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Introduction. Up until the present time, most work in Iwasawa

theory has dealt with either the cyclotomic theory or descent theory

on abelian varieties. We began work on the material in this paper
several years ago in an effort to formulate precise questions of
Iwasawa theory for more general L-functions which are of arithmetic
interest. It seemed to us that the first case to consider was the
L-function attached to the symmetric square of the Tate module of an
elliptic curve defined over @ . The aim of the present paper is to
present the rather fragmentary results we have obtained in this
direction, as well as several precise conjectures. Throughout, we have
only considered primes p such that the elliptic curve has good
ordinary reduction at p - the case of all other primes remains
shrouded in mystery at present. Finally, we wish to express our thanks
to R. Greenberg, whose many suggestions over the last year have greatly
helped us. Indeed, Greenberg h;s now gone a long way towards formula-
ting precise conjectures of Iwasawa theory for the L-function attached
to an arbitrary {£-adic representation and a prime p which is ordinary

for this ({f-adic representation.

Notation. We write @ for the ‘algebraic closure of @ in € . If
L/K is a Galois extension of fields, we write G(L/K) for the Galois

group of L/K . For simplicity, we put

G = G(Q/@) .

For each integer m 2 1 , let Mm denote the group of m-th roots of
unity. Let £ be a prime number, and write mg (resp. ze ) for the

field of {-adic numbers (resp. the ring of {¢-adic integers). Put

TI,(“) = lim u

1m Kn ’ VK(U) = TE(U) @z

Q, .
¢ L



For an integer n 2 0 , we write Vl,'(pl)@n for the n-fold tensor
product of VZ(U) with itself. For negative rx,Vz(u)en denotes the
(-n) -fold tensor product of Hom(V,(u),Qy) with itself. Throughout,
E will denote an elliptic curve defined over @ . For each integer
nz1, E_ will signify the group of P-division points on E . We
put ¢

TK(E) = <£i_m E n’ VK(E) = TK(E) @x

Q, .
I 4
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All these modules are endowed with their natural G-structure. In
general, if A and B are G-modules, we endow Hom(A,B) with its
natural structure as a G-module, i.e. (o¢f) (a) = sE (s 1a) , for |
c€G, a€A and f € Hom(A,B) . Also, for a field F and a discrete
G(F/F)-module M , we denote by Hi(F,M) the ordinary Galois cohomo-
logy groups of the G(F/F)-module M . For each integer N z 1, FO(N)
denotes the subgroup of SLZ(Z) consisting of all matrices (2 g)
where N divides c¢ . We write cw for the conductor of a Dirichlet
character y . The symbol [r] stands for the integral part of

r € R . Now fix a prime number p > 2 and dencte by @_ the‘cycld-
tomic xp-extension over @ with Galois group T = G(@_/@) . Put

o = G(Q(u )/@) , & = G(Q(u_)/Q) .
D -P

Let « denote the cyclotomic character

K ¢ I —> T+p zp '

giving the action of I on u _ via the canonical isomorphism

P
© =T x A . Let w denote the Teichmiiller character

*
w :t A —> X% '
P

given by the action of A on wu _ . Finally we write
p

A = !p[[F]]



for the completed group ring of the pro-p-group I over lp .




§ 1. Complex L-function attached to the symmetric square of the Tate

module
Our aim in this section is to recall the standard conjectures
(see [16]) about the complex L-function attached to the symmetric
square of TE(E) , and also to explicitly calculate the Euler factors

at the bad primes.

1.1 Definition of the complex L-function. Put

1 ) A
Hy(E) = Hommz(VK(E),QL) '

so that HE(E) has dimension 2 over mt , and is endowed with its
natural action of G = G(R/@) . Let Tt denote the involution of the
tensor product of HE(E) with itself over mt which sends x @ y
into y ® x . As usual, we write SymZ(HE(E)) for the 3-dimensional
subspace on which Tt acts as the identity, and Altz(H}(E)) for the
1-dimensional subspace on which 1 acts like minus the identity. Then

both subspaces are clearly invariant under the action of G , and we

have

2

1 gy = 1 2 gl
HK(E)QQKHZ(E) = Sym (HZ(E)) ® Alt (HK(E)) .

Now it is well known that the Weil pairing implies that

ale? (5} (£) > Hom(V, () ,@,)

as G-modules. In the following, we shall only be concerned with the
3-dimensional £-adic representation Symz(Hz(E)) , and, for brevity,

we write

_ 2,1
(1.1) ZZ(E) = Svm (HZ(E)) .



We also denote the action of G on ZK(E) by
(1.2) Pp ¢ G —> Aut(ZK(E)) .

Note that ZK(E) plainly remains unchanged if we replace E by its
twist by any quadratic character of Q@ .

We now explain the standard manner (see [16]) to attach an Euler
product to the {-adic representation (1.2). For each rational prime
r , let Dr > Ir denote a decomposition group and its inertia sub-~
group for r , in G . Write F’robr for the element of Dr/Ir, given
by x¥r——> x* . Now pick any prime £ different from r , and define

the Euler factor at r by

(1.3) D_(X) = det(1-p,(Frob] )X | D (E ) .

It is easy to see (in fact, we shall compute this Euler factor for
every r a little later in this section) that Dr(x) is a polynomial
in X with rational coefficients, which does not depend on the choice
of £ , nor on the choice of the decomposition group Dr . This then
leads us to the definition of the primitive symmetric square as the
Euler product
-1
(1.4) S 0(E,s) =TT 0_(7%H .
: r finite

It is also explained in [16] what conjecturally should be the
functional equation for ©D(E,s) . Here is the precise result. Let C
denote the conductor of the £-adic representation (1.2). By definition,
for each prime 'r , we have ordr(C) = e * 8., where e, and §_

are given as follows. We have

I
- 2 _ as r
€. =3 .dlmmz(ZL(E)‘ )

for any £ #+ r . Also, for £ + r ,



® #(Gi) ‘ Gi
§ = 2 dlnh:,z(M/M )

r L .
i=1 #(Go)

14
where M = Symz(Hom(Et, Ek)) , and

Gy, 2 G

0 2 G

D eee

1 2

denote the series of higher ramification groups for the extension of
local fields mr(EK)/Qr . It is easy to see that e¢_ and ¢, do not
depend on the choice of { . Moreover, as the inertia group G0 for
this extension acts trivially on My » the Weil pairing shows that we
can replace M in the definition of Gr by Symz(Ez) . Finally, the

R-Hodge structure of the complex vector space
sym? @' (E,0)) < EH2(E x E,0
shows that the r-factor in the functional equation should be

/2 -
r(o,s) = ° r(g) (27) “Sr(s) .

Conjecture 1.1. The function

s/2
A(D,s) =C r(p,s)D(E,s)

has a holomorphic continuation over the whole complex plane, and satis-

fies the functional equation

(1.5) A(D,s) = A(D,3 - 8) .

In the next section, we shall prove this conjecture when E is a
modular elliptic curve over @ . We remark also that the general con-
jectures do not directly imply that the sign in the functional equatior
(1.5) is always +1 .

We now explicitly calculate the Euler factors appearing in

P(E,s) . These will be used later on in the paper, and also have some



interest in their own right.

Case 1. Let r be a prime number such that E has good reduction at
r . By the criterion of Néron-Ogg-Safarevic, this is equivalent to the

assertion that Ir acts trivially on Ih(E) for £ #%# r . Hence
_ - -1
D_(X) = det(1 pﬂ(Frobr )X | Zz(E)) (2+1r) .

Let ar’Br € T Dbe defined by

1

(1.6) (1-0,X) (1-8_X) = det(1-p} (Frob_ )X | H},'(E)) ,

where pk : G —> Aut(Hz(E)) denotes the action of G on HE(E) .

Then it is easy to see that
(1.7)  D_(X) = (1-0°%K) (1-82%) (1-rx)
: r r r !

where we have used the fact that arBr =r .

Case 2. Let r be a prime number such that ordr(jE)<0 , Where jE
denotes the j-invariant of E . Then there exists a quadratic exten-
sion K/mr such that E becomes isomorphic over K to the Tate curve

Eq = Gm/qz , where q € r zr is given by the expansion

+ 744 + 196884g + ... .

o) B

jE
Lemma 1.2. If ord (jg)<0 , we have

Dr(X) =1-X.

groof.i It is easy to see that the {f-adic representation 1 ,(E) does

£
not change when we replace E by a quadratic twist. In particular, we

have a Dr—isomorphism

— 0]
ZL(E) > zz(uq) r
and so we can use the latter representation to compute Dr(x) . Now it

is well known that we have the exact sequence




(1.8) 0 ——> Vﬂ(u) —_— VL(Eq) —_— QK - 0 ,

which does not split as an exact sequence of Ir-modules. Now, for any

elliptic curve A  over mr , the Weil pairing shows that

sym? (H) (A)) = Sym® (v, (A) @ v, (0 ®7H .

Using this observation, and the fact that (1.8) does not split as én
sequence of Ir—modules, a straightforward argument of linear algebra

shows that

2.1 1
Sym” (H, (E)) f=uq,

The assertion of Lemma 1.2 is now clear.

Case 3. Let r be a prime number such that E has bad reduction at
r , but ordr(jE) > 0 . This is the case of potential good reduction,
in which the inertia group I, acts on Vt(E)(ﬂ # r) by a finite
quotient. In fact, in the case of elliptic curves, rather precise
information is known about which finite groups can occur as the image
of inertia. We.shall exploit this knowledge in the subsequent calcu-
lations.

For each integer m 2z 3 with (r,m) =1, let ¢r denote the
inertia subgroup of the extension (Dr(Em)/Glr . It is known (see [17],
p. 312) that ¢r is independent of m , and has one of the following

structures as a group (in fact, all possibilities occur) : -

(a). r > 3 . Then @r is cyclic of order 2,3,4, or 6;

(b). r =3 . Then, if @r is abelian, it is cyclic of order 2,3,4,

or 6. If Qr is not abelian, it is the non-abelian semi~direct

product of Z/4 and 3%/3 , with Z/3 as normal subgroup;
(c). r =2 . Then, if or is abelian, it is cyclic of order 2,3,4,
or 6. If ¢ is non-abelian, it is either isomorphic to the

r
quaternion group of order 8 or SL2(2F3) .



We first dispose of the essentially trivial case when °r is cyclic

of order 2.

Lemma 1.3. Assume @r is of order 2. Then there exist complex numbers

a ,B_ ~with absolute values vr and a« 8 =r , such that

2 2
Dr(X) = (1—arX)(1-BrX)(1—rX) .

Proof. The hypothesis that @r is of order 2 implies that there
exists a quadratic twist E' of E .such that E' has good reduc-
tion at r . Since 1y (E) is isomorphic to ZK(E') as a Galois module,

the lemma follows immediétely from (1.7).

Lemma 1.4. Assume Qr is of order >2 . If L is not cyclic, then

Dr(x) =1 . If Qr is cyclic, we have

e
[ 1 - rx -if -0z (Ep) /T, is abelian
D (x) = 4

1 + rX if mr(Ez)/(Dr is not abelian,

here {£ denotes any prime number distinct from 2 and r .

We need a preliminary lemma. We assume £ # 2,r .

Lemma 1.5. Put H = mr(EL) . Then H/(nr is abelian if and only if

Qr(Ezm)/Qr is abelian.

Proof. Let M denote the maximal unramified extension of Qr in

ir . Assuming H/Qr is abelian, it follows that the compositum

N = HM is abelian over mr . It therefore suffices to show that

Qr(E, ) €N . Since the inertia group of mr(E n)/(.nr maps isomorphi-
£ z

cally under restriction to the inertia group of H/(Dr (see the above

definition of Qr ), we see that mr(E n)/H is unramified for all
a
n 21, as required.




Part (i). Assume @r is cyclic of order >2 , and let 1t denote a

generator of o - Put F = mr(E ) . We can then identify Qr with

[+ -}

the inertia subgroup of F over Qr . Let 4 = #(@r) , and write
V = H1(E) e, @
£z Qz L’
where it is understaod that Qr acts trivially on the second factor.

We claim that there is a decomposition

1

(1.9) V =V(z) & V(c-1), dim V(z) = dim V(z ') =1 ,

where ¢ denotes a primitive d-th root of 1, and 1 acts on V(Z)

(resp. vz™Y)) via ¢ (resp. g1

) . This is because d > 2 , and the
determinant of t must be 1 since the Weil pairing identifies the
second exterior power of V with Vl(u)e(-1)® 62 . Let u,v denote

respective basis elements of V(Z) and V(?;'_1

) . A straightforward
exercise in linear algebra, again using the fact that 4 > 2 , shows
that

I
mn r
(1,(E) © @)

= ﬁz(u @ v+vVveu .
Pick any o € G(F/Qr) which maps onto the inverse of the Frobenius
element of the Galois group of the residue fields. It‘is proven in

(151, p.499, that there exist complex numbers o ,8_  with =r

arBr
such that

det(1 - oX|V) = (1 - « X) (1 - 8.X) .

Suppose first that H/mr is abelian, which, by Lemma 1.5, implies that
F/(Dr ,is also abelian. Hence ¢« and 1t commute, and thys o¢ respects

the decomposition (1.9). Therefore, we must have

gf{u) = a U ag(v) = Brv ’

and so

I
det(1 - oX|(z,(E) ® @) ©) =1 - X,



as required. Suppose next that H/(ur is not abelian. Thus ¢ and =
cannot commute, since G(F/mr) is topologically generated by +t and

s . But, as Qr is a normal subgroup of G(F/Qr), o T 0-1 must be
another generator of @r which is different from =+t . Since d = 3,4,6,

we conclude that

Hence o¢ interchanges the two eigenspaces in (1.9), and we can chodse
v = o(u) . A simple argument of linear algebra, together with the fact
that afﬂr = r , shows that ao(u® v) = -r (v ® u) . Hence

I

det(1 - oX | (2,(E) ® &,) Ty =1 + rx .

This completes the proof of part (i).

Part (ii). As explained above, @r has three possible structures, .and,
in each case, possesses a cyclic normal subgroup A of order d equal
to 3 or 4. Fix a generator .t of this subgroup. Then we have the deqqm-
position (1.9) for the action of A . Again writing u and v for

generators of the two eigenspaces in (1.9), we find

(ZZ(E) ® QK)A = ﬁz (Wev+veu .

suppose first that Qr is the semi-direct product of A with Z/4 .
"hen there exists A in @r such that A and 1t generate .- and
T o= rzk . Thié relation shows that A interchanges the two eigenspaces
in'(1.9);iso that we can assume v = X (u) ; Since AZ # 1 on V , we

ust have xz(u) = -u , and therefore X (U® v + v ® u) = -(u @ v +

vV ® u) . Hence

¢
- r _

Suppose next that Qr contains the quaternion group Q8 of order 8
(which is true for the two remaining cases). We claim that

- 9
(1.10) (ZK}E) ® @) =0 .




Indeed write generators +t and ¢ as generators for Q8 with the

relations

The latter relation implies that ¢ interchanges the eigenspaces in
(1.9), and so we can assume again that v = o (u) . Arguing as in the
previous case, we find that (1.10) is valid. This completes the proof
of Lemma 1.4.

We end this section by defining a slightly different Euler produc
from D(E,s) , which occurs more naturally when one applies Rankin's

method. We shall call it the imprimitive symmetric square of E , and

it is given by
(1.11) D(E,s) = T[ D_(x ") ,
r

where

1

Dr(x) = det (1 - pé(Frob; )X | WK) (£ £ ) ;

here pk : G —> Aut(wz) is the representation given by

2,1, 1r
WK = Sym (HZ(E) )

which is clearly unramified at r . Obviously, we have Dr(X) divides
Dr(x) for every prime r , and the calculations made earlier show the
Dr(X) = Dr(X) unless E has additive reduction at r . Finally, we
note that, unlike D(E,s) , the imprimitive symmetric square D(E,s)

is not invariant under twisting E by quadratic characters of @ .



§ 2. The symmetric square of a modular elliptic curve

Recall that an elliptic curve E over @ is said to be modular

if there exists a primitive cusp form
' = n 21iz
(2.1) f = z aq ,qg-=e '

of weight 2 such that the Hasse-Weil L-series L(E,s) of E over (

is given by
(2.2) L(E,s) = § an™®;

here a primitive cusp form means a normalized new form of some level.
We assume throughout this section that E is modular. Our aim is to
prove Conjecture 1.1, and also its analogue when 0D(E,s) is twisted by
an arbitrary Dirichlet character y of conductor prime to the geometric
conductor of E (= the conductor of the £-adic representation Vﬂ(E) ,
by definition). Our method of proof will use the classical Rankin method
4s adapted by Li [12] and Shimura [20], and tedious case by case
thecking. In fact, the same results have been established by Jacquet
and Gelbart [ 7] using representation theory (except they do not expli-
citly verify that their Euler factors at the bad primes coincide with
the ones defined by £-adic representations). While we fully admit that
their approach is far more elegant and sophisticated, it seemed to us
worthwhile to'present for once the more classical approach. Howéver( we .
do not completely avoid the use of some representation theory as we make
use of the following deep theorem of Carayol [2 ], completing work of
earlier authors. We first need some standard terminology. Let
g = §1 bnqn be a cusp form of weight 2 and character ¢ for FO(M) ’
n=

Where M 1is any integer. If x 1is a Dirichlet character, we define

s . 2
jgx = z x(n)bnqn . Then gx is a form of weight 2 and character ¢y
’ n=1
f level the least common multiple of M and the square of the conductor

X x . If g 1is primitive, it is not necessarily true that gx is



primitive. However, assuming g primitive, there always exists a primi-

x

=Y ¢
X n=1

are prime to a certain finite set of primes S . We then say that hx

tive form h qn such that c = x(n)bn for all n which

n,x n,x
is the primitive form equivalent to gX .

Theorem 2.1 (Carayol). Let

pp + G —> Aut(TK(E)sz Qz)

be the fL-adic representation attached to a modular elliptic curve E ,

with associated primitive form £ . For each Dirichlet charcater x ,

let hX be the primitive form equivalent to the twist fX of £ by

x » and let NX denote the exact level of hX . Then NX is equal to

the conductor of the {f-adic representation obtained by twisting Pp EZ.

x . In particular, the level of £ is the geometric conductor of E .

Let x be a primitive Dirichlet character, and write cx for the
conductor of x . Let N be the geometric conductor of E . For the rest

of this section, we impose the following hypothesis:-

Hypothesis. (cX,N) = 1 .

Write D(E,x,s) for the twist of the Dirichlet series 0D(E,s) by x .
Let C denote the conductor of the £-adic representation (1.2) defining

D(E,s) , and put

(2.3) C(x) =C - Ci
Put
s-i
N o B
(2.4) T(D,x,s) = (271) Sr(s)n I (—=%) ,

i
where iX =0 or 1 and x(-1)=(-1) X . Finally, we put

(o]

X :

(2.5) G(x) = 1} x(a) exp (Zgla) '
a=1 X

(2.6) Wix) = x(C)\/x(—1)cX G(x) -

G0 2



The principal result of this section is the following.

Theorem 2.2. Assume E is modular of conductor N , and that

(cX,N) = 1 . Then

AD,x,s) = ()20 (0,x,8) D(E,x,8)

has a holomorphic continuation over the whole complex plane, and satis-

fies the functional equation

A(D,x,s) = W(x) A(D,x,3-s) .

Following Li [12], the first step in the proof of Theorem 2.2 is
to replace f by a primitive form g of possibly lower level. In-
deed, we take g to be any form of weight 2 satisfying the following

conditions:~-
(2.7) g is primitive of level dividing the level N of f ;
(2.8) there exists a Dirichlet character ¢ such that g, = £,

(2.9) the level of g 1is minimal amongst all forms satisfying the

previous two conditions.

Clearly such a g always exists, but it need not be unique. We write
M for the level of g (plainly M is unique), and call g a minimal
form associated with £ . Since f has trivial character, g must have

character

"
™
[ ]

(2.10) v
We denote the Fourier expansion of g by
(2.11) g = Z

For each prime r dividing M , we introduce the following strange

Euler factor




1 + rX |if br = 0 and ordr(M) is even,
pr(X) =

1 otherwise .

We then define the Dirichlet series

2
-s, -1 gM(zs-z)

(2.12)  D(g,s) =TT e () Ty (5-1)
r|M

b, |
S

He~18

n=1 -n

where the subscript M indicates that the Euler factors at the primes
dividing M have been omitted from the zeta functions. Let 70(g,x,s)

be the twist of this Dirichlet series by x . Finally, for each prime

r dividing M , we put

4 ordrM
[ 5 ] if br =0
m(r) = '<
0 otherwise,
-

and

ord M-m(r)
TTr T .

r|iM

w
1]

We obtain Theorem 2.2 on combining the following two results, whose

proof will take up the remainder of this section. Put

(2.13) A(x) = Bch}\, Wilg,x) = x(B2)¢x1-1)cx G(x)/G(i)2 .

Theorem 2.3. Assume (cX,N) = 1 , and put

S/20(0,x,8)D(g,x,S) -

Ag,x,s) = A(x)

Then A(g,x,s) has a holomorphic continuation over the whole complex

plane, and satisfies

A(gIXIS) = W(ng) A(gr;r3"s) .

Theorem 2.4. We have 0(g,s) = D(E,s) and C = B2 .




The proof of Theorem 2.3, which will be given first, will be an appli-
cation of results of Li [12] and Shimura [20]. Our proof of Theorem 2.4
will unfo;tunately consist of elaborate case by case checking at the
bad primes.

. We now begin the proof of Theorem 2.3. Put

M =Mcz.
X X

We wish to apply Theorem 2.2 of [12] to the primitive forms F, =g

and F, = gr . Our assumption that (¢, ,N) =1 implies that g is

2
primitive of level Mx . We must first verify that conditions A), B),
C) on p.141 of [12] are valid. As in [12], we decompose each integer

I~

R and each Dirichlet character ¢ mod R as
R=T1T R, ¥ = 1T W? (r prime) ,

where R_ =r and vy is a character modulo Rr . In the nota-

tion of [12], we have

M' = TT c2 /e 2
Xy Xp
rlc ,
X
2
M" =M - T .
r|c
2X
Xp =1

(For any Dirichlet character vy 'we write cw for the conductor of

v ). Condition A) is valid, since for all r|M" with (r,cx) =1,
the forms F1 and F, are certainly r-primitive in the sense of [12]
by the minimality of g and the condition (r,cx) = 1 . As for con-
dition B), it is true because for each prime r|M' and each character

v of r-power conductor, gw and g;w are both primitive forms of

respective levels



~ 2 ~ 2
N1 =M cw ’ N2 =M cxw ’

and one sees easily that the least common multiple of ﬁ1 and N

is at least Mx . Finally, Condition C) is vacuously true since

2

(M,M') = 1 . For each prime r|M", Li [12] elaborately defines on p.142
an Euler factor which she writes er(s,F1,F2) . Here is a simple des-

cription of this Euler factor in the case considered here.

Lemma 2.5. The Euler factor er(s,F1,F2) 93 p.142 gf [12] is given by

6,(s,Fy,F,) = a_(x(r)r %) ,
where ﬁr(X) =1 if (r,M) =1 and
_ -1 :
2,.(X) = (1-X)p(r 'X) if r{M .

Proof. This is an immediate consequence of the explicit description
of er(s,F1,F2) on p.142, and the known fact that Ibrl2 is equal to
r,1, or 0, according as we are in the three cases (i) Mr =cC,
(ii) Mr = r and v, = 1 » and (iii) otherwise.

Our next step is to verify that our definition of the integer m(r)
coincides with that given in [12]. We begin with some notation. For any
integer R and a prime r dividing R , let W(r) denote the operato:

on forms of level R given by

W(r) = Rrx y
Rz Rrw '

where the integers x,y,z,w are chosen so that x = 1 mod R/Rr ’

y =1 modRr , and det (W(r)) = R. . If F 1is a primitive form of

level R , it is known that
FlW(r) = A (F)F' ,

for some primitive form F' and a scalar Ar(F) of absolute value 1



- this equation then defines Ar(F) . Now take r to be any prime
dividing M such that br = 0 . Following [12], we define n(r) to

be the largest integer n such that

A lg) = AL(g)
x_(g- A_(g-
Arlagy) r (93
for all characters vy with conductor dividing .
ord_ M
Lemma 2.6. If br =0 , we have n(r) =z [ 5 ] , and thus our defi-

nition of m(r) coincides with that of [12].

Proof. We consider the operator

C c 1 u
R = f X (1) X
X n=1 0 cX ’

which has the properties (see [ 11])
glR, = Glx)g, + gIR W(r) = x(M) -g|W(XIR .
This shows that

Alg) = x(M) .
A ‘g;)

r
On the other hand, by the minimal choice of g and the fact that
br = 0 , for each character y of r-power conductor, gw will again
be primitive of exact level say M(y) , where M divides M(y) . Hence

we can 3pply the same argument with g replaced by gw to conclude

that

Alg) = XM ) .
A -
r‘ng)
To complete the proof of the lemma, we must show that M(w)r = M. for

all characters vy of r-power conductor such that cler . By the

minimality of g , it suffices to prove that M(w)r s M. for all such



v , which fallows from the fact that

g has level the LCM of M,cz,c c
Y L/ A

and character vwz , and Theorem 4.3 of [ 1] which shows that

(c)_ s /ﬁ; .

v'r
We now simplify the elaborate root number which occurs in [12].

For each prime «r|M' , let Ar(F1,F2) be as defined on p.143 of [12].
Note that, in our case, the set P of [12] is empty, and that only
case IV of [12] occurs, since we have

M_ =1, cxr¢ 1,b_ %0, x(r)b, =0 .

For brevity, let us put c¢_ = c_ . Define (Q to be M'2 or c2 ’
r Xy r r r

according as Mé >c,. or not. Let ¢, be the primitive Dirichlet

character attached to (x/xr)2 . Then the definition of

AL = Ar(F1,F2) is
o= 2, = . 2 Ry -2
Ay = o) (ey) e (M) G (xp)r {gn)™ Qe ™ .
Lemma 2.7. Assume that r|M' , and put 6. = 1 or 2 according as

r is odd or even. Then

r, = G(x2) (G(xr) )2 62 3_(s.c) .
G(x,)

Proof. For rlcX2 , we have cX2 = c_/é_ and thus

r

M! = 8§ _c Q.= (6_c )2

r r'r ' *r r'r d
It follows that

-2 ) )

A = vic) Glx,) Ar(qg) 5. ¢r(cr/6r) .
By Theorem 4.1 of [ 1], we have

Ar(gi ) = v(cr)xr(-1)G(xr)/G(xr) .

r



Also by Proposition 3.4 of [11],

CAL MRS AL S

and so, by comparison of the first Fourier coefficients,
G(xxr)lr(g;) = ¢r(cr)kr(g;r)G(xxr) '

whence
Ap(97) = o (e )v(c )X /G (x,) -

Substituting this into the above expression for Ar , we obtain the
assertion of the lemma.

We next derive a simpler expression for the elaborate function
Ax(s) defined on p.144 of [12], which regrettably in [12] mixes up
the root number and the conductor. The definition of Ax(s) is as

follows

Ax(s) - Ax,1(s)Ax, Xe3
where
ord_M-m(r)
A ) = TT 6me ™2 T :
r|M
2ord_c
A o) = TT (x2(r)r' 728 T x
ric
X
rfc
X2 c 2 1-2s Q c2
- 2, r -s rr
AX13(S) = WG(Xr)Ar(ﬁ}— Qr @l!-ﬁ'rl:—) .
r|c
2
X
Lemma 2.8.
2 1-2s
AX(S) = W(g,x)G(x) (ch) .
v/xi—‘])cx ‘

Proof. Clearly, we have A (s) = )((32)31-25 . For rlcx , put

X1




1=2s

Ho (8) = 6lxp)? (ed e (e
G(x,) 2

By Lemma 2.7, we have

AX’3(s) = T7 Hr,x(s) .
r|c )
X

On the other hand, it is plain that

A ,(s) = T[T H_ (s) .

Xr2 r,X
r|c
X

rfc 5
X

The assertion of the Lemma now follows from the well known decompo-

sition formula

Gix) = TT (xx ) {ey) + Glx) .
rlc .
X
Put
s+iX
-( ) s+i
I'(x,s) == 2 P(—j—l) .

Proposition 2.9. The function

s/2
A(g.x,5+1)cx F'(x,s)L(x,s)

Q(XIS)

has a holomorphic continuation over the whole complex plane, except fo:

simple poles at s =0 and s = 1 when X is the trivial character,

————

and satisfies the functional equation

2(x,s) = W(g,x)G(x) Q(X,1-s) .

Vx(—1)cX
Proof. Recall that the function Lg g_(s) is defined in [12] by
4
X

l2 n‘(s+1)

.
-

2 oo
L __(s) =1L (x“+2s) ) x(n)|b
g,gX McX ne=1 n



In view of Lemma 2.5, we have

-1
1T a_(x(r)r %) Lg,g_(s) = D(g,x,s*+1)L(x,s) .
rlmﬂ X

The assertion of the proposition now follows from Lemma 2.8 and Theorem

2.2 of [12].

Corollary 2.10. A(g,x,s) has a meromorphic continuation over the

whole complex plane, and satisfies the functional equation given in

Theorem 2.3.

This is immediate on combining Proposition 2.9 with the known functio-
nal equation for the Dirichlet L-series. Hence, to complete the proof
of Theorem 2.3, we need only prove that A(g,x,s) is entire. We do
this by appealing to a basic result of Shimura [20]. To do this, we
must slightly modify the above functions. Recall that the character

v of the form g is a character modulo M , and is not necessarily
primitive. In the following, we write 2 for the primitive character
associated with v , and c, for its conductor. Recall that ©0(g,s)

is defined by (2.12). Put

H(g,s) = (’g biso(n)> . CM(Zs—Z) .
n=1 nS %K(s-1)

Let S be the set of primes r dividing M such that

ordr(M) = ordr(cv) .

Lemma 2.11. We have

where U(g,s) is the finite Euler product

-1 -1
(2.15) Ulg,s) = TT o (=75 T (1-p"7%) .
r|M PES



Proof. This boils down to showing that

-1

o 2 o 2= 1-s
) Ibnl = ) bn\)o(n) x T (1-p ) .
n=1 ) n=1 [} pES
n n

This identity is an easy consequence of the standard lemma 1 on p.790
of [21], the knowledge of the absolute value of br for rIM; describec
in the proof of Lemma 2.5, and the fact that 5; = Ga(n)bn for
(n,cv) = 1 because g is primitive.

To complete the proof of Theorem 2.3, we shall apply Theorem 2 on
p. 94 of [20], and the two remarks following it. Write H(g,x,s) for

the twist of the Dirichlet series H(g,s) by x , and put
@(XIS) = T(Drer)H(ngrs) .

Then [20] shows that o(x,s) is holomorphic, except possibly at s = 1
or s = 2 . We claim that o(x,s) must in fact be holomorphic at
S = 2 . For the validity of condition (i) and (ii) of Theorem 2, to-
gether with Remark 2, would imply that x2 =1 and x(-1) = -1 . But
Remark 1 shows then that x(n) =1 for all n prime to McX (since
we know already that B; = Ug(n)bn for all n prime to c, because
g 1is primitive), which is a contradiction. From (2.14), and the explici
form (2.15) of the Euler factors U(g,s) , we conclude that (i)
Alg,x,s) 1is holomorphic on the line R(s) = 2 , and (ii) the only
possible poles of j(g,x,s) are on the line R(s) = 1 . But the
fuﬁctional equation of Theorem 2.3 (which, as remarked in Corollary
2.10, is already established) shows that a pole on tHe line R(s) = 1
for a(g,x,s) implies the existence of a pole on the line
R(s) = 2 for plg,x,s) . This completes the proof of Theorem 2.3.

We now return to the proof of Theorem 2.4, postponing the case by
case verification as long as possible. We begin by noting the following

Euler product for H(g,s) , which is immediate from Lemma 1 on p.790

of [21]. For each prime r , let Yei8,. €C be such that



N~ 8
o
s
o
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n:j
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Lemma 2.12.

_ - -1 _ - -1 - S
T;l' (1-3, (1) v2r™%) (=5, (0) 62r7%)  (1=3(x)y 6 ™5

(2.16) H(g,s)

We first'verifyATheorem 2.4 for all primes r such that (r,M) =1
Let r be such a prime. By (2.14), the r-Euler factor of D0(g,s) is
the same as the r-Euler factor of #H(g,s) . If (r,N) =1 , we know

that y_ = E(r)ar , 8 = E(r)Br , where a_,B8_ are given by (1.6).

r r

As v = 22 , we see from (1.7) that ©0(E,s) and H(g,s) have the

same Euler factor at r . Next we claim that the case r|N and

(r,M) = 1 can be reduced to the previous case. Indeed, if =r|N , we

have (c 2,r) = 1 because c 2 divides M . Hence, if €, denotes
€ €

the r-part of ¢ , we see that e§4= 1 . Now replace E by its twist

E' by the quadratic character €p -+ Then E' .must have good reduction
at r , since gesr has its r-th Fourier coefficient non-zero ( geer
is the primitive form corresponding to E' and has level prime to
r ). Since U?P(E,s) = D(E',s) , we have justified the above claim. It
also follows that ordr(BZ) = ordr(c) =0 .

We next verify Theorem 2.4 at all primes r such that
ordr(jE) < 0 . In fact, we can then suppose that E has split multi-
plicative reduction at r , since this will certainly be true for a

twist of E by a quadratic character, and such a twist does not change

D(E,s) . Hence
ordr(N) =1, Dr(X) =1 -X.

Thus necessarily ordr(M) = 1 and ordr(cv) = 0 . By the results of

[11] applied to g , we must then have

2
y. =0, Gr = v(r) .

-S

This proves that H(g,s) has the r-Euler factor 1-r , and so the




same is true for 7?0(g,s) since U(g,s) has Euler factor 1 at r .
Also ordr(B) = 1 because br ¢+ 0 , and ordr(C) = 2 , since, in the
case of split multiplicative reduction, the extension mr(EL)/Qr is
tamely ramified for all £ # r . Thus Theorem 2.4 is true for all such
r .

We now turn to the remaining bad primes. These are characterized
by the condition that E has potential good reduction at r and the

group ¢ defined in § 1 satisfies
(2.17) # (@r) > 2 .

Lemma 2.13. Let r be a prime of potential good reduction satisfying

{2.17) . Then the r-Euler factor of 70(g,s) 1is given by Dr(g,r-s) ’
where

Dr(g,X) = 1"rx, 1+I’x, 1 ’
according as (i) ordr(M) = ordr(cv), (ii) ordr(cv) < ordr(M) and

ordr(M) even, and {(iii) ordr(cv) < ordr(M) and ordr(M) odd and

w

3.
Proof. This is clear from Lemma 2.11, 2.12 and Theorem 3 of [11].

In view of Lemma 1.4, we must therefore show that the cases (i), (ii)
and (iii) of Lemma 2.13 correspond exactly to the three possibilities
(here m is any integer 2 3 with (m,r) =1 and (2.17) is assumed
to hold) (a) ér cyclic and (nr(Em)/(nr abelian, (b) @r cyclic and

Qr(Em)/mr non-abelian, and (c) o non-cyclic.

Lemma 2.14. Let r be a prime of potential good reduction satisfying

(2.17). For each prime £ #% 2,r , the extension mr(Et)/mr is abelian

if and only if ordr(M) ordr(cv) .

Proof. Let H denote the maximal unramified extension of mr in

Q@ and suppose that mr(El)/Qr is abelian. Then H(El)/mr is abeliar



and we may identify the inertia group of this extension by restriction
to mr(EK) with ¢_ . We choose a representative o € G(H(El)/mr)

for the Frobenius automorphism, and we denote by T the topological
closure of the cyclic group generated by o¢ . Thus we clearly have the

following decomposition as a direct product

G(H(EL)/mr) =0, xT .

Note that H(E ) = H(El) . Now let L denote the totally ramified
extension of ér given by the Galois invariants under T . By local
class field theory the cyclic extension L/(Dr corresponds to a charac-
ter )X on z; of finite order. The latter turns up in the £-adic
representation Pp in Theorem 2.1 as well, since ep v when restricted
to G(ar/mr) , factors of course through G(H(Ez)lmr) . Horeover Py
is injective on @r and diagonalizes. We may therefore assume that

for =t € Qr we have

pz(T) = (A(Ty 0 )
o AoV .

Thus after tensoring Pp by A we arrive at (pz ® \)(t) = xz(r) 0
0 1/,

which by a straightforward calculation turns out to be a twist of )

of minimal r-conductor among all twists by -characters whose conductor

is an r-power. So by Theorem 2.1 we get

r’ ’
where now we have chosen a Dirichlet character €. of r-power conduc-
tor which locally at r 1is A . In particular we see that

Mr = cvr = c)\2 .
Now we suppose Mr =c, and we shall prove that this implies
r
that Qr(EZ)/Qr is abelian. By the assumption M_ = c = the r-Euler
0 r




factor of the L-function attached to g 1is given by ‘l-brr-S where
lbrl = /r . Hence the associated £-adic representation Pp ® Er
posesses non-trivial invariants in VK(E) ® Er under the action of ti
inertia group. So we find x # 0 in T,(E) @ ﬁz such that

T(x) = Sr(T) - x for =t € o - By the same feasonning as in part (ii)
of the proof of Lemma 1.4 this cannot happen if @r is non-cyclic.
Thus @r is necessarily cyclic and therefore there is a second basis
vector vy € TZ(E) e 51 such that 1(y) = Er(r) y for =t € o
since by the Weil pairing ®r acts trivially on x @y -y @ x . So
the totally ramified cyclic extension L/(Dr which is defined by the
character €. v is contained in mr(EKm) . Moreover Qr(Ezw)/L is
unramified, hence Qr(Ezm) is abelian over mr thus completing the
proof.

We can now verify Theorem 2.4 at all remaining bad primes r#2,3
Since for these primes Qr is always cyclic and satisfies (2.17), the
equality of r-Euler factors Dr(g,x) = Dr(x) is obvious by Lemmas
2.13 and 2.14. In addition these primes have no wild ramification, so

that Cr = r2 since

I

. r _ _
dlmmz(zl(E)) = degree Dr(X) =1 .

On the other hand by definition of B we have ordr(B) = ordr(M)-m(r)

where m(r) = [ordr(M)/Z] or 0 according as Mr = r2 or not. Here

we have used the fact from [11] that b = 0 if and only if r?

divides M and <, divides M/r . So we get Br = r and therefore

_ 2
Cr = Br

The verification of Theorem 2.4 at the bad primus r = 2,3 will
be achieved by the following tables whose proof will be given in the

Appendix. These tables clearly imply that Dr(g,x) = Dr(X) and

Cr = Bi for r = 2,3 . We would like to point out that we do not

claim that all considered cases occur in reality.



ofd3 (M)

3 G(Q3(E4)/Q3) ord, (M} ordilcél ord; (c )| ord,(B) ord, (C)
Z/3 | abelian | 4 2 2 2 2 4
non-abelian 4 4 0 0 2 4
Z/4 | non-abelian 2 2 0 0 1 2
X/6 | abelian 4 2 2 2 2 4
non-abelian 4 4 0 0 2 4
Z2/43Z/3| non—-abelian 3 3 0 0 2 4
5 5 0 0 3 6

2, G(QZ(E3)/Q2) ordz(N) ordz(M)»ordz(ce) ordz(cv) ordz(B)'ordz(C)
Z/3 | non-abelian 2 2 0 0 1 2
Z/4 | non-abelian 8 6 4 3 3 6
Z/6 | non-abelian 4 2 2 0 1 2
6 2 3 G 1 2
QS non-abelian 5 5 0 0 3 6
6 5 3 0 3 6
9 9 0 0 5 10
SL20F3) non-abelian 3 3 0 0 2 4
4 3 2 0 2 4
6 3 3 0 2 4
7 7 0 0 4 8




§ 3. The p-adic analogue of the symmetric square

As before, E will denote a modular elliptic curve over @ , and
D(E,s) the L-series attached to the symmetric square of the £-adic
representations HZ(E) . Our aim in this section is to construct a
p-adic analogue of ©?V(E,s) for all odd prime numbers p at which E
has good ordinary reduction. We begin by establishing a strengthened
form of a result of Sturm [22] about the algebraicity of the special

values of the twists of 0D(E,s) by Dirichlet characters.

3.1. The algebraicity result. If f1,f2 are two forms of weight
2 for PO(N) ,» one of which is a cusp form, we normalize the Petersson

inner product via

<f ,£>. = f1iz) fz(z) dxdy ,
)

14
1"72°N B(N

where B(N) denotes a fundamental domain for the action of FO(N) on

o d
the upper half plane. If ?(E,s) = 2** —2 and x 1is a Dirichlet charac
) =] (n}a

ter, we recall that UD(E,x,s) = . Recall also that G(yx)

, s
n=1 n
denotes the Gauss sum of yx . Define

(3.1) p(E,x) = G(X)D(E,x, 1)
1r<f,f>N

where N 1is the conductor of E , and f is the primitive cusp form

of weight 2 and level N corresponding to E .

Theorem 3.1. Assume that (i) the conductor cx"9£ X is prime

to 2N , and (ii) x 4is not the non-trivial character of a real

quadratic field. Then, for each automorphism o of € , we have

p(E,x) 7 = 0 (E,x%) . In particular, o(E,x) belongs to { .

Remarks. (i) Results of this kind for the imprimitive symmetric

square D(E,x,s) were first proven by Sturm [ 22]. However, since the



Euler factors at the bad primes may vanish at s=1 , we cannot apply
Sturm's argument directly to the point s=1 . Instead, we first apply
Sturm's argument at the point s=2 , where the Euler factors never

vanish, and then apply the functional equation for ©0(E,x,s) .

(ii) . Theorem 3.1 is trivially true for all characters x with
x{(=1) = -1 , since the r-factors in the functional equation for the
entire function A(D,x,s) imply that 0O(E,x,s) must vanish at s=1

in this case.

(iii) . The special case of Theorem 3.1 when yx 1is the trivial character

Xg ¢an be established more directly. If £ = 2 anqn , we have
n=1
D(E,s) = r.(2s-2) E a 2
N n ’
TG
gy (s=1) n

where, as before, the subscript N means that the Euler factors at the
primes dividing N have been omitted from the corresponding Euler
products. Expressing the Dirichlet series on the right as a Rankin

integral as in [ ], we conclude easily from (2.5) of [21] that

D(E,2) = 288 > <f,f>_ .
N
Since
(3.2) 0(E,s) = D(E,s) I[ H_ (p7%)
pES, P
where S is a finite set of bad primes, and where Hp(x) is a poly-

1
nomial in Q@Q[X] which does not vanish at s=2 , it follows immediately

-3 1

that <f,f>; DP(E,2) belongs to @ , whence the functional equation

implies that "-1<f'f>;1 D(E,1) belongs to @ , as required.

(iv). When x is the non-trivial character of a real quadratic field,
the conclusion of Theorem 3.1 almost certainly remains correct. However,

-we can do no better than Sturm [22] in this case, who showed that the




conclusion of Theorem 3.1 is valid if we replace 7D(E,x,s) by the
imprimitive function D(E,x,s) .

We now give the proof of Theorem 3.1, as we shall need the main
ingredients of it for the p-adic constructions to follow. We refer the
reader to the papers of Shimura [20] and Sturm [22] for the results on
Fourier expansions of Eisenstein series of half integral weight which
we quote without proof. In general, we use the notation of Shimura [19
when working with modular forms of half integrgl weight., In particular
if y = (a b is an element of SLz(z) with c = 0 mod 4 , we #ecall

c d)
that

$lrs2) = (e (ezea) V2,

where eq = 1 or i , according as d = 1 or 3 mod 4 , and the usual
conventions of [19] are valid.

We first note that we can assume, without loss of generality, tha
the conductor N of E is divisible bf 4. Indeed, if this is not tru
for E itself, it is easily seen to be true for the twist of E by
the unique quadratic character of conductor 4, and, as was remarked
earlier, the function ©?0(E,s) is invariant under the twists of E by
quadratic characters,

The first main step in the proof is to give one of the classical
expressions for the imprimitive function D(E,x,s) as a Rankin in-
tegral. Let
o 2
I xmg"

n=-—wx

N -

GX(Z) =

and level 4cx2 (see [19]1). Put

N

which is of weight

(3.3) N = Nci , where cX conductor of x .

X

Let WX denote a set of representatives of FQ\FO(NX) , where T

denotes the group of matrices + (8 T) with m € Z . Following [ 20],



via

we define the Eisenstein series of weight %

E(z,x,8)= +  v3/%0(@ )5(v,2) 3|5 (y.2) |25,
y€WX Y

where 2z = x + iy , and "dY denotes the entry in the lower right hand

corner of vy . Define

(3.4) 0 (2,%,8) = Ly (x2,2s-2)E(z,x,5-2) ,
X

where, as before, the subscript NX means that the Euler factors at
the priﬁes dividing NX' have been omitted from the Euler product de-
fining the Dirichlet L-series. Recall that £ = § anqn denotes the
primitive cusp form of weight 2 for FO(N) whicﬁ-;orresponds to E .

We omit the proof of the following classical result (see [20], p.83),

which is based on the elementary identity

D(E,x,8) = Ly (x*,2s-2) x(pha 5
X n=1
S
n
Proposition 3.2. We have
(3.5) (4ﬂ)‘5/2r(§)D(E,x,s) = ([ )f(z) ex(z)¢(z,x,s)dxdy ,
B(N
X

where B(Nx) denotes a fundamental domain for PO(NX) .

| We next give a rather complicated type of Fourier expansion for
¢(z,%x,s) (see [22], p.236). The reader must bear with these elaborate
formulae as they are the key to all subsequent arguments. Note also
that we have slightly modified the result of [22] by applying the

duplication formula for the r-function. For n € X , we define

" 2rinj
cxmis = B ) G e T}

MeM j=1

where M denotes the set of all positive integers which are composed

of products of powers of the primes dividing NX » and which are also

divisible by N, itself. For each integer n # 0 , let o denote




the unique primitive Dirichlet character satisfying
= (=h -
(3.6) on(d) = (d )x(d) when (d,ncx) 1.

Put

3. (n,8) = [ uGao ()’ (m)a' 372

a,b

where the finite sum is over all positive integers a,b such that
(ab)2 divides n and (ab,Nx) = 1 ; also u denotes the Mdbius
function. As in [22], for w> 0 and a,8 € €T with R(B8) > 0 ,

define

a—1u8—1e-wu

Wlw,0,8) = T(8)") [° (u+1) du -
0

This function has holomorphic continuation over the whole g-plane (see

[20]). Our desired expansion for ¢(z,x,s) is given by

(3.7) ¢(z,x,s) = AO(Y’X’S) + § An(y,x,s)ezninx ,
"he0
where
- 1-s
(3.8) gy, =y™ 2Ty %, 28-200y 2 (140 A (s=2)T (s - )
X FTET___

2
x CX(O'S)LNX(X 1 28=3) .

When n > 0 , the coefficient An(y,x,s) is given by

(3.9) A (v,x,8)=y® 27141 | (47n)STle72TY I3 x

r(s)

51

x ex(n,s)cx(n,s)LNX(pn,s-1)W(4nny.§§l,§ - .

When n < 0 , we have

s/2—11+i (4"tn|)s-1e-2w|n|y F(E%l) N

YTnT T(s-2)

(3.10) A _(y,x,s)=y




S
x Bx(n’S)cx(n's)LNX(°n's'1)W(4"|n|Y"2"1'S;” .

We now study two specialisations of these formulae, treating the

exceptional case first.

Case 1. Suppose x 1is the non-trivial character of a real qua-
dratic field. The specialisation of (3.7) to s = 2 in this case is
unpléasant, since we will have An(y,x,Z) # 0 for those n < 0 such
that °n is the trivial character. On the other hand, the specia;i-
sation to s = 1 is good, since for n < 0 , we always have

LNx(pn,O) = 0 because pn(-1) = 1 and NX > 1 , whence An(y,x,1)=0 .

As W(w,1;4 ;) = w1/2 , we obtain that ¢(z,%x,1) = 2 dn(x)qn , where
“ n=0
do(x) = 21r(1+i)cN (-1)c(0,1)
X
dn(x)_= 21r(1+i)LN (on,O)BX(n,1)CX(n,1) .

X

Using Lemma 4 of [22], a simple calculation shows that vn(x)c=vn(x°)

for every automorphism ¢ of € , where Vn(x) G(%)v-1dn(x) . On

the other hand, (3.5) implies that

G T 'D(E,x,8) = 2 <E(2),0 (27 GOz, 0, 1>y -
' . X

Hence Lemma 4 of Shimura [21] implies that the conclusion of Theorem
3.1 remains valid in this case, provided we replace the primitive

function ?(E,s) by the imprimitive function D(E,s) .

Case 2. Suppose now that XZ * Xg * where Xg is the trivial

character. Thus °n ¥ for all integers n # 0 . Putting s = 2 in

X
0
the formula (3.10), it follows that An(y,x,Z) =0 forall n < 0 ’

because T (s-2) has a pole and Ly (pn s-1) 1is holomorphic at s = 2 .
X 14

Since W(w,%,O) = 1 , we conclude that ¢(z,x,2) = 2

en(x)qn , where
n

0

e lx) = LNx(xz,Z)




e (x) = 4W/H(1+i)Bx(n,2)cx(n,2)LNx(on,1) .

Proposition 3.3. For each integer n 2 0 , put

v, () = 726G Pe ) .

Then, for every automorphism o of € , we have yn(x)c = Yn(xc) .

Proof. The assertion for n = 0 follows immediately from the
functional equation for L(xz,s) and the fact that L(iz,-1)cr =
—2
L(xd ,~1) . Now fix an integer n > 0 , and let n be a positive

integer prime to nNX such that o(z) = c“ for all nNX-th roots

of unity ¢ . By the Lemma 4 of [22], we have

e”3 x7(n) ¢ . (n,2) .

n
X

cx(n,Z)U

Since xn(-1) -1 , the functional equation for L(pn,s) implies that

i G(p.) o (p))
_ n - n
LNX(pnl1) = - ; L(pnro) (1- D ’
N
n pl y
where cp denotes the conductor of pn . As L(En,O)0 = L(pg,O) R

n
a rather tricky calculation shows that

c _ o=-1,n, _
v, (X) /v (x) = (V/m) (%) =1,
completing the proof of the proposition.

Proposition 3.4. Under the same hypothesis-as in Theorem 3.1, we

have g(E,x)G = g(E,xc) for every aufomorphism g of € , where

E(E,x) = GIX2)D(E,x,2)
ﬁ3<f,f>N

Proof. Putting s = 2 in (3.5), and E£(E,x) = G(EZ)D(E,X,2) ’

3
we find LARSFE 220

Z(E,x) = 4<f,Q (z)>
- X
<f,f>N X



where Qx(z) = w-zG(iz)ex(z)Q(z,x,Z) . Now Qx(z) is a holomorphic
modular form of weight 2 and level NX  which, by Proposition 3.3,
satisfies Qx(z)c = a _(z) . Hence Lemma 4 of Shimura [21] implies that
the conclusion of Proéosition 3.4 is valid with the value of the im-
primitive function D(E,x,2) instead of ©?0(E,x,2) . But, by (3.2), we
have

D(E,x,s) = D(E,x,s) 11 Hp(x(p)p’s

pES1

)

where Hp(x) is a polynomial in Q@[X] , which, by its explicit form
given earlier, clearly does not vanish at X = x(p)p-2 , for any
Dirichlet character x . Hence the conclusion of Proposition 3.4
follows.

We can now complete the proof of Theorem 3.1. Applying the functio-
nal equation for ©?0(E,x,s) (Theorem 2.2), and recalling that x(-1)=1 ,

we obtain
-1.,- _ -3 2 -
T G(X)D(E,x,1) = 8(x)7 “G(x")D(E,x,2) ,

where

-1 1/2.3 -1

§(x) = 2 e x(c) Gix3exn 3.

Since it was shown in § 2 that C is the square of an integer, we see
that G(X)U = a(xd) for every automorphism o of € . Thus Theorem

3.1 follows from Proposition 3.4.

3.2. p—;dic interpolation. For each prime p , let mp denote
the completion of the algebraic closure of the field of p-adic numbers
Qp . Recall that @ is the algebraic closure of @ in € . We fix,
once and for all, an embedding of @ in mp - but, for simplicity, we
do not indicate this embedding explicity in our subsequent notation.
Our aim in this section is to study the p-adic interpolation of the

numbers o (E,x) when x varies over all Dirichlet characters of p-power




conductor. Throughout, we impose the following:-

Hypothesis. p # 2 and E has good ordinary reduction at p .

An equivalent form of this hypothesis is that p # 2 and the trace of
Frobenius ap of E at p is prime to p . Hence precisely one of

the inverse roots of the polynomial

2
3.11 1 -aX+pXx“=(1-2>X)(1 - X
( ) ap jol ( p)( s_p)

will be a unit at p . From now on, we suppose that o is this invers
root which is a unit at p . Recall that a measure u on Z; with
values in mp is a finitely additive function on the set of open and
closed subsets of z; which is bounded (we do not assume that a measu-
is necessarily integral valued). The following is the main technical
result of this section. It does, however, suffer from the defect that

it involves the naive symmetric square D(E,s) rather than 7?0(E,s) ,

and that we are forced to impose the condition that 4 divides the con-

ductor N of E .

Theorem 3.5. Assume 4|N . Then there exists a unique measure

up on z> satisfying (i) f du_, = 0 , and (ii) for every Dirichlet
" _— P z X E -_—

character x of p-power conductor c¢ = me\ with mX > 0 , we have
-2m -
(3.12) [ xdug = oy "X G(X)D(E,x,1) .
zp 1r<f,f>N

Remarks. (i) Recall that a distribution on z; is simply a
finitely additive function on the set of open and closed subsets of
z; . The existence of a distribution on z;. satisfying the conditions
of Theorem 3.5 is, of course, obvious. The diffiéulty of the proof lies
in showing that this distribution is a measure, i.e. it is bounded.
(ii) Theorem 3.5, in a more general form, has been proven independently

by Hida (unpublished) by a similar method.



We now begin the proof of Theorem 3.5. Following Hida [10], the
first step is to replace the initial form £ of level N by a form
of level N

£ =Np ; here f0 is given explicitely by

0 0

(3.13) fo(z) = f(z)-Bpf(pz) .

The following lemma, whose detailed proof we omit, is an immediate
consequence of (3.13) and the fact that £ = T anqn , being primitive
of level N , is automatically an eigenform fg;1all Hecke operators of
level N . For each prime number A , let T(X) denote the i-th Hecke

operator of level No .

Lemma 3.6. The form fo(z) is an eigenform for all Hecke opera-

tors of level N0 = Np , which satisfies

(3.14) folT(x) = a, £,(x+p), fol'r(p) = apfo .
In the following, we denote the Fourier expansion of f0 by
(3.15) £, = L a q® .

By Lemma 3.6, for each prime A , there exist (possibly 0) complex

numbers ul,vl such that
-1 -1

n _ -s -s
(3.16) = - KT (1-u,37%)  (1=v 275

W8

n=1

We define G(s) to be the naive symmetric square of the form f0 , 1.e.

2 -5, "] 2 -5, " -s, "]
(3.17) G(s) =TT(1—uAA ) (1=vix ) (1—ulvxk ) .
A )

1-s

Lemma 3.7. G(s) = (1-B;p_s)(1-p )D(E,s) .

Proof. By definition, D(E,s) is the naive symmetric square of
S a
the Euler product of Z —% . The assertion of the lemma is then plain,
n=1n
since (3.14) shows that

0
1
-~

W ~38

n _ _ -s a2 .

o)
=

n




Remarks. Let G{(x,s) denote the twist of the Dirichlet series
G(s) by a Dirichlet character x . Assume now that x has p-power

conductor. It is plain from Lemma 7 that
G(1) =0, G(x,1) = D(E,x,1) for all x #* Xg

Thus the integrals in Theorem 3.5 can be expressed more simply in term:
of the G(x,1) .
We next express G(x,s) as a Rankin integral similar to (3.5).

We suppose from now on that x ranges only over Dirichlet characters

of p-power conductor; also we assume that x(-1) = 1 since otherwise
G(x,1) = 0 . In addition, until further notice, we assume that X #* Xg
Let h0 be the form of weight 2 and level No given by
(3.18) hj = Li gt
_. N
n=1

Using the elementary identity
© X(n)a 2

G(x,s) = Ly (x2,25-2) ,Z‘ —n
X n=1 n

an entirely similar argument to that used in the proof of Proposition

3.2 implies the following expression. Recall that 4|N .

Proposition 3.8. Assume X ¥ Xg -+ Then

-s/2

(3.19) (4m) F(%)G(X,s) = f hoiz) ex(z)¢(z,x,s)dxdy .

B(NX)

Putting s = 1 in this formula, we obtain

(3.20) G(x,1) = 2<ho,6X(Z)¢(Z,xr1)>NX .

The following crucial result exploits the fact that we work with
the form ho of level N0 , rather than the original form f . For
each integer M 2z 1 , let W(M) = (g _8) . Also, we write T(p) for

the p-th Hecke operator of level NX .



Proposition 3.9. Assume x # x, , and recall that c =P X . For

each integer m 2 mX r we have

2(m -m)

2m-1
(3.21) 6(x,1) = 20, X <h0|wcno), 3X|T(p) m >NO ,

where H = (6_(z)o(z,x,1))|W(N) .
R X X X

To establish this result, let SX denote the trace map from FO(NX)
to FO(NO) (For forms of weight 2). We always write operators for

modular forms on the right, so that g|A o B) = (g|A)|B .

Lemma 3.10. (i) The adjoint of the p-th Hecke operator T(p)

of level No is W(NO) ° T(p) ° W(NO) ; (ii). We have

2m =1

o = ° X
Sx W(No) W(NX) T (p) | .

Proof. We omit the proof of (i), which is standard. To prove (ii),

if g 1is a form of weight 2 for FO(NX) , one verifies immediately

that
T 0
gls, = sz -1 9|(N0e 1) .
ec Z/p X %2 -
Suppose now that g[W(Nx) = 2 cnqn . In view of the equation
n=0 4 _om 1-2m
e ) g 0= G 7% )
= ’
Noe 1 N, 0 ' NX 0 0 1
we conclude that
1 -e bt n
gls, °WN,)) = L om -1 (g|w(Nx))|(0 2’“x‘1>=nzoc 2m -1 9 -
e€ Z/p * % p np X
and the expression on the right is plainly the Fourier development of
2m_ -1
the image under T(p) X of gIW(NX) r thereby completing the proof

of part (ii) of the lemma.
Returning to the proof of Proposition 3.9, we conclude from (3.20)

is of level N that

and the fact that h 0

0




G(x,1)=2<hy, (o, (z) @(z,x, 1)) [S >y =2<hg [W(Ng), (8 (2)0(2,x,1)) |S oW(Ng) >y

Ng Q

Applying (ii) of Lemma 3.10, it follows that

2m -1

G(x,1)=2 <hg[W(Ng),H [T(R) X “Ng

As h0 is an eigenvector for T(p) with eigenvalue Bp , this last
formula can be rewritten as

-2(m-mx) , 2(m-mx) 2mx-1
G(x,1) =20, <h, [T (p) °W(N0)),HXIT(P) >No .
Since W(NO)2=1 , we conclude from (ii) of Lemma 3.10 that

2 (m_-m) 2m-1

_ X '
6 (x, 1) =2a, nglWNG) B | TR) >y -

This completes the proof of Proposition 3.9.

For each integer m 2z 1 , let Am denote the set consisting of
all Dirichlet characters -of conductor dividing pm , which are distinct
from the trivial character Xg - Let e be any integer prime to p .
Writing Hg for the unique distribution on Z; satisfying (i) and (ii)
of Theorem 3.5, it is plain that
-2

1 -1 m -1
— L x (e)a, X e(x"6(x,1)
w(ip ) x€Am 1r<f,f>N

uE(e+mep)=

where ¢ denotes Euler's function. To prove Theorem 3.5, we must show
that uE(e+pmzp) remains p-adically bounded as e ranges over all

integers prime to p and m —> = ., The key fact, underlyiné the proof
-2m

P
in the above expression for uE(e+pmzp) . Explicitly, (3.21) gives

of Theorem 3.5, is that (3.21) enables us to simplify the term «a

_s_—2m 2m-1
(3.22) uE(e+mep)—2ap <hy|W(Ng) ,R_IT(p) >N0/<f,f>N .

where

1 -1 -1
(3.23) R_ = ! x (e)dGix~ ) H,
T o™ xe m X

A
m



and, as in Proposition 3.9, HX = (ex(z)é(z,x,1))|w(Nx) . Note the’
remarkable fact that Rm is independent of the elliptic curve E .
As will be explained later, the following result on the Fourier

development of the form Rm yields almost immediately Theorem 3.5.

Theorem 3.11. Let Rm = 2 rn(m)qn . Then the Fourier coefficients
n=1
rn(m) belong to @ for all integers n =z 1 . Moreover, rn(m) is
2m-1

p-integral whenever p divides n .

We immediately give the proof of Theorem 3.11. Assuming that x # Xg
we define as in [20]

=3/2

1/2) .

%
E (ZIXIS) = E(- 1 IX:S)(—iZCXN

V4
NZ

Now it is well known (see [19], p.457) that
‘mx/2 m 1/2
) =p G(x) (-p Xi§2) e;(N'z) ’

where N' = N/4 . It follows that the form HX is given by

m
-J(z,x,1)p Xc(x)e;m'z) ,

(3.24) Hx(z)

where

1/4 2 *
EK LNX(X ,2s-2)E (z,x,s-2) .

V2

J(z,x,s)

*
Using the expansion of E (z,x,s) given in [20], we deduce immediately

the following analogue of (3.7)

[+ -]

(3.25) J(z,x,s) = Byly,x,s) +n_§mBn(Y’X’S)e2“lnx ’
n#0
where
, § _(521) _(s21) s ;
By(y,xss) = Ly (x",2s=3)N, y mr(s- 3) .
* (s=1)r(s-2)

To give the explicit expression for Bn(YrXrS) when n # 0 , we need




some slightly different notation from that used in § 3.1. Firstly, the
function W(w,a,B) will be the same as defined in § 3.1. However, we

now write Xn for the primitive Dirichlet character satisfying
-nN _
xn(X) = (—;—)x(x) when (x,nNp) = 1 .

Moreover, we put

o ()= (T u@xy@x?ma' ™2 ) ny (.1,

a,b X
where the sum is taken over all positive integers a,b such that (ab)’

divides n , and (ab,Np)=1 . If n > 0 , we then have

-1 1
s/2-1 -(£0) s-1 s-3/2 s—3 -1 _ . -2my
18
Biyxsly N 22 n w21l o mewemy, S 5-ne ,
and, for n < 0 , we have
5/2"1 —(351) 5—1 s-%\ —% s _1 o S ‘”"'s+1 —2»n-|n|<
B, (¥,x/sS)=y NX 2 |n| ‘& r(z-1 ax(n,s)W(4n[n[y,§-1,T)e

We must put s=1 in these formulae to obtain the Fourier develop-
ment of J(z,x,1) . As x(-1)=1 , we have xn(-1)=1 when n < Q ’
whence LN (xn,0)=0 , and this in turn implies that Bn(y,x,1)=0 when
n < 0 . Since w(w,1,-%) = /w for w >0 , a simple direct calculaticn
shows that
(3.26) J(z,x,1) = 2« {LN (xz,—1) + § qntn(x)} ’

. X n=1
where
(3.27) & (0 = Ly (x,0) § ul@x (a)x’m)b .
X ¢ a,b
In view of the explicit expressions (3.23), (3.24), (3.26) and (3.27),
it is plain that the rn(m) belong to @ for all n 2 1 .
We suppose from now until the end of the proof of Theorem 3.11

that n denotes an integer 2 1 satisfying

(3.28) p2m_1 divides n .



The delicate part of the proof is to show that the Fourier coefficient

rn(m) is p-integral. Put

- - m
Ag = 2/@(p) .

Now (3.23), (3.24) and (3.26) show that rn(m) is given explicitly

by

r (m)=r_ 3 I @bl x Tme)x. ()L (x. ,0) ;
n m(n1,n2)€Wn (a,b)evn2 XEA_ 17 7ny LNX N

here Wn denotes the set of pairs (n1,n2) of positive integers, which

are relatively prime to p , and which satisfy

(3.29) nZN' + n, =n , where N' = N/4 ;
2

1

also Vn denotes the set of pairs (a,b) of positive integers, which
2 .
are relatively prime to Np , and which satisfy (ab)2 divides n, .

By definition, we have

Xp =X ‘€.
n )
where €n is the character of the imaginary quadratic field m(/—nzN) .
2
Note that € has conductor prime to p , because (p,nzN) = 1 and

2
P # 2 . Hence the above expression can be rewritten as

rm=a L 1 L w@be, (arx by (nje)ry(xe ,0) .
xeAm (n1,n2)€wn (a,b)EVn2 2 2

We now make use of p-adic L-functions to study the integrality at
P of this last expression. If o 1is a Dirichlet character with

p(=1) =1, we write Lp(p,s) for the Leopoldt-Kubota p-adic L-function

of p . If p(-1) = -1, put Lp(p,s) 0 . Let w denote the unique

character modulo p satisfying w(x) X mod p . It is well known that

1

Ly (e,0) = (1-00" 1 (p) ) L(pw™1,0) .

First take o = XE, @ o with x € A . Then p necessarily divides the
2




conductor of opuw = Xeq since yx #* Xg 7 and so
Lp(xenzw,O) = L(xenz,O) for yx € Am .

Now suppose that p = XQfpn. @ 7 with the trivial character Xg * Here

the conductor of »puw = € is prime to p . Moreover, multiplying

both sides of (3.29) by N , and recalling that m 2z 1 and p2m—1

divides n , we see immediately that

—n2N
snz(p) = D ) =1,
whence Lp(xoen w,0) = 0 . Now let Cm denote the set of all character
2
of conductor dividing pm , 1.e. Cm = o U {xo} . Note that, for all
X € Cm , we have
IT (1=xe, (r)) = & uld)xe  (d) ,
r|N 2 d|N 2

where r runs over the primes dividing N , and d runs over the

%*
positive divisors of N . Finally, let n,

inverse of n,e modulo pm . Putting all these facts together, we see

denote the multiplicative

that the expression for rn(m) given at the end of the previous para-
graph can be rewritten as
2 *
ro(m=x  } % w(ad) e (ad)bM (ab“an)) ,
(n,,n,)EW_ (a,b)ev_ 4[N 2
1772 n n,

where, for any integer x prime to p , we have

(3.30) M (x) = z x(X)L_(xe_ w,0) .
m X€C P Tny
m
Recalling that Am = —Z/w(pm) , we see that the proof of Theorem 3.11

will be complete once the following lemma is established.

Lemma 3.12. For each integer x prime to p , we have

M_(x) = 0 mod ™1

In fact, Lemma 3.12 is a well known integrality and holomorphy state-



ment about the Kubota-Leopoldt p-adic L-functions, whose proof we do

not give here, but simply recall two more familiar formulations of it.

X
The first is the assertion that there exists a measure o on xé ’

with values in zp , satisfying

xde = Lp(xen w,0)

J
z 2

p

for all characters x of p-power conductor (such a measure exists
because xenzm can never be a character of the cyclotomic zp-extension
of @ , since Enz is non-trivial, and has conductor prime to p ).
The second formulation is that, for each integer i modulo p-1 , there
exists a formal power series Bi(T) in Zp[[T]] such that

B, (x(y)-1) = Lp(xenzm,O) '
for all characters yx of p-power conductor such that )<|up_1=m.l , here
vy denotes a topological generator of 1 + p xp , and up—1 denotes
the group of (p-1)-st roots of unity in x; .

We can now complete the proof of Theorem 3.5. Let F = Q(ap) , and
let M(NO) denote the vector space over F of all holomorphic modular
forms of weight 2 for PO(NO) » whose Fourier coefficients belong to

the field F . As in § 4 of [10], we can define an F-linear form

L M(No) —> F

£ :

by the formula

<hOIW(N0).g>No .

Le(g)
<h0|W(NO),fO>No

Let e(f) + 1 be defined by £|W(N) = e(f)f . A simple direct cal-

culation shows that

<h0|W(N0),f0>N =

-2 -
. e(fa(1-az )(1-pap2)<f,f>N )




Hence it follows from (3.22) that

1-2m

ug (e+p™2 ) =20 172 ) (1-a2?) (1-paz?y £ (R [T () 27Ty

Since ap is a p-adic unit, the proof of Theorem 3.5 is completed by
the following argument. Let J(NO) denote the Z-module of all modular
forms of weight 2 for PO(NO) , whose Fourier coefficients belong to
@ and are p-integral. By Theorem 3.11, the modular form Rm|T(p)2m_1
belongs to J(NO) . We claim that Kf is p-adically bounded on J(No)
This is because Jiﬁo) e Zp is well known to be a finitely generated
zp—module, and we can clearly extend Lf by F-linarity to an F-valued
linear form on M(NO) g F ; here F denotes the completion of F wittk
respect to the p-adic valuation. This finishes the proof of Theorem 3.:
Even though we have been unable to prove it, we conjecture that

the following stronger form of Theorem 3.5 holds. As always, we assume

that p # 2 and that E has good ordinary reduction at p .

Conjecture 3.13. For each modular elliptic curve E defined over

@ , there exists a unique measure g on z;\ satisfying:-

(1) f dTE=0;
X

z
P

m
(ii) for every Dirichlet character x of p-power conductor c¢ =p X ’
X

with mX > 0 , we have

-2m -
XdTE = c"p X G(X)D(EIXI1) .
Z 1r<f,f>N

X

Here we are tacitly assuming the truth of the algebraicity statement

of Theorem 3.1 when x is a non-trivial real quadratic character.

We now reformulate Theorem 3.5 so as to give a weak form of Con-
jecture 3.13. Suppose for the rest of this section that E 1is an
arbitrary modular elliptic curve (in particular, we now drop the

assumption that 4 divides the conductor N of E ). We define J to



be the following finite set of primes consisting of 2 and all primes
r such that E has potential good reduction at r and the group
o of § 1 is cyclic of order > 2 . Define
0 (E,s) = 1T o (7%
' réJ
so that DJ(E;S) is simply obtained from ©D0(E,s) by suppressing the

Euler factors at the primes in J .

Theorem 3.14. There exists a unique measure

x 0
¢ on zp satis-

fying:-

(1) / d¢E =0 ;

z
p
m
(ii) for every Dirichlet character x of p-power conductor cx=p X

with mX > 0 , we have

-2m .
[ xdep = oy X GID(E,x,T) .
X
z -
2

1r<f,f>N

Proof. Let E1 be a twist of E by a quadratic character such
that (i) E1 has split multiplicative reduction at all primes r such

that ordr(jE) < 0 , and (ii) E1 has the group ¢ of § 1 of order

> 2 at all primes r of potential good reduction. Such a quadratic
twist E1 is easily seen to exist. We cannot apply Theorem 3.5 directly

to E1 , &as we do nét know a priori that 4 divides the conductor N1

of E, . Let E, be E, if 4[N, , and otherwise let E,

twist of E1 by the quadratic character of conductor 4. We claim that

be the

(3.31) D(Ez,s) = DJ(E,s) .
This is plain from the following two observations. Firstly, we have

D'(Ez,s) = D(E1,s) U(s) .,

where




u(s)=1, 1-27° , or (1-2"7%) (1=a327%) (1-82275) ,
according as 4{N1 ,» 2 divides N1 exactly, or (2,N1) = 1 . Secondly,
we have

-1
D(E,s)=D(E1,s)=D(E1,s) x 1T Dr(r-s) ’
r€J1

where J1 consists of all primes r in J (including possibly r = 2
such that E has potential good reduction at r and the group Qr o

§ 1 is cyclic of order > 2 . Noting that
ag@®? = o ()%,
Theorem 3.14 follows from applying Theorem 3.5 to the curve Ez.
To finish this section, we give the reformulation of these result
in terms of the Iwasawa algebra of T = G(QQ/Q) , where Q_ denotes
the cyclotomic zp-extension of @ . We follow the notation at the be-

ginning of the paper. Thus

A = G(m(up)/m) » 0 =T x & =G(Q(s _)/a@) ,
x P :
and we identify © with Zb via the action of @ on w o - Fix a

topological generator y of T . As usual, we then identify the zp-

Iwasawa algebra A of T with
A= zp[[T]] ’

the ring of formal power series in T with coefficients in 2Z_ . Here

is an equivalent form of Conjecture 3.13 in terms of the Iwasawa algeb:

Conjecture 3.13. (second form). For each character v of 4,

there exists Gw # 0 32 zp and GW(T) € A satisfzing:-

(1) Gw (0) = 0 when Yo is the trivial character of 4 ;
0
m
(ii) for every character x of finite order of o , with ¢ =p X
X

and mX >0 , such that x|a = y , we have



-2m
(3.32) Gw(x(Y)-1) = §a_ X G()D(E,x,1) .

vP 1r<f,f>N
Remarks.
(1) If y(-1) = -1 , Remark (ii) after Theorem 3.1 shows that
T) = 0 .
Gw( )

(ii) We will show in § 5 that Conjecture 3.13 is true when E admits

complex multiplication.

(iii) Conjecture 3.13 is also true when N 1is even and square free,
since this hypothesis implies that ©?(E,s) = D(E,s) , and that

s

the Euler factor at 2 of these functions is 1-2 - , which is a

p—-adic unit at s = 1 .

(iv) The zero of Gw (T) at T = 0 should be seen as arising because
0

the p-Euler factor of ©0V(E,s) , namely

1-s

2 =8, . 2 ;s
(1-p )(1-app ) (1 Bpp )

vanishes at s = 1 .

Finally, we point out that Theorem 3.14 yields a weak form in
general of the above conjecture. Put
vis) = TT_ 0.(c™%) .
reJ
It is clear from the explicit form of the Euler factors at the primes
in J that, for each character vy of A , there exists Hw(T) € A
as follows. For every character* xy of finite order of 6 with xla=y ,

we have

Hw(x(v)-1) = Vix,1) .

Then Theorem 3.14 shows that there exists GW(T) in the quotient field

of A such that Hw(T)Gw(T)EA and
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mx _
o M eDEX,D

1r<f,f>N

Gw(x(Y)-H = a

for all characters x of finite order of 6 with XIA=W , except for
the finitely many characters x satisfying either V(x,1)=0 or

is real quadratic.



§ 4. The Main Conjecture

Our aim in this section is to define a natural Iwasawa module for
the Galois group 6 = G(@(m ,)/@) attached to the £-adic representation
zz(E) given by (1.1), wherz P is an odd prime such that E has good
ordinary feduction at p . The definition of this Iwasawa module has
been motivated by an analogous description of the classical Selmer
group of E over @(u ) (see [ 6] for a detailed discussion of these
questions for the Selmgr group) . We formulate a Main Conjecture for the

even eigenspaces of this module under the action of A = G(Q(up)/m) ’

as well as a conjecture for the A-rank of the odd eigenspaces.

4.1. Definition of the Iwasawa module. The f-adic representation

Symz(VL(E)) is endowed with a natural lattice Symz(Te(E)), and we
define
W, = Sym®(V, (E)) /Sym? (T, (E))
4 £ 4 :
An alternative description of WK is given by
W, = lim _ Sym>(E _)
A zim , oym n’ '
n 'a
where the inductive limit is taken relative to the homomorphisms induced
. . C
by the inclusions Ezn > E£n+1 .
Let v denote a place of § above p , and write EV for the
reduction of E modulo v . Put
W = lim _ Sym%(E )
v ==, °ym -

n
n \A23%

The homomorphism of reduction modulo v on points clearly induces a

surjection r, * Wp _ %v . The kernel of this homomorphism will play
4 basic role in the following, and we denote it by Wg v ° Thus we have
14

the exact sequence




0 . ~

v
(4.1) 0 —8> W _— Wp —_— W& —_> 0 .

14

Our hypothesis that E has ordinary reduction at p implies that

0

Wp,v is isomorphic as an abelian group to (mp/zp)z .

Let Q = @(u o) , and write p for the unique place of Qm
P
above p . Write Qm p for the union of the completions at p of

’

all finite extensions of @ contained in Q°° . Similarly, picking a
place v of a above p , we denote by Ev the union of the com-
pletions at v of all finite extensions of @ contained in @ . We

identify Q_ p with a subfield of ﬁv . Let J_ v denote the inertia

14 14

subgroup of G((-ﬁV/Q°° . We now define

,p

Q , W
Hi @, p P)

1
to be the subgroup of H (Q°° ’ Wp) consisting of all cohomology
r

p
classes which admit a representative cocycle ¢ satisfying

0
(4.2) 6(o) € Wp,v for all o € Jm'v .

One verifies easily that this subgroup H(Qw'p, Wp) depends only on
p (or p ) , and not on the choice of the particular place v of {Q
above p .

We can now define the Iwasawa module S(z) which seems to us to
be the natural one attached to © and the £-adic representation (1.1)
For each finite place w of Qm , Write Qw'w for the union of the

completions at w of all finite extensions of @ contained in Q°° .

Write jw for the restriction map

s g 1
J,, ¢ H (Qw,wp) —> H (Qw,w’wp) .

Key Definition. S(Z) is the subgroup of H1(Qm,wp) consisting

of all cohomology classes o such that jwa = 0 for all finite place:

t dividi d j .
W no ividing p , an ]pa € H(Qw,p,wp)

Remarks. (i). We originally had in mind a somewhat different



definition of the Iwasawa module attached to Zt » and it was only
after much prodding from Greenberg that we realized that the above
definition seems to be the natural one. (ii). One motivation for the
above definition is that, if one replaces Wp by E _ in it, one
obtains precisely the classical Selmer group of E gver 0, (see
[61).

We now turn to the study of the Iwasawa module S(z) . In fact,

it is more convenient to work with its compact dual
4.3 Z(Z) = Hom(S(:Z z .
( ) (z) (s(z), mp/ p)

Although it does not seem worth going into details here, it is not
difficult to prove that 2Z(z) is a finitely generated module over the
Iwasawa algebra A . The first deep question about 2Z(Z) is to predict
conjecturally the A-rank of the various eigenspaces of 2Z(I) under

the action of A = G(m(pp)/m) . For each character y of A , write
Zw(z) = eigenspace of 2(r) on which A acts via vy .

Miraculously, the A-rank of Zw(z) appears to be predicted by the
r-factor in the functional equation for the complex L-series ©0(E,y,s) .

By (2.4) and Theorem 2.2, this I'-factor is given explicitly by

s-i
- k| ) s-i
r(0,y,8) = (27) °r(s)w 2 ¢ LA
where iw = 0 or 1 according as y(=1) =1 or y(=-1) = =1 .

Conjecture 4.1. For each character vy 9£ A , the A-rank of

Zw(z) is equal to the order of the pole of T(D,y,s) at s =1 . In

other words, the A-rank of Zw(Z) should be 0 or 1, according as

vi=1) =1 or wy(-1) = -1 .

In § 5, we shall show that, when ¢(-1) = -1 , the A-rank of Zw(z)

is at least 1 if E admits complex multiplication. We shall also verify




that, in the complex multiplication case, the two variable Main Con-
jecture (see [ 51) implies Conjecture 4.1.
Recall that, if A 1is a finitely generated torsion A-module, it

is pseudo-isomorphic to a A-module of the form
A/(E)) ©.....8 A/(fr) ’

..o.f

where f1""'fr are non-zero elements of A . We call f = f1 r

the characteristic power series of A . It is uniquely determined up
to multiplication by a unit of A . A key question is that of predicting
the characteristic power series of Zw(z) when ¢ 1is a character of

A with y¢(-1) = 1 .

Main Conjecture 4.2. Let vy be a character of A with y(-1)=1 .

Assume that Conjecture 3.13 and 4.1 are valid for ¢ . Then there exists

vw +# 0 in mp such that the p-adic L-function vaw(T) is a charac-

teristic power series of zw(z) .

Remark. Presumably there is a natural choice of the constant Gw
of Conjecture 3.13, which would allow us to take the constant uw of
Conjecture 4.2 equal to 1. However, we must leave this question open
at present.

Needless to say, Conjecture 4.2 is deep, and its proof is probably
a long way off. In the case when E has complex multiplication, we
shall show in § 5 that Conjecture 4.2 is a consequence of the two
variable Main Conjecture.

Perhaps the most striking immediate consequence of Conjecture 4.2
occurs when y is the trivial character wo of 4 . Then, assuming
the p~-adic L-function GWO(T) exists, it vanishes at T = 0 by (i) of

Conjecture 3.13. Combining this with Conjecture 4.2, we obtain the

following assertion.

Corollary of Conjecture 4.2. The group




S(Z)e , where @ = G(Q(u _)/Q)
p

always contains a copy of mp/zp .

We recall that, as is assumed throughout this section, p here is any
odd prime such that E has good ordinary reduction at p . It would
be very interesting to find a proof of this corollary in general. In

the case when E has complex multiplication, we shall give a proof of

the corollary in § 5.




§ 5. The CM case

The Iwasawa theory of elliptic curves E over @ with complex
multiplication is, at least conjecturally, well understood (see [ 51]).
The aim of this section is to verify that, in the complex multiplicatio
case, the conjectures given in § 4 are indeed consequences of the two
variable Main Conjecture of [ 5] and classical cyclotomic Iwasawa
theory.

We assume throughout this section that the elliptic curve E/Q
has complex multiplication by the maximal order (¢ of an imaginary
quadratic field K . Our hypothesis that E has good ordinary reductio:
at p is well-known té be equivalent to the assertion that E has
good reduction at p and p splits in K . We suppose always that
this is the case and that p > 2. Write p = pp* for the factorizatioh
of p in K . Let ¢ denote the Dirichlet character of the quadratic
extension K/@ . Finally, we write ¢ for the GréBencharakter of the
elliptic curve E/K in the sense of Deuring. Thus the Hasse-Weil
L-series of E over {§ coincides with the Hecke L-function ﬁ(¢,s) .
Let ¢2 denote the primitive GrdBencharakter attached to the square

.of ¢ .

Proposition 5.1. The L-function of the primitive symmetric squaré

DiE,S) decomposes ihto the product of the EWO L-functions attached to

¢2 and e in the form

D(E,s) = L(s2,8) * Lle,s-1) .

Proof. We give a proof by comparing Euler factors. For the primes
where E has good reduction this can easily be done using the fdct
that ¢(a) = §(a) for any ideal a in O where ¢ is defined. The
comparison at primes of bad reduction being rather elaborate, we shall

shorten the argument by using the fact that E is in particular a



modular elliptic curve. Thus we do know that ©0(E,s) satisfies a
functional equation for s ——> 3-s , as well as the product of L-series
on the right hand side of the decomposition formula above. By Lemma 1.4

for any prime r of bad reduction we have
Dr(X) = 1_urrx' ur = 0,1,—1'

since in the CM-case E has potential good reduction everywhere. So

we find

1

D(E,s)‘L(¢2,s)—1'L(e,s-1)- =TT (1-vrr1's)/(1-urr1's)

r|N
where ur,vr are 0,1 or -1 . If the right hand side ih this equation
is not equal to 1, then it has a zero or a pole on the line Re(s)=1 .
By the functional equation satisfied by all occuring L-functions, the
finite Euler product under consideration would also have a zero or a
pole on the line Re(s)=2 , which is obviously impossible. This proves

the proposition.

As an easy consequence of Proposition 5.1 we get the decomposition
formula of the twisted L-functions for any Dirichlet character x of
conductor cx prime to the condﬁctor N of E . Recall that in the CM
case N = c. ° NK/Q(C¢) , where c¢ denotes the conductor of the Gr&B8en-
charakter ¢ . Let Xg = X°NK/Q denote the composition of the norm map

of K/@ with the Dirichlet character y .

Remark 5.2. If (cX,N)=1 then we have

[

D(E,x,8) = Lisxgrs) -+ Liex,s-1) .

We now turn to the p-adic theory. As in § 4 let Q = Q(u _) and write

[ -]

P
F=@E ) and K_=K(u ) .

P P




Lemma 5.3. The field of complex multiplication K is a subfield

of the field of p-division points m(Ep) .

Proof. If the lemma were not true, we had K N F =@ . Since
K(E ) /K is an abelian extension this would imply that F /@ is
p
abelian. But this extension is known to be always non-abelian, hence

the lemma follows.

Let G_= G(Fw/K) . It is well-known that the torsion subgroup Az of

G_, 1is isomorphic to G(Q(Ep)/K) under the restriction map and that
there is a canonical splitting G_= A2 X r2 where F2=G(Fm/m(Ep) is
isomorphic to xp x ZP . We recall here the basic facts about the p-adfc
interpolation of the special values of Hecke L-series. Let mp denote
the completion of an algebraic closure of mp and let A denote the
ring of integers of the completion of the maximal unramified extension
of mp . As Weil has remarked, the composition of an embedding

ip : K —> mp with the GréBencharakter C = ¢2 ;b of K defines a
continuous Galois character Cp : G, —> E; . C is called viable if

a>=-b 20 . It is essentially a result of Eisenstein that for a viable

GréBencharakter we have
QQ(C) * L(C,1) € K,

where q_(C) is an explicitely given non-zero complex number (see [23]
and [ 5]). We summarize the p-adic interpolation properties of these
numbers: Fix two topological generators o,t of r, . Write

-~

X "_ x
G, = Hom(Gm,mp) and ,= Hom(Az,zp) .

Proposition 5.4. There is a unique function Lp: G —> mp satis-

fying the following two conditions:-

-~

a) For each VY € A, there is a power series gw(S,T)EA[[S,T]]

-~

such that for all X € G_, with x[A2=w we have




L,() = g,(A(a)=1, A(x)=1) .

b) For each viable Gr¥Bencharakter C = ¢a$b we have

Q-(a-b)
p

1

=a ( -8y (4o Gy
LolCy) = (OL(C, D) (1= ) (1- T ™)

with a certain p-adic period Qp € A" .

%*
Now let M resp. M_ denote the maximal abelian pro-p-extension over

F_ which is unramified outside the primes of F_  lying above p

¥* . * *
resp. p , and put X = G(M_/F_) resp. X_ = G(M_/F_) . By the usual

*
action of G, on X_  or X_  the later groups become modules over

" the completed group ring An = Zp[[rzll . This Iwasawa algebra is non-

2
canonically isomorphic, depending on the choice of ¢ and t , to the

ring of formal power series in two variables xp[[S,T]] by sending
¢ and tv to 1+S and 1+T respectively. We normalize our choice of

c and 1t such that ¢ resp. vt 1is a topological generator of r,

2 such that

complex conjugation p € G_ acts trivially on r, » i.e. pop=c , and

resp. I'_ , where these are the respective subgroups of T

the action on TI_ is given by pr=r-1 . It is not hard to see that

X, 1is a finitely generated A_, -torsion module. Under the action of

T
2
Ay = (z/pZ))f x (£/p2)° the module X, splits into its eigenspaces

x = 1%«
¥ed,

’
m,‘{’

where the eigenspace X, v consists of all xe€X_ such that any §€A
14

acts by 46(x) = ¥(6)-x . By the classification theory of finitely

2

generated Ar -modules for any such module A there is a pseudo-
2
isomorphism from A to a direct sum of modules of the form AL /(f() ’
2

=1,...,k , where the f|< are non-zero elements of AP . The power
2

séfies £(s,T) , which corresponds to the product f1...fk , 1s called

a characteristic power series of A . There is much evidence in favour

of (see [23], [5]):




The two variable Main Conjecture. For each character Ye€aA a

2
characteristic power series of the ¥-component Xm ¥ is given by the
14

p-adic L-function gw(S,T) .

-~

Let ¢ denote any character of A = G(m(up)/m) and wK € A the

2
corresponding character defined by wK = ¢°NK/Q . Also for the Grd&Ben-

charakter ¢ attached to the elliptic curve E let ¢A =¢

) plAz , the

restriction of the Galois character ¢p to Az .

Theorem 5.5. If the two variable Main Conjecture is valid for a

character of the form VY = ¢§ .‘wK , then the Rank Conjecture 4.1 is

2
true for ¢ . If inaaddition v (-1)=1 , then Main Conjecture 4.2 holds

for v .

We shall at first verify that Conjecture 3.13 is valid in the CM case.
Let g denote the distribution on z; uniquely defined by the inte-

grals (i) and (ii) in conjecture 3.13.

Lemma 5.6. For every Dirichlet character yx of p-power. conducto

the integral I x dr, 1is algebraic, i.e. in R .
b9
z

-
Proof. If x is not the non-trivial character of a real quadrat
field, this follows by Theorem 3.1._Now suppose that x is the excep-
tional character corresponding to a real quadratic field. Since for
instance by (3.2) we know that L(¢2;1)$0 , we can apply Theorem 1 of

[21]. Thus we obtain that
L(o2xg 1) € L2, 1.3 ,

hence the algebraicity statement of the lemma follows also for the

exceptional character by Remark 5.2.

We need an extended and more precise version of Proposition 5.4 to the

extend that we want the explicit interpolation formula for the special



values of the L-functions of the GrdBencharakters (C = ¢2XK , wWhere

X runs over all Dirichlet characters of p-power conductor. The follo-
wing formula is well-known and essentially contained in {18]. Let
be a character of conductor cX=pn such that x|A=y and y(-1)=1

Define the constants

=d . cod T2y =172

¢

where dK denotes the absoclute value of the discriminant of K and

W(EZ) is the root number in Hecke's functional equation

-s - - 3-s
(2" ) r(s)L(¢2,s) = W(¢2) (2“ ) r(3-s)L(¢2,3—s) .
/S5 o

Then we have for Vv = ¢

-2 2 2
(5.1 8,7 gy (x(x(o)) 0 (a)=1, 47 (x)-1)

-2n

=1072C,X (Cg) ¢ (p ) "2Pe ()L (C, 1) (1- géﬁl)(1-C—1(p*)) ,

where the lattice A of E in € 4is of the form A=0.Q . Note that
for x mnon-trivial we always have that C(p) = C-1(p*) =0 .

On the other hand by classical cyclotomic Iwasawa theory there
is a power series Gp(emw,s) € zp[[s]] which interpolates the special

values of the Dirichlet L-series L(ex,0) for non-trivial x by

(5.2) Gp(eww,x(K(U))-1-1) = L(ex,0) .

Here w denotes the Teichmiiller character. Note, that Gp(em,0)=0 .

Proposition 5.7. Conjetture 3.13 is valid in the CM case. In

particular for each character y of A with y(-1)=1 we have

- -2 2 _ 2 _ =1_
GW(S)_I¢°uW(S)QP gW(¢p(c)(S+1) 1,¢p(r) 1).Gp(swwr(1+S) 1),

where uw(S) is the invertible power series in xp[[s]] such that

uw(X(K(U))'1)=X(CO) for every character x of p-power conductor with




x|a=y , and Iw. is an algebraic number 0 .

Proof. In view of Remark 5.2 the proof is complete by putting

together the formulas (5.1) and (5.2) above.

Remark 5.8. The previous arguments in fact yield much more preci

information about possible denominators of the measure g ot Let

*

o : ) —> E

~H
Ty (N)

denote a Weil parametrization of E . A little exercise shows that the

distribution "deg(y).rt has p-integral values for p > 3 and not

E

only that the values of have bounded p-adic absolute wvalue.

E
Next we shall consider the Iwasawa module S(Z) of § 4 under the

substantially simplifying assumption that E has complex multipli-

cation. The factorization p = pp* in K gives rise to the splitting

of various Galois modules attached to E and p . For each integer

n, let E n Tesp. E .0 denote the group of pn-division points

resp. p*p—division po?nts on E . For the corresponding Tate module

write

Tp =<llm E n’ v =T ¢, Q@

Z
p P p p p
and analoguously define T , and V , . The canonical splitting
p p
E_ =E_9®E . induces the splitting of the Tate module
P P P

T (E) =T o&T s VA(E) = V_&8V
p( ) p p* p‘ ) p p*

Moreover the p-divisible group Wp attached to the f-adic represen-

tation Symz(Vz(E)) has the following decomposition

5.3 W. =W & ® ©

where we have defined Wp = SymZ(Vp)/Symz(Tp) and Wp* similarly and

where u _(e¢) is equal to as a group but with the Galois action
P P

twisted by the imaginary-quadratic character ¢ associated with

-]



K/@ . Note that the action of G(F_/K) respects the decomposition
(5.3), whereas an automorphism, which is non-trivial on K , permutes
Wp and Wp* but still acts on ppw(e) . Let M_ denote the maximal
abelian p-extension of F_ which is unramified outside the primes

above p , and put

X

-]

G(M_/F_) .

Let U_ G(Fw/Qw) and write Hom(p)(xm,wp) for the group of homo-

morphisms which for any prime v above p of F_ send the inertia
0

group Iv to wp,V’ the kernel of reduction mod v in Wp .

Proposition 5.9. The restriction map

)

o

res : H1(Qm,wp) —_— H1(Fw,Wp)

induces a quasi-isomorphism of 0-modules

)

S(Z) —-—> Hom(p) (Xw,wp) .

Proof. We first want to show that the initial restriction map

has finite kernel and cokernel. Let K°° = KQ°° and let ¢ denote the

generator of the cyclic group G(K_/Q_ ) of order 2. Put H_=G(F_/K_)
and consider .Wp as H_-module. By the usual inflation-restriction
sequence from Galois cohomology we have

H

| . 2
0 » il (B, W)~ B (K, W) > HU(E W) T s (W)

Lemma 5.10. We have

H (2 ,W) =u _(e) ® T, (i=1,2) ,
|3
where Ti is a finite p-group.

Let us assume for the moment that the lemma is wvalid. Another

application of the inflation-restriction sequence yields

H (/W) = ' (KW ) .



So by Lemma 5.10 and the fact that for p > 2 the sequence above
remains exact, when we pass to <c>-invariants, we immediately see
that the initial restriction map res has finite kernel and cokernel.
In particular the induced map on S(Z) has finite kernel. Since res
also has finite cokernel, there is a constant p-power q such that

for any given homomorphism £ € Hom )(Xm,Wpr there is a 1=-cocycle

(p
§ : G(@/Q) —> W, with qg.f=res(s) . We claim that in fact the

1-cohomology class [8] of & belongs to S(I) . So we must look
at the behaviour of [§] wunder the various local restriction maps

jW from § 4. First let w be a prime of @ which does not lie

above p . Then F,_ _=(F,Q ) is a bicyclic extension of Q w ©°f
©, © @y
w

degree dividing 2(p-~1) and therefore we have an injection

H(Q,, /W) ——> B (F_

W .
@ ,wW W' P)

The properties of £f imply that 6(o)=0 for all ¢ in the inertia

group of (iw/F°° . So & must vanish on G(ﬁw/F°° o) since there is

W ’

no proper unramified abelian p-extension over F_ w and by the in-
’

jection above we obtain that jw[6]=0 . Now let v be a prime of @

above p . Write 84 for the 1-cocycle § restricted to G(Q-}V/Q°° p)
r’

assuming that v lies above the prime p of K . It is well-known

that F_ V/Qm p is unramified, and therefore the inertia subgroup
r r

J of G(@./Q ) coincides with the inertia subgroup 1I.. of
©,v v/ *w,p v

. Thus again by the required properties of £ our ¢

0 .
sends Jm,V to wp,v , hence [GV] belongs to H(Qm'p,wp) , which

G(T,/F, ) v

completes the proof of Proposition 5.9.

Proof of Lemma 5.10. We write Hl(Hw,wp) as the inductive

limit of the finite cohomology groups Hl(G(Fn/Kn),SymZE n) , where
p
Fn=Q(E n) and Kn=K(upn) . Since G(Fn/Kn) is cyclic we are led to
1

compute H0 and H ' . On the other hand the decomposition (5.3)

allows us to treat each term of Wp separately. If we fix a topolo-



gical generator T of G(F_/K_) , the action of : on Sysz n 1is
just multiplication by ¢p(;)2 . Thus the G(Fn/Kn)-invariants'of
Sysz n have order bounded independently of n and therefore
HO(HQ,WP) as well as HO(HQ,WP*) is finite. Obviously we have
HO(Hm,ppw(e)) = upm(e) which proves the lemma for i=2 . The norm
map of Fn/Kn on Sym2E n being multiplication by

p

(‘p(n)-1 ~ 2i ~ Z(D( n -
= P)_ -
igo ¢p(r) (¢p(T) 1)/(¢p(T) 1) ,

we immediately find that the kernel of this map has an index in

2

Sym E n bounded independently of n . Since the same is true for

p ~

the index of (1—1)Sym2E n 0 Sysz n We see that H1(Hm,Wp) as well as
P B

H1(Hw,wp*) is finite. The lemma is clear now also for i=1 since

plainly we have H1(G(Fn,Kn),u n(s)) = (e) .

n-1
p

Proposition 5.11. We have

| *
= X ’ X
Hom (g (X, rWp) =Hom(X_,W)) @ Hom(X_,W ) @& Hom(X_,u (c)) ,

and therefore a quasi-isomorphism of o-modules

~ H
sS(zZ) —>AHOm(erwp) * ® Hom((xm)Hm'erupm(E)) ’

where HQ=G(Fw/KQw) and © acts on the right hand side through

G(KQ@/K) . The subscript ¢ denotes the ec-eigenspace for the

G(KQm/Qm)—action.

Proof. Write any homomorphism £ : X ——> wp as a sum
f = f1+f2+f3 according to the decomposition (5.3). Then obviously
f belongs to Hom(p)(xw,wp) if and only if £, vanishes on I, for

*
all v above p and £, vanishes on I, for all v above p .

1
*
and f2 factors through X°° , we obtain the required decomposition

This being equivalent to the condition that £, factors through X_

of Hom

(X ,W) . We observe that the action of complex conjugation
(p) "=""p




*
p € G(F_/R) sends X 6 to X_  and Wp to Wp* . Hence p permutes

the first two terms in the decomposition of Hom(p)(xw,wp) . We arrive
at U_-invariants by first taking H_-invariants followed by taking
G(KQw/Qw)—invariants. Since conjugation by o sends an element of H
to its inverse, p permutes the Hw-invariants of the first two terms,
i.e.

H H

p (Hom (X_,W ) ") = Hom(X", Wow) -

Since for the generator c¢ of G(KQw/QQ) the involution

K = .C € G(KQw/K) acts as an automorphism on the H_-invariants

QIKQ°°
of each term, we obtain that ¢ also permutes the H_-invariants of

the first two terms. Thus we get

Hom n (€))

)(xm,wp)Um = (1+c)Hom(X W ) "= ® Hom((X,)y .

(p o’ €

which by Proposition 5.9 completes the proof of Proposition 5.11.

Corollary 5.12. For each character y of A there is a quasi-

isomorphism of A-modules

Z (5) —> (X .2
w( ) > ”1¢A2-WK ® Tp

@(-2))
T

8(-1)
® (X )y @ T () (e)

o ? EWY

Proof. This is a straightforward exercise in Pontrjagin duality.

Now we are going to treat the two A-modules on the right hand side in

Corollary 5.12 separately.

Proposition 5.13. If the two variable Main Conjecture is valid

p r_
is a A-torsion module with a characteristic power series generating

for a character of the form V¢ = ¢A Vg € A2 , then (X W@T
- —— ®©,

the same ideal in A[[S]] as_ gw(¢§(o)(s+1)-1, ¢;(r)-1) .

Proof. Let f?(S,T) denote a characteristic power series of

X. y - Therefore the zp[[S,T]]—torsion module V =X_ ., @ Tpe(-Z)
R 14



has the characteristic power series
£,(5,T) = £,(82(0) (S+1)=1, ¢2 (1) (T+1)~1)
LA ¥ p " Tp :

The Z p[[s]]-module given by the r_-coinvariants V. =V/T-V plainly
is a Zp[[S]]ftorsion module if and only if fV(S,O)- is non-zero, i.e.
if T does not divide fV(S,T) . By our assumption this condition

is equivalent to the non-vanishing of gw(¢;(c)(s+1)-1, ¢i(r)—1)€A[[S]]
By (5.1) this can be achieved by the non-vanishing of the special
values L(¢2xK,1) or, which comes to the same, by the non-vanishing
of L(¢2xK,2) . But this follows easily via Hadamard's reésonning. Now
v is a Zp[[S]]-torsion module and we obtain a characteristic power

series from the equality of A-modules

A - fv (S) = A - fv(S,O) « £

(s) ,
r_ VI'

where in addition V' - is pseudo-null as a Zp[[S,T]]-module (c£. [14]
p.10 ). We are done if we can show that V has no proper pseudo-null
submodule. By Théoréme 23 of [14] and a result of Greenberg (cf. [14]
P.45 ) one knows that X has no proper pseudo-null xp[[S,T]]-

e(-2)

submodules, hence X°° ® Tp has no such submodules. This finishes

the proof of Proposition 5.13.

We now concentrate on the second term of Zw(Z) in the decomposition
of Corollary 5.12. Let M! denote the maximal abelian extension of
K, = KQ_ inside M and let A_ denote the torsion subgroup of H_ ,

..}

which has the natural decomposition H_ = A_ x I'_ . Further let N_

denote the maximal abelian pro-p-extension of K, » which is unrami-

fied outside the primes above p .

Lemma 5.14. a) There is an isomorphism of G(Kw/m)-modules

(X ), ——> G(M'/F ) .

H

@

b) Furthermore the restriction map induces an isomorphism




G(M!/F_) —=—> G(N_/Fo- ) .

Proof. By a standard result in Iwasawa theory the commutator

group of G(Mm/Kw(Ep)) is given by

GM, /K ()M = (x)"7

[+ -]

where, as defined earlier, t generates TI_ . Note that Kw(Ep)=Fmr—

Hence the maximal abelian extension M of Km(Ep) inside M°° has

Galois group over F_  given by

G(M_/F) = (X)) -

I

The Galois group G G(QQ/KQ(EP)) is an abelian pro-p-group and the

group extension

1 —> G —> G(ﬁw/Km) —> A_ —> 1
must split. Therefore it follows easily that G(l;Iw/Km)com =I, G witl
the augmentation ideal I, = (6-1)ZP[A_] for some arbitrary generato:

§ of the cyclic group A_ . Thus we get

G(M!/F) = GM_/F)/I, G,

where in fact IA G = IA G(M_/F_) , hence we find the required isomor:
phism in a ) from
L o~ ¥ =
G(M!/F ) = G(Mw/Fw)A_ (xw)H°° .
Decomposing G(M;/Km) in its non-p-part, which is A_ via restricti
to F_ , and its pro-p-part, we arrive at once at the desired isomor-
phism in b), which proves the lemma. We add the following diagram in

order to illustrate the situation.



We have now everything at hand to finish the proof of Theorem 5.5. We
begin with the proof of the Rank Conjecture 4.1. By Corollary 5.12,

Proposition 5.13 and Lemma 5.14 the A-rank of Zw(z) is given as
rank 2 (%) = rank G(N_/K) & T (1)@ (¢
A%y A o’ T’ ey P )

On the other hand by Theorem 1.8 in [4 ] for any character A of
G(K(yp)/m) the A-rank of G(Nw/Km)A is 0 or 1 according as A is
an even or odd character. Since the Teichmiiller character ® as well
as ¢ both are odd characters we find that Zw(z) has A-rank equal

0 or 1 according as ¢ 1is even or odd, hence Conjecture 4.1 is valid.

Remark 5.15. Even without assuming the validity of the two

variable Main Conjecture the previous arguments show that in the CM-

case we always have
rankAZw(z) 21 for odd vy .

For the proof of Main Conjecture 4.2 assume that y is an even
character. By Proposition 5.7 we know that Conjecture 3.13 is valid

in the CM-case. From the exact sequence of G(Km/m)-modules

> 0

0 —__>,(xw)Hm _— G(Nm/Kw) —_— zp(e)

we get by Lemma 5.14 for any even character ¢ an isomorphism




the ewy-eigenspaces of (X ) and G(Nm/Km) . In terms of the

H

[}

characteristic polynomial

£ t) = det(t-(o-1); )

E(eww, ) et(t-(o-1) (Xm)leeww)
we obtain that the characteristic polynomial of the twisted module
generates the same ideal in Zp[[t]] as fp(sww,n(o)-(1+t)-1) , hence
by the Theorem of Mazur-Wiles in [13] they generate the same ideal as

21)  from (5.2). This fact together

the power series Gp(sww,(1+t)—
with Propositions 5.7, 5.13 and Corollary 5.12 tells us that up to a
factor vw # 0 in mp a characteristeric power series of Zw(z) is

given by Gw(s) , thus completing the proof of Theorem 5.5.

We finish this section by the following remark.

Remark 5.16. In the CM-case the corollary of Main Conjecture 4.2

always is valid.

Proof. By Pontrjagin duality one has to show that Zw (Z)r
0
contains a copy of 'zp . wWhere Yo denotes the triwvial character. By
the previous arguments this is an immediate consequence of the fact

that Gp(ew,S) vanishes at S=0 .



6. Appendix

In this appendix we shall verify the two tables given at the end
of § 2 , which for the primes r=2 and 3 list all possibly arising
cases under the assumption that E has potential good reduction at

r and # @r 2 3 .

Case r=3. in order to compute the conductor of E and of the

symmetric square at the prime r=3 we use the following lemma.

Lemma A.1. Let ¢, denote the inertia group in G(Q3(E4)/Q3)

and let G.2G =...=Gv¢G

0="1
groups. Then we have v=0,1,2 according as ®3 is cyclic of order

={id} denote the series of higher ramification

v+1

4,3,6 and we have v=2 or 6 if ®3 is non-cyclic.

Proof. Let ¢ denote the maximal ideal in the ring of integers

OF of F=m3(E4) . Consider the different

#¢3-1+2v
D = q
F/Q3
23

and the discriminant ﬁF/T of F over the inertia field T=F . The

case ¢3 = Z/4 Dbeing obvious we may assume that G is cyclic of

1
order 3. Now for cyclic ¢4 of order 3 and 6 the extension F/T is

by class field theory given by a finite character A on 0; . So by

the "Fiihrerdiskriminantenformel" and from the fact that the map from
1+30T to 1+90T which sends x to x3 , is surjective, we get

CA =C , = 9 and c¢ 3 = 3 if A3 is not the trivial character, hence
A A

a - 4 .9 . . .

‘P /T % OT or 3 OT according as ¢, is cyclic of order 3 or 6.

Now by comparison with the different we find the predicted values of

Vv . Finally let ¢ be non-cyclic, i.e. ¢3 is the non-abelian semi-

3
direct product of Z/4 with its normal subgroup Z/3 . Let H denote
the cyclic subgroup of order 6. The Galois invariants L=FH define a
ramified quadratic extension of T where L/(D3 is abelian. Now v

does not change if we replace T. by an unramified extension T' and




F resp. L by F'=FT' resp. L'=LT' . This is clear by the properties

of the function giving the upper numeration of ramification

¢F/T!
groups in terms of the lower one (cf. [ 3] p.37). So we may assume that

L' contains the ramified quadratic extensions of m3 and in particula
that m3(u3) < L' . Hence we have L'=T'(u3) and F'=L'(6/ﬁ) for some

u € L' . We denote by L% the gquadratic extension of L' in F' give

by the Galois invariants under G1 . Further let v € L% denote an

element such that F'=L;(3/5) and where either v 1is a unit or =,

is a uniformizing element of L; . Therefore the discriminant of the

Kummer extension F'/L; , which is hF'/L; = W?(v+1) in general, be-
comes n114 in the case v=m, . If v is a unit we still find that
ﬁF'/L% divides n112 s 1.« v £ 5 . In order to achieve v=2 we con-
sider the character x of order 6 on 0" = 0;, which by class field
theory corresponds to F'/L' . Again we write the discriminant

ﬂF‘/L' = w5+2v (herg t=1-z and ¢ is a primitive third root of 1)
by the "Flihrerdiskriminantenformel" as ﬂF'/L' = (cxcx'z)2 *C o3 whi?h
by the fact that 1+ﬂi0=(1+n10)2 yields cx=1r1+\’/2 . In particular we

find that v 1is even, hence v=2 or 4 . Finally an easy calculation,
where one exploits how G(L;/T') acts on G(F'/L') by conjugation,
shows that x 1s trivial on (1+1r20)2 , hence cX divides "2 and

v=2 , which completes the proof of the lemma.
The columns for ord3N and ord3C in the table now follow by

Lemma A.2. The 3-part of the conductor N of E is given by

ord3N = 2, 2+6v/d and 2+v/2

according as (i) ¢ is cyclic of order 4, (ii) ¢3 is cyclic of

3
order d=3 or 6 and (iii) ¢

3 is non-abelian. The 3-part of the con-

ductor C of the symmetric square is given by

ord3C = 2, 2+6v/d and 3+v/2



according as the cases (i), (ii), (iii) turn up.

Proof. By definition ord3N (resp. ord3C ) = e+8§ where ¢ =
]
dim V - dim V °  and
w #Gi Gi
§ = ] —= dim, M/M
i=1 #Go £
1 2.1 2 .

for Vv = HL(E) resp. Sym HZ(E) and M = EK resp. Sym El with any

£ 2 5. As we saw in the proof of Lemma 1.4, we héve e = 2 for

vV = H}(E) in all cases and for the symmetric square we have ¢ = 2
and 3 where ¢ = 2 1if and only if ¢3 is cyclic, i;e. in the cases
(i) and (ii). Sincev § = 0 in the tame case (i) we may assume for the
remainder of the proof that G1 is cyclic of order 3. Choose £ = 1(3)
and decompose M = EZ as in the proof of Lemma 1.4 into 1-dimensional

G1—eigenspaces

.

G
Thus in particular M 1

M= M(z) ® M(c

= 0 , hence § = 6v/#¢3 , which shows the
formula for ord3N . On the othgr hand this decomposition of EZ also
shows for M = Syszz , that M ! is trivial, hence also § = 6v/#¢3
here, thus proving the formula for ord3C . The proof of the lemma is
therefore complete.

We continue the verification of our table. We first dispose of the
harmless case where ¢3 is nonQabelian. By Lemmas A.1, A.2 we know
that ord3N is odd and therefore f must be 3-minimal, i.e.
ord3N = ord3M by Theorem 4.4 in [ 1]. So we find the last two rows
of the table. Now we can assume that ¢3 is cyclic. If the order of
@3 is 4 , then the full Galois group must be non-abelian, since there

is no totally ramified cyclic extension over Q5 of degree 4. So by

Lemma 2.14 either f is 3-minimal or ord3M 1 since ord3N =2 now.

But in the latter case a quadratic twist of E would have multiplica-

tive reduction at 3,‘whic§fi§fiMpossib1e for 24 cyclic of order 4. This




proves the third row of the table. For the remaining cyclic ¢3 of
order 3 and 6 we remark that by Lemma 2.14 the remainder of the proof
can be reduced to show, that for £ not 3-minimal only the abelian
case ord3M = ord3 c, = 2 can occur. Let £ be not 3-minimal. Since
we know ord3(N) = 4 , ord3(M) must be < 3 . This implies already

that is non-trivial, since otherwise €3 had conductor equal 3

2
3
and therefore the 3-primary part of the level of g€(=f) were a divi-
sor of 27 in contradiction to ord3(N) = 4 . So the order of vq is

divisible by 3 and therefore
2 = ord3(cv) < ord3(M) < 3.

By Theorem 4.3 in [ 1] the combination ord3(cv)=2 ’ ord3(M)=3 is
impossible, since g 1is minimal. Hence ord3(cv) = ord3(M) and we
are in the abelian case by Lemma 2.14. As we saw in the proof of that

Lemma, the I3-action on VL(E) (] ﬁz diagonalizes in the form-

€3(T) 0

pz(t) =

In particular we have 4 = ord,N = ord3(c€2) and therefore ord3(cv)=2

This completes the verification of the table for r = 3 .

Case r = 2 . It is clear by local class field theory that the
Galois group G = G(QZ(E3)/Q2) cannot be abelian for cyclic 2, of
order 3 and 6, since there is no ramified cyclic cubic extension over
@, . But also for cyclic ¢, of order 4, G is non-abelian, since
otherwise ordz(M) = ordz(cv) by Lemma 2.14 which contradicts the
2-minimality of g by Theorem 4.4 in [ 1]. So G 1is always non-abelic
which yields the first column of the table. We start by completing the
first, third and forth row. Assuming that @2 is cyclic of order 3,

-

the ramification is tame, hence ordz(N) = 2 and moreover ordz(M) = g



by Theorem 4.4 in [ 1]. By Lemma 1.4 and by the tame ramification we

have ordzc = 2 , thus completing the first row. For cyclic ¢ of

2
order 6 let L1 denote the subfield of the compositum H(E3) of the
maximal unramified extension H/m2 with QZ(E3) » Wwhich is given by
the invariants under 12 , where t 1is the generator of ¢, . Here
¢, 1s considered as the inertia group of H(E3)/(D2 . The abelian
extension L1/(u2 is the compositum of a ramified quadratic extension

L,'l/m2 !With H . Hence there is a quadratic character such that

€2
for the twist E' of E by that character the action of the inertia
group I2 factors through @é » which is cyclic of order 3. Applying
Theorem 4.1 in [ 1] this proves ord, (M) = 2 and ord, (N) = ordz(csz)
by the results in the previous case. The quadratic character €, has
conductor 4 or 8, which immediately yields the missing entries in the
third and the forth row. Now we suppose that ¢2 is cyclic of order

4. Let again t denote a generator of ¢2 and let o € G represent
Frob2 € G/<I>2 . Since G is known to be non-abelian we have cr=r—1c

and r4=1 . Now the inertia field T certainly contains mz(u3) and
moreover the Galois group G(F/mz(u3)) is generated by t and 02 .
This Galois group is obviously abelian and also a subgroup of SL20F3) .
Since there is no abelian subgroup in SLéGF3) having a proper sub-
group isomorphic to a cyclic group of order 4, we find that. T = Qz(u3)
and therefore G is either dihedral of order 8 or G = Qg - We continue
the computation of the possible conductors. The tOtall& ramified cyclic
extension F/T corresponds to .a character «x on zz[u3]x of order

4 , whose conductor is necessarily c. = 230 or 240T . By the

T
"Fiihrexdiskriminantenformel” for F/T we find the discriminants

110 16 22

- ~ _ - . .
ﬁF/T'Z OT or 2 T’ hence ﬂF/mz—Z or 2 . The series of higher

ramification groups of F/T is of the form

= = = = > = =
¢y =Gy =G, = ... =G G cee Gv+u 7 Gv+u+1

1]
<

The largest integer a + p  such that G, 4is non-trivial, can be




expressed by the conductor c of F/T using the function ¢F/T

F/T
from [ 3] as

c (a) + 1

F/T - %F/T

(see Proposition 1 on p.157 in [ 3]), where it is immediate from the
definition of ¢F/T that ¢F/T(a) = v+u/2 . Thus we obtain (v,u) =
(1,2) or (2,2) as the only possible solutions of the system of

diophantine equations

v + u/2 = ordz(cK)-1 r 3(v+1) + u = ordz(ﬁF/T) .

Since there are only trivial Gv+u-invariants in E3 we therefore
find that the 2-part of the level' N 1is given by ordz(N) =6 or 8 .
We will show that 6 is impossible. By Theorem 4.4 in [ 1] £ is not 4
2-minimal in both cases. Let h € S,(N',X°) be a 2-minimal form such
that hx = £ and cX is a 2-power. Again by Theorem 4.4 in [ 1] h

is 2-minimal if and only if one of the following conditions holds:

a) ordz(N') = 0 or 2, b) ordz(N') is even, 2 4 and 2 ordz(c 2) =
ordz(N') , C) ordz(N') is odd and 2 ordz(c 2) < ordz(N') . Noé we
assume that ordz(N) = 6 , hence ordz(N') = 5 . Then b) is impossible
since ¢ 5 * 4 for any x . For the same reason we find that X2 is
the triv?al character in the cases a) and c¢). Hence in these cases h
necessarily belongs to the quadratic twist E' of E by x , where
12 now acts on E!

3
structures are: the trivial group, a cyclic group of order 3, Q8 or

through a finite gquotient @é , whose possible

SL20F3) . Here we have used that a) and c) cannot occur for cyclic 0,
of order 4 or 6, since we have already verified that ordz(N') = 4,6
or 8 in these cases. On the other hand the inertia group over the
quadratic extension field KX/Q2 defined by x , must act in the same
way on E3 as on E! , which is impossible for our cyclic 2, of

3
order 4 and the possible group structures of ¢i_ listed above. Thus



we showed that ord,(N) =8 , (v,u) = (2,2) , & ,n =20, , e = 2%, ,

c‘C2 = 230T . By the before mentioned criterion for 2-minimality we

find that ordz(M) = 6 or 7 and ordz(ce) = 4 . In order to show that
only ordz(M) = 6 can possibly occur; we choose again a character
of x;‘, but now of order 4, such that cX = 24 and such that the
quadratic extension K 2/m2 , defined by x2 , and the quadratic ex-
tension T 2/T ’ definéd by Kz , are related by TK2 = TK 2 - We claim
that the 3fédic representation given by the twist (T3(E) é 53) ® x

has in fact 2-conductor equal to 26 , 1.2 ordz(M) = 6 . The verifi-
cation is left as an exercise to the reader. To finish the second row
of the table we still must show that ordzc = 6 . By Lemma 1.4 we have
€y = 2 . Take any prime £ = 1 mod 4 , so that Ez decomposes into two
eigenspaces where 1t acts like multiplication by a primitive fourth
root of unity ¢ resp. z say Ez =ZF£-x Q:Fz-y . Hence we imme-
diately get that the Galois invariants of the symmetric square under

the action of the higher ramification groups are giveﬂ by

G,
(Syszz) s Syszz or TF,-(x8y + yex)

according as Gi is cyclic of order 2 or 4. Thus we find §, = 2v

and therefore ordz(C) = 2+4

Now we suppose @2 = Q8 . For F = QZ(E3) we observe again that

the inertia field is given by T mz(u3) . Since otherwise we had

G(F/mz) = GL20F3) and (T : mz) 6 , i.e. GL20F3) would have a
¢cyclic quotient of order 6, which is not true. So G = G(F/mz) is
obviously a 2-Sylow group of GL20F3), hence dihedral of order 16.
Moreover there is a ramified quadratic extension K1/m2 in F such

that G(F/K1) is cyclic of order 8. Again we have to determine the

series of higher ramification groups

?2,=2G,=G,=...=G_2G =...=G oG F...=G

2 0 ™1 vE v+ V+uE vip+1 ={id} ,

v+u+x3Gv+u+A+1

where possibly u = 0 . The 2-conductor of E is of the form




ordZ(N) = 2+2u+p+x/2 . Next we compute a set of triples (v,p,l) whict
contains all possibly occuring triples in our situation. We firstly
write the discriminant of F/(D2 as ordz(ﬂF/mz) = 14 (v+1) + 6p + 2
and secondly via the “Fggggpdiskriminantenformel" of F/K1 for all

possible fields K1 and all possible characters vy on the 1-units of

4

K with ¢y~ =1 as

1

4 2 8

ﬂ = N (e * ¢ 5) * & .
F/Q, K,/@, "v w2 K,/Q,

Here we take into account that TK1/K1 is unramified. Now let
denote a prime of K1 and write Un for the group of units of K

4 we have that c
3 ¥
divides =’ . Since G(F/@,) is dihedral, a generator p of GI(K,/Q,)

1

1
which are congruent 1 modulo ** . Since u7 = U

u 1+p

p) , hence 1 is

acts on G(F/K1) such that y(1+wa) @ = w(1+n°a

in the kernel of y . In particular ¢ is trivial on (1+4)1+p = 1+3°:

which is cengruent to 1+1r6 modulo n7 , hence cw divides “6 . One

easily checks that ¢ 2=w2 or n4wéc§g§§ipg as cw=n3,n4,w5 or c =n6 .

Y
Furthermore the case cw = "5 cannot occur for

= @,(/3) , where with = = 1-/=T resp.
3)1+p

K, = Qz(/:T) and K,

m =V3 -1, ¢y is trivial on (1+m = 1+1r4 mod WS . We now list

the various cases for cw and the simultanious solutions (v,u,})

with integral v 2 1 and u,X 2 0 of the diophantine equations

(*) ord“(cw)=v+u+x/2+1, ord }=14 (v+1) +6u+221)

2‘%/@2

where as previously we use the function and that we have

¢
F/K1

¢F/K§v+u+x) = v+u+1x/2 . There are exactly 6 ramified quadratic exten-

sions K1/m2 . For the fields K1=m2(/-1), Qz(/i) where ﬁK1/Q2=4 ,
we find



ord (c ) ord (¢ )7 ordgﬂF/mz (vyu,) ord, t¥),

y
3 2 32 (1,0,2) 5
36 (1,0,4) 6
48 (1,2,4)

For the other fields K, = @,(/+2), @,(/+6) where 2
1 2 - 2 - K1/Q2

only find a solution of (*) for ordv(cw)=6 . So we get ordw(c

=8 , we

) =4,
2
v

ord, (2 )=56, (v,u,2) = (2,1,4) and ord,(N)=9 in this case. We
2 F/CD2 2
want to exclude the case ordz(N)=8 . Let L denote the intermediate
field K1 <« L ¢ F such that (L : K1) = 4 ., Since ¢ 5 = w4 we have
v

4 = ¢L/K (a)+1 , where a 2 0 is the largest integer such that the
1
a-th higher ramification group G(L/K1)a of L/K1 is non-trivial.
Thus we know a = ¢L/K (a) = 3 and by the well-known properties of
1

the function ¢ we have
G(L/Ky) 3 = G(L/K,)> = G(F/K,)>G(F/L) G(F/L) ,

and this is a cyclic group of order 2. On the other hand (7) =3

¢F/K1
and G(F/K1)7 = G(F/L) implies G(F/K1)3 = G(F/L) , which contradicts

the isomorphy above. Hence ordz(N) = 8 1is impossible. For ordz(N)=5,9

the entries of our table are now clear up to the value of ord.C by

2
the 2-minimality criterion from Theorem 4.4 in [ 1]. By Lemma 1.4 we

have €y = 3 . We claim that 62 = 3v+py . This follows easily by the
same procedure as in the previous case by decomposing Ez into its

eigenspaces for the action of Gv . Thus we find that ordZ(C) =6

+1

or 10 according as ordz(N) = 5,6 or ordz(N) =9 ., For ordz(N) =6

.

the form f is not 2-minimal and by the before mentioned 2-minimality

criterion £ 1is the twist hx of a 2-minimal form h of level N' with

ordz(N') =3 or 5 by a quadratic character x of conductor cX=23 .

The case ordz(N') = 3 cannot occur since otherwise E would be the

quadratic twist of an elliptic curve E' where the inertia group 12

acted on E}; through ¢é 3 SLZGFB) » since the 2-conductor 23 has

3




never occured for the other possible group structures of ¢, according
to the so far verified part of our table. But replacing E by E'
does not change ord2C = 6 and, as will be shown in the following,
for ¢, = SL20F3) always ord,C * 6 .

From now on we assume that ¢2 2 SL20F3) . Therefore the inertia
field T of F = mz(E3) must be equal to Qz(u3) , and we have
necessarily that G = G(F/Qz) is isomorphic to GL20F3). The se;;es

of higher ramification groups is of the form

3 G,=...=G 3 G T...=G

=)
v+1 v+l #F

where G1 is the quaternion group QB of order 8 and Gv is cyclic

+A
of order 2. Note that a higher ramification group of order 4 is im-
possible, since there is no normal cyclic subgroup of order 4 in
GL20F3) . Now let K « F denote the subfield such that .K/m2 is norma
and G(K/mz) is isomorphic to PGL20F3) = 8, . There are exactly 3

normal extensions K'/(n2 with Galois group isomorphic to S4(see {91])

.These are given with (i,j) = (1,0), (0,1) or (1,1) by
3 3 i 3 j.i
Kij = m2(u3"/7"/xij"xlj ) 14 xij = (1+/-2-) (1+/E) 3

3
where the automorphism p acts trivially on Mg and sends V2 to

3
¢ Y2 for a fixed generator ¢ of My - The higher ramification groups

Gé in G(Kij/mz) are as follows: for (i,3j) = (0,1) G; is the direct
product of two cyclic groups of order 2 and Gé is trivial, for

(i,3) = (1,0) or (1,1) G; = Gé
groups of order 2 and Gé is trivial. This tells us that v = 1 for

is the direct product of two cyclic

(i,3) = (0,1) and v = 5 1in the other two cases by the properties of
the function ¢F/Q2 » which completes the last column of our table by
the obvious formula ordz(c) = 3+v . Since the 2-conductor of E is
given by ordz(N) = 2+2v/3+2/6 , we find that A 1is congruent 2 or 4

modulo 6 according as v =1 or v =5 ., Let L denote the subfield
3
of K = Kij given by L = Qz(u3./7,fxij) » and consider the character



¥ on the 1-units of L , which by class field theory corresponds to

the cyclic extension F/L of degree 4. Then wz corresponds to K/L
we can read off that ¢ 5 = wi
denotes awprime element

and from the discriminant ﬁK/ or

L

™ according as v =1 or v =5 ., Here

L
of L . Similarly we obtain

L

~ - 3(v+1)+x _ 2

ﬁF/L TI'L = Cw cwz ’
hence clp = wL2+l/2 or “L6+A/2 according as v =1 or v =5 ., Let
Un denote the group of units which are congruent 1 modulo wLn in
L . Since taking squares sends U to U r we see that vy is

7 13
trivial on U13 . On the other hand we know that A/2 is congruent 1

or 2 modulo 3 according as v =1 or v =5 , hence cw = 13 1is
12

impossible and cw must therefore divide LEA This leaves the

vossibilities that ord_ (c ) = 3,6,9,12 for v =1 and ord (c ) =
"L ¥ L

8 or 11 for v = 5 . Once we have excluded the cases cw = wLS,nLg we

can finish our table as follows. The values for ordz(N) are immediate
once we insert the remaining possible (v,A) in the previous formula.

The minimal level M cannot have ordZ(M) = 0 or 2 by the same argu-

ment as in the case where ¢, was a quaternion group of order 8. Also

ordz(M) = 5 1is impossible since this can only occur if ordz(N) =6

and if the character ¢ with f = g, has ordzcs =3 i.e. its 2-part

€y is quadratic. But then a quadratic twist E' of E would have

level N' with ordzN' = 5 and ordz(C') = ordz(c) = 4 , which is

impossible by the first and the last column of our table. Note that

these have already been verified completely. The remaining open entries

are obvious now. We finish the proof be excluding cw = st and ng .
The first case is impossible since then «c 5 = “LG would imply that

y
wz is non-trivial on u5 whereas the fact that US2 c

that wz is trivial on U

8 implies
The case ¢,k = ? where ¢ = 2

5 as v LT wz =T

is impossible since then ¢ is trivial on U42 = U8 . This completes

the proof of the table for r = 2 .
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