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ABSOLUTE DETERMINANTS AND HILBERT SYMBOL

ALEXANDER SMIRNOV

ABSTRACT. A tensor category of “vector” spaces over “constants”(i.e., 0 and roots
of unity) of a number field is constructed. We consider the “constants” as a monoid
only and the tensor category has a very simple structure. Nevertheless, applying
determinant theory (in the sense of the category considered) to number and local
fields allows us to construct a theory of the classical Hilbert symbol.

INTRODUCTION

Many important constructions of algebraic geometry do not work in the scheme
theory(and therefore in Arakelov geometry). For example, there is no two-dimensional
space SpecZ x SpecZ and no sheaf of differentials, Q', on SpecZ. The reason of
difficulties seems to be that we have no properly defined "common” part of all the
fields F,. Nevertheless, some objects defined over the non-existing "field with one
element” are well-known(for example, GL, (Fy) is the symmetric group S,). Of
course, all such kind constructions should be regarded only as a very rough approx-
imation of "true” those, which are unknown in present time. So, our task on this
level is to look for working constructions.

In {Sm] the natural “constants” in any number field (zero and all the roots of
unity) were considered as a substitute of the constant field and as an extension of F; .
(there a cosideration of P! over the "fields” has led to several number-theoretical
conjectures generalizing the well-known ABC-conjecture).

Recently, M.Kapranov wrote me that a tensor calculation over these "fields”
(which he denotes by Fy») lead to an interpretation of some classical symbols in
the class field theory for number fields. More precisely, Kapranov pointed out that
the n-power residue symbol (%) i € ity (here p is a prime ideal in a ring of integers
A of a number field) can be interpreted as an appropriately defined determinant of

multiplication by a in A/p, considered as a "vector” space over Fyn:

(g) — det(a: Afp — Alp).

This strenghens the analogy between power residue symbols and resultants well
known in the class field theory for functional fields. Namely, the resultant of two

monic polinomials f,g € k(t] is

Res(f, g) = det(f : K[t}/(g) = kt1/(9)).
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The reciprocity law is thus an analog of the symmetry property of the resultant.

In a talk on the conference on ”Arithmetic geometry” on May 1994 in Lumini
the author have mentioned this Kapranov’s idea. After that A.N.Parshin told me
about his interpratation of a Breen’s construction for the tame symbol on algebraic
curves (later and independently this construction were rediscovered in [ACK]) and
suggested to look for an analogous construction for number fields. This is done in
the present paper.

’ and in

In the Sec.l we describe a tensor category of ”vector spaces over Fyn’
the Sec.2 we study relations between this category, which is non-additive, and an
abelian category of abelian groups with an Fy»- action(note Lemma 2.1.2, which
plays a crucial role in what follows). In the Sec.3 we construct, following [ACK], a
symbol {f, g} of two commuting automorphisms of a universum V and in the Sec.4
we link this symbol with the tame Hilbert symbol(there V coincides with a finite
extension I of Q,; f,¢ € K*). Besides, there a weak reciprocity law for global
number fields is proved. In the Sec.5 we explaine the construction of the Sec.3 from
a more invariant point of view: there we consider a category of line bundles and
their meromorphic morphisms on a one-dimensional space instead of the universum
V.

I would like to thank A.N.Parshin for his explanations and sugestion, and also
the organizers of the mentioned conference for the invitation.

I thank also M.Kapranov, who wrote me about his ideas and later kindly con-
sultated me concerning all my questions.

This paper is done during my stay at the Max-Planck Institute of Mathematics
in framework of a special activity on the Arakelov theory and I thank MPIM and

the organizers of this meeting for the invitation.

NOTATION

Let us fix notation, which will be used throughout the paper.
e u is a finite abelian group (multiplicative);
e N is the number of elements of y;
e F ={0}Upuis considered as a commutative monoid (0 - ¢ = 0),
e w= Hee;ts is the root sign of u.
It is easy to see that
" { the element of order two in g, if such an element is unique;

1, else.

o V =V\{pt} for any pointed set V.

e M is the category of F-spaces (see 1.1).

e M, is a subcategory of all the abelian groups of M (see 1.1).
e P is the category of free F-spaces (see 1.1).

o P =PNM, (see l1.1).
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1. CATEGORY OF F-SPACES

The constuctions of this section were discovered independently by M.Kapranov
and the author. The later considered during long time the determinant det = det;
(see 1.2.7) as bad one, and thought that a right determinant is det_;, which would
be in K;-theory of F, but not in F itself. A Kapranov’s idea is that just det; is
interesting and just it arises in number theory.

1.1 Objects and morphisms.

Definition 1.1.1. An F-space is a pointed set V (the point pte V will always be
denoted by the symbol 0) with an action of F' such that for any ¢ € F and any
z€V wehave 0z =0ande-0=0.

A morphism of F-spaces is an F-equivariant map of pointed sets. We denote the
category of F-spaces by M (or M ). Consider in M a subcategory M, of abelian
groups and their homomorphisms (the action of F must agree with the structure

of the abelian group).
Definition 1.1.2. Let V € M. We say that V is free, if p acts freely on V.

The free objects of M generate a full subcategory, which will be denoted by P
and the free objects of M,; generate a full subcategory, which will be denoted by
Pap. For V € P put

dimV = Card(V/p).

For V € P define a basis of V' as a collection of elements xy,x3,...,zq4 € V, such

that in each orbit of the action of z on V lies exactly one of the z;’s.

1.2 Tensor operations. In this subsection by symbols V, W etc. we denote free

F-spaces.

1.2.1 Duality. The space V* coincides as a set with V. We denote the identity
map V — V* by & — z*. The action of F on V* is defined as follows: if ¢ € p,
then ¢ - z* = (e7! - a)*.

1.2.3 Direct sum. Put V@ W = {0} UV U W with the obvious action of .

1.2.4 Tensor product. Consider the antidiagonal action of ;1 on V x W defined
by e-(z xy) =ex x e ly.

Put VW = {0} U m, where m/ is the factor of V x W by the
antidiagonal action of pu.

Let z ® y denote the image of the couple (z,y) under the natural projection.
The action of F on V induces an action of F on V ® W and it is clear, that

(ex) @y =z ® cy.
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1.2.5 Exterior powers. There are two natural actions of the symmetric group
Sk on V&,

(a) ofz1 ® ... ®zi) = (1) @ . B Tak)s

(b) o(z1 ® .. ® xx) = WPV (g V@ ... @ Ty

Accordingly, there are two theories of exterior powers: A¥V and AXV (we write

often A*¥V instead of A¥V). To define these spaces, consider the following subset
of V&k.
Z = {z, ® ... ® zi|there exist indices 7, 7, and A € F, such that z; = A - z;}.
Put
ALV = {0} U (VN 2)/55,
where € denotes 1 or w and the action of S is as in (a) for € = 1, and as in (b) for
£ = w.

There is a natural projection V®* — A¥V (by which Z — {0}). The image of
z) @ ... @ zp under this projection is denoted by =, A ... A zy.

1.2.6 Remark. In the algebra AJV, we have, as usual, z Az =0, but t Ay =y Aw.
The existence of the commutative exterior power is a special phenomenon of our

situation.
1.2.7 Determinants. Let dimV = d < 0o0. We set
{
det,V = A, V.
This is a one-dimensional space.
For any isomorphism ¢ : V — W we obtain a natural morphism

det,¢ : det.V — det, W; A Aya = dyn)) A -+ Ad(ya).

In the case V = W, the morphisin det, ¢ is given by the multiplication by an element
of F (since dim(det, V) =1 ), which is denoted by the same symbol det, ¢.

If y,... ,24 is a basis of V and ¢(x;) = €;x,(;), then

d
detod = e [ e

1=1

We write often det V instead of det; V' and det ¢ instead of det; ¢.

1.2.8 Remark. Let €),€2,€3,64 € {1,w}. It is easy to see that if €1e2 = £3¢€4, then

there is a canonical isomorphism
det,, V @ det,, W = det,,V @ det, W.

In particular, if we put [w]y = det, V ®(det; V), then for any V and W the spaces
[w]v and [w]w are canonically isomorphic.

Besides, there is the canonical isomorphism:

(dety V)®2 = (det,, V)®2.
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1.2.9 Agreement about signs. Below we adhere to the following convention:
(a) det V = dety V, det ¢ = dety ¢, ARV = AfV;
YVeW=WeV,zQy 2 yQu;
(VW)U =VRWRU),vRw)Qu - v® (w®u),
() Vv*=V, z** 5z

2. INTERACTION BETWEEN M AND Mg,
2.1 Restriction of scalars (inclusion M, C M).

Lemma 2.1.1. (i) Let A be a finite object of Myy. Then A is free, sff for each
€ € (u\{1}) the operator (1 —¢) s invertible on A. It is enough to verify this only
for a system of generators of p.

(12) Let 0 & A = B — C — 0 be an ezact sequence of finite objects of M.
Then B i3 free, iff A and C are free.

Proof. (i) is obvious in view of the finiteness of A; (ii) follows from (i).

Lemma 2.1.2. Let E:0— A — B = C — 0 be an ezact sequence of finite objects
of Pay. Then
(1) dimB = dimA + dimC (mod N);

(12) there 1s a canonical isornorphismn

¢E : det A @ det C 5 det B.

Proof. (1) This is obvious (Card A = 1 + N dim A, etc.).

(ii) First we construct ¢ g in terms of any two bases of A and C and then check
that it does not depend on the choice of the bases. Let z;,... ,z, be a basis of A
and ¥y,... ,ym be a basis of C. Define ¢g by

n

¢E(mlA---A:Erl@yl/\---/\ym):Ami/\ A /\ g
=1y

=1

Here g; runs over all the preimages of y; in B. (We remind the reader that our
exterior product is commutative, see Remark 1.2.6, and thus the exterior products
do not depend on the order of factors.) For new bases z},... ,z0, y1,... , ¥, the

same formula yields a map ¢, Let @} = g;uy, y} = w;y;. It is easily seen that

$E(x) _ T & TT0L (w;) e 4
45’15‘(*) H:!=1 € H;‘":l w; ,

Obviously, the right hand side is equal to unity, and so ¢z = ¢g.

Remark 2.1.3. A striking feature of our definition of ¢g is that it is obviously
nonsymmetric with respect to A and C. Actually, besides ¢ we can define another
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canonical isomorphism ¥g. To do this choose any liftings ¢1,... ,9m In B of the
elements yy,... ,ym and set

m

YE(ZIA .. ATa @Y1 A Aym) = /\:c,/\/\y]/\ N (@i +ei)).

i=1,...,n
J=1,....m
eep

We easily see that Y g = w™"¢g, where w is the root sign of .

2.2 Extension of scalars. Let us consider a F-field K (I mean that u lies in the
multiplicative group of ). In this situation we have the following functor:

VoKV, P - Vetk.

It is easy to see that the following lemma holds.

Lemma 2.2.1. (:) The functor V = K @ V is a functor of tesor categories;
(12) if w = —1, then
K@AV =AYEK@V).

Remark 2.2.2. (a) Let E: 0 - A - B — C — 0 be an exact sequence of finite
objects of Py The same sequence E | considered over F, is not exact. One can
see that, after @ -multiplication by I{, the sequence of K-vector spaces K @ E has
a homology Hy (F) in the middle. Although a homology H(E) of E itself is not
defined, Lemma 2 shows, that det H(E) = 1 and dim H(E) = 0 (mod N). It is
interesting to introduce some structure on the vector space Hi(E), which would
reflect a "triviality” of the space. It seems that the structure should arise from
special bases of K @ A, K @ B, K ® C, related to the additive structure of A, B,C.
I mean bases, related to characters of those groups in the multiplicative group of
K.

(b) Each V € P gives a functor I - K @ V. We can extend the category P,
considering functors with appropriative properties as new F-spaces. The functor
K — Hi(F) shows that there exsist really new F-spaces.

3. ABSTRACT SYMBOLS

3.1 Symbols (A|B) and [4|B]. Having Lemma 2.1.2 we can follow the paper
[ACK].

Let us fix V € M,;. Below we use the termin "subgroup of V” instead of
"subobject of V".

Definition 3.1.1. Let A and B be subgroups of V. We say that A and B are
commensurable and write 4 ~ B, iff there exists a subgroup C C (4 N B), such
that A/C and B/C are finite and free.
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Lemma 3.1.2. (z)} If A ~ B, then one can take AN B itself instead of C in the
definition 3.1.1;

(it) the relation A ~ B 1s an equivalence.
Proof. That follows easily from Lemma 2.1.1,(z2).

Definition 3.1.3. Let A ~ B.
(z) Put [A|B] = dim(A4/(A N B)) — dim(B/(A N B)) (mod N).
(i1) Put (A|B) = det(A/(AN B)) @ det(B/(A N B))*.

Lemma 3.1.4. Let C be a subgroup of (ANB), A~ B ~ C. Then there is a

canonical 1somorphism

(A|B) = det(4/C) @ det(B/C)*

Proof. Cosider the following exact sequences:

E :0-(ANnB)/C = A/C > A/(ANB) =0,
and

E,:0-(ANnB)/C - B/C - B/(ANB) = 0.

Lemma 2.1.2,(17) gives the canonical isomorphisms:
¢p, det((ANB)/C)@det(A/(AN B))> det(A/C)

é, : det((4 N B)/C) ® det(B/(A N B))= det(B/C)

So we have the isomorphism ¢p, ® ¢%,
det((ANB)/C)®det(A/(ANB))®det((ANB)/C)*@det(B/{ANB))* = det(A/C)®det(B/C)*.

After a reduction of the left hand side we have the isomorphism to be constructed.

3.2 Properties of the symbols (A|B) and [A|B]. Below we write [; - [; instead
of [} ® 3 and [~! instead of {*, where {,[2,] are one-dimensional F-spaces. By 1

we denote the standart one-dimensional spase, namely F itself.

Lemma 3.2.1. Let A, B,C be subgroups of V; A ~ B ~ C.Then there are the
canonical isomorphisms:

(a) (A|A) =1,

(1) (AIB)(BIC) = (A[C);

(c) (AlB) = (B|A);

(d) 15 : (A|B)>(fA|fB), where f is an automorphism of V. Besides, 15 = 1
in the case A = B, if we identsify (A|A) and (fA|fA) with 1.

Proof. (a) is obvious, (c) follows from (a) and (b).
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(b) To construct the isomorphism of (b) put D = ANBNC. Using Lemma 3.1.4,

we can write
(A|B)(B|C) = det(A/D)(clet(B/D)"l)det(B/D)(det.(C'/D))_l

After a reduction of the right hand side we have , by the Lemma 3.1.4, just (4|C).

(d) Put D = AN B. The automorphism f gives the following isomorphisms:
det(A/D) = det(fA/fD) and det(B/D) = det(fB/fD), which give the obvious
isomorphism 2.

By the same way we obtain the following lemma.

Lemma 3.2.2. Let A, B,C be subgroups of V; A~ B ~ C.Then
(a) [A|4] =0 (mod N);
(b) [A|B]+ [B|C] =[AIC] (mod N);
(c) [AIB) = —[Bl4] (mod N);
(d) [A|B] =[fA|fB] (mod N), where f is an automorphisin of V.
3.3 Symbol {f,¢}. Let us fix a couple A C V of objects in M.
We denote by GL(V, A} a set of all the automorphisms f of V,st., A ~ fA.
Let f and g be two commutating elements in GL(V, A). Consider the following
diagram Da(f,g) (or DY (f,9)):

(AIFAYFAIFg A)(AlgA) ™ (gALFgA) ™ 220 (A FA)(AlgA)(AlgA) ™ (AlfA)™

! d

Here ¢y and ¢ are the compositions of certain natural convolutions of the types
(b) and (¢) from Lemma 3.2.1.

Definition 3.3.1. Let f,g € GL(V, A). We set

{f.a}=voaop™.

Here {f, g} is the automorphism of the one-dimensional space 1, i.e., an element of
F. If necessary, we use the notation {f, g} 4 or {f,¢}% to emphasize the dependence
of {f,g} on A and V.

Remark 3.3.2. A N.Parshin explained to the author the paper [AC K] using follow-

mg drawings (maybe, they will help to a reader):

(fAlgSA)

fA f9A
(AIfA)T l(yAIng)"
A ¢ gA

(AlgA)—?
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The diagram is "commutativ”, because the both triangles are ”commutative”
(Lemma 3.2.1 (b)), and the cycle gives just the upper left hand corner of the
preceding diagram. Two following arrows give an automorphism of the cycle:

* * .
(AIfA)T ¢ = T(yAIng)
* *

, and
« (fAIfgA) «

T

*o—— *
(AlgA)

. This automorphism coincides just with the symbol {f,g}.

Lemma 3.3.3. Let h be an automorphism of V, such that fh = hf,gh = hg,B ~
A, where B = hA. Then

{fa.‘]}A = {f,g}B.

Proof. 1t is enough to construct an isomorphism of the diagrams Da(f,g) and

Dg(f,g). This isomorphism is given by i, @ 1, @1}, @ 1}.

Proposition 3.3.4. Let f, g,h be avtornorphisms of V, s.t., fg=gf,gh = hg,hf =
fhand A~ fA~gA ~hA. Then

@O{f, 9} =19, /375

(@) {fg,h} = {f,1:}{g, }.

Proof. (1) follows immediatly from the definition of the symbols.

(22) Consider a diagram D = Du(f, h) @ Dsalg,h). T mean, that we take the
tensor product of the objects and the morphisms on corresponding plases of the
diagrams. It is enough to demonstrate that D = D4(fg, h)(then Lemma 3.3.3 will
give the needed assertion).

Let us point out here only the natural isomorphism of the upper left hand corners
of the diagrams.

By a certain sequence of natural convolutions we obtain the following isomor-
phism:

(AlfgA) fgAlfghA)(fghAlhA)(hA|A) =

-
” ™~

(AlfA)(FAIfgA)(fgAlfghA) (ol AlfRA)(FRA|fA)(fAIFRA)(fRAIRA)(RAIA).

The product on the left hand side gives the upper left hand corner of the diaram

Da(fg,h). The product on the right hand side being under the bracket gives the
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upper left hand corner of the diaram Dsq(g,h) . The product of the four others
symbols gives the upper left hand corner of the diaram D4(f, k).

3.3.5 Remark. Maybe, the following drawing(like those in Remark 3.3.2) will be
useful to understand the preciding proof.

4, tgh

—
—~ |
e l
\ e
| o (»’5/\
v_— "

The cycle A = fgA = fghA = hA — A from the diagram D4(fg, h) splits in the
composition of two cycles A - fA — fhA - hA - Aand fA - fgA = fghA —
fhA — fA from the diagrams D4(f, 1) and Dya(g, k), correspondingly.

3.4 Symbols sign(f,g) and < f,g >. Let f,¢,A be as in 3.3. We set

sign(f, g) = wiAlfAllAls 4],

< frg >=sign(f,9) - {f, 9}
If it is nesassary to indicate A explicitly, we write sign(f,g)4 and < f,g > 4.
Proposition 3.4.1. Let f,g,h € GL(V,A), fg=gf,gh =hg,hf = fh. Then
(1) sign(f, g) = sign(g, f)7";
sign(fg, k) = sign(f, h)sign(g, h);
(1) < f,g >=<g,f>7Y
< fg,h>=< fih><g,h >.
Proof. This follows immediatly from Lemma 3.2.2 and Proposition 3.3.4.
Remark 3.4.2. It easy to see that the symbols {*,#}, sign(*,*) and < *,* > do

not depend on V. This means that for a space W, s.t.,V C W, all the symbols
constructed by the couple (V, A) coincide with those constructed by (W, A).

3.5 Inclusion - exclusion property.
Let A and B be two subgroups of V; f,g € GL(V,A)NGL(V,B), fg =gf.

Proposition 3.5.1.
<fig>a-<frg>B=<f,g>a+B < f,9>anB

Proof. The proposition is proving by a direct calculation, exactly in [ACK]. One
should permanently use Lemma 2.1.1, Lemma 2.1.2 and take into account that the
isomorphism det A @ det B = det(A @ B) from Lemma 2.1.2(:2) depends on the
order of the couple (A, B)(see Remark 2.1.3).
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4. SYMBOLS OF CLASS FIELD THEORY

4.1 Hilbert symbol. Let K be a finite extension of Q,, v : K* — Z the corre-
sponding valuation, O is the ring of the integers in I, 9 is the maximal ideal of
O, F, is the residue field.
Let p C K*; (N,p) =1, where N is the order of u. Let d = dimF, = (¢—1)/N.
Let us take V = K, A = O. Let f,¢g € K'*. The multiplications by f and g give
operators on V. The condition (N, p) = 1 implies that A ~ fA. So we have defined

the symbols {f,g},sign(f, g) and (f, g).

Theorem 4.1.1.
(i) [AIfA] =v(f)-d, sign(f,g) = w (D@L,
(5) {fr9} = ("9 /g" D) (mod ),
(122) < f,g > s the classical tarme Hilbert symbol.

Proof.

(1) is easy,(i1) follows from (1),(#:) and the stadart formula for the Hilbert
symbol(for example see [Se]).

(#7) In view of the Proposition 3.4.3 it is enough to consider only the cases:

(a) f and g are units in O,

(b) f =7 is an unit in O, g = 7 is an uniformizing element of O.

The case (a) is obvious. To proof the case (b) consider the diagramm D(n, 7)

from 3.4 in our case.

1@ detF, @ (detF,)™' @1 ¢ 222" | @ detF, @ (detF,)™! @ 1

o] |e

The operator i, is equal to 1(see 3.2.1,(d)). Let z1, ..., x4 be a bases of Fy, 77 be the
residue of n (mod 7). Let us write the diagram in terms of the bases.

101, @14 -
1@ (AT A o Afjeg) @ (i A Azg) @1 ——— 1Q(z1 A Axg) @ (i A Azg) ' @1
r

o] I

.,.—ld 1
By the definition 3.3.1 we have: {n,7} = 7%

4.2 Weak reciprocity law. Let i be a number field, O be the ring of the integers,
i C K.
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Theorem 4.2.1. Let f,g € K*. If f and g are prime to N (this means that vy(f) =
vp(g) = 0 for each prime divisor p|N ), then

Il < f.9 >p=< f.9 >0,
p

where p runs over all the prime ideals of O. Here < f,g >, denotes < f,g >§:,

where K, is the p-adic completation of K and O, 13 its ring of integers; the symbol
< f,g >0 denotes < f,g >g .

Proof. Let V be the space of all the finite adels of K, A = Hp Op be the space of all
the integer adels. Let us to apply Proposition 3.5.1 to the couple A and B = K(the
condition of the primity of f and g to N does all the symbols correctly defined).
We have:

< f,g>4 < f9>F=<fg >Zn1{ < fLg> 0k

Remark 3.4.2 shows that < f,g >y.=< f,g >¥, and the latest, obviously, is equal

to 1. The same remark shows that < f, g >K0K=< f,g >5, because ANK = O.

Besides, V = A + K(for example, see [L]), and , consequently, < f, g >K+K= 1.
To complete the proof we should verify, that

<fig>s=]l<fg>-
P

Let S be the support of the divisors of f and g. Let us write

A= HOP X A’,
pES

where A’ is the ring of all the integer adels without the S-component. Applying
Proposition 3.5.1 several times, we see that:

Vv . v v
<fig>h=1] < f9>8, < fia>4 .
peES

By Remark 3.4.2 < f,g >X._=< f.g >4., and, this is equal to 1. By the same
remark < f, g >gp=< fig >g: .
Remark 4.2.2. (a) The symbols < f,¢ >, for p|N are correctly defined in the prod-
uct of Theorem 4.2.1, because the p-components of all the finite groups, involved
into the constructions of the symbols and the proof of the theorem, are trivial( f
and g are invertible (mod N)). By the sme reason the symbol < f,g >,=1 for
p{N and does not coincide with the Hilbert symbol.

(b) An absense of a good theory at divisors of N and at archimedian points does
not allow us to prove the classical reciprocity law by the same way as it is done in
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[ACK] for the geometrical case. In fact, to prove the classical reciprocity law we
should verify that

11590 =< f,9>5",

PIN
where (f,g)p 1s the Hilbert symbol. For example, in the case K = Q we should
verify that for two odd integer m and n

(_1)(1:1—-1)/2-(n—1)f2 =< m,n >z .
For an arbitrary /i similar formulas are much more complicated (see [FV]).

5. CATEGORICAL APPROACH

Here we sketch in brief a more categorial approach to the symbols introduced in

Sec. 3.

5.1 Category L. We consider instead of the universum V from 3.1 and 3.2 a
category £, whose objects we naue as line bundles on an one-dimensional spase X
and whose morphisms we name as meromorphic morphisms . Let F' be a constant
“field”. Namely, we deal with one of the following situations:

(@) Geometric case: here X is a connected riemannien surface, the words mero-
morphic morphisms should be understood directly, F = C is a usual field.

(b) Algebraic case: here X is a smooth unreducible algebraic curve over a usual
field F, meromorphic morphisms are the rational those.

(¢) Arithmetic case: here X = Spec(O), where O is a localisation of the ring of
the integers in a number field ; F is the union of {0} and the group p of all the
roots of unity in O(in this case F is not a field). We assume that N = Cardp is
invertible in O.

In all these cases we cau consider instead of X also formal subschemas of X
and non-connected spaces. It is useful, if we deal with coverings of X. Next
constructions can be transfer to this case by an obvious way, and we will not

discuss these cases here.

5.2 Divisors. In all the cases we have a theory of divisors. Namely, we have the
notion of a divisor; for each morphism f : L; = L2 we have a divisor div f; for

each divisor D and each line bundle L we have the line bundle L(D):
U, L(D)) ={s:0Oly = Ly |divs+ D 2 0}

and the meromorphic morphism 1;, p : L = L(D),s — s.

5.3 Symbols Det and Ind. Let us consider a £-morphism

fiLl—)Lg.
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Let div f = DT — D~, where DT and D~ are effective divisors with disjoint sup-

ports. Then we have the folloving sequence:
Ly(D*) 4 L L Ly,

where g = (1, p+)~'. It is easy to see that, in fact, the morphisms g and fo g are
holomorphic. So we can put

Det f = det coker(g o f) & (det coker(g))*;

Ind f = dimcoker(g o f) — dim coker(g).

Let us link the symbols Ind f and Det f with the symbols of Sec.3.

We take the ring of adeles or the algebra of meromorphic functions on X as V.
Let L; and L, be two line bundles with trivialisations in all the general point of
X. In this situation there are two fractional ideal A and B in V, corresponding to
L, and L,. Also the quotion of the two trivialisations gives the meromorphic map

f Ly — Ly, We have:
[A|B] = Ind f (in the case (c¢) only (mod N));
(A]B) = Det f,

where the left hand side symbols are defined in [ACK] for the cases (a) and (b) and
in 3.1 above for the case (c).

5.4 Symbeol < f,g >.

It is clear that each holomorphic isomorphism f : L; — Lg gives a certain
isomorphism ¢ty : Det 1, p — Det 1., p.

Let us fix two meromorphic functions f, g and a line bundle L. Let Dy = —div f,
Dy = —divg. It is easy to see that the morphisms of the multiplicstion by f and
g give the holomorphic isomorphisms:

f:L— L(Dy) and g:L;)L(Dg).

Exactly as in 3.3 we consider the following diagram:

LoLel el t2% | gLer @l

[+ d
1 1
where {} = Det 1y p,; I = Det 11(p,y p,; {s = Detly p,; l4s = Det 1(p,) b, -

Set: {f,9}% =voaogp™! and < f,¢g >k= w“"{f,g}g’(, where ¢ = Ind 1 p,;
b=1Indly p,; w = —1 for the cases (a),(b) and w is the same as in Sec.3 for the
case (c).

It is easy to see that the symbol does not depend on L and coincides with
< f,9 >r(x,0) from Sec.3.
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5.5 Mayer-Vietoris property. Let U,V be two open subsets of X. The inclusion-
exclusion property from 3.5 becomes

<fag >UUV:<fag >U'<f:g>v <fag >Zlfl‘1v

The weak reciprocity law from 4.2 hecomes
Il < f.9>e=< fg>x,
r

where z runs over all the points of X; < f,g >,=< f,g9 >vu,, Uz is the formal
neighbourhood of & in X.
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