
Explicit bases for the cohomology
groups of the Hilbert scheme of

points on a surface

Barbara Fantechi

Dipartimento di Matematica

Universita di Trenta

I 38050 Pavo

ITALY

Max-Planck-Institut fUr Mathematik

Gottfried-Claren-Straße 26

53225 Bann

Germany

MPI / 94-113





EXPLICIT BASES FOR THE COHOMOLOGY GROUPS

OF THE HILBERT SCHEME OF POINTS ON A SURFACE

BARBARA FANTECHI

1. INTRODUCTION

Let S be a smooth projective surface over the complex numbers, n a positive integer. The Hilbert

scheme H ilbc(S) (which we will usually denote by s[n]) parametrizes O-dimensional subsehemes of

S of length n; it is a smooth, 2n-dimensional projeetive variety, and aresolution of singularities of

the n-fold symmetrie prod_uct s(n),

The eohomology and Chow ring of srn ] have long been objects of investigation. For S = IIJi2,

the Betti numbers and a cell decomposition of srn
] have been eomputed in [ES!], [ES2]; a more

"geometrieal" basis of the homology has been eonstrueted in [MS].

For general S, the Betti numbers of srn ] have been eomputed in [G], the Hodge numbers and

the Hodge strueture in [GS] (the Hodge numbers also independently in [eh]). To be precise, the

following is proven in [GS]:

Theorem (Göttsche-Soergel). For any k E M there is an isomorphism of Hadge structures

Hk (sin ] , C) = EB Hk-(n-l(b)) (S(b) 1 C),
h

where b runs over the partitions of n,L (b) is the length of the partition band S(b) is a produet of

symmetrie products of S (see defim'tion 2.1).

The aim of this paper is the explicit construction of this isomorphism. The starting point is the

idea t llat, giyen a partition (b 1, ' .. ,br ) of n and for i =1, ... ,r cydes r j on S, we ean define a eyde

on s[n] by taking sehemes with support L bj Pi with Pi E ri; the homology dasses so defined, modulo

the "obvious" equivalenees, should give a basis for the homology of s[n]. We learned about this

conjecture by Lothar Göttsche during the work on [FG], where such a basis is explicitly cOllstrueted

for n = 3.

We start the paper by formalising the previous idea, i.e. by giving a precise definition of the

morphism described above. \Ve then define another possible such morphism, which is not anymore

defined in terms of S alone, but depends on the choiee of a very ample line bundle L on S (this is

analogous to the construction in [MS]); we then eompute interseetion products between the cIasses

so constructed , deduee that they are linearly independent and conclude that they are bases by

comparing their cardinality with the Betti numbers of sr"].
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We therefore construct several isomorphisms as in theorem 1.1 (see rernark 2.2). We would like to

note that this paper is inspired by the results of [GS], but it is logically dependent only on [G], and in

partieular provides an independent and more elernentary proof (corollary 3.4) of [GS)'s description

of the Hodge strueture of s[nl in the case where S is projective.
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2. STATEMENT OF THE MAIN THEOREl\.·fS

In this paper S will be a fixed smooth, complex projective surface, n a positive integer. We will

denote the n-th symmetrie product of S by s(n) and the Hilbert scheme Hilbc(S) by srnl. We will

also fix a very ample line bundle L on S.

For any topological space X we will denote the cohomology (resp. homology) groups with Q
coefficients by H·(X) (resp. H.(X)); eupproduet in cohomology will be denoted by a dot. A

(k- )eyde on areal Coo manifold X will be a Coo map from a (possibly disconnected) compact

oriented Coo k-dimensional manifold to X; to a k-eycle r one ean naturally associate a homology

dass 1 in HdX)' and we will say that r represents 1. If X is a eompact cornplex manifold, we will

also say that r represents the eohomology dass /, Poineare dual to 1. The support of a eycle will

be the image of the map.

A partition of n of length l' will be an 7,-tuple h = (bI, ... 1 br ) of positive integers such that

L bj = n , and the sequence bj is non-decreasing. The symmetrie group on r letters will be denoted

by Sr.

Definition 2.1 ([GS]). To each partition h of n, we associate a projective variety S(b) with only

quotient singularities as folIows: for i = 1, ... ,n, let Oj be the number of b/s whieh are equal to i,

and define S(b) to be the product of the s(a;). Notice that S(b) is a rational homology manifold

of dimension 2r, and there is a natural map 7T"b : sr -7 S(b) indueed by the map sr -7 s(a;J given

by (PI,"" Pr) H (Lbj=i Pj). In partieular the (eo)homology groups cf S(b) are known, and the

mapping 7T"b. : H· (sr) -7 H'" (S(b)) is surjective.

In fact, let Sb be the subgroup of er defined by the condition

eh = {O' E er I bi = bu(j) 'Vi = 1" " ,r};
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the variety S(b) is the quotient of sr by Sb, where Sr acts on sr in the obvious way. Therefore

1rb," induces an isomorphism between H'" (sr) eb and H'" (S(b)); moreover, for any 0' E H'" (sr L

1rb 1rb," (0') = L 0''" (0').
oE6b

In particular, if 0' and 0" are elements of H" (sr L by proj ection formula

1rb'" 0' . 1rb," 0" = 1rb," La. 0''" (a') .
aESb

Fix a partition b of n, and let ~,yb be the (2r + 4n)-dimensional projective manifold sr x sfb,] X

... X S[brl X s[n]; a point of Wb is a tuple (Pi, Zi, Z) where Pi are points in S, Zj are length bi

subschemes of S, and Z is a length n subscheme of S (and the index i runs from 1 to r).

Let Zb be the subvariety of Wb defined as the dosure of the locally dosed set

Let (b be the cohomology dass of Zb in H'" (~Vb).

Let' Ptb be the subvariety of Wb of the tllples (Pi, Zi, Z) such tImt each of the Zj is concentrated

in a point; let ptb be the corresponding cohomology dass in H'"(Wb ).

Choose a pencil P of curves Ct in the linear system !LL with a finite lllimber of base points and

with smooth general element. Say that a subscheme Z of S is P-linear if there is a curve C in the

pencil such that Z is contained in C (as a subscherne, not j ust as a set of points!).

Let Alb be the subvariety of Wb of the tllples (Pi, Zi, Z) where each of the Zi'S is P-linear, and

let alb be the corresponding cohomology dass in H'" (Wb)'

Remark 2.2. The dass alb does not depend on the choice of P; on the other hand it does depend

on the choice of the fine bundle L that we fixed at the beginning. By varying L we can obtain

different bases of H'"(sfnl ).

Denote the natural projection from Wb to sr (resp. sInl ) by Pb (resp. qb).

Definition 2.3. The additive homomorphism

has degree 2(n - r) and factors via the pushforward 1rb," : H·(sr) --+ IJ'"(S(b)). We denote the

induced degree 2(n - r) homomorphism from H'" (S(b)) to }f'" (srnl ) by ~(b, -). By replacing ptb by

alb we get the definition of 1/;(b, .).

Theorem 2.4. Let P(n) be the set 01 all partitions oin. Then the graded homomorphisms 0/ graded

Q-vector spaces

(2.4.1 )

(2.4.2)

are isomorphisms.

(i1<p(b,.): EB H'"(S(b),Q) --+ H'"(srnl,Q)
bEP(n)

(i1l,b(b,·): EB H'"(S(b),Q) --+ H·(sIn],Q)
bEP(n)

3



It is convenient to restate the theorem in terms of bases of the cohomology. Fix a homogeneous

basis A ={a} of H*(S,Q), with a E Hd(a)(S,Q); fix a total ordering < of A.

Let 1\1 (k, n) be the set of the data (b 'I) where b is a length r parti tion of n, and , is a fundion

from {l, ... , r} --+ A such that ifbj = bj then ,(i) < "rU), and such that k- L: d(-y(i)) =2 L:(bj-l) =

2(n - r). \Ve identify -y with the cohomology dass

1r~(-y(1)) ..... 1l";({(r))

in the (k + 2r - 2n)-th cohomology group of sr (where 1l"i : sr --+ S is the projection onto the i-th

factor).

For fixed b, the dasses -y such that (b, -y) E J\1(k, n) induce via 1l"h. a basis for Hk - 2(n-r)(s(h), Q).

In particular from [G] it follows that the cardinality of M(k, n) is equal to the dimension of

Hk (s[n1,Q). We can now restate theorem 2.4 in terms of bases.

Theorelu 2.4'. The map <p (resp. 1j;) of definition 2.3 induces a bijection belween M (k, n) and a

basis Bk (resp. B~) ojHk(s[n1,Q).

3. PROOF OF THEOREM 2.4

We will prove the theorem by showing that the intersectiOll pairing between Bk and B~n-k is

nondegenerate. In order to do so, we have to give a partial ordering on the elements of our bases;

we will then prove that the intersection matrix is block triangular and that all the blocks on the

diagonal have nonzero determinant.

Definition 3.1. A 5-sequence is a sequence of 5 nonnegative integers L = (lo, ... ,l.d. The dual of

a 5-sequence I is the 5-sequence [ = (l4, ... ,Lo).

We view the 5-sequences as ordered in areverse lexicographical way1 i .e., [ > [' if [4 > l~, or

14 = I~ and l3 > I;, etc. To each (b,,) E M (k , n) we can associate a 5-sequence / (b, -y) by letting

lj = #{ild(,(i)) = j}.

Theorenl 3.2. Let (b,,) E M (k, n) (resp. (b' ,,') E A1(4n - k, n)). Then

(1) If/(b,-y) < i(b' ,,'), then <p(b,-y) ·f,b(b',,') = 0;

(2) 1f l(b,,) = i(b', iL then <p(b, j) . 1jJ(b' ,,') = 0 unless b = b';

(3) <p(b,,) ·1jJ(b, ')") is equal to (0 br) times 1i"h.')' . 1i"h.T in H 4r (sth ), Q).

Proof. To compute the product of <p(b, ')') with "p(b', j') we can compute the intersection of their

produet in H· (sfn1 x sfnl) with the dass of the diagonal. This we can in turn pullback to ltVb x Wh';

by definition of <p and 1jJ the required product is equal to

(3.2.1)

in H 4r+8n (Wh X Wbl) where 8 is the pullback of the dass of the diagonal in sfnl X s[n].

To prove the theorem we will represent each of these classes by a eyde, and then prove that in

cases (l) and (2) the supports of the cycles don 't intersect; in case (3) the intersectiOil is a finite set,

and we will compute the intersection multiplicities.
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\Ve represent (the dual of) ptb by Ptb, aLb' by ALbl (for a fixed generically chosen pencil P), eb
by Zb and similarIy for b'; for each i we choose a representative cycle r i of / (i) (resp. q of /' (i))

such that the cycles so chosen meet transversally and are in generic position with respect to the

pencil P (i.e., we require that these cycles are transversal to both the base locus of P and the union

of its singular elements). \Ve represent 8 by the inverse image of the diagonal; more generally, we

represent the pullback of a class in a product by the chosen representative times the other factor (s) .

Let i\ be the support of r i , and similarly for q, and let (Pj , Zi, Z, PI, Zi, Z) be a point in the

intersection (necessarily Z = Z' since the point lies in the inverse image of the diagonal).

We must have: Pi E f\; P: E r~; SUppZi = Pi; SuppZ = UPi; Pi E Z: C Z and Z: P-linear.

Let L= (L o, ... ,14) be the 5-length of (b, I), and L' = (l~, ... ,L~) be the 5-length of (b', /'), Let

r be the length of b, let 1 = {1, ... ,r} and lj = {i E lId(/( i)) = j}; make analogous defini tions for

(b', ')").
We start by proving that if L~ > Lo then the intersection is empty. In fact for any point in the

intersection, Pk must coincide with (at least) one of the Pi 's; hence there must be an application

1] : {1, ... , r'} --+ {1, ... , r} such that Pk =Pt}(k)' This in turn implies that for each i E I we have

Pi E f i n n r~.
t}(k)=i

By transversality this implies that the restriction of 1] to 14 must be injective and have image

contained in /0, hence L~ ~ Lo.

We now repeat the same argument 4 times to prove (1). For instance, assume thai 14 =I~. Then

14 = 1](Ib)' hence the inverse image of an element of /4 via 1] must be one point. Then (applying

transversality again) the restriction of,., to J~ must be injective and haye image contained in 13 , and

so on; this finishes the proof of (1).

If 1 is the dual of L', the previous argument shows that we can associate to each point of the

intersection a bijection 1] : J' --+ I, defined by requiring Pt}(i)P: E r~ n r t}(i) (this implies that

b~ = 4 - bt}(i»)' By transversality this proves that the P/s are all distinct, hence that 1] is unique.

Assume now 1= LI/, and fix a point (Pi, Zi, Z, PI, Zi, Z) in the intersect ion, wi th induced bij ection

1], and let fJ = TJ- 1 . By assumption, the points Pi lie on different, smooth curYes Ci of the pencil.

Hence, Z is a union of disjoint subschemes Zj (of length bd supported on Pi. Now the subscheme

Z~(i) must be P-linear and contain Pi, hence it must lie on the curve Ci; on the other hand its

support is contained in the union of the Pi's, so in fact it must be supported in Pi. Hence we have

Z~(i) contained in Zi, and therefore b~(i) ~ bio On the other hand the surn of all the b/s and of all

the (bi) 's is the same, namely n; so we must have b~( i) = bi; this proves (2).

Assume now bb = b', and identify J with 1', The previous argument shows that, for each point

in the intersection, the induced permutation 1] is in Sb. Therefore if we project the intersection on

the first factor sr, the image is precisely the union oyer u E Eb of

(r l x ... x rr) n (r~(l) x ... x r~(r»),

that is the intersection of cycles in sr representing ')' and 0'"'" b'). So it is enough to prove that the

intersection living over a giyen poi nt (PI, ' . , , Pr) has mlll tplici ty TI b - i 2
; assurne wi thout loss of
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generality that the permutation 7] assoeiated to (PI, ... , Pr) is the identity. Note that the projeetion

is set- theoreiieally bij eetive.

Loeally near (Pil Zi, Z) the natural projeetion of Wh to sr X TI S[bi] is an isomorphism. The

inverse image of the diagonal in sfn] x s[n] maps (loeally) via this isomorphism to the product of

the diagonals in sfb;] x S[b;]. So near (Pi, Zj, Pt, Zn the interseetion is loeally a produet of the

intersection in S x S x sfbi] of Z I, Z2, Ptbi' Ahi and p* (ri X fi), where these Sll bvarieties are defined

in the statement of the following lemma; applying the lemma concludes the proof. 0

Lemma 3.3 (Göttsche). Let X = S x 5 X sfdl l with projeclions p on S X Sand q on sfdl. Define

subvarieties Zl and Z2 of X by

Let Ptd (resp. Ald) be the subvarieties ofX oftriples (PI, P2 , Z) where the subscheme Z is supported

in a point (resp. 'P-linear). Then

Proof. The eohomology dass whieh we want to prove is d2 [ß.s] ean be represented by a 4-cycle

supported on

As ß.s is a 2-dimensional variety, the cyde in question must be a multiple of the dass [ß.s]. To find

out which multiple, we COInpute its intersection with the dass P x 5, where PES is a generie point.

This is in turn equivalent to eomputing the length of the (zero-dimensional) subscheme intersection

of Z1, Z2, A1d, Ptd and p-l ({ P} x S).

Let C be the unique eurve of the peneil 'P eontaining P; we ean Msurne that C is smooth. The

intersection is set theoretieally one point, the tripie (P, P, Z), where Z is the (unique) subseherne

of C supported in P of length d. We ean chose loeal coordinates (x, y) near P on 5 such that P is

(0,0) and the eurves of the peneil P have equations y = eonstant; henee Z is defined by the ideal

(y, x d ). It is well-known that there are local coordinates (ao, ... ,ad-l, bo, ... ,bd-d on sfdl near Z

such that (ai, bj) eorresponds to the subscheme defi ned by the ideal

It is more convenient to choose other coordinates (8, Co, ... ,Cd- 2, bo, ... ,bd _ d defining the sub

scheme

Putting everything together we get local coordinates on X

In this coordinates the equations of Zl, Z2, Ald, Ptd and p-l ({ P} X S) are (in order I remembering

that the first two are defined by two equations each) the third and the fourth by (d - 1) each and
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the fifth by two equations again):

(Xl + 8)d + Cd-2(Xl + 8)d-2 + ... + Co = 0

Yl + bd_lxt- l + .. ,+ bo = 0

(X2 + 8)d + Cd-2(X2 + 8)d-2 + ... + Co = 0

Y2 + bd_lX~-l + ... + bo = 0

bl = . , . = bd- 1 = 0

Co = ... = Cd-2 = 0

Xl = Yl = 0

So the ideal of the intersection is generated by (bi, Cj 1 xI, Yl, Yz, 8d
1 (xz +8) d) I which has length d2 . 0

Proof of theorem 2.4. \'fe prove that the intersectiOll pairing between Bk and B~n-k is nondegenerate

for any given k; this implies that the elements of Bk are linearly independent, hence as they are

precisely bk(sfnl ) by [G] they are a basis (and the same for Bk).

Order the elements of Bk compatibly with the ordering on the 5-lengths and the elements of B~n-k

compatibly with the orclering of the duals of the 5-lengths; then (by theorem 3.2 (1)) the intersection

matrix is block triangular I with the blocks being the intersection matrices between elements such

that the 5-length of the first is dual to the 5-length of the second.

By 3.2 (2), each of this blocks is in turn block diagonal, the subblocks being the interseetion

matrices of elements with a given partition: these subblocks are nondegenerate because of 3.2

(3). 0

Corollary 3.4. The morphism

cp 0 C: EB H· (S(b), C) --+ H· (srnl , C)
bEP(n)

induces an isomorphism of Hodge structures, and the same fo1' 1/J.

Proof The morphism H· (sr, C) --+ H· (s[n] , C) inducing cp 0 C is given by composing pull back to

'VVb (which is a homomorphism of Hodge structures of type (0,0)) with intersection with the dass

(b . ptb (which is a homomorphism of Hodge structures of type (-21', -21')) and finally with the

pushforward to srnl (which is a homomorphism of Hodge struetures of type (n + 1', n +1')). So it is a

homomorphism of Hodge structures of type (n - 7' , n - 7'); as it is an isomorphism of vector spaces,

it is also an isomorphism of Hodge structures. 0

Remark 3.5. The morphisms (2.4.1) in theorem 2.4 can also be defined if S is any complex surface

and sfn] is the Douady space representing O-dimensional subschemes of length n. It seems natural to

conjecture that it is always an isomorphism. If the surface is adeformation of an algebraic surface,

this follows easily from the algebraic case. However we have HO idea of how to da the general case

(in which the Betti numbers are also unknown).
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