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§ 1. Introduetion

Singularities of lagrangian submanifolds appeared as

the natural objeets in the study of the wave pattern with

high-frequeney waves eoming from a point souree and moving

through a medium (cf. [14], [12]). The eorresponding intensity

of radiation is deseribed by the asymptoties of the so-ealled

rapidly oscilating int~gr~!~~ (<;f-:.-[ 7 f,' [3]). Asymptotically

(with high frequeney) this intensity is infinite around the

singularities (eoustics) of lagrangian submanifolds generated

by the appropriate phase functions (cf. [19], [7]). Thus the

mgrangian submanifolds appeared initially as the spaees

moddelizing the systems of rays in geometrieal opties [3].

In the ease of symrnetries of the sources of radiation as weIl

as when the boundary eonditions (mirrors) exhibit same symrnetry

properties then the eorresponding lagrangian submanifold des

eribing the respective optieal geometry of the system possesses

also some symrnetry properties (cf. [14], [17]). The similar

problems with symmetrie lagrangian submanifolds appeared also

in variational ealeulus, nonlinear partial differential equations,

and optimization (cf. [14], [24]).

An another domain where the singularities of 1agrangian

submanifolds play an important role is the sympleetic bifurcation

theory (e f. [ 23 ], [11], [1 0 ] ) and the breaking of symmetry iil".'

meehanies and the struetural phase transitions (cf. [17], [8],

[9]). It was observed in [10] that the.1agrangian submanifolds

moddelize the spaee of equilibrium states of thermodynamieal

systems. In most of thermodynamie phase transitions in erystals
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(cf. [12]) the whole bifurcation picture can be described by

an appropriate G-equivariant lagrangian submanifold in the

eorresponding phase spaee with the eompaet Lie group G of

symrnetry (cf. [11], [9]). The first step in the study of

typieal properties of eonstitutive sets in structural physics

is the reeognition and elassifieation of stable G-equivariant

germs of lagrangian submanifolds, whieh is the aim of the

present paper.

In this paper we will study the infinitesemal stability

and loeal stability eriteria for the germs of equivariant

lagrangian submanifolds near the fix-point of the sympleetie

action of the compaet Lie group. Our purpose is twofold. First,

we want to write down the algebraic eriteria for the loeal

G-stability. Secondly, we want to use this general method to

investigate the normal forms of the stable G-equivariant

lagrangian germs.

In [2], [22] there is a study of stable singularities

of lagrangian submanifolds in the nonsyrnrnetrie ease, and we

will follow the notations and terminology used there. In

Seetion 2 of our paper we provide the basic results and

notation for further needs. In Section 3 we construct the

infinitesemal stability conditions for G-invariant generating

functions of G-equivariant lagrangian germs and show their

effectiveness in calculations with the trivial, Z2 ' and D.m

symplectic group actions. Section 4 is devoted to the complete

calculation of stability criteria and classification of stable

normal forms of equivariant lagrangian germs in the concrete

(Z2)Q group action. This action is motivated by the theory of
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phase transitions in uniaxial ferrornagnets as weIl as in the

all types of ferroelectrics. In Section 5, 6 we present the

stability criteria in the Morse family (cf. [19]) approach.

Here we derive the so-called linear infinitesemal stability

condition and show its usefulness in some concrete symmetrie

problems. Following [9] we also give there the alternative

approach to the study of G-equivariant lagrangian singularities

in physical applications.
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§ 2. Preliminaries

Let v : G -. 0 (n) be an orthogonal representation of G

mn co
illn . By C (n) we denote the set of smooth v-invariant ',1

v

functions on ]Rn and by E (n) the set of all their germsv

at 0 E lR
n (cf. [13]). We denote mk(n) = mk(n) n E (n)

v v

where mk(n) denotes the k-th power of the maximal ideal

m(n) c E(n) (cf. [21]). For convenience we shall write also

E (z), m (z) etc. instead of E (n) , m (n) , etc., wherev v v \l

Z = (z1' ... '~n) denote the corresponding coordinates of lR
n

.

By E(n,v;m,o) , where 0 is an orthogonal representation

of G m'in m , we shall denote the set of germs (at

f .. . JRn JRmo equlvar~ant mapplngs -. .

The foundational.theory of equivariant singularities may

be found in [13], [21]. Now we recall some of the basic facts

needed for the development of the theory of equivariant

lagrangian submanifolds.

Proposition 2.1. ([15], [21]). Let v be an orthogonal repre-

sentation of the compact Lie group G in JRn

a) There exists a polynomial mapping p : lR
n -. JRk , called a

Hilbert map, such that

E (n) = p*E(k) •
v

The set p (IRn) c JRk is semialgebraic.

b) If 0 G ~ O(n) is an orthogonal representation of G in
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JRrn and :rn.n +rn 3 (x ,y) -+ 11 (x ,y) E. JRr is the corresponding

nHilbert rnap for v m ö , then the germs JR, 3 (x) -+
d11·

-+ dyl(X,O) 1.;s i ;il r generate the module E(n,vjm,o)

over E (n)
v

Let us consider i:the cotangent bundle T*JR,n endowed with

the standard syrnplectic structure (see [1]). We identify it

2n nwith the lagrangian fibre bundle 7T ::IR .... JR, , 7T 1
: (x,t;) -+ (x)

n
endowed with the canonical syrnplectic structure w = I d~.Adx ..

. 1 1 ~
~=

The action v of G on JR,n can be canonically lifted to the

syrnplectic action of G on JR,2n ~ T* lRn , say T*v : G x lR 2n

2n
~JR • One can easily see that T*v B v ffi v , where

(v @ v)g (x,t;,) = (v x, v t;,)g g

variant syrnplectomorphism

for g E G , (x,t;,) E JR2n . An equi

$ : lR
2n -+ lR

2n which preserves the

fibre bundle structure TI
1

: lR
2n -+]Rn will be called an

equivariant lagrangian equivalence (v-L-equivalence for short) .

By direct generalization of well-known results [19],~[22]

concerning of the nonequivariant case we obtain.

Proposition 2.2. Let $ : aR2n ,O) -+ QR2n,O) be a germ of

v-L-equivalence, then there exists a diffeomorphism

4:> E s(n,vjn,v) and a smooth function SEE (n)
v

such that

cI> (x,t;;) = 4:>* (x) (t; + dS(x» .

Let p be the v-invariant point of JR2n , by (LG,p) we

denote the germ of v-invariant lagrangian submanifold in

~2n~~) (v-L-germ for short). As we know by [9], any

Gv-L-germ (L ,p=(xO,sO» can be generated by the germ of the
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G
Locally (L ,(xO,F.: O»
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n 1
F: (IR xlR ,(xO,O»:lR, FE EvW6 (n+l)

can be written by the following equations

( 2 • 1 )

where

(2 .2)

aF aF
.; = (}x(x,7\), 0 = aI(X,7\)

Conversely, any germ F E Evm6 (n+l) satisfying (2.2) (G-Mf-germ)

for short) defines the v-L-germ via equations (2.1). A G-Mf-gerrn,

generating fL,p) , with minimal nurnber of parameters 1 is

called a minimal G-Mf-germ (cf. [2], [7]). A minimal G-Mf-germ

can be equivalently characterized by the requirernents

The two G-Mf-germs FIE Evm6 ' (n+l), F E Ev@6(n+l) are called

G-L-equivalent if

F(x,7\) = F I (Q)(X) , A (x,7\» + f (x) ,

where (A ,Q) : lR
n +1

-+ lRn +1 is a diffeornorphisrn, and

!I. E E (n +1 , v ~6 ; 1 , 6 I ), Q) E E (n , v ; n , v), fEE (n ) . To be ab1e
\l

to cornpare the various G-Mf-germs with different diemnsions

of parameter spaces we introduce the notion of stable G-L-

equivalence. We say that two G-Mf-gerrns F 1 E Ev~61 (n+1 1 )

F 2 E Evm6 (n+l 2 ) are stahle G-L-equivalent if the corresponding
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G-Mf-germs F 1 +Q1 E Eveo'~id(n+11+r1) , F 2+Q2 E Ev~o~id(n+12+r2)

where Q1,Q2 are the nondegenerate quadratic forms of the

additional variables, are G-L-equivalent (cf. [2]). By straight

forward generalization of [2], [22], [9] we obtain,

G G
Proposition 2.3. Let (L 1 ,P1)' (L 2'P2 ) be two v-L-germs of

(T* mn,w) . They are v-L-equivalent, i.e. there exists an

v-L-equivalence ~:T* ~n ~ T* mn
, such that ~(P1) = P2 and

~(L~) = L~ , if and only if their G-Mf-germs are stable G-L

equivalent.

For the corresponding minimal G-Mf-germs we have the stronger

result,

Proposition 2.4. The two v-L-germs of (T*mn,w:) are v-L-
"

equivalent if and only if their minimal G-Mf-germs are G-L-

equivalent.

Correctness of these two equivalences is assured by the

easily seen fact that any two G-Mf-germs generating v-L-germ

(LG,p) c T* mn are stable G-L-equivalent.

G 2nLet (L ,0) = ~ ,w) be a v-L-gerrn. Let k = dirn ker

D(n!LG) (0) , then the representation v is reducible and can

be written as the direct sum, at least, of two components

v
1
ev 2 • The corresponding invariant subspaces for v

1
and

respectively are indicated by Arnold's results (cf. [2],

v =

v 2

Theorem 10.6.,), namely we can choose the numeration of coordinates

in neighbourhood of 0 E m2n in such a way that (xI)' (X
J

)

pararnetrize the invariant subspaces corresponding to the

representations v
1

and v
2

respectively, I = (i1 , ... ,ik )

J = {1, ... ,n}-I . The lifted representation T*v has a form
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v
1

$ v 2 @ v 1 $ v 2 ' thus we can consider (~I,xJ) as the

new pararnetrization of the representation space for v . On

the basis of [9], [2], [22] there exists a generating function,

and SEE (n) . We
v

will call this function a v-IJ-germ generating the v-L-gerrn

(LG,O) if LG is defined near 0 E ~2n by the equations:

(2 .3)

If k = dirn ker D(nILG) (0) , then we have

and the germ

(2 .4) F

k
n+k \

~ 3 (X,A) ~ S(A,X
J

) - LAX,
0.=1 0. 10.

is a minimal G-Mf-germ for (LG,O) , where the corresponding

representation 0 in the parameter space can be chosen as

ö ~ vl{x =O} (cf. [22]). Surnmarizing the above properties
G J

of (L (0) and repeating the genericity argument of [2]

(Proposition 10.11) we obtain

't' 2 5 G '11 L (LG,O) ~. (T* JRn,w·)Propos1 lon .. enerlca y, any v- -germ

has a v-IJ-germ of generating function S with J = ~ i.e.

~ ~ S(~), SE m2 (n)v

Now we introduce the fundamental notions necessary to

obtain the finite classification of v-invariant lagrangian
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submanifolds.

Definition 2.6 .. Let LG ~ (T* En,w) be a v-invariant

lagrangian submanifold. A v-L-germ G
(L , p) is called stable

if for an open v-inv. neighbourhood U of p

GIG Gevery smooth family Lt , lt <E, (LO'p) = (L ,p)

in T* E n and

of v-invariant

lagrangian submanifolds there exist a smooth family <Pt of

v-L-equivalences such that G n U) L
G for4l t (Lt :::J n V , some

open v-inv. neighbourhood V of p and sufficiently small t .
As was shown in [9] (cf. [2]) the standard notion of

unfolding of singularity [20] can be adapted to represent the

G-Mf-germs generating the germs of lagrangian submanifolds.

Let F E Evmo(n+l) , we will call F the v-unfolding of

f = F I { O} x ml E E 0 (l) (cf. [9], [1 6] ) •

Definition 2.7. Let F E

germ of the v-unfolding

stable if for any smooth

co
Cvffiö(n+l) be a representative of the

F E Evmo(n+l) . We say that F is

family of functions
co

Ft E Cvmo(n+l), It]<E, Fa = F , there exists a neighbourhood U

of 0 in ~n+l , family of diffeomorphisms

co co
(~t,At) E C (n,v;n,v) m C (n+l,vmo;l,o) and family of functions

co
f t E cv(n) such that

for (x,A) E U and sufficiently small t.

According to the standard lines of the theory of _stable

singularities we can at first characterize the stable germs by ,
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the necessary infinitesemal condition so-called versality

condition.

Definition 2.8. (cf. [16]) Let F E Eymo(m+k) be a y-un

folding of f E Eo(k) . F is ealled the G-versal unfolding

of f if for any orthogonal representation v of G in

~n any v-unfolding F € E
vm8

(n+k) of f has the form

F(X,A) = F(tP(x), A(X~A)) + a(x)

where A E E(n+k, Veoi k, 8), tP E E(n, Vi m,"Y), a E E (n)
\J

On the basis of [7], [9], [18], [2] we know that the

stable v-L-germs (LG,p) are, effeetively represented by

the eorresponding stable germs of v-unfoldings. Gur notion

of v-unfolding reduees to the standard notion of unfolding

if we assurne the trivial action of the group G. The eorres-

ponding theory is eXhaustively presented in [24], [14]. For

the symmetrie ease, following [2], [22], [7], we have the

following elementary

F E E
vm8

(n+k)

Proposition 2.9.

n(T*:m ,'w) , let

Let G(L ,p) be a v-L-germ contained in

be the eorresponding G-Mf~g~rm,

then the following properties are equivalent

a)
G(L ,p) is stable v-L-germ .

b) The G-Mf-germ F i5 stable as a v-unfolding of

f = F \ { O} x:mk E E0 (k) ·
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Having the analytical representation of stable v-L-germs,

given in Proposition 2.9, we can characterize them by the

infinitesemal stability property, i.e. versality of the

correspomding G-Mf-germs as v-unfoldings.
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§ 3. Infinitesemal stability conditions for G-invariant

generating functions

GLet (Lt,O) be a germ of the smooth family of v-L-gerrns

L~ =T~~nltl<E . Up to the v-L-equivalence (cf. [2], Propo

sition 10.11) we can represent this family in the following

form

(3 • 1 )
n{ (x, s) E T* JR ; x

00

where. t ~ St(s) E Ev(n) is an appropriate family of generating

functions(deforrnation of SO). So we ean reformulate the loeal

stability of G
(LO'O) in terms of the srnooth deforrnations St.

If is stable and E suffieiently small then there exists

a smooth fauily cI1 t of v-L-eguivalenees and an open neighbour-

hooet U 6f 0 E: rr*]Rn such that

(3 .2)

ond
Let us consider the vector field X = dt ~tl

t=O
Since each ~t (!tl<E) is an equivariant syrnplectomorphisro

preserving the canonical fibration T* JRn ~mn , thus X

roust be the equivariant Hamiltonian vector field constant along

the fibers of T * "1t')n .
.1L\. , 1.. e • X = - aH a--dX at;

where for

( 3 .3) H(x,s) = (A(x) ls) + B(x)
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where (.1.) denotes the canonical scalar product on mn ,

and from v-invariance of H
IX!

results A E C (n,v;n,v)

IX!

B E C (n) . Now, using the Hamilton-Jacobi theorem [1] for the
v

family L
G

we can write the equation
t

(3 .4)

near o E lRn + 1 •

aSt
= H(~ (~) ,~) \

t=O

Note that to assure stability of G
(LO'O) the left hand

side of (3.4) can be an arbitrary element of
co

C (n)
v

satisfying

the equation (3.4) with some v-equivariant Hamiltonian H of

the form (3.3).

Let us denote by H the space of germs at
v

'of v-invariant Hamiltonians H : T* lRn
~lR of the form (3.3).

Let iLG E ~(n,v; T* mn,T*V)

aSO
~ ~ (~,~) corresponding to

be the lagrangian immersion

G(L ,0) •

Lemma 3.1.

function

GLet (LO,D) be a stable v-L-germ, with a generating

So E Ev(n) then we have

(3.5) E (n)
\)

*= i LG H
o v

The proof of this lemma is obtained immediatelyon the basis

of Definition 2.6. and [2] p.21.

Let 'IT be the projection, 'IT(x,f;) = x , we denote
a11.

V.(x,f;) = (f;Iq>. (x)) where q> . (x) := ~ (x ,0) and
J ] ] ay

11 = (lJ 1 '···'11b ) : :rn.n x :rn.n -+ mb is the Hilbert map for the

\) e·, \) action of G on ]Rn x ]Rn .
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G
(LO'O) be a stable v-L-germ, with

a generating function So E Ev(n) , then the following

infinitesem~l stability condition is fulfilled:

( 3 .6) *Ev (n) :;;; iLG <V 1 ,··· ,Vb ,1> 7f*E' (n)
v

where <v 1 , ... ,Vb ,1>7f*E (n) is the submodule of Ev m"v(n+n)
v

generated by v 1 , ... ,Vb ,1 over 7f*E (n)
v

Proof. We know that E(n,vin,v) is finitely generated over
all.

E (n) with generators w. (x) :;;; ~ (x,O) (see Proposition
v ~ J ay

2.1,b). Thus the right hand side of (3.5) we can write in

the following way. Let

we have

fEE (n)
v

so on the basis of Lemma 3.1

f ( t; )

for some c. (x) E E (n), B(x) E E (n) , which gives exactly
1 v v

the infinitesemal stability condition (3.6).

Let F E Ev(n), (~I,xJ) ~ F(~I,xJ) be the v-IJ-germ
G n ..

generating for the v-L-germ (L, 0) ~ (T* JR , w) (cf. § 2) ..

.. . f G. n * n hThe correspondlng 1mmerS1on 0 L , 1 IJ : JR ... T lR , as a

form

(3 .7)

Let us define for the v-invariant germs p07foiIJ' VjoiIJ

(j:;;;1, ... ,~) the following smooth mappings U E E(a,a)
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V. E E(a)
]

(3.8) Uop = p 0 1T o i IJ
V.op

]

where p :]Rn -+]Ra is the Hilbert map corresponding to the

v-action of G on lRn .

Proposition 3.3. For astahle v-L-gerrn (LG,O) ~ T* lRn and

for its corresponding v-IJ-germ FEE (n)
v

of generating

function we have the following equivalent infinitesemal stability

conditions

(3 • 9)

(3.10)

E (n) =
v

E (n) =
v *V *V 1 - *<p 1'···'P b' >(Uop) E(a)

(3.11)

(3~1:2) E (a) = <v 1 ' • • • , Vb' 1>lR + <U1 ' • • • , Ua ) E (a) + Mp (a)

where by

n
p (lR ) .

M (a) c E(a)
p

we denote all germs vanishing on

Proof. One can easily see that (3.9) results from (3.5),

(3.6) and (3.7). By (3.8), conditions (3.9) and (3.10) are

equivalent. Equivalence of (3.9) and (3.11) is a consequence

of Equivariant Preparation Theorem (see [13] p.116). In fact

i5 a finite-dimensional vector
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space and its generators we can choose p*V
1

, ... ,p*V
b

,1 .

Taking into account the equation -Uop = we can

rewrite (3.11) in the form (3.12). We need here only the

fact that from equality gap = g'ap , for some functions

g,g' E E(a) , results that g-g' E M (a) •
p

Remark 3.4. Assume that V is trivial, thus p = idmn

and P*VI(~I,xJ) = ~I ' P*VJ(~I,xJ) = ~~J(~I,xJ) Ev(n) = E(n)

M (n) = {Ol , U = id n . Finally (3.9), (3.10) take the
p m

form

where

E(n) aF
= <-a-'x

J

and f or (3. 11 ), (3. 12) we have

E (n)

Elirninati~~ variables x
J

by Preparation Theorem [6] we obtain

which is exactly the standard versality condition für versal

deforrnations [20], used by Arnold [2] in the classification

theory of stable lagrangian singularities.
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(Infinitesemal stability condition for D -action) .m

In many applications of equivariant singularity theory [8] we

find the following irreducible representation of the group D
m

where, g 1 ' g 2 are generators of D . Let us write the corres
m

ponding infinitesemal stability conditions for D -equivariant
m

singularities with corank at most two. In this case we consider

the action

n n
\l Dm x:IR -+:IR , ( g, (x1 ' • . • , xn)) -+ (l-l (g) (x 1 ' x 2) , x 3 ' · · · , xn )

and the generating function

..
F ( t,: 1 ' t,: 2 ' x 3 ' · . • , xn ) = F 0 p (t,: 1 ' t,: 2 ' x 3 ' · • • , xn )

where the corresponding Hilbert map

p (x 1 ' • •• , x n )

Here I = {1, 2}, J = {3, 4 , ... , n } and

We easily calculate
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V.(x,~)= E;., i = 3, ••• ,n
1. 1.

where we also denote

On the basis of (3.8) after straightforward calculations we

obtain

V1 (u)
- -

= 2u 1F'1(u) + mu 2 F'2(u), u = (u 1 ,u 2 ' ... ,un )

m-2 m~1 m-1 j m-j- m-j-1- j= 2 . L.. ( • ) m u 1 F , 1 (u) F , 2 (u ) \'7. _ 1 (u)
J=O J J

... ...
v. (u) = -F,. (u), 3 ;:;; i ;:;; n

1. 1

mwhere w_ 1 (n) = u 2 /u 1 and the polynomials (af j-1-degree)

-m j-1 m j-1
w. 1 (u) = (~) + (E; ) are determined by the following
J-

recurrent formula:

...
Also for U. (i = 1, ... ,n) we obtain

1.
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m ~ m j m-j j m-j
U2 (u) = 2 L (.) m F, 1 (u) F , 2 (u) u 1 ·W. 1 (u)

j =0 J J-

Using the Malgrange preparation theorem, we find that (3.12)

is equivalent to the following condition

+ M-(2) ,
p

where

and

- aF -
F , i (u 1 ' u 2 ) ::::: au

k
(u 1 ' u 2 ' 0), Vl j -1 (u 1 ' u 2 ) ::::: ,wJ-1 (u 1 ' u 2 ' 0 ) ,

M-(2) denotes the ideal of smooth function-germs vanishing
p

on the set;

That reduced formula for infinitese~al stability provides us

the first step in indication of stable classes of v-L-germs.

The detailed analysis of this case we leave to the forthcoming

paper. The classifying methods are the same as the ones presen

ted in Section 4 for the (Z2)q-action.

Remark 3.6. Let p : lR
n

-+ lR
k be a Hilbert map for the v-action

of G non lR , so is the semialgebraic set defined,

say, byequations f 1 (u) ::::: 0, ... , fr(u) ::::: 0 and inequalities
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,.' h 1 (u) ~ 0,..., h 5 (u) ~ 0 , wh e re

irreducible. Let U8 denote M*(k)
p

in E(k) generated by f
1

, ••• ,f r

f ., h. E lR [u], u E lRk are
1. J

= <f 1 , ••• ,fr >E(k) the ideal

Obviously we have

(3.13) M*(k) c M (k)
p p

However the equality in (3.13) usually does not hold, so we

can not replace M (k)
p

by M*(k)
p

in the condition (3.12).

Nevertheless, by Nakayama's Lemma (cf.[6]), we can do it if

(3.14) M (k) - M*(k)
p p

ro
C m (k)

Let us assume that (3.14) is fulfilled.

Definition 3.7. The equality

(3.15) E(a)

is called the reduced condition for infinitesem~l v-L-stability.

Remark 3.8. Let us notice that the dependence of v. ,U.1. 1.
on

aF. l' t l' h t f 11-~-- , 1.n genera, 1.8 no 1.near. In w a 0 ows we propose an
oU.

J
equivalent approach to the classification problem of stable

v-L-germs using the Morse family notion. In that approach we

derive the corresponding linear infinitesemsu v-L-stability

condition. An equivalence of these two conditions results from

the equivariant version of the Malgrange preparation theorem

(cf.[13]) .
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Example 3.9. Assume the representation v of G = Z2 on

~n has the form

Let v-L-germ (LG,O) c T* mn has a v-IJ-germ

s (s1 ' x 2 ' • • • , x n )

p (s 1 ' x 2 ' • • • , xn )

M*(n) = {O} ,
p

....

= SOP(s1'x 2 , ... ,xn ) where p

2
= (s 1 ' x 2 ' · · · , xn ) · In th i s case M (n)

p

00

c m (n)

.... ....

V1 (u) = -2u 1S, 1 (u)

v. (u)
1.

-= 8'i(u), 2 si s n

Thus we see that (3.12) is equivalent to the following condition

""I.,~ - .........

(3 • 1'6 )
-2 -

E (n) = <u1S, 1 (u) ,u2' ... ,un>E (n)+<ll1 S, 1 (u) ,8, 2 (u) , ..• 'S'n (u) , 1> ~

Using the Malgrange preparation theorem we obtain the following,

suitable for further calculation, equivalent form of (3.16),

where
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§ 4. Stable v-L-germs with respect to the (Z2)Q action

Now,ifor the purposes .of applications (cf. [11 ], [8]) we

consider the following action.of G = (Z )q
2

The corresponding Hilbert map (orbitmapping) for v i5 defined

by

p (x) = x . ,
n-q

2
x 1 ' • • • ,n-q+

Any v-L-germ (LG,O) ~ T* mn i8 v-L-equivalent to the v-L-germ,

say (L~,O) c T* mn
, which has the following generating function

(see § 2).

( 4 • 1 ) E (n) 3 S(~) = Sop (~)
v

where S E E(n)

as a2sLet us denote the partial derivatives etcat;.' a~.aF;.' •
1. 1. ]

of function S by S,., S, .. , etc. and their values at 0 by
1. 1.J

a., a~., etc. On the basis of Propo~ition 3.3 after straight-
1. ~J

forward calculations we obtain immediately

Proposition 4.1. The v-L-germ G n(L ,0) c T* m , generated

by the function S = Sop is infinitesem~lly v-L-stable if

"for every germ a E E(n) there exists decomposition
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n:q-:-' .' . ,_n:<1- - - n - 2 -
a(z)= I 5, ,(z)hi (z)+c o +- LC.Z.+ L (z.5" (z)h. (z)+z.8,. (z)c.)

i =1- 1. i =1 1. J. j =n-q+1 J J J. J J J

where h k E E(n) and ~l E m .

To be more concrete and useful in some physical appli-

cations (cf.[9], [11]), without loosing of generality we

concentrate now on the case q = 2, n = 3 . The general case

can be treated exactly in the same way, so we ornit it here.

Definition 4.2. The function germ 5 E E(n) , introduced in

Proposition 4.1 and such that (4.2) is fulfilled is called an

infinitesem~lly v-L-stable germ.

Proposition 4.3. A function-germ 8 E E(3) is infinitesemally

v-L-stable if and only if the following conditions are satis-

fied:

(A
O

) a
1 * 0 (trivial case) or a 1 = 0 , and

(A
1

) a 2a 3a 11 * 0 or

(A
2

) a 11 = 0 and a2a3a111 * 0 or

(A' ) 0 and 2 * 0a 2 = a3a11a12(a12-a11a22) or3

(A ") 0 and
2 * 0a

3 = a2a11a13(a13-a11a33) .3

Proof. (Necessity) The above conditions arise as necessary

3for decomposition (4.2) mod m (3) .

(5ufficiency) For a E E(3) we show how to define germs

h. and constants c. satisfying (4.2) in the respective
J. J.
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cases:

(AO) : It is enough to take h, = aiS"~, h 2 = h 3 = 0, ci = 0

for i = 0,',2,3.

(A,) Now a, = 0 and let a2a3~'1 * 0 . W~ define 3ai'Ui E E(3)

as follows a(x) = a(O) + L.rx.a. (x), 5'1 (x) = L xiUi (x)
i=1 1 1 i='

Then U1 (0) = a, 1 * 0, 5, 2 ( 0) . = a 2 * 0, 5, 3'( 0 ) = a 3 * 0 ·

Hence we can take Co = a(O), c
1

= c 2 = c 3 = 0,
~2 ~2

h 1 = G 1 /u 1 , h 2 = (a Z-U 2h 1 )/S'2' h 3 = (a 3-U 3h,)/5'3' which

sati s f y (4 . 2) .

(A2 ) Let a 1 = 0, a 11 = 0, a2a3a111 * 0 . We define the new

2
germ5 0: i ' Ui E E ( 3 ) (i = 1, 2 , 3), 5, 1 (x) = x 1 U1 (x) +

2
+ x 2 U2 (x) + x 3 U3 (x)J a(x) = 0:(0) + x 1 0:'1 (0) + x

1
ß

1
(x) +

+ X2 Cl 2 (X) + X 3Cl 3 (X) • In this case U
1

(0) = a 111 * 0 ,

5'2(0) = a 2 * 0, 5'3(0) = a 3 * 0 thus it suffices to put
.. 2

Co = a(O), c 1 = Cl" (0), h 1 = ß,/U 1 , h 2 = (a 2-U Zh,)/5'2
.. 2

h
3

= (a.
3
-U

3
h

1
) /5, 3

(A3), (for A) we have the same procedure) : Assurne a 1 = 0,

a = 0
2

germ

and

belongs to the ideal

that c = 0:(0)o and the constants

satisfy the following system of linear equations

2
(solvable iff a'1a12(a1Z-a11a22) * 0)
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Cl , 11 (0) = a 1 11 go + 2a 1 1 g 11

Now consider germs

sitions

U.", 6. satisfying the following decompo-
1.J 1.

for i = 1,2 and

ß (x)

Let germs k
1

,k2 ,k 3 ,h2 E E(3) be the solutions to the f0110

wing system of linear equations

6 1 = U
11

k
1

U12k
1 + U11 k 3

2
ß2 = + U

21
h

2

ß3 = U11 k 2 + U12k 3 + 2U21U22h2

U
12

k
2

+
2

6 4 = U22h 2

The above system is solvable since the system determinant at 0
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is equal to

that the germ

belong to the ideal <x 3 > in E(3), i.e. y has the form

y(x) = x 3Y' (x) , where y' E E(3) . Finally we observe that

c O,c 1 ,c 3 ,h
2

(x) defined as above, c 3 := 0 and

satisfy (4.2). This completes the proof of Proposition 4.3.

Now we consider the recognition problem for the stable

v-L-germs. Let J2 ( :IR
3

,:IR) ~]R3 x J~ ( IR
3

,:IR) be the space

00

of 2-jets of C (3)-functions (cf.[6]) with a coordinate

system (xi;Y'Yi'Yij) . Let M1 ,M 2 ,M 3 ,M4 be submanifolds

3 3of. J
O

(lR ,:IR) defined by the following conditions

(A1 ) M1 = {Y 2Y3 ·Y11 '*' O}, (A2 ) : M2 = {Y11 = 0, Y2Y3 * O} ,

2
(A3) M3 = {Y2 = 0, Y3Y11Y12(Y12-Y11Y22~ '*' O},

2
(A3) M4 = {Y3 = 0, Y2Y11 Y13(Y13-Y11 Y33) '*' O} Their co-

dimensions in J~ ( lR
3

, lR) are 0,1,1 and 1 respectively.

The subset of those 2-jets, say at x = (x
1

,0,0), x
1

ElR ,

which do not belong to U M. has codimension 2, i.e. it 15
i" 1.

a finite union of submanifolds of J~ ( IR
3 , JR) of codirnension

00 2 323
2. Given FEe (3) , let j F : JR -+ J O(lR , lR) denotes the

~-jet extension of F (see e.g.[24], [20]). Thus on the basis
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of Thom I·S tranversali ty theorem [1 3], [24] we obtain immediately

co
Proposition 4 .4 . For the generic function F E C ( 3 ) its all

(j2 F ) (x
1

,O,O)
4

germs, belong to U M. .
i=1 ~

Let us denote Ei' i=1,2,3,4 the subsets of all germs

F E E(3) satisfying conditions (A
1
), (A2 ), (A3), (A3) of Propo

sition 4.3 respectively; together with F(O) = F'1 (0) = 0 . These

germs generate the corresponding v-L-germs ({- aJ~~p) (~) ,t;) },O)

Using the appropriate canonical transformations,we easily obtain:

Proposition 4.5. Let FE Cco(3), Xo = (X
1

,O,0) .If

i = 1,2,3,4

then the germ (F,X
O

) is v-L-equivalent to a germ belonging to

Ei ·

Let us recall that two v-inv. germs of generating functions

are v-L-equivalent iff the corresponding v-L-germs are v-L-equi-

valent (see § 2).

Now we try to find classes of v-L-equivalent germs in

For this purpose we introduce

E. •
~

Definition 4.6. Let F(x,t) = Ft(X) be a smooth function on

3
~ x J , where J is an open interval in m . F is called

inf-homotopy (and germs (Fa,O), (Fb,O), a,b E J are called

inf-homotopic) if all germs (Ft,O) belong to the same class

Ei (we assume F(O,t) = aF/at(O,t) = 0 for any inf-homotopy

F(x,t)
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Proposition 4.7. Any germ belonging to E
i
·(i=1, ... ,4) is inf.

-homotopic to one from the following list

(E 1 ) F(x
1

,x
2

,x
3

) 2
= ± x

1 ± x 2
± x 3

(E
2

) F(x
1

,x
2

,x3 ) 3
± x

2= ± x, ± x
3

(E
3

) F(x 1 ,x
2

,x
3

) 2 2= ± x
1

± (x 1=x 2 ) ± x 3

(E
4

) F(x
1
,x

2
,x3 ) 2 2= ± x

3
± (x

1
±x

3
) ± x 2

Let us remark that the generating functions FOp , for F

belonging to the respective classes (E.) , correspond to the
1.

classification proved by Arnold in [2]. Thus this coincidence

justify our notation (A1 , (A
2
), (A3), (A3)

Proof of Proposition 4.7. We consider only the case (E3 )

The conditions sgn a 11 = ± 1, sgn a 2 = ± 1, sgn a 3 = ± 1,

2
5 gn (a 12 - a 1 1a 2 2 ) = ± 1 distinguish in the 4-dimensional space

of coefficients (a11,a12,a3,a22) = (F'11,F'12,F'3,F'22') (0)

sixteen open convex regions. So, if germs F l
, F" E E3 corres-

pond to the same region, the following function

F(x,t) = t F I (x) + (1-t)F" (x)

is an inf-homotopy between them. Observing that the above forms

of E3 correspond to every of these regions completes the proof.

Proposition 4.8. Let F(x,t), 3(x,t) EJR x J be an inf-homo-
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topy, S(x,t) := F(p(x) ,t) and t o E J be a fixed point .. Then

there exists an open neighbouhood U x I of (O,tO) and the

smooth functions a .. (x,t), b(x,t) on :IR
3

x lR·, with compact
1

supports, such that

(i)

and

a
1

(x,t) = ~(O t)
'ax '1

, for tEl ,

(ii)

where

as as
- a:t(x,t) = H(X'ax(x,t) ,t) , for (x,t) E U x I ,

für 3 3
(x,y,t) E JR x:IR x JR ..

Proof .. Assume tO=O .. From the proof of Proposition 4 .. 3 it

results that für any germ a € E(4) there exists decomposition

+x.F,. (x,t)c. (t))
1. 1 1.

with Ci E E(1), h
i

E-E(4) . Substituting

for i=0,1,2,3 and

c. (t)=c. (O)+ci(t) ,
1. 1
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we oQ.tain

\'3 2
Ci. (x, t) =F, 1 (x, t) h 1 (x, t) +c 1 (0) x 1+c 0 (0) +L 2 (xi F , i (x, t) h i (x, t) +

On the basis of Malgrange preparation theorem [20] applied to

4 4the germ g : (:IR ,0) -+ (:IR , 0) ,

3(x,t) E IR x:IR

we obtain the following decomposition:

with ai,b E E(4) (we can take the representatives of these

germs with compact supports).

Now if we consider (iii) at (p(x),t) and such that

asg(p(x) ,t) = (p(ax(x,t) ,t) we easily get (ii).

In order to show (i) we have to consider the respective

cases: In the case E2 we have F'1 (O,t)=F'11(O,t)=O*F'111 (O,t) •

So, taking a/ax 1 and a2/ax~ of (iii) at (O,t) we obtain

O=a 1 (O,t) and O=b'1 (O,t)F'111 (O,t) . Thus (i) results. In

the case E3 we have F'1 (O,t)=F'2(O,t)=O*F'12(O,t) . Taking

a/ax 2 of (ii) at (O,t) we have 0=b'1 (O,t)F'12(O,t) , so

b'1 (O,t)=O . Now by differentiation of (iii) with respect to

at (0, t) we obtain O=a 1 (O,t) •
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For E 1-case we have F'1 (0,t)=0*F'11 (O,t) , so taking a/ax 1

of (iii) at (O,t) we get

o ;;;; a 1 (O,t) + b, 1 (O,t)F, 11 (O,t) ·

Hence, if a 1 (O,t) ;;;; 0-, then b'1(0,t) = 0 • Thus it is enough

to show that decomposition (iii) with a
1

(O,t) = 0 is always

possible. In fact as the Jacobian (dg)/d(X,t)*O at (x,t);;;;(O,O)

there exists X
1

E E(4) such that x 1 = X
1
og(x,t) . If we set

ä1 (z, t) :;;;; a 1 (z, t) -a1 (0, t) and b (z , t) : = b ( z , t)" +a 1 (0, t) X1 (z, t) ,

we can substitute a 1 ,b into (iii) for the place of a 1 and

b respectively. But ä1 (0,t)=0 , which completes the proof of

Proposition 4.8.

Let F(x,t), S(x,t), H(x,y,t);;;;Ht(X,y) be as in Proposition

4.8. We assurne to;;;;O, I=(-s,s) for simplicity. Let us consider

the time dependent Hamiltonian vector field on T* m3

as weIl the vector f ield }l_ = d +}l_ on T* JR3 x JR. X
-~ at H

t
oH

t
has the global flow gt' t E m (i.e. there exists the smooth

mapping :IR
3

x JR3 x JR 3 (x, y, t) -+ 9 t.(x, y, t) E:IR3
x JR3 such that

d
dtgt (x,y) = XH (gt (x,y)) and go (x,y) = (x,y) , for

(x,y) E JR3 x ]R~) • This results from: (i) compactness of supports

of a. and b , (li) the independence of "yll-component of
J.

on x (so y(t) can be found independentlyon x) , (ii1)

linearity of "x"-component of X
H

with respect to x .
t
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Lemma 4.9. gt is a v-L-equivalence for every t EE .

Proof. Since w = w + dH A dt
H

is the invariant form of

t E:rn. . Hene e

cr E G . As Ht(X,y) = Htocr(X,y), croXH = XH ocr
t t

~(crog -g ocr) = croX - X
H

° cr = 0 , for every
dt t t Ht t

crogt =: gtO a holds for every tEE sinee go =

(see [1], then gt is a symplectomorphism for every t . Take

and

Finally gt preserves the fibration TI (see § 2) because the

"y"-component of X
H

is independent of x. Thus the proof
t

i8 completed.

and let the v-L-germ 11 ( :rn.3 x {t}) =:

LG
t

Let us define the mapping

as
11(x,t) =: 11t(X) =: (X'ax(x,t))

as= {(X'ai(x,t))} be denoted by

11 : E 3 '~ (- e: , E:) ~ T * :IR3 as

Lemma 4.10. The global flow

Gof the v-L-germs (LO,D) and

gt forms the v-L-equivalenee

G(Lt,O) for Itl<e:.

Proof. First we show that 9t(L~), = L~ . By str~ightforward

caleulations it can be checked that the vector field

1s tangent to LG at the point 1J t (x) for everyt

(x, t) E JR3 x:IR . Let B(x,t) be a smooth vector field on

JR3 xJR and e: I EJR , 0 < e: ' < E , be such that

11* (B, (x,t)) =: A(x,t) , for (x, t)
3EJR X (-EI,e: ' ) ,
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where <Il* denotes the eorresponding tangent map (cf. [ 1 ] ) .

Denote by h the flow of -B(x,t) a JR3 xJR (assumed+ - on
s at

to be defined globally, for simplieity) . Then

h (m.
3

x {tl) = JR3 x {t+s} , for s,t E]R •
s

Let us define JR
3 3

-+ JR , t E JR , by the formula

It 1s easily seen that and k
O

( :IR
3

) = L~ •

Henee, by the uniqueness theorem for the first order differential

equations we obtain and

It\<E' . To eomplete the proof it suffiees to notiee that

gt(O,O) = (0,0) sinee XH (0,0) = 0 , by (i) and (ii) of
t

Proposition 4.8 and gO(O,O) = (0,0) whieh eompletes the proof.

By the above two lemmas we obtain immediately

Proposition 4.11. Any two inf-homotopie germs belonging to

E(3) are v-L-equivalent.
(Xl

It is easily verified that for any FEe (3) the mapping

j 2F : ]R3 -+ J~ ( lR3
,:IR) is transversal to Mi ' (i=1, 2,3,4) .

Hence if j2F (x) E Mi ' for every function Fa E c
ro

(3) suffi

eiently elose to F there exists point X o EJR
3 elose to x

such that j2FO (x O) E Mi . Henee (F,x) and (FO'XO) are

v-L-equivalent to two inf-homotopie germs from

are v-L-equivalent. Thus we obtain

E. , so they
~
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Proposition
00

4 • 12. Let F E C (3 ) . Any germ (F,x) where

x = (x
1

,O,O) and j2F (x) E U Mi is v-L-stable germ.

Now we can formulate the classification theorem for the

normal forms of v-L-stable germs of generating functions.

Proposition 4.13. Any v-L-stable germ (F,xO) , where
00

FEe (3) and x6=( x 01 'O,O) , is v-L-equivalent to the germ

at ° E m3
of one of the following normal forms:

(A 1 ) F(x1 ,x2 ,x3 ) 2= x 1 + x 2 + x 3
\

(A
2

) F(x1 ,x2 ,x 3 ) 3
+ x 2= x 1 + x 3

(A3 ) F(x 1 ,x2 ,x3 ) 2 (x 2
2

= ± x 2
± + x 1 ) + x 3

Proof. By Propositions 4.4, 4.5, 4.7, 4.11, 4.12, it is enough

to construct the v-L-equivalences which reduces the normal forms

of Proposition 4.7 to the normal forms listed above. But it is

easy achieved by the v-L-equivalences of the form

(x,y) ~ (aixi + SiYi' Yi ) for appropriate ai,Si E {-1,O,1} ·

Which completes the proof of Proposition 4.13.
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§ 5. Stability eonditions for G-invariant Morse families

Now using the Morse families loeal formalism (ef. [19] we

derive the eorresponding linear infinitesemal stability eonditions

for v-L-germs. Consider a smooth family (L~,O), Itl<E of v-L-germs

with the eorresponding smooth family

For simplieity we denote by

Itl<E of

GF, (L ,0)

G-Mf-germs.

resp. and

assume that all Morse families of the family F
t

are minimal

(see § 2). Let (LG,O) be the stable v-L-gerrn. Thus for suffi

ciently small E1 ' by Proposition 2.4, Ft (lt]<E 1 )' is locally

trivial, i.e.

( 5 • 1 )

where At E E(n+l, vEBoi 1,0), !.Pt E E(n,vin,v), f t E Ev(n) and

(!.Pt,A t ) E E(n+l, VeOi n+l, vEBo) is the loeal family of diffeo

morphisms.

By M we denote the spaee of minimal G-Mf-gerrns

2
M = {F E E (n+l) i (0 F/ oA . oA .) (0) = O} .

v@o 1 ]

On the basis of (5.1) and theorems of Seetion 2 we have

proposition 5.1. Let (LG,O) be the stable v-L-germ. Then the

necessary condition for the restricted loeal G-L-stability of

the corresponding G-Mf-germ, F , i5 following:
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(5.2)
M c (aF

aA

+ (~
ax

m(n+1)E(n+1, v~Oi 1,0)) +

n*E (n,vi n,v)) + n*E (n)n n v

where the first and second terms are submodules of E ~ (n+l)vwo

defined by the standard scalar products (. I.) on JRl and ]Rn

t . 1 .. lRn x IRl --'"]Rnrespec 1ve y, TIn ~

Let 11 f : lR
n +l

x IR
l

-+ lR
b , pi: lR

n
x lR

n
-+ lR

a be the

Hilbert maps for v e 0 e 0 and v e v respectively. Let us

denote

a f

(f). (X,A) =
,~. i

(x,A,O) , (i=1 , ••. ,b)1 aAl

ap I •

1P . (x) =~ (x, 0) (j=1 , ••• ,a),
J axt

Thus on the basis of Proposition 2.1 and condition (5.2) we

have inunediately

Corollary 5.2. In terms of the generators of the modules

E(n+l, VG)Oi 1,0), E(n,vi n,v) , the condition (5.2) of Propo-

sition 5.1, can be rewritten in the following form:

(5.3)

aF+ «ax TI*1P ) ,1> *E ( )n a TI nn v

vlheh a physical system with :syrnmetry exhibi ts the structural

phase transitions then the notion of "order parameter" is weIl
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established (cf. [12]) and its dimensionality is rather stable

feature of the system. This is a reason for the restricted

stability condition introduced in Proposition 5.1. However, from

the point a view of the standard singularity theory of lagrangian

submanifolds [7] the corresponding deformation space is

E m (n+l) . Thus, at first, we consider the stronger condition
'V'WG

of infinitesemal G-L-stability

(5.4)

·••• ,(~FITT*W },1>TT*E (n) •
oX n a n V

This condition imrnediately follows from the v-stability of the

Gcorresponding v-L-germ (LO'O) , introduced in Section 2. Let

~ : JRn +1 -fo JRk and p::m.n -fo:m.r be the Hilbert mappings for

v~o and v actions respectively. For further use we define

the new Hilbert map for the v~o-action,

aF 1 dF IAs we know the germs (ar ~i)' (dX Wj ), 1 ~ i ~ b, 1 ~ j ~ a

are veo-invariant, thus we can have their smooth preimages by

the Schwarz [15] homomorphism:

dF
j 1 ;:;; i ~ bH. 0 II ;;;; (ar 4'i) ,

1

(5.5)

E. dF I 1 ~ j ~0 lJ ;;;; (dX Wj ), a ,
J

"
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where H
i

,E
j

E E (k+r) •

Proposition 5.3. Let (LG,O) c (T* ~n,w) be the stable

v-L-germ. Then the necessary infinitesemal G-L-stability

condition for the corresponding G-Mf-germ F can be written

in the following form

-
where Hi = Hi I lRkx{O}' (i=1, •.. ,b), E j = E j I mkx{O}' . (j=1, •.. ,a)

and M (k+rlk) is the restrietion of M (k+r) to mkx{O} .
~ ~

Proof. Inserting the expressions (5.5) to the condition (5.4)

and taking the surjective homornorphism ~*

we obtain the equivalent condition:

E(k+r) ~ E m (n+l)
vwo"

~ *E (k+r) =< ~ *H1 ' • · · , ~ *Hb >~ * E (k +r) +<~ *E, . · · , Jl *Ea ' 1>~ * TI *E (r) ,
r

where TI : JRk+r ~:IRr , (z, y) -+ (y) is the canonical projection.
r

Thus we can take (5.4) in the following equ1valent from

(5.7) E (k+r) =<H 1 ' . · · , Hb>E (k+r) +<E 1 ' . · . , Ea , 1> TI*E (r) +M~ (k+r) ,
r

where M (k+r) 1s defined in § 3. Let A be the finite
~

generated E(k+r)-module,
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On the basis of (5.7) we have

(ii)
-

A/n*(ffi(r))A:= [E 1 ,···,Ee ,1] JR •
r

Thus applying the Malgrange preparation theorem we see that the

condition (5.7) is equivalent to (5.6). This completes the proof

of Proposition 5.3.

Let us notice that the functions Hi,E
j

depend linearly

on F, which give some advantage of the Morse family approach

comparing to the generating functions method presented in the

preceding sections. These two approaches are equivalent, how-

ever the direct method of description of lagrangian singularities

by generating functions is convenient from the point of view

of physical applications where the generating functions,

usually, have a physical meaning of the equilibrum potentials

(see Appendix) .

Similarly as in Section 3, the condition

(5 .8) E (k) =<H 1 ' · · · , Hb ) E (k) + <E 1 ' . · · , Ea ' 1> JR + M~ (k +r Ik)

will be called a linear condition of infinitesemal G-L-stability.

If we assume that M (k+rlk) - M*(k+r!k) c m~(k) then by the
II II

Nakayama's Lemma [20] we obtain equivalence of the two condi-

tions (5.8) and (5.6).

Example 5.4. Assume that v : G ~ O(n) is trivial. Let

(SI'XJ ) : S(~I,xJ) be a IJ-germ for (L,O) c T* mn
and the

corresponding Morse family F E E(n+k) be given by (2.4),



-5.6-

where k = #1 . In this case we can put ~ = idmn+k . We

also find easily that (5.7) takes the form

And equivalently, (5.6) we can write in the following form

We can write for (5.6) even more reduced form:

which is exactly the standard condition for versality (infini-

tesemal stability) of unfoldings of singularity n = 51 ~Ix{O}

(cf. [2], [20]).

Example 5.5. Let us take G = Z2 and its action on mn is

defined as follows:

n
v e: (x 1 ' x 2 ' · · · , xn) =(EX 1 ' x 2 ' · · · , xn ), E E Z 2={ ±1 }, x E:IR •

Let a v-L-germ (LG,ü) has the following v-IJ-germ of

generating function

5 ( S1 ' x 2' · · · , xn ) = 5 0 p (s 1 ' x 2' . · · , x n ) ,
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n n 2
p : JR ... TI( , ( E; 1 ' x 2 ' • .. , xn ) ... (E; 1 ' x 2' • • . , xn ) · The

corresponding"Horse farnily:

(5.9)

and the corresponding representation 0 has the form

o (I,.) = EI,. •
E

Define a Hilbert map ~
n+1' n+2 for vEDa asJR -+-lR

~ (x, I,. )

We find that M-(n+2) is the set of smooth function-gerrns
~

vanishing on the set

(5.10)

and also we have

*M-(n+212) =
~

After straightforward calculations we obtain

...
H1 (y) = 2y 1S , 1 (y 1 ' Y4' · · • , Yn +2) -y2

= -y 2 ' E t (y) =S, . (y I ) , i = 2, ••• , n
1. 1.
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Substituting them to (5.7) we get the condition

~ -
E(y) = < 2Y 1S '1 (y' )-Y2, 2Y 2S '1 (y' )-Y3>E(y) +

+ <y2 ' S , 2 (y I ) , • • • , S , n (y I ) > E (y 11 ) + MII (n+ 2 )

where y I = (y l'Y4 ' · · · , Yn +2)' Y11 = (Y 3 ' · · · , Yn + 2) and as k, r in

Proposition 5.3 we put k=2, r=n.

Thus the infinitesemal v-L-stability condition for the v-L-germ

(LG,O) has the form

(5.11)

where

+<y 2 ' S, 2 (y 1 ) , ... , S, n (y 1 ) , 1> lR '

From the decomposition

on the basis of (5.11) we obtain:

In other words, for every a(Y1)' b(Y1) E E(y 1 ) exist

h 1 ,h2 E E(y 1 ) and constants cO, ... ,cn ElR such that
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(5.12)

Eliminating h
1

in these equations we get an equivalent condition:

(5 .. 13)

We easily see that (5.13) can be written in the form

(5.14)

which gives an another form for infinitesemal v-L-stability of

the v-L-gerrn (LG,O) c T* mn .

Remark 5.6. We derived the condition (5.14) in Section 3 (see

formula (3.16», in a quite different way. In Example 5.5 we

showed the equivalence of these two approaches to .the classi-

fication problem of stable v-L-germs of lagrangian submanifolds.

It seems that the Morse family approach is very useful in

explicit calculations because of the linearity of the corres-

ponding infinitesemal stability conditions.
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§ 6. Versality and stability of v-L-germs

In the preceding sections we characterize the infinitesemal

stability of v-L-germs through the corresponding infinitesem~:l

stability conditions for their G-Morse family germs. To have an

adequate approach to local stability of v-L-germs by the corres-

ponding locally stable generating families we have to introduce

the modified notion of G-unfolding (cf. [16]) and adapt this

notion to be used in the standard Morse family approach (cf.

[ 9] ) •

Let n E E (k) for some orthogonal representation a of
a

G . The pair (v; ~) , where v : G -+ 0 (JR) is a representationn

of G , and f E E $ (n+k) such that f 1 {O} x lRk = 11 is called
v a

an n-pararnetric G-unfolding of n with respect to the represen-

tation v • Let 0 be fixed for all G-unfoldings of the germ

Tl •

Let y be an orthogonal representation of G in JRs . A

rnorphisrn of G-unfoldings (~,a)

is defined by the following rnaps

(y,h) -+ (v,f) of the germ n

i)

ii)

~=(~,~) E E(s+k,yeoik,o) e E(S,Yin,V)

Cl E E (5)
Y

and the following condition

h = f 0 ~ + a 0 TI
5

where 7f
5

i5 the canonical projection.
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If ~ is a diffeornorphism, then (~,a) is called an isomorphism

of G-unfoldings. We say that a G-unfolding (v,f) of the germ

n is G-versal if for any other G-unfolding (y,h) ·of n

there exists a rnorphism (~,a) : (y,h) ~ (v,f) . The G-versal

unfolding of n is called G-miniversäl lf a dimension of a

basis n of the unfolding is a possible smallest number

(cf. [6]). We see that the above introduced isomorphism of

G-unfoldings (~,a) defines the lagrangian equivalence of

G Gy-L-germ (L 1 ,O) generated by hand the v-L-gerrn (L 2 ,O)

generated by f, i.e. there is the G-equivaraint symplecto

rnorphism RG : T* JRn ~ T* JRn preserving the fibre structure

TI]Rn : T* JRn -+ JRn and such that RG(L~) = L~ , RG(b) =: 0 .

We know (see [9], [6], p.269) that RG ean be loeally written

as follows

(6 • 1 ) (x,~) ~ (1p{x), tDW{x)-1(~+da(x)))

with W E Diff{n,y;n,v), a E E (n) .
y

The converse statement is also true, i.e. if the y-L-gerrn

(L~,(XO'~O)) c T*JR
n

is mapped into the v-L-gerrn (L~,(XO'~O))

c T* JRn by a germ of G-equivariant symplectomorphisrn

n n - -
{T*JR ,(xO'~O)) ~ (T*JR ,(xO'~O)) of the form (6 ..1) then the

corresponding G-unfoldings, say hand f , generating

G G - -
(L 1 , (xO'~o)) and (L2 , (xO'~O)) respectively are isomorphie as

G-unfoldings (cf. [22]).

n kLet S: (JR x JR ,0) -+lR , S E EvEDJn+k) be a germ of a

generating family for the v-L-germ (L~,O) c T* lR
n
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Definition 6 • 1 • A G-invariant lagrangian submanifold LG
c T* JRn

is ealled G-versal at 0 E L
G

if a germ S of a generating

family of (LG,O) is G-versal unfolding if the germ

n = SI{O} JRk E E (k)
x 0

Let us endow the space of G-unfoldings
00

C in (n+k)
VwO

and the

spaee of G-equivariant Iagrangian immersions I{n,pin+n,Vmv)

co
with· the induced C -Whitney topology, then the G-versal

v-L-germ (LG,O) is locally stahle, i.e. for every G-invariant

neighbourhood V of 0 in T* ~n there exists an open neigh-

bourhood U of the G-equivariant lagrangian immersion

iLG : (mn,O) -+ (T* mn,O) in I{n,pin+n,vEBv) (where p i5 the

Iinearised representation vEBvILG) that for every i E U there

exists p E Image i c V such that the v-L-germs (LG,O) and

(Image i, p) are v-L-equivalent (or (iLG,O), (i,i- 1 (p)) are

G-equivalent as immersions [7]). Thus the Ioeal v-L-stability

of v-L-germs has an adjoint formulati~n.. _ in terms of the stable

G-unfoldings of invariant singularities (cf. [24J, [2]).

Let n E m2
(k) ,by J{n) we denote the Jacobi ideal of

o

n generated by the partial derivatives dn /8A
1

, ... ,d n /8A
k

.

J{n) is a G-submodule of the G-module E(k) . Following [9]

(see also [16]) we have the main result eoneerning the G-versal

v-L-germs.

Proposition 6.2. Let 0 : G -+ 0k (~) be a fixed representation

of G in mk
,let (v,S) be a G-unfolding of a germ

n = si {O} x ~k which generates the v-L-germ (LG,O) c T* JRn ,

we set n = dimlRffi(k)/J{n) < 00 . Let y be the representation

of G in the veetor space ffi(k)/J(n) ;: ]Rn and r : ffi(k)/J(n) -+
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~ m(k) an equivariant splitting of the exact sequence of
r

G-rnodules 0 ~ J(n) ~ ffi(k) <-- ffi(k)/ ~ 0 such that the" " -.-> J ( Tl ) .

f uric t i on f : m(k) / J ( Tl ) mJRk ~ lR, f (x , y) := n (A) + r (x) (A) i s

a Morse farnily, then

i) f is a generating farnily for the G-versal y-L-germ G(L
1

,0)

ii) The v-L-gerrn (LG,O) with the generating farnily (v,S) is

G-versal if and only if amorphism of G-unfoldings

(<P, cd : (v, S) ~ (y,f) is an~i~ornorph~s~.

Proof of this proposition can be found in [9] (p.187).

The main tool in proving Proposition 6.2 as weIl as to

classify the correspondipg normal forms for G-versal v-L-germs
t •

, .-.-.1'_

i8 the in~lnf'te-semai: ye.$saiitY;"notion (cf. [24], [16]).

Let 11 E E (k) and f E E E9 (n+k) be a G:"'unfolding of
a \) a

11 . Thus df E E(n+k)@(XE9A)* (where we denote A = lR
k ,

X =JRn) has the two components d 1f E E(n+k)@A* , and

d 2f € E(n+k)0X* . Let us consider the second component and the

sequence of homornorphisms (cf. [16])

E(n+k) ~ E(n+k)~X* ~ E(k)@X* ~ E(k)/J(11)~X*

(6 • 2)

f

We see that öf is G-invariant, i.e. öf E (E(k)/J(1l)0X*)G ,

öf is identified also to G-equivariant hornornorphisrn

x ~ -E.(k) /J(11) . If the hornornorphisrn öf is surjective we say
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that the G-unfolding (v,f) is infinitesernally versal. It

is proved in [16] that _the two·~~ot~ons; ·in~initesemal

versality and versality, are equivalent.

We can adapt the above notions to the symplectic objects

and write down, for G-Mf-gerrns, the corresponding sequence

m(k) E (n+k) +m 2 (n) -. (m (k) E (n+k) +m (n) ) @ ( lRn ) * -. m(k) @ ( lR
n ) * -.

nf -. öf E RornG(lR , m(k) / J ( n)) •

Definition 6.3. Let (v,f) be G-Mf-gerrn for the v-L-gerrn

(LG,O) c T* lR
n . We say that (LG,O) is an infinitesemally

G-versal if the corresponding G-homomorphism öf is surjective.

Proposition 6.4. The v-L-germ (LG,O) is G-versal if and only

if (LG,O) is infinitesemally G-versal.

Proof. On the basis of proposition 6.2 and Corollary 3.7 in

[16] (cf. [9]).

Following the standard lines of lagrangian singularity

theory (see [2], [9], [7], [18]) we can sumrnarize the stability

theory of invariant lagrangian subrnanifolds in the following

G nProposition 6.5. Let iLG: (L ,0) -. (T* lR ,0) be a germ of

n kG-equivariant lagrangian irrunersion. Let S : (lR x lR ,0) -. lR

be a corresponding generating farnily for (LG,O) . Then the

following conditions are equivalent:
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(i) (iLG,O) is locally stable

(ii) (iLG,O) is infinitesemally stable

(lii) (5,0) is a versal G-unfolding of the germ n = sl{o} x mk

(iv) (5,0) is an ~nflnitesernally ver~~1 G-unfolding of the

germ n = sl{O} x mk ·

Proof. The equivalenee of (i) and (1i) results immediately

by equivariant Ioeal version of the Theorem 5.1.3 in l6]. By

[22] Theorem 4 and the previous results we obtain an equi

valenee of eonditions (i), (iii). The equivalence of the notion

of infinitesemal stability for lagrangian G-immersions and

infinitesemal versality for generating G-invariant Morse

families follow from the corresponding equivariant reformulation

of standard arguments in [24](see also [7]).
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