Holomorphic Automorphisms of Quadrics II

Vladimir V. Ežhov * and Gerd Schmalz **

Oklahoma State University Department of Mathematics College of Arts and Sciences Stillwater Oklahoma 74078-0613

U.S.A.

**

*

Mathematisches Institut der Universität Bonn Wegelerstrasse 10 D-5300 Bonn 1

Germany

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

Germany

•

HOLOMORPHIC AUTOMORPHISMS OF QUADRICS II

VLADIMIR V. EŽOV AND GERD SCHMALZ

ABSTRACT. This paper is the continuation of [2]. We consider the automorphisms of 4 different types of quadrics in \mathbb{C}^6 .

1. INTRODUCTION

Let (z, w = u + iv) be coordinates in $\mathbb{C}^3 \times \mathbb{C}^3$ with $w = u + iv, u, v \in \mathbb{R}^3$. We consider quadrics Q of the form:

(1)

$$v^{1} = \langle z, z \rangle^{1} = \sum H^{1}_{ij} z^{i} \bar{z}^{j}$$

$$v^{2} = \langle z, z \rangle^{2} = \sum H^{2}_{ij} z^{i} \bar{z}^{j}$$

$$v^{3} = \langle z, z \rangle^{3} = \sum H^{3}_{ij} z^{i} \bar{z}^{j},$$

where $H_{ij}^{k} = \overline{H_{ji}^{k}}$. The quadrics Q are presumed to be nondegenerate, i.e.

i.) $(z, b)^{j} = 0$ for all z implies b = 0

ii.) $(z, z)^j$ are linearly independent $j = 1, \ldots, k$.

We are interested in finding the isotropy groups, i.e. the groups of holomorphic automorphisms preserving the origin.

It follows from the results of Henkin, Tumanov and Forstnerič [3, 4, 5] that any local CR diffeomorhism of Q extends to a birational map of \mathbb{C}^6 .

Beloshapka proved, that quadrics of the form (1) in general position are rigid, i.e. their isotropy group consists of the trivial automorphisms

$$\begin{array}{cccc} z & \mapsto & cz \\ w & \mapsto & |c|^2w \end{array}$$

for some $c \in \mathbb{C}$

Research of the second author was supported by Deutsche Forschungsgemeinschaft.

Research of the first author was supported by Max-Planck-Institut Bonn.

But he found a quadric of form (1) with a 19 dimensional isotropy group. That is the maximally possible dimension. This quadric has the following defining equation

$$v^{1} = |z^{1}|^{2}$$

$$v^{2} = z^{1}\bar{z}^{2} + z^{2}\bar{z}^{1}$$

$$v^{3} = z^{1}\bar{z}^{3} + z^{3}\bar{z}^{1},$$

(2)

It is called nullquadric, because the characteristic polynomial

$$\det(t_1H^1 + t_2H^2 + t_3H^3)$$

vanishes identically.

The goal of the present paper is to calculate the explicit isotropy group of the nullquadric.

In the case of quadrics of codimension 2 in \mathbb{C}^4 the authors obtained the isotropy groups by means of some matrix substitution in the well known formulas of sphere automorphisms (see [2]).

We present a matrix substitution leading to the isotropy group of the nullquadric and three other types quadrics (1).

Remark. As mentioned in the previous paper [2] quadrics are related to Siegel domains of second kind. However the quadrics being considered here are strongly 1-concave, and therefore do not realize Siegel domains. In the case n = k = 2 being considered in [2] only the hyperbolic quadric realizes a Siegel domain: the direct product of two balls.

2. THE MATRIX SUBSTITUTION

For $\epsilon, \delta \in \mathbb{R}$, we consider the algebras $\mathfrak{A}_{\epsilon\delta}$ consisting of matrices

$$Z = \begin{pmatrix} z^1 & \epsilon \delta z^3 & \epsilon \delta z^2 \\ z^2 & z^1 & \epsilon z^3 \\ z^3 & \delta z^2 & z^1 \end{pmatrix}$$

with conjugation

$$\bar{Z} = \begin{pmatrix} \bar{z}^1 & \epsilon \delta \bar{z}^3 & \epsilon \delta \bar{z}^2 \\ \bar{z}^2 & \bar{z}^1 & \epsilon \bar{z}^3 \\ \bar{z}^3 & \delta \bar{z}^2 & \bar{z}^1 \end{pmatrix}.$$

These algebras are commutative. Let σ be the lifting

$$\sigma: \mathbb{C}^3 \longrightarrow \mathfrak{A}_{\delta e}$$

given by the formula above.

The equation of the nullquadric takes the form

$$\operatorname{Im} W = ZZ$$

where $W = \sigma(w)$, $Z = \sigma(z)$ for $\epsilon = \delta = 0$.

For $\epsilon \delta > 0$, $\epsilon \delta < 0$, and $\epsilon = 0$, $\delta \neq 0$ other pairwise nonequivalent types of quadrics appear.

All these quadrics have a 9 dimensional subgroup of automorphisms Φ with the property

(3)
$$d\Phi|_{T^{\mathbf{c}}_{\mathbf{c}}Q} = \mathrm{id}.$$

We obtain these automorphisms by inserting matrices of $\mathfrak{A}_{\epsilon\delta}$ into the Poincaré formula (cp. [2]) for the sphere $\operatorname{Im} w = |z|^2$ in \mathbb{C}^2 :

$$Z \mapsto (Z + AW)(\operatorname{id} -2i\bar{A}Z - (R + iA\bar{A})W)^{-1}$$
$$W \mapsto W(\operatorname{id} -2i\bar{A}Z - (R + iA\bar{A})W)^{-1},$$

where $A, R \in \mathfrak{A}_{\epsilon\delta}$ and $R = \overline{R}$.

Adding to these groups the linear automorphisms

$$\begin{array}{rccc} z & \mapsto & Cz \\ w & \mapsto & \rho z, \end{array}$$

with $\langle Cz, Cz \rangle = \rho \langle z, z \rangle$, we get the whole automorphism groups of dimension 19 in the case of the nullquadric, and of dimension 15,15,17, respectively, in the other cases. This follows from a uniqueness theorem of Beloshapka [1].

We are now able to define the chains, analogous to the Chern Moser chains in the case of a hyperquadric. They are 3 dimensional real analytic surfaces which can be obtained as images of the standard chain z = 0, v = 0 via some automorphism. They have the form

$$Z = (\mathrm{id} - iA\bar{A}U)^{-1}AU$$
$$W = (\mathrm{id} - iA\bar{A}U)^{-1}U,$$

where U is the parameter and A is fixed with $A, U \in \mathfrak{A}_{\epsilon\delta}$ and $U = \overline{U}$.

.

The linear automorphisms can be obtained similarly as in the case n = k = 2. Solving a system of linear equations one get the corresponding Lie algebras. The images of the Lie algebras under the exponential map are the desired groups.

In the case of the nullquadric Q_{00} we have

$$C = a \left(\begin{array}{ccc} 1 & 0 & 0 \\ b & \alpha & \beta \\ c & \gamma & \xi \end{array} \right),$$

with $a, b, a \in \mathbb{C}$ and $\alpha, \beta, \gamma, \xi \in \mathbb{R}$.

In the case of the quadric Q_{10} we have

$$C = a \begin{pmatrix} 1 & 0 & 0 \\ b & \alpha & 0 \\ c & \beta & \alpha^2 \end{pmatrix},$$

with $a, b, c \in \mathbb{C}$ and $\alpha, \beta \in \mathbb{R}$.

In the case of Q_{1-1} the linear groups are:

$$C = \left(\begin{array}{ccc} a & \epsilon c & \epsilon b \\ b & a & \epsilon c \\ c & b & a \end{array}\right),$$

with $a, b, c \in \mathbb{C}$.

Remark 1. Three types of quadrics with n = k = 3 in \mathbb{C}^6 with nontrivial isotopy group can be obtained as direct products of a sphere $S^3 \in \mathbb{C}^2$ with the three types of quadrics with n = k = 2.

The direct products of the sphere with the hyperbolic, elliptic and parabolic quadrics have isotropy groups of dimension 15,15,16 respectively.

It is easy to verify that $S^3 \times Q_{-1}$ and $S^3 \times Q_1$ are not equivalent to Q_{1-1} and Q_{11} : In fact, we consider the set of isotropic vectors $\{z \in \mathbb{C}^3 | \langle z, z \rangle = 0\}$. In the case of $S^3 \times Q_{-1}$ it consists of the nullvector, in the case $S^3 \times Q_1$ it consists of a single complex ray $\{(0, a, -a) | a \in \mathbb{C}\}$, and in the cases of Q_{11} and Q_{1-1} it contains a continuum of complex rays.

It is more difficult to show that Q_{11} and Q_{1-1} are not equivalent.

Suppose for a moment, they were equivalent and the linear transformation $z \mapsto Cz, w \mapsto \rho w$ maps Q_{11} to Q_{1-1} .

Since chains of Q_{11} transform to chains of Q_{1-1} a linear isomorphism of the spaces of matrix lines in \mathfrak{A}_{11}^2 and \mathfrak{A}_{1-1}^2 occurs.

We consider the matrix line w = z in \mathfrak{A}_{11}^2 . Without loss of generality we may assume that its image is w = z in \mathfrak{A}_{1-1}^2 , because linear automorphisms of Q_{1-1} act transitively at the matrix line space.

This means that $(w, w) \mapsto (w^*, w^*) = (Cw, \rho w)$ for any w. It follows $C = \rho$.

Furthermore, let z = aw be any matrix line. It will be sent to $z^* = a^*w^*$, where $a^* = Ca\rho^{-1} = \rho a\rho^{-1}$.

Hence, the algebras \mathfrak{A}_{11} and \mathfrak{A}_{1-1} would be adjoint. We show that this is impossible. The contradiction proves that the two mentioned types are not equivalent.

Let $a = \sigma(a_1, a_2, a_3)$ and $a^* = \sigma(a_1^*, a_2^*, a_3^*)$. Then the characteristic polynomials $\det(a - \lambda \operatorname{id})$ and $\det(a^* - \lambda \operatorname{id})$ are identical. It follows immediately that $a_1 = a_1^*$, $a_2a_3 = a_2^*a_3^*$, and $a_2^3 + a_3^3 = (a_2^*)^3 + (a_3^*)^3$. These equations lead to $a_2 = a_2^*$, and $a_3 = a_3^*$. Thus, $\rho = C$ has to be the unit matrix.

Remark 2. In the case of the nullquadric the subgroup of automorphisms with (3) can be obtained in another way. Therefore, let Q_0 be the parabolic quadric of codimension 2 in \mathbb{C}^4 , i.e. the quadric given by

(4)
$$v^{1} = |z^{1}|^{2}$$
$$v^{2} = z^{1}\bar{z}^{2} + z^{2}\bar{z}^{1}.$$

Furthermore, let π be the projection to the sphere $v = |z|^2$ in \mathbb{C}^2 defined by

$$(z^1, z^2, w^1, w^2) \mapsto (z^1, w^1) = (z, w).$$

Now the nullquadric is the fibred product of two copies of Q_0 over the sphere. Since the (z^1, w^1) components of the automorphisms of Q_0 depend only on the (z^1, w^1) variables, there is a canonical projection of the isotropy group of Q_0 onto the isotropy group of the sphere (see [2]). Therefore a subgroup of the isotropy group of the nullquadric can be obtained as fibred product of two copies of the isotropy group of Q_0 over the isotropy group of the sphere. This subgroup has only dimension 17. However, it contains all automorphisms with (3).

Remark 3. Analogously to the case of 2 quadrics in \mathbb{C}^4 there exists a linear representation of the automorphism groups in \mathbb{C}^9 , namely

Let \mathfrak{A}^3 be the \mathfrak{A} module with $\mathfrak{A} = \mathfrak{A}_{\epsilon\delta}$ (for $\epsilon, \delta = 1, 1, -1$) of triples $(\Theta_0, \Theta_1, \Theta_2)$ with $\Theta_i \in \mathfrak{A}$. By \mathfrak{A}^* we denote the group of invertible elements of \mathfrak{A} and by $\hat{\mathfrak{A}}^3$ the factor space under the natural action of \mathfrak{A}^* . $\hat{\mathfrak{A}}^3$ is a compact manifold which can be considered as a compactification of $\mathbb{C}^6 = \mathfrak{A}_{\epsilon\delta}^2$ by the embedding

$$(Z,W)\mapsto (\mathrm{id},Z,W),$$

where Z, W are $\sigma(z), \sigma(w)$.

Now, any automorphism of $Q_{\epsilon\delta}$ can be represented as a linear transformation of \mathbb{C}^9 in the following way:

Let $Q_{\epsilon\delta}$ be given in the form $\text{Im } W = Z\overline{Z}$. Then the automorphisms can be written as a composition of

$$Z \mapsto (Z + AW)(\operatorname{id} -2i\bar{A}z - (R + iA\bar{A})W)^{-1}$$

$$W \mapsto W(\operatorname{id} -2i\bar{A}z - (R + iA\bar{A})W)^{-1},$$

where $A, R \in \mathfrak{A}$, with $R = \overline{R}$, and a linear (C, ρ) transformation. The first map induces the following linear transformation in \mathfrak{A}^3 :

$$\begin{array}{rcl} \Theta_0 & \mapsto & \Theta_0 - 2i\bar{A}\Theta_1 - (R + iA\bar{A})\Theta_2 \\ \Theta_1 & \mapsto & \Theta_1 + A\Theta_2 \\ \Theta_2 & \mapsto & \Theta_2. \end{array}$$

Let θ_i for i = 0, 1, 2 be the projections of \mathfrak{A} to resp. \mathbb{C}^3 , such that $\sigma(\theta_i) = \Theta_i$. Then

$$\begin{array}{rcl} \theta_0 & \mapsto & \theta_0 - 2i\bar{A}\theta_1 - (R + iA\bar{A})\theta_2, \\ \theta_1 & \mapsto & \theta_1 + A\theta_2, \\ \theta_2 & \mapsto & \theta_2. \end{array}$$

Together with the linear transformation C, ρ we obtain

$$\begin{array}{rcl} \theta_0 & \mapsto & \theta_0 - 2iA\theta_1 - (R + iAA)\theta_2, \\ \theta_1 & \mapsto & C\theta_1 + CA\theta_2, \\ \theta_2 & \mapsto & \rho\theta_2. \end{array}$$

References

- 1. V.K. Beloshapka. A uniqueness theorem for automorphisms of a nondegenerate surface in a complex space. Math. Notes, 47:239-242, 1990.
- 2. V.V. Ežov and G. Schmalz. Biholomorphic automorphisms of Siegel domains in C⁴. preprint, Max-Planck-Institut für Mathematik Bonn, 1992.
- 3. F. Forstnerič. Mappings of quadric Cauchy-Riemann manifolds. Math. Ann., 292:163-180, 1992.
- 4. G.M. Henkin and A.E. Tumanov. Local characterization of holomorphic automorphisms of Siegel domains. Funkt. Analysis, 17(4):49-61, 1983.
- 5. A.E. Tumanov. Finite dimensionality of the group of CR-automorphisms of a standard CR manifold and characteristic holomorphic mappings of Siegel domains. USSR Izvestiya, 32(3):655-662, 1989.

(V.V. Ežov) Oklahoma State University, Department of Mathematics, College of Arts and Sciences, Stillwater, Oklahoma 74078-0613

E-mail address: ezhov@hardy.math.okstate.edu

(G. Schmalz) Mathematisches Institut, der Universität Bonn, Wegelerstrasse 10, D-5300 Bonn-1

E-mail address: schmalz@mpim-bonn.mpg.de