Group rings and division rings

by

LORENZ, Martin

SFB/MPI 83-14

GROUP RINGS AND DIVISION RINGS

Martin Lorenz

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26, D-5300 Bonn 3, FRG

To the memory of Oberstudienrat Heinz-Joachim Dietrich

Abstract. Continuing the work in [11],[12] we study division algebras D = k(G) over a field k which are generated by some polycyclic-by-finite subgroup G of the multiplicative group D^* of D. We discuss a specific class of examples of such division algebras that can be thought of as multiplicative analogs of the Weyl field. Furthermore, we show that the division algebras D = k(G) always contain free subalgebras of rank ≥ 2 , provided G is not abelian-by-finite. Finally, we discuss some open questions concerning commutative subfields and Lie commutators in D = k(G).

INTRODUCTION

During the past decade, a considerable amount of work has been invested in the study of prime ideals in group algebras kG of polycyclic-by-finite groups G over a field k. After the pioneering work of Zalesskii [30], Roseblade's break-through in [22], and the finishing touches by Passman and the author [14], the subject has now reached a certain state of maturity: one has a detailed recipe for constructing all primes P of kG starting from prime ideals of group algebras kH, where H runs through special finite-by-abelian subquotients of G (see [13] or [14] for the precise formulation). The resulting class of algebras kG/P is a rich source of interesting examples of prime Noetherian rings whose fine structure is far from being well understood. For example, if Q = Q(kG/P) denotes the classical ring of fractions of kG/P then, by Goldie's theorem, $Q = M_{Q}(D)$ for some integer n and a suitable division k-algebra D both of which are in general quite mysterious to us. In the present note, continuing the work in [11], [12], we study the Goldie field D associated with a completely

prime ideal P of kG. In other words, we study division k-algebras D generated by some polycyclic-by-finite group $G \le D^*$, the multiplicative group of D. The restriction to completely prime ideals is partly justified by the following result, due to Zalesskii [30, Theorem 4] for primitive ideals and to Brown [2] in general:

Let P be a prime ideal of kG. Then there exists a characteristic subgroup G of G with G/G finite and such that $P\cap kG$ is a finite intersection of completely prime ideals of kG which are all conjugate under the action of G on kG.

In Section 1, we study a specific class of algebras B_{λ} ($\lambda \in k^*$) and their classical division rings of fractions E_{λ} . Each B_{λ} , and E_{λ} , is generated by a 2-generated nilpotent group of class 2 and can be viewed as a multiplicative analog of the Weyl algebra A_{λ} , resp. the Weyl field $D_{\lambda} = Q(A_{\lambda})$ (see also [10]). Although the B_{λ} 's are not isomorphic to A_{λ} , and to each other, they share many of the well-known properties of A_{λ} . The main result of Section 2 states that if D = k(G) is a division algebra generated by some polycyclic-by-finite group $G \leq D^*$ and if G is not abelian-by-finite, then D contains a free k-subalgebra of rank at least 2. This result depends on recent work of L. Makar-Limanov [15]. Finally, in the last section, we briefly discuss commutative subfields and Lie commutators in division algebras D = k(G) of the above type and mention a number of open questions.

Notations and Conventions. In this paper, k always denotes a commutative field. If D is a division k-algebra, then we use the notation D = k(E) to indicate that D is generated, as division k-algebra, by the subset E of D. Furthermore, for any ring R (always with 1), R* denotes the set of nonzero elements, U(R) the group of units, Z(R) the center, and Q(R) the classical ring of fractions of R (if it exists). We use square brackets to denote group theoretical and Lie commutators. Thus [x,y] = x y xy or [x,y] = xy-yx, depending on the context. Otherwise the notation is standard, and follows [18].

1. A CLASS OF EXAMPLES

Let $\lambda \in k^*$ be given and define $B_{\lambda} = B_{\lambda}(k)$ to be the k-algebra generated by two elements x and y together with their inverses x ,y subject to the relation xy = λyx . In short,

$$B_{\lambda} = k\{x^{\pm 1}, y^{\pm 1}\}/(xy - \lambda yx) \qquad (\lambda \in k^{\pm}).$$

Some results concerning these algebras and their tensor products have been announced in [10], even for k not necessarily a field. As far as I know, the B_{λ} 's, or rather their power series analog, have made their first appearance in [7], with k being the field of

rational numbers and $\lambda = 2$.

The algebra B_{λ} can be realized as the factor of the group algebra kG, with $G = \langle x,y | z = [x,y]$ central> the free nilpotent group of class 2 on 2 generators, modulo the ideal $(z-\lambda)$ kG. B_{λ} can also be viewed as a twisted group algebra of the free abelian group of rank 2,

$$B_{\lambda} \cong k^{t}[z \cdot z],$$

or as an iterated Ore extension,

$$B_{\lambda} = k[x^{\pm 1}][y^{\pm 1};\alpha]$$
 with $x^{\alpha} = \lambda x$.

In particular, B_{λ} is a Noetherian domain. We denote its classical division ring of fractions by $E_{\lambda} = E_{\lambda}(k)$. Note that $E_{\lambda} = k(\langle x,y \rangle)$, where $\langle x,y \rangle$ is nilpotent of class 2 (if $\lambda \neq 1$).

The following lemma describes some basic properties of the B_{λ} 's. Some of them have also been noted in [10]. We are mostly interested in the case where λ is not a root of unity. In this case the properties of B_{λ} closely mirror those of the Weyl algebra A_{1} in characteristic 0, whereas the case where λ is a root of unity corresponds to the Weyl algebra in positive characteristics [21].

Lemma 1.1. (a) Let $\lambda \in k^*$ be of finite (multiplicative) order n. Then B_{λ} is free of rank n^2 as a module over its center $Z(B_{\lambda}) = k[x^{\pm n}, y^{\pm n}]$. Moreover, for any ideal I of B, one has $I = (I \cap Z(B_{\lambda}))B_{\lambda}$.

(b) If $\lambda \in k^*$ has infinite order, then B_{λ} is a central-simple k-algebra of global and Krull dimension 1 and of Gelfand-Kirillov dimension 2.

Proof. First suppose that λ has finite order n and set $C = k[x^{\pm n}, y^{\pm n}] \subset B_{\lambda}$. Then $C \subset Z(B_{\lambda})$ and B_{λ} is free as a module over C, with basis $\{x^{i}y^{j} | 0 \leq i, j \leq n-1\}$. If $b = \sum_{i,j=0}^{n-1} c_{ij}^{x^{i}y^{j}} \in Z(B_{\lambda})$, with $c_{ij} \in C$, then

$$b = y^{-1}by = \sum_{i,j=0}^{n-1} c_{ij} \lambda^{i} x^{i} y^{j}$$

and so $c_1=c_1\lambda^i$ for all i,j. Therefore, $c_1=0$ for $i\neq 0$. Similarly, for $j\neq 0$ one has $c_1=0$ which shows that $C=Z(B_\lambda)$. Now let I be an ideal of B_λ and set $I_1=(I\cap C)B_\lambda\subset I$. It follows from the foregoing that B_λ/I_1 is free of rank n^2 over $K=C/I\cap C$, and a calculation as above shows that $K=Z(B_\lambda/I_1)$. B_λ , being an image of the group algebra of a finitely generated nilpotent group, is a polycentral ring [18, 11.3.12]. Thus, if I strictly contains I_1 , then we must have $(I/I_1)\cap K\neq 0$ which is impossible. There-

fore, I = I, and part (a) is proved.

As to part (b), the equality $Z(B_{\lambda}) = k$, for λ of infinite order, follows by a straightforward calculation as above. Simplicity of B_{λ} now is a consequence of polycentrality, or can be checked directly by the usual shortening trick. Finally, $GK-\dim_k(B_{\lambda}) = 2$ follows from the fact that each monomial in the elements x,y and their inverses is a scalar multiple of an "ordered" monomial x^iy^j (i,j \in Z), and $K-\dim(B_{\lambda}) = \operatorname{gl.dim}(B_{\lambda}) = 1$ follows from [19, Theorem 4.5], e.g. (see also [10]).

Corollary 1.2. (a) Let $\lambda \in k^*$ be of finite order n. Then $E_{\lambda} = Q(B_{\lambda})$ is obtained by localizing B_{λ} at the nonzero elements of $Z(B_{\lambda})$. Thus $Z(E_{\lambda}) = k(x^n, y^n)$ and $E_{\lambda} \cong Z(E_{\lambda})^t[Z/nZ \oplus Z/nZ]$ is a twisted group algebra of $Z/nZ \oplus Z/nZ$ over $Z(E_{\lambda})$.

(b) If λ is not a root of unity, then $Z(E_{\lambda}) = k$.

<u>Proof.</u> The assertions in (a) are immediate from Lemma 1.1(a). For (b) just note that for any simple or, more generally, polycentral ring R for which Q(R) exists one has Z(Q(R)) = Q(Z(R)).

It follows from [12, Corollary 2.2] that the Gelfand-Kirillov transcendence degree of E_{λ} over k equals 2. If λ has infinite order, then E_{λ} contains a free k-subalgebra (see Section 2). Hence E_{λ} has infinite Gelfand-Kirillov dimension in this case. On the other hand, for λ a root of unity, E_{λ} clearly has Gelfand-Kirillov dimension 2. Also, the commutative transcendence degree of E_{λ} in the sense of Resco [19] is clearly 2 if λ has finite order. For λ of infinite order, it equals 1, by [19, Theorem 4.3] (or see Section 3.A).

Before we turn to the isomorphism question for the division algebras E_{λ} , let us briefly recall a few general facts concerning twisted group algebras $\,k^{t}[\,H\,]\,$ of ordered groups $\,H\,$. By definition, $\,k^{t}[\,H\,]\,$ has a k-basis $\,\{\dot{x}\,|\,\,x\in H\}\,$, and multiplication in $\,k^{t}[\,H\,]\,$ is determined by the rule

$$\dot{x} \cdot \dot{y} = t(x,y) \dot{x} \qquad (x,y \in H),$$

where t: $H \times H \to k^*$ is a 2-cocycle. The basis $\{\dot{x} \mid x \in H\}$ can always be normalized so that $\dot{e} = 1$ is the identity element of $k^t[H]$. Each \dot{x} is a unit of $k^t[H]$ and, using the fact that H is ordered, it is easy to see that the group of units $U(k^t[H])$ of $k^t[H]$ consists precisely of the elements of the form $\alpha\dot{x}$ with $\alpha \in k^*$ and $x \in H$. Furthermore, we have a multiplicative map, the so-called lowest term map,

 $\ell: k^{t}[H] \rightarrow \{0\} \cup U(k^{t}[H])$

defined by $\ell(0) = 0$ and $\ell(a) = \alpha_{x_0} \dot{x}_0$ for $0 \neq a = \sum_{x \in H} \alpha_x \dot{x}$ with $x_0 = \min \{x \in H \mid \alpha_x \neq 0\}$. If $S \subset k^t[H]$ is a (right) Ore set of regular elements, then ℓ extends to the localization $\ell(H) = \ell(a) \ell(b)^{-1}$. It is trivial to verify that ℓ is well-defined and remains multiplicative on $\ell(H) = \ell(a) \ell(b)$.

The foregoing applies conveniently to B_{λ} . Indeed, if $x^{\pm 1}, y^{\pm 1}$ are the canonical generators of B_{λ} with $xy = \lambda yx$, then

$$B_{\lambda} = \bigoplus kx^{i}y^{j} \cong k^{t}[Z \oplus Z],$$

$$i,j \in Z$$

and $Z \bullet Z$ is of course an orderable group. Thus the corresponding lowest term map provides us with a multiplicative map

$$\ell \colon E_{ij}^{\star} \to U_{ij}^{-} = \{\alpha x^{i} y^{j} | i, j \in Z, \alpha \in k^{\star}\} = U(B_{ij}^{-})$$

which is the identity on U_{U} , hence on $k^* \subset U_{U}$.

<u>Proposition 1.3.</u> Let $\lambda, \mu \in k^*$ be given. Then E_{λ} and E_{μ} are isomorphic as k-algebras if and only if $\lambda = \mu$ or $\lambda = \mu^{-1}$.

Proof. Since $B_{\lambda} = k\{x^{\pm 1}, y^{\pm 1}\}/(xy-\lambda yx) = k\{y^{\pm 1}, x^{\pm 1}\}/(yx-\lambda^{-1}xy) = B_{\lambda-1}$, the condition is certainly sufficient. To prove necessity, let $\phi \colon E_{\lambda} \to E_{\mu}$ be a fixed k-algebra isomorphism, and let $x^{\pm 1}, y^{\pm 1} \in B_{\lambda}$ and $u^{\pm 1}, v^{\pm 1} \in B_{\mu}$ be the canonical generators with $xy = \lambda yx$, resp. $uv = \mu vu$. Let $\ell \colon E_{\mu}^* \to U_{\mu} = \{\alpha u^{\perp} vJ \mid i,j \in Z, \alpha \in k^*\}$ be the lowest term map with respect to a fixed ordering of $U_{\mu}/k^* \cong Z \oplus Z$. Then

$$f = l \cdot \phi \colon E_{\mu}^{\star} \rightarrow U_{\mu}$$

is a group homomorphism which is the identity on k^* . In particular, we obtain

$$\lambda = f(\lambda) = [f(x), f(y)],$$

and this belongs to the commutator subgroup $[U_{\mu},U_{\mu}]$ of U_{μ} . But $[U_{\mu},U_{\mu}]=\langle\mu\rangle$ and so we have $\lambda\in\langle\mu\rangle$. By symmetry, we conclude that $\langle\lambda\rangle=\langle\mu\rangle$ in k*. Therefore, if λ has infinite order, then $\lambda=\mu$ or $\lambda=\mu^{-1}$ and we are done. Thus, in the following, we concentrate on the case where λ and μ have finite order n.

We show that f maps U_{λ} isomorphically onto U_{μ} . First note that f induces a map $\bar{f}\colon U_{\lambda}/k^*\to U_{\mu}/k^*$. Both groups are free abelian of rank 2 generated by \bar{x} and \bar{y} , resp. \bar{u} and \bar{v} , where we use overbars to denote images mod k^* . Suppose that $\bar{f}(\bar{x}^i\bar{y}^j)=1$ with $0\neq |i|+|j|$ minimal. Then

$$1 = [f(x^{i}y^{j}), f(y)] = \lambda^{i}$$

and so $i = ni_1$ for a suitable i_1 . Similarly, $j = nj_1$ and hence $1 = \overline{f}(\overline{x}^i\overline{y}^j) = \overline{f}(\overline{x}^{i1}\overline{y}^{j1})^n$.

Since U_{μ}/k^* is torsion-free, we conclude that $\overline{f}(\overline{x}^{i_1}\overline{y}^{j_1})=1$ which contradicts our minimality assumption. Therefore, \overline{f} is injective, and hence the same is true for f on U_{λ} . To prove surjectivity note that, clearly, $\ell(E_{\mu}^{*})=U_{\mu}$ and $\ell(E_{\mu}^{*})=f(B_{\lambda}^{*})f(B_{\lambda}^{*})$. Thus it suffices to show that $f(B_{\lambda}^{*})=f(U_{\lambda})$. But every $a\in B_{\lambda}^{*}$ can be written as a finite sum $a=\Sigma_{i}$ u_{i} with $u_{i}\in U_{\lambda}$ pairwise distinct mod k^{*} . Hence, by the above, the images $f(u_{i})\in U_{\mu}/k^{*}$ are distinct, say $f(u_{i})$ is the smallest with respect to the ordering of U_{μ}/k^{*} . Then we obtain that

$$f(a) = \ell(\Sigma_i \phi(u_i)) = \ell(\phi(u_1)) = f(u_1)$$
,

as required. Therefore, \underline{f} on U_{λ} and \overline{f} are isomorphisms. We conclude that $\overline{f(x)} = \overline{u}^{\underline{i}}\overline{v}^{\underline{j}}$, $\overline{f(y)} = \overline{u}^{\underline{r}}\overline{v}^{\underline{s}}$ with is-jr = ± 1 . Consequently,

$$\lambda = [f(x), f(y)] = [u^{i}v^{j}, u^{r}v^{s}] = u^{is-jr} = u^{\pm 1}$$
,

and the proposition is proved.

Proposition 1.3 extends [10, Theorem 1] which states that (for k a domain) B_{λ} and B_{μ} are isomorphic as k-algebras iff $\lambda = \mu^{\pm 1}$. The above argument essentially follows the lines of the proof of the isomorphism theorem [11, Theorem 4.1]. In fact, for λ of infinite order, Proposition 1.3 could have been deduced from that result.

It can be shown that in E_{λ} the identity element cannot be written as a sum of Lie commutators (Section 3.B). In particular, the E_{λ} 's are all distinct from the Weyl field $D_{\lambda} = Q(A_{\lambda})$.

We close this section with a few facts concerning projective and injective modules for B_{λ} , $\lambda \in k^*$ of infinite order. The corresponding assertions for the Weyl algebra A_{λ} in characteristic 0 are well-known. We therefore restrict ourselves to a few indications and refer to the literature whenever possible.

Proposition 1.4. Let $\lambda \in k^*$ be of infinite order.

- (a) For any nonzero right ideal I of B_{λ} , $B_{\lambda} = I = B_{\lambda} = B_{\lambda}$. In particular, every right ideal is generated by at most 2 elements.
- (b) A finitely generated projective right B_{λ} -module is either free or isomorphic to a right ideal of B_{λ} .
- (c) For n > 1, the matrix ring $M_n(B_\lambda)$ is a principal right (and left) ideal ring, whereas B_λ is not a principal ideal ring.
- (d) B_{λ} has no nonzero finitely generated injective modules.

 $\begin{array}{lll} \underline{Proof.} & \text{(a)} & \text{We follow Webber [29]. Write} & B_{\lambda} & \text{as an Ore extension,} \\ \underline{B_{\lambda}} = R[Y^{\pm 1};\alpha] & \text{with} & R = k[X^{\pm 1}] & \text{and} & X^{\alpha} = \lambda X. \text{ Then } S = R^* \text{ is an Ore set in } B_{\lambda} & \text{and } B_{\lambda}S^{-1} \cong k(X)[Y^{\pm 1};\alpha] & \text{is a principal ideal} \end{array}$ ore set in B_{λ} and $B_{\lambda}S^{-\frac{1}{2}} = k(X)[Y^{-\frac{1}{2}};\alpha]$ is a principal ideal domain. Therefore, for any nonzero right ideal I of B_{λ} there exists $0 \neq \underline{d}_0 \in I$ such that $\overline{I} = I/d_0B_{\lambda}$ is R-torsion. If $\overline{I} \neq 0$ choose $0 \neq \overline{d}_1 \in \overline{I}$ such that $M_1 = \operatorname{ann}_R(d_1)$ is maximal among the annihilators of nonzero elements of \overline{I} . Then M_1 is a maximal ideal ideal of R, and this easily implies that M_1B_{λ} is a maximal right ideal of B_{λ} . Therefore, $\overline{d}_1B_{\lambda} \cong B_{\lambda}/p_1B_{\lambda}$ where $M_1 = (p_1)$. Continuing this way and using the fact that B_{λ} is Noetherian we can write $I = \sum_{i=0}^{m} d_iB_{\lambda}$ with $I = \sum_{i=0}^{m} d_{i}B_{\lambda} \text{ with }$

$$\Sigma_{i=0}^{r+1} d_i B_{\lambda} / \Sigma_{i=0}^{r} d_i B_{\lambda} = B_{\lambda} / p_{r+1} B_{\lambda} \quad \text{for } r = 0,1,\ldots,m-1.$$

Applying Schanuel's Lemma we obtain

$$B_{\lambda} \bullet \Sigma_{i=0}^{r} d_{i}B_{\lambda} \cong p_{r+1}B_{\lambda} \bullet \Sigma_{i=0}^{r+1} d_{i}B_{\lambda} \cong B_{\lambda} \bullet \Sigma_{i=0}^{r+1} d_{i}B_{\lambda}$$

- and so, inductively, $B_{\lambda} \oplus I = B_{\lambda} \oplus d_{0}B_{\lambda} = B_{\lambda} \oplus B_{\lambda}$. (b) In view of part (a), this follows from [29, Theorem 1].
- (c) The first assertion follows from (b) and [3, Theorem 7] and the second is immediate from [27, Corollary 1.8].
- (d) This can be shown as in the case of the Weyl algebra A, [16, Theorem 5.5]. We omit the details.

2. FREE SUBALGEBRAS

In this section, we consider division k-algebras D generated by an arbitrary polycyclic-by-finite group G ≤ D*. The proof of our main result (Theorem 2.3) depends upon two major ingredients which we now describe.

Let A be a finitely generated free abelian group and let H be a group acting on A. The action of H on A is said to be rationally irreducible if A & Q is an irreducible module for the rational group algebra QH or, equivalently, if H normalizes no proper pure subgroup of A. The following result is due to G. Bergman [1a] (cf. also [18, 9.3.9] and [5]).

Theorem 2.1 (Bergman). Let A be a finitely generated free abelian group and let H be a group acting on. A. Suppose that H and all its subgroups of finite index act rationally irreducibly on A. If I is a proper H-invariant ideal of the group algebra kA, then either I = 0 or kA/I is finite dimensional over k.

The second result that we will need is due to L. Makar-Limanov [15]. Strictly speaking, he considers the group algebra kH of the discrete Heisenberg group $H = \langle x,y | z=[x,y] \rangle$ central \rangle , and its

division ring of fractions. His methods, however, can easily be adapted to deal with the algebras $B_{\lambda}(k)$ and $E_{\lambda}(k)$, where $\lambda \in k^*$ has infinite order (Section 1). Note that Q(kH) can in fact be written as $Q(kH) = E_{x}(k(z))$.

Theorem 2.2 (Makar-Limanov). Let $\lambda \in k^*$ be of infinite order. Then $E_{\lambda}(k)$ contains a free k-subalgebra of rank 2.

The following result extends this to division algebras generated by arbitrary polycyclic-by-finite groups.

Theorem 2.3. Let D = k(G) be a division k-algebra generated by some polycyclic-by-finite group $G \le D^*$. Then D contains a free k-subalgebra of rank ≥ 2 if and only if G is not abelian-by-finite.

<u>Proof.</u> If G is abelian-by-finite, then D is finite dimensional over its center, and hence D does not contain free subalgebras. If G is nilpotent-by-finite but not abelian-by-finite, then after dropping to a subgroup of finite index, we may assume that G is non-abelian torsion-free nilpotent. Then G contains elements x and y whose commutator z = [x,y] is $\neq 1$ and commutes with x and y. Set $K = k(z) \subseteq D$ and consider the K-algebra $B \subseteq D$ generated by x and y and their inverses. Clearly, B is an image of $B_z(K)$. Since $z \in K^*$ has infinite order, $B_z(K)$ is simple and we do in fact have isomorphisms $B \cong B_z(K)$ and $Q(B) \cong E_z(K)$. The existence of a free subalgebra in D now follows from Theorem 2.2, because the embedding $B \subseteq D$ extends to an embedding $Q(B) \subseteq D$.

Thus, in the following, assume that G is not nilpotent-by-finite and that all its nilpotent subgroups are abelian-by-finite. We will proceed in three steps.

Step 1. G contains a subgroup H which is a semidirect product $H = A \times \langle z \rangle$ with A free abelian of rank at least 2 and with z and all its powers acting rationally irreducibly on A. Proof. After dropping to a subgroup of finite index, we may assume that the Fitting radical B = Fitt(G) and G/B are both free abelian \neq <1> (use [18, 12.1.5]). Fix $z \in G$, $z \notin B$ and set $V = B \bullet_Z Q$. Replacing z by a suitable power if necessary, we may assume that all irreducible $Q\langle z \rangle$ -submodules of V remain irreducible for $Q\langle z^n \rangle$ for all $n \geq 1$ (choose n so that the composition length of the $Q\langle z^n \rangle$ - socle of V is maximal) and, moreover, that z acts trivially on the 1-dimensional $Q\langle z \rangle$ -submodules of V (their intersections with B are infinite cyclic groups normalized by z so z^2 acts trivially). Then V must contain an irreducible $Q\langle z \rangle$ -submodule U of dimension at least 2, for otherwise the minimal polynomial of z on V would be of the form $(z-1)^T$ for some r

and $\langle B,z \rangle$ would be nilpotent and normal in G, contradicting the fact that B = Fitt(G). Thus we can take A = UNB and H = $\langle A,z \rangle$ = A $\langle z \rangle$.

Step 2. H contains a free semigroup on two generators. Proof. This is a consequence of more general work of Rosenblatt [23]. The present special case however can quickly be dealt with using an idea of H. Bass [1]. Let ζ be the automorphism induced by z^{-1} on A and let $K = Q[\zeta] \subseteq \operatorname{End}_Q(A \bullet_Z Q)$. Then K is a finite field extension of Q and ζ is not a root of unity. By a theorem of Kronecker, there exists a Q-embedding, G of K into the complex numbers, C, with $|\zeta^G| > 1$ [9, p. 215]. After replacing z by a suitable power, we may assume that $|\zeta^G| > 2$. We show that for any $a \in A$, $a \ne 1$, the semigroup generated by z and az is free. Indeed, suppose that

$$z^{io}az^{i1}...az^{ir} = z^{jo}az^{j1}...az^{js}$$

is a nontrivial relation, with $r,s \ge 0$, $i_1,...,i_r,j_1,...,j_s \ge 1$, and $i_0,j_0 \ge 0$. Rewriting this relation as

$$a^{\zeta^{i_{0}}+\zeta^{i_{0}+i_{1}}+\cdots+\zeta^{i_{0}+\cdots+i_{r-1}}\sum_{z=0}^{r}i_{1}}$$

$$= a^{\zeta^{j_{0}+\zeta^{j_{0}+j_{1}}+\cdots+\zeta^{j_{0}+\cdots+j_{s-1}}\sum_{z=0}^{s}j_{1}}$$

we see that $\sum_{l=0}^{r} i_l = \sum_{l=0}^{s} j_l$. Using the fact that a generates A \bullet_Z Q as a K-vector space, we further deduce that

$$\zeta^{i_{0}}+\zeta^{i_{0}+i_{1}}+\dots+\zeta^{i_{0}+\dots+i_{r-1}} = \zeta^{j_{0}}+\zeta^{j_{0}+j_{1}}+\dots+\zeta^{j_{0}+\dots+j_{s-1}}.$$

Since $(i_0,i_1,\ldots,i_r) \neq (j_0,j_1,\ldots,j_s)$, it follows from the above that ζ satisfies a nontrivial polynomial $f(x) = \sum_{l=0}^n r_l x^l$ with coefficients $r_1 \in \{0,\pm 1\}$, $r_n \neq 0$. Therefore, in C we have $0 = \sum_{l=0}^n r_l (\zeta^0) 1$ and so

$$|\zeta^{\sigma}|^n \leq \sum_{i=0}^{n-1} |\zeta^{\sigma}|^i = \frac{|\zeta^{\sigma}|^n - 1}{|\zeta^{\sigma}| - 1}$$

which contradicts $|\zeta^{\sigma}| > 2$.

Step 3. The canonical k-algebra map $kH \rightarrow D$ given by the inclusion $H \subseteq D^*$ is an embedding.

<u>Proof.</u> Let I denote the kernel of this map and suppose that I is nonzero. Then I is completely prime and INKA is also nonzero. For, every $\alpha \in kH$ can be uniquely expressed as $\alpha = \sum_{i=p}^{q} \alpha_i z^i$ with $\alpha_i \in kA$. Choose $0 \neq \alpha \in I$ of minimal length q-p and with p=0. If $q \neq 0$, then $\beta z^{-q} \neq \beta$ for some $\beta \in kA$, and

$$\beta \alpha - \alpha \beta = \sum_{i=1}^{q} \alpha_i (\beta - \beta z^{-i}) z^i \in I$$

is nonzero and shorter than α . Therefore, q=0 and hence $\alpha \in I\cap kA$. Since INkA is z-stable, Theorem 2.1 implies that $F=kA/I\cap kA$ is a finite dimensional field extension of k, isomorphic to the k-subalgebra of D generated by A. Now z acts on F by k-automorphisms and so some power of z must act trivially on F, hence on A. However, this contradicts our construction of H so that I must be zero.

The theorem now follows, because Step 2 shows that kH contains a free k-algebra and hence so does D, by Step 3.

Corollary 2.4. Let D = k(G) be a division k-algebra with $G \le D^*$ polycyclic-by-finite. Then D has finite Gelfand-Kirillov dimension over k if and only if G is abelian-by-finite.

3. MISCELLANY

A) COMMUTATIVE SUBFIELDS

The following lemma is extracted from [20]. Here, Kdim denotes (Rentschler-Gabriel-) Krull dimension.

Lemma 3.1 (Resco, Small, Wadsworth). Let A be an absolutely Noetherian k-algebra (i.e., A \bullet_k K is Noetherian for all field extensions K/k) and let R = AS-1 be the localization of A with respect to a right Ore set S \subset A. Then every commutative subfield L of R with k \subset L is finitely generated over k. Moreover, if Kdim(A \bullet_k K) \leq n for all field extensions K/k, then tdeg_k L \leq n.

<u>Proof.</u> R •_k L is obtained by localizing A •_k L with respect to S •_k 1, and hence R •_k L is Noetherian as A •_k L is. Moreover, R •_k L is free as a module over L •_k L and so L •_k L must also be Noetherian. By 28 , L is finitely generated over k. Finally, tdeg_k L = Kdim(L •_k L) \leq Kdim(R •_k L) \leq Kdim(A •_k L), where the first inequality follows from the freeness of R •_k L over L •_k L and the second holds, since R •_k L is a localization of A •_k L.

The lemma applies to the case where A = kG/I is an image of a group algebra kG with G polycyclic-by-finite. In this case, by [25], an upper bound for the Krull dimensions of $A \bullet_k K$ is given by the Hirsch number h(G) of G. In particular, we have the following

Corollary 3.2. If D = k(G) is a division k-algebra generated by some polycyclic-by-finite group G, then all commutative subfields

 $L\supset k$ of D are finitely generated over k , and $tdeg_{k}$ $L\leq h(G)$.

In general, h(G) is a very crude bound. For example, if $\lambda \in k^*$ has infinite order, then $B_{\lambda}(k) \in_{K} K = B_{\lambda}(K)$ has Krull dimension 1, by Lemma 1.1. Therefore, Lemma 3.1 shows that commutative subfields of $E_{\lambda}(k)$ have transcendence degree at most 1 over k, whereas any division algebra D = k(G) with h(G) = 1 is finite dimensional over its center. R. Resco has conjectured that if G is torsion-free polycyclic-by-finite and D = Q(kG) is the division ring of fractions of kG, which is a domain by [4],[6], then all commutative subfields $L \supset k$ of D have transcendence degree bounded by

 $c(G) = \max \{h(A) \mid A \text{ an abelian subgroup of } G\}.$

We cannot prove this, but the following discussion should shed some light on this problem. For the rest of this subsection, we keep the following notation:

G is torsion-free polycyclic-by-finite, and D is the division ring of fractions of the group algebra kG. For any subgroup H \leq G we set $D_G(H) = \{g \in G \mid g \text{ has only finitely many H-conjugates}\}$, and $C_R(H)$ denotes the centralizer of H in R (for given R).

The main content of the following lemma is due to M. Smith [24].

Lemma 3.3. For any subgroup H of G, $C_D(H) = Q(C_{kG}(H)) \subset Q(kD_G(H))$ and $Q(kD_G(H))$ is finite dimensional over $C_D(H)$.

Proof. Set $R = kD_G(H)$ and note that $C_{kG}(H) \subseteq R$. More precisely, the action of H on R by conjugation factors through some finite image H of H, and $C_{kG}(H)$ is the fixed subring of R under this action. Therefore, since R is a Noetherian domain, $C_{kG}(H)$ is a Goldie domain and $Q(C_{kG}(H))$ is the fixed subring of Q(R) under the action of H ([17, Theorem 5.5], e.g.). Also, Q(R) is finite dimensional over $Q(C_{kG}(H))$ ([17, Lemma 2.18]). Finally, The proof of [24, Theorem 6] shows that $C_{D}(H) \subseteq Q(R)$. Hence, clearly, $C_{D}(H) = C_{O(R)}(H) = Q(C_{kG}(H))$ and the lemma is proved.

We will call a commutative subfield $L \supset k$ of D almost maximal if L is not contained in a commutative subfield of D having larger transcendence degree over k than L or, equivalently, if $C_D(L)/L$ is algebraic. The following is immediate from Lemma 3.3.

Corollary 3.4. Let A be an abelian subgroup of G. If $A = D_G(A)$ (A has finite index in $D_G(A)$), then k(A) = Q(kA) is a maximal (resp., almost maximal) commutative subfield of D.

We conclude this subsection by mentioning a few instances where the corollary applies.

Examples 3.5. (a) Suppose that A is a maximal abelian subgroup of G and A is subnormal in $D_G(A)$. Then we do in fact have equality, $A = D_G(A)$, and so k(A) is maximal. To see this, choose a subnormal series $A = D_0 \triangleleft D_{n-1} \triangleleft \ldots \triangleleft D_0 = D_G(A)$. Then any n-fold commutator $\{a_n, [a_{n-1}, \ldots, [a_1, d]] \ldots \}$ with $a_i \in A$, $d \in D_0$ belongs to A. Consider an (n-1)-fold commutator $c = [a_{n-1}, \ldots, [a_1, d] \ldots]$. Let $a \in A$ be arbitrary and choose m so that a^m is central in D_0 . Then, since A is abelian and $[a,c] \in A$, we have

 $1 = [a^m, c] = [a, c]^m,$

and hence [a,c] = 1. Therefore, $c \in C_G(A) = A$. By induction, we obtain $D_O = A$, as we have claimed.

Since subnormality is automatic if G is nilpotent, we recover M. Smith's result [24, Corollary 8]. In general, however, maximal abelian subgroups A of G need not satisfy $A = D_G(A)$ (e.g., take $G = \langle x,y | y^{-1}xy = x^{-1} \rangle$ and $A = \langle y \rangle$) and so k(A) need not be maximal.

(b) If $A \leq G$ is abelian and satisfies h(A) = c(G), then it is trivial to verify that A has finite index in $D_G(A)$. Thus k(A) is at least almost maximal in this case.

B) LIE COMMUTATORS

Let D = k(G) be a division k-algebra generated by some polycyclic-by-finite group G and assume that char k = 0. It would be interesting to know whether the identity element $1 \in D$ can be written as a sum of Lie commutators in D. If not, then this fact would distinguish division algebras of the above type from division algebras E generated by finite dimensional Lie subalgebras of $E[\ \ \ \]$ (i.e., E with Lie bracket [a,b] = ab - ba), at least if k is algebraically closed. This follows from the following simple observation.

Lemma 3.6. Let E be a division algebra over k. If E [[] contains a non-abelian nilpotent Lie algebra, or a non-abelian finite dimensional Lie algebra over k and k is algebraically closed, then there exist elements a,b \in E with ab -ba = 1.

<u>Proof.</u> Suppose $g \subseteq E[$,] is a nilpotent Lie algebra which is not commutative. Then there exists an element $c \in g$ such that [c,g] is nonzero and is contained in the center of g. Choose $b \in g$ with $[c,b] = cb - bc \neq 0$ and set $a = c[c,b]^{-1} \in E$. Then

[a,b] = 1 in E.

If, on the other hand, $g \subseteq E_1$ j is finite dimensional non-nilpotent, then Engel's theorem [8, Sec. 3.2] implies that there exists a $\in g$ such that ad(a) \in End(g) is not nilpotent. Let $0 \neq c \in g$ be an eigenvector for ad(a) with nonzero eigenvalue $\gamma \in k$ and set $b = \gamma^{-1}c \in E$. Then $[ac^{-1},b] = 1$ in E.

Algebraic closure of k is definitely required in the above. For example, the standard basis $\{1,i,j,k\}$ of the real quaternions H spans a Lie subalgebra of H, but $1 \in H$ is not even a sum of Lie commutators (use the embedding $H \subseteq M_2(C)$, or the following proposition).

We now return to division algebras generated by polycyclic-by-finite groups. The following result extends, and uses, [11, Lemma 2.3].

Proposition 3.7. Let G be a finitely generated nilpotent-by-finite group and let char k = 0. Let P be a prime ideal of kG and set R = Q(kG/P). Then $1 \notin [R,R]$, the space of Lie commutators in R.

Proof. For G finitely generated nilpotent, this follows from [11, Lemma 2.3]. In general, choose $G_{\rm O}$ to be a nilpotent normal subgroup of finite index in G. Then ${\rm PNkG}_{\rm O}$ is a finite intersection of pairwise incomparable prime ideals ${\rm P_i}$, i=1,2,...,1, of kG_O. Moreover, it is routine to check that the Ore set S of regular elements of kG_O/PnkG_O remains Ore and regular in kG/P. Therefore,

$$R = (kG/P) S^{-1} = \bigoplus_{x} xR_{0}$$

where $R_0 = (kG_0/PnkG_0)S^{-1}$ and x runs through a transversal for G_0 in G. Now R_0 is the direct product of the rings $R_1 = Q(kG_0/P_1)$, i=1,2,...,1, and so

$$R \subseteq End(R_{R_O}) \cong M_n(R_O) \cong \prod_{i=1}^{l} M_n(R_i)$$
,

where n is the order of G/G_{C} . Thus it suffices to establish the assertion for the matrix rings $M_n(R_i)$. But we know it is true for each R_i . Hence the canonical map of k-spaces $T: R_i \to R_i/[R_i,R_i]$ does not vanish on 1. T can be lifted to a map $T': M_n(R_i) \to R_i/[R_i,R_i]$ by setting $T'([r_{st}]) = \sum_{s=1}^n T(r_{ss})$. Since T' inherits k-linearity and the trace property T'(AB) = T'(BA) from T and maps the identity $1 \in M_n(R_i)$ to the nonzero element $n \cdot T(1)$, we conclude that $1 \in [M_n(R_i), M_n(R_i)]$ as required.

The proposition applies in particular to division algebras D = k(G) generated by nilpotent-by-finite groups G. Sometimes the char 0 assumption is superfluous here. For example, if D = k(G) with G torsion-free nilpotent, then $1 \notin [D,D]$ holds in any character-

istic. This follows from [11, Sec. 2], where explicit traces are constructed for so-called Hilbert-Neumann algebras. The same construction also applies to the division rings $E_{\lambda}(k)$ and, more generally, to the division rings of fractions of twisted group algebras $k^{t}[G]$ with G an ordered group. For general polycyclic-by-finite groups, however, char 0 is definitely needed. For example, consider the Weyl algebra $A_{1} = k\{x,y\}$, xy - yx = 1, with char k = p > 0. Then $D_{1} = Q(A_{1})$ is generated, as division algebra, by the elements a = xy and x which satisfy $x^{-1}ax = a - 1$. Therefore, the generating group $G = \langle a, x \rangle$ is polycyclic and is in fact isomorphic to a semidirect product of the form $Z^{(p)} \neq Z$. On the other hand, R. Snider [26] has shown that if char k = 0 and $G \cong Z^{(r)} \neq Z$ for some r, then D = Q(kG) satisfies $1 \notin [D,D]$.

ACKNOWLEDGEMENT

This work was supported by the Deutsche Forschungsgemeinschaft, Grant No. Lo 261/2-1.

REFERENCES

- H. Bass, "The degree of polynomial growth of finitely generated nilpotent groups", Proc. London Math. Soc. (3) 25(1972) 603-614.
- 1a. G. M. Bergman, "The logarithmic limit set of an algebraic variety", Trans. AMS 157(1971) 459-469.
- 2. K. A. Brown, "Remarks on polycyclic group algebras", preprint, Univ. of Glasgow, 1982.
- 3. C. Chevalley, "L'arithmétique dans les algèbres de matrices", Actualités Sci. Indust. No. 323, Paris, 1936.
- 4. G. H. Cliff, "Zero divisors and idempotents in group rings", Can. J. Math. 23(1980)596-602.
- 5. D. R. Farkas, "Noetherian group rings: an exercise in creating folklore and intuition", preprint, Virginia Polytechnic Inst. and State Univ., 1983.
- D. R. Farkas and R. L. Snider, "K_O and Noetherian group rings",
 J. Algebra 42 (1976) 192-198.
- 7. D. Hilbert, "Grundlagen der Geometrie", Teubner, Leipzig, 1899.
- 8. J. E. Humphreys, "Introduction to Lie Algebras and Representation Theory", Springer, New York, 1972.
- 9. K. Ireland and M. Rosen, "A Classical Introduction to Modern Number Theory", Springer, New York, 1982.

- V. A. Jategaonkar, "Multiplicative analog of Weyl algebras", Notices AMS 23(1976)p.A-566.
- 11. M. Lorenz, "Division algebras generated by finitely generated nilpotent groups", to appear in J. Algebra.
- 12. M. Lorenz, "On the transcendence degree of group algebras of nilpotent groups", to appear in Glasgow Math. J.
- 13. M. Lorenz, "Prime ideals in group algebras of polycyclic-byfinite groups: vertices and sources", in: Lect. Notes in Math. No. 867, Springer, New York, 1981.
- 14. M. Lorenz and D. S. Passman, "Prime ideals in group algebras of polycyclic-by-finite groups", Proc. London Math. Soc. (3)43 (1981)520-543.
- 15. L. Makar-Limanov, "On group rings of nilpotent groups", preprint, Wayne State Univ., 1983.
- 16. J. C. McConnell and J. C. Robson, "Homomorphisms and extensions of modules over certain differential operator rings", J. Algebra 26(1973)319-342.
- 17. M. S. Montgomery, "Fixed Rings of Finite Automorphism Groups of Associative Rings", Lect. Notes in Math. No. 818, Springer, New York, 1980.
- 18. D. S. Passman, "The Algebraic Structure of Group Rings", Wiley-Interscience, New York, 1977.
- 19. R. Resco, "Transcendental division algebras and simple Noetherian rings", Israel J. Math. 32(1979)236-256.
- R. Resco, L. W. Small, and A. Wadsworth, "Tensor products of division rings and finite generation of subfields", Proc. AMS 77(1979)7-10.
- 21. P. Revoy, "Algébres de Weyl en caracteristique p", C. R. Acad. Sc. Paris (Série A) 276(1973)225-228.
- 22. J. E. Roseblade, "Prime ideals in group rings of polycyclic groups", Proc. London Math. Soc. (3) 36(1978) 385-447.
- 23. J. M. Rosenblatt, "Invariant measures and growth conditions", Trans AMS 193(1974)33-53.
- 24. M. K. Smith, "Centralizers in rings of quotients of group rings", J. Algebra 25(1973)158-164.
- 25. P. F. Smith, "On the dimension of group rings", Proc. London Math. Soc. (3) 25(1972) 288-302.
- 26. R. L. Snider, "The division ring of fractions of a group ring", to appear in Proc. Sem. Malliavin, Lect. Notes in Math., Springer.

- 27. J. T. Stafford, "Stably free, projective right ideals", preprint, Univ. of Leeds, 1982.
- 28. P. Vamos, "On the minimal primes of a tensor product of fields", Math. Proc. Cambridge Philos. Soc. 84(1978) 25-35.
- 29. D. B. Webber, "Ideals and modules of simple Noetherian hereditary rings", J. Algebra 16(1970)239-242.
- 30. A. E. Zalesskii, "Irreducible representations of finitely generated nilpotent torsion-free groups", Math. Notes 9 (1971)117-123.