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CONFORMAL GEOMETRY OF THE IRRATIONAL ROTATION ALGEBRA

PAULA BEAZLEY COHEN

end

ALAIN CONNES

Abstract: In this paper we shall show how the non-unimodu1arity of the volums element

of a non-commutatlve torus, endowed with Hs canonical conformal structure, affects the

formu1a for the value at the origin, ~(O), of the zeta function on this torus. Using in a

critica1 manner the adaption of the pseudo-differentia1 calculus to this simplest example

of a non-commutativs Riemann1an manifold, ws givs a general formula for C(O). Instead

of vanishing, this computed value involves modifled logarithms of the modular operator. In

order to concentrate on the computational aspect, we bypass in the present version of this

paper the 1mportant task of casting our discussion of eonformal strueture within the

framework of the theory of positive cyel ic cohomology.

§ 1 Prelim1nar1es

Recall that for a class1cal Riemann surfaee L. with metrie g, to the Laplaeian og=d*d,

where d 1S the de-Rham differential operator acting on the Riemann surface , ane

associates the zeta funcUon

t(s) = L. Aj! , Re(s) > 1,

where the summation is over the non-zero eigenvalues Aj af 0g, The meromorphlc

eonUnuation of 1:(s) to s=O, where it has no pole, gives the important information

t(O)=(1/24n)JL:.S - card{jl)..j=O}=(i/12)C,(L.), (i=..;'(-l)),

where S 1s the sealar curvature and

c,(L:J =( 112 n i)Jr aa log(g)

the first Chern number (= Eu1er-Poineare eharaeteristic); this vanishes when L is the

elassiea1 2-torus (R2 /71. 2
, for exampls, and is an invariant within the conformal cless of

the metrie, that is under the transformation 9~ efg for f a smaoth real va1ued funetion

on L:.. Moreovsr, rece 11 that one may defi ne the deter minant of the Lap1acian Og by

log det Og = - 1: I (0).
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Now fix a real irrational number 8. The dynamical system given by an irrational rotation

of the circle S1 is embodied in the C*-algebra Ae. That is, one has both an action of the

group 71. and of the algebra C(S 1
) of continuous functions on S1 given by

[1] fes) = f(s-8) (irrational rotation)

[e2fT1'] fes) = e2rr1'f(5) (regular representation)

for a11 f in C( 51
). These operet ions do not com mute; 1nstead, one has

[e2"I']( 1] =e2"i6( 1][e2"I,].

We may represent these actions on a Hl1bert space by pass1ng to :U=L 2(IR), the

completion of the algebra of corn pactly supported functions on IR wHh respect to' the

inner product

<f ,g> = JlRf(s)g(s) ds,

which contains the subspace S(IR) of functions cf rapid decay. One def1nes the following

operators on elements t:=~(s) of S(IR):

(Ut)(s) = t(s-B)

(Yt:)(s) = e2ni't:(s)

These operators satisfy

VU = e2rrieuv, U* = U- 1
, Y* = y- 1

,

The norm closure of this algebra 1s the C*-algebra Ae. Notice that if we replace 8 by

zero, U by e2rrix and V bY e2ni
l,l in the above defi nH ions ws recover the e1gebre of

continuous functions on IR 2 /71.. 2. If one wishes to express the elements of Ae es certain

ser1es

~ a(n,rn)U"ym
, a(n,rn)E(,

where the summation 1s over the elements (n,m) of 7l 2
, one finds by d1rect computation

using the commutat10n relations that the C*- algebra norm 11 1I of the above series 1s

Qiven by the num ber

sup{[,lb(p,q)12
1 b(p,Q)=[,a(n,m)e2ninret(r ,s) ,[,lt(r ,s)12= 1}.

Clearly the C* cr continuity cond1tion is hard to control 1n terms of the coefficients. On

the ather hand, the smoothness condit10n 1s easy to control in this way. Ta see th1s, we

introduce another dynam ical system given by the action of T2 = {ZE C1 121= 1}2 on A6 by

the l-parameter groups of automorphisms {as}' {ßl } determ ined by

a,( U) = exp( 2rr 1s)UI a,(Y) =Y , (SE IR),

f\ (U)=U, ßl (V) =ex p( 2Tl it) V, ( tE IR) .
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We defi ne the sub-algebra A~ of smooth elements of Aa to be those x in Aa such that

the mapp i ng IR2
-. Ae

(s ,t) 1-. ets ßl (x)

between Banach spaces ls smooth. Expressed as a condition' on the coefflcients, this

1mposes that they be of rapid decay, namely that {fnlk ImlQ la(n ,m)l} be bounded for any

positive k, Q. The derlvations associated to the above groups of automorphlsms are given

by thei r action on an element a of Ae as follows

8't(a)=lim c_ 0(cx/a) - a)/E,

62(a)=lim c_ o(ßc(a) - a)/E,

so that ans has the defining relations,

6,(U) = 2niU, 61(V) = 0,

82 (U) = 0, 82(V) = 2n iV.

The derivations 81 ,8 2 are analogues of the differential operators aliJx, iJlay on the

smooth funcUons on [R2 /71 2. One also has inner derivat10ns arising from commutators

whieh are tr1vial 1n the eommutative ease. These are the derivations assoeiated ta the

1-parameter fam i1 ies {al}' ,tE IR, of 1nner automar phisms

a
l
( x) = e-ifl X eifl

far f = f* a non-eonstant self-adjoint element of A~ . The derivation corresponding to

thlS last group is given by i log 6. where

6.(x) =e- f x ef

and

. (log 6. )(x) =[x,f], XE A~.

As 8 is supposed irrational, there is a unique trace 10 on Ae determined by the

orthogonality properties

10(Unym)=O if (n,m);:e(O,O),and 10(1)=1.

We can canstruct a Hilbert space ~o from Ae by completing with respect to the inner

prdduct

<a,b>=1 0(b"a), a,bEAe,

end usi ng the der ivat ions 8, ,8 2 ' i ntraduce a cam plex str ucture by defl ning

a= 6,+i82 , a*= -6,+ i82

wher~ (extending a, (}* to unbounded operators on ~o) a* 1s the adjoint af a w1th

respect to the inner product defined by 10' As an appropr late analague of the space of
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(1 .O)-forms on the elassieal 2-torus. WB propose that one takes the unitary bi-module

over Aa
oo given by the elosure of the spaee of f1nHe sums [,a ab, a.bEA;a, with respeet to

the inner produet (or metr1e 1n th1s context) given as above by

<aab ,a'ab'> =10«e' )*a(abHab' )*). a,a' ,b ,b' EA;a.

Then. in order to 1ntroduee the eonformal class of ametrie we eonsider the fam lly of stetes

tp=tpf' f=f*EA;a, defined on Aa by

~(a)=10(aef), aEAa .

Note that, whereas for 10 we have the traee relation

1o(b*a)=1 0(ab*), a.bEAa·

for tp we have

tp(ab*)=~(b*efae-f)=tp(b*a.J(-l )(a)), aEAa.

We define the 1nner produet ( , ) on Aa by

(a,b)=~(b*a), a.bE Aa.

V1ewed as ametrie within the same eonformal elass as < • > determining a elosure :.uf of

the spaee of finite sums [,aab. a.bEA;a , we see that

«ab)k.(ae)k>=(ab.ae), b, eE A;a.

where k=ef/2
, so that the appropriate eorreetion to the operator a is ka, where here right

mult1plieation by k 1s understood. With these remarks in mind, for an invert1ble

non-eonstant self-adj01nt element k of AC;, we introduee the correet10n

D=(k a)(k a)*=kok.

to the Lap laeian

0= aa* = - (5~ +6~) ,

It is the dependence on k in the eomputat10ns of the behaviour ef the zeta funetion of D at

the origin that will feature in what fellows.

§2 Statem ent of the theorem

With the notation of § 1, WB study the Laplaeian zeta function defined for Re(s» 1 by the

Mellin transform

~(s)=( 1I[(s)) J; Traee+(e-LD )t!l-l dt=Traee(D-!I),

where O=TT*, T=ka. and

Traee+( e-LD ) =Traee(e-LO
) - Dim Ker(T) ,
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where by Trace(.) we understand the ordi nar y trace of the operator. The definition of

~(s) can be extended by meromorphic continuation to all values of s, barring s= 1 where

the function has a simple pole. We now state the main result.

Theorem: Let B be an irrational number and k a self-adjoint non-zero element of Ar;.

Then the value at the origin of the zeta function ~ (s) of the operator D= kOk lS g1ven by

where

h(B,k) =(n/3)k- 15j8j(k) - (2n/3)k- 18j(k)5 j(k)k- 1 + (2n)21 1 (k- 15j(k))Sj(k)k- 1

-(4n)21
2

( 1+6. 112)(k- 1S.(k))8.(k)k- 1 + (2n)21
3

( 1+26 112 +6)(k- 18.(k))8.(k)k- 1
.

1 1 1 1

Here, sum mation of repeated indices over j = 1,2 i s understood end 21 m' m a posit lve

integer, stands for the modified logarithm

f)m =(_1)m(6._1)-(m+t){10g6 - L.~=1((-1)(j+t)/j)(6-1)j). ace

As poi nted out in § 1 , in the com mutative case the correspondi ng va 1ue for the zeta funct ion

at the or igi n i s zero.

§3 Pseudo-dffferent1al calculus

WHh the notat ion of the precedi ng sect ions I we i ntroduce in the present one the notion of a

pseudo-different1al operator given the tri ple (A;c ,5 t ,8 2 ), See also [8]. Fi rst of a11 , for a

non-negative integer h. we define the vector space of differential operators of order at

most h to be those polynom ial expressions in 81,52 of the form

P( 81I 62 ) =L.U I :!;; haj 6;1 6~ , aj EAr;. j =( j 1,j 2 ) E 7l. ~o. Ij I=j 1+ j 2.

Ta extend this definition, let 1R 2 be the group dual to 1R 2 and introduce the class of

operator valued distributions given by those complex linear functions P: COO (1R 2)-+ Ar;

which are continuous with respect to the semi-norms Pj j determined by
1·2

Pi 1.i2(P(qt)) = 116;1 6~(P(ljJ))II, i 1,i2E7l~o, ljJEC
OO

(1R 2 )·

We use the notation Y1= e2rtit 1'Y2= e2rti~2'~=(~1 '~2)EIR2, for the canonical coordinates of

1R 2, and 01=ola~ l' 02=010t2 for the correspondi ng derivat ions. An examp le of an operator

valued distribution is provided by the 6-function 5=6(~) which has the formal Fourier
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series

representing and determlned by Hs value on Fourier expansions of elements of COO (lR 2).

We may now 1ntroduee the algebra of pseudo-differential operators via the algebra of

operator va1ued symbo1s.

Definition: An element Q=QOJ=Q(~11~2) of C
OO

(!R 2, Ar;) is a symbol of order the

integer h 1f and on1y 1f for a11 non-negative i ntegers i 1 ,1 2,j 1,j 2

P;1.i2(a;1 a~ Q(~)) ~ e( 1+1~l)h-Ul,

where c 1s a eonstant depending only on Q, and if there exists an element k=k(~l '~2) of

COO(lR z-{ 1,1 }, A;o) such that

llmA_ooA-hQ(A~l ,A~2)= k(~11~2)' DDe

We denote the space of sym bols of order h by Sh' the union S=U hE71 Sh form lng an

algebra, Symbols of non-integral order are not required for th1s paper. For integers n,m

set Bnm=Bnm(~)=B(~1-2nn'~2-2nm), An example of a symbol of order h a posHive

integer is provided by the pol ynom ial Q(~) =L:ljl~ha/ i )ljl~; 1~~ I ajEA:, and one has

Bn.m(Q)=[IjI~ha/2ni)Ulnjlmj2 so that Bn.m(Q)Unvm=L:IjI~hajB;lB~(UnVm). For an element

a= L:n,ma( n ,m) Unym of AC; one therefore has L:n,m Bn,m (Q )a( n ,m) Unym = L:Ul~hajB; 151( a) I

associating to the symbol Q the differential operator Po=P(SlIB2)=[IjI~haj 5~16~ on AC;.

Indeed, for ever y integer h I a sy mbo1 g of that order determ1nes an operator on AC; via

the map W: Q1-. Po given by the formula

P/a)= L:n.mezz5n,m (g)a( n ,m )U"ym, a=L:",ma(n,m )U"ym,

For example, the image under \V of the symbol (1 +1~12)-k ,k~ 1, of order -2k aets on Ar;.

Def1n1t10n: The space 4J of pseudo-differential operators 15 glven by the image of the

algebra S under the map \11. DeD

Def1 n1t ion: The equivalence Q-"Q' between two sym bols Q,g' in Sk' kE 7l., holds if and

only if g-Q' is a symbol of order h for a11 integers h. DDD
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Definition: The class cf pseudo-differential operators is the space \jJ modulo addition by

an element of \jJ(Z) where Z is the sub-algebra of S with elements equ1valent to the

zero symbol. ceo

lt 1s possible to invert the map \jJ to obtain for each element P of l./J a unique symbol

a( P) uP to equiva1ence. Reca 11 from § 1 that the trace ""( 0 on AC; enab les one to defl ne the

adj oi nt of operators acti ng on Ar; via thei r extensi on to ::eeo"By di rect ana1ogy with [G] I

Chapter 1, Theorem I p 16, one may deduce the following result.

Proposition, For an element P of l./J wHh symbol a(P)=Q=Q(~) I the symbol of the

adjoint P* satisfies

a(P"')--Lo 1 )e(71 )2 (1/(l,)!(12)!)[ a~1 ai6~16t(Q(~))*],
1-2 ~o

If Q is an element of l./J with symbol a(Q)=Q'=Q-(~), then the product PQ 1S also in l./J

and has sym bol

a(PQ)--Lo 1 le(71 )2 (1/Cl 1)!12)!)[ a~1 ai(Q(t:))6~16i(Q'(t:))], ace
1-2 ~o

Notice that in the above Proposition as throughout the present paper I given symbols

(Q)J::o the relation Q--LJ::O Qj signifies that there exists a positive integer H such

that for a11 h>H , the difference Q-L~::oQj is in SkI for all integers k. The elliptic

pseudo-different ia1operators are thase whose sym bals fu 1fi 1the cr itereon wh ich foll ows,

Definition. Let h be an integer and Q a symbol of order h. Then Q=Q(t:) 1S elliptic if

it is invertible within the algebra COO(1R2.A;a) and if its inverse satisfies

IIQ (t:) -111 ~ c( 1+1t:I)-h

far a constant c dependi ng on 1y on Q end far 1t:1= (t: ~ +t:~) 1/2 sufficien tl Y large, eeCl

An example af an elliptic operator is provided by the Lap1acian O=-(6~+6~) on Ar;

introduced in § 1 which has the corresponding invertib1e symbol a(o)=1t:12
,
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§4 Understand1ng the com putat10ns

The argum ents ef th is sect ion are kept br ief, bei ng di rect ana1ogues of standard ones.

Bearing in mind the definition of the zeta function given in §2, we observe that by

Cauchy's form ula we have

e- lO =C1/2nnfc e- lA (AI_D)-l dA

where A lS a complex number but not real non-negative, and C enclrcles the

non-negative real axis in the anti-clockwise directlon without touching it. One then

obtains a workable estimate of (AI_D)-1 by passing to the algebra of symbols. Using the

definition of a symbol, ane can replace the trace in the formula far the zeta function by an

i ntegrat1on in the sy mbo1 space (argu ment al eng the diagona1) , nam e1y ,

t: (s) =C1IrCs) )f~f l 0 ( a(e-l0
) ( t) ) t'- 1dt dt.

The function fes) has a simple pole at s=O with residue 1 so that,

L: (0) =Res,::of~flO (0 (e-LD
) (t) H,-l dtdt.

Just as in the arguments em ployed. in the derivation of the asymptotic form ula (see for

example [GD,

flo(a(e-
LD

) (t))dt ........ t- 12::::0 B2n(D)tn
, t~o+ I

one may appeal to the Cauchy form ula quoted above. In particular, if BA denotes (a chosen

approximatlon) to the inverse operator of (AI-D), its symbol has an expansion of the

form

o( B») =o( BA)( t)=bo( ~J +b 1(t) +b2(~)+.. ,

W here j ranges over the non - negati ve i ntegers and bj OJ =b/ t ,}..) isa sy mbo1 of order

-2-j, As we shall explain at more length in §S, these symbols may be calculated

inductively using the symbol algebra formulae beginning with bo(t)=(}..-k2ItI2)-1 which

is the principal (highest homogeneous degree in t) symbol of (AI_D)-l, It turns out that

t: <0) equals the coefficient of }.. -1 in fLo< b2( t))dt. By a homogeneity argument one has

in fact
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§S Computational proof o( the Theorem

Following on (rom the arguments o( §4, by homogeneity there is no loss of general1ty in

placing >--=-1 throughout the computation of t(O) and mu1tiplYlng the final answer by

-1. The problem is then to derive in the symbol algebra a recursive solution of the form

0' =bo(~) +b, (tJ +b2(tJ +... to the equaUon

0'.(0'(0+1))= 1+O(I~r3).

The accuracy to order -3 jn ~ on the right hand side is in practice sufficient as we are

only interested in evaluating 0' up to b2(~)' Throughout this section the convention of

sum maUon over repeated indices in the range i,j = 1,2 is observed.

Lern mal: The 0 per at0 r D has symbol 0' ( 0 ) =a2( t: ) +a, ( t: ) + a0 ( ~) where, with

summation over repeated indices in the range i= 1,2, one has

a2=a2(~) =k2tj~i

a1=a, (~J=2tj( k6 j( k))

ao=ao(~)=k6 j6j ( k).

These expressions are derived by apply1ng the produet formula within the algebra of

symbols given in ProposHlon §3 to 0'1 (t:)=t:jt j and O' 2(t:)=k and then mu1tiplying on

the left by k. CCC

Ta begin the inductiV'e calculation of the inverse of the symbol of 0+1, set

b0=b0( ~ ) =(k21 t'I 2 + 1)- 1 _ ( 2)

and eompute to order -3 in ~ the product bo .((a2+ 1)+a, +ao)' By singling out terms of

the appropriate degrae -1 in ~ and using the Proposition af §3, one obtains

b,= -(boa,bo+dj(bo)8j(a2)bo) _(3).

Inasimilarfashion,collect1ngtermsofdegree -2 in t andusing (3) aneobtains

b2=-( boaobo+b 1a, bo+oj(bo)6 1(a 1) bo+dj( b, )6 j(a2)bo+( 112)opj( bo)6j6/a2)bo) _( 4).

It is extremely useful during the computation to exploit the fact that in the target formula

far ~(O) given in (1), §S, one invokes the trace, so that members of the faeters of the

individualsummands may be permuted cyclically without lass of generality for the

answer. Moreover, using integration by parts with respeet to ~ the expression

dj(b,)6 j(a2)b o may be replaced by -b,(oj6j(a2)bo+8i(a2)oj(bo))' Ons may therefore
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wHhout loss of generalHy replace the r1ght hand slde of (4) by the sum of the following

list of nine symbols,

- (l) -b~ao (1l) b~a1boa1 (;11) bOai(bo)6j(a2)boa1 (lV) -bOai(bo)Sj(a 1) (v) -b~albOdjSj(a2)

(vl) -dj(bo)boalboSi(a2) (vii) -bOdj(bo)Sj(a2)bOdjSj(a2) (vnl)-dj(bo)d/bo)S/a2)bOSj(a2)

(ix) -( 112)bodid/ bO)SiS/a2)'

By form u1a ( 1), one then has to sum the 1ntegra1s of each of these ni ne ter ms over the

whole E:-plane. The full details of the computation are lengthy end to include them in the

present article would make the reading of the document tao cumbersome. It is worth

commenting howevsr that ~he lntegrands in the expression fb2(E:,-1) d2~ which depend

upon ~ are rat iona1 fu nctions whose denom inators 1nvoke on 1y power s of (k 21 ~12 + 1) and

whose numerators invoke only powers of kl~I, In the commutative case (k=l), the

computation invarlably reduces to terms involving integrals of the form

Im =f~ vmI(v+ 1)m+2dv= 1I(m + 1),

where m lS a posft 1V8 1nteger (i n praet iee one eneounters on 1y the range m:: 0 ,1 ,2,3). In

the non-com mutat lve case, when in partleu lar k and Si( k), 1= 1,2, do not com mute, the

computation reduces to terms involvlng eHher an integral Im or an integral of the form,

f~(k2mum/(k2u+1)m+1)(L)(1/( k2u +1))d(k2u)= (tJm .b.)(L), i=l,2, some LEA~,

where tJm =f~(Xm/(X+l)m+1)(1/(xb.+l)) dx,

1S in fact the modified logarithm function ~m defined in §2 in the statement of the

Theorem end b. lS the operator introduced in § 1.

These remarks invoke the following lemma,

Lemma 2: For 6vsry element L of A~ and every non-negative integer m one has,

f~(k2mum/(k2u+ 1)m+1)(L)( 1/(k2u+ 1))d(k2u) = (~m.6.)(L),

Proof: On affect i ng the change of variab les s':: loge u) +f one obtai ns

f~(k2mum /(k2u+ 1)m+1)(L)( 1l(k2u+ 1))d(k2u)

=f_:(em'/(es'+ 1)m+1(L)( 1I(es'+ 1)d(e!')

=f_:(e(m+112)s'/(e5 '+ 1)m+1)(b. 112(L) (e!'/2 / (e s'+ 1))ds'

=_ f_:( e(m+ 112)S' I( eS' + 1)m+ 1)(~ 112( L))f_:( eils'/(eTll + e- Tll ) dt ds'

:: - J oo(e(m+ll2)!'/(e!'+ 1)m+1)f oo(eil!'/(eTll + e-Tll)a (b. 1I2 (L))dt ds'
-00 -00 l

:: J_:<e(m+ 112)s' I (e!' + 1)m+ 1(e(s'+ log(.6.))12 I( e{s'+IOg(6) + 1)) ds' (6. 112(L))

=f~(xm/(x+l)m+1(I/(x6+1))dx(6(L))= (~m .6.)(L).
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Now for 6= 1 the integral tJm equals Im for every positlve integer m, On the other hand.

by lnspeetion one sees that tJm 1S of the form

tJ m=(em/( 6 -1 )m+ 1) (log( 6) -P(.6,)} I

where P 1s a polynomial of degree at most m. In the neighbourhood of 6= 1 one has

log(6 )= L. j :1( ( - 1)j + 1I j ) ( 6 - 1) j ,

and from the Hs value at 6= 1. where tJ m lS non-singular one sees from this last

expression that ~m lS the modified logarithm a>m introduced in §2 where,

~m=((- 1)m I ( 6 - 1)m+ 1) {log(6 ) - L.f:1( ( - 1) j+ 1I j) ( .6 - 1) j } .

This completes the proof of the lemma. eee

App1Ying these conslderat ions, we fi nd that the respect ive contr ibut ions of the enti re 1ist

of sum mands quoted above (w Hh A= - 1) is

(i) -nk- 1S,S.(k)
I 1

( i i) 2 n ( ~ 16 112) (k - 1S,( k)) S,( k) k - 1
I 1

(li;) -2n(a>2(61/2+6))(k-1s.(k))S.(k)k-1
I I

(lV) n (k- 1S.(k )S.( k)k- 1+k':" l S,S.(k))
1 1 I I

(v) -2n(~1(1+D.1/2))(k-1Sj(k))6j(k)k-1

(vi) 2n(a>2( 1+D. 112 ))(k- 16.(k))6.(k)k- 1
1 I

(vi1) 2n(a>2.6 1/2 (2+ D. -1/2+ 61/2))(k- 1S.(k))S.(k)k- 1
I 1

(viii) -2n(a>3 .6 112 (2+ .6 -112+ /).112))(k-'Sj(k))Sj(k)k- 1

(lX) - n 13(k- 1Sj( k)6 j( k) k- 1+k- 1SjSj ( k))

Sum mi ng the above one obtai ns:

(-n/3)k- 1SjSj(k) + (2n/3)k- 16j(k)6 j(k)k- 1 - (2n)~1 k- 16j(k)6 j(k)k- 1

+(4n)Q)2( 1+6 1/2)(k- 1Sj(k))6 j(k)k- 1 - (2n)~3( 1+2.6 112+.6)(k- 1Sj(k))Sj(k)k- 1, which

on mult1plication by -1 gives the result of the Theorem. Plaeing .6=1 in the above

expressio~ yields n/3(k-
1
Sj(k)Sj(k)k- t

- k- 16jSj(k)) which under the trace La glves

(-n/6) 6j6j(log k) and Lo(6 j(a)) appropriately vanishes for all a in Ar;.
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