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SYMMETRIC PRODUCTS OF CYCLES

Arunas Liulevicius 1

If G is a group and X is a finite G-set, then the k-th symmetric
product of X (denotedbyst) is defined as follows. The symmetric
group Sk on k letters operates on the k-fold Cartesian product xk by
permutation of coordinates. This action commutes with the diagonal
action of G on X", so this means that the orbit space §.X = X'/S, is

k

a finite G-set. Inthismteuedeternu‘nethestrucmreofskx for
G = (2,+), the additive group of the integers. The topological moti-

vation for studying this special case comes from Dold[2].

We first notice that it is emough to determine skx for G-sets of
the form G/H. This is because we have:

IEMMA. If XuY denctes the disjoint sum of X and Y, then
Sk(XuY) is Gequivalent to

]
— SX x 8 ¥

with the convention that S.X is a single point.

0
We now focus on the special case of G=(2,+). The finite orbits

of Z are the sets of the form () = 2/(n) with the action k.( x + (n))=

k+x + (n) . In other words, (n) is the standard n-cycle, and every fi-

nite Z-set decomposes into a disjoint sum of cycles. According to the

lemma above it is enough to determine S, (1) in order to determine

skx for any finite Z-set X. We first of all determine the number of

elements in sk@.

PROPOSITION. The symetric product S, n has precisely (n"’;")
elements.

Proof. Let s, (n) be the muber of elements in S, (n) . We notice
that it satisfies the initial condition s1(n)=n. The recursive condi-
tion for s, (n) is easy to derive: let 0€() be the coset of zero, then
thesuwetofsk@ of elements having 0 as one or more coordinates is
a copy of S,_,(7) , and the complementary set is a copy of sk@.
Of course, the two subsets are not Z-subsets, but after all we are just
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counting the number of elements in Sk@ so this does not matter..
This means that S, (n) satisfies the recursive condition sk(n) =
S 1(rx) + sk(n—1) But this means that sk(n) = (mk 1) ¢ as claimed.

We now determine the structure of Sk@ as a Z-set. The main
step is to determine the structure of the fixed point set

Fix'l'r —{xesk@‘ Trx=x},
were T=1.:5@ —> 5@ . Since (1) is a 7/(n) -set,
so is Sk® , and so we are really interested in Fix TX for r dividing
n. Now if n = rs, we let Z/(s) acton@bysetting1.x—x+rmd(n)
andwe]mowthat@sphtsmtorcycles @ Indeed, if we let

A= {O,r, ,(s-1)r} ,

then the r cycles are given by t'a = {i, r+i, ..., (s=r+i} for
i=0,1, ..., r-1 , where t =1. :@ -—»@ is the original actic
of 2 on @ , namely t(x) =x+ 1 mod (n). Now let's take an element
xmsk@andfmdoutmatltueansthat xeF:ler ILet us write
aex if a €@ mawordﬁateofapoumin@ representing the
orbltxmsk@ @ /8 - Anecessaryandmfﬁcmt condition th
x€FJ.xTrCSk® is that aex always implies t'aex . If we write
x-['a1, cee ,ak] = the orbit of (a1, .-+ s ) under §_, this means
thatthea fall into camplete orbits of Z/(s) under the action

1.x t(x) x+r mod (n). This implies two things: first, if k is not
a miltiple of s, Fix'rrisenpty; second, if k=ms, then we can write eac
x in Fix T* uniquely in the form x =[t*1.a, ... ,t'm.a], where
A=J0, 1, ..., (s=1)r} is the basic s~cycle considered above, and
0£x, &£... £€x &r . This proves the basic result that we need:

1\-
THEOREM. If k is not a multiple of s, then Fix T" = ¢ in§, IS .
If k =ms , then the map
F: 5@ —> FixT ins (@)

given by F[:x1,...,xm] =[(tfa, ..., txm.A] is an equivalence of
Z/(x) -sets, where A ={0, L) eee s (s-—‘l)r} is the basic s-cycle

m@.

This theorem allows an efficient recursive algorithm for calculatir
the Z/ (n) -structure of the set Sk@.
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€0ROLLARY. The multiplicity of @ in Sk@ is zero if s does
not divide k. If k = ms, then the multiplicity of (¥) in sm@ is
the same ag the multiplicity of @ in Sm® .

The proof of the corollary is immediate, for the cycle @appears
in FixT < 5 (@ -

We let £ (n) be the miltiplicity of the cycle @ in Sk® . We
can restate the preceding corollary as follows:

COROLIARY. The integers fk(n) are determined by the initial con—
dition f1 (n) = 1 with the recursive relations

(n * l}: - 1) = rFZré £).r .
k=ms

We plot the values of fk(n) for 1&£kmn g 10

TABLE OF fk(n)

L AT 1 2 3 4 5 6 7T 8 9 10
! |

1 11 1 1 11 1

2 101 2 2 4 4 5 5

3 1 2 3 5 7 9 12 15 18 22

4 1 2 s 8 14 20 30 4 55 70

5 1 3 7 14 25 42 66 99 143 200

6 1 3 9 20 42 75 132 212 333 497

7 1 4 12 30 66 132 245 429 715 1144

8 1 4 15 40 99 212 429 800 1430 2424

9 1 5 18 55 143 333 715 1430 2700 4862

10 1 5 22 70 200 497 1144 2424 4862 9225

The table suggests:
RECIPROCTTY CONJECTURE. For each k and n we have fk(n) =fn(k),
thatisthemmberofcycles@ in Sk® is the same as the number

ofcycles@in Sn® .
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The motivation for this work is the recent paper by A.Dold [2]
which presents a new model for the universal A-ring on one generator.
Indeed, let PER' be the set’of iscmorphism classes of permutations of
finites type on a countable set (that is, for each natural number n there
are only a finite mmber of n-cycles). Addition in PER' is induced by
disjoint sum, product by Cartesian product and diagonal action. Dencte
PER the completion of PER' to a ring, and L : PER — A = 1 + tZ[ft]]
the Lefshetz power series homomorphism. Theorem 2.16 of [2] gives us
that L is an isomorphism of A-rings, where the A-ring structure of the
target is classical (see [1] or [3]) , and the N\- operations in PER
are defined in terms of symmetric power cperations in PER', that is

n

A% = 3 it (Wi (5,2

i=1
with the initial conditions §x=1, Xx =1.
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