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Abstract

We give a unified formulation of geometric mass for abelian varieties with additional

structures and show that it equals a weighted class number of a reductive Q-group G

relative to an open compact subgroup U ⊂ G(Af ), or simply called an arithmetic mass.

The proof replies on the results of Zarhin, Faltings and de Jong on endomorphisms of

abelian varieties and those of their attached `-divisible groups. We also classify the

special objects for which our formulation remains valid over algebraically closed fields.

§1. Introduction

The study of some class numbers using elliptic curves might go back to Kronecker or even
to Gauss. The celebrated Eichler-Deuring mass formula says

∑

E∈Λp

1

# Aut(E)
=
p− 1

24
, (1)

where Λp is the set of isomorphism classes of supersingular elliptic curves over Fp. It is well-
known that the set Λp is in bijection correspondence with the double coset space attached
to the definite quaternion algebra B := Bp,∞ over Q of discriminant p relative to a maximal
order OB. More precisely, let G′ be the group scheme over Z attached to the multiplicative
group O×

B; then one has the following natural bijection:

Λp ' G′(Q)\G′(Af)/G
′(Ẑ). (2)

We write mass(Λp) for the left hand side of (1), and call it the mass of Λp. It also
equals an arithmetically defined mass for G′ relative to the open compact subgroup G′(Ẑ)
now defined as follows. For an R-anisotropic reductive Q-group G, and an open compact
subgroup U of G(Af), the mass for G relative to U is defined to be

mass(G,U) :=
∑

c

1

#Γc
, (3)

where c runs through a complete set of representatives for the double coset spaceG(Q)\G(Af )/U ,
and Γc := G(Q) ∩ cUc−1.

The analogous result for Siegel moduli spaces was generalized by Ekedahl [2] (also see
[17]). A similar bijection (2) holds as well where Λp is replaced by the set Λg,p of the
isomorphism classes of g-dimensional superspecial principally polarized abelian varieties over
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Fp, and G′ is replaced by the group scheme G′
g over Z obtained from Mg(OB) with equations

given by g∗g = 1, where g 7→ g∗ is the standard involution. Namely, one has

Λg,p ' G′
g(Q)\G′

g(Af)/G
′
g(Ẑ) and mass(Λg,p) = mass(G′

g, G
′
g(Ẑ)), (4)

where mass(Λg,p) :=
∑

(A,λ)∈Λg,p

1
#Aut(A,λ)

. Applying the Hashimoto-Ibukiyama formula for

mass(G′
g, G

′
g(Ẑ)) [9] to the second formula of (4), Ekedahl obtained the geometric mass

formula

∑

(A,λ)∈Λg,p

1

# Aut(A, λ)
=

(−1)g(g+1)/2

2g

{
g∏

k=1

ζ(1 − 2k)

}
·

g∏

k=1

{
(pk + (−1)k

}
. (5)

In [19] the correspondence in (4) is generalized to supersingular polarized abelian varieties
of Hilbert-Siegel type. The geometric mass formulas are explicitly calculated for superspecial
points of Hilbert-Blumenthal type (see Corollary 2.3, 2.5 and Theorem 3.7 of loc. cit.). The
latter relies on Shimura’s arithmetic mass formula for quaternion unitary groups [16] and
local indices computation.

In this paper we give a uniform formulation of the geometric mass mass(Λ) for arbitrary
abelian varieties with additional structures over arbitrary (finitely generated) fields, and
show that it equals an arithmetic mass defined by some (G,U); see Section 2 for precise
statements. The description, though being surprisingly simple, replies on the deep results of
Zarhin, Faltings and de Jong on the endomorphisms of abelian varieties, Tate modules, and
p-divisible groups; see [21], [3] (cf. [4]) and [1, Theorem 2.6]. We call the formula established
in Theorem 2.2 simple mass formula. The simple mass formula connects a geometrically
defined mass and an arithmetically defined mass; but it provides no clue of computing either
side explicitly. It is useful to prove a geometric mass formula from a known arithmetic mass
formula and vice versa, or to verify an arithmetic mass formula by a geometric method
and vice versa. Ekedahl’s formula above is the simplest example. A worth note is that
a geometric mass then becomes to have good properties as an arithmetic mass does. For
example, it has a simple relation between different levels and the calculation can be reduced
to local volume computation.

In the second part of this paper, we study certain special abelian varieties in question
(called of arithmetic type, see Definitions 3.1 and 3.10). For those the hidden Galois structure
required in the formula is superfluous, thus the description can be extended in the geometric
setting. This explains why a good formulation of the mass for supersingular elliptic curves or
supersingular abelian varieties is possible. We remark that the parallel description for CM
abelian varieties in characteristic zero is well-known and this has been playing the important
role on explicit reciprocity laws in class field theory, known as the main theorem of complex
multiplication. Our description could be used to create new explicit reciprocity laws.

In the last part of this paper, we classify the abelian varieties of arithmetic type in ques-
tion. In the case of characteristic zero, the possibility occurs only when the semi-simple
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involuted algebra (B, ∗) is componentwise of second kind; and then every abelian variety
of arithmetic type is essentially a product of a simple CM abelian variety. In the case of
characteristic p, we show that an object A is of arithmetic type if and only if it is basic in
the sense of Kottwitz [10].

Finally we mention that the function field analog of the geometric mass formulas can be
also considered where supersingular Drinfeld modules take place the role of supersingular
elliptic curves. This was obtained by Gekeler [5, 6, 7, 8] for the cases (a) rank r = 2 and
any global function and (b) the rational function fields and any rank r, recently obtained by
Jing Yu and the author in general [20].

Acknowledgments. The author thanks J.-K. Yu for helpful discussions at the early stage of
this work. Main part of the manuscript is prepared during the author’s stay at MPIM in
Bonn in the fall of 2005. He acknowledges the Institute for the hospitality and excellent
working environment.

§2. Main theorem

(2.1) Let B be a finite-dimensional semi-simple algebra over Q with a positive involution
∗, and OB an order of B stable under ∗.

A polarized abelian OB-variety is a triple A = (A, λ, ι) where (A, λ) is a polarized abelian
variety and ι : OB → End(A) is a ring monomorphism such that λι(a∗) = ι(a)tλ for all
a ∈ OB. For any A and any prime ` (not necessarily invertible in the ground field), we write
A(`) for the associated `-divisible group with additional structures (A[`∞], λ`, ι`), where
λ` is the induced quasi-polarization from A[`∞] to At[`∞] = A[`∞]t (the Serre dual), and
ι` : OB ⊗ Z` → End(A[`∞]) the induced ring monomorphism.

For any two A1 and A2 over a field k, denote by

• Q-isomk(A1, A2) (resp. Isomk(A1, A2)) the set of OB-linear quasi-isogenies (resp. iso-
morphisms) ϕ : A1 → A2 over k such that ϕ∗λ2 = λ1; and

• Q-isomk(A1(`), A2(`)) (resp. Isomk(A1(`), A2(`))) the set of OB ⊗ Z`-linear quasi-
isogenies (resp. isomorphisms) ϕ : A1[`

∞] → A2[`
∞] such that ϕ∗λ2 = λ1.

Let x := A0 = (A0, λ0, ι0) be a polarized abelian OB-variety. Choose a finitely generated
extension field k over its prime field so that the object A0 and all endomorphisms of A0

are defined over k. Denote by Λx(k) the set of isomorphisms classes of polarized abelian
OB-varieties A over k such that

(i) Isomk(A0(`), A(`)) 6= ∅ for all `, and

(ii) Q-isomk(A0, A) 6= ∅.
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Let Gx be the automorphism group scheme over Z associated to A0; for any commutative
ring R, its group of R-points is

Gx(R) = {g ∈ EndOB
(A0/k) ⊗ R | g′g = 1}, (6)

where g 7→ g′ is the Rosati involution induced by λ0. Note that Gx(Q) = Q-isomk(A0, A0).
By the theorems of Zarhin, Faltings, and de Jong on the endomorphisms of abelian varieties,
Tate modules and p-divisible groups (see [21], [3] (cf. [4]) and [1, Theorem 2.6]), we have the
natural isomorphisms

Gx(Z`) = Isomk(A0(`), A0(`)) and Gx(Q`) = Q-isomk(A0(`), A0(`)) (7)

for all `.

(2.2) Theorem

(1) There is a natural bijection between the following two pointed sets

Λx(k) ' Gx(Q)\Gx(Af)/Gx(Ẑ).

In particular, Λx(k) is finite.

(2) Define

mass[Λx(k)] :=
∑

A∈Λx(k)

1

# Autk(A)
.

Then one has mass[Λx(k)] = mass[Gx, Gx(Ẑ)].

Proof. (1) Given an element A ∈ Λx(k), consider the natural map

m(A) : Q-isom(A,A0) ×
∏

`

Isomk(A0(`), A(`)) →
∏

`

′ Q-isomk(A0(`), A0(`)) = Gx(Af) (8)

which sends (φ, (α`)`) to (φα`)`. Clearly if c is an element in the image c(A) of m(A), then
c(A) equals the double cosetGx(Q) cGx(Ẑ). Thus, c(A) defines an element inGx(Q)\Gx(Af)/Gx(Ẑ).

Let A,A′ ∈ Λx(k) such that c(A) = c(A′). Write c(A) = [(φα`)`] and c(A′) = [(φ′α′
`)`].

Then there exist b ∈ Gx(Q) and k` ∈ Gx(Z`) for all ` such that bφα`k` = φ′α′
`. Then

(bφ)−1φ′ = α`k`(α
′
`)

−1 ∈ Q-isomk(A
′, A) ∩

∏

`

Isomk(A
′(`), A(`)) = Isomk(A

′, A).

Thus A′ ' A and this shows the injectivity of c.
Given [(φ`)`] inGx(Q)\Gx(Af)/Gx(Ẑ), choose an positive integer N such that f` := Nφ−1

`

is an isogeny for all `. Let H be the product of the kernels of Nφ−1
` ; it is a finite subgroup

scheme over k invariant under the OB-action. Take A := A0/H and let π : A0 → A be the
natural projection; A is defined over k and it is equipped with a natural action by OB so
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that π is OB-linear. Let λ ∈ Hom(A,At) ⊗ Q be the fractional polarization on A such that
(N−1π)∗λ = λ0; it is OB-linear as π is so. As π` and f` have the same kernel, there is an
element α` ∈ Isomk(A0(`), A(`)) such that α`f` = π`. This shows λ ∈ Homk,OB

(A,At) and
one obtains A ∈ Λx(k). Put φ := (N−1π)−1 ∈ Q-isomk(A,A0). One checks

φα` = Nπ−1
` α` = Nf−1

` = φ`.

This shows c(A) = [(φ`)`] and the surjectivity of c.
(2) It suffices to show that if x′ = A ∈ Λx(k) and c any representative for the double coset

c(A), then Autk(A) ' Γc. Write Gx′ for the group scheme over Z associated to A defined as
(6) in (2.1). Choose φ ∈ Q-isomk(A0, A) such that φc` ∈ Isomk(A0(`), A(`)) for all `. Note
that α ∈ Autk(A) if and only if α ∈ Gx′(Q) and α` ∈ Autk(A(`)) for all `.

The map φ gives an isomorphism Gx(Q) → Gx′(Q) which sends β to φβφ−1 =: α.
Note that α ∈ Gx′(Ẑ) if and only if (φc)−1α(φc) ∈ Gx(Ẑ). The latter is equivalent to
c−1βc ∈ Gx(Ẑ). Therefore, the above isomorphism gives Γc ' Autk(A). This completes the
proof.

(2.3) Let N be any positive integer and UN be the kernel of the reduction map Gx(Ẑ) →
Gx(Ẑ/N Ẑ). Let A be a polarized abelian OB-variety. By an (A0, UN)-level structure on A
we mean a non-empty UN -orbit η̄ of isomorphisms η in

∏
` Isomk(A0(`), A(`)). The existence

of such η̄ implies that the first condition for objects lying in Λx(k) is satisfied. Let η̄0 be the
UN -orbit of the identity in

∏
` Isomk(A0(`), A0(`)). Now we change our notation a bit in the

remaining of this section. We write A0 for (A0, λ0, ι0, η̄0) and A for (A, λ, ι, η̄) in brief.
For any two A1 and A2 over a field k, denote by Q-isomk(A1, A2) and Q-isomk(A1(`), A2(`))

the sets which have the same meaning as in (2.1); denote by Isomk(A1, A2) the set of elements
ϕ in Isomk((A1, λ1, ι1), (A2, λ2, ι2)) satisfying ϕ∗η̄1 = η̄2; and denote by Isomk(A1(`), A2(`))
the set of elements ϕ in Isomk((A1, λ1, ι1)(`), (A2, λ2, ι2)(`)) satisfying ϕ∗η̄1,` = η̄2,`.

Let Λx,N(k) denote the set of isomorphism classes of polarized abelian OB-varieties with
an (A0, UN )-level structure (A, λ, ι, η̄) over k such that Q-isomk(A0, A) 6= ∅. The same proof
of Theorem 2.2 without modification gives the following variant.

(2.4) Theorem There is a natural bijection

Λx,N(k) ' Gx(Q)\Gx(Af)/UN .

Furthermore, one has mass[Λx.N(k)] = mass(Gx, UN).

(2.5) Lemma If N ≥ 3, then Autk(A) is trivial for any object A = (A, λ, ι, η̄) in Λx,N(k).

Proof. An element g ∈ Autk(A, λ, ι) = G(A,λ,ι)(Z) preserves η̄ if and only if its image
ḡ in G(A,λ,ι)(Z/NZ) is trivial. Choose a faithful and integral representation ρ of Autk(A)
on a finite free Z-module VZ. Then every matrix ρ(g) in the image satisfies the property
ρ(g)m = I for some m and ρ(g) ≡ I mod N , thus Autk(A) is trivial.
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(2.6) Remark The assumption in Theorems 2.2 and 2.4 that all endomorphisms of A are
defined over k is superfluous.

§3. Geometric Setting

Abelian varieties of CM type and supersingular abelian varieties have rich arithmetic prop-
erties so that the mass formula as (1) can be formulated over an algebraically closed field.
This leads us to the following definition.

(3.1) Definition Let A = (A, λ, ι) be a polarized abelian OB-variety a field k finitely
generated over its prime field for which all endomorphisms of A are defined (this will be
assumed in the rest). Let ρ` : Gk := Gal(ks/k) → GAutks

(A(`)) the associated `-adic Galois
representation for ` 6= char k, where ks denotes a separable closure of k. We call A over k
is of arithmetic type if the image ρ`(Gk) is contained in the center of GAutks

(A(`)) for all
` 6= char k.

Although it is not necessary to assume below, we are only interested in these cases.

(3.2) Assumption. Let g be the dimension of A. For the remaining of this paper, we
assume that the datum (B, ∗, g) satisfies the condition that there is a g-dimensional polarized
abelian OB-variety over a field of characteristic zero.

This condition says that there exists a non-degenerate Q-valued skew-Hermitian B-space
(V, ψ) such that 2g = dimQ V .

This assumption will exclude, for example, the case where A is a supersingular elliptic
curve (g = 1) and B = End0(A).

(3.3) Basic properties for abelian varieties of arithmetic type:

(3.3.1) The definition of arithmetic type is related with the endowed endomorphism struc-
ture ι. It is possible that an object A = (A, λ, ι) is of arithmetic type, while its underlying
polarized abelian variety f(A) := (A, λ) is not. Clearly if f(A) is of arithmetic type, then
so as A. When char k = 0, any polarized abelian variety cannot be of arithmetic type.
Indeed, if the image of the Galois group lies in the center of GSp2g(Z`), which consists of
the scalar matrices, then one has dim End0(A) = 4g2. This contradicts with the fact that
dim End0(A) ≤ 2g2. So we show that (A, λ) is of arithmetic type if and only if char k = p
and A is supersingular.

(3.3.2) Any polarized CM-abelian variety by OL (the ring of integers of a CM algebra L)
is of arithmetic type as EndOL

(A) is already commutative.

(3.3.3) If A is of arithmetic type and A′ is another polarized abelian OB-variety such that
Q-isomk(A,A

′) 6= ∅, then clearly A′ is also of arithmetic type. Hence being of arithmetic
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type is an isogenous property.

(3.3.4) We write E := End0
k(A), E` := E ⊗Q Q`, B` := B ⊗ Q`, T` := T`(Aks

) and V` =
T` ⊗ Q`. Let G` := ρ`(Gk) and Galg

` be the algebraic envelope of G`. Then Endks
(A[`∞]) =

End(T`). Suppose that the polarization λ is also E-linear, we have

G` ⊂ GAutE`
(T`) ⊂ GAutB⊗Q`

(T`) ⊂ GAut(T`),

Z(GAut(T`)) ⊂ Z(GAutB⊗Q`
(T`)) ⊂ Z(GAutE`

(T`)).

Let ιE : End(A) → End(A) be the identity and put AE := (A, λ, ιE). Clearly if A is of
arithmetic type, then so as AE .

(3.4) It is known that any abelian OB-variety admits an OB-linear polarization [11, Section
9]. We will see that the polarization structure will not play a role in the definition of
arithmetic type. Therefore, the notion of arithmetic type tests a special property of abelian
variety up to isogeny endowed with a B-linear action.

Let A = (A, λ, ι) is a polarized abelian OB-variety of arithmetic type (3.1). Write the
semi-simple algebra B into simple factors ⊕r

i=1Mni
(Di), where Di is a division algebra over Q

with a positive involution ∗i. According this decomposition the abelian variety A is isogenous
to

∏
Ani

i ; one has ring monomorphism Di → End0(Ai). Write Vi for T`(Ai) ⊗ Q` and one
has

EndB(V`) = ⊕r
i=1 EndDi

(Vi).

Let g 7→ g′ be the adjoint with respect to the alternating pairing 〈 , 〉 on V`. Then GAutB(V`, 〈 , 〉)
consists of elements g = (gi) ∈

∏
EndDi

(Vi) such that g′1g1 = g′2g2 = · · · = g′rgr ∈ Q×
` .

We have projections pi : GAutB(V`, 〈 , 〉) → GAutDi
(Vi, 〈 , 〉i) and these induce pi :

Z(GAutB(V`, 〈 , 〉)) → Z(GAutDi
(Vi, 〈 , 〉i)). If ρi,` the `-adic Galois representation attached

to Ai, then one has pi ◦ρ` = ρi,`. This shows the if A is of arithmetic type, then each Ai is of
arithmetic type. The converse is also true as Z(GAutB(V`, 〈 , 〉)) ↪→

∏
iZ(GAutDi

(Vi, 〈 , 〉i)).
We have proved

(3.4.1) Notation as above. Then A is of arithmetic type if and only if each Ai is of arith-
metic type.

We now compute Z(GAutB(V`, 〈 , 〉)). We may assume that B is a division algebra.

(3.5) Definition Keep the notation in (2.1) and assume that B is a division algebra. A
polarized abelian OB-variety is said to be of type (D & 0-dim) if B is of type (III) in the
Albert classification and 2 dimA = [B : Q].

Recall that B is of type (III) if B is a totally definite quaternion algebra over a totally
real number field F and the main involution ∗ is the unique positive involution.
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(3.6) Lemma Suppose A is of type (D & 0-dim).

(1) T` is a free OF ⊗ Z`-module of rank 4.

(2) V` is a free B`-module of rank 1.

(3) GAutB`
(V`, 〈 , 〉) is an extension of a normal commutative subgroup by a finite 2-torsion

group.

(4) The center Z(GAutB`
(V`, 〈 , 〉)) consists of elements a in F` := F ⊗ Q` with a2 ∈ Q×

` .

Proof. The statement (1) follows from the fact that Tr(a;V`/Q`) = 4 TrF/Q(a) for all
a ∈ OF . The statement (2) follows from (1). To show the statement (3), we regard G :=
GAutB(V`, 〈 , 〉) as an algebraic group over Q` and show that its neutral component G0 is a
torus.

Let V` = B` as a left B`-module. Let ( , ) : B` × B` → B` be the lifting of 〈 , 〉.
One has 〈x, y〉 = TrdB`/Q`

(xαy∗). where α := (1, 1) with α∗ = −α. Any element in
EndB`

(V`) is a right translation ρg for a g ∈ B`. The condition 〈xg, yg〉 = c(g)〈x, y〉 gives
TrdB`/Q`

(xgαg∗y∗) = TrdB`/Q`
(x c(g)αy∗). Therefore, the group G is the subgroup of Bopp,×

`

defined by the relation gαg∗ = c(g)α for some c(g) ∈ Q×
` . Choose the isomorphism Bopp

` ' B`

which sends g 7→ g−1; the group G is identified with the subgroup of B×
` defined by the same

relation.

For each σ ∈ Σ := Hom(F`,Q`), put Bσ = B` ⊗F`,σ Q` 'M2(Q`). Let j =

(
0 −1
1 0

)
and

g ∈ Bσ, one computes

jg∗j−1 =

(
0 −1
1 0

) (
d −b
−c a

) (
0 1
−1 0

)
=

(
a c
b d

)
= gt.

Write α = βj, then βt = jβ∗j−1 = −α∗j−1 = β and the relation defining G becomes
gβgt = c(g)β for some c(g). We proved

GQ`
' {(gσ) ∈ GLΣ

2 ; gσg
t
σ = c for some c ∈ Q

×

` (independent of σ) , ∀ σ ∈ Σ}, and

G0
Q`

'

{(
ai bi
−bi ai

)
∈ GLd

2 ; a2
i + b2i = c for some c ∈ Q

×

` , ∀ 1 ≤ i ≤ d

}
.

This shows that G0 is a torus.
(4) This follows directly from the computation in (3).

(3.7) Lemma The center Z(GAutB(V`, 〈 , 〉)) consists of elements a ∈ Z(B)⊗Q` such that
a∗a ∈ Q×

` .

Proof. One may first reduce to the case where B is a division algebra. The case of type
(D & 0-dim) has been treated in Lemma 3.6. Now suppose that A is not of type (D &
0-dim).
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For an algebra E and subset G, write Z(E,G) := {x ∈ E; gx = xg ∀ g ∈ G}. Write
E := EndB(V`) and G for the algebraic group over Q` defined by V `; we have particularly
G(Q`) = GAutB(V`, 〈 , 〉). It suffices to show that Z(B) ⊗ Q` = Z(E,G(Q`)). We have
Z(B) ⊗ Q` ⊂ Z(E,G(Q`)) and hence need to show dimQ`

Z(B) ⊗ Q` = dimQ`
Z(E,G(Q`)).

Since dimQ`
Z(B)⊗Q` = dimQ`

Z(B)⊗Q` and dimQ`
Z(E,G(Q`)) ≥ dimQ`

Z(E⊗Q`, G(Q`))

(equality holds if G(Q`) is Zariski dense in G), it suffices to show that dimQ`
Z(B) ⊗ Q` =

dimQ`
Z(E ⊗ Q`, G(Q`)). Decomposing into simple factors, we have three cases:

(a) E = Mn(Q`) ×Mn(Q`), ∗ : (A,B) 7→ (Bt, At) and G = GUn.

(b) E = M2n(Q`), ∗ is the standard symplectic involution, and G = GSp2n.

(c) E = M2n(Q`), ∗ : A 7→ At and G = GO2n (n ≥ 2).

Then we have the cases (a) Z(E,G) = {(aIn, bIn); a, b ∈ Q`}; (b) Z(E,G) = {aI2n; a ∈ Q`};
(c) Z(E,G) = {aI2n; a ∈ Q`}. From this one sees that dimQ`

Z(B) ⊗ Q` = dimQ`
Z(E ⊗

Q`, G(Q`)). This finishes the proof.

(3.8) Lemma Let A = (A, λ, ι) be a polarized abelian OB-variety and λ′ be another OB-
linear polarization. Then (A, λ′, ι) is of arithmetic type if and only if A is of arithmetic
type.

Proof. By Lemma 3.7, the center of AutB(V`, 〈 , 〉) is independent of the polarization.
Therefore, the assertion is proved.

(3.9) Lemma Let k0 be a field of finite type over its prime field and k be an extension of
k of finite type. Let A be a polarized abelian variety over k0. If A is of arithmetic type over
k0 then so as A over k. Conversely, if A is of arithmetic type over k, then so as A over a
finite extension of k0.

Proof. Let ks be a separable closure of k and k0,s the algebraic closure of k0 in ks. Let k1 be
the algebraic closure of k0 in k. The restriction gives a surjective homomorphism r : Gk → Gk1

of Galois groups. We also have Galois equivariant isomorphism s : A[`n](k0,s) ' A[`n](ks)
in the sense that r(σ)x = σ(s(x) for x ∈ A[`n](k0,s) and σ ∈ Gk. This gives rise to the
commutative diagram

Gk

ρAk−−−→ Aut(T`(Ak))

r
y '

y

Gk1

ρAk0−−−→ Aut(T`(Ak0
)),

and one has ρAk
(Gk) = ρAk0

(Gk1
). It follows that A over k is of arithmetic if and only if A

over k1 is so, and clearly if A over k0 is of arithmetic type then so as A over k1. This proves
the lemma.
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Combining (3.3.3) and Lemma 3.8 and 3.9, we should make the notion of arithmetic type
more precisely.

(3.10) Definition Let (B, ∗) be as in (2.1) and (A, ι) be an abelian B-variety up to isogeny
over a field k of finite type over its prime field. The pair (A, ι) is said to be of B-arithmetic
type or simply of arithmetic type if there is a finite extension k′/k such that ρ`(Gk′) lies in
the center of GAutB(V`) for a B-linear polarization λ and for one ` 6= char k. An abelian
B-variety up to isogeny is said to be of arithmetic type if it is so over a field of finite type
over its prime field.

(3.11) Lemma Let A = (A, ι) be an abelian B-variety up to isogeny. If A is of arithmetic
type, then A is of CM type.

Proof. Since A is of arithmetic type, G` is commutative. Let Q`[π] be the subalgebra
of End(V`) generated by G`. By the semi-simplicity of Tate modules due to Faltings and
Zarhin [3, 21], Q`[π] is a (commutative) semi-simple subalgebra. Let L be a maximal semi-
simple commutative subalgebra in End0(A), then L ⊗ Q` is a maximal commutative semi-
simple algebra in End0(A)⊗Q`. By the theorem of Faltings and Zarhin on Tate’s conjecture
loc. cit., we have End0(A)⊗Q` = EndQ`[π](V`). Hence L⊗Q` becomes a maximal semi-simple
commutative subalgebra in EndQ`[π](V`). Since Q`[π] is commutative and semi-simple, any
maximal semi-simple commutative subalgebra in EndQ`[π](V`) has degree 2g over Q`. This
shows [L : Q] = 2g and the proof is complete.

(3.12) Proposition Let (A, ι) be an abelian B-variety of arithmetic type over a field k
finitely generated over its prime field. Then Galg

` is independent of ` for all ` 6= char k. That
is, there is a Q-subgroup G of GL2g such that G⊗ Q` ' Galg

` for all ` 6= char k.

Proof. By Lemma 3.11, A is of CM-type. The semi-simple part of Galg
` is trivial. By

Bogomolov’s theorem, (Galg
` )0 is independent of ` (see [15, 2.2.5] also see the remark in 2.3

of loc. cit. for the function field case). By a theorem of Serre [15] that the component group
Galg

` /(Galg
` )0 is independent of `, one shows Galg

` is independent of `.

(3.13) Remark In (3.3)–(3.12) we have shown that A is of arithmetic type in the sense of
(3.1) if and only if its underlying abelian OB-variety is of arithmetic type in the sense of
(3.10).

(3.14) Theorem Let k be an algebraically closed field and let x = A be a polarized abelian
OB-variety over k. Suppose that A is of arithmetic type.

(1) Gx(Z`) = Isomk(A(`)) for all `.

(2) There is a natural bijection

Λx,N(k) ' Gx(Q)\Gx(Af)/UN .
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(3) mass[Λx.N(k)] = mass(Gx, UN).

Proof. The statements (2) and (3) follow from the statement (1) and Theorems 2.2 and
2.4. We now prove (1). Let k0 be a finitely generated field for which A is defined and we
may assume that k is an algebraic closure of k0.

If char k = 0, then G` := ρ`(Gk0
) is in Z(GAutB(V`, 〈 , 〉)) for all `. By Faltings’ theorem

[3], one has
Gx(Z`) = Autk0

(A(`)) = Z(Autk(A(`)), G`).

Since G` is in Z(GAutB(V`, 〈 , 〉)), the latter is simply Autk(A(`)). This proves the case of
characteristic zero.

If char k = p > 0, then replacing A by an isogeny we may assume that k0 is a finite field,
as A is of CM-type (Lemma 3.11 and a theorem of Grothendieck [12, p. 220]). Using (3.4.1),
we may also assume that B is a division algebra. Let Frob be the geometric Frobenius in Gk0

and πA the relative Frobenius endomorphism on A, one has ρ(Frob) = πA in Endk0
(A[p∞]).

By the p-adic version of Tate’s theorem on endomorphisms over finite fields, it then suffices to
show that πA lies in Z(B)⊗Qp, which is the center of End0

B(A[p∞]). Since A is of arithmetic
type, πA = ρ`(Frob) ∈ Z(B)⊗Q` (Lemma 3.7). Consider Q[πA] and Z(B) as linear subspaces
of End0(A); then Q[πA] = Q`[πA] ∩ End0(A) ⊂ Z(B) ⊗ Q` ∩ End0(A) = Z(B), and thus
πA ∈ Z(B).

§4. Classification

In this section we classify abelian B-varieties of arithmetic type up to isogeny. Due to
Lemma 3.11, it suffices to classify the objects which are defined either over a number field
or a finite field. We may also assume, without loss of generosity due to (3.4.1), that B is a
division algebra.

Let P be a prime field, k be an algebraic closure of P and k0 be a finite extension of P in
k. Let A be an abelian OB-variety over k0.

(4.1) Lemma If the positive involution ∗ on B is of first kind, then A is of arithmetic type
if and only if char k = p > 0 and A is supersingular.

Proof. If A is of arithmetic type, then by Lemma 3.7 G` is contained in Q×
` after replacing

k0 by a finite extension. Then End0(A) has dimension 4g2 by Tate’s theorem. This implies
char k = p > 0 and A is supersingular. The other implication is obvious.

(4.2) Lemma 4.1 classifies the abelian varieties of B-arithmetic type in the case of first kind.
Thereafter, we suppose that ∗ is of second kind. Let K be the center of B and F be the
maximal totally real subfield of K.
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(4.2.1) Let ι0 : OK → End(A) be the restriction of ι. Then (A, ι) is of B-arithmetic type
if and only if (A, ι0) is of K-arithmetic type. Indeed, it follows from Lemma 3.7 that the
centers Z(GAutB(V`, 〈 , 〉)) and Z(GAutK(V`, 〈 , 〉)) are the same. Therefore, the classification
is reduced to the case where B is a CM field K.

(4.2.2) Write A isogenous to
∏r

j=1A
nj

j , denoted by A ∼
∏r

j=1A
nj

j , where each Aj is a simple
abelian variety and Ai is not isogenous Aj for i 6= j. If A is of K-arithmetic type, then we
have

End0
K(A) ⊗ Q` ' EndK`

(V`).

Note that V` is a free K`-module. The latter is isomorphic to Mn(K`) and has dimension
n2d, where [K : Q] = d and 2g = dn. Put Bj := A

nj

j , bj = dimBj and let 2bj = dmj. We
have

dimQ End0
K(Bj) ≤ dimQ`

EndK`
(V`(Bj)) = dm2

j .

We also have End0
K(A) =

∏
j End0

K(Bj). From the dimensions of the abelian varieties and
those of the endomorphism algebras, we have

∑

j

mj = n, n2 ≤
r∑

j=1

m2
j .

This shows r = 1. We showed that if A is of arithmetic type then it is isogenous to a product
of a simple factor.

(4.3) Proposition If char k = 0, then A is of K-arithmetic type if and only if A ∼ An
1 ,

A1 is simple abelian variety with CM by K1 and the image of the homomorphism ι : K →
End0(A) = Mn(K1) contains the center K1.

Proof. (⇒) If A is of K-arithmetic type, the first and second statements are proved
in (4.2.2). We regard K as a subfield of End0(A) via ι. Let K̃ the composite of K and
K1. It suffices to show that K = K̃. The centralizer of K in Mn(K1), same as that of K̃,
has dimension [K̃ : Q](dim V/[K̃ : Q])2 = 4g2/[K̃ : Q]. While EndK`

(V`) has dimension

4g2/[K` : Q`]. It follows that [K̃ : Q] = [K : Q], hence K contains K1.
(⇐) It suffices to show that ι(K`) ⊃ EndEnd0(A)(V`), as G` is contained in the latter. As

n[K1 : Q] = dimQ`
V`, the commudant EndEnd0(A)(V`) is K1,`. And it is contained in ι(K`)

as the assumption. This completes the proof.

We recall the definition of basic abelian varieties with additional structures in the sense
of Kottwitz ([10], [14, p. 291, 6.25]). Thereafter, the characteristic of k will be p > 0.

(4.4) Definition Let W be the ring of Witt vectors over k and L be the fractional field of
W . Let (B, ∗) remain as in (2.1).

(1) Let (Vp, ψp) be a Qp-valued non-degenerate skew-Hermitian Bp-module, where Bp :=
B ⊗ Qp. A polarized abelian OB-variety A over k is said to be related to (Vp, ψp) if there is
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a Bp ⊗ L-linear isomorphism α : M(A) ⊗W L ' (Vp, ψp) ⊗ L which preserves the pairings
for a suitable identification L(1) ' L, where M(A) is the covariant Dieudonné module with
additional structures associated to A.

Let G′ := GAutBp
(Vp, ψp) be the algebraic group of Bp-linear similitudes. A choice

α gives rise to an element b ∈ G′(L) so that one has an isomorphism of isocrystals with
additional structures M(A)⊗ L ' (Vp ⊗ L, ψp, b(id⊗ σ)). The decomposition of Vp ⊗ L into
isoclinic components induces a Q-graded structure, and thus defines a (slope) homomorphism
ν[b] : D → G′ over some finite extension Qps of Qp, where D is the pro-torus over Qp with
character group Q.

(2) A polarized abelian OB-variety A is called basic with respect to (Vp, ψp) if
(i) A is related to (Vp, ψp), and
(ii) the slope homomorphism ν is central.

(3) A is called basic if it is basic with respect to (Vp, ψp) for some skew-Hermitian space
(Vp, ψp).

(4.5) Lemma Let A be a polarized abelian OB-variety over k. The following statements
are equivalent.

(a) A is basic.
(b) Let Z be the center of B and Zp = Z ⊗ Qp =

∏
p|pZp be the decomposition as a

product of local fields. Let N = M(A) ⊗W L be the isocrystals with additional structures
associated to A and N = ⊕p|pNp be the decomposition with respect to the Zp-action. Then
each component Np is isoclinic.

Proof. See a proof in 6.25 of [14].

Using Lemma 4.5, one can check a given abelian variety with additional structures to be
basic by the statement (b). Note that the statement (b) only depends on the underlying
structure of B-action, not on polarizations. This is also a property of those of arithmetic
type; see Lemma 3.8. Indeed, we have

(4.6) Proposition An abelian OB-variety A = (A, ι) over k is of arithmetic type if and
only if it is basic.

Proof. Using the notation A ∼
∏

j A
nj

j , one can show using (b) of Lemma 4.5 that A is

basic if and only if each A
nj

j is basic. Therefore, we may assume that B is a division algebra.
If (B, ∗) is of first kind, then by Lemma 4.5 A is basic if and only if A is supersingular.

Then this follows from Lemma 4.1.
Suppose that (B, ∗) is of second kind. By Lemma 6.28 of Rapoport-Zink [14], A is basic if

and only there is a finite field k0 such that the relative Frobenius morphism πA/k0
lies in the

center K of B. The latter statement is equivalent to that the Galois representation ρ` factors
through the center Z(GAutB(V`, 〈 , 〉)); see the proof in Theorem 3.14. This completes the
proof.
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(4.7) Remark The statement of Proposition 4.6 remains valid when k is an arbitrary al-
gebraically closed field of characteristic p.
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