SYMMETRIC PRODUCTS OF CYCLES

Arunas Liulevicius 1

If G is a group and X is a finite G-set, then the k-th symmetric product of X (denoted by $S_k X$) is defined as follows. The symmetric group S_k on k letters operates on the k-fold Cartesian product X^k by permutation of coordinates. This action commutes with the diagonal action of G on X^k , so this means that the orbit space $S_k X = X^k/S_k$ is a finite G-set. In this note we determine the structure of $S_k X$ for G = (Z,+), the additive group of the integers. The topological motivation for studying this special case comes from Dold[2].

We first notice that it is enough to determine $S_k X$ for G-sets of the form G/H. This is because we have:

LEMMA. If $X \sqcup Y$ denotes the disjoint sum of X and Y, then S_k ($X \sqcup Y$) is G-equivalent to

$$\bigsqcup_{j=0}^{k} s_{j} x \times s_{k-j} Y$$

with the convention that $S_{\cap}X$ is a single point.

We now focus on the special case of G=(Z,+). The finite orbits of Z are the sets of the form n=Z/(n) with the action k.(x+(n))=k+x+(n). In other words, n=Z/(n) is the standard n-cycle, and every finite Z-set decomposes into a disjoint sum of cycles. According to the lemma above it is enough to determine $S_k n=1$ in order to determine $S_k n=1$ or any finite Z-set X. We first of all determine the number of elements in $S_k n=1$.

PROPOSITION. The symmetric product S_k n has precisely $\binom{n+k-1}{k}$ elements.

<u>Proof.</u> Let $s_k(n)$ be the number of elements in $S_k(n)$. We notice that it satisfies the initial condition $s_1(n)=n$. The recursive condition for $s_k(n)$ is easy to derive: let $0 \in n$ be the coset of zero, then the subset of $S_k(n)$ of elements having 0 as one or more coordinates is a copy of $S_{k-1}(n)$, and the complementary set is a copy of $S_k(n-1)$. Of course, the two subsets are not Z-subsets, but after all we are just

¹⁾ Partially supported by NSF grant MCS 80-02730 and Sonderforschungsbereich "Theoretische Mathematik" Universität Bonn.

counting the number of elements in $S_k(n)$, so this does not matter. This means that $s_k(n)$ satisfies the recursive condition $s_k(n) = s_{k-1}(n) + s_k(n-1)$. But this means that $s_k(n) = \binom{n+k-1}{k}$, as claimed.

We now determine the structure of $S_k(n)$ as a Z-set. The main step is to determine the structure of the fixed point set

Fix
$$T^r = \{x \in S_k \cap | T^r x = x \}$$
,

where $T = 1 : S_k \cap \longrightarrow S_k \cap$. Since (n) is a Z/(n) -set, so is $S_k \cap$, and so we are really interested in Fix T^r for r dividing n. Now if n = rs, we let Z/(s) act on (rs) by setting $1.x = x + r \mod (n)$ and we know that (rs) splits into r cycles (s). Indeed, if we let

$$A = \{0,r, ..., (s-1)r\},\$$

then the r cycles are given by $t^iA = \{i, r+i, \ldots, (s-1)r+i\}$ for $i = 0, 1, \ldots, r-1$, where $t = 1 : n \longrightarrow n$ is the original actic of Z on n, namely $t(x) = x + 1 \mod (n)$. Now let's take an element x in S_k r and find out what it means that $x \in Fix T^r$. Let us write $a \in x$ if $a \in r$ is a coordinate of a point in r representing the orbit x in S_k r r is that $a \in x$ always implies $t^r = x$. If we write $x \in Fix T^r \subseteq S_k$ is that $a \in x$ always implies $t^r = x$. If we write $x = [a_1, \ldots, a_k]$ = the orbit of (a_1, \ldots, a_k) under S_k , this means that the a_i fall into complete orbits of Z/(s) under the action $1 \cdot x = t^r(x) = x + r \mod (n)$. This implies two things: first, if k is not a multiple of s, $Fix T^r$ is empty; second, if k = ms, then we can write each x in $Fix T^r$ uniquely in the form $x = [t^x 1 \cdot A, \ldots, t^x m \cdot A]$, where $x = \{0, r, \ldots, (s-1)r\}$ is the basic s-cycle considered above, and $x = \{0, r, \ldots, (s-1)r\}$ is the basic $x = x + r \pmod n$. This proves the basic result that we need:

THEOREM. If k is not a multiple of s, then Fix $T^r = \emptyset$ in S_k^{rs} . If k = ms, then the map

$$F: S_m(r) \longrightarrow Fix T^r in S_m s$$

given by $F[x_1,...,x_m] = [t^X1.A, ..., t^Xm.A]$ is an equivalence of Z/(r) -sets, where $A = \{0, r, ..., (s-1)r\}$ is the basic s-cycle in (rs).

This theorem allows an efficient recursive algorithm for calculating the Z/(n) -structure of the set $S_{k}(n)$:

COROLLARY. The multiplicity of (r) in S_k (rs) is zero if s does not divide k. If k = ms, then the multiplicity of (rs) in S_{ms} (rs) is the same as the multiplicity of (rs) in S_{ms} (rs).

The proof of the corollary is immediate, for the cycle () appears in Fix $T^r \subset S_{ms}(Ts)$.

We let $\,f_k^{}(n)$ be the multiplicity of the cycle $(\!n\!)$ in $\,S_k^{}(\!n\!)$. We can restate the preceding corollary as follows:

COROLLARY. The integers $f_k(n)$ are determined by the initial condition $f_1(n) = 1$ with the recursive relations

$$\binom{n+k-1}{k} = \sum_{\substack{n=rs \ k=ms}} f_m(r).r$$

We plot the values of $f_k(n)$ for $1 \le k, n \le 10$

TABLE OF f _k (n)										
$k \downarrow \frac{1}{n}$	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1
2	1	1	2	2	3	3	4	4	5	5
3	1	2	3	5	7	9	12	15	18	22
4	1	2	5	8	14	20	30	40	55	70
5	1	3	7	14	25	42	66	99	143	200
6	1	3	9	20	42	75	132	212	333	497
7	1	4	12	30	66	132	245	429	715	1144
8	1	4	15	40	99	212	429	800	1430	2424
9	1	5	18	55	143	333	715	1430	2700	4862
10	1	5	22	70	200	497	1144	2424	4862	9225

The table suggests:

RECIPROCITY CONJECTURE. For each k and n we have $\ f_k(n)=f_n(k)$, that is the number of cycles (n) in $\ S_k(n)$ is the same as the number of cycles (k) in $\ S_n(k)$.

The motivation for this work is the recent paper by A.Dold [2] which presents a new model for the universal λ -ring on one generator. Indeed, let PER⁺ be the set of isomorphism classes of permutations of finite type on a countable set (that is, for each natural number n there are only a finite number of n-cycles). Addition in PER⁺ is induced by disjoint sum, product by Cartesian product and diagonal action. Denote PER the completion of PER⁺ to a ring, and L: PER $\rightarrow \Lambda$ = 1 + tZ[[t]] the Lefshetz power series homomorphism. Theorem 2.16 of [2] gives us that L is an isomorphism of λ -rings, where the λ -ring structure of the target is classical (see [1] or [3]), and the λ - operations in PER are defined in terms of symmetric power operations in PER⁺, that is

$$\lambda^{n}x = \sum_{i=1}^{n} (-1)^{i+1} (\lambda^{n-i}x) (S_{i}x)$$

with the initial conditions $S_0 x=1$, $X^0 x=1$.

REFERENCES

- 1 M.F.Atiyah and D.O.Tall, Group representations, λ -rings and the J-homomorphism, Topology 8 (1969), 253-297.
- 2 A.Dold, Fixed Point Indices of Iterated Maps, Preprint, Forschungsintitut für Mathematik ETH Zürich, February 1983.
- 3 D.Knutson, λ -rings and the Representation Theory of the Symmetric Group, Springer LNM 308 (1973).

Department of Mathematics The University of Chicago 5734 University Avenue Chicago, IL 60637 U S A

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 5300 Bonn 3 Federal Republic of Germany

June 1983