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RESOLVING MIXED HODGE MODULES ON CONFIGURATION
SPACES

E. GETZLER

Ir XI5 is aseparated scheme over a base 5 anel 11, is a nat.ural number, let X n15 bc
the nth fibred power of X with itself, anel let F(XIS, n) be the configuration space, whose
fibre F{X15, n),'l over a point sES is a configuration of n clistinct points in the fibre X s , 01'

cquivalent.ly, the eomplement of the G) diagonals in X nI S. Let j(n) : F(XIS, 11,) y X n I S
be the natural open inlInersion.

Given a shcaf F of abelian groups on X n IS, we introduce in this paper a natural
resolution [,. (X /5, F, n) of the sheaf j (n)! j (n) *F, whose llnderlying graeled sheaf is a
SUln of terms of the fonn i{J)!i(J)*F , where i(J). is the dosed iInnlersion of a diagonal in
X n / S. This resolution has the property that if F is an §n-equivariant sheaf (where the
symmetrie grollp §n acts on X n/5 by perumtillg the facton; in thc fibred product), the
resolution is Sn-equivariant as weIl.

For exmuplc, if 11, = 2, we havc the cxact sequenee of sheaves

(0.1)

where i : X Y )(2/S is the inllners.ion of the diagonal
Let 7f(n) : F(XIS,n) --+ Sand 1T(n) : ~yn/S --+ S be the projections to S. (We

denote thCln by the same symbol, since confusion is hardly likely to arise.) The objects
7f(n)!j (TL)" F alld 1T (n)! [,. (X /5, F, 11.) are isomorphie in the clerivcd catcgory of sheaves
on 5. We use this isomorphism to calculate the §n-equivariant Euler eharaetcristic of
7r(n)!j{n)* F.

Whell X/ S is a quasi-projective ßlOrphis111 of varicties ovcr C, it is not harcl to cxtend
our resolution t.o mixed Hodge Illodules: in this way, wo obtaill a new proof of thc formula
of [10] for the Serre polynomial of the configuration space F(X, 11,). (The Serre polynomial
is the Euler characterist.ie of H:(F(X,n), Q) in the Grothendieck group of rnixed Hodgc
structures.) The virtlle of this new proof is t.hat it applies with no modification t.o the
relative case.

A similar spectral sequence has beeil obtainecl by Totaro [27], in thc case where S =
Spec{C). Since he works with COhOlllOlogy, alld not c,ohonlOlogy with compaet support,
his resuIt.s depend on thc dimcnsion of X allel require X to bc smooth; howcver, when X

is slllooth, our speetral sequence is eqllivalent to his.

To extend our resolution from sheaves to Inixed Bodge modules, we have to modify it,
sinee i* is not a. t-cxact functor of mixed Hodge lllOdules (01' of pervcrse sheaves, which
underly mixed Hodge modules), even when i is a dosed ilnmersion; already for n = 2, it
is well-known that (0.1) must be replaccd by an exact triangle. This difficlllty is overcome
by introdllcing Ceeh resolutions for the sheaves i{J)!i(.J)* F, which are construeted using
the property of mixed Hodge modules that 1! is t-exact for open affine immersions.

Ir we apply our resolution to the universal elliptic curve, we obtain a formula for the
relative Sn-equivariant Serre polynomial of M l,n/M 1,1' Eichler-Shimura theory, which
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2 E. CETZLER

ealculates the eohomology of polynOlnials of the Hodgc loeal syst.em on M 1,1, t.hen leads
t.o a fonnula for the §n-equivariant Serre polynomial of M l,n'

The first vaille of n for whieh MI,u has a eontribution from thc cusp forms, and hence
has Ilon-Tate cohomology, is n = 11, for which the (non-eqllivariant) Serre polynolllial
may be ealculated by (5.6) to be

e(M 1,11) = L11 - 330 L9 + 4575 L8
- 30657 L7 + 124992 L6

- 512

- 336820 L5 + 584550 LB - 406769 L3
- 865316 L2 + 2437776 L - 1814400;

here, L denotes thc mixed Hoclge st. ructure Q{-1), and 512 is a two-dimcnsional Hodge
structure of weight 11, assoeiated t.o the d iseriminant eusp form ß. (We do not rcprod uee
the equivariant Scrre-Hodge polynomial eSll (M 1,11) for lack of space: there are 56 irre­
ducible representations of SIl, although not all of these oecur.) In partieular, M 1,11 has
Euler characteristic -302400.

The virtual Euler characteristic of the orbifold M 1,1 equals -1/12. (This is a special ca.':ie
of the formula of Harer anel Zagier [16), but is easy to prove elirectly, usillg the standard
fundamental dOIuain for the action of SL(2, Z) on t he upper half- plane. ) It follows by
induction on n, llsing the fibrations Ml,n -t MI,n-l, that thc virtual Euler characteristic
of MI,n equals (-l)n(n - 1)!/12. For n ;::: 5, Ml,n is a fine modllii space (that is, HO

automorphism of an elliptic Cllrve fixes 5 points), and thus its virtual Euler characteristic
equals its Euler characteristic. The agreement between the reHulting formlIla for X(M 1,1 d
anel the value which wc have calculated provides a (modest) consistency check 'betwcen
our work anel tImt of Harer alld Zagicr. We show in Proposition (5.7) tha.t out' fOfIlll1la
for the Serre polynOlnial of MI,n does give the correct value of X(Mt,n), for all n ;::: 5.

III a seqllel t.o this paper [11]' we show how to surn the Sene polYllomials of thc strata
of M l,n to obtain a formula for its Hodge polynonüal. For example,

e(M 1,11) = L11 + 2037 L10 + 213677 L9 + 4577630 LB + 30215924 L7 + 74269967 L6

- 512 + 74269967 L5 + 30215924 L4 + 4577630 L3 + 213677 L2 + 2037 L + 1.

Outline of the paper. In Section 1, we cxplain thc rclationship between Arnold's eal­
culation of the cohOlnology of the configuratioll spaces F(C, n) and the theüry of Stirlillg
nurnbers of the first and seeond kinds.

Scction 2 is devoted to thc construetion of the resolution in the simpler ea...,e of sheaves
of abelian group. This is generalized in Section 3 to thc cases of perverse sheaves and of
lllixeel Hoelge rnoel nies.

In Sectioll 4, we apply the associatcd spectral sequence to gelleraliz:e thc formula. of [10)
for the Sn-cqllivariallt Serre polynontial of F(X, n) to the relative ca..<';C.

In SectiOll 5, we apply the formuhlS of Section 4 to calculate the Sn-equivariallt Serre
polYllOlnial of thc nlocl uE space M 1,n.

Acknowledgments. I wish to thank the DcpartlIlent. of Mathcmatics at the Universit.e da
Paris-VII anel the Max-Planck-Institut für Mathematik in Bonn for their hospitality durillg
the inception anel completion of this paper, respectivcly. I am grateful to E. Looijenga
for illtroducing me to the Eichler-Shirllura t.heory, and to D. Zagier für his help with the
proof of Proposition (5.7).

The author is partially snpported by a research grant of the NSF anel a fellowship of
the A.P. Sloan FOllndation.
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1. THE COMBINATORICS OF PARTITIONS AND STIRLING NUMBERS
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In this sectioll, we recall the cohomolob'Y of thc configuration space F(C, n) alld its
relationship with thc Stirling numbers. We give more detail on thc theory of Stirling
nUlnbers than is necessary, since it illuminates thc combinatorics which we will apply to
construct our resolution.

(1.1). Part i t ions. A parti tion .J of n is a decomposition of thc set {I, ... , n} into d isjoint
Ilon-empty subsets: for example, the partitions of {I, 2,3 , 4} are

{I,2,3, 4} {I2,3, 4} {I3,2,4} {I4, 2, 3} {23,I,4} {24, 1,3} {34, 1,2}

{I23,4} {I24,3} {I34, 2} {234, 1} {12, 34} {13, 24} {14,23} {1234},

wherc wo abbreviate thc subset {i 1, ... , it} to i 1 ..• ig. We denote thc subsets of J by
{J I, .•. , Jk}, iIl no particular order. Denote by 5(n, k) thc set of parti tiolls of n illto k
non-elupty subsets.

Associated to apart ition .J of n is an eqllivalence relation on {1, ... , n}, slieh that i rvJ j
iff i anel j lie in the same part of J. The set of all partitions of n is aposet: if J allel K
are partitions, J -< K iff i r-.lJ j implies that i r-.lK j, that is, iff K is coarser than J.

If a = (an I 11 ~ 1) is a sequence of natural numbers, let lai = L~=l nan0

Lemma (1.2). The exponential gcnerating function of the numuer ]J(a) of partitions of
lai into aj subsets 01 size j, j ~ 1, is

Prooj. Indeed, p(a) is the nUlnber of automorphislns of the set with laI elements divided
by the numbcr of aut.OlllorphislllS of such a partition, namely

00

p(a) = la\! / llpUjaj!,
j=l

from which t.he lemma folIows.

Let I be apower series
00 fk tk

f(t) = L M'
k=1

Define the partial Bell polYllomials Bn,k by the generat.illg fUllction

D

(1.3)

00 tn n

exp(xf(t») = L n! LBn,k(f}, ... ,fn)xk
.

n=O k=O

Setting tj = xij fj in the gCllerating fllnctioll B(t) of Lemnla (1.2), we obtain the explicit
formula

k

Bn,k(JI, ... 1 fn) = L II JjJil'
JES(n,k) i=J

(See Ex. 2.11 of Macdonald [19].) In particular, the partial Bell polynonüals have positive
integra.l coefficients.

Proposition (1.4). 1f 9 is the in.verse power series to f (that is, g(f(t)) = t), then the
matrices Fnk = Bn,dfll' .. , In) and Gnk = Bn,k(gl, ... 1 gn) are invenlC to eac!t othcl'.
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Proof. Thc ma.trix F is thc transition matrix between thc baf;:;cs (t k / k! I k ~ 0) allel
(f(t)k /k! I k ~ 0) of Q{t]. Its inverse F-l is tlms thc transition matrix betwcen the bases
(f(t)k /k! I k ~ 0) anel (t k/k! I k ~ 0). Changing variables frOln t to g(t), thc result
follows. D

(1.5) . St irling numbers of the first kind. Thc Stil'ling numbcr of thc firs t kind s(n, k)
nlay be defined as (_1)n-k tünes the number of pennutations on n letters with k cyc1cs.
A pennlltation of thc set {I, ... , n} is thc same thi ng as apart it ion of n, togcther with a
cyclic order on each part of the partition. Since a set of cardillality i has (i - I)! cyclic
orders, wc see that

(1.6)
n

s(n, k) = L rr(_I)I Ji l- 1(IJil- I)!.
JES(n,k) i=l

Applying (1.3) with fk = (-l)k-l(k -1)1 (or f(t) = 10g(1 + t)), we sec t.hat

(1.7)

In particular, for n ~ 1,

(1.8)
n

L ,'; (n, k) xk = x (x - 1) ... (x - Tl + 1).
k=l

(1.9). Stirling numbers of the second kind. The nllmber S(n, k) of partitions of n
with k parts (i.c. the cardiuality of S(n, k)) is called a Stirling Illunber of the sccond kind.
The special case of (1.3) wi t.h f (t,) = et - 1 (anel hcnce f k = 1 for all k) shows tha.t the
Stirling Illnubers of thc second kind have generating function

(1.10)

For the reader's edificatiou, wc display the first few rows of t.he Ilmtrices of first and
second Stirling numbers:

1 0 0 0 0 0 1 0 0 0 0 0

-1 1 0 0 0 0 1 1 0 0 0 0

2 -3 1 0 0 0
and S=

1 3 1 0 0 0
B=

-6 11 -6 1 0 0 1 7 6 1 0 0

24 -50 35 -10 1 0 1 15 25 10 1 0

t t ....................... t • ... • • • • t t ... t t • • • • ~ •

Applying Proposition (1.4) to t.hc functions f(t) = et - 1 and g(t) = log(l + t), we sec
that the nmtricCH .9 anel S formed from thc numbers s(n, k) and S(n, k) are inverse to each
other.

Proposition (1.11).
00

L s(j, n)S(n, k) = 6(j, k)
n=l
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We lnay rewritc (1.8) in the form
u

L s(j, n)x-1l = x-j (1 - x) ... (1 - (j - l)x).
)';;1

From Proposition (1.11), it now follows casily that

00 k

L S(n, k)x
n

= (1 _ x)(1 - ;x) ... (I - kx)'
n;;k

or equivalcntly,

S(n, k) = L Zl •.. Zk·

I::;il ::; .. ·:Sik:Sn

This is also not difficult to provc dircctly, by induction on n.

5

(1.12). The cohomology of the configuration spaces F(C, n). Let H·(F{C, n), Z)
be thc cohomology of thc configuration space of the complex line. Given distinct j anel
k in {I, ... , n}, let Wj k E H 1{F (C, n), Z) bc the integral COhOl11ology dass rcpresented by
the closed differential form

1 d(zj - Zk) ,
D.jk = -, .

21TZ Zj - Zk

By induction on n, Arnold shows in [1] that the cohomology ring H·(F(C, n), Z) is gencr­
ated by the classcs Wjkl subjcct to the relations Wjk = Wkj anel

(1.13)

The action of thc grou}) Sn on the configllration space F(C, n) indllccs an action on thc
COhOll1010gy ring ff·(F(C, n), Z), whieh permutes thc gcncrators, by t.he fOI"l11ul<1.

a . Wij = W cr (i)l1(j)'

Using thc abovc presentation of H·(F(C,n),Z), Arnold shows that HU-k(F(C,n),Z)
is a free abclian group of rank (-1 )n-ks(n, k). This lllotivatcs the definit.ion of a graded
Sn-nlOdulc s(n, k), with

5(n, k)i = {Hi(F(C, n), Z),

O.

i = n - k,

otherwise,

We may think of 5(n, k) a..., a lift of t.he Stirling lllunber .9(n, k) to thc catcgory of gradecl
§,cIllOdnIes.

DCllote by L(n) the graded Sn-module 5{n,1). More generally, if n is a finit.e set of
eardinality n, let L(n) bc the graded AlIt.(n)-moelule defined in thc sanlC way as L(n)
but with thc set {I, ... ,n} rcplaeed by n. It is iSOl11orphic to L(n), but to obtain an
isonlOrphisnl, we lllUSt choose a total order on n.

The following theorem is proved by Orlik a.nel Solomon for gcneral hyperplane arrange­
ments [21] (sce Theorelll 4.21 of Orlik [20)). Sec also Lehrer-SololllOIl [18] for the special
case whieh we eonsicler.

Theorem (1.14). There is (L natural decomposition

(1.15) 5(n, k) = EB 5(n, J),
JES(n,k)
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k

5(n, J) ~ 0 L(Ji)'
i=l

Proof. The gradcd §n-module H· (F(C, n), Z) is spanned by lIlonomials in the generators

Wij' To such a Illonomial, we associate a forest (a graph each of whose components i8 a

tree) with vertiecs the set {1, ... ,n}, and with an edge betwcen vcrticcs i < j if and ollly

if thc generator Wij oecurs in thc monomial. Sueh a forest determines a partition of the

set {1, ... , 11,}. Let 5(n,.1) be the span of t he monomials associated to the part.i tion J.
Since all of the forests related by applieation of Olle of Arnold's relations (1.13) give rise

to thc same partition, we see that. 5(n, J) is well-defined. Ir.J has k parts, its assoeiated

forest has n - k edges, anel henee 5(n, J) is a subgroup of Hn-k(F(C,n), Z). In particlllar,

if J i8 the unique part ition in 5 (n, 1), we see timt 5(n, .1) is gellerated by all trees with n

labelIed vertices, modulo the Arnold relations. Prorll this, it i8 easy to see that

k

5(n, J) ~ 0 5(Ji' 1). 0
i=l

Thc characters of the §n-rIlodules L(n) have bcen calcl1lat.ed by Hanlon [13] anel Stanlcy

[24]. From their formula, one may calculatc the characters of 5(71" k) for all k.

Lernma (1.16). The equivariant Euler chamcteristic 0J th e graded Sn -nlOdllle L(11,), eval­

uated (Lt a E Sn, is given by lhe f01'1n1lla

if a ha8 71,/d cycles oJ lengtJl d,

otherwise.

(1.17) . A different ial on H· (F (C, n), Z). We now st ucly thc differential

8 : H·(F(C, n), Z) --+ H·- 1 (F(C, n), Z)

of the a.lgebra. H·(F(C, n), Z) associated to the diagonal action of thc lIlult.iplicative grollp

CX on F(C, 11); it is given by capping with the fundamental class of t he circle U(1) C C X . It

follows fr01l1 the definition of Wij that. 8Wij = 1. One can casily check t.hat 0 i8 well-defincd,

by showing that the cl ifferential of the relation (1.13) v<Lnishes:

8(WijWjk + WjkWki +WkiWij) = (Wjk - Wij) + (Wki - Wjk) + (Wij - Wb) = O.

Thc followillg lemma reflects thc fact that thc action of C X on F(C, n) is free if n > 1, and
that the resulting principal fibration is trivial.

Lemma (1.18). IJ n > 1, the COTnlJlex (H·(F(C, n), ZL 0) is acyclic.

Proof. Let. H denot.e thc operator of Ilnlltiplicat.ion by W12. Sincc f)w12 = 1, we see that

8· H + H . 8 equals the iclentity operator, proving acyclicity. 0

1f.J E S(n,j) alld K E S(n, k) are partitions of {1, ... ,n}l denote by oJ K the componellt.

of a mapping from 5(11".1) to 5(n1 K); thus, OJK vanishes unless k = j + 1.

Lemma (1.19). The differential aJ K vanishes 'Unless K -< J.
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(2.1)

Pl'oof. Let a be a monomial in thc gcnerators Wij of He(F(C, n),'Z), By the definition of Ö,

öa is a sum of terms, in eaeh of whieh one of thc factors Wij oeeurriug in a is olllitted. Such
a terul corresponds to partition of {I, ... , n} in whieh i and j are uo longer equivalent: in
other words, the partition associated to the new lUonomial is a refinemcut of the partition

associated to CY. 0

2. RESOLVING SHEAVES ON CONFIGURATION SPACES

Before turning to the construction of resolutions of sheaves over configuration spaces,
wc cxplain by an informal argumeut why one cxpeets Stirling numbcrs to arise in the

eoustruct.ion.

Let .X18 be aseparated seheme over a base 8, and let X Tl 18 be thc n th fi bred power

of X with itself, clcfined iuductivcly by X O18 = 8 and

X n+1/8 = (X n I8) xsX.

Dcnote by rr(n) : X 71 18-+ 8 the projection to 8.
The sclH~mc x n18 ha..<.; a stratifieation, with strata iudexed by the poset of partitions .J

of {I, ... ,n}: the stratum aBsociated to a partition J is giv8n by

F(XI8,.1) = {(Xl""'Xn ) E X Tl l8 I Xi = Xj iffi ""'J j}.

A stratum F(X18, K) lies in thc closure of F(XI8, .1) if and only if J -< K; the closllre of .

F(.~"'(18,.1) is the diagonal

X J 18 = {(Xl, ... ,Xn ) E X n l8 I Xi = Xj ifi ""'J j}.

If J E 5(n, k), denote by i (.1) : X J 18 y x n jS t he diagonal inullersioll. If F is a sheaf

on X n 18, denote by F(J) the sheaf i(J)!i(J)* F on x n IS.
Ir JE 5(n, k), F(XI8, J) is isomorphie to F(XIS, k)j thus, we may represent the above

stratifieation of X n IS (ill)formally a..,
n

X Tl l5 = II S(n,k)· F(Xj8,k).
k=l

Proposition (1.11) leads us to expeet that thcre is a "virtual stratifieation" of F(XjS, 11,),
of the form

n

F(JYj8,n) = II s(n,k)· X k 18.
k=]

Rewritten in tenns of gencrating funetions, this becomcs

~ tn[F(XIS, n)J _ ~ log(1 + t)n[x n I S] _ ( )[x/SJ
L --=---";"'-";"',-----=-=' - L , - 1 + t ,

n. n.
n=O k=O

where we think of thc symbol [X n I S] a..<;; thc nth power of [XIS], as iudeed it. is in thc
Grothendieek grotlp of lllOtivie sheavcs on S.

We may make sense of (2.1) in thc following way. Let j(n) : F(XI8, 11,) y X n I S bc

thc open immersion of thc eonfiguration spaee in X n j S. There is a natural resolution
['. ()(15, n l:F) of j (TL)!j (n)· :F, whose 11 nclerlying graded shcaf has the form

(2.2) Ln-k(XIS, n, F) = EB Hom(s(n, J), F(J)).
JES(n,k)
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For example, if n = 2, we recover (0.1) while if n = 3, we obtain the resolut.ion

o ---+ j(3)!j(3)* F ---t F(l, 2, 3) ---+ F(12, 3) EB F(13, 2) EB F(23, 1) ---+ F(123) EB F(123) ---+ O.

In the special case that F is a const.ant sheaf, wo Iuay interpret. F( J) as a copy of the
diagonal X J , which is isomorphic to X k whcn J E 5(n, k)j l'cplacing thc §n-nlodule s(n, J)
by its Euler charactcristic and bearing in mind (1.15), 01' its llllIuerical version (1.6), we
are led to (2.1).

(2.3). Construction of the resolution. Ir J -< Kare partitions of {I, ... ,n}, dcnote
by i(J,K) the incilision X K IS y X J IS, and by i(J,K)* : F(J) ---t F(K) the indllced
map of sheaves. Let ['. (XIS, n, F) bc the cOlllplex of sheaves (2.2), with differential

(2.4) d = L BKJ 0 i(J, K)*.
J-<.f(

For cxmuple, CO(XjS,n,F) ~ F, whilc C1 (XIS,TL,F) is thc dircct sum

Cl(XjS,n,F) = EB :F(kl,l, ... ,k, ... ,~ ... ,n),
l:Sk<l:5n

since dim s(n, J) = 1 for all J E 5(n, 11 - 1). In part.icular, j* Cl (XI S, TL, F) = O.

Denot.e by 11 : j(n)!j(n)* ::::} Id the llnit of thc adjunction between j(n)! and j(n)*;
it indllces a Iuap, also denoted by T/, from j(n)d(n)*F to :F = CO(XIS,n,F). The
cOInpositioll of arrows

is zero, showing that 'TJ: j(n}j(n)*F ---+ [,·(XIS,n,F) is a morphism of complexes.

Theorem (2.5). The morphism 'TJ : j (n)!j(n)*:F ---+ C(Xj S, n, F) is a qtwsi-is01norphism.

Proof. We apply thc following IClllIna.

Lemma (2.6): Lei X be a stratified space with strata {XJ L anti let j(.J) be the locally
closeti im1uen.ion 0/ the stratu1n X J in X. Then a map 0/ complexes 0/ sheaves 11 : F 1 ---+
:F2 on X is fL qUfLsi-isomorphism ij and onty i/ 7J : j(J)!j(J)"':F1 --} j(J)!j(J)* F2 is a
qUGsi-isomorphism /01' alt strata.

Proof. Ir there is ollly one stratum, the lCInnm is a tautology. We llOW argue by illduction
on the nUIuber of strata. Let X J be an open stratum of X, anel let Z be its complement
in X, with closed iIluuersion i : Z y X. COllHider the diagram

------41 0

------+10I j(J)U'(J)*:F1 ------lo F 1 ~ i!i* F l

ryl ryl ryl

l j(.J)!i(J)* F 2 ------lo F 1 J ili* F lO--~

0---+

Since the rows are exact, we conclude by thc five-lelluna. that 11 : F 1 ---+ :F2 is a quasi­
isomorphism if anel only if 7J : j(J)!j(J)*:Fl ---+ j(J)!j(J)* F2 and 1/ : i!i*:F1 ---+ i!i*:F2 are.
By the induetion hypothesis, T/ : i!i*F1 ---+ i!i* F2 is a quasi-isomorphism if alld only if
11 : j(K)d(K)* F 1 --} j(K)d(K)*:F2 are for all K =j:. ./j this proves the induction step. 0
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otherwise.

if J is t.he llniquc partition in S(n, n),

lf .J is a. partition of {I, ... ,n}, let j(J) : F(X/ S, .1) y X n
/ S be the inciusiOll of tlle

locally closed subscheme F(X/ S, J). By the base change theorem,

'(.1) '( 1)"'"( ) "( )"'F""'" lj(n)!j(n)'" F,J 11, J n !J Tl. =

0,

Let thc parts of J be {.11, ... , J k}, in no particlllar order, anel let 7li be the cardinality
of Ji . Applyiug Theorem (1.14), we see that

j(Jl!j(J)' C(XjS, n,:F) ~ HOIll ( E9 5(n, K),j(J),j(J)*:F)
K-<J

k

~ HOIll (:?? H";-O(F(CC, n;), Z), j(J),j(J)':F).

The differential on this cOIuplex of sheaves is indllced by the differentials on thc facton;
Hni-·(F(C, 7li), Z), anel hence by Lenuna (1.18) is acyclic if ni > 1 for any i.

We see that the hypotheses of LeJIuna (2. G) are fll lfi lIed: if .1 is a partition of {I, ... , 11,},

71 : j (J)!j (J) '" F --+ j (.1)!j (J) '" C(X/ S, 11" F) is a quasi-isomorphislll, since the two COlIl­

plexes are equal if J E S(n, 11,), while they are both acyclic othcrwise. 0

3. MACKEY 2-FUNCTORS

In this section, we axiomatize those propcrties of the 2-functor associating to a scheme
its derived category of mixed Hodge modules which will be uscel in cOllstrllcting thc ana­
10gllC of thc resolution c."(X/S,n,F). It turns out that these aximlls define the natural
analogue for 2-fullctors of Dress's Mackey functors [8].

Irnpatient readers IIlay skip to Section (3.5): all they need to know about the Mackey
2-functor lInderlying the theory of mixed Hoclge modules is tImt the lIsual propel'ties of
the fllnctors J! anel f* for locally closed immersions hold, such as the b:-t."e change theorem
(in particular, we make no use of Verdier duality). In Bection (3.5), we irnpose sufficient
additional hypotheses Oll these functors to allow 11S to construct Cech-type resolutions of
j!j'"F when j is an open immersion allel of i!i'"F when i is a closcel immersion. The analogue
of L(X/S,n,F) for mixed Hodge llloelules is defineel by replacing the shcafi(J)!i(J)*F by
this Ccch complex.

(3.1). Mackey functors. Mackcy fUllctors were iIltroduced by Dress (8J a.s an axiomati­
zation of induction in thc thcory of group representations. Thc motivating example is thc
fnuctor G H R(G) on thc cat.egol'Y of finite groups, which a...":lsiglls to a group G its virtual
represcntation ring. GiVCll a morphism f : G --+ H of finite groups, t.here is a cOlltravari­
ant lllap je : R(H) --+ R(G), pull-back alollg f, anel a covariant. Ina.p f. : R(G) --+ R(H)
generalizing illduction:

These functors satisfy the Mackey double eoset formula, which says that given a Cartesian
square of fillite grotlps
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(3.2). Mackey 2-functors. The group of virtual representations R(G) is the Grothen­
check group of thc cat.cgory Proj (G) of finite-dimensional projeetive represellt.ations. Thc
2- fu nctor G H Proj (G) satisfies axioms whieh are the natural analogue for 2-fllnctors of
thc definition of a Mackey funetor; we call a 2-functor satisfying these a.xiollls a Mackey
2-functor.

This cOllcept is not. new: it wa.'l introduced by Deligne in Expose XVII of SGA 4 [2]
(though not under this name).

Definition (3.3). A Mackey 2-fullctor [rom a category C to a 2-category 1f consist.s of a
pair of 2-fllnctors De : Co --+ 1I' (where Co is the opposi t.e of C) and D. : C --+ lf, such that

(i) if X is an objcct of C, the objects D·(X) alld D.(X) are identieal - we denotc this
object by D(X), alld if J : X --+ Y is a morphism of C, we denote the l-Illorphislll
D·(/) : D(Y) --+ D(X) by Je auel thc l-ulOrphislll D.(J) : D(X) --+ D(Y) by J.;

(ii) (addit.ivity) there are 2-morphisms of bifunctors Q : De(X U Y) ::::} De(..-y) EB D·(Y)
and ß : De(X U Y) ::::} D. (X) EB D.(Y), such that

aX,Y = ßx,}~ : D(X UY) =} D(X) EB D(Y);

(iii) (base change) to cach Cartesian square

f
Xl -------+ X2

in C is associated a natural 2-morphisIll cP : g·i e ::::} s.J·, such that givell a diagram
each square of which is Cartcsian

f r
X I -------+ ....Y2 -------+ X 3

sI ,1
9'

ul
Yt

9
------ Y2 ------ Y3

s' 1 "1
Zl

h
------+ Z2

the 2-Inorph ism ep <L';sociated to the top (resp. lcft) pa.ir of squares is the 2-COIllposi­
tion of the 2-morphisIllS associated to the squares f1'0111 which it is formed.

The Grothenclieck group Ko(D) of a triallgulated catcgory D is the abeliall group gener­
ated by the isomorphisIll classes of objects of D (wherc we asSUIllC that these form a set);
we impose the relation [V] rv [U] + [W] for all exact triangles (U, V, W) in D. For example,
if D is the c1crived category Db(Ab) of bounded cOInplexes in an abelian category Ab, then
Ko(D) may be identifiecl with the Grothendieck group Ko(Ab) of thc abelia.n catcgory Ab,
which is the abelian group generatccl by the isomorphism classes of objects of Ab, with
the relation [V] rv [U] + [W] whenevcr V is a.n extension of W by U. Although wc will not
need it, thc following result gocs Sonte wa.y towards justifying our illtroduction of Mackey

2-fullctors.



RESOLVING MIXED BODGE MODULES ON CONFIGURATION SPACES 11

Proposition (3.4). The cOTn[Josition of a Mackey 2-funetor 0 with the functor Ko 'ts a
Mackey funetor K on C.

(3.5). Exact Mackey 2-functors. Let. Var be the category of quasi-projective varieties
over C, wit.h rnorphisms t.he loca1ly elosed immersions. Let 'Ir be the 2-category defined a..<;;

folIows:

objects: t-catcgories (Beilinson-Bernstein-Deligne [4]);
1-ITIorphisms: right t-exact funetors possessing a right adjoint.;
2-morphisms: natural iSOInorphisms.

Definition (3.6). An exact Mackey 2-functor on Var is a Mackey 2-fllnctor with valllcs
in 'TI' such that

(i) for elosed immersions i : Z '-T X, i· has right adj oint i., anel i. is fully fai thful;
(ii) for open immersions j : U '-T X, j. is flllly faithful, and ha.., right acljoint is j.;

(iii) if i : Z '-T J'\ is a elosed immersion, aud j : U '-T X is thc open iuunersion of the

cOInplernent U = X \ Z, there is an exact triangle (j.j·V, V, i.i· V) for cach objeGt
V of D(J'\).

(iv) if j is a.n affine open immersion, the fundar j. is t-exact.

Wc have in minel three examplcs of exact Mackey 2-fllnctors.

Example (3.7). The 2-functors X ~ (Db(X), f. = f!, f· = f*) assigning to J'\ the
derivcd catcgory of sheaves of abelian groups with thc usual t-strncture.

Example (3.8). The 2-fullctors X ~ (PD~(X), f. = f!, f· = f*) assigning to )( the
derivccl catcgory of bounded cOInplexes of shcaves with cOllstructible cohornology, togcther

with the t-structure associatecl to the middle perversity 11 (axiom (iv) is Corollaire 4.1.3
of [4]).

Example (3.9). The 2-fllnctors X ~ (Db(MHM(X")), f. = f!, f· = f*) assigning to X
t.he derived category of mixed Bodge modules with thc nat.ural t-structl1re.

(3.10). Cech complexes. Let j : U Y X be an open immersion alld let U = {UdJ:::;i:::;d
be a finite cover of U by affine open iUlluersions ji : Ui Y X. For cxample, wc lllight take
the Ui to bc cOInplements of Carticr divisors in X. Using these data, wc uow define a Cech­
type resolution of j.j.F, where 0 is an exact Mackcy 2-fllnctor. (Sec also Proposition
2.19 of Saito [22] aud Section 3.4 of Beilinson [3).)

Definition (3.11). Thc Cech-complex C.(X,U,F) is thc gradecl object of D(X)

Ck(X:,U,F) = E9 (jio ...ik).(jio ...iktF,
io<···<ik

where jio ...ik is the open inunersion of Uio"' ik = n~=o Ui in X. Hs differential is the SUITI

of maps
k

0= L(-1)lo,: Ck(X,U,F) ~ Ck_1(X,U,F).
l=O

Here, Oi : (jio ...ik). (jio ...iiJ·F -7 (jiO ...fj .. .ik). (jio ...fj .. .ik)·F is ind llced by the adjunction
q.q. =? Id associatcd to thc open iInmcrsion q : Uio .. .ik~ Uio ...fj ...ik.

If 0 is a t-cat.egory, let HO(D) be its ltcmt. Rccall frOIll Section 3.1.9 of [4] thc rcalizatioll
functor
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this is an cxact functor mapping bounded complexes C.(HO(D)) to objccts rcal(C.) in DU.

Proposition (3.12). Let D be an exact Mackey 2-funetor, let j : V Y X be an open
imrnersioTt, let i : Z y X ue the closed immersion of the complcment Z = X \ U, and let
U = {Vi}O~i~d ue a cover oJ V by affine open immersions ji : Vi Y X. Then

(i) real(C. (X, U, F)) E Ob D(X)[-d,O] is isomorphie to j.j.F;

(ii) real (cone(C.(X,U, F) ---7 F)) E Ob D(X)[-d-I,Oj is isomorphie to i.i·F.

PTOOf. Note that (ii) is implied by (i) and thc five-lcmma: in thc diagl'am

o ---4) F --------+1 i.i·F ' j.j·F[l] ---...... 0

1 ~l
---+1 F ---Jol cone(C.(.IY",U,F) ----7 F) -----+ C.(X,U,F)[lJ ~ 0

thc top row is cxact by axiom (iii) for cxact Mackcy 2-functors, and the bottOIu I'OW is
obviously cxact.

We now prove (i) by induction on d: for d = 0, C.(X,U, F) ~ j.j.F, and thc proposition
is a tautology.

The open subset UO = u1:;:;:l Vi of X has cover UO = {Udl~i~d' Let ja alld jo be the
open ilumcrsions of UOand U0 in X, and defi He P = (j0). (j0). Fand Fo = (jo). (jo)· :F.
Let p be the locally closed immersion of U \ VO = Uo \ UO in X. We now form the diagram

o ----_tl r I j.j.F ) p.p.:F --------+1 0

~l 1 ~l
o -------1-1 C.(X,UO,F) -+ C.(X,U,:F) -+ cone(C.(..-Y,Uo n Uo,Fo) ---7 Fo)

The lower row is defincd by cl ivieli ng the summands (jio .. .ik). (jio ...ik ).F of C(X, U,:F) into
two classes:

(i) if io > 0: the term (jio ik). (jio ...ik t F is a summand of C. (UO, (j0). (j0). F);
(ii) if i o = 0, the t.enIl (jOi t ik ). (jOi 1., .ik ).F is a, sUllunanel of conck (C. (Uo nu0, :Fo) ---7 Fo).

In particular, the bottonl row is exact.
Thc top row is exact by axionl (iii) for exact Mackcy 2-functors, applied to the elosed

inullersion of U \ UO in U, while the outcr vertical arrows are quasi-isolUorphisms by tbe
induction hypotbcsis. Tbe proposit.ion now follows by the five-lcmma. D

(3.13). The resolution Lü(X/8, TL, F) for mixed Hodge modules. Using thc Ccch­
cOIuplexes C.(X,U, F), we now construct aresolution of j!j* F, whcrc F is a mixed Hodge
nlodule. The functor i* is Bot t-exact on mixcd Bodge modulcs for general closed im­
mersions i; for this rea....,OI1, our construction depends 011 thc choice of an auxiliary cover
U of F(X/8, 2) by affiue open imIllcrsions ji : Ui Y X. (If X / S is a smooth fmuily of
curves, wo }uay take the cover to have one element U = {F(X/S,2)}, since in that case,
thc diagona.l in X 2 / S is a Carticr divisor.) We will actually construct the resolution in
the more general setting of exact Mackey 2-funetors.

For k, L E {I, ... , n} with k # l, let 7fk[ : X n / S ---7 X 2
/ 8 be thc morphisHl which

projccts onto thc kth anel lth factors. Define a covcr U(J) of thc complcmcnt of thc
diagonal i(J) : );J IS y X n / S by

U(.J) = {7fk"/(Ui ) I k "'-'J land Ui EU}.
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The open inunersiolls 1Tk'/ (Ui) '---7 X n I S are affine, since affine open immersioIls are pre­
served nnder base change (EGA 11, 1.6.2 [12]).

By Proposition (3.12), the realization of the complex cone(C.(Xn IS,U(.J),F) -+ :F) is

quasi-isOIllorphic to i(J).i(.J)·F. If.J -< K, thc Inorphism

i(J, K)· : i(J).i(JtF ---+ i(K).i(i<)· F

is induced by an illclusion of cmnplexes

i(J,K)· : C.(XnIS,U(J),F) ---+ C.(xnIS,U(K),F),

which exists because the cover U (K) contains the open cover U (J).
As in thc ca.."e of sheaves, our resolution of j.j.F is a SUln over partitions (2.2); unlike

that. case, thc rcsult is a double complex, anel we must take thc realizat.ion of its total

cOIuplex to obtain an object of D(X n IS). Let

L~-k,-j(XIS,n,F)= E9 Hom(s(n,J),conej(C.(XnIS,U(J),F) ---+ :F)).
JES(n,k)

There are two differentials: the analogue of differential (2.4),

d = L aKJ 0 i(J, K)*,
J-<.K

and the (jech-differcntial L~-k,-j(XI S, n, F) -+ L~-k,l-j (XI 5, n, F).

We may identify ci;- (X15, n, F) with F; tlms, thcre is a natural coaugmentation

1]: j.j·F ---+ L~·(XIS,n,F).

Ir a is a pennutation, thc covcr U (.7) is carried into U (a . J) by t he action of a, so
that a maps C. (XH 15, U(J), F) ismnorphically to C. (~yn I S, U (a . .7), F). The different.ial
of L;;· (XIS, H, F) is invari aJ lt uneler the action of a, showing that L;;· (XIS, n, F) carries
an action of §n' It is deal' that the coaugmentation 7/ is §n-eqllivariant.

We now come to the main result of this paper; we omit the proof, since it is essentially
identical to timt of Theorem (2.5).

Theorem {3.14}. Let D be an exact Mackey 2-functor. 1f 1T : X -t' S is a moryJhism of

quasi-]Jrojective varicties over C, F is an objeet of D(X) and U is a cover of F(XIS, 2) by
affine open irmnersions, th e coaugmentation 11 : j .j.:F -+ L~· (XI S, n, F) induces an § n­

equivm'iant quasi-i.'wmorphism in D(Xn IS) between j.j.Fand real (Tot L;;· (XI5,11, F)) .

4. THE §n-EQUIVARIANT RELATIVE SERRE POLYNOMIAL OF j(n).j(n)·[iZJn

(4.1). The relative Serre polynomial. Let D bc an exact. Mackey 2-fllnctor, anel let

?T : X -+ S be a nlorphisIu of quasi-projectivc va.rietieH over C. If F is an object of D(X),
the relative S erre polynom,ial es (~y, F) of F is the dass of 1T. F in K(S).

This ternlinology is motivateel by the special casc in which D = Db(MHM) anel S =

Spec(C). Ir wc apply to e(X, F) the augmentation € : K (MHM(Spcc(C))) -+ Z[t] elefincd
by

€(V) = L (_l)i diln grlV Vitk ,

i,k

we obtain thc Sene polynolllial of F,

e(X,F) = L(-l)iH~(X,F)tk.
i,k
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R(G)

Now suppose a finite group f aets on X and Y, anel the morphism 7f is f-oquivariant. Ir
F is an objeet of DI~ (X), thc eqnivariant. relative Serre polynomial e~(.X,F) is the dass of
7fe F in Kr(S), where Kr(X) is the Grothendieck group of f-equivariant objects in D(X).

When D is defined over a field k of characteristic 0 anel the categories D(X) have tensor
products, the associated Grothendieck groups Kr (X) are '\-rings, by the arglllllents of [10].
If in addition thc action of r on X is trivial, the Peter-Weyl thoorClll (see Theorem 3.2 of
[10]) itnplies the isomorphism of "'-rings

Kr(..-X") ~ R(r) 0 K(X),

where R(f) is thc virtual reprosentation ring of r (thc Grothcndieck group of finite-cli­
mensional k[r]-nlodules).

In this section, we calculate e~n(F(..-X"/S,n),j(n)e[t8Jn). We obtain a generali~.mtion of
Theoreln 5.6 of [10], which is t.he special case new result wherc D = MHM, S = Spec(C)
and [ = n. is the unit of O(X).

(4.2). Green 2-functors. The reader interest.ed only in the case of mixed Hodgc mod­
ules may omit this soction, whose röle is to a.xiomatize the projection axiom.

Ir G is a finite group, R.(G) is not only an abelian group, hut. also a cOIIl1l1utative ring:
furthermore, the fllnctor fe preserves this product, and we have thc projectioll axiom,
which says that if f : G 4- H is a morphism of finite groups, thore is a commlltativc
diagram

R(G) 0 R(H)

/ ~
R(G) 0 R(G) R(H) CO R(II)

1 1
-----------'10) R(H)

f.
where the vertieal arrows are Illultiplieation in R(G) and R(H). Dress calls a Mackey
functor with these additional st.ructuros a Green fUllctor.

As in [10], a rrillg is asymmetrie monoidal category n with coproducts, denoted AEBB,
such that there are natural iSOIllorphisms

(A EB B) 0 C ~ (A 0 C) EB (B 0 C) allel A 0 0 ~ 0

satisfying thc cohercllee axioms of Laplaza [17]. Let RlNG dellote thc 2-catcgory whose
ohject.s are all rrings, whose 1-morphisIllS are all symmetrie Inolloidal fllnctor,s, and whosc
2-morphisms are all natural iSOIllorphisms of these.

Definition (4.3). A Green 2-fllnctor from a 2-category C to the 2-eategory of rrings
RlNG is a Mackey 2-functor on C such that.:

(i) t.he 2-fllnctor Oe ha." a lift to a 2-functor oe : Co 4- RlNG, and t.lle 2-isOIllorphism
of hifunctors 0' : De(X UY) => oe(x) EB De(y) is a 2-isomorphism of rrings.
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(i i) (t he projectioll axiom) giyen Cl luorphism f : X -7 Y in C, there is a nat.ural 2­
nlorphism

D(X) ® D(Y)

/ ~
D(X) ® D(X) ~ D(Y) 0 D(Y)

1 1
D(X) ~ D(Y)

j.

This Blust satisfy thc condition that for any pair of composable arrows X ~ Y ~ Z,
the 2-morphislll 'l/Jg! equals thc 2-pa..<.;ting of the following diagraIn:

D(X) 0D(Z)

/ ~
D(X) <9 D(Y) D(Y) <9D(Z)

/ ~ / ~
D(X) <9 D(X) ~ D(Y) 0 D(Y) ~ D(Z) <9 D(Z)

111
D(X) !. ; D(Y) g. ~ D(Z)

Definition (4.4). An exact Green 2-functor is a Grecn 2-functor whosc underIying Mae­
key 2-fllnctor is an oxact Mackey 2-fuuctor.

All threc examples of cxact Mackcy 2-functors which wo gavc abovc are exact Grecn
2-functol's, with respect to the llsual tensor product.

(4.5). A formula far e~n(F(X/S,n),j(n)·E[;gJn).Let D be an exact Green 2-functor. If
1f : X -7 S is a lllorphislll of quasi-projective varieticH and E is an object of D(X), wo
define

[071 = 7rrE 0 ... 0 7r~[ E Ob DSn(X1l
/ S),

where tri : ...yn / S ---7 X is the ith projcction.
In caleulatillg e~ll(F(X/S, n), j(n)· [[8]n), we make frce use of thc results 01' (10], in par­

ticII1ar thc relationship betwcen the ring A of symmetrie funetions and represcutations of
synllnet.ric groups. Recall frmn loc. eit. that if R. is a eomplete >--ring, ·with decrcasing
filtration FiR, i ~ 0, there is an opera.tion

00 00 1
Exp(x) = L an(x) = CXP(L ~'ljJn(X)) : F1R -----t 1 + F1R

n;O 71;1

an a.nalogue of the exponential, with iuversc

~ J-L(n)
LOg(l;) = L -Iog('ljJn(x)) : 1 + F1R -----t F1R.

n;Q Tl.

Here, an is thc nth a-operation on R, and 'lj;n is t.he nt.h Adams operat.ion.
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For cxample, if R = Z[q] has its standard ..\-ring st.ruct.ure, t.hen

The ring of SyulIlletrie functions A may be idcntified with the free ..\-ring on one gener­

ator h1, slIch that an(l~l) = hn iH the nth cOluplcte symmetrie function, and 7./Jn(h 1) = Pn

is the 71th power sumo It is a complete ..\-ring. If V is an Sn-nlodule, denote by ch(V) E A
its Frobcllius characteristic; this is the degree n synulletric funct.ion givell by the explicit
expressIOn

1
ch(V) = 1 L Trv(a)PlT'n.

c:rESn

where Pa is thc mOllOluia.l in the power SUIlIS obtained by taking one factor Pk for each
cycle of a of lengt.h k.

If R is a ..\-ring, denote by A®R the cOluplete tensor product of A with R.

T heorern (4.6). Let 0 be an exa ct Green 2-/11.nctor, and let 7r : X -)- S be (L morphism

0/ quasi-projective varieties over C. 1/ (; is an object 01 D(X), the following equality holels

in A0K(S):

~e~'(F(X/S,n),j(n)" [llIn) = EXP(~ "~) e(X/S, log(1 +P" <2> [0"))).

Proof. By Theorem (3.14), we kllOW that

e~n(F(X/S,n),j(nt(;t8Jn) = e~n(xn /S,j(n).j(n)·[t8J")

= i>~'(X" / S, EB Hom(s(n, J), [1lI" (.1)) )
k= 1 JES(ll,k)

TL

= L EB ch(5(n, .J)V) 0 es(Xn/8, [[gJn(.J)) E An 0 K(8).
k=l JES(n,k)

We may replace 5(n, k)V by 5(n, k), sincc any Sn-module is isomorphie to its dual. Applying
Theorenl (1.14), we obtain

n k

L EB II ch(L(Ji)) 0 es(X,E0I J iI),
k=1 JES(n,k) i=l

where the product. is taken in thc ring A® K(S). SUllllIling over 11, gives

Thc theOretll now follows frOlll t.he character fonuula of Lemma (1.16), whieh may be
rcwrittell as
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= f J1.~d) f (-l~e-\}deS(x,[®'le)
d=1 c=l

= f J1.~) es(X, log(l + Pd 0 [®d)). 0
d=l

Remark (4.7). Rewriting Exp in t.erms of Adams operations, Theorem (4.6) becOlues

00 (00 1
00

(l)t-1 )
L e~n(F(X/5, n), j(n)-[~n) = exp L ~ L - I! p~ L tt(n/d)VJd (es (X, [0tn/d)) .
n=O n=l t=l dln

For exanlple, with the notation e(n) = es(X, [0n ), we have

e~n(F(X/5, n), j (n)- [0n) = L s,\ ® <ll Al

,\f-n

where <Pl n = oln(e(l)), while t.he other <ll,\ are as follows for I,,\J S; 4:

<P2 = 02(e(1)) - e(2),

<P3 = 03(e(1)) - e(l) e(2), <P21 = 021 (e(l)) - e(l) e(2) + e(3),

<P4 = 04(e(1)) - 02(e(1)) e(2) + 0(2 (e(2)),

<1>31 = 031 (e(l)) - 02(e(1)) e(2) - oll(e(l)) e(2) + e(l) e(3) + 02(e(2)) - e(4),

<P22 = 022(e(1)) - 02(e(1)) e(2) + e(l) e(3) + 012(e(2)),

<I>212 = 0212 (e(l)) - 012 (e(l)) e(2) + e(l) e(3) - e(4).

Not.c that the operat.ions <I>). of [10J are the specializations of these polynOlnials obtained
on setting e(n) = e(l) for all 11 :2: 1.

Applying Theorem (4.6) with [ equal to the unit object. :n. of D(X)l anel tlsing that
n0n = n for all 11, we obtain the following corollary. Here, we abbreviate es(X, n) to
es(X).

00

Corollary (4.8). Le~n(F(.IY/5ln))= Exp(Log(l +pdes(X))
n=O

Theorem (4.6), anel its corollary, generalize immediat.ely t.o the equivariant sit uat ion 1

in which a finite group r aets on X anel 5, anel the rnorphism 7T" : X -+ S anel [ are
G-eqllivariant. The calclliatiolls now take place in the cOInplcte "\-ring A0 Kr (5), anel the
fonullias do not change.

(4.9). The configuration spaces of group schemes. Ir G ifl a grollp schcme over
5 allel n > 0, thc schemc F(G/Sl n) is an Sn-eqllivariant G-torsor, anel we nUlY consider
the qllOtient scheme G\F(G/ 5, n) . hnitating the above proof, we nüw calculat.e its §n­

equivariaut relative Euler charactcristic. Thcrc is also a r -cquivariaut geuüralizat.ion,
when a finite grollp r acts ou all of the data; however 1 it. is fOrIually identical, so we

simplify notation by only treating tlle casc r = 1.
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Theorem (4.10). /1 i TL th e se tting 01 Theore1n (4.(j) X = G is a grouIJ scherne I th en

f:e~'(G\F(iG/S, n)) = Exp(Log(I :[~~es (iG)) - I,
n::::l

Proof. We must first choose a G-equivariant cover U of F(G/8, 2) by affine open immer­
sions. Observe that the autolllorphism (9, h) f---7 (9,9-1h) of (;2/S identifics F(G/S, 2) with
G x s Go 1 W here Go is t he COlllpiement of t.he identity section of G. Under this identification,
the action of G on F(G/S, 2) cOlTm~ponds to left translation in the first faetor of G Xs Go.
We now choose a cover {Ui } of Go by affine open iUlluersions ji : Ui Y Go; the cover U
of F(G/S,2) is the pullback of this cover by the projection from F(G/S, 2) ~ G Xs Go to
Go. (Here , wc use that to be an affine opell illllnersiou is prcscrved nudcr ba."e dHtnge.)

Ir n > 0, the lllorphislu j(n) : F(G/S, n) Y Gn / S is an Sn-equivariant immersion of G­
. torsors. On qllotientillg by the action of thc group scheme G, we obtain an Sn-equivariant
imnlCl'sion

}(11) : G\F(G/S,n) '-----7 G\(Gn /S).

(Note that G\Gn / S is isomorphic to G71-1 / S; however, this iSOluorphislll 0 bscures the
action of the sYllllnetric group Sn.) Since the cover U of F(G/S, 2) is G-equivariant , the
resolution .cü(G/S, n,11,) is Sn X G-equivariant, so descends to an Sn-equivariant resolution
G\.cü(GI s, Jl, n) of }(n).}(n)·n. The theorem now follows by a proof which is entircly
parallel to that of TheorClu (4.6) (in the special case that [ = n), provided we observc
that

n

e~n(G\(Gn / S), G\.c~-k (G/S, n, n)) = L ch(s(n, k)) es(G)k-l
k::::l

1
= es(G) e~n(Gn / S, .cn- k(G/s, n, 11,)). 0

Note that if G is a fanIily of eIl ipt ic curvcs, the proof of Theorem (4.10) simplifies, since
we may take for the cover U of F(G/S, 2) the canonical choice {F(G/S,2)}. In fact, this
is thc case of Theorem (4.10) which we apply in the Bext sectioll , to the universal faluily
E(N) of elliptic curves over the modular curve Y(N).

5. THE Sn-EQUIVARIANT SERRE POLYNOMIAL OF THE MODULI SPACE Ml,Il

Let M1,n(N) be thc fine luoduli space of SIllOOt.h clliptic curves of level N ~ ;) with n
marked point.s; it is a smooth qua.si-projcctive variety. The fiuite grollp SL(2, 'L/N) acts
on MI,n (N), with quot iellt MI ,n the coarse moduli space of SlIlooth eil iptic Cllrves. .

Let Y(N) be the lllodular curve M 1,1 (N), allel let E(N) --+ Y(N) be thc univer­
sal elliptic curvc of level N. The relative configuration space F(E(N)/Y(N),n) is an
SL(2, Z/N)-equivariant E(N)-torsor with base Y(N).

Denote by H the Inixed Hodgc module R1f!Q on Y(N); it is of coursc an SL(2, 7l/N)­
equivariant loeal system of rank 2, known as thc Hodgc local system. Thc sub-..\-ring
which it generates in KSL{2,ZjN)(MHM(Y(N))) is iSOluorphic to the Grothcndieek group

of polynonlial reprcsentat.ions of thc algebraic group GL(2); this is the polynomial ring
Z(H , L]' with CTt(H) = (1 - tH + t2 L)-1 anel CTt(L) = (1 - tL)-l. In this notation, we have

e~~~~)ZjN)(E(N)) = 1 - H + L.

We BIay now apply thc SL(2, 7l/N)-equivariant version of TheoreIll (4.10), obtaining thc
following formula.
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Proposition (5.1).

00., { fi (1 + Pk) O=dl> ,,(kfd)(i-'MH)+ld) } - 1

""" SL(2,Zjl\)x§Il(M (N)) _ ~k=~1 _
6 eY(N) 1,n - 1 _ H + L
n=l
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Denote thc nth SYlnnlctric power of H by Hni it is a rank (n+ 1) 8L(2, ZIN)-cquivariant.
10ea.1 system on Y(N), given by the Chebyshev polynomial of the seeond kind*

Hn = Un (H/2).

The following table gives e;.'~~)ZjN)xSn (M l,n (N)) for 11, ::::; 5. This table was ealculated

llsing J. 8telnbrielge's symmetrie fUIIetion paekage SF [25] for maple.

11, SL(2,ZjN)XSn(M (N))
e}.'(N) 1,n

1 Ho

2 HoLs2 - H 1s 12

3 HoL2s 3 - H 1(L.521 - 83) + H2s 13

4 H o (L3 - L)S4 - HdL
2

L'I31 - L(S4 + 83t} + 822 ) + H 2 (Ls21 2 - s3d - H 38 1<l

5 Ho (L
4s5 - L2

(S5 + 84d + L832)

- H 1( L38 41 - L2
(85 + .541 + ,'I:~2) - L(S32 + 822d + 8312)

+ H2 (L
2

8312 - L(841 - 832 - 831 2) + (85 + 832 + S2 2 1)) - H3 (L.'121 3 - S31 2 ) + H4·5p

(5.2). The Eichler-Shimura isomorphism. Let Se(N) be the spaees of eusp fonns
of weight e for the eongruenee gJ'oup r(N) = ker(8L(2, Z) ---+ 8L(2, ZIN)). It is an
8L(2, ZIN)-nlodlllc, anel its invariant subspace Se = Se(l) is the space of CllSP forms of
level 1.

Let EdN) bc thc space of EiseIlstein series of weight e. Ir f > 2, this is isomorphie as
a 8L (2, Z IN)- nlOdnIe to the induced represcntatioll

()
SL(2,ZjN)

2::( N = Indp(N) Xi,

where P(N) C 8L(2, ZIN) is the parabolic subgroup of upper triallgular matriccs, with

generators T = [ö t] anel -1, anel Xi is the charaeter of P(N) which equals 1 on T and
(-1)t on -I.

The spaee ~(N) is snuliler than 2::2 (N): it is isomorphie to H o(8L(2, ZIN), 2:: 2(N)).
If f is evell, 2::l(N) is the permutat.ion representation of 8L(2, ZIN) on the set of eusps,

allel the 8L(2, Z IN)- invariant. subspace is olle-dirncllsional; thc eorrcspondillg subspace of
Et(N) is spanned by the levellEisenstein series Ei. If f is oelel, there are no 8L(2, ZIN)­
invariant elements of El(N), reftecting thc fact timt there are no level 1 Eisenstein scries
of oelel weight. In all cases, 2::e(N) has dimension

[SL(2,ZjN) : P(N)] = ~2 IIP _p-2
)

pik

equal to the nunlber of cusps of the congrucnce subgroup r(N).

·Thcsc polynomials have gCllcrating fUllction L~=o tIlUn(x) = (1 - 2xt + tz)-l.
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Eichier and ShiIllura. have calculated the cohmllOlo6'1' of the shcavcs Hn . This calcula­

tion is explainecl in Vcrdier [26] and Shimura [23]. The mixed Hoclge structllre on this

COhOlllOlogy may be calculatcd by thc same teclllliquc t.hat Deligne USCH in [5] to ca1clllatc

the action of thc Frobenius operator on t.he etale cohOlnology grollps. DeRne thc Hoclge

strllcture Sn+2(N) to be gr:~\l H~ (Y(N), Hn ).

Theorem (5.3). The veet01' spaces grt H~(Y(N),Hn ) associated to the weight jiltrnti01l
on the cohomology gl'ou[Js lI;'(Y(N), Hn ) vanish, with the c:J:ception 01

gr&F H~(Y(N), Hn ) ~ E n+2 (N),

gr~\~l H~(Y(N),Hn ) ~ Sn+2(N), and

gr~V H~(Y(N),Ho) ='L.

The Hodge filtration OfSn+2(N) ha,,; two steps: 0 C pOSn+2(N) C Sn+2(N), and the veetol'
space pOSn+2(N) is natv.rally isom01'phic to Sn+2(N).

C orollary (5.4). Th e equivariant S el're polynomial

is obtained Irom the equivariant Serre polynomial

e~,~~)ZjN)xSn(Ml,n(N)) E KSL(2,ZjN)(MHM(Y(N))) 0 An

by the sub..,titutio7t Hn f---7 6n ,o(L + 1) - En+2 (N) - Sn+2(N).

We rnay now descend to level 1 by applying thc allgnwl1tation

€: KSL(2,ZjN)(MHM(Spec(C))) --+ K(MHM(Spcc(C))),

given explicitly by €(Sl(N)) = Si allel

I!. evcn,

eodel.

Thc following tablc givcs thc §n-cquivariaut Scrre polynomial eS"(M1,n) for TL :::; 5, to­
gether with tohe underlying Serre polynOluial e(M l,n) (lud Euler charactcristic.

n eSn (M 1,n) e(M1,n) X(M1,n)

1 L"l L 1

2 S2 L2 L2 1

3 B;iL3 - St3 L3 - 1 0

4 s4L4 - s4 L2 - .9212L + S31 L4 -L2 -3L+3 0

5 s5L5 - (S5 + s.n)L3 + (S32 - S312)L2 L5 - 5 L3 - L2 + 15 L - 12 -2

+ (S41 + 832 + s31 2 )L

- (S5 + '<;32 + 8221 + "'1 5 )
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Corollary (5.4) Illay be expressed in closed fonn:

co [(IlCO (1+ )~LdlnJL(n/d)(I-Wd-Ld/Wd+Ld)_I)
(5 5) "'"' Sn(M ) - n=l Pn. L e 1,n - reso ---''-=---=------I---w---L--:'"/w-+-L------

n=l

(~ (S2k+2 + 1) 2k ) ( )]x ~ L2k+ 1 w - 1 w - L/ w dJ..u 1

21

where reso is thc rcsiduc of the differential forlll a.t the origin. This is an easy consequcnce
of thc Wcyl integration fonnula for SU(2L in the form

1 [(w
k+1 - (L/W)k+1) (w

i +1
- (L/w)l+l) 2dw]-- reso (w - L/w) - = Lk+l 0kl .

2 w - L/w w - L/w w

To obtain a fonnula for thc nOIl-equivariant Serre POlYllolllials, we rcplace Pn, n > 1l

by 0l and expand in PI, which gives

FrOIn (5.6), we call calculatc thc Euler cltaracteristic x(M 1,n) dircctly. The followillg
proof was shown to the author by D. Zagier.

Proposition (5.7). 1fn 2:: 5, X(M1,n) = (-I)n(n -1)!/12.

P7'Oof. Ir in (5.G), wo replace L = 1 and Sk+2 by 2 diIn(Sk+2), we see tImt

X(M1,n+d = reSo [(1 -w - w-
1
) (1 - w

2 - 2w
4

- wB + wB) dW].
n! n (1 + w2 )(1 - w6 ) W

Thc poles of this differential fonn are all simple l and are located at W = 0 and W = ool

allel at values of W such that w + w- 1 is an integer in the illterval [-2,2] (thc latter poles

are on the uni t cirde). Since it is invariant uuder w r-+ w-l l its resiclues at 0 and 00 are

equal. By thc rcsiduc theorem l it follows timt

1 L [(I-W-w-1)(I-W2_2w4-w6+w8)dw]
resz 2 (f') ,2 11, (1 + w ) 1 - W U W

zE{±1,±i,±p,±,)2}

where p is a primitive sixth root. of unity.
Thc residucs of this differential form on t.he llnit cirele are as follows:

(5.8)

1/6 l Iz + z-ll = 2,

-1/3, lz + z- l l = 1,

-1/2, ]z+z- l l=ü.

At. each of these poles except. w = 1, the binomial coefficient C-W~W-l) vanishes for n 2:: 4.

This leaves the residue at 1, which equals (-1 )Tl+1 /12. 0

Wc elose thc paper with a calculation of the Serre POlYllOll1ials of thc spaces M l,n/§n­
Ir wc substitute :r;1L for Pn in (5.5), we obtain the generating function for the §n-invariaIlt
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parts of thc loeal systems eSn(Ml,n/M1,d. By Corollary (5.7) of [10], we havc

Applying the functor H~(Ml,ll -), we obtain the followiug result.

Proposition (5.9).

~ e(M l,n/Sn)xn = X (11 -=-~:) ~ e(M 1,1, H2k )x
4k

Applying the allglnentat.ion c : Ko(MHM) ---7 Z, we obtain the following corollary:
00 • 00

L X(M1,n/§n)x n
= (x + 1;2 + x 3

) L X(M I,L, Hn ):r4n

n=1 n=O

2 3 (1 - x 4
- 2x8

- x 12 + x 16
)

= (x + x +:r; ) (1 _ x 8 )(1 _ x 12 )

The cürrespüllding fonnul<t.s in genus 0 are e(Mo,n/Sn) = Ln
-

3 and X(MO,n/§71) = 1, für
all n ~ 3.
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