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Abstract. Continuing. the work in [11],[12] we study division
algebras D = k(G) over a field k which are generated by some
polycyclic-by-finite subgroup G of the multiplicative group D¥*
of D. We discuss a specific class of examples of such division
algebras. that can be thought of as multiplicative analogs of the
Weyl field. Furthermore, we show that the division algebras D =
k(G) always contain free subalgebras of rank 2 2, provided G is
not abelian-by-finite. Finally, we discuss some open guestions
concerning commutative subfields and Lie commutators in D = k(G).

INTRODUCTION

During the past decade, a considerable amount of work has been
invested in the study of prime ideals in group algebras kG of
polycyclic-by~finite groups G over a field k. After the
ioneering work of Zalesskii [30], Roseblade's break~-through in
22], and the finishing touches by Passman and the author [14],
the subject has now reached a certain state of maturity: one has
a detailed recipe for constructing all primes P of kG starting
from prime ideals of group algebras kH, where H runs through
special finite-by-abelian subquotients of G (see [13] or [14] for
the precise formulation). The resulting class of algebras kG/P
is a rich source of interesting examples of prime Noetherian rings
whose fine structure is far from being well understood. For example,
if Q = Q(kG/P) denotes the classical ring of fractions of kG/P
then, by Goldie's theorem, Q = M (D) for some integer n and a
suitable division k-algebra D goth of which are in general gquite
mysterious to us. In the present note, continuing the work in [ 11],
[12], we study the Goldie field D associated with a completely
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prime ideal P of kG. In other words, we study division k-algebras
D generated by some polycyclic-by-finite group G < D*, the multi-
plicative group of D. The restriction to completely prime ideals
is partly justified by the following result, due to Zalesskii {30,
Theorem 4] for primitive ideals and to Brown [2] in general:

Let P be a prime ideal of kG. Then there exists a charac-
teristic subgroup G_ of G with G/G_ finite and such that
PNkG is a finite ifitersection of compfetely prime ideals of kG
whicf are all conjugate under the action of G on kGo. °

In Section 1, we study a specific class of algebras B: (AEk*)
and their classical division.rings of fractions E,. Each ' , and
EA’ is generated by a 2-generated nilpotent group of class 2 and
can be viewed as a multiplicative analog of the Weyl algebra A, ,
resp. the Weyl field D1 = Q(A,) (see also [10]). Although the
B, 's are not isomorphic to A, , and to each other, they share many
of the well-known properties 6f A,. The main result of Section 2
states that if D = k(G) 1is a division algebra generated by some
polycyclic-by-finite group G <.D* and if G is not abelian-by-
finite, then D contains a free k-subalgebra of rank at least 2.
This result depends on recent work of L. Makar-Limanov [15]. Finally,
in the last section, we briefly discuss commutative subfields and
Lie comutators in division algebras D = k(G) of the above type
and mention a number of open questions.

Notations and Conventions. In this paper, k always denotes a
commutative field. If D is a division k-algebra, then we use the
notation D = k(E) to indicate that D is generated, as division
k-algebra, by the subset E of D. Furthermore, for any ring R
(always with 1), R* denotes the set of nonzero elements, U(R)

the group of units, 2(R) the center, and Q(R) the classical ring
of fractions of R (if it exists). We use square brack?ts to denote
group. theoretical and Lie commutators. Thus [x,y] = x y xy or
[x,y] = xy-yx, depending on the context. Otherwise the notation is
standard, and follows [18]. '

1. A CLASS OF EXAMPLES

Let A € k* be given and define B, = Bk(k) to be the k-algebra
gg?ergfed‘by two elements x and y together with their inverses
x ',y subject to the relation xy = Ayx. In short,

] ¢
B, = kix 1,y Y xy-dyw) (A € k*).

Some results concerning these algebras and their tensor products
have been announced in [10], even for k not necessarily a field.
As far as I know, the B,'s, or rather their power series analog,
have made their first appearance in [7], with k being the field of



rational numbers and A = 2.

The algebra B) can be realized as the factor of the group
algebra kG, with G = <x,y| z=[x,y] central> the free nilpotent
group of class 2 on 2 generators, modulo the ideal (z-A)kG. B
can also be viewed as a twisted group algebra of the free abelian
group of rank 2,

By = xt(z o 2],
or as an iterated Ore extension,
+ +
B, = k[x Hiy*la) with x® = ax.

In particular, BA is a Noetherian domain. We denote its classical
division ring of fractions by E; = E; (k). Note that E) = k(<x,y>),
where <x,y> is nilpotent of class 2 (if A # 1).

The following lemma describes some basic properties of the
Bl's. Some of them have also been noted in [10]. We are mostly
interested in the case where A is not a root of unity. In this
case the properties of By closely mirror those of the Weyl algebra
A in characteristic 0, whereas the case where A is a root of
?nigy corresponds to the Weyl algebra in positive characteristics

21].

Lemma 1.1. (a) Let A € k* be of finite (multiplicative) order n.
Then By iinfrgg of rank n* as a module over its center
Z(By) = k[x=",y"']. Moreover, for any ideal I of ‘B , one has
I= (IﬂZ(BA))B . .

(b) 1If € k* has infinite order, then By is a central-
simple k-algebra of global and Krull dimension 1 and of Gelfand-
Kirillov dimension 2.

Proof. +gir§§ suppose that A has finite order n and set
C = klx— R'ass | © B). Then, C € Z(By) and B) is free gs a modtflg

over C, with basis {xlyj| 0<i,5<n-1}. If b=2I"_ ¢, xy
i, j=0 "ij

€ z(By), with cij € C, then
R S | i j
b=y by zi,j=0 cijA X'y
and so cij cy Al for an1 i,j. Therefore, ¢, . =0 for i # 0.
Similarly, - for 3 #0 one has c¢,, = 0 which éﬂows that C = Z(B,)).

Now let I be an ideal of B) a%& set I, = (InC)BA c I. It follows
from the foregoing that BA/I1 is free of rank n* over K = C/INC,
and a calculation as above shows that KX = z(B)/I,). B), being an
image of the group algebra of a finitely generateé nilpotent group,
is a polycentral ring [18, 11.3.12]. Thus, if I strictly contains

11 , then we must have (I/Il) N K#0 which is impossible. There-~



fore, I = I1 and part (a) is proved.

As to part (b), the equality Z(By) =k , for A of infinite
order, follows by a straightforward calculation as above. Simplicity
of B) now is a consequence of polycentrality, or can be checked
directly by the usual shortening trick. Finally, GK-dimk(BA) = 2
follows from the fact that each monomial in the elements x,y and
their inverses is a scalar multiple of an "ordered” monomial xiyj
(i,j € 2), and K-dim(B)) = gl.dim(By) = 1 follows from [19, Theorem
4.5], e.g. (see also [10]). B -

Corollary 1.2. (a) Let A € k* be of finite order n. Then E) =
Q(By) is obtained by localizing B) at the nonzero elements of
z(By). Thus Z(Ej) = k(x",y®) and Ej = Z(E))*[2/nZ e 2/n2] is a
twisted group algebra of 2Z/nZ o Z/nZ over Z(E)).

(b) If A is not a root of unity, then 2z(E)) = k.

Proof. The assertions in (a) are immediate from Lemma 1.1(a). For
(b) just note that for any simple or, more generally, polycentral
ring R for which Q(R) exists one has 2(Q(R)) = Q(z(R)). &

It follows from [12, Corollary 2.2] that the Gelfand-Kirillov
transcendence degree of E) over k equals 2. If A has infinite
order, then E) contains a free k-subalgebra (see Section 2). Hence
15% has infinite Gelfand-Kirillov dimension in this case. On the
other hand, for A a root of unity, Ey clearly has Gelfand-
Kirillov. dimension 2. Also, the commutative transcendence degree of
E), in the sense of Resco [19] is clearly 2 if A has finite order.
For A of infinite order, it equals 1 , by [19, Theorem 4.3] (or
see Section 3.34). :

Before. we turn to the isomorphism question for the division
algebras Ej; , let us briefly recall a few general facts concerning
twisted group algebras kt[H] of ordered groups H.. By definition,
k*[H] has a k-basis {x| x € B} , and multiplication in kt[m] ‘is
determined by the rule

X-y = tix,y)xy (x,y €H),

where t: H X H -+ k* is a 2-cocycle. The basis {il x € H} can
always be normalized so that & = 1 is the identity element of
kt[E]. Each % is a unit of kt[H] and, using the fact that B

is ordered, it is easy to see that the group of units U(kt[H]) of
kt[BE] consists precisely of the elements of the form Gx with

@ € k* and x € H. Furthermore, we have a multiplicative map, the
so-called lowest term map,

2: x*[r] -+ {0} VU u(xt[r))



defined by £(0) = 0 and £(a) axoxo for 0=2a=1
with xo = min {x € 8| o, = 0}. s c xt[H] is a (rlggt) Ore
set of regular elements, then l extends to the localization
kt[H]s~l by setting 2(ab-1l) = R(a)L(b)-l. It is trivial to verify
that £ is well-defined and remains multiplicative on kt[a]ls-1.

. The foregoing applies conveniently to Bj. Indeed, if x*1 yi1
are the canonical generators of B) with xy = Ayx, then

By = @ kxlyl = xt[z e 2],
i,j€z
an@d Z o Z is of course an orderable group. Thus the corresponding
lowest term map provides us with a multiplicative map

%: EX + U, = {oxiyi] i,5 € 2, a € k*} = U(B,)

which is the identity on UU' hence on k* < UU‘

Proposition 1.3. Let A,u € k* be given. Then E; and E, are
4somorphic as k-algebras.if and only if A =U or A = p-i.°

Proof. Since B) = k{x*1,y*1}/ (xy=-Ayx) = k{y*1,x*1}/(yx-A-1xy) =
By-1 the condition is certainly sufficient. To prove nece551ty,
let ¢: Ey =+ E, be a fixed k-algebra isomorphism, and let x—1 iy
€ By and \r'1 vile be the canonical generators with = Ayx,
resp. uv = hvu. Let &: Ef > U, = {ouivi| 1,3 € 2, a € k*} be the
lowest term map with respect to a fixed ordering of Uu/k* =2z e 2.
Then

=-%+¢p: E* > U
¢ H K

is a group homomorphism which is the identity on k*. In particular,
we obtain

A=£0 = [£(x),£(p],

and this belongs to the commutator subgroup [Uu'“u] of U,. But
[UU'Uu] = <4>. and so we have A € <>. By symmetry, we conclude
that <A> = <> in k*. Therefore, if A has infinite order, then
A=1u or A=yu-l and we are done. Thus, in the following, we
concentrate on the case where A and M have finite order n.

We show that f maps U, isomorphically onto. U,. First note
that £ induces a map f£: UX/k* - U /k* Both groups are free
abelian of rank 2 generated by X and ¥ , resp. @ and ¥., where
we use overbars to denote images mod k*. Suppose that T(Xig}) = 1
with O # |i| + |j| minimal. Then

1= [£(xlyd) £ ] =



and so i = ni; for a suitable 1i; . Similarly, j = nj; and hence
1 = Exigd) = Filgihn |

Since U, /k* is torsion-free, we conclude that f(iil§ji) =1

which contradicts our minimality assumption. Therefore, f is
injective, and hence the same is true for f. on U). To prove
surjectivity note that, clearly, Z(Eﬁ) = U, and R(Eﬁ) = £(B}) £(BY)
Thus it suffices to show that f(BX) = £(U Y. But every a € Bi

can be written as a finite sum a = Zi u; with u;€ Uy pairwise
distinct mod k*. Hence, by the above, the images f(u,) € Uu/k*

are distinct, say £f(uy) is the smallest with respect to the
ordering of Uu/k*. Then we obtain that

£(a) = R(Z; (uy)) = Lib(uy)) = £(uy) ,

as required. Therefore, f on U) and f are isomorphisms.
We conclude that f(x) = aivd , £(y) = G'¥S with is-jr = #1.
Consequently,
: - *
A= [£(x),£(y)] = [uivi,u¥v®] = pis ir _ i 1 ,

and the proposition is proved. B

Proposition 1.3 extends [10, Theorem 1] which states that (for k

a domain) B) and B, are isomorphic as k-algebras iff A= p*l.
The above argument essentially follows the lines of the proof of the
isomorphism theorem [11, Theorem 4.1]. In fact, for A of infinite
order, Proposition 1.3 could have been deduced from that result.

It can be shown that in E) the identity element cannot be
written as a sum of Lie commutators.(Section 3.B). In particular,
the E)'s are all distinct from the Weyl field D, = Q(A,).

We close this section with a few facts concerning projective
and injective modules for B, A € x* of infinite order. The
corresponding assertions for the Weyl algebra A in characteristic
0 are well-known. We therefore restrict ourselves to a few indica-
tions and refer to the literature whenever possible.

Proposition 1.4. Let XA € k* be of infinite order.

(a) For any nonzero right ideal I of By, By @ I = By o B).

In particular, every right ideal is generated by at most 2 elements.
(b) A finitely generated projective right Bj-module is either free
or isomorphic. to a right ideal of By .

(c) For n > 1, the matrix ring M,(B,) is a principal right (and
left) ideal ring, whereas B) is not a principal ideal ring.

(d) By has no nonzero finitely generated injective modules.




Proof. (a) We follow Webber [29]. Write B as an Ore extension,
By = RIY*};a] with R = k[x*!] ang x* = AX. Then s = R* is an
Ore set in B) and B>‘S‘1 z k(x) [¥*l;al is a principal ideal
domain. Therefore, for any nonzero right ideal I of B) there
exists 0 * d € I such that I = I/doBl_ is R-torsion. If I #0
choose 0 # d1 € I such that M; = annp(d,) is maximal among the
annihilators of nonzero elements of I. Then M; is a maximal ideal
ideal of R , and this easily implies that M;Bj is a maximal right
ideal of B). Therefore, d1BA g BA/PIBA where M1 = (Pl)' Continuing
this way and using the fact that B) is Noetherian we can write

I =L, d;B) with

r+1 r . _
I -0 4B/ 4 diB) = By/pr4yBy for r =0,1,...,m-1.

Applying Schanuel's Lemma we obtain

x " o~ r+i ~ r+i
B) o Zi=o d{By % p By @ zi=o d;By ¥ By o Zi=o d;B,

and so, inductively, BA @I =By o doBX = BX ® BA'

(b) In view of part (a), this follows from [29, Theorem 1].

(c) The first assertion follows from (b) and [3, Theorem 7] and
the second .is immediate from [27, Corollary 1.8].

(d) This can be shown as in the case.of the Weyl algebra Ay
{16, Theorem 5.5]. We omit the details. &

2. FREE SUBALGEBRAS

In this section, we consider division k-algebras D generated by
an arbitrary polycyclic-by-finite group G < D*. The proof of our
main result (Theorem.2.3) depends upon two major ingredients which
we now describe.

Let A be a finitely generated free abelian group and let H
be a group acting on A. The action of H on A. is said to be
rationally irreducible if A ®z Q is an irreducible module for the
rational group algebra QH or, equivalently, if H normalizes no
proper pure subgroup of A. The following result is due to G. Berg-
man [1a] (cf. also [18, 9.3.9] ana [5]).

Theorem 2.1 (Bergman). Let A be a finitely generated free abelian
group and.let H be a group acting on. A. Suppose.that H and all

its subgroups of finite index act rationally irreducibly on A.

If I is a proper H-invariant ideal of the group algebra kA, then

either. I = 0 or kA/I is finite dimensional over k.

The second result that we will need is due to L. Makar-Limanov
[15). sStrictly speaking, he considers the group algebra kH of the
discrete Heisenberg group B = <x.y| z=[x,y] central> , and its



division ring of fractions. His methods, however, can easily be
adapted to deal with the algebras B)(k) and E,(k), where A€ k*
has infinite order (Section 1). Note that Q(kH) can in fact be
written as Q(kH) = Ez(k(z)).

Theorem 2.2 (Makar-Limanov). Let A € k* be of infinite order.
Then E,(k) contains a free k-subalgebra of rank 2.

The following result extends this to division algebras genera-
ted by arbitrary polycyclic~-by~finite groups.

Theorem 2.3, Let D =k(G) be a division k-algebra generated by
some polycyclic-by-finite group G € D*. Then D contains a free
k-subalgebra.of rank > 2 if and only if G is not abelian-by-
finite.

Proof. If G is abelian-by-finite, then D is finite dimensional
over its center, and hence D .does not contain free subalgebras.
If G is nilpotent-by-finite but not abelian-by~finite, then after
dropping to a subgroup of finite index, we may assume that G is
non-abelian torsion-free nilpotent. Then G contains elements x
and y whose commutator z = [x,y] is # 1 and commutes with x
and y. Set K = k(z) €D and consider the K-algebra B €D
generated. by x and y and. their inverses. Clearly, B is an
image of B,(K). Since z € K* has infinite order, B,(K) is simple
and we do. in fact have isomorphisms B = B,(K) and Q(B) ¥ E,(K).
The existence of a free subalgebra in D now follows from
Theorem 2.2, because the embedding B € D extends to an embedding
Q(B) < D.

Thus, in the following, assume. that G is not nilpotent-by-
finite and that all its nilpotent subgroups are abelian-by-finite.
We will proceed in three steps.

Step 1. G contains a subgroup H which is a semidirect product
H=2A %<z> with A free abelian of rank at least 2 and with =z
and all its powers acting rationally irreducibly on . A.

Proof. After dropping to a subgroup of finite index, we may assume
that the Fitting radical B = Fitt(G) .and G/B are both free
abelian # <1> (use [18, 12.1.5]). Fix z € G, z € B and set

V =B &8, Q. Replacing 2z by a suitable power if necessary, we may
assume that all irreducible Q<z>-submodules of V remain irreducible
for Q<z™> for all n 21 (choose n so that the composition
length of the Q<z™>- socle of V is maximal) and, moreover, that

z acts trivially on the l-dimensional Q<z>-submodules of V (their
intersections with B are infinite cyclic groups normalized by 2
so z* acts trivially). Then V must contain an irreducible Q<z>-
submodule U of dimension at least 2, for otherwise the minimal
polynomial of z on V would be of the form (z-1)F for some I



and <B,z> would be nilpotent and normal in G, contradicting the
fact that B = Fitt(G). Thus we can take A = UNB and H = <aA,z>
= A N <z>,

Step 2. H contains a free semigroup on two generators.

Proof. This is a consequence of more general work of Rosenblatt
[23]. The present special case however can quickly be dealt with
using an idea of H. Bass [1]. Let T be the automorphism induced
by z7! on A and let k = glZ] C End,(A @5 Q). Then K is a
finite field extension of Q and T is not a root of unity. By

a theorem of Kronecker, there exists a Q-embedding, O of K into
the complex numbers, C, with 1291 > 1 [9 , p. 215]. After repla-
cing z by a suitable power, we may assume that 1291 > 2. wWe
show- that for any a € A, a ®# 1, the semigroup generated by z

and az is free. Indeed, suppose that

i i i
z Paz 1... az' f =

zjoazjl... azJS
is a nontrivial .relation, with r,s 2 O, il,...,lr,Jl,...,js 21,
and i,,jo 2 0. Rewriting this relation as

+oo .+ir-1 z

ig, ,io*i =
ac +C * ... +c z 1=0 1

acJ°+cjo+jl+ . +Cjo*---+js-lzzl=o 3

we see that L- =0 i = LS =0 31. Using the fact that a generates
A oz Q as a K-vector space, we further deduce that

glogglotily || yglote-tir-t o plogdetdt, | gdot---tls-t,

Since (igrite-c-riyg) * (Jordtr---edg) e it follows from the above
that [ satisfies a nontrivial polymomial £(X) = Z -0 rix! with
coefficients rl € {o0,*1}, r, # 0. Therefore, in C we have
0=12I"_ r (NI and so

1=0
Iz9In < z::é 1ZO]4i = 1g91 - 1
- 1291 -1

which contradicts (g9 > 2.

Step 3. The canonical k-algebra map kH - D given by the
inclusion H € D* is an embedding.

Proof. Let I denote the kernel of this map and suppose that I
is nonzero. Then I 1is completely prime and IflkA is also nonzero.
"For, every a € kH can be uniquely expressed as Q = 4 a;zt

with a; € kA. Choose 0 # @ € I of minimal length q—gp'and with
p=0. If q = 0, then Bz 2 B8 for some B € kA, and

Ba-aB=Z] a;8-B8haiex



is nonzero and shorter than «a. Therefore, q = 0 and hence a €
INkA. Since INkA is z-stable, Theorem 2.1 implies that F =
kA/INKA is a finite dimensional field extension of k, isomorphic
to the k-subalgebra of D generated by A. Now 2z acts on F .
by k-automorphisms and so .some power of =z must act trivially on
F, hence on. A. However, this contradicts our construction of BH
so that I must be zero.

The theorem now follows, because Step 2 shows that kH contains
a free k-algebra and hence so does D , by Step 3. &

Corollary 2.4. Let D = k(G) be a division k-algebra with G £
D* polycyclic~by-finite. Then D has finite Gelfand-Kirillov
dimension over k if and only if G is abelian-by~finite.

3. MISCELLANY
A) COMMUTATIVE SUBFIELDS

The following lemma is extracted from [20]. Here, Kdim denotes
(Rentschler-Gabriel-) Krull dimension.

Lemma 3.1 (Resco, Small, Wadsworth). Let A be an absolutely
Noetherian k-algebra (i.e., A e K is Noetherian for all field
extensions K/k) and let R = AS~l be the localization of A
with respect to a right Ore set S © A. Then every commutative
subfield L of R with k €L is finitely generated over k.
Moreover, if Kdim(A e, K) < n. for all field extensions X/k,
then tdegk L <n.

Proof. R o, L is obtained by localizing A ® L with respect to
S e 1, and hence R & L is Noetherian as A &, L is. Moreover,
R e L is free as a module over L L and so L L must also
be Noetherian. By 28 , L. is finitely generated over .k. Finally,
tdegy L = Kdim(L e L) < Kdim(R e, L) < Kdim(A @) L), where the
first inequality follows from the freeness of R & L over L & L
and the second holds, since R e L is a localization of A ok.L. |

The lemma applies. to the case where A = kG/I 1is an image of a
group algebra kG with G polycyclic-by-finite. In this case, by
[25], an upper bound for the Krull dimensions of A o K is given
by the Hirsch number h(G) of G.. In particular, we have the
following

Corollary 3.2. If D = k(G) is a division k-algebra generated by
some polycyclic-by-finite group G, then all commutative subfields




LDk of D are finitely generated over k , and tdegk L € h(G).

In general, h(G) is a very crude bound. For example, if A € k*
has infinite order, then Bx(k) o K= BA(K) has Krull dimension 1,
by Lemma 1.1. Therefore, Lemma 3.1 shows that commutative subfields
of E)(k) have transcendence degree at most 1 over k, whereas any
division algebra D = k(G) with h(G) =1 1is finite dimensional
over its center. R. Resco has. conjectured that if G is torsion~
free polycyclic-by~-finite and D = Q(kG) is the division ring of
fractions of kG, which is a domain by-[4],[6], then all commutative
subfields L ® k of D have transcendence degree bounded by

c(G) = max {h(A)] A an abelian subgroup of G!l.

We: cannot prove this, but the following discussion should shed
some light on this problem. For the rest of this subsection, we
keep the following notation:

G 1is torsion-free polycyclic-by-finite, and

D .is the division ring of fractions of the group algebra kG.
For any subgroup H < G we. set DG(H) = {g € G| g has only
finitely many H-conjugates}, and . CR(H) denotes the centralizer
of H in R (for given R).

The main content of the following lemma is due to M. Smith [24].

Lemma 3.3. For any subgroup H of G, CD(H) = Q(ckG(H)) c
Q(kD;(H)) and Q(kDg(H)) is finite dimensional over Cp(H).

Proof. Set R = kDg(H) and note that CkG(H) < R. More precisely,
the action of H on R by conjugation factors through some finite
image H of H, and Cy;(H) is the fixed subring of R under
this action. Therefore, since R is a Noetherian domain, CkG(H)

is a Goldie domain and Q(Cy(H)) is the fixed subring of Q(R)
under the action of H ([17, Theorem 5.5], e.g.). Also, Q(R) is
finite dimensional over Q(Cy(H)) ([17 , Lemma 2.181). Finally,
The proof of [24, Theorem €] shows that Cp(H) < Q(R). Hence,
clearly, Cp(H) = CQ(R)(B) = Q(Cxg(H)) and.the lemma is proved. [ |

We will call a commutative subfield L ® k of D almost maximal
if L is not contained in a commutative subfield.of D having
larger transcendence degree over k than L or, equivalently, if
Cp(L)/L is algebraic. The following is immediate from Lemma 3.3.

Corollary 3.4. Let A be an abelian subgroup of G. If A = Dg(A)
(A has finite index in D;(A)), then k(A) = Q(kA) is a maximal
(resp., almost maximal) commutative subfield of D.




We conclude this subsection by mentioning a few instances where
the corollary applies.

Examples 3.5. (a) Suppose that A is a maximal abelian subgroup
of G and A is subnormal in Dg {(A) . Then we do in fact have
equality, A = DG(A) , and so. k(A) lS maximal. To see this, choose
a subnormal series A = D, 4D, oo 4D, = DG(A). Then any
n-fold commutator [an,[an_l,....[a ,d]]...? with a; € A, d € D,
belongs to A. Consider an (n-1)-fold commutator c¢ =

an.ys-..,lay,dl...]1 . Let a € A be arbitrary and choose m so
that a® is central in D,. Then, since A is abelian and [a,cl
€ A, we have

1 = [am,e] = [a,c]®,

and hence [a,c] = 1. Therefore, c € Cg(A) = A. By induction, we
obtain D, = A , as we have claimed.

Since subnormality is automatic if G is nilpotent, we recover
M. Smith's result [24, Corollary 8]. In general, however, maximal
abelian subgroups A of G need not satisfy A = DG(A) (e.g.,
take G = <x,yI y"zxy = x"1> and A = <y>).and so k(A) need not
be maximal. :
(b) If A <G is abelian and satisfies h(A) = c(G), then it is
trivial to verify that A has finite index in Dg (A) . Thus k(A)
is at least almost maximal in this case.

B) LIE COMMUTATORS

Let D = k(G)' be a division k-algebra generated by some polycyclic-
by~finite group G and assume that char k = 0. It would be
interesting to know whether the. identity element 1 € D can be
written as a sum of Lie commutators in D. If not, then this fact
would distinguish division algebras of the above type from division
algebras E generated by finite dimensional Lie subalgebras of

E[ (i.e., E with Lie bracket [a,b] = ab - ba), at least if

k is algebraically closed. This follows from the following simple
observation.

Lemma 3.6. Let E be a division algebra over k. If E[ ]
contains a non-abelian nilpotent.Lie algebra, or.a non-abe{ian
finite dimensional Lie algebra over k and k is algebraically
closed, then there exist elements a,b € E with ab -ba = 1.

Proof. Suppose g < E[ , ] 1s a nilpotent Lie algebra which is
not commutative. Then there exists an element c € g such that
[c,g] 1is nonzero and is contained in the center of g. Choose

b€g with [c,bl=cb-bc*0 and set a = clc,b)-T € E. Then



fa,pl] =1 in E.

If, on the other hand, g € E{ , ] is finite dimensional
non-nilpotent, then Engel's theorem [8, Sec. 3.2] implies that
there exists a € g such that ad(a) € End(g) is not nilpotent.
Let 0 # c € g be an eigenvector for ad(a) with nonzero eigen-
value Y€ k and set b=7Ylc €E. Then [ac!,bl =1 in E. N

Algebraic closure.of k is definitely required in the above. For
example, the standard basis {1,i,j,k} of the real quaternions H
spans a Lie subalgebra of H, but 1 € H is not even a sum of Lie
commutators (use the embedding H < Mz(C), or the following propo-
sition).

We now return to division algebras generated by polycyclic-
by~finite groups. The following result extends, and uses, [11,
Lemma 2.3].

Proposition 3.7. Let G be a finitely generated nilpotent-by-
finite group and let char k = 0. Let P be a prime ideal of kG
and set R = Q(kG/P). Then 1 € [R,R], the space of Lie commutators
in R.

Proof. For G finitely generated nilpotent, this follows from

[11, Lemma 2.3]. In general, chocose G, to be a nilpotent normal
subgroup of. finite index in G. Then PﬂkG° is a finite intersection
of pairwise incomparable prime ideals P; . i=t,2,...,1, of kGo.
Moreover., it is routine to check that the Ore set S of regular
elements of kG,/PnkG, remains Ore and regular in kG/P. Therefore,

R = (kG/P)s”! = @ xR, ,
X .
where R, = (kGQ/PnkGC,)S"1 and x runs through a transversal for
G, in G. Now R, is the direct product.of. the rings Ry = Q(kGo/Pi),
i=1,2,...,1, and so
1
R CEnd.(RRo) = My(Ry) = I Mj(Ry),

where n is the order of G/G,. Thus it suffices to establish the
assertion for the matrix rings Mn(Ri)' But we know it is true for
each R;. Hence the canonical map of k-spaces T: Rj - Ri/[Ri'Ri]
does not.vanish on 1. T can be liftgd to a map T': M (Ry) ™
R;/[R;,R;] by setting T'(lr_ ) = L__ T(rgg). Since T' inherits
k-linearity and the trace property v¥(AB) =T'(BA) from T and
maps the identity 1 € M, (R;) to the nonzero element n.T(1), we
conclude that 1 € [M, (R,),M (R;)] as required. N

The proposition applies in particular to division.algebras D = k(G)
generated by nilpotent-by-finite groups G. Sometimes the char O
assumption is superfluous here., For example, if D = k(G) with
G torsion-free nilpotent , then 1€ [D,D] holds in any character-



istic. This follows from [11, Sec. 2], where explicit traces are
constructed for so-called Hilbert-Neumann algebras. The same
construction also applies to the division rings E)(k) and,

more generally, to the division rings of fractions of twisted group
algebras kt[G] with G an ordered group. For general polycyclic-
by-finite groups, however, char O is definitely needed. For example,
consider the Weyl algebra A; = k{x,y} , xy -~ yx = 1, with char k
=p >0. Then D = Q(Al) is generated, as division algebra, by
the elements a = xy and x which satisfy x~lax = a - 1.
Therefore, the generating group G = <a,x> is polycyclic and is
in fact isomorphic to a semidirect product of the form z(P) a z.
On the other hand, R. Snider [26] has shown that if char k = 0

and G = z{¥) % z for some r, then D = Q(kG) satisfies

1 ¢ [p,p].
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