
char, H= {pf +p§ ~n?= 0}
over all natural values of n. This follows from the fact that the operator

2

6—y2+Pf+P§

on the unit circle is not invertible exactly for values of p = (p1, p2) such that p} + p2 = n? .
Performing, similar to the general case, change (7) of variables and passing to the “resurgent

images” U(s,7!,72,y) in accordance to the formula (9), we come to the equation for U of

the form
AN AN  (ONT/ O\, @
(@) Gn)+ (@) (&) +ae
As it follows from the considerations of Section 3 the singularities of a solution to the latter

equation must be posited in the set s = S(r!, 7%, y) where the function S must be a solution
to one of the Hamilton-Jacobi equations

as\* [as\*
('a?) ¥ ('a_) =n (31)
for some nonnegative integer n. We denote a solution of this equation by S.(r!, ?).

Now we can construct an asymptotic solution to equation (30) with simple singularities.
Such solution has the form

Us, 7", 7% y) =0. (30)

U(S’TI’T23y) = U+(S’T1’T2) einy + U" (S’ TI!Tz) e_i"U (32)

where the functions Uy are sulutions to the equation

AN A A I/ o\
- — ] + | = -] —n
Os or! Js ar?
Such form of solution is due to the fact that the functions exp (finy) are eigenfunctions
of the operator 92/dy? on the unit circle S!. Solutions to equation (33) of the form (29)
corresponding to action (31) can easily be constructed with the help of the Maslov’s canon-
ical operator on the complex manifold (see [11]). We present here only the result of the

computation of the action itself. The computations similar to those in the paper [14] give
us the expression for the functions S,:

Ur(s, 7', 78 = 0. (33)

Sn = SE(TH, 7Y = £/ (1) + (72)?

12



or
S, =8 (t", ) =n (a'rl + bfg)

where a and b are subject to the relation a? + 6% = 1.
Due to formula (19) the terms Uy of asymptotic expansion (32) corresponding to the
actions S¥(r!,7?) have the form

=V =0 =8 65 In o', In 2?)
j=0

where a;(7!,7?) are homogeneous in (7', 7?) of degree —j.
Asymptotic solutions to nonhomogeneous equation

a 2 a 2 3'2

with ;esurgent right-hand part f(z',z% y) can be investigated with the help of the Green’s
function of equation (33). The corresponding computations are similar to those in the paper

[8].
Ezample 2. Let us consider a Cauchy problem
Pu _ (1.0 2 0\, &
ar = [(x o) + (%) b

du
= 3]

= Uuj.

Here, similar to the previous example, the variable y changes on the unit circle S! and we
construct asymptotic solutions in a neighbourhood of the origin in the space of the variables
z = (z!,2?). We require also that the functions uy and u; are resurgent functions of the
variables 7 = (1!, 7%) determined by change (7) of variables. This means that the functions

1 2 1 2
Up (e’ e’ ), U (e" ,e’)

can be represented in the form of the integral (9) with the corresponding functions Us(s, 7,y)
and Uy (s, 7,y) correspondingly. Then the Cauchy problem for the function U = U(s,t,7,y)

has the form
5= [(8)” G+ (8) () oo
Ul|,_, = Uy, oU = U. .
t=0 O =0

Passing in this Cauchy problem to the image (7' (s,1,p,y) of the function U(s,t,7,y) under
the action of the @/0s-transformation we come to the following family of Cauchy problems

13



with the parameters p = (p;, p2):
2 1y 2] ~

LH =7+ + ] 0

~ _~ a ~

U'::o —UO’ ?&L

where (70 and al are the images of the Cauchy data Uy and U; of problem (34) under the
action of @/0s-transformation.

(34)

t=0

Suppose now that the functions [’L, 7 = 1,2 have simple singularities, that is that

0 (517.9) = T2 + s = S.) Y (= SEa) o, 5,0

Suppose, in addition, that the action S(p,y) satisfies the condition

8S(p,y) £0,

Then, as it follows from the paper {11] the asymptotic solution to problem (34) with respect
to smoothness has the form

U (s,4,p,9) =U* (5,8,p,5)+ U™ (5,4, p,%)

where

i' (satapay) =

® (s —S* i
S(-t (P: _,) ) +In(s — Si(t,p,y)) z ( S i(!tapay)) aﬁl(t’p’y)

and the functions S%(¢,p,y) are solutions of the following Cauchy problem for Hamilton-
Jacobi equation:

dy
Si(ta pa y)]::o = S(pv y)

The explicit asymptotics for the solutions to problem (34) with respect to smoothness can
be obtained with the help of the Laplace-Radon integral operators on complex manifolds;
the theory of these operators is presented in the book [11].

{ asi(a,pa )=i65*(t,p,y)’

14
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