Holomorphic Automorphisms of Quadrics II

Vladimir V. Ežhov * and
Gerd Schmalz **

Oklahoma State University
Department of Mathematics
College of Arts and Sciences
Stillwater
Oklahoma 74078-0613
U.S.A.
**
Mathematisches Institut der
Universität Bonn
Wegelerstrasse 10
D-5300 Bonn 1

Germany
.

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3

Germany

HOLOMORPHIC AUTOMORPHISMS OF QUADRICS II

VLADIMIR V. EŽOV AND GERD SCHMALZ

Abstract

This paper is the continuation of [2]. We consider the automorphisms of 4 different types of quadrics in \mathbb{C}^{6}.

1. Introduction

Let $(z, w=u+i v)$ be coordinates in $\mathbb{C}^{3} \times \mathbb{C}^{3}$ with $w=u+i v, u, v \in \mathbb{R}^{3}$. We consider quadrics Q of the form:

$$
\begin{align*}
v^{1} & =\langle z, z\rangle^{1}=\sum H_{i j}^{1} z^{i} \bar{z}^{j} \\
v^{2} & =\langle z, z\rangle^{2}=\sum H_{i j}^{2} z^{i} \bar{z}^{j} \\
v^{3} & =\langle z, z\rangle^{3}=\sum H_{i j}^{3} z^{i} \bar{z}^{j}, \tag{1}
\end{align*}
$$

where $H_{i j}^{k}=\overline{H_{j i}^{k}}$.
The quadrics Q are presumed to be nondegenerate, i.e.
i.) $\langle z, b\rangle^{j}=0$ for all z implies $b=0$
ii.) $\langle z, z\rangle^{j}$ are linearly independent $j=1, \ldots, k$.

We are interested in finding the isotropy groups, i.e. the groups of holomorphic automorphisms preserving the origin.

It follows from the results of Henkin, Tumanov and Forstneric [3, 4, 5] that any local CR diffeomorhism of Q extends to a birational map of \mathbb{C}^{6}.

Beloshapka proved, that quadrics of the form (1) in general position are rigid, i.e. their isotropy group consists of the trivial automorphisms

$$
\begin{array}{rlll}
z & \mapsto & c z \\
w & \mapsto & |c|^{2} w
\end{array}
$$

for some $c \in \mathbb{C}$
Research of the first author was supported by Max-Planck-Institut Bonn.
Research of the second author was supported by Deutsche Forschungsgemeinschaft.

But he found a quadric of form (1) with a 19 dimensional isotropy group. That is the maximally possible dimension. This quadric has the following defining equation

$$
\begin{align*}
v^{1} & =\left|z^{1}\right|^{2} \\
v^{2} & =z^{1} \bar{z}^{2}+z^{2} \bar{z}^{1} \\
v^{3} & =z^{1} \bar{z}^{3}+z^{3} \bar{z}^{1} \tag{2}
\end{align*}
$$

It is called nullquadric, because the characteristic polynomial

$$
\operatorname{det}\left(t_{1} H^{1}+t_{2} H^{2}+t_{3} H^{3}\right)
$$

vanishes identically.
The goal of the present paper is to calculate the explicit isotropy group of the nullquadric.

In the case of quadrics of codimension 2 in \mathbb{C}^{4} the authors obtained the isotropy groups by means of some matrix substitution in the well known formulas of sphere automorphisms (see [2]).

We present a matrix substitution leading to the isotropy group of the nullquadric and three other types quadrics (1).

Remark. As mentioned in the previous paper [2] quadrics are related to Siegel domains of second kind. However the quadrics being considered here are strongly 1 -concave, and therefore do not realize Siegel domains. In the case $n=k=2$ being considered in [2] only the hyperbolic quadric realizes a Siegel domain: the direct product of two balls.

2. Tile matrix substitution

For $\epsilon, \delta \in \mathbb{R}$, we consider the algebras $\mathfrak{A}_{\epsilon \delta}$ consisting of matrices

$$
Z=\left(\begin{array}{ccc}
z^{1} & \epsilon \delta z^{3} & \epsilon \delta z^{2} \\
z^{2} & z^{1} & \epsilon z^{3} \\
z^{3} & \delta z^{2} & z^{1}
\end{array}\right)
$$

with conjugation

$$
\bar{Z}=\left(\begin{array}{ccc}
\bar{z}^{1} & \epsilon \delta \bar{z}^{3} & \epsilon \delta \bar{z}^{2} \\
\bar{z}^{2} & \bar{z}^{1} & \epsilon \bar{z}^{3} \\
\bar{z}^{3} & \delta \bar{z}^{2} & \bar{z}^{1}
\end{array}\right) .
$$

These algebras are commutative. Let σ be the lifting

$$
\sigma: \mathbb{C}^{3} \longrightarrow \mathfrak{A}_{\delta \varepsilon}
$$

given by the formula above.
The equation of the nullquadric takes the form

$$
\operatorname{Im} W=Z \bar{Z}
$$

where $W=\sigma(w), Z=\sigma(z)$ for $\epsilon=\delta=0$.
For $\epsilon \delta>0, \epsilon \delta<0$, and $\epsilon=0, \delta \neq 0$ other pairwise nonequivalent typs of quadrics appear.

All these quadrics have a 9 dimensional subgroup of automorphisms Φ with the property

$$
\begin{equation*}
\left.d \Phi\right|_{T_{0}} ^{\mathbf{c}_{Q}}=\mathrm{id} \tag{3}
\end{equation*}
$$

We obtain these automorphisms by inserting matrices of $\mathfrak{A}_{\epsilon \delta}$ into the Poincaré formula (cp. [2]) for the sphere $\operatorname{Im} w=|z|^{2}$ in \mathbb{C}^{2} :

$$
\begin{aligned}
Z & \mapsto(Z+A W)(\mathrm{id}-2 i \bar{A} Z-(R+i A \bar{A}) W)^{-1} \\
W & \mapsto W(\mathrm{id}-2 i \bar{A} Z-(R+i A \bar{A}) W)^{-1}
\end{aligned}
$$

where $A, R \in \mathfrak{A}_{\epsilon \delta}$ and $R=\bar{R}$.
Adding to these groups the linear automorphisms

$$
\begin{aligned}
z & \mapsto C z \\
w & \mapsto \rho z,
\end{aligned}
$$

with $\langle C z, C z\rangle=\rho\langle z, z\rangle$, we get the whole automorphism groups of dimension 19 in the case of the nullquadric, and of dimension $15,15,17$, respectively, in the other cases. This follows from a uniqueness theorem of Beloshapka [1].

We are now able to define the chains, analogous to the Chern Moser chains in the case of a hyperquadric. They are 3 dimensional real analytic surfaces which can be obtained as images of the standard chain $z=0, v=0$ via some automorphism. They have the form

$$
\begin{aligned}
Z & =(\mathrm{id}-i A \bar{A} U)^{-1} A U \\
W & =(\mathrm{id}-i A \bar{A} U)^{-1} U
\end{aligned}
$$

where U is the parameter and A is fixed with $A, U \in \mathfrak{A}_{\epsilon \delta}$ and $U=\bar{U}$.
The linear automorphisms can be obtained similarly as in the case $n=k=2$. Solving a system of linear equations one get the corresponding Lie algebras. The images of the Lie algebras under the exponential map are the desired groups.

In the case of the nullquadric Q_{00} we have

$$
C=a\left(\begin{array}{ccc}
1 & 0 & 0 \\
b & \alpha & \beta \\
c & \gamma & \xi
\end{array}\right)
$$

with $a, b, a \in \mathbb{C}$ and $\alpha, \beta, \gamma, \xi \in \mathbb{R}$.
In the case of the quadric Q_{10} we have

$$
C=a\left(\begin{array}{ccc}
1 & 0 & 0 \\
b & \alpha & 0 \\
c & \beta & \alpha^{2}
\end{array}\right),
$$

with $a, b, c \in \mathbb{C}$ and $\alpha, \beta \in \mathbb{R}$.
In the case of Q_{1-1} the linear groups are:

$$
C=\left(\begin{array}{ccc}
a & \epsilon c & \epsilon b \\
b & a & \epsilon c \\
c & b & a
\end{array}\right)
$$

with $a, b, c \in \mathbb{C}$.
Remark 1. Three types of quadrics with $n=k=3$ in \mathbb{C}^{6} with nontrivial isotopy group can be obtained as direct products of a sphere $S^{3} \in \mathbb{C}^{2}$ with the three types of quadrics with $n=k=2$.

The direct products of the sphere with the hyperbolic, elliptic and parabolic quadrics have isotropy groups of dimension $15,15,16$ respectively.

It is easy to verify that $S^{3} \times Q_{-1}$ and $S^{3} \times Q_{1}$ are not equivalent to Q_{1-1} and Q_{11} : In fact, we consider the set of isotropic vectors $\left\{z \in \mathbb{C}^{3} \mid\langle z, z\rangle=0\right\}$. In the case of $S^{3} \times Q_{-1}$ it consists of the nullvector, in the case $S^{3} \times Q_{1}$ it consists of a single complex ray $\{(0, a,-a) \mid a \in \mathbb{C}\}$, and in the cases of Q_{11} and Q_{1-1} it contains a continuum of complex rays.

It is more difficult to show that Q_{11} and Q_{1-1} are not equivalent.
Suppose for a moment, they were equivalent and the linear transformation $z \mapsto$ $C z, w \mapsto \rho w$ maps Q_{11} to Q_{1-1}.
Since chains of Q_{11} transform to chains of Q_{1-1} a linear isomorphism of the spaces of matrix lines in \mathfrak{A}_{11}^{2} and \mathfrak{A}_{1-1}^{2} occurs.

We consider the matrix line $w=z$ in \mathfrak{A}_{11}^{2}. Without loss of generality we may assume that its image is $w=z$ in \mathfrak{A}_{1-1}^{2}, because linear automorphisms of Q_{1-1} act transitively at the matrix line space.

This means that $(w, w) \mapsto\left(w^{*}, w^{*}\right)=(C w, \rho w)$ for any w. It follows $C=\rho$.
Furthermore, let $z=a w$ be any matrix line. It will be sent to $z^{*}=a^{*} w^{*}$, where $a^{*}=C a \rho^{-1}=\rho a \rho^{-1}$.

Hence, the algebras \mathfrak{A}_{11} and \mathfrak{A}_{1-1} would be adjoint. We show that this is impossible. The contradiction proves that the two mentioned types are not equivalent.

Let $a=\sigma\left(a_{1}, a_{2}, a_{3}\right)$ and $a^{*}=\sigma\left(a_{1}^{*}, a_{2}^{*}, a_{3}^{*}\right)$. Then the characteristic polynomials $\operatorname{det}(a-\lambda \mathrm{id})$ and $\operatorname{det}\left(a^{*}-\lambda \mathrm{id}\right)$ are identical. It follows immediately that $a_{1}=a_{1}^{*}$, $a_{2} a_{3}=a_{2}^{*} a_{3}^{*}$, and $a_{2}^{3}+a_{3}^{3}=\left(a_{2}^{*}\right)^{3}+\left(a_{3}^{*}\right)^{3}$. These equations lead to $a_{2}=a_{2}^{*}$, and $a_{3}=a_{3}^{*}$. Thus, $\rho=C$ has to be the unit matrix.

Remark 2. In the case of the nullquadric the subgroup of automorphisms with (3) can be obtained in another way. Therefore, let Q_{0} be the parabolic quadric of codimension 2 in \mathbb{C}^{4}, i.e. the quadric given by

$$
\begin{align*}
v^{1} & =\left|z^{1}\right|^{2} \\
v^{2} & =z^{1} \bar{z}^{2}+z^{2} \bar{z}^{1} \tag{4}
\end{align*}
$$

Furthermore, let π be the projetion to the sphere $v=|z|^{2}$ in \mathbb{C}^{2} defined by

$$
\left(z^{1}, z^{2}, w^{1}, w^{2}\right) \mapsto\left(z^{1}, w^{1}\right)=(z, w)
$$

Now the nullquadric is the fibred product of two copies of Q_{0} over the sphere. Since the (z^{1}, w^{1}) components of the automorphisms of Q_{0} depend only on the (z^{1}, w^{1}) variables, there is a canonical projection of the isotropy group of Q_{0} onto the isotropy group of the sphere (see [2]). Therefore a subgroup of the isotropy group of the nullquadric can be obtained as fibred product of two copies of the isotropy group of Q_{0} over the isotropy group of the sphere. This subgroup has only dimension 17. However, it contains all automorphisms with (3).

Remark 3. Analogously to the case of 2 quadrics in \mathbb{C}^{4} there exists a linear representation of the automorphism groups in \mathbb{C}^{9}, namely

Let $\mathfrak{A}^{\mathfrak{3}}$ be the \mathfrak{A} module with $\mathfrak{A}=\mathfrak{A}_{\varepsilon \delta}$ (for $\epsilon, \delta=1,1,-1$) of triples $\left(\Theta_{0}, \Theta_{1}, \Theta_{2}\right)$ with $\Theta_{i} \in \mathfrak{A}$. By \mathfrak{A}^{*} we denote the group of invertible elements of \mathfrak{A} and by $\hat{\mathfrak{A}}^{3}$ the factor space under the natural action of \mathfrak{A}^{*}. $\hat{\mathfrak{A}}^{3}$ is a compact manifold which can be considered as a compactification of $\mathbb{C}^{6}=\mathfrak{A}_{\epsilon \delta}^{2}$ by the embedding

$$
(Z, W) \mapsto(\mathrm{id}, Z, W)
$$

where Z, W are $\sigma(z), \sigma(w)$.
Now, any automorphism of $Q_{\varepsilon \delta}$ can be represented as a linear transformation of \mathbb{C}^{9} in the following way:

Let $Q_{\epsilon \delta}$ be given in the form $\operatorname{Im} W=Z \bar{Z}$. Then the automorphisms can be written as a composition of

$$
\begin{aligned}
Z & \mapsto(Z+A W)(\mathrm{id}-2 i \bar{A} z-(R+i A \bar{A}) W)^{-1} \\
W & \mapsto W(\mathrm{id}-2 i \bar{A} z-(R+i A \bar{A}) W)^{-1}
\end{aligned}
$$

where $A, R \in \mathfrak{A}$, with $R=\bar{R}$, and a linear (C, ρ) transformation.
The first map induces the following linear transformation in \mathfrak{A}^{3} :

$$
\begin{aligned}
& \Theta_{0} \mapsto \Theta_{0}-2 i \bar{A} \Theta_{1}-(R+i A \bar{A}) \Theta_{2} \\
& \Theta_{1} \mapsto \Theta_{1}+A \Theta_{2} \\
& \Theta_{2} \mapsto \Theta_{2} .
\end{aligned}
$$

Let θ_{i} for $i=0,1,2$ be the projections of \mathfrak{A} to resp. \mathbb{C}^{3}, such that $\sigma\left(\theta_{i}\right)=\Theta_{i}$. Then

$$
\begin{aligned}
\theta_{0} & \mapsto \theta_{0}-2 i \bar{A} \theta_{1}-(R+i A \bar{A}) \theta_{2} \\
\theta_{1} & \mapsto \theta_{1}+A \theta_{2} \\
\theta_{2} & \mapsto \theta_{2}
\end{aligned}
$$

Together with the linear transformation C, ρ we obtain

$$
\begin{aligned}
\theta_{0} & \mapsto \theta_{0}-2 i \bar{A} \theta_{1}-(R+i A \bar{A}) \theta_{2} \\
\theta_{1} & \mapsto C \theta_{1}+C A \theta_{2} \\
\theta_{2} & \mapsto \rho \theta_{2}
\end{aligned}
$$

References

1. V.K. Beloshapka. A uniqueness theorem for automorphisms of a nondegenerate surface in a complex space. Math. Notes, 47:239-242, 1990.
2. V.V. Ežov and G. Schmalz. Biholomorphic automorphisms of Siegel domains in \mathbb{C}^{4}. preprint, Max-Planck-Institut für Mathematik Bonn, 1992.
3. F. Forstneric̈. Mappings of quadric Cauchy-Riemann manifolds. Math. Ann., 292:163-180, 1992.
4. G.M. Henkin and A.E. Tumanov. Local characterization of holomorphic automorphisms of Siegel domains. Funkt. Analysis, 17(4):49-61, 1983.
5. A.E. Tumanov. Finite dimensionality of the group of CR-automorphisms of a standard CR manifold and characteristic holomorphic mappings of Siegel domains. USSR Izvestiya, 32(3):655-662, 1989.
(V.V. Eżov) Oklahoma State University, Department of Mathematics, College of Arts and Sciences, Stillwater, Oklahoma 74078-0613

E-mail address: ezhov@hardy.math.okstate.edu
(G. Schmalz) Mathematisches Institut, der Universität Bonn, Wegelerstrasse 10, D-5300 Bonn-1

E-mail address: schmalz@mpim-bonn.mpg.de

