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1. INTRODUCTION

Let 5 be a smooth projective surface over the complex numbers, n a positive integer. The Hilbert
scheme Hilb%(S) (which we will usually denote by SI"l) parametrizes 0-dimensional subschemes of
S of length n; it is a smooth, 2n-dimensional projective variety, and a resolution of singularities of
the n-fold symmetric product S(*).

The cohomology and Chow ring of SI® have long been objects of investigation. For S = P?
the Betti numbers and a cell decomposition of SI"l have been computed in [ES1], [ES2]; a more
“geometrical” basis of the homology has been constructed in [MS].

For general S, the Betti numbers of S} have been computed in [G}, the Hodge numbers and
the Hodge structure in [GS] (the Hodge numbers also independently in [Ch]). To be precise, the

following is proven in [GS]:
Theorem (Goéttsche-Soergel). For any k € N there ts an isomorphism of Hodge structures

HE (S, €) = @ HF- (=10 (5) €,
b

where b runs over the partitions of n, I(b) is the length of the partition b and S®) is a product of
symmetric products of S (see definition 2.1).

The aim of this paper is the explicit construction of this isomorphism. The starting point is the
idea that, given a partition (b1,...,b;) of nand fori = 1,...,7 cycles I'; on 5, we can define a cycle
on SI"l by taking schemes with support }_ b; P; with P; € Tj; the homology classes so defined, modulo
the “obvious” equivalences, should give a basis for the homology of SI"l. We learned about this
conjecture by Lothar Gottsche during the work on [FG], where such a basis is explicitly constructed
for n = 3.

We start the paper by formalising the previous idea, i.e. by giving a precise definition of the
morphism described above. We then define another possible such morphism, which is not anymore
defined in terms of S alone, but depends on the choice of a very ample line bundle L on S (this is
analogous to the construction in [MS]); we then compute intersection products between the classes
so constructed, deduce that they are linearly independent and conclude that they are bases by

comparing their cardinality with the Betti numbers of S{"l.
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We therefore construct several isomorphisms as in theorem 1.1 (see remark 2.2). We would like to
note that this paper is inspired by the results of [GS], but it is logically dependent only on [G], and in
particular provides an independent and more elementary proof (corollary 3.4) of [GS]’s description

of the Hodge structure of SIn] in the case where S is projective.
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2. STATEMENT OF THE MAIN THEOREMS

In this paper S will be a fixed smooth, complex projective surface, n a positive integer. We will
denote the n-th symmetric product of § by 5(*) and the Hilbert scheme Hilbg(S) by Sinl. We will
also fix a very ample line bundle L on S.

For any topological space X we will denote the cohomology (resp. homology) groups with Q
coefficients by H*(X) (resp. H.(X)); cupproduct in cohomology will be denoted by a dot. A
(k-)cycle on a real C* manifold X will be a C* map from a (possibly disconnected) compact
oriented ' k-dimensional manifold to X; to a k-cycle [’ one can naturally associate a homology
class 7 in Hi(X), and we will say that I' represents 4. If X is a compact complex manifold, we will
also say that T represents the cohomology class v, Poincaré dual to 5. The support of a cycle will
be the image of the map.

A partition of n of length r will be an r-tuple b = (b,,...,4,) of positive integers such that
>_b; = n, and the sequence b; is non-decreasing. The symmetric group on r letters will be denoted
by &,.

Definition 2.1 ([GS]). To each partition b of n, we associate a projective variety S(®) with only
quotient singularities as follows: for : = 1,...,n, let a; be the number of ;’s which are equal to 1,
and define S®) to be the product of the S{3). Notice that S{P) is a rational homology manifold
of dimension 2r, and there is a natural map m, : S — S} induced by the map S™ — 5(%) given
by (Pi,...,Pr) — (Eb,—:s’ P;). In particular the (co)homology groups of S(P) are known, and the
mapping mp. : H*(S7) = H*(SP)) is surjective.

In fact, let Gy, be the subgroup of &, defined by the condition

Gy = {0 € G, |b;:ba(i)Vi=1,...,r};



the variety S{P) is the quotient of §” by &y, where G, acts on S” in the obvious way. Therefore
b induces an isomorphism between H*(S7)®* and H*(S()); moreover, for any o € H*(S")

(@) = Y o (a).

cESy

)

In particular, if o and « are elements of H*(S"), by projection fermula
Tou(f - The X' = T Z a- o).
ceSy
Fix a partition b of n, and let W}, be the (2r + 4n)-dimensional projective manifold S x S x
<o x Strl % Sin): a point of W, is a tuple (P, Z;, Z) where P; are points in S, Z; are length b;
subschemes of S, and Z is a length n subscheme of S (and the index ¢ runs from 1 to r).

Let Zy, be the subvariety of Wy, defined as the closure of the locally closed set
{(P,2;,2) | Pi€Zi, Z: CZ, ZiNZ; =Bif i # 5}

Let (p be the cohomology class of Zp, in H*(Wp).

Let' Pty, be the subvariety of Wy, of the tuples (P, Z;, Z) such that each of the Z; is concentrated
in a point; let pty, be the corresponding cohomology class in H*{Wh).

Choose a pencil P of curves C; in the linear system {L|, with a finite number of base points and
with smooth general element. Say that a subscheme Z of S is P-linear if there is a curve C in the
pencil such that Z is contained in C (as a subscheme, not just as a set of points!).

Let Alp be the subvariety of Wy of the tuples (P, Z;, Z) where each of the Z;’s is P-linear, and
let alp, be the corresponding cohomology class in H*(Wy,).

Remark 2.2. The class aly, does not depend on the choice of P; on the other hand it does depend
on the choice of the line bundle I, that we fixed at the beginning. By varying L we can obtain
different bases of H*(SW"]).

Denote the natural projection from Wy, to ST (resp. SI*1) by py, (resp. qn).
Definition 2.3. The additive homomorphism
goe (Pt - Go - PR () H(S7, Q) = H* (S, Q)

has degree 2(n — r) and factors via the pushforward m,. : H*(S7) —= I*(S?}). We denote the
induced degree 2(n — r) homomorphism from H*(S®)) to H*(S") by ¢(b,-). By replacing pty, by
alp we get the definition of ¥(b, ).

Theorem 2.4. Let P(n) be the set of all partitions of n. Then the graded homomorphisms of graded

Q-vector spaces

(2.4.1) ®e(b, ) : e;: )H‘(S(b),Q)—}H*(S["},Q)
beP(n

(2.4.2) @b, ): @ H'(S®,Q) - H(SM,Q)
begP(n)

are isomorphisms.



It is convenient to restate the theorem in terms of bases of the cohomology. Fix a homogeneous
basis A = {a} of H*(S,Q), with o € H¥)}(5,Q); fix a total ordering < of A.

Let M (k, n) be the set of the data (b,+) where b is a length r partition of n, and ¥ is a function
from {1,...,7} = Asuch that ifb; = b; then v(i) < v(j), and such that k=3 d(y(i)) = 23 (b;=1) =
2(n — r). We identify ¥ with the cohomology class

(1) - m(v(r)

in the (k + 2r — 2n)-th cohomology group of S™ (where m; : 5 — S is the projection onto the i-th
factor).

For fixed b, the classes v such that (b,y) € M(k,n) induce via mp, a basis for H¥~2(n-7}(5(®) Q).
In particular from [G] it follows that the cardinality of M(k,n) is equal to the dimension of

H*(S"), Q). We can now restate theorem 2.4 in terms of bases.

Theorem 2.4°. The map ¢ (resp. ¥) of definstion 2.3 induces a bijection belween M(k,n) and a
basis By (resp. BL) of H* (S, Q).

3. PROOF OF THEOREM 2.4

We will prove the theorem by showing that the intersection pairing between By and Bj,_, is
nondegenerate. In order to do so, we have to give a partial ordering on the elements of our bases;
we will then prove that the intersection matrix is block triangular and that all the blocks on the

diagonal have nonzero determinant.

Definition 3.1. A 5-sequence is a sequence of 5 nonnegative integers { = (ly,... ,14). The dual of

a 5-sequence ! is the 5-sequence [ = (la,. .. 00).

We view the 5-sequences as ordered in a reverse lexicographical way, i.e., [ > " if Iy > I}, or

ly = I} and I3 > I, etc. To each (b,y) € M(k,n) we can associate a 5-sequence (b, ) by letting
I = #{ild{+(:)) = j}.
Theorem 3.2. Let (b,v) € M(k,n) (resp. (b',4') € M(4n ~ k,n)). Then
(1) 1f1(b,7) <i(b',7), then p(b,) - $(b',¥) = 0;
(2) Ifi(b,v) = i(b', ), then p(b,¥) - H(b',¥') = 0 unless b = b’;
(3) w(b,7) - ${b, 7'} is cqual to ([[67) times ey - mmay’ in HA(S®), Q).
Proof. To compute the product of ¢(b,~) with #(b’,¥’) we can compute the intersection of their

product in H‘(S["] x S["}) with the class of the diagonal. This we can in turn pullback to Wy x Wy,
by definition of ¢ and ¥ the required product is equal to

(3.2.1) T, (aly - Co - PR (7)) - Ty, (Pt - G - P (7)) 6
in HAT+87 (W, x W) where 8 is the pullback of the class of the diagonal in Sl x S,
To prove the theorem we will represent each of these classes by a cycle, and then prove that in

cases (1) and (2) the supports of the cycles don’t intersect; in case (3) the intersection is a finite set,

and we will compute the intersection multiplicities.



We represent (the dual of) pty, by Pty, alyr by Alp (for a fixed generically chosen pencil P), (»
by 2y, and similarly for b’; for each i we choose a representative cycle I'; of (i) (resp. [} of /(i)
such that the cycles so chosen meet transversally and are in generic position with respect to the
pencil P (i.e., we require that these cycles are transversal to both the base locus of P and the union
of its singular elements). We represent § by the inverse image of the diagonal; more generally, we
represent the pullback of a class in a product by the chosen representative times the other factor(s).

Let T; be the support of I;, and similarly for I}, and let (P, Z;, Z, P!, Z!, Z) be a point in the
intersection (necessarily Z = Z’ since the point lies in the inverse image of the diagonal).

We must have: P; € Ty; P/ € T}; Supp Z; = P;; Supp Z = UP;; P; € Z! C Z and Z! P-linear.

Let I = (lo, ... ,ls) be the 5-length of (b,v), and I = (I, ... ,l}) be the 5-length of (b’,4’). Let
r be the length of b, let 7 = {1,...,r} and [; = {i € I|d(¥(#)) = j}; make analogous definitions for
(B, 7).

We start by proving that if I, > {y then the intersection is empty. In fact for any point in the
intersection, P} must coincide with (at least) one of the P;’s; hence there must be an application
n:{L,...,r"} = {L,...,r} such that P = Pyq). This in turn implies that for each ¢ € I we have

Pelin m I_‘i
n(k)=i
By transversality this implies that the restriction of # to I must be injective and have image
contained in I, hence I} <.

We now repeat the same argument 4 times to prove (1). For instance, assume that [4 = [j. Then
Iy = n(I}), hence the inverse image of an element of Iy via 7 must be one point. Then (applying
transversality again) the restriction of n to I{ must be injective and have image contained in I3, and
so on; this finishes the proof of (1).

If I is the dual of I, the previous argument shows that we can associate to each point of the
intersection a bijection 1 : /' — I, defined by requiring P P/ € rn f‘,,('-) (this implies that
b; = 4 — by(;)). By transversality this proves that the F;’s are all distinct, hence that 7 is unique.

Assume now ! =", and fix a point (P}, Z;, Z, P}, Z!, Z) in the intersection, with induced bijection
n, and let 7 = 5~!. By assumption, the points P; lie on different, smooth curves C; of the pencil.
Hence, Z is a union of disjoint subschemes Z; (of length b;) supported on P;. Now the subscheme
Z,ff(,.) must be P-linear and contain F;, hence it must lie on the curve Cj; on the other hand its
support is contained in the union of the P;’s, so in fact it must be supported in P;. Hence we have
Z’{I('—) contained in Z;, and therefore b:,(l.) < b;. On the other hand the sum of all the b;’s and of all
the (b})’s is the same, namely n; so we must have b, = b;; this proves (2).

Assume now bb = b’, and identify [ with I'. The previous argument shows that, for each point
in the intersection, the induced permutation 5 is in &y,. Therefore if we project the intersection on

the first factor S™, the image is precisely the union over o € &y, of
(Fl X o0 X F,-) ﬂ([‘f,(l) X ... X I‘;,(r)),

that is the intersection of cycles in S” representing v and ¢*(v'). So it is enough to prove that the

intersection living over a given point (P, ..., P.) has multplicity [] b — i?; assume without loss of



generality that the permutation 5 associated to (P, ..., P;) is the identity. Note that the projection
is set-theoretically bijective.

Locally near (P;, Z;, Z) the natural projection of Wi, to ST x [] SI*! is an isomorphism. The
inverse image of the diagonal in Sl x SI"] maps (locally) via this isomorphism to the product of
the diagonals in S x S%l. So near (P, Z;, P!, Z!) the intersection is locally a product of the
intersection in §x § x S® of Z1, Zy, Pty,, Aly, and p*(I'; x I'}), where these subvarieties are defined
in the statement of the following lemma, applying the lemma concludes the proof. 0O

Lemma 3.3 (Gottsche). Let X = S x S x SO, with projections p on S x S and q on S¥. Define
subvarieties Z, and Z, of X by

Zi = {{(P, P, 7)|P; € Z}.

Let Pty (resp. Alg) be the subvarieties of X of triples (Py, Py, Z) where the subscheme Z is supported
in a point (resp. P-linear). Then

p([21] - [22] - [Ald] - [Pd]) = d* [As).

Proof. The cohomology class which we want to prove is d[Ag] can be represented by a 4-cycle
supported on

p(Zl NZsNAlgN Ptd) = Ag.

As Ay is a 2-dimensional variety, the cycle in question must be a multiple of the class [Ag]. To find
out which multiple, we compute its intersection with the class P x S, where P € S is a generic point.
This is in turn equivalent to computing the length of the (zero-dimensional) subscheme intersection
of Zy, Z3, Alg, Pty and p~1{({P} x §).

Let C be the unique curve of the pencil P containing P; we can assume that C is smooth. The
intersection is set theoretically one point, the triple (P, P, 2}, where Z is the (unique) subscheme
of C supported in P of length d. We can chose local coordinates (z,y) near P on S such that P is
(0,0) and the curves of the pencil P have equations y = constant; hence Z is defined by the ideal
(y,z9). 1t is well-known that there are local coordinates (aq, ... ,a4-1,b0,... ,ba—1) on Sl near Z

such that (a;, b;) corresponds to the subscheme defined by the ideal
(:L'd + ad_lctd_l +...4ap,y+ bd_lird-l + ...+ bo).

It is more convenient to choose other coordinates (6,c¢g,...,c4-2,b0,...,b4-1) defining the sub-

acheme
(4 8) +cacalz + 82+ . Heo,y+ b1z 4 4 bg).
Putting everything together we get local coordinates on X
(z1,91,22,¥2,6,¢0,... ,Ca=2,b0,... ,ba_1).

In this coordinates the equations of Z;, Za, Ala, Pta and p~}({P} x S) are (in order, remembering
that the first two are defined by two equations each, the third and the fourth by (d — 1) each and



the fifth by two equations again):

(21 +8)% + cama(z1 + )2+ 4+ =0
y1+bd-1z‘f"1 +...4+b0=0
(z2 +5)d + ca-2(z2 +5)d_2 +...+ecp=0
y2+bd-117§'1+ o+ by=0

51:,..=bd_1=0
co=..=cg_2=0
2=y =0

So the ideal of the intersection is generated by (b;, ¢;, 21, 1, y2, 89, (z2448)9), which has length d2. O

Proof of theorem 2.4. We prove that the intersection pairing between By, and B}, _, is nondegenerate
for any given k; this implies that the elements of By are linearly independent, hence as they are
precisely bx (St} by [G] they are a basis (and the same for By).

Order the elements of By compatibly with the ordering on the 5-lengths and the elements of B}, _,
compatibly with the ordering of the duals of the 5-lengths; then (by theorem 3.2 (1)) the intersection
matrix is block triangular, with the blocks being the intersection matrices between elements such
that the 5-length of the first is dual to the 5-length of the second.

By 3.2 (2), each of this blocks is in turn block diagonal, the subblocks being the intersection
matrices of elements with a given partition: these subblocks are nondegenerate because of 3.2

(3). O
Corollary 3.4. The morphism

e®C: @ H*(S®), ) = H (5", Q)
beP(n)

induces an tsomorphism of Hodge structures, and the same for .

Proof. The morphism H*(57,C) — H*($!"), C) inducing ¢ ® C is given by composing pull back to
Wy, (which is a homomorphism of Hodge structures of type (0,0)) with intersection with the class
(b - piy, (which is a homomorphism of Hodge structures of type (—2r,—2r)) and finally with the
pushforward to Sl (which is a homomorphism of Hodge structures of type (n4r,n47)). Soitisa
homomorphism of Hodge structures of type (n — r,n —r); as it is an isomorphism of vector spaces,

it is also an isomorphism of Hodge structures. [

Remark 3.5. The morphisms (2.4.1) in theorem 2.4 can also be defined if S is any complex surface
and S is the Douady space representing 0-dimensional subschemes of length n. It seems natural to
conjecture that it is always an isomorphism. If the surface is a deformation of an algebraic surface,
this follows easily from the algebraic case. However we have no idea of how to do the general case

(in which the Betti numbers are also unknown).
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