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Associative Subalgebras of the Griess Algebra

by Werner Meyer and Wolfram Neutsch

Abstract

The structure of the Griess algebra §, whose automorphism group is the Fi-
scher-Griess monster F1’ is investigated.

We show the existence of 48-dimensicnal associative subalgebras in & and
furthermore demonstrate that they are not contained in strictly larger
ones.

It is conjectured that the given expllcit examples are of maximal possible
dimension among all associative subalgebras in §. This depends on the vall-

dity of a certaln lnequality.



Known Results

In this section we compile a number of known results concerning properties
of the Grless algebra. Proof's can bé found 1n the literature, especially in
Griess [1982] and Conway [1984]; see also Conway et al. [1985], henceforth
referred to as the "ATLAS".

The largest sporadic group, the Monster Fl, of order

2%8.3%0.5%.7%.11%.13%.17.19-23-29-31-41-47-59- 71 (1)

has a minimal representation in characteristic 0 of degree
196883 = 47-59.71 {2)

which can be realised over the fleld @ of rational numbers (Griess [1982]).
The character table shows that the trivial representation 1 as well as
196883 itself are contained exectly once in the symmetric square

82(198883): the precise decomposition is

52(196883) = 1 & 196883 @ 842609326 & 185387500786 (3)
This implies the existence of a nontrivial Fi-invariant inner product and
an Fi—invariant algebra (the "Griess algebra" §) with unit element 1 on an
R-vector space V of dimension 196884, on which the Monster acts as

1 o 196883 (4)

Since the above-mentlioned characters lle 1in the symmetric part of the ten-

sor square of 196883, the inner product
<.,.>: VxV — R (5)

is symmetric: For all a,b e V,



<a,b> = <b,a> (B)
Conway chooses it to be positive definlte:
<a,a> > 0 (7)

if a = 0.
For the same reason the algebra product, here denoted by a dot oder by con-

catenation of the factors, is commutative:

abh = b-'a (8)
and, since 1 =also 1s contained exactly once in 1988833 (namely 1n
83(198883), the inner product must be associatlive with respect to the alge-
bra,

<a'b,c> = <a,b-c> (9)

The algebra itself, however, is not associative.

Theorem 1 (Norton):

For two arbitrary vectors a,b the Norton inequality
<a®,b®> = <a-b,a-b> . (10)

holds.

Definition 1 (Conway [1984]):

Two elements a,b in & associate if for all x € V:
a‘(x*b) = (a-x)-b (11)

This is clearly tantamount to the commutativity of ada and adE

One says, a alternates with b, if the last equatlon is fulfilled for x = a,



a-{a‘b) = a"-b (12)

We use the notation of the ATLAS with the single exception that we choose
. <.,.> as twlice the Conway product.

Of fundamental importance is the remarkable

Theorem 2 [(Norton):

The following three assertions are equivalent:

{a) We have equality in Norton’s formula,
<a2,b2> = <ab,ab> (13)

(b) a and b assoclate;

(¢c) a alternates with b (or vice versa).

Definition 2 {Conway):

An element which assoclates with its square 1s called a Jordan element.

Trivially, the multiples of idempotents are Jordan.
Theorem 3 (Conway):
Let

F = Aut & (14)
be the automorphlism group of the Griess algebra. Then the scalar product is
Invariant under F, because it can be calculated from the algebra product
via

tr(adaadb) = 20336 <a, 1> <b, 1> + 4820 <a,b> (15)

F is finite; more precisely,



F = F (18)

We associate to each transposition (= 2A-element in F) « an idempotent ia
("transposition idempotent" of «) which lies in the (2-dimensional) fix

space of
C (x) = 2aF -(17)
F 2

in 6 such that the transposition axis t described in Conway [1984] is a
multiple of 1a,

a = t = 641 (18)

a-a = B4 g (19)
and
<g,a> = 256 (20)

The fix space of ad(ia) is one-dimensional.

We can proceed in the same way for 3A-elements T Instead of transpositions.
This gives igempotents iT with norm I%'

We also mention the 1mportant fact (Conway [1984]) that F acts by conjuga-
tion as a rank-9-permutation group on the transpositions and that the pro-

duct of two transpositions is contained in one of the Fi-classes
1A, 2A, 2B, 34, 3C, 4A, 4B, 5A,6A {(21)

By an observation of McKay, these classes can be associated in a natural
way with the nodes of the extended Ea Dynkin diagram:



3Cc

4
1A 2A 3A 45 SA BA 4B 2B
o) e} '} 'e} e -0 —0 —0 (22)
256 32 13 8 6 5 i 0

The numbers attached to the nodes are the inner products of ta and tf
where « and B are transpositions whose product is in the appropriate class

of F .
1

Theorem 4 {Norton):
The lattice T which is spanned (as a Z-module) by ell vectors of the form

1, t, t-t’, {(here t and t’ denote arbltrary transposition axes), is closed

under the algebra product,

r-r T (23)
and integer with respect to <.,.>,

<r,r> s 17 (24)

The dual factor T /T of T is cyclic, and |I'/T| is a power of 4.

Conway [1984] conJjectures that I' is unimodular.



Assoclative Subalgebras

The main obstacle for the study of the Interlor structure of 6 is - besldes

the large dimension - 1ts non-assoclativity. It is therefore natural to

consider assoclative subalgebras.

Obviously all vectors in such a subalgebra are power-associative, or, what

amounts to the same, Jordan elements.

In order to investigate the structure of associative subalgebras of & we

need the easy

Lemma 1:

(a)

(a)

The only nilpotent Jordan element in & is O;

(b) There is no subalgebra in & isomorphlec to C;

(c) Two idempotent elements a and b annihilate each other if and only if
they are perpendicular.

(d) If 1 € 6 is idempotent,

i = 1 (25)
the norm <i,i> of i lies between 0 and 3 (incl.). The extremal values
occur only for i € {0,1}.

(e) For all a,b € 6, -
<a,b>2 < <a,a> <b,b> (28)
(Schwarz’ inequality).
Proof:

If x € 5“ =6 \ {0} is nilpotent and Jordan, there exists a k > 0 such
+1 k+2

- that x* # 0 and x*** = ¥ = ... = 0. This gives

xS = E K1 = o 1> = <0,1> = 0 (27)



(b)

(¢)

(d)

Hence
x = 0 (28)
which contradicts the assumptlon.
A subalgebra isomorphic to € would be generated by nonzero vectors e
and 1, obeylng the conditions
ee. = e; el = i-e = 1i; i1 = ~e (29)
But then we would have

<i,i> = <i,i-e> = <12,e> = <-g,e> = = <eg,e> < 0 (30)

which is clearly impossible.

From
a’® = a b° = b (31)
and
ab = 0 (32)
it follows that
<a,b> = <a‘a,b> = <a,a‘b> = 0 (33)

The orthogonality of a and b implles
2.2
0 = <a,b> = <a%,b> =z <ab,ab> (34)

by Norton’s inequality, whence the proposition.
is trivial if i € {0,1}. Otherwise, the subalgebra generated by 1 and 1
is associative and 2-dimensional. 1-1 has the same properties as i. In

particular,



<{,i-i> = 0O (35)
and
3 = <1,1> = <,1> + <1-1,1-1> (386)

which impllies the assertlion.

(e) is a well-known general property of positive definite scalar products.

The above lemma immediately provides us with the structure of assoclative

subalgebras:

- Theorem 5:_
Let ¥ be a k-dimensional associative subalgebra of the Griess algebra 6.
Then

{a) U is isomorphic (as a ring) to the direct sum of k copies of R:
Y = R (37)

(b) % contains a basis of k mutually annihilating idempotent elements which

are orthogonal to each other:

a-a, = 0 (38)
and

<ai.aj> = 0 (39)
for all 1,J e {1,...,k} with i1 = J.

(c) The 1dempotent elements in 1 are the partlal sums of the a, (and vice
versa}. In particular, there are exactly 2k idempotents in ¥, including

the zero element O.

{F Y } {40)
1 k

10



is the only orthogonal basis among them. We shall call the a, the basic
{or fundamental) idempotents of Y.

Proof':

As an assoclatlive algebra, 1 contalns only Jordan elements. By part (a) of
Lemma 1, the Jacobson radical of 1 is therefore zero. Hence Y is senisimple
and thus a direct sum of flelds of finite dimension over R, 1. e. of alge-
bras isomorphic with R or €. But C cannot occur by part (b) of Lemma 1.
This proves (a), while (b) 1s Just the same, except for the orthogonality
of the basic ldempotents. The latter proposition, however, 1s a consequence
of

<a,a> = <g-a,a> = <a,a-a> = <a,0> = 0 (41)
17 1 17Ty 1771 Ty i
for all 1 # j. (¢) follows trivially from the structure of R*
All associative subalgebras of § are thus generated by systems of mutually

perpendicular ldempotent elements. It is therefore of great interest to in-
vestigate the properties of ldempotents in 6. First we find

Theorem B:
Let « and B be two different transpositions and

a = i (42)
and

b = 1 (43)

the associated idempotents. Then the followlng statements are equivalent:

(a) In the Norton formula for a and b, equality holds,

<a2,b2> = <ab,ab> (44)

11



(b) a and b associate with each other: for all x € B,

a-(x-b) = (a-'x)-b (45)

(c) a alternates with b,
a-(a'b) = a’b (48)

(d) b alternates with a,
(a'b)-b = a-b (47)

(e) a and b annihilate each other,
arb = 0 (48)
{(f) a and b are orthogonal,
<a,b> = 0 (43)
(g) The product aB is a central Fi-involution,
af € 2B (50)
Proof:
The first four properties are equivalent by Theorem 2, as well as the re-
maining three by equation (22) and Lemma 1.c.
From (c), we get the elgenvalue relation
a-(a'b) = a*b = a-b (51)
and deduce that a'b is a fixed vector af ada and thus linearly dependent of
a; similarly (with the réles of a and b interchanged) of b. This is only

possible if

ab = 0 (52)

12



which is (e}. The reverse inclusion (e) = (c) is trivial.

A simple consequence is

Corollary 1:
Let @y a O € 2A be palrwlse different transpositions and ai,....ak the
corresponding idempotents.
Thé subalgebra U of & which ls generated by Blaea @ is assocliatlve 1f and
only if for all 1,J e {1,...,k} with i = j,

o0 € 2B (53)

is true. In this case

{4 a, ... ,4a } (54)
1 "

is an orthonormal basis of U; in particular
dim % = k (55)

Furthermore, E = <a1,...,ak> is an elementary abelian 2-subgroup of Fy

Proof:
Trivial.

We can now glve an upper bound for the dimensions of assocliative subalge-

bras of 8 which are generated by transposition axes:

Theorem 7:
(a)} For any assoclatlve S-subalgebra 1, which is generated by transposition

idempotents,

13



dim %4 s 48 (56)

(b) Every system of 49 commuting transpositions in F1 contalins at least two

whose preoduct is also in the class 2A.

Proof':

Part (b) immedlately follows from (a), Corollary 1, and the fact that all
Fl—involutions lie in either 2A or 2B.

To verify the first statement, we again denote the transposition idempo-

tents by al,...,ak, where
kK = dim ¥ (57)

By Theorem 4,

{al,...,ak} (58)

are the basic ldempotents, and all of them have the norm

% - 1 (59)

64 18

The longest ldempotent in Y is

) ,
e = Z a, (60)

with norm
< 3 (81)

(cf Lemma 1.d).

The last formula immediately leads to

14



k = 48 (62)

as required.

We notice that the extremal possibility (dimension = 48) can only arise if
1 € Y. The given bound is sharp:

Theorem 8:

There are 48 transpositions in F‘1 whose pairwise products are in 2B.

Proof:
In the subgroup

0,(C(2B)) = 2?2*" (63)

the central factor corresponds to the quotient of the Leech lattice A by
its double (2A). On it, the group

CF(ZB)/Oz(CF(ZB)) 2 Co (64)

acts in a natural way.

The A/2A-classes may be described by giving the type (Conway [1971]) of the
shortest vectors they contain.

Classes of type 2 are assoclated with 2 transpositions each, those of type
3 with 2 elements of order 4, and those of type 4 wlth pairs of involutlons
in 2B. Thus it suffices to checose 24 vectors vi,...,v24 in A (mod 2A) such
that the sum of any two of them is of type 4. This is tantamount to the or-
thogonality (in A) of the v,

It is easy to find such a set of vectors, for Ilnstance
(4,4,0%%), (4,-4,0%); (0% 4,4,0%°°), (0% 4,-4,0%); ... (85)

in the notation of the ATLAS.

The corresponding transpositlon vectors indeed have 1 as their sum.
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The same argument also shows that associative &-subalgebras of higher di-
mensions than 48 can only exist if there are nonvanishing ldempotents with
norm smaller than Eg = T%' It is thus natural to seek the shortest idempo-
tents # O in &.

This is equivalent to determining the maxima of the function

#

F: & = 6\ {0} — R (86)
defined by
2 2
< >
F(x) = -"—"—2- (87)
<X, X>

This formulation of the problem allows us to apply the methods of calculus.
We first have:

Lemma 2:

The peints a at which F is statlionary are characterized by the condition

a~ € R-a (68)

Proof':
We have to show that for all £ 1L a the e-linear terms in <(a+s)2,(a+e)2>

vanish. By polarisation we get
0 = <2a£,a2> + <a2,2ae> = 4 <a2.ae> = 4 <a3.s> (89)

that is e 1L a?. This implies the assertion of the theorem.

It is easy to determine the minima of F:

Theorem 9:

16



The minimal value of F is % and is attained at all & € & with
a“ e R-1 (70)
and nowhere else.

Proof:
The Schwarz inequality leads with a = 1 and b = x° to

<1,x5% s <, 1> &F x> (71)
or
<x,x>2 s 3 <x2,x2> ) (72)
hence
Flx) = 3 (73)

Equality holds if and only if x2 is linearly dependent of 1.

The calculation of the global maxima of F is conslderably more difficult.
The stationarity condition of Lemma 2 for F Is fulfilled for every idempo-
tent element a. In that case, F(a) 1s simply reciprocal to <a,a>.

Choosing a as & transpositlion ldempotent, we find from (59):
F(a) = 16 (74)
To determine the character of the function in the vicinity of a, we have to
develop F(a+e)-F(a) up to second order in «.
Since ad 1s a symmetric operator, we may find a basis of a’ which consists
a

of elgenvectors of adi

Thus we assume € 1 a and

are = ada(e) = e (78)

17



with @ € R. To the required degree of approximation,

1
1

<atg,ate> = <g,a> + <g,&g> = _—— [1 + 16 <e,8>]

and therefore
-2 2
<a+g,ate> & 16 [1 - 32 <e,e>]
Furthermore

2 2 2 2 2 2
<({at+e)®, (a+e)™> = <a"+2ac+e”,a "+2ae+e >

from which we deduce the relation

+ (2a+8a?) <g,e>

ol

<(a+e)2,(a+e)2> s

Multiplying both approximations, we get

16

Flate) -~ F(a) = =16 + 162 [1 - 32 <e.e>] [—1 + [2 o+ 4 az] <e,e>]

or, simpler,

F(ate) -~ F(a) = - 512 <g,e> [1 -0 - 2 az]

By Conway [1984], the eigenvalues of ada on a.'L are i,

(76)

(77)

(78)

(79)

(80)

(81)

thus the

quadratic form in £ given by the last formula is negative deflnite there.

We have proved

Theorem 10:

Let a be a transposition vector in &, in partlcular a® = a, <a,a>

Then F has a local maximum at a with F(a) = 1B.

18



It 1s unknown if this is the absolute maximum. If so, no nonzero idempo-
tents of smaller norm than T% could exist, and the largest possible dimen-
slon of any assocliative subalgebra in § were 48,

Theorem 11 1s sufficlent to show that transposition vectors are indecompos-
able, 1. e., they cannot be written as a sum of two or more mutually asso-

ciating nontrivial idempotents:

Theorem 11:

Transposition idempotents are indecomposable.

Proof:
It is easlly seen that a counterexample x could already be expressed as a
sum of only two {shorter) vectors e and f with
e“=e, f =f, ef=fe=0 (82)
and (by Lemma 1.c)
<e,f> = 0 (83)
For the sake of brevity we set

o = <e,e> (84)

and
B = <f,f> (85)

The subspace spanned by e and f 1s clearly a 2-dimenslonal assoclative al-
gebra. This simplifies the calculation of F(Ae+Bf) for A,B € R with A, B
not both equalling 0. We find

« A* + g B

5 > 2 (88)
(x A° + B B)

F(Ae+Bf) =

The vector

18



v = Be-af (87)
is perpendicular to
X = e+ f (88)

We arrive at

a(1+36)4+3(1-a6)‘
F(x+8v) = F((1+83)e+(1-ad)f) = (89)

2
[a(1+sa)2+3(1—aa)2]

or - up to terms of Srd and higher order in 8§ -
F(x+3v) = 16 [1 + 408 62] (90)
Since « and B are positive (as norms of e and f), this contradicts the fact

that F has a local maximum at x.

An immediate consequence is

Corollary 2:
Those 48-dimensiocnal assoclatlve 6-subalgebras, which are generated by

transposition axes, are maximal associative.

Proof:
Let YU be an algebra which is spanned by 48 transpositlon vectors
T and 8 assoclative with % ¢ 8 & 8.

The indecomposability of the a, implies that all of them must be among the
basic idempotents €€ (k = dim %). This is not in concordance with

Theorem 5.c and Lemma 1.d, because

e + ... +e (91)

20



then would be ldempotent with norm > 3.
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Summary

In this paper, we begin a research into the internal properties of the al-
gebra 6 which has been detected by Robert Griess and which was used by him
to construct the monster simple group.

We demonstrate that it 1s possible to construct certain maximal associative
subalgebras in & (by elementary means).

In particular, 48-dimensional algebras of this type can be found explicit-
ly. It seems that they are best-possible (with respect to dimension). To
préve this, it would suffice to show that for all elements x € &, the ine-
quality

2 2 2
<x ,x > = 1B <x,%x>

is fulfilled.

In any case, there are other meaximal associative algebras in &, and it
would be of great value to enumerate them completely. This, however, might
require more advanced methods.

Approaches similar to those given in thls Investigation should also be use-
ful for related questions, for 1lnstance the determlnation of Jordan subal-

gebras in 6.
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