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(0.1) Let a connected reductive algebraic group G acts morphically on
an irreducible affine variety X. The goal of this paper is to demonstrate in
full generality some results on invariants of a maximal unipotent subgroup
U C G, which partially has been known earlier. Our main improvement
consists in a transition from a linear action to an arbitrary normal G-variety
X. The results obtained have useful applications to the problem of tensor
product decompositions. (§3). In a forthcoming paper we shall show how
the restriction theorem works in the theory of equivariant embeddings of
homogeneous spaces.

The ground field k is algebraically closed and of characteristic 0. Let k[X]
be the algebra of regular functions on X. By the HadZiev-Grosshans theorem
the subalgebra k[X]V of U-invariant functions is finitely generated and we
denote X//U = Speck[X]Y. Moreover, k[X]V inherits many good properties
of k[X], e.g. normality, factoriality, Cohen-Macaulay and rational singularity
properties. We concentrate our efforts on the computational aspects and on
investigation of the graded structure of k[X]Y.

(0.2) The first topic is the restriction theorem for U-invariants. The
main idea is to reduce the computation of k[X]V to an action of a smaller
group on a smaller variety. For the algebra of G-invariants k[X]° such a
theorem is due to Luna [Lu2, cor.4]. One may consider Luna theorem as a
generalization of the classical Chevalley restriction theorem on G-invariants
of the adjoint representation. In §1 we shall derive the similar result for
U-invariants. Our consiruction goes as follows. Put B = Ng(U) and let
B. be a stabilizer of general position for the B-action on X. Then one can



find a regular reductive subgroup K C G with maximal unipotent subgroup
U(K) = UN K and an irreducible comporent Y of X&, such that the
restriction map k[X] — k[Y) induces an isomorphism between k[X]Y and
an explicitly determined subalgebra in k[Y]Y¥) (see 1.8). The analogous
theorem for linear actions (G : V') has been proved in [P1, §2]. Here we follow
the same way, but with some additions, because: (1) X is not assumed to be
factorial and (2) one have to take into account X5+ may be reducible. The
proof of the restriction theorem relies upon the following ingredients:

(i) restriction theorem for G-invariants,

(i1) theory of affine horospherical varieties of reductive groups [VP1],

(ii1) structure of stabilizers of general position for the actions (B : X),
(U : X) [P3].

Inspite of its cumbersome form the theorem 1.8 admits effective applica-
tions to linear and prehomogeneous actions (see 1.10 and §3).

As a by-product we found a curious fact that to every action (G : X) one
can assigne 2 natural different stable G-actions with the same stabilizers of
general position (cf. 1.6, 1.7).

(0.3) Let T C Ng(U) be a maximal torus of G and X'(T), be the semi-
group of dominant weights with respect of (T, U). Torus T acts morphically
on X//U and this action turns k[X]V into X (T)-graded algebra. In §2 we
shall consider the properties of the Poincare series of X'(T'),-graded algebra
k[X)Y. (It is not assumed here that k[X] is graded.)

The main result of this chapter is a series of the unequalities for the
degrees of the Poincare series as a rational function (2.4, 2.10). Most of
these unequalities generalize the ones from [B, ch.2], which have been proved
for linear representations of G. The method of [B] depends upon the integral
form for the Poincare series of U-invariants of linear representations. Qur
technique is to derive the unequalities from the algebraic properties of X
and X//U by using [K],[F],{P2]. Applying this approach we found some
unequalities, which have no counterparts in [B]. All results on Poincare series
are valid for the factorial varieties with rational singularities.

(0.4) In §3 we shall apply the results obtained to the problem of tensor
product desompositions. Let R()) be the irreducible G-module with highest
weight A € A(T),. Consider 2 arbitrary dominant weights A, 4. It has been
found in [L], that in order to find the decomposition of the tensor products
R(nA) ® R(my), for all n,m € N it is sufficient to describe the algebra of
U-invariants of the affine double cone Z(A, u).
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We shall show that under the application of the restriction theorem to a
double cone, the subvariety Y (0.2) is a double cone relative to K. Therefore,
we get an ability to reduce the decomposition problem to a smaller group K.

It has been shown in [P4] how to compute for any double cone its com-
plexity ¢ = &(Z(A,p)) with respect of the action of the extended group
G = G x (k*)%. If €= 0 and ), g are fundamental weights, then k[Z(A, u)]Y
is polynomial algebra. In [L] all such pairs together with the degrees and the
weights of a homogeneous generators of k[Z(), u)]V have been found. In §3
we solve the analogous problem for the case ¢ = 1.

According to [P4, 2.7] there are 2 serial cases and 2 sporadic cases of
fundamental weights with ¢ = 1. It is appears, a posteriori, in all these
cases k[Z]Y is a hypersurface and we explicitely indicate the form of a single
relation between the generators. The formulas obtained for the Poincare se-
ries are a good illustration to the result of §2 and allows us to make several
conclusions on the properties of the action (U : Z(A, p)).

(0.5) We follow mainly the notations and terminology of [VP2].

G is a reductive algebraic group with fixed subgroups T, U; T C Ng(U). If
K is a reductive regular (i.e. T C Ng(K)) subgroup, then T(K) :=TN K,
UK):=UnK.

(@) is the root system of G relative to T

U, C U, a € E£(G) are the root subgroups.

If e X(T)4 , then A* is the highest weight of the dual G-module.

Group operation in the character group X (T') is written additively and ( , )
is a Weyl group invariant scalar product on X(T) ®7 Q.

L° L' are the identity component and commutator subgroup of L respec-
tively.

8.g.p.= stabilizer(s) of general position;

p.g.p.= point(s) of general position;

RS = rational singularities.

If A is a finitely generated integral domain, then dimA is the Krull dimension
of A and QA is its fraction field.
Zyey 18 the set of non-singular points of an algebraic variety Z.

(0.8) The author thanks the Max-Planck-Institut fiir Mathematik for

hospitality.

§1 Restriction theorem
(1.1) Let G be a connected reductive algebraic group and X be an affine
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irreducible G-variety. The induced action of G on k[X] determine its decom-
position in the direct sum of isotypic components and also the decomposition
of the subalgebra of U-invariant functions:

kX" = @ KXY

AEX(T)4
Here k[X]¥ = {f € ¥[X]Y | t.f = A(t)f for any t € T'}. Let denote
D(X) = {A € X(T); | HXI{ #0)

Since X is irreducible, it is clear that I'(X) is a (finitely generated) subsemi-
group of X(T),, containing zero. Let

T(X)=2rX)NX(T)s = {y € X(T)+ | v=A-p A p e (X))}

It 1s obvious, that 7(X) is a finitely generated semigroup, containing I'(X)
and
ZT(X)NX(T)y =T(X) (1)

(1.2) Let 7 be a finitely generated subsemigroup of X(T'),, containing
zero and Ay, ..., A, - be its minimal generator system. If v; € R(};)V \ {0}, we
define the affine horospherical variety C(7) by the formula

C(T)=G(v1+...+v) CR(M)® ... R(\)

Put w = v; + ... + v;. Clearly G, D U. The following properties of C(T)
have been proved in [VP1]:

(i) The algebra of regular functions on C(7), considered as a G-module,
has the decomposition: k{C(T)] = @rer R(A*), in particular I(C(7T)) = T".

@) ZT NnX(T)y =7, then C(T) is normal and
codimg(ny(C(T) \ Gw) > 2.

(ii1) C(T) is factorial iff T is generated by the fundamental weights.
Since C(T) is a spherical variety, then normality of C(7') implies RS-property.
Following [VP1] we shall say C(7T) is S-variety of G.

If X is an irreducible G-variety and 7 C X(T), is an arbitrary finitely
generated semigroup, then clearly k[X]¥ := @,cr k[X]Y is a subalgebra of
k[X]Y. Consider the diagonal action (G : X x C(T)).



e Y

Proposition. k[{X x C(T)]° = k[X]Y. More exactly, this isomorphism
is of the form:

(f() € KX x C(T)I%) = (F() = (-, w) € k[X]7) 2)

Proof. See [P1,§2]. O

Corollary. If T D I'(X), then k[X x C(T)]¢ = k[X]Y. O.

(1.3) Let Z be an irreducible affine normal G-variety. Put Z//G :=
Speck[Z] and let 7 : Z — Z//G be the quotient morphism. For ¢ € Z//G we
denote by the T(¢) the single closed G-orbit in #~1(¢). Then there is an open
subset (Z//G),» C Z//G, such that for any £, € (Z//G),. the orbits T'(£)
and T'(n) are G-isomorphic [Lul]. The points from Z,, := Uge(z/a),, T(€)
will be referred as the principal ones (in Z). Recall, that action (G : Z) is
called stable if Z,, = Z.

Let z € Z,, and S := G,. Put C = Z5NZ,. This is a closed
Ng(S)-invariant subset of Z5. Moreover, C coincide with the union of all
irreducible components of Z°, containing principal points. The restriction
theorem for G-invariants asserts, that k[Z]¢ = k[C]N¥o(5) or equivalently,
Z]|G = C[[Ng(S) [Lu2, cor.4]. We need a slight modification of this result.

Proposition. Let C = U;C; be the irreducible decomposition of C. Then
(i) Ng(S) acts transitively on the set {C;} ;

(i1) f My = {n € Ng(S) | nCy C Ci}, then Ng(S§)® C Ny and C,//N, =
C/[Na(S) ;

(iii) If the action (G : Z) is stable and Y C Z¥ is a closed irreducible Ng(S)-
invariant subvariety, then the following conditions are equivalent:

(a) Y = C; for some 1; ‘

(b) GY = Z.

Proof. Parts (i),(i1) easily follow from next results, that has been estab-
lished in [Lu2]:

¢ The morphism Z%//Ng(S) — Z//G is finite , in particular, 7(C;) is
closed in Z//G for each i;
o If z € Z5N Z,,, then Gz N 25 = Ng(8)=z.

By applying these assertions we find if C) is an irreducible component of C
with m(C)) = Z//G, then Ng(S)C, = C and moreover, C, //Ny — C[/Ng(S)
i8 a surjective birational morphism. Therefore this is an isomorphism, be-

cause C//Ng(S) = Z//G is normal.



(i) f Y = C;, then by (i) #(Y) = Z//G. Stable actions possess the
following nice property: if D C Z is a closed G-invariant subset, then #(D) #
Z[/G [Po). Therefore (a) implies (b). The opposite implication follows from
the fact that the action (Ng(S) : C) is always stable [Lu2]. D

The components C; will be referred as the principal ones of Z5.

(1.4) Let 8 € AutG be an involution, such that 8(t) = t~! for any t € T.
Then 8(U,) = U_,, @« € £ . By X* we denote the G-variety , which is
isomorphic to X as an abstract variety, but provided with the twisted G-
action. If z € X and 1 : X — X* is the isomorphism, then put z* = i(z).
The twisted action is defined by (g,z*) ~ (8(g)z)*, g € G,z € X. Consider
the diagonal action (G : X x X*). It has been proved in [P3, §1] that there
exists a point z = (z,z*) € X x X* such that

(a) U, := U, is a s.g.p. for (U, X);

(b) B, := B, is a s.g.p. for (B, X);

(¢) S:=G, isasg.p. for (G,X x X*);

(d) there exists t € T' such that Zg(t)’ C S C Zg(t);

(e)U.=UNS,B.=BNS.

It follows from (d),(e) that S is a reductive regular subgroup of G, U, is a
maximal unipotent subgroup of S and B? is a Borel subgroup of S°. Moreover
it has been shown in [loc. cit] that

T(X)={weX(T)s| wlpnar=1} (3)
vns= I U. (4)

a€E 4 (o T(X))=0

Proposition. (i) X8 = X5, (ii)) U.X% = X.

Proof. (i) Since X is affine and B? is a Borel subgroup of S°, we have
XB: = X5 1t follows from (d),(e) that S = B.S°, hence the assertion.

(ii) By definition of s.g.p. we have BXB+ = X. But (d) and (e) imply
T C Ng(B.), therefore TXB c X3, O

Definition-Remark. S.g.p. S is determined up to conjugacy in G.
The subgroup S, satisfying the properties (d),(e),(3),(4) will be called the
canonical s.g.p. and the points ¢ € X, z = (z,z") with the properties
(a),(b),(c) will be called the canonical p.g.p. Clearly, the choice of these
canonical objects depends on the choice of T, U.

(1.5) It follows from (d) that

Ng(S)° = S°K (5)
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where K C G is a connected reductive group such that §(K) = K and
| KN S?|< oo. If we shall identify LieT and LieT* via Weyl group invariant
scalar product, then (3) and (4) show that the root system of K is EN(7 (X)).
Here (T (X)) is the subgroup of X(T'), generated by T(X). Moreover, rkK =
tkG — rkS = rk(T (X)) and LieT(K) = (T(X)) ®7 k.

(1.8) Here we shall prove the assertion closely related with the ones from
[P1],[P3]. We use the notation from (1.4).

Proposition. (i) The action (G, X x X*) is stable; moreover, one can
find a canonical p.g.p. z = (z,2*) with z € X,,, and Gz = G=.

(ii) There is an irreducible component Y of X°, such that Y x Y* is a
principal component of (X x X*)5.

Proof. (i) All assertions of such sort for G-varieties of the form X x X* are
proved by using the inductive process, which has been described in [P1] for
linear actions (i.e. X =V is a G-module) and in [P3] for arbitrary actions.
Recall the idea of this procedure.

We argue by induction on semisimple rank of G, stkG = rkG’. If G is a
torus, then all the statements of proposition are obvious. Let srkG > 0. Then
there is a proper parabolic subgroup P C G, such that §(P)NP =: L is a Levi
subgroup, and L-invariant closed subvariety W C X with the properties:

(a) if Ny is the unipotent radical of P (N, C U), then N.W = X (hence,
TNIW- = X°)

(B) there is an open L-invariant affine subset W C W, such that N, x
W N W.

This construction allow us to make an inductive step from (G : X x X*)
to (L : W x W?*), because stkG > stkL. To prove (i) it is necessary to
show that stability of (L : W x W*) implies the one of (G : X x X*) and if
z € W x W* is a canonical p.g.p. with Lz = Lz, then Gz = Gz.

If X is a G-module, then it has been shown in [P1] that (L : W x W*) is
"almost” the slice-representation at the point p = (vas,v}), where vy € X
is a lowest weight vector (then, by the way, 8(P) is the stabilizer of the line
(vm) € PX). Therefore for the linear actions part (i) follows from the Luna
slice-theorem [Lul]. In order to use this idea in general case one can take
a G-equivariant embedding X — V, where V is a G-module. Then X* has
a closed embedding in the dual G-module V*. The obstacle is that it may
happen X does not contain lowest weight vectors from V. To overcome it,
one can replace X by the cone CX = ¥*X C V, which certainly contains
lowest weight vectors from V. In this situation the inductive step for (G :
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CX x (CX)*) coincide already with taking of the étale slice. Finally, it is
easy to see, that stability of action (G : CX x (CX)*) is equivalent to that
of (G: X xX*).

(i) According to (1.4)Proposition , there is an irreducible component Y
of X5, such that UY = X. Hence, (U)Y* = X*. Therefore , Y x Y" is
* an irreducible component of (X x X*)5, such that G(Y x Y*) = X x X*.
Hence, Y x Y* is principal by (1.3)Proposition(iii). O

In the sequel the component Y of X¥ with UY = X also will be called
the princiral one.

(1.7) Let X be an irreducible normal G-variety and 7(X) be the semi-
group, defined in 1.1. Let S be the canonical s.g.p. for (G : X x X*) and
Y C X5 be a principal component. Put X(7) = X x C(7T(X)) and con-
sider the diagonal action (G : X(7T)). Recall, that w is a special point from
C(T(X)) (see 1.2).

Proposition. (i) S is a s.g.p. for (G : X(7T));

(ii) The action (G : X(T)) is stable;

(iii) Subvariety C; = Y x Ng(S)%w is a principal component of X(7)%
and N(C,) = Ng(S)°

Proof. (i} Let ¢ € Y be a canonical s.g.p. such that for z = (z,z*) we
have S = G,. We shall show, that p := (z,w) is a p.g.p. for (G : X(T))
and G, = S. It follows from the definition of w and (3),(4) that G, = SU.
Since G, NU =U, C S and G, D G, = S (1.4), we have G, = G, NG, =
SUNG, = S. Hence, the stabilizers of almost all points from Y x {w} is
equal to S. Since UY = X and 6(B)w = C(T (X)), we have

Y % (o} = X(T) (6)

ie. Sisas.g.p.

(11) If the action (G : X (7)) is not stable, then it follows from the reduc-
tivity of s.g.p. that one can find a G-invaiant divisor D C X(7) with the
isomorphism k[X(7)]® & k[D]¢, which is induced by the restriction of the
regular functions [Po]. We shall show it is not possible.

Let D C X(T) be a G-invariant divisor. Consider the set D, := DN
(X x {w}). It follows from (1) and 1.2(ii) that D,, # @, therefore D, is a
U-invariant divisor in X x {w} = X. Let & C k[X] be the defining ideal
of D,. By the Lie-Kolchin theorem & contains a U-invariant function f.
If f € k[X]® is the function, corresponding to f under (2) then, clearly,
f |p= 0. Hence, k[X(T)]9 # k[D]C.



(iii) C; is a closed irreductble Ng(S)%-invariant subvariety of X(7)°. It
follows from (6) that GCy = X(T). Therefore 1.3(iii) implies C} is a principal
component of X(7)5. The proof of the statement on N(C}) is similar to the
one for a linear case, which has been presented in [P1, §2]. O

At last, after all preliminaries we are able to formulate and prove the
restriction theorem. We use the notations from 1.1, 1.4, 1.5.

(1.8) Theorem. Let G be a connected reductive algebraic group and
X be an irreducible affine normal G-variety. If S is a canonical s.g.p. for
the action (G : X x X*) and Y C X% is a principal component, then the
restriction of regular functions k[X] — k{Y] induces the isomorphism

KX = kY1750

Remark. According to 1.5 one may consider 7(X) as a subsemigroup
of X(T(K))4+. Therefore, notation k[Y]g—((f) make sense. In practice it is
necessary to express the generators of 7(X) tLrough the fundamental weights
of K (see examples in 1.10, 3.4).

Proof. According to 1.3(iii), 1.7(iii) we have the isomorphism, induced by
the restriction

k[X x C(T(X)))C = k[Y x Ng(S)ow]Ve’

Since Ng(S8)° = S°K, S C Gu, Y C X5 one can see, that last algebra
coincides with k[Y" x Kw]X. The construction from 1.2 and the definition of
K shows Kw is the horospherical 7(X)-variety of K, when 7(X) is being
considered as a subsemigroup of X'(T(K));. Applying (1.2)Proposition we
obtain the chain of isomorphisms:

E[X]Y = k[X x Gw]® 2 kY x Kw)f = k[},];{g;

And it follows from (2) and Luna theorem (see 1.3) that the resulting iso-
morphism is induced by the restriction. B

Corollary. k[X]¢ = k[Y]X.

Proof. This follows from the fact that algebra of G-invariants is the
homogeneous subalgebra of k[X]Y, corresponding to the weight 0 € 7(X).
And also for K. O

(1.9) It is worth to mention that dimk[Y]g—g; = dimk[Y]V¥), though
the algebras itself not necesserily coincide.

9



Indeed, it follows from 1.5 that s.g.p. for (K : Y x Y*) is finite. There-
fore 1.4 implies that (U(K) : Y) has trivial s.g.p., i.e. dimk[Y]V(F) =
dimY — dimU(K). On the other hand, it follows from 1.3, 1.6(ii) that
dim(Y x Y*)//K = dim(X x X*)//G, i.e. 2dimY — dimK = 2dimX —
dimG 4 dimS. Since K,G are reductive and rkK + rkS = rkG, we have
2dimY — 2dimU(K) = 2dimX — 2dimU + 2dimU(S) = 2dimk[X]Y. There-
fore dimk[Y]7(5) = dimk[X]V = dimY — dimU(K).

(1.10) Example. Let G be the simple group of type Fy, and ¢;, &;, t =
1,...,4 - be its fundamental weights and simple roots respectively. We use
the numeration and the notations from [VO]. Let apply the theorem 1.8 to
the representation X = R(p;). Here S° = S is a simple group of type A;.
It follows from 1.4 that the set of simple roots of S is a subset of the simple
roots of Fy. Since ¢, € I'(R($;)) it follows from (4) that &3, &, are the simple
roots of S. Therefore, T (R(,)) is generated by ¢,,$;. Simple calculations
show E(F) N (p1,P2) forms the root system of A;. Hence Np (5)° = §x A;
and K = A;. The simple roots of A; are a; = %(51 + €2 + €3 + €4) and
az = L(ey — g3 — €3 — &4). If 1, are the fundamental weights of A, then
o1 =32+a3), p2 = %(al +2a3). Since p; = €1, P = %(361 +ez+€3+¢€4),
we have

©1 =1+ P31, P2 = I
Thus, T := T(R(p,) as a subset in X(T'(A;)) is generated by ¢, + 3, 3.
Consideration of the weights shows that R($;)5 = R(p;+;) as Az-modules.
Therefore, by 1.8 we have the natural isomorphism

KIR(G)VED = k[R(pr + )]0 (7)

Since 3p; € T'(R(p1 + 1)) and 3¢ & T, we have k[R(p1 + (pg)]U(A’) #
k[R{p; +2) f{-‘A’} . It is known, that k[R(cﬁl)]U(F‘) is free [B], and it is easy
to check that k[R(y; + ‘P?)]U(A’) is a hypersurface.

A generic F,-orbit in R($,) is closed and isomorphic to F /D4 ( here
Z(Dy4) C I(F,) is the set of the long roots) and generic Az-orbit in R(¢1+¢3)
is closed and isomorphic to A;/T(A;). Therefore, it follows from (7) and
(1.8)Corollary, that

K[Fa/ D70 2 k[A,/T(A)ZAD (8)
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Also it is not difficult to prove using (8), that if O C R(@,) is a generic
F,-orbit, then O N R(3,)? is irreducible , i.e. (F,/D4)5 = A;/T(A,).

§2 Degrees of the Poincare series of algebra of U-invariants

(2.1) In this chapter G be a connected simply-connected semisimple
group, | = 1kG; T,U, B - are the same as in §1. Let II = {ay,...,a¢} -
be the set of simple roots and ¢y, ...,¢; - be the fundamental weights of G
relative to (T, U).

Let G acts on irreducible affine variety X and X//U := Speck[X]". The
natural action (T : X//U) defines I'(X)-grading on k[X]Y:

kX/U) = @ XN

Ael(X)
Since I'(X) C X(T), = N, we can define Poincare series of k[X]U by

Fxjo(t) = 3 dimk[X]{} - ¢ (9)
RS BULL
Here (1) = (ti,...,t), A = Tty nipi. It is well-known , that Fyyy(t) is
the Taylor expansion of a rational function on t;. Let Fx;u(t) = P(t)/Q(2),
where P, Q) are polynomials and let deg; P, deg;@} are their degrees on variable
t;. The integers b; = deg;@Q — deg; P will be called the degrees of Poincare
series.
If k[X//U] is Gorenstein, then b; has the following description (see e.g.
[St2, ch.1, §12}):

e ratiolnal function Fx/u(t) satisfy the following functional equation

Fxjpu(e™) = (~1)dimx/ UeFxyu(2) (10)
Here (t7') = (t7%, .. t7"), (&) = (by, ..., ).

o Let Q(X//U) be the canonical module of k[X//U], (X //U) has a nat-
ural Z'-grading and if wxyy € Q(X//U) is a homogeneous generator,
then

degwx”U = (bl,...,bl) (11)
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(2.2) Consider the affine variety C(X(T),). We shall write X, instead
of X(T), in the sequel. Let w € C(X,) be the point with G, = U. The
semigroup X, is generated by the fundamental weights, therefore C(X}) is
factorial and

C(Xy) CRp1®...® R(pt) =V

Clearly C(X,) is a cone in V, equipped with the natural action of (k*)'.
Each multiplicative group k* acts by homoteties on its own fundamental G-
module. This action invert k[C(X,)] into N'-graded algebra in such a way,
that if R(A) C k{C(X})], X = T nip!, then the functions from R()) have
multidegree (ny, ..., n;).

It follows from [P2, Th.4.2], that algebra k[C(X,)] is Gorenstein and its
Poincare series satisfy the equation:

Fon (™) = (~1)3mB2 2R, (0) (12)
Therefore, if we € Q(C(X)) is a homogeneous generator, then
degwe = (2, ...,2) (13)

Put Z = X x C(X,) and consider the action ((k*)' : Z), where (k*) acts
trivially on X and the action on C{(X;) was introduced before. Clearly,
this action commutes with the diagonal action (G : Z) and induces the (k*)'-
action on Z//G. By HadZiev-Grosshans theorem (cf. also 1.2) Z//G = X//U.
Moreover, the action ((k*)! : Z//G) is inverted in (T : X//U) under this
isomorphism. This follows from (2) and the description of N'-grading on
k[C (X))

Remark. Recall, that N'-graded algebra A = B A, is called con-

aeN'

nected, if Ag = k. Clearly, k[Z//G) = k[X//U] is ngt always connected,
because k[X//U]y = k[X]®. A sufficient condition of connectivity is the
existence of an open G-orbit in X.

(2.3) Let G(i) be the simple 3-dimensional subgroup in G, generated by
Uy, and U,_; and put T; = (G(3) N T)°. Being a subgroup in T, T; acts on
X//U. The construction of T; shows, that ¢; |r,= 1 if i # j. Therefore, if
F;(t) is the Poincare series of invariants of action (T; : X//U), then Fi(t) =
Fxyu(.., 1,8, 1,..). If X//U is Gorenstein, then (10) shows

™) = (1) (1) (14)
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Let U, be the canonical s.g.p. for (U : X). By (4) U. is generated by some
Uyy a €11

(2.4) Theorem. Let X be an irreducible affine factorial RS-variety and
G acts on X. Then

(0<b <2

(ii) (a) if U,,; C U., then b; = 0,

(b) if Uy, ¢ U., then b; > 0;

(iii) the following conditions are equivalent:

(a) b; = 2 for all 3;

(b)if D ={z € X | dimU; > 0}, then codimxD > 1.

Remarks. 1. The assumptions of the theorem can be partially weakened.

Part (ii) is true if X//U is an RS-variety only.
2. In the proof of (i),(iii) we heavily relies upon the methods of [K]. The
results from [K] may be interprete as a statements on the properties of the
Poincare series and the canonical module of a N-graded connected k-algebra.
All'arguments from [K] are carried on the multigraded case without changes.
But the connectivity is a more delicate point. In the proof of (a) = (b) in
corollary 4 in [K] the connectivity of graded algebra under consideration is
essentially used. Since k[X//U] is not necessarily connected, we shall use
additional arguments, which are related with 1.4.

(2.5) Proof of the theorem.

Since C (A ) is factorial and has RS-property, the same assertion is true
for Z. Therefore, Z//G = X//U is also factorial RS-variety. In particular,
X//U is Gorenstein.

(ii)(a) If Uy, C U., then by (4) (a;, I'(X)) = 0. Therefore,if A = Y njp; €
I'(X), then n; = 0. Hence Fx;y do not depends of ¢; and b; = 0.

(b) If Uy, ¢ U., then (a;,T(X)) # 0, i.e. there is A € I'(X) with n; # 0.
Therefore A |1, # const and thus, T; acts non-trivially on X//U. Since X//U
has RS-property, then 2.3 and [F, Satz 3.1] show that &; > 0.

(i) The unequality b; > 0 already proved in (ii). To prove the other
part we can consider the action ((k*) : Z//G) instead of (T : X//U). Let
1 : Z — Z[[/G be the quotient map and m = max,ezdimGz. Let apply
theorems 1,2 from [K] to (G : Z). They assert, in particular, that there exists
a G-equivariant injection of degree 0 of graded modules:

¥: Z)— A"G* @ 7 Z//G) (15)
Here G = LieG. Since Q(Z) = U X)®:Q(C(X,)), then by (13) the generator
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wz € (Z) is of degree (2,..,2). So far as 7 is an injection, then it follows
from (11) that b; < 2 for every i.

(iii) Proof of (i) shows (a) is equivalent to

(a') degwzyc = degwz.
For the open orbit Gw C C(X,) we have G,, = U and codim(C(X})\ Gw) >
2 (see 1.2(ii)). Therefore (b) is equivalent to

(¥)if D' = {z € Z| dimG, > 0}, then codimzD’ > 1.
We shall prove the equivalence of (a') and (¥'). The injection (15) means,
that there exists ¢ € A™G* ® k[Z], such that J(wz) = ¢®wzy. Then ¢ may
be considered as a G-equivariant map

c: Z—A"G"* (16)

It has been shown in [K] that if dimGz = m and z € Z,.,, then ¢(z) are the
Pliicker coordinates of the subspace G+ C G*.

(a") = (V). If degwzy¢ = degwyz, then degc = 0. That is, c € A"G* ®
k[Z)o. So far as k[Z}y = k[X], then (16) is completed to the following com-

mutative diagram:

XxCX)=2 € _ Amg*

(17)
Let z = (z,w’) be a generic point, z € X,.4, w' € Gw. Since ¢ depends
on z only, we have G, do not depends on w’. But this is possible only if
dim@G, = 0, i.e. m = dimG. Hence we have already proved codimzD' > 0.
Since A™G* 2 k, we have c€ k[X]¢ C k[Z]°. If codimz D’ = 1, then formulas
(6),(7),(12) from |[K] give us D' = V(c). Hence, D’ = D x C(X,.), where D is
a G-invariant divisor in X. For z = (z,w) we have G, = U;. Therefore, next
property is satisfied for D: for every z € D we have dimU, > 0. But lemma
2.7 below shows it is impolssible. Hence codimzD’ > 1 (and ¢ is constant).
(b') = (a'). If D' is a subvariety of Z, then m = dimG and ¢ € A™G* ®
k[Z] = k[Z]. Since codimzD’ > 1 and Z is normal, then ¢ does not vanish
on Z. Therefore ¢ is constant, degc = 0 and degwzyc = degwz. O
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(2.8) Remark. The properties of ¢, which were used in 2.5, are derived
from the existence of a commutative diagram with good properties, contain-
ing ¥ [K]. The diagram itself exists only over the open subset Z,.,. But
codimz(Z \ Z,.;) > 1 and this is sufficient for our purposes and for the proof
of corollary 4 in [K].

(2.7) Lemma. Let G be a connected semisimple group, acting on an
irreducible affine variety X and U, is a s.g.p. for (U: X). H D= {z € X |
dimU,; > dimU.}, then D is not a G-invariant principal divisor.

Proof. 1If D = V(f), f € k[X]%, then it is easy to see that I'(X) =
(D), T(X) = T(D). Therefore, by (4) s.g.p. for (U : X), (U : D) have to
coincide. O

(2.8) Corollary. Under the conditions of 2.4, if there exists z € X with
dimG, = 0, then b; = 2 for every 1.

Proof. By the condition we have codimy D > 0. Assume D, is an irre-
ducible component of D of codimension 1. Since X is factorial, it follows from
2.7, that D, is not G-invariant. Therefore GD; = X and hence, dimG, > 0
for any y € GD,. A contradiction! Hence, codimy D > 2 and we can apply
now 2.4(iii). O

(2.9) At the rest of §2 we assume that X is an irreducible conical variety,
i.e. k[X] is a connected N°-graded algebra. Let Fx(A) be the Poincare
series of k[X], () = (A1,...,A). If Fx(A) = P(A)/Q(d), then we put
gi(X) = deg;@Q —deg; P, ¢(X) = (q1(X),...,q(X)). If X is Gorenstein, then
by [St2, Ch.1, §12] we have:

Fx(2™) = (-1)3mX p ™) py (2)

In this case k[X]V is a connected N'**-graded algebra and if X//U is Goren-
stein, then

Fxyu(A~",¢71) = (—1)dmxiv axiogpy 0 g, (18)

where g(X//U) = (q(X//U), ..., q.(X//V)).

(2.10) Theorem. Let X be an affine conical factorial RS-variety and
(G : X). Then in addition to the statements of theorem 2.4 we have:

(i) 0 < qi(X//U) < ¢i(X) for every 1;

(ii) the following conditions are equivalent:

(a) ¢(X//U) = ¢(X),
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(b) b; = 2 for every i;

(iii) if there exists z € X with dimG, = 0, then ¢(X//U) = ¢(X).

Proof. (i) ¢i(X) is responsible for some N-specialization of N*-grading on
k[X]. If this specialization leads to trivial grading on k[X//U], then clearly,
¢:(X//U) = 0, otherwise, it follows from [F, Satz 3.1], that ¢;(X//U) > 0. The
right hand unequality follows from [K, cor.3], applied to 7y : X — X//U.

(ii) So far as k[X] is connected, then applying [K, cor.4] to xy we have:
g(X//U) = ¢(X) & codimxD > 1, where D is defined in 2.4. Comparing
with 2.4(ii), we obtain the assertion.

(1i1) This directly follows from 2.8 and 2.4(iii). O

Remark. The proof of 2.10 may be obtained by applying [K] either to
my: X = X/{Uortorg: Z - ZJ[G.

(2.11) In conclusion of this chapter I formulate a conjecture, which has

been observed in particular case in [P1, §3].
Let X be the same as in 2.10, k[ X] is N-graded, (G : X). Let (G : X*) be the
twisted action, defined in 1.4. The algebras k[X x X*) and k{X x X*]% are
N2-graded. Let (¢, q*) be the bi-degree of the Poincare series of k[X x X*|°.
Since (X*)* = X, we have ¢ = ¢*. Let ¢(X//U) = ¢(X//U) to be defined by
(18).

Conjecture. ¢ = ¢* = ¢(X//U).

It is not difficult to prove that if there is z € X with dimG, = 0, then
g = q° = g(X). Therefore, comparing with 2.10(ii) we see the conjecture is
true for "almost all” actions.

§3 U-invariants of affine double cones

(3.1) In this chapter we shall apply the preceding results to the decompo-
sition problem of tensor products of irreducible representations of semisimple
groups. Let A, p € X(T)4+. We wish to solve the following

Problem 1. For any n,m €N to find the decomposition of the represen-
tation R(nA) @ R(my) into the irreducible ones.

The right approach to this problem looks as follows. Consider the affine vari-
ety Z(A, p) = C(A*) x C(p*). According to 1.2 C(A*) is a cone in R(A*) and
k[C(2*)]n = R(n)). Therefore, Z(), u) is called a double cone and clearly,

k[Z(X, g)lnm = R(n}) @ R(mpy) (19)

Hence, the first problem is equivalent to
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Problem 2. To find an explicit formula for the Poincare series of N? x X -
graded algebra k[Z(A, u)]Y.

The second problem in its turn, is closely related with

Problem 8. To find the minimal generator system and relations in k[Z(, u)}Y.
If k[Z(\, 1))V appears to be a complete intersection, then the solution of the
last problem allows us to resolve also the previous ones. At least, the solu-
tion of the problem 3 is sufficient for a weakened version of the problem 1,
when we are interested only in representations appearing in tensor product
decompositions, but not in their multiplicities.

(3.2) Trying to solve the third problem it is natural , at first, to apply
the restriction theorem to a double cone. In order to make it, it is necessary
to know how to do 2 points:

(a) to find s.g.p. S and its canonical embedding in G,

(b) to find a principal component Y C Z(A, u)5.

The solution of part (a) is contained in [P4]. It has been shown there, that
finding of S is reduced to the search of s.g.p. of a special linear action of the
form (H : V+V*); besides that in [P4] the canonical embedding of S° in G
has been indicated for pairs of the fundamental weights. The solution of part
{b) will be presented in 3.3. We shall show the principal component Y is a
double cone of the group K = Ng(5)°/S°. Therefore, the problem 1 for G
is reduced to the one for K.

Let v_) be a lowest weight vector in R(\A*) relative to U. Let f, €
E[R(X*)}V be the single U-invariant of the weight A and degree 1. Clearly,
Fa(v=y) # 0. So far as v_ € C(A*), we have

0# filope) = fr € K[COAMY (20)

(3.3) Theorem. Let G be a connected semisimple group and X =
Z(A,p). If S be the canonical s.g.p. for action (G : X x X*), then Kv_) x
Kv_, is the single principal irreducible component of X5. In particular,

HZO, w) = k(R x Ko_ 705,

Proof. Recall, that Ng(S)° = KS°. Clearly, X5 = C(A")° x C(p")®. Let
us investigate the irreducible components of C(A*)®. It is well-known, that

Cc(x*) = O(*) U {0} (21)

17



where O()*) is the G-orbit of the highest (or, equivalently, lowest) weight
vectors. Since O(A*) is smooth and S is reductive, we have O(A*)° is smooth
also [Lu 1]. Therefore, if y € O(A*)%, then

T,(0(X)*) = (6/6,)° = G°/G; = T,(Na(S)"y).

That is, the orbit Ng(S)°y = Ky is dense in some irreducible component of
O(X*)S. So far as it is true for any y € @(1*)%, each irreducible component
of O(A")S is a K-orbit. Let O(A*)° = | JO(A*)?. It follows from (21) that

for every ¢

O(X)F = O(x*)7 U {0} (22)

Therefore, every irreducible componet of O(A*)S is the closure of the K-orbit
of highest weight vectors in an irreducible K-module. Thus, all irreducible
components of X are double cones of K. It remains to pick out the principal
ones.

It follows from (20), that A, u € I'(X). Therefore, by (3) and (4), if S
is a canonical s.g.p., then S C G,_,, S C G._,, i.e. v_) € C(A*)5, v_, €
C(u*)5. Thus, Kv_) x Kv_, is an irreducible component of X5. Now
we shall show, that the other irreducible components can not be principal.
Let Kv_y = O(A")f, Kv_, = O(g*);. It follows from (22), that for ev-
ery i subspace (O(A*)§) C R(X*) is an irreducible K-module. Therefore,
(O(X)FYN (Kv_y) = {0} if i > 1. So far as fy(v) = 0 for any weight vector
v € R()"), which is distinct from v_, and K is a regular subgroup of G,
then it follows from (20), that f, lo@aw)s = {0} if ¢ > 1. Since the restriction
map have to be injective on U-invariants for principal components, we see
the only possibility for principal component is Kv_y x Kv_,. O

(3.4) At the rest of the paper we shall use the multiplicative notation for
irreducible representations in tensor products, i.e. we shall write 2\u? + +°
instead of 2R(\ + 2p) + R(3v).

Now we shall elaborate a concrete example. Let G = E; and ¢;,&;, t =
1,...,7 - be the fundamental weights and the simple roots with the numer-
ation from [VO]. It is always p = u* for E;.

Let X = Z($1,$2)- It has been shown in [P4, 2.8] that here S° =
A, and the simple root &, is the positive root of A; under the canonical
embedding. Furthermore, applying [P4, Thm.3(v)] one can check that § =
S°. Therefore, it follows from (3) that semigroup 7(X) is generated by
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P1,P2,P3, Ps, Pe, P7- Let us find K. By 1.5 the root system of K is L(E;) N
(T(X)). A straightforward calculations show this is the root system D, i.e.
K = Dg. More exactly, let e;,¢;, t = 1,...,6 - be the simple roots and
the fundamental weights of Dg. Then ay = a4 + as + as, a3 = &g, a3 =
&3 + 5.’4 + &5, Qg4 = &g, Qg = &3 -+ &4 + &7, Qg = 6’1. By llBiIlg the Cartan
matrices and their inverses [VO, table 2] it is possible to write {¢;} through
{é;} and {a;} through {y;}. As a result we shall find the expressions of {;}
through {¢;}. Here is it:

951 = ©s, ¢2 = Y4, 953 = p3+s, ‘.55 = p1+s, ‘f’e = Y2, Pr = p1+ s (23)
Therefore Kv_g, = C(p3) = C(ps), Kv_g, = C(p}) = C(ps). Thus,

according to the theorem 3.3 we obtain the natural isomorphism

K Z(@1, 32)P B = k{2 (g6, )9O (24)

where 7 is generated by g, w4, ®3+ ¥s, ¥1+ ¥, P2, V1 + @s.
(3.5) Our problem is reduced to the description of N? x X (Dg),-graded

algebra A := k[Z((pe,gp4)]U(D°). If (n,m,u) € N? x X(Dg),, then clearly
An,m,,u 7)é 0= 953 ® (;5? Du (25)

For a € A, ., we shall say, that a is of the degree (n, m) and of the weight u.
If dimA, ., = 1, then (7,7, i) denote a non-zero vector of this subspace.
By using [VO, table 5] we find:

Pe @ P4 = Pape + Pae + we + Y3ps + P15

P35 ® Pa = Papa+ Paps + s + Pavspe + P1P5Pe + Pa t+ a0 + P13 + P2

This formulas give us that the functions

(1) 0: (PG)T (Oa 11 (94)1 (la 11(102‘:96): (1’ 1’ (PB)a (19 1: ‘PS(PS))

(11 1: (P1(195)) (2: 1) ‘P‘l)v (2: 11907904)) (23 1’ ‘Pl‘pa)s (Za 1$ ‘Pﬂ) (26)

are contained in the minimal generator system of A.

Comparing the dimensions we are convinced, that there are now new
generators in degrees (1,2) and (2,2). Hence, the other generators of A (if
they do exist) must have the degrees > (2,2).
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(3.8) Let B be the homogeneous subalgebra in A, generated by the func-
tions (26). Our goal is to prove that A = B. First of all we explicitly
formulate the known facts on A.

(a) By 1.2(iii) k[Z (s, ¥4)] i8 factorial and therefore A also is factorial.

(8) It follows from [P2, §3] that ¢(C(ws)) = 10, ¢(C(w4)) = 7. Therefore
7(A4) <(10,7).

(7) There is a natural action of 8-dimensional torus Tz = T'(Dg) x (k*)?
on SpecA. (Here (k*)? is the torus, defining the N*-grading on k[Z (g, v4)].)
It has been shown in [P4, ch.2] that ¢ := trdeg(QA)™ = 1. Considering that
Z (e, p4) is a rational variety, we see that (QA)™ is a rational function field.

(6) So far as A is factorial and list (26) contains all the generators of
degree < (2,2), then the functions from (26) are prime elements of A.

(8.7) Now we pass to the consideration of B. Clearly B is a Tg-invariant
subalgebra of A. At first we show that first 9 generators from (26) are al-
gebraically independent. The existence of an algebraic dependence means,
that there is a linear combination of monomials, which is equal identiti-
cally to zero. That is, it is necessary to find 2 different groups of mono-
mials, in such a way that their products lie in the same homogeneous sub-
space of B. A straightforward calculation show that all relations of such
sort should be a consequenses of the following one: (1,1, pape)(2,1,04) =
£(1,0,96)(0,1,04)(2,1,02), & € k*. But existence of the relation of this
form contradicts to factoriality of A and 3.6(6). Hence dimB = 9 and there
is a single relation, connecting all the functions (26). The monomials § =
(1) 1:(102906)(2: 1:994)a q= (la 0) VG)(Oi 1, ‘104)(21 1, ‘102)1 r= (la 1, ‘PG)(27 1)302904)
lie in B3z gpye,0s- If we assume that dimBs 2,00, = 3, then the direct cal-
culation shows dimB;z > dimAs; = dim(p) ® ¢3). It is impossible! The
conditions dimBj3 4,0 = 1 contradicts to 3.6(6). Hence, the dimension
under consideration is equal 2 and the single relation is of the form

(3.8) It follows from (27) that const # p/q € (@B)™ C (QA)™. Since
P, q are monomials on prime elements of A, A is factorial and é = 1, then it
is easy to prove that p/g generates (QA)™. In particular, (QA)™ = (QB)™.
Let us observe, p + £q, ¢ # £o is undecomposable element in A. Actually, it
is undecomposable in B, but this element is of degree (3,2) and Apm = Bam
if (n,m) £ (2,2). Therefore the undecomposability in B implies that in A.
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(3.9) Assume B # A. Then an additional generator should to be in A,
except the ones in (26). Let d € A, ,,, be an extra-generator. The values
n,m,w can not be arbitrary. It follows from (25) that nye + mys —w have to
lie in the root lattice of Dg. Let M C Z° = Z? x X(T'(Dg)) be the free abelian
group, generated by the weights and the degrees of the functions (26) (i.e. M
is generated by (1,0,¢g),...,(2,1,¢3)). A straightforward calculation give us
that if nypg+myp,—w lies in the root lattice, then (n,m,w) € M. This means,

* that there exist monomials m,, m; of functions (26), such that dm, and m,
lie in the same homogeneous subspace of A. Hence, dm;/m; € (QA)T, i.e.
dm,/m3 € k(p/q). After a simple transformation this leads to a relation of
the form

dm, [1(7 — %@) = ma [[(5 - 6;9)¢, v,6; €k, t€Z
i J

So far as all undecomposable factors on the right-hand side lie in B, then
condition d & B contradicts to the factoriality of A. Hence A = B. Thus,
‘the following result is proved.

(3.10) Theorem. The algebra A = k[Z(qpe,<p4)]U(D°) is generated by
the functions (26). This is a hypersurface in A', defined by the equation
(27). The Poincare series F4(21, 23,11,...,t¢) of A is of the form:

numerator: 1 — z3z,t5t,q,

denominator: (1 —z1te)(1 — 22t4)(1 — z125tate)(1 — 2123t6) (1 — 21238515 ) (1 —
Z]thlts)(l - Z¥22t4)(1 - 2322t2t4)(1 - Z?thlte,)(l - Z?thg). O

This formulas show us that g(A) = (10,7) = ¢(Z(ps, p4)) and all b; = 2.
The coefficient in z7z7* in the Taylor expansion of F, give us the decompo-
sition of p§ ® 7.

(3.11) It is turns out, a posteriori, that the weights of all generators of
Aliein 7 (see 3.4). Therefore it follows from (23),(24)

Theorem. Algebra k[Z(1, zﬁg)]U(ET) is naturally isomorphic to A. Weight
correspondences for the generators are given by (23). The single relation be-
tween the functions from the minimal generator system is of multi-degree
(35 21 ‘)51@2556)- 0

In this case by = b, = b = 2, by = by = by = 1, b, = 0 and
9(Z(¢1,82)//U(E7)) = (10,7). 1t follows from [P2, 3.7], that ¢(Z(@y,¢2)) =
(18,13).

Remark. The author takes this opportunity to make some corrections
to [P2]. In [P2, 3.7] the right values for E; are a3 = 13,47 = 14.
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(3.12) The example elaborated in 3.4-3.11 has the following origin. In
[P4] ali the pairs of the fundamental weights of simple algebraic groups with
the property &(Z(pi,;)) = 1 has been found. The list of this weights is
rather short:

o 2 serial cases (Bn; ¥2,¢m), (Cm; ¥2,9m), m 2 3;

e 2 sporadic cases (Dg; @4, 6), (E7; ¥1,92)-

If &Z(pi,p;)) = 0, then k[Z(p;,¢;)]’©) is a polynomial algebra and all
these cases were described in [Li]. Thus, we have done the following step:
the generators and the relations for sporadic cases with é = 1 are found.

(3.13) The same method as before, allows us to determine the generators
and the relations for the serial cases with é = 1. The results obtained are
gathered in the table. It is found, a posteriori, that everywhere in the table
k[Z (i, ;)]Y(@) is a hypersurface and the single relation is of the form p +
g+ 7 = 0, where p, g, are all monomials of generators, having the degree
and the weight, indicated in the column "Relation”.

Tabl
Group | Weights Generators Relation
(‘.02 @ ) (laO:(PQ):(Oyl:(Pm)v(lvli(Pm—Z)s
Cm T (1, 1, Sol‘Pm—l)s (21 1, V’I‘Pm—l)a (4$ 3, (ngafn—l‘iam)

m>4
- (2’119""&)5 (2,1,gof(pm),(2,2,tp?n_l)

(1$0, ‘PQ)) (0’ 1; @3)s (13 1)(191_)1
m=3 (1,1$‘P1992)1(251:‘193)1
(2: 1: ‘19%903)’ (2, 27 ‘Pg)

(1! 0,%2),(0,1,0m), (1,1, 010m),
m> 4 (13 l,c,om),(l, 21‘Pl‘Pm—l)1 (2, 33‘19199m—199m)
- (172a ¢m—l)1(1:21(PM—2):(2:23 ‘Pl(aam—])
(1’ 0, ‘Pﬁ)a (0; 1, ‘593)7 (1: 1, 9’1993)3
m=3 (1111¢3):(112$‘P1):
Q32:¢2)1(1:27(p1902)

Let us give some hints on application of the restriction theorem (see 1.8)
here. For C,, the cases m = 3,4 are basic, because they have not non-trivial
reduction for U-invariants (S = {e} for m = 3 and S = {center of C,,} for
m=4). lf m >5, then S = Z3 x Ap,5. The canonical embedding S° C G
has been indicated in [P4): the set of simple roots of S° is {a3,...,an_3}.
The embedding of Z, looks as follows: if (b) = Z,, b € T(C,,), then ¢;(b) =
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Pm-1(b) = =1, ¢i(b) =1, t # 1,m — 1. Then one can compute without
difficulties, that K = Cy x A}, if m = 5,6 and K = Cy,if m > 6. As a
matter of fact, in all these cases we have a reduction to the basic case m = 4.
The situation for B,, is similar.
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