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§ 1. Introduction

Singularities of lagrangian submanifolds appeared as
the natural objects in the study of the wave pattern with
high-frequency waves coming from a point source and moving
through a medium (cf. (141, [12]). The corresponding intensity
of radiation is described by the asymptotics of the so-called
rapidly oscilating integrals (cf.~-[71, [3]). Asymptotically
(with high frequency) this intensity ;s infinite around tﬁe
singularities (coustics) of lagrangian submanifolds generated
by the appropriate phase functions (cf. [19], [7]). Thus the
1agrangian submanifolds appeared initially as the spaces
moddelizing the systems of rays in geometrical optics (3].

In the case of symmetries of the sources of radiation as well
as when the boundary conditions (mirrors) exhibit some symmetry
properties then the corresponding lagrangian submanifold des-
cribing the respective optical geometry of the system possesses
also some symmetry properties (éf. (141, [17)). The similar

~ problems with symmetric lagrangian submanifolds appeared also
in variational calculus, nonlinear partial differential equations,
and optimization (cf. [14], [241).

An another domain where the singularities of ilagrangian
submanifolds play an important role is the symplectic bifurcation
theory (cf. [23], [111, [10]) and the breaking of symmetry in:
mechanics and the structural phase transitions (cf. [17]1, [81,
[9]). It was observed in [10] that the.lagrangian submanifolds
moddelize the space of equilibrium states of thermodynamical

systems. In most of thermodynamic phase transitions in crystals
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(cf. (12]1) the whole bifurcation picture can be described by
an appropriate G-equivariant lagrangian submanifold in the
corresponding phase space with the compact Lie group G of
symmetry (cf. [11], [9]1). The first step in the study of
typical properties of constitutive sets in structural physics
is the recognition and classification of stable G-equivariant
germs of lagrangian submanifolds, which is the aim of the
present paper.

In this paper we will study the infinitesemal stability
and local stability criteria for the germs of equivariant
lagrangian submanifolds near the fix-point of the symplectic
action of the compact Lie group. Qur purpose is twofold. First,
we want to write down the algebraic criteria for the local
G-stability. Secondly, we want to use this general method to
investigate the normal forms of the stable G-equivariant
lagrangian germs.

In [2], [22] there is a study of stable singularities
of lagrangian submanifolds in the nonsymmetric case, and we
will follow the notations and terminology used there. In
Section 2 of our paper we provide the basic results and
notation for further needs. In Section 3 we construct the
infinitesemal stability conditions for G-invariant generating
functions of G-equivariant lagrangian germs and show their
effectiveness in calculations with thg triﬁial, 22 , and Dm
symplectic group actions. Section 4 is devoted to the complete
calculation of stability criteria and classification of stable
normal forms of equivariant lagrangian germs in the concrete

(zz)q group action. This action is motivated by the theory of
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phase transitions in uniaxial ferromagnets as well as in the
all types of ferroelectrics. In Section 5, 6 we present the
stability criteria in the Morse family (cf. [19]) approach,
Here we derive the so-called linear infinitesemal stability
condition and show its usefulness in some concrete symmetric
problems. Following [9] we also give there the alternative
approach to the study of G-equivariant lagrangian singularities

in physical applications.
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§ 2. Preliminaries

Let v : G » 0(n) be an orthogonal representation of G
in BT . By C:(n) we denote the set of smooth v-invariant
functions on R" and by Ev(n) the set of all their germs
at 0 €R" (cf. [13]). We denote 0S(n) = 0%(n) n £ (n) ,
where mk(n) denotes the k-th power of the maximal ideal

Ml(n) < E(n) (cf. [21]). For convenience we shall write also

Ev(z), mv(z) etc. instead of Eu(n) ' mv(n) , etc., where
z = (21,...,zn) denote the corresponding coordinates of Rr"
By E{(n,v;m,8) , where § 1is an orthogonal representation

of G in R" } we shall denote the set of germs (at O € R" )
of equivariant mappings Rr" »R" .

The foundational.theory of equivariant singularities may
be found in [131, [21]. Now we recall some of the basic facts
needed for the development of the theory of equivariant

lagrangian submanifolds.

Proposition 2.1. ([15]), [21]). Let v be an orthogonal repre-

sentation of the compact Lie group G in Rr" .

a) There exists a polynomial mapping o : R f]Rk , called a

Hilbert map, such that
= *
Eu(n) p*E (k) .

The set p&Rn) C]Rk is semialgebraic.

b) If 6 : G » 0(n) 1is an orthogonal representation of G in
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:{Rm and IRn+m

I(x,y) = u(x,y) € R® is the corresponding
Hilbert map for v @ 8§ , then the germs RrR" 3 (x) -

+ —(x,0) , 15 1is r generate the module E(n,v;m,S8)

Let us consider:the cotangent bundle T*R"” endowed with

the standard symplectic structure (see [1]). We identify it

with the lagrangian fibre bundle = :IRzn + R e T (%X,8) 2 (%)
endowed with the canonical symplectic structure w = 13 dEiAdXi
The action v of G on R" can be canonically lift;a1to the
symplectic action of G on :RZn = T R , say T*v : G x:mzn
*]Rzn . One can easily see that T*v 2 v & v , where

(v @ v)g(x,E) = (vgx, vgg) for g € G , (x,£) Ejmgn . An equi-
variant symplectomorphism ¢ :IR2n ->]R2n which preserves the
fibre bundle structure ' ::Rzn >R" will be called an

equivariant lagrangian equivalence (v-L-equivalence for short).
By direct generalization of well-known results [19],_[22]

concerning of the nonequivariant case we obtain.

Proposition 2.2. Let ¢ : GRzn,O) - aRzn,O) be a germ of

v-L-equivalence, then there exists a diffeomorphism

w € E(n,v;n,v}) and a smooth function § € Ev(n) such that

o(x,E) = @o*(x) (g + dS(x)) .

2n

Let p be the v-invariant point of R ; by (LG,p) we

denote the germ of v-invariant lagrangian submanifold in

uaznlm) {(v-L-germ for short). As we know by [9], any

v-L-germ (LG,p=(x0,€0)) can be generated by the germ of the



so-called Morse family F : (R'x IIRl,(xo,O))-fIR, F € E, s (n+1)

]
Locally (LG,(xo,gO)) can be written by the following eguations

- 3F - OF
(2-1) g - BX(X’A)’ 0 Bl(x'l) r
where
2 2
9 °F 3°F _
(2.2) rank(axal, BABA)(XO'O) =1 .

Conversely, any germ F € Eved(n+l) satisfying (2.2) (G-Mf-germ)
for short) defines the v-L-germ via equations (2.1). A G-Mf-germ,
generating (L,p) , with minimal number of parameters 1 is
called a minimal G-Mf-germ (cf. [2], [7]). A minimal G-Mf-germ

can be equivalently characterized by the requirements

2
3 F _
(373:)(x010) =0
- - ]
The two G~Mf-germs F'E vaa'(n+l)’ F € EvQG(n+1) are called

G-L-equivalent if

F(x,x) = F'(o(x), A(x,))) + £(x) ,
where (A,9¥) :ZRn+1 f]Rn+l is a diffeomorphism, and
A € E(n+l,vds8;1,8'), v € E(n,v;n,v), £ € Ev(n) . To be able
to compare the various G-Mf-germs with different diemnsions
of parameter spaces we introduce the notion of stable G-L-
equivalence. We say that two G-Mf-germs F1 € Ev@é'
F2 € Eu@d(n+12) are stable G-L-equivalent if the corresponding

(n+11) )
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G-Mf-germs F +Q; € E g1g5q (0¥l try) o FytQ) € E oigiqntlytry)

where QT'Q2 are the nondegenerate quadratic forms of the

additional variables, are G-L-equivalent (cf. [2]). By straight-

forward generalization of [2], [22], [9] we obtain,

Proposition 2.3. Let (LGq,p1), (LGz,pz) be two v—ﬁ-germs of
(T*IRn,w) . They are v-L-equivalent, i.e. there exists an
v-L-equivalence g:T* R" - T* R » such that ¢(p1) = P, and
¢(L?) = Lg , if and only if their G-Mf-germs are stable G-L-
equivalent.

For the corresponding minimal G-Mf-germs we have the stronger

result,

Proposition 2.4. The two v-L-germs of (T*Imn,m) are v-L-

equivalent if and only if their minimal G-Mf-gefﬁs are G-L-
equivalent.

Correctness of these two equivalences is assured by the
easily seen fact that any two G-Mf-germs generating v-L-germ
(LG,p) c 7* R" are stable G-L-equivalent.

Let (LG,O) c GRzn,m) be a v-L-germ. Let k = dim ker
D(nILG)(O) , then the representation v 1is reducible and can
be written as the direct sum, at least, of two components

v = v1$v2 . The corresponding invariant subspaces for v and

1
Vg respectively are indicated by Arnold's results (cf. [2],

Theorem 10.6.), namely we can choose the numeration of coordinates

2n

in neighbourhood of 0 € R in such a way that (xI), (xJ)

parametrize the invariant subspaces corresponding to the
representations v, and v, respectively, I = (i1,...,ik) '

J=1{1,...,n}-I . The lifted representation T*v has a form
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v © vy @ vq ® P thus we can consider (EI,xJ) as the

new parametrization of the representation space for v . On

the basis of [9], [2], [22] there exists a generating function,
G

say (EI'XJ) - S(EI,#J) , for (L7,0) and S € Ev(n) . We

will call this function a v-IJ-germ generating the v-L-germ

(LG,O) if LG is defined near O €2R2n by the equations:

(2.3) =25 (¢

_ _ 38
J T oax ¥ ¥p = 7 ogEs (Epexg) o

I

If k = dim ker D(wILG)(O) , then we have

and the germ

k
(2.4) F:RYK 3 (x,0) - S(A,xy) - A X,

a=1 * tq
is a minimal G-Mf-germ for (LG,O) ; where the corresponding
representation 6 in the parameter space can be chosen as

§ = (cf. [22]). Summarizing the above properties

v|{xJ=0}
of (LG,O) and repeating the genericity argument of [2]

(Proposition 10.117) we obtain

Proposition 2.5. Generically, any v-L-germ (LG,O) é (T*Imn,m)

has a v-IJ-germ of generating function S with J = ¢ 1i.e.
2
£ - S(g), s €0 (n)
Now we introduce the fundamental notions necessary to

obtain the finite classification of v-invariant lagrangian
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submanifolds.

Definition 2.6, ~ Let 18 c (T* R",u) be a v-invariant

lagrangian submanifold. A v-L-germ (LG,p) is called stable

if for an open v-inv. neighbourhood U of p in r* R"  and
every smooth family Lg, | t]|<e, (Lg,p) = (LG,p) of v-invariant
lagrangian submanifolds there exist a smooth family o of
v-L-equivalences such that ¢t(LS nu) o LG nv , for some

open v-inv. neighbourhood V of p and sufficiently small ¢t .

As was shown in [9] (cf. [2]) the standard notion of

unfolding of singularity [20] can be adapted to represent the
G-Mf-germs generating the germs of lagrangian submanifolds.

ILet F € Ev@G(ﬁ+1) , we will call F the v-unfolding of

£=Fligy xgml € Eg(l) (cE. [9], [16]).

Definition 2.7. Let F € C:ea(n+l) be a representative of the

germ of the v-unfolding F € .’E\J 6(n+1) . We say that F is

®
stable if for any smooth family of functions

-~ ~ ~

Ft € C:QG(n+l), |t|<e, F0 = F , there exists a neighbourhood U

of 0 in :Rn+l , family of diffeomorphisms
(wt,At) € Cm(n,v;n,v) &) Cm(n+l,ve6;l,6) and family of functions
ft € ¢"(n) such that

v

F(x,2) = F (o (x), At(x,x)) + £.(x),

for (x,Xx) € U and sufficiently small +t .
According to the standard lines of the theory of stable

singularities we can at first characterize the stable germs by
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the necessary infinitesemal condition so-called versality

condition.

Definition 2.8, (cf. [16]) Let F € E (m+k) be a y-un-

Y®S
folding of £ € EG(k) . F is called the G-versal unfolding

of f£ 1if for any orthogonal representation v of G in

R" any v-unfolding F € Eved(n+k) of £ has the form
F(x,2) = Flo(x), A(x;2)) + a(x)

where A € E(n+k, v@®s; k, 8), ¢ € E(n, vy m, y), a € Ev(n) .
On the basis of [7]1, [9], [18]1, [2] we know that the

stable v-L-germs (LG,p) are effectively represented by

the corresponding stable germs of v-unfoldings. Our notion

of v-unfolding reduces to the standard notion of unfolding

if we assume the trivial action of the group G . The corres-

ponding theory is exhaustively presented in [24], [14]. For

the symmetric case, following {2], [22], [7], we have the

following elementary

Proposition 2.9. Let (LG,p) be a v-L-germ contained in

(T*Imn,m) , let F € EvQG(n+k) be the corresponding G-Mf-germ,

then the following properties are equivalent
G .
a) (L ,p) is stable v-L-germ .

b) The G-Mf-germ F 1is stable as a v-unfolding of

£=Flig) «wE € Eglk) .
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Having the analytical representation of stable v-L-germs,
given in Proposition 2.9, we can characterize them by the
infinitesemal stability property, i.e. versality of the

correspomding G-Mf-germs as v-unfoldings.



§ 3. Infinitesemal stability conditions for G-invariant

generating functions

Let (Li,O) be a germ of the smooth family of v-L-germs

Lg < T*R;"|t|<e . Up to the v-L-equivalence (cf. [2], Propo-

sition 10.11) we can represent this family in the following

form

35S
(3.1 L= (8 € TR x = o (8) ),

where . £t - St(g) € E:(n) is an appropriate family of generating

functioné}deformation of S0 ). So we can reformulate the local

stability of (LS,O) in terms of the smooth deformations"st .
If (Lg,O) is stable and e sufficiently small then there exists

a smooth fanily ¢t of v-L-equivalences and an open neighbour-

hood U of 0 ¢ T* R™ such that

-

(3.2) ¢>t(L0 NU <L

£ -

Let us consider the vector field X = d_ ¢ on T* R" .
dt 't £=0

Since each ¢_ (|t]<e) is an equivariant symplectomorphism

t
. . . . n n ,
preserving the canonical fibration T* IR - 1R , thus X

must be the equivariant Hamiltonian vector field constant along

oH 9 , 8H 3

i * D i = . ——— —_— -
the fibers of T*R , i.e. X 5% 3F 5F 3% where for

HEC (T*Zmn) we can write
vy

(3.3) H(x,£) = (A(x)[£) + B(x)
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. where (.l.) denotes the canonical scalar product on :mn ’

and from v-invariance of H results A € Cm(n,v;n,ﬁ) ,

B € C:(n) . Now, using the Hamilton-Jacobi theorem [1] for the

family LE we can write the equation

95 38
(3.4) == (&) = H(zgE (8),¢)

t=0 +=0

near O Eimn+1 .

Note that to assure stability of (Lg,O) the left hand
side of (3.4) can be an arbitrary element of C:(n) satisfying

the equation (3.4) with some v-equivariant Hamiltonian H of

the form (3.3).

Let us denote by Hv the space of germs at 0 € T* R"
‘of v-invariant Hamiltonians H : T R" 5 R of the form (3.3).

Let iLG € £(n,v; T* R",T*v) be the lagrangian immersion
SSO G
£ - (EE_'E) corresponding to (L ,0) .

temma 3.1. Let (I%,O) be a stable v-L-germ, with a generating

function S0 € Ev(n) then we have

*

(3.5) E (n) =1 _GH
0

v L v

The proof of this lemma is obtained immediately on the basis

of Definition 2.6. and [2] p.21.

Let w be the projection, n(x,£) = x , we denote
RTEN
V. (x = (% where (x) = =—1 (x,0 and
3 /&) Eiwj }) wj( ) 3y (x,0)
p = (u1,...,ub) : R® x mﬁ»:mb is the Hilbert map for the

n

v v action of G on :mn x TR
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Proposition 3.2. Let (Lg,O) be a stable v-L-germ, with
a generating function SO € Ev(n) , then the following
infinitesemal stability condition is fulfilled:

. *
(3.6) Eu(n) = 1LG <V 1>

e ey r *-. ’
1 b w Ev(n)

where <V1""'Vb’1>n*£v(n) is the submodule of Ev ”v(n+n)

®

generated by V.,,...,V ,1 over w*Ev(n) .

Proof. We know that E(n,v;n,v) is finitely generated over
Ev(n) with generators wj(x) = —3d (x,0) (see Proposition
2.1,b). Thus the right hand side of (3.5) we can write in

the following way. Let f € E (n) so on the basis of Lemma 3.1

we have
B 25, 25, ' 25,
£(g) = “5‘12101‘?{5”“’1‘“53“5”’ + Bz (£))
for some ci(x) € Ev(n), B(x) € Ev(n) , which gives exactly

the infinitesemal stability condition (3.6).
Let F € Ev(n), (gI,xJ) - F(EI,xJ) be the v-IJ-germ

generating for the v-L-germ (LG,O) c (T*Zmn,é) (cf. § 2)..

The corresponding immersion of LG ; iIJ : R" - T*:Rn , has a
form

. _ ,9F _ 9F
(3-7) lIJ(EI'XJ) = (3—EI(EI'XJ) IlegIl B_XJ(gI'xJ))

Let us define for the v-~invariant germs p°w°iIJ, vjoiIJ

(j=1,...,b) the following smooth mappings u € E(a,a) ,
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(3.8) aop = pormoi V.op = V.ei

IJ r j J IJ 7 (j=1r---rb)

n

where p : R +R? is the Hilbert map corresponding to the

v-action of G on R" .

Proposition 3.3. For a stable v-L-germ (LG,O) c T R" and

for its corresponding v-IJ-germ F € Ev(n) of generating

function we have the following equivalent infinitesemal stability

conditions

: _ - o *
(3.9) Eoln) = <o®Vyreeeo™Vpe D os % ()

_ = o ~ *
(3.10)  E (n) = <p*Vy,eesp* Vi, 1> 0y *E (a)
. . - *

(3.11) E,(n) = <o*Vo,...,p*V Mo + ((mei J) M (n))E (n)
(3.12) E(a) = <v1,...,Vb,1>jR + <u1,...,ua)E(a) + Mp(a)

where by Mp(a) c E(a) we denote all germs vanishing on

o ( R™)

Proof. One can easily see that (3.9) results from (3.5),
(3.6) and (3.7). By (3.8), conditions (3.9) and (3.10) are
equivalent. Equivalence of (3.9) and (3.11) is a consequence
of Equivariant Preparation Theorem (see [13] p.116). In fact

E;(n)/ is a finite-dimensional vector

((roi_)*W_(n))E_(n)
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space and its generators we can choose 0*61,...,0*Gb,1 .
Taking into account the equation Uop = pem®i;s; WwWe can

rewrite (3.11) in the form (3.12). We need here only the
fact that from equality goep = g'op , for some functions

g,g' € E(a) , results that g-g' € Mp(a) .

Remark 3.4. Assume that v 1is trivial, thus p = id _.n

IR
J = J - 3F -
Mp(n) = {0} , U= id:Rn . Finally (3.9), (3.10) take the
form
_ JF
E(n) = “axg’ Cr 1)(noiIJ)*E(n) ,
where

- . 2E
(TT°J-IJ) (E;leJ) = (BgI-(EI’xJ)' XJ) '

and for (3.11), (3.12) we have

oF JF

<—,X_> + =, E_
BEI J E(n) BxJ I,

E(n) = 1)

R °

Eliminating variables X5 by Preparation Theorem [6] we obtain

E(k) = «<—|° > + <9 E_ 1> k = ¥1
dE - X g I, R,
I XJ"O E(k) J XJ Or
which is exactly the standard versality condition for versal
deformations [20], used by Arnold [2] in the classification

theory of stable lagrangian singularities.
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Example 3.5. (Infinitesemal stability condition for Dm-action).

In many applications of equivariant singqularity theory [8] we

find the following irreducible representation of the group D
nlgy) = (x,%5) =+ (x,7%,)

nig,) : (x,,x,) - (x 0032“/m—x sinzn/m,x sinZﬂ/mik;coszﬂ/m)‘,\
2 1772 1 2 1 < A

where, 9479, are generators of Dm . Let us write the corres-
ponding infinitesemal stability conditions for Dm-equivariant
singularities with corank at most two. In this case we consider

the action

vl Dm X:Rn *:Rn, (g,(x1,...,xn)).* (u(g)(x1rX2);X3:---;Xn)

and the generating function

F(£1I£2IX3I"'IXn) = FOD(E17521X3I---1xn) ’
where the corresponding Hilbert map

p(x1,...,xn) = (zE,zm+Em,x3,...,xn), z = x1+ix2 -

Here I = {1,2}, J = {3,4,...,n} and

. _ IF _ 3F
lIJ(gI’XJ) = (gE;(gleJ)IXJIEII BiE(EI'xJ)) .

We easily calculate
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_ 1 - = _ 1 m-1 = -m=1
V1(x,€)- 2(EIZ+£IZ), Vz(x,5)~ Z(EIZ *EZ )
vi(xfg)= £E., 1 =3,...,n
where we also denote

& = &q ¥ 18, .

On the basis of (3.8) after straightforward calculations we

obtain
V1(u) = 2u1F,1(u) + n1u2F,2(u), u (u1,u2f ’un)
- m-2 ®31 m-1, 3 m-j m-j-1 3
v,(u) = 2 Y (7L )m’u F,.(u) F,.,(u) w (u)
2 520 3 1 1 2 -1
Vi(u) = —F,i(u), 3 £ 1isn

where w_1(n) = u2/u1m and the polynomials (0f j-1-degree)

—m 3-1 =1
wi_q(w) = (277" + (™77 are determined by the following

recurrent formula:

k-1
_k k 2 . k-2i k=21
EM +™ == T GaptaaE™ e @™ ) -
i=1 ,
'k
k [5]
1 k+1 2
- 5(1—(-1) )([g])u1
Also for ai(i = 1,...,n) we obtain
a1(u)= 4u1§,3(u)+4mu2§,1(u)%,z(u)+4m2u1m—1§,§(u)
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m m

m . . . .
m, ] m=7] J =3

. (u)=u.,, 3 s 1 sn.
1 1

Using the Malgrange preparation theorem, we find that (3.12)

is equivalent to the following condition

E(2)— <u F21+mu2.,1 +m2u Rl z (. )mJF,1Irl JF,2J ™Iz S

r2’ 1 '2'j 2o 3 3-1 5(2)
+ <2u,F, +mF m§1(m_1 mdu ™ jF m3-1g) G, F F, > +
T L 1T 127y Fegre i T R
+ M-(2) ,
Mp( )
where F,i(u1,u2) = a k(u1,u2,0), wJ 1(u1,u2) = Wj—1(u1’u2'0) '

and M5(2) denotes the ideal of smooth function-germs vanishing

on the set;
{(u1,u2) : 4u - u

That reduced formula for infinitesemal stability provides us

the first step in indication of stagle classes of v-L-germs.
The detailed analysis of this case we leave to the forthcoming
paper. The classifying methods are the same as the ones presen-
ted in Section 4 for the (zz)q-action.

Remark 3.6. Let p : R" RS be a Hilbert map for the v-action

of G on R , SO p(imn) cimk is the semialgebraic set defined,

say, by equations f1(u) = 0,004, fr(u) = 0 and inequalities
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h
. . * - ,
irreducible. Let us denote Mp(k) <f1""’fr>£(k) the ideal

. Obviously we have

u) z 6,..., hs(u) z 0 , where fi' hj € R[ul, u G.Ek are
in E(k) generated by f1""’fr
. * k) .

(3.13) Mp(k) < Mp( )

However the equality in (3.13) usually does not hold, so we
can not replace Mp(k) by M;(k) in the condition (3.12).
Nevertheless, by Nakayama's Lemma (cf.[6]), we can do it if
(3.14) Molk) - Mx(k) < n” (k) .

Let us assume that (3.14) is fulfilled.

Definition 3.7. The equality

= N - o 7 *
(3.15) E(a) Slqreeerly> + <V1,...,Vb,1>]R + Mp(a)

E(a)

is called the reduced condition for infinitesemal v-L-stability.

Remark 3.8. Let us notice that the dependence of V.l,Ui on

oF
au .
J

+ in general, is not linear. In what follows we propose an

equivalent approach to the classification problem of stable
v-L-germs using the Morse family notion. In that approach we
derive the corresponding linear infinitesemal v-L-stability
condition. An equivalence of these two conditions results from
the equivariant version of the Malgrange preparation theorem

(cf.[131).
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Example 3.9. Assume the representation v of G = Z on

2

Rn has the form

n
R 3 (x1,...,xn) - (ex1,x2,...,xn), e € G.

Let v-L-germ (LG,O) c T* R® has a v=IJ-germ

S(E1,x2,...,xn) = Sop(E1,X2,...,Xn) , where »p : R® - R" '

2 ] 0
p(E1,X2,...,Xn) (51,x2,...,xn) . In this case Mp(n) c i (n) ,

M;(n) = {0} ,

v, (u) = —2u15,1(u)

vi(u) = S,i(u), 2 s 1isn
U, (u) = 82 (u)

1 1771

Uj(u) =uj,2§j5n.

Thus we see that (3.12) is equivalent to the following condition

e T 2 - it -
(3-‘]6‘)- E(n)= <u1s'1(u) 'uzf""un>E(n)+<u'1S’1(u) lslz(u)looolsfn(u)l1>m .

Using the Malgrange preparation theorem we obtain the following,

suitable for further calculation, equivalent form of (3.16},

-2 - - -
E(1)= <u,S, (u1)> + <uTS,1(u1),S,z(u1),...,8,n(u1),1>

1 E(1)

1 R

where
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3s

1 F 7
( ) '1( 1 311.
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§ 4. Stable v-L-germs with respect to the (zz)q action

Now'ifor the purposes of applications (cf.[11], [8]) we

consider the following action of G = (zz)q

. q. o . n
v o (12) xR 3 (51,...,Eq,x) - (1»21,...,}':n ’61}En:-q'+1"""eqxu)EIR‘

—q

The corresponding Hilbert map (orbitmapping) for v 1is defined

by

2

-y xn-q+ 1

x2)
n_q v e oy n

p(x) = (X1,..., X

Any v-L-germ (LG,O) c T R is v-L-equivalent to the v-L-germ,
say (Lf,O) < T* R™ . which has the following generating function

(see § 2).
(4.1) E (n) 3 S(g) = Sep(s) ,

where S € E(n) .

39S 825

7 ’
Bgi BEiBEj
, etc. and their values at 0 by

Let us denote the partial derivatives

etc.

of function S by S'i' S,ij
a s aij' etc. On the basis of Proposition 3.3 after straight-

forward calculations we obtain immediately

Proposition 4.1. The v-L-germ (LG,O) c T* EP‘, generated

by the function S = Sep 1is infinitesemdally v-L-stable if

-for every germ o € E(n) there exists decomposition
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n-q. - - h=gq. . . n -5 -
(4.2) alz)= ]S, (2)h(z)+ce+~ | cizv [ (2.87.(z)h, (2)+2.S,. (z)c.)
i=1- i=1 ]:n-q-q-‘] J J o J ] ]

where hk € E(n) and Ql ER .
To be more concrete and useful in some physical appli-
cations (cf.[9]1, [11]), without loosing of generality we

concentrate now on the case gq = 2, n = 3 . The general case

can be treated exactly in the same way, so we omit it here.

Definition 4.2. The function germ S € E(n) , introduced in

Proposition 4.1 and such that (4.2) is fulfilled is called an

infinitesemally v-L-stable germ.

~ Proposition 4.3. A function-germ é € E(3) is infinitesemally

v-L-stable if and only if the following conditions are satis-

fied:
(AO) a, # 0 (trivial case) or a, = 0 , and
(A1) ajasaq g ¥+ 0 or
(A2) a;q = 0 and ajaqa,qq * 0 or
(A!) a, =0 and a.,a,.a (a2 ~a,.a..) ¥ 0 or
3 2 37117127712 711722
(A%) a, =0 and a,a,.a (a2 -a,.a,.} *# 0
3 3 2711713713 711733
Proof. (Necessity) The above conditions arise as necessary

for decomposition (4.2) mod m3(3) .
(Sufficiency) For o € E(3) we show how to define germs

hi and constants cy satisfying (4.2) in the respective



cases:

-

(AO) :

(A

: Now a, =0
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It is enough to take h1 = a/§,1, h, = h, =

2 3

for i =0,1,2,3.

and let + 0 . We define «a

1
as follows

a,a.a
2 3311 i

3
a(0) + 2;xiai(x), S,1(x) = 2 x,u
. i=1 . . i=
# 0, 8,2(0)_= a, % ) =

a(x) =
Then u1 a11
Hence we can take Cy = a(0), Cq =Cy =Cqy =

(0) =

. _ _ & _ _ =2
h1 = u1/u1, h2 = (az U2h1)/S,2, h3 = (a3 U3h1)/S,3, which

satisfy (4.2).

Let a,

erms Q.
g 1l

= 0, a #+ 0 . We define the new

8,1(x) = x12U1

2
+ x1B1(x) +

# 0,

= 0, aya3a,q,

112I3)I

11

,Ui € E(3) (i = (x) +

+ x3U3

(x) + x3a3(x)

+ xzuz(x) (x), a(x) = a(0) + x1a,1(0)

+ X2Cl.2

8,2(0) = a, * 0, 5,3(0) = a

In this case u1(0) = a

111
thus it suffices to put

~

3 ¥ 0

= al1(0)l h1 = 61/u1r h2 =

2
CO G(O), C (az_uzh.])/slz !

h

:
= (a.-lU.h.)/S,*2
3 3~Ushy ) /8,5 .

(Aé), (for Ag we have the same procedure) : Assume a, = 0,
—_— 2—
a, = 0 and a3a11a12(a12 a11a22) # 0 . We see that the
germ

-~

B (X) =a (x)"co_c-]x-]_czs;z (X)X2+S'1 (X) (g0+g1x1+g2x2)

. 3 2 .3 .
belongs to the ideal R PFR IR SV SE SV ST Te prOV1ded;

that c0 =

satisfy the following system of linear equations

o (0) and the constants

C172790791192

(a2

(solvable iff 12-a11a22

449892 )+ 0)
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arq (0) = ay99y + ¢4

@, (00 = a;,59,

arqq {00 = 344990 + 224494,

arqp(0) = ay1590 * 81,99 * a9, +ag,c,
30722100 = 259295 * @439, * 35,8, -

Now consider germs uij, Bi satisfying the following decompo-

sitions

Sry () = xqUy g Geg) XUy o (xgrxo) + x3ly 5 (g% ,x4)

_ .3 2 2 3
B(x) = x1B1(x)+x1x282(X)+x1X283(X)+x284(x)+x385(X) .

Let germs k kz,k € E(3) be the solutions to the follo-

17 300,

wing system of linear equations

By = Ujqky

8. = U . k. + U k. + U2 h

2 12K 11Kz *.UyqBy

By = Ujgky + Upoky + 2Uy Uy0h,
8 = U k. + U.h

4 1252 2202 -

The above system is solvable since the system determinant at O
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is equal to a”(afz—a”azz)2 # 0 . One can easily check

that the germ

§ (%) 2=8(x) =8, 1 (x,) (xTk (x) 4x5k, (%) +x, %k (x) ) =x,87 (x)h, (x)

belong to the ideal <x3> in E(3), i.e. y has the form

y(x) = x3y'(x) , where ' € E(3) . Finally we observe that

co,c1,03,h2(x) defined as above, Cy = 0 and

_ 2 2
. h1(x).—g0+g1x1+g2x2+x1k1(x)+x2k2(x)+x1x2k3(x) ’

h3(x):=Y'(X)/é?3(X)

satisfy (4.2). This completeé the proof of Proposition 4.3.

Now we consider the recognition problem for the stable

3 3 3

v-L-germs. Let J2(IR , R) = IR™ x Jg(IR , R) be the space

of 2-jets of C (3)-functions (cf.[6]) with a coordinate

system (xi;y,yi,yij) . Let M1,M2,M3,M be submanifolds

4
of JS(ZR3,ZR) defined by the following conditions

(A1) : M1 = {y2y3'y11 + 0}, (A2) P M, = {y11 =0, Yo¥y ¥ o} .,

) 2
(A3) = My = yy = 00 ¥3¥qq¥93 Wqa7¥q4¥p,) # O

" . - - 2 - i -
(A3) PoMy = {y3 =0, y2y11y13(y13 y11y33) # 0} . Their co
dimensions in Jg(ZR3,:m) are 0,1,17 and 1 respectively.

The subset of those 2-jets, say at x = (x1,0,0), x1 €ER ,

which do not belong to U Mi has codimension 2, i.e. it is
i \
a finite union of submanifolds of Jg(:m3

2. Given F € Cm(3) , let j2F :ZR3 - JS(]R3,]R) denotes the

, R} of codimension

2-jet extension of F (see e.g.[24], [20]). Thus on the basis



of Thom's tranversality theorem (131, [24] we obtain immediately

Proposition 4.4. For the generic function F € c”(3) its all
4
germs (sz)(x1,0,0) belong to U Mi .
i=1
Let us denote Ei' i=1,2,3,4 +the subsets of all germs

F € E(3) satisfying conditions (A1),(A2),(A5),(A§) of Propo-

sition 4.3 respectively; together with F(0) = F,1(0) = 0 . These
germs generate the corresponding v-L-germs ({- gi%%ﬂl(élrﬁ)},O) .
Using the appropriate canonical transformations we easily obtain:

Proposition 4.5. Let F € cm(3), X

0o " (x1,0,0) . If

(3%F) (xg) €M, . i =1,2,3,4

then the germ (F,xo) is v-L-equivalent to a germ belonging to
Ei -

Let us recall that two v-inv. germs of generating functions
are v-L-equivalent iff the corresponding v-L-germs are v-L-equi-
valent (see § 2).

Now we try to find classes of v-L-equivalent germs in E,

For this purpose we introduce

Definition 4.6. Let F(x,t) = Ft(x) be a smooth function on

2R3 x J , where J 1is an open interval in R . F 1is called

inf-homotopy (and germs (Fa,O), (Fb,O), a,b € J are called
inf-homotopic) if all germs (Ft,O) belong to the same class
Ei (we assume F(0,t) = aF/at(O,t) = 0 for any inf-homotopy

F(x,t) )
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Proposition 4.7. Any germ belonging to EiTi=1,...,4) is inf.

-homotopic to one from the following list

_ 2

(E1) F(x1,x2,x3) = X, t X, + X4

(E,) F(X,,X.,X,) = & x3 + x. & X
2 1742773 1 2 3

(E,) F{X,;XArX,) = % x2 + (x,=X )2 + X
3 1772773 1 1 72 3

(E,) F(X,,%,,%;) = t X2 & (x,#x.)°% ¢ x
4 1772773 3 1773 2

Let us remark that the generating functions Feop , for F
belonging to the respective classes (Ei) , correspond to the
classification proved by Arnold in [2]. Thus this coincidence -

justify our notation (A1,(A2),(Aé),(A§) .

Proof of Proposition 4.7. We consider only the case (E3)

The conditions sgn a11.= £ 1, sgn a, = 1, sgn a, = ¢ 1,

sgn(a?2 - a11a22) =+ 1 , distinguish in the 4-dimensional space
of coefficients (a11,a12,a3,a22) = (F,11,F,12,F,3,F,22,)(0)

sixteen open convex regions. So, if germs F', F" € E corres-—

3
pond to the same region, the following function

F(x,t) = t F'(x) + (1-£)F" (x)

is an inf-homotopy between them. Observing that the above forms

of E3 correspond to every of these regions completes the proof.

Proposition 4.8. Let Fix,t), (x,t) EZR3 x J be an inf-homo-
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topy, S(x,t) := F(p(x),t) and t0 € J be a fixed point. Then
there exists an open neighbouhood U = I of (O,to) and the
smooth functions ai{x,t), b{x,t}) on :m3 x IR ', with compact

supports, such that

(1) a,(x,t) = 22-(0,8) , for t eI,
X4
and
3s 3
(1ii) - EE(x't) = H(x,sg(x,t),t) , for (x,t) € U x I ,

where

H(x,y,t)=a1(o(y),t)x1+{3ai(o(y),t)xiyi+b(p(y),t)

for (x,y.,t) e:m3 xZR3 xR .

Proof. Assume t0=0 . From the proof of Proposition 4.3 it
results that for any germ o« € E(4) there exists decomposition
- 3 2
u(x,t)-F,1(x,t)h1(x,t)+c1(t)x1+c0(t)+22(xiF,i(x,t)hi(x,t)+

+xiF,i(x,t)ci(t))

with c; € E(1), h, € E(4) . Substituting ci(t)=ci(0)+Ei(t) '

i
for 1i=0,1,2,3 and

hix,t) = o (t)+C, (t)x,+12x.F, (x,£)C, (t)



we obtain

a(X.t)=F,1(x,t)h1(x.t)+c1(0)x1+c0(0)+Zg(xiF%i(x,t)hi(x,t)+

+xiF,i(x,t)ci(0))+th(x,t) .

On the basis of Malgrange preparation theorem [20] applied to

the germ g : (ZR4,0) - (IR4'0) '

2 2
g(x,t)=(F,1(x,t),4x2F,2(x,t),4x3F,3(x,t),t) , for
3
(x,t) €ER™ x IR
we obtain the following decomposition:
(1i1) - E(x,t)=x,a,°q(x,t)+]22x F,, (x,t)a, °g(x,t) +bog (x,t)
at "’ 191 ’ 29745 i 8y ’ relo

wlth ai,b € E(4) (we can take the representatives of these
germs with compact supports).

Now if we consider ({(iii) at (p{x),t) and such that
glp(x),t) = (p(%g(x,t),t) we easily get (ii).

In order to show (i) we have to consider the respective
cases: In the case E2 we have F,1(0,t)=F,11(0,t)=0¢F,111(O,t)
So, taking a/ax1 and 32/3x$ of (iii) at (0,t) we obtain
0=a1(0,t) and O=b,1(0,t)F,111(0,t) . Thus (i) results. In
the case E3 we have F,1(0,t)=F,2(0,t)=0¢F,12
B/8x2 of (ii} at (0,t) we have 0=b,1(0,t)F

(0,t) . Taking
rq2(0,8) , sO
b,1(0,t)=0 . Now by differentiation of (iii) with respect to

X, at (0,t) we obtain 0=a1(0,t) .
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For E1-case we have F,1(0,t)=0¢F,11(0,t) ;, SO taking B/Bx1

of (iii) at (0,t) we get
0 = a1(0,t) + b,1(0,t)F,11(0,t) .

Hence, if a1(0,t) = 0., then b,1(0,t) = 0 . Thus it is enough
to show that decomposition (iii) with a1(0,t) = 0 is always
possible. In fact as the Jacobian (3g)/3(x,t)+0 at (x,t)=(0,0)
there exists X1 € E(4) such that X, = X1og(x,t) . If we set
ajlz,t) := a,(z,t)-a (0,t) and b(z,t) := blz,tf+a, (0,t)X, (z,t) ,
we can substitute 51,5 into (iii) for the place of a, and
b respectively. But 51(0,t)=0 , Which completes the proof of
Proposition 4.8.

Let F(x,t), S{x,t), H(x,y,t)=Ht(x,y) be as in Proposition

4.8. We assume t0=0, I=(-c,c) for simplicity. Let us consider

the time dependent Hamiltonian wvector field on T*ZR3

3,8H 2 oH
Xy = 17— (x,y,t) e - =
£ Bxi Bxi

as well the vector field X, = . Xy, on T* R xR . X
t t

has the global flow I r t €R .. there exists the smooth

mapping IR3 ><]R3 xR 3 (x,y,t) - gt(x,y,t) EIR3 ><]R3 such that

d
T (Xvy) = Xy (g (x,y)) and g,(x,y) = (x,y) , for

(x,v) EIR3 ximg) . This results from: (i) compactness of supports

of ay; and b , (ii) the independence of "y"-component of XH
t

on x (so y(t) can be found independently on x) , (iii)

linearity of "x"-component of XH with respect to x

t
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Lemma 4.9. Ii is a v-L-equivalence for every t € R .

Proof. Since Wy = W + dH A dt 1is the invariant form of XH

(see [1], then 9 is a symplectomorphism for every t . Take

6 €EG . As Ht(x,y) = Htoc(x,y), 0°XH = X og and

H
a . t t
EE(0°gt—gtoU) = ooth— XHto o =0, for every t € IR . Hence
Cog, = g, °0 holds for every t € R since 9y = idT*ZRB

Finally g, Preserves the fibration = (see § 2) because the

"y"-component of Xy is independent of x . Thus the proof
t
is completed.

Let us define the mapping ¢ ::]R3 x (-e,e) - T*:lR3 as

d{x,t) = @t(x) = (x,%g(x,t)) and let the v-L-germ ¢(]R3 x {t}) =
G

= {(x,%g(x,t))} be denoted by Ly -

Lemma 4.10. The global flow 9e forms the v-L-equivalence

of the v-L-germs (Lg,O) and (Li,O) for |t|<e

G
t

calculations it can be checked that the vector field

Proof. First we show that gt(Lg) = L. . By straightforward

BH BZSt 3
Alx,t) :=p0, (%) =X, (¢> (x))= Z 57, s (0, (%)) (5 o (X))
rJ *i i3] J
is tangent to Lg at the point ¢t(x) for every
{x,t) €IR3 xR . Let B(x,t) be a smooth vector field on

]R3><IR and €' €ER , 0 < €' < ¢ , be such that

2, (B, (x,£)) = A(x,t) , for (x,t) €R> x (-e',e') ,
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where ¢, denotes the corresponding tangent map (cf. {1]).
Denote by hs the flow of -B(x,t) + %— on :m3 x IR {assumed
to be defined globally, for simplicity). Then

3

hS(IR3 x {t}) =R x {t+s} , for s,t €R

Let us define kt :IR3 »2R3, t €R , by the formula

(

ke (x) = o(h_(x,0))

d _ 3, _ .G
It is easily seen that aEkt(x) = XHt(kt(x)) and ko(im ) = Ly
Hence, by the uniqueness theorem for the first order differential

. . -~ G, _ 3, _ .G
equations we obtain kt = g, and gt(Lo) = kt(jm ) = Lt , for
|t|<e' . To complete the proof it suffices to notice that
gt(0,0) = (0,0) since Xy (0,0) = 0 , by (1) and (il) of

t

Proposition 4.8 and gO(O,O) = (0,0) which completes the proof.

By the above two lemmas we obtain immediately

Proposition 4.11. Any two inf-homotopic germs belonging to

E(3) are v-L-equivalent.
It is easily verified that for any F € Cw(3) the mapping
sz :IR3 - Jg(:m3,:m) is transversal to Mi , (1=1,2,3,4) .

Hence if j2F(x) € Mi , for every function F, € c (3) suffi-

0

ciently close to F there exists point Xg EZR3 close to x
2

such that j Fo(xo) € Mi . Hence (F,x) and (Fo,xo) are

v=L-equivalent to two inf-homotopic germs from Ei , 5O they

are v-L-equivalent. Thus we obtain
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Proposition 4.12. Let F € C (3) . Any germ (F,x) where
X = (x1,0,0) and sz(x) € u Mi is v-L-stable germ. '
Now we can formulate the classification theorem for the

normal forms of v-L-stable germs of generating functions.

Proposition 4.13. Any v-L-stable germ (F,xo) , Where

F € Cm(3) and xd=( x01,0,0) , 1s v-L-equivalent to the germ

at O E:R3 of one of the following normal forms:

(A1) F(x1,x2,x3) = X X, * X4 .
_ .3

(Az) F(x1,x2,x3) = X3 + Xy + Xg
_ 2 2

(A3) F(x1,x2,x3) =t X, * (x2 + x1) + Xq

Proof. By Propositions 4.4, 4.5, 4.7, 4.11, 4.12, it is enough
to construct the v-L-equivalences which reduces the normal forms
of Proposition 4.7 to the normal forms listed above. But it is
easy achieved by the v—L—eduivalences of the form

(x,y) - (aixi + BV yi) for appropriate ayrBy € {-1,0,1}

Which completes the proof of Proposition 4.13.






§ 5. Stability conditions for G-invariant Morse families

Now using the Morse families local formalism (cf. [19] we
derive the corresponding linear infinitesemal stability conditions
for v-L-germs. Consider a smooth family (LE,O), |t|<e of v-L-germs

with the corresponding smooth family F |t|<e of G-Mf-germs.

tl
For simplicity we denote FO, (Lg,O) by F, (LG,O) resp. and

assume that all Morse families of the family Ft are minimal

({see § 2). Let (LG,O) be the stable v-L-germ. Thus for suffi-

ciently small €, , by Proposition 2.4, Ft(|t|<e1r is locally

1

trivial, i.e.
(5.1)  F(x,x) = Flo (x), A (x,2)) + £ (x) ,

where At € E(n+l, v®co; 1,0), 0, € E(n,v;n,v), ft

(wt,At) € E(n+l, v®o; n+l, v®o) is the local family of diffeo-

€ £ (n) and
v

morphisms.,

By M we denote the space of minimal G-Mf-germs
32F
M= {F €E +1); 3x.3x.)(0) = 0O} .
{ vgo(n )i | / i J)( ) }

On the basis of (5.1) and theorems of Section 2 we have

Proposition 5.1. Let (LG,O) be the stable v-L-germ. Then the

necessary condition for the restricted local G-L-stability of

the corresponding G-Mf-germ, F , is folibhing:
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oF

4 e (53 | M(+l)E(n+l, vBo; 1,0)) +
(5.2)
(%g | aXE(n,v; n,v)) + 7XE (n) ,

where the first and second terms are submodules of Eveo(n+l)

defined by the standard scalar products (.|.) on R' and E"

respectively, L R" IRl -+ R"

Let 1_1' :IRn+l XIRl-»IRb , 0 : R” x R® »R?* be the

Hilbert maps for v ® ¢ ® 0 and v ® v respectively. Let us

denote
AT
wi(x,l) = {x,»,0), (i=1,...,b)
A’
3p'.
IP(X) = — (x,0). , (j=1r---fa)
J 3%

Thus on the basis of Proposition 2.1 and condition (5.2) we

have immediately

Corollary 5.2. In terms of the generators of the modules

E(n+l, v®o; 1l,c), E(n,v; n,v) , the condition (5.2) of Propo-

sition 5.1, can be rewritten in the following form:

oF aF ;
e <Gy Lo gy [ op)>E g (nel) +
(5.3)
aF 3F
*<bx | mab) e 5g | 1T;wa)’1>n;Ev(n)

When a physical system with symmetry exhibits the structural

phase transitions then the notion of "order parameter" is well
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established (cf. [12]) and its dimensionality is rather stable
feature of the system. This is a reason for the restricted
stability condition introduced in Proposition 5.1. However, from
the point a view of the standard singularity theory of lagrangian
submanifolds [7] the corresponding deformation space is

Evao(n+l) . Thus, at first, we consider the stronger condition

of infinitesemal G-L-stability

=< (3F oF OF
ag

(5.4)

9F ) & *
...,(axlﬂnwa),1>nnﬁv(n)

This condition immediately follows from the v-stability of the
corresponding v-L-germ (Lg,O) , introduced in Section 2. Let
bR SRS ana 5 i R" o RY be the Hilbert mappings for
v@oc and Vv actions respectively. For further use we define
the new Hilbert map for the véo-action,

T (ﬁ,EoTrn) :]Rn+l ~’]Rk x RT .

aF aF . .
As we know the germs (gy]o,), (§§|wj), 1 sis<b,1s3sa
are véo-invariant, thus we can have their smooth preimages by

the Schwarz [15] homomorphism:

2

H, ©u = ($5]0), 154 $D

(5.5)

3]
o
=
1]

JF .
(E|wj)l1sjsal

2
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~

where Hi'Ej € E(k+r) .

Proposition 5.3. Let (LG,O) c (T*Zmn,m)_ be the stable

v=L=-germ. Then the necessary infinitesemal G-L-stability
condition for the corresponding G-Mf-germ F can be written

in the following form

(5.6) E(k) = <H1,...,Hb> + <E

,E_,1>
£ (k) a

+ Mu(k+r|k)

17" R

wherg H, = Hilimkx{o}’ (i=1,...,b), Ej = Ej|:mkx{0},.(]=1,...,a)

and Mu(k+r|k) is the restriction of Mu(k+r) to ZRkX{O}

Proof. Inserting the expressions (5.5) to the condition (5.4)

and taking the surjective homomorphism u* : E(k+r) - Ev c(n+l)

5]
we obtain the equivalent condition:

u*E(k+r)=<u*H1,...,u*Hb> +<u*E,...,u*Ea,1>

W*E (k+r) p*r*E(r) '

k+r

where . ¢ R -+ R" , {z,y) » (y) 1is the canonical projection.

Thus we can take (5.4) in the following equivalent from

-~

(5.7) E(k+r)=<H1'""Hb>E(k+r)+<E1'""Ea'1>w;E(r)+Mu(k+r) ’

where Mu(k+r) is defined in § 3. Let A be the finite

generated E(k+r}-module,

A = E(k+r)/<ﬁ ,ﬁ

>E(k+r)+Mu(k+r)

170 b



On the basis of (5.7) we have

(ii) Mirmya T Eyre B g
Thus applying the Malgrange preparation theorem we see that the
condition (5.7) is equivalent to (5.6). This completes the proof
of Proposition 5.3.

Let us notice that the functions Hi,Ej depend linearly
on F , which give some advantage of the Morse family approach
comparing to the generating functions method presented in the
preceding sections. These two approaches are equivalent, how-
ever the direct method of description of lagrangian singularities
by generating functions is convenient from the point of view
of physical applications where the generating functions,
usually, have a physical meaning of the equilibrum potentials
(see Appendix).
Similarly as in Section 3, the condition

(5.8) E(k)=<H1,...,Hb)E(k) * <Eqy...0E 01> + M;(k+r|k)

R
will be called a linear condition of infinitesemal G-L-stability.
If we assume that Mu(k+r|k) - M:(k+r\k) < 07 (k) then by the
Nakayama's Lemma [20] we obtain equivalence of the two condi-

tions (5.8) and (5.6).

Example 5.4. Assume that v : G » 0(n) 1is trivial. Let

(EI,xJ) - S(gI,xJ) be a IJ-germ for (L,0) c T* R® and the

corresponding Morse family F € E{(n+k) be given by (2.4),
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where k = #I . In this case we can put yu = id _n+k . We

R
also find easily that (5.7) takes the form
_ .95 _ 0S -
E(n+k)"<(ax1”I'XJ) x1)"“'(axk(AI'XJ) k)7 (n+k)
+<=——(2 X ) 35 (Ao /X)), A A, 1>
ax 1’ rrrtrex I'*g’ "1 """k’ "E(n) .
J1 Jn—k

And equivalently, (5.6) we can write in the following form

E(&I,x ) = <35 (gI.x ), P X g> E(g X )+ (EI.x ),EI,1> .

We can write for (5.6) even more reduced form:

23S 3S
E(E;I) - <BE'I(EIIO)>E(EI) + <3XJ_(EIIO)I£II1>]R

which is exactly the standard condition for versality (infini-
tesemal stability) of unfoldings of singularity

n =S R0}
(c£. [21, [20]).

Example 5.5. Let us take G = zZ, and its action on R" is

defined as follows:
_ B n
ve(xq,xz,...,xn)-(zx1,x2,...,xn), e € 12—{i1}, X €ER .

Let a v-L-germ (LG,O) has the following v-IJ-germ of

generating function

S(€1fx2,...,xn) =85 o p(€1,x2,...,xn) '
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where o : RY - " , (51,x2,...,xn) - (gf,xz,...,xn) . The

corresponding Morse family:
(5-9) F(X,)\) = S(A’X'ooo'xn)—lx.I
and the corresponding rebresentation o has the form

UE(X) = gir .

. ' - n+1 -’ n+2
Define a Hilbert map u : R ! - jOTe for veo as

;(x,h) = (12,1x1,x?,x2,...,xn) .

We find that Mﬁ(n+2) is the set of smooth function-germs

vanishing on the set
(5.10) TR™M™Y) =y Y_o,,)i Yomy.y,=0)
: K 17t r¥ng’ i ¥YoTY Y3

and also we have

-

M= (n+2]2) = y2E )
P(n+ 12) =y, (Y19,

After straightforward calculations we obtain

Hy(y) = 29480 q (Yqe¥gre-oi¥pyp) =y,

Hy(Y) = 2¥5S/q (¥qrygre - i¥pyp) =y

E1 (Y) "Yszi(Y)=Sri(yl)fi=2,...,n .
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Substituting them to (5.7) we get the condition

Ely) = <2y1S.1(y')-y2,2y2§.1(y')-y3>E(y, *
+ <y2,§,2(y'),...,é,n(y')>g(y")+ Mu(n+2)

where y':(yT,y4,...,yn+2), y"=(y3,...,yn+2) and as k,r in
Proposition 5.3 we put k=2, r=n.

Thus the infinitesemal v-L-stability condition for the v-L-germ

(LG,O) has the form

2

(5.11) - -
+<y215,2(y1)'---,S:n(y1),1>:m '

where §,a(y1) = S, (y,00,...,0) .

From the decomposition

2
on the basis of (5.11) we obtain:
E(y1)+y2£(y1)=(2Y1§'1(Y1)‘Y2)E(Y1)+Y2§:1(Y1)E(Y1) +
+<y,08,, (¥ 1) s ees8in (y,) 1> ]R )

In other words, for every a(y1), b(y1) € E(y1) exist

h1,h2 € E(y1) and constants CoreeerCp € IR such that
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a(y1)=2y1‘8,1(y1)h1(y1)+S,2(y1)c2+...+s,n(y1)cn+c0

(5.12) %

b(y ) =-h {y,)+5,, (v, h,(y, ) +c,
Eliminating h.I in these equations we get an equivalent condition:

- =2 -
(5.13) a(y1)+2y1s,1gw)b(y1)—y1S,1(y1)h2(y1)+y1s,1(y1)c1+,...,+

+ s,n(y1)cn+c0 .
We easily see that (5.13) can be written in the form

_ey B2 5 5 3

1

which gives an another form for infinitesemal v-L-stability of

the v-L-germ (LG,O) c T R"

Remark 5.6. We derived the condition (5.14) in Section 3 (see

formula (3.16)), in a quite different way. In Example 5.5 we
showed the equivalence of these two approaches to .the classi-
fication problem of stable v-L-germs of lagrangian submanifolds.
It seems that the Morse family approach is very useful in
explicit calculations because of the linearity of the corres-

ponding infinitesemal stability conditions.
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§ 6. Versality and stability of v-L-germs

In the preceding sections we characterize the infinitesemal
stability of v-L-germs through the corresponding infinitesemal
stability conditions for their G-Morse family germs. To have an
adequate approach to local stability of v-L-germs by the corres-
ponding locally stable generating families we have to introduce
the modified notion of G-unfolding (cf. [16]) and adapt this
notion to be used in the standard Morse family approach (cf.
9.

Let n € Ec(k) for some prthogonal representation o¢ of
G . The pair (v;ﬁ) ;, Wwhere v : G - On(Im) is a representation
of G, and f € E o (n+k) such that fI{O} « < = n is called
an n-parametric G-unfolding of n with respect to the represen-
tation v . Let o be fixed for all G-unfoldings of the germ
n .

Let ¥ be an orthogonal representation of G in R® . A
morphism of G-unfoldings (¢,a) : (y,h} - (v,f) of the germ n

is defined by the following maps

i) o=(p,y) € E(s+k,vyBo;k,0) & E(s,y;n,v)

ii) o € EY(S)

and the following condition

where Tyt R™ xR -1R is the canonical projection.
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If v 1is a diffeomorphism, then (¢,a) is called an isomorphism
of G-unfoldings. We say that a G-unfolding (v,f) of the germ

n 1is G-versal if for any other G-unfolding (y,h) ©of n

there exists a morphism (¢,a) : (y,h}) -» (v,f) . The G-versal
unfolding of n is called G-miniversal if a dimension of a

basis n of the unfolding is a possible smallest number

(cf. [6]). We see that the above introduced isomorphism of
G-unfoldings (¢,a) defines the lagrangian equivalence of
y-L-germ (L?,O) generated by h and the v-L-germ (LS,O)
generated by f , i.e. there is the G-equivaraint symplecto-

G, v RrR" 5 7 RD preserving the fibre structure

mpn ¢ TR +R" and such that RG(L?) - Lg , R®(b) =0

We know (see [9], [6], p.269) that R® can be locally written

morphism R

as follows
(6.1)  (x,8) » (v(x), Dvix) T(e+da(x))) : T* B® - 7* ®R"

with v € Diff(n,y;n,v), a € Ey(n)
The converse statement 1s also true, i.e. 1f the y-I~germ
(L?,(XO,EO)) c T* R" is mapped into the v-L-germ (Lg,(io,go))
c T* R by a germ of G-equivariant symplectomorphism
(T* R, (x5,£4)) » (T* R, (X51Ey)) Of the form (6.1) then the
corresponding G-unfoldings, say h and £ , generating
(L?'(XO,EO)) and (Lg,(iofgo)) respectively are isomorphic as
G-unfoldings (cf. [22]}.

et 5 : (R x®K,0) ~R , s € E gin*k) be a germ of a

generating family for the v-L-germ (L?,O) c 7* R"



G

Definition 6.1. A G-invariant lagrangian submanifold L~ < T* R?

is called G-versal at 0 € LG if a germ S of a generating
family of (LG,O) is G-versal unfolding if the germ
n = S|{0} « RE € Eo(k) .

Let us endow the space of G-unfoldings c:eo(n+k) and the
space of G-equivariant lagranglan immersions I(n,p;n+n,v®p)
with the induced Cm-Whitney topology, then the G-versal
v-L-germ (LG,O) is locally stable, i.e. for every G-invariant
neighbourhood V of 0 in T* R" there exists an open neigh-
bourhood U of the G-equivariant lagrangian immersion
iLG : (Imn,O) - (T*ZRn,O) in I(n,p;n+n,v®v) (where p is the
linearised representation vaILG ) that for every i € U there
exists p € Image 1 « V such that the v-L-germs (LG,O) and
(Image i, p) are v-L-equivalent (or (iLG,O), (i,i—1(p)) are
G-equivalent as immersions [7]). Thus the local v-L-stability
of v-L-germs has an adjoint formulatiqp _in terms of the stable
G-unfoldings of invariant singularities (cf. [241, [2]).

Let n € mi(k) , by J(n) we denote the Jacobi ideal of
n generated by the partial derivatives Bn/al1,...,3n/8kk .
J(n) 1is a G-submodule of the G-module E(k) . Following [9]
(see also [16]) we have the main result concerning the G-versal

v=L-germs.

Proposition 6.2. Let o : G - Ok(jm) be a fixed representation

of G in :m3 , let (v,S) be a G-unfolding of a germ

n = S|{0} x:mk which generates.the v-L-germ (LG,O) c 7* R ’

we set n = dim:RM(k)/J(n) < « ., Let y Dbe the representation

of G in the vector space M(k)/ :R" and r : m(k)/J(n) -

J(n)
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- M(k) an equivariant splitting of the exact sequence of

r
G-modules 0 = J(n) = M(k) <==_ m(x)/ » 0 such that the

J(n)

function £ : M(k)/; ) @RS =R, £(x,y) = n(X) + r(x) (A) 1is

a Morse family, then
i) f 1is a generating family for the G-versal y-L-germ (L?,O)

ii} The v-L-germ (LG,O) with the generating family (Q,S) is
G-versal if and only if a morphism of G-unfoldings

(¢,a) : (v,8) = (y,f) is an_isomorphism.

Proof of this proposition can be found in [9] (p.187).

The main tool in proving Proposition 6.2 as well as to
classify the corresponding normal forms for G-versal v-L-germs
is the ingihiiééémaiiyé§5a1££§§notion (cf. [241, [16]).

Let n € EO(k) and f € EvQU(n+k) be a Géunfolding of

k

'n . Thus df € E(n+k)®(X®A)* (where we denote A = R- ,

m

X

1z

Zmn) has the two components d1f € E(n+k)®A* , and
d2f € E(n+k)®X* . Let us consider the second component and the

sequence of homomorphisms (cf. [16])

E(n+k) - E(n+k)8®X* - E(k)QX* - E(k)/J(n)QX*
(6.2)
£ - a,f - dyf}, - d2f|A = §f ,

G
We see that 6f is G-invariant, i.e. &f € (E(k)/ exX*) ~ ,

J(n)
§f 1s identified also to G-equivariant homomorphism

X -» E(k)/J(n) . If the homomorphism &f is surjective we say
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that the G-unfolding (v,f) 4is infinitesemally versal. It
is proved in [16] that_the two fotions; infinitesemal
versality and versality, are equivalent.

We can adapt the above notions to the symplectic objects
and write down, for G-Mf-germs, the corresponding sequence
m(k)E(n+k)+m2(n) - (M(k)E(n+k) +M(n))8( RM)* » M(k)@( R * -

- W(k)/T(n)® ( R™)*

£ - 6f € Homg| B, M (k) /I (n))

Definition 6.3. Let (v,f) be G-Mf-germ for the v-L-germ

(LG,O) c T* R" . We say that (LG,O) 1s an infinitesemally

G-versal if the corresponding G~homomorphism 6f 1is surjective.

Proposition 6.4. The v-L-germ _(LG,O) is G-versal if and only

if (LG,OJ is infinitesemally G-versal.

Proof. On the basis of Proposition 6.2 and Corollary 3.7 in
(161 (cf. [9]).

Following the standard lines of lagrangian singularity
theory (see [2], [9]1, [7], [18]) we can summarize the stability

theory of invariant lagrangian submanifolds in the following

Proposition 6.5. Let iLG : (LG,O) - (T*Zmn,O) be a germ of
G-equivariant lagrangian immersion. Let S : ( EPXka,O) - R

be a corresponding generating family for (LG,O) . Then the

following conditions are equivalent:
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(1) (iLG,O) is locally stable

{ii) (iLG,O) is infinitesemally stable

(1ii) (S,0) 1is a versal G-unfolding of the germ n = S‘{O} « RS
(iv) (5,0} 4is an %nfinitesemally vergél G-unfolding of the

germ n = S|{0} x:mk .

Proof. The equivalence of (i) and (ii) results immediately

by equivariant local version of the Theorem 5.1.3 in [6]. By
[22] Theorem 4 and the previous results we obtain an equi-
valence of conditions (i), (iii). The equivalence of the notion
of infinitesemal stabllity for lagrangian G-immersions and
infinitesemal versality for generating G-invariant Morse

families follow from the corresponding equivariant reformulation

of standard arguments in [24] (see also [7]).
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