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1. Introduction

In this paper we prove a removable singularities theorem for the
coupled Yang-Mills-Higgs equations over a two dimensional base

manifold M. This problem is local so at no loss of generality we
assume that M:Bid{O}, where Bi-{O} is the punctured 2-ball of radius
4 centered at the origin. We also assume that every connection has
some. gauge in which it is C1 over the punctured ball.

"Let M be a dqmain in R2 and 7 be a vector bundle over M
with compact structure group G C 0(n) and Lie algebra ©&. Let the
metric on G be induced by the trace inner product on 0(n) and let
n have a metric compatible with the action of G. Let d be
exterior differentiation, & its adjoint, and let [ , ] denote the
Lie bracket in @.

A connection determines a covariant derivativee D which within a

local trivialization defines a Lie algebra valued 1-form A by D =
d+A. On p;forms we have locally Dw = dw + [A,w], D*w = bw + *[A, *w],
where D‘ is the adjoint of D. We denote the curvature 2-form by F
and have F = dA + 3{A,A] in this local trivialization.

Gauge transformations are sections of Aut n which act on

connections and curvature forms according to the transformations:

-1 -1
AR = g7 Ag + g dg

F& g_ng ) .

The pair (A,F) 1is gauge equivalent to (A,F) iff there is a
gauge transformation g such that A=A% and F=7F .

We now follow [Sb2] exactly and define the Higgs field ¢ wusing
the determinant bundle. We denote by L the determinant bundle

raised to the %—power. Sections of this bundle are constant in a fixed



co-ordinate system but we have weight 1 under scale transformations.
The Higgs field ¢ 1is & section of n ® L. Therefore, in a

fixed co-ordinate system ¢ may be regardéd as a matrix-valued

function. Under scale charges y = rx, p(y) = 9%51 (ef.: [P] [SB21).
The Yang-Mills-Higgs equations are:

(YMH 1) D'F = [Dp,p]

(D 2) D'Dp = 5(|p{% - 1) ;

where A is a fixed real constant and where m 1is a section of L
constant in a fixed co-ordinate system but having weight 1 under scale
changes. Thus under the transformation y = rx we have m’/ = m/y.
The equations (YMH1,2) are thus invariant under the scale
transformation y = rx.

Certain norms are invariant under scale transformations. For

example ||p]| o 1is invariant and if ¢ is any p-form |}y| 2/p is
L L

invariant. We also have an important fact used in [Ul].

Fact [U1]
Suppose ¢ € p2/p with ||¢l] 2/p invariant. Then, given a
: L

2

domain D in R™ and < > 0 there is a metric 8o conformally

equivalent to the Euclidean metric in which on bounded sets in R2;

Ib|¢I2/p dx < 7.

This fact follows from conformal invariance and the continuity of

the LP-norms. See [UF] for details.

1.b. Statement of the Main Theorem

Now we state our Main Theorem:



Theorem M

Let M = Bi - {0} and let n be as above. Let A be a
connection on 1 that satisfies condition H(2), defined in section

l.¢c., Let F be the curvature form of A and let F be Cm over
M. Let (F,p) satisfy (YMH1) and (YMH2) over M. Let

1,.2
F € L (B4).
If A>0 let pe H;(Bi). If A<0 let pe L2*€(Bi) and
2
lim [ Lo} 0. Then, th ist ti
m T A s = . en, ere eX1sts a con lnuous'gauge
t=0 BllBt |x|210g2(%)

transformation such that (F,p) 1is gauge equivalent to a Cm-pair

over Bi and the bundle extends continuously to a bundle over Bi.

A theorem of this type was first proved by K. Uhlenbeck for the
pure Yang-Mills equations over R4 in [(U1]. Later Parker [P]
extended.the result to the coupled Yang-Mills-Higgs equations over

R*. Papers of L.M. and R.J. Sibner [SB1], [SB2], (SB3] proved similar
theorems for dimension 3 and for all higher dimensions. This paper
fills the two-dimensional gap in the literature,

We would like to thank L.M. Sibner for suggesting this problem
and C. Taubes for a useful abelian example suggesting that holonomy

would be important.

l.c. Auxiliary Gauges

Condition H

We wish to introduce a condition on the connection A that .
insures that the bundle is trivial over the punctured disk M above.
This condition is a "holonomy" c¢ondition. We call it condition H.

We use the conventions of [RKN1] Vol. 1 pg. 71-72. We first

define some useful paths.



Definition: Let £, : [0,1] » S; be given by £

R : t » (R cos 27t,

R

R sin 27t) with Si = {x € R2| [x|=R}. We say that <, is the

R

standard loop for S;.

Ly : t» (Rt,0). We call L, the standard ray.

Let L, : [0,1] » R be given by

For each R, let g(R) be the holonomy of A around the loop lR'

Definition 1.1.: The map CR : (0,41 » G given by R = g(R) is a

path denoted by CR.

Now, we define condition H(EK) and condition H.
Definition 1.2: (condition H(XK)): If as Rl0 the elements g(R)

considered as points on the carrier of the path CR approach the
identity element in the CK—topology we say the connection satisfies
condition H(K).

Theorem 1.1: The following is equivalent to condition H(1)

There exists a trivialization over a small ball BR - {0}, HR ,
’ 0 0

0 < R0 < 4 centered at the origin, in which the connection defines a

local co-variant derivative D = d+A, A = Ar(r,ﬂ)dr + Aa(r,ﬂ)dﬂ with

A(r,8), Ay(r,8) eT(8 & T (B, - {0})) and with lim Ay(r,8) = 0,
T (7 RO 50 [}

with the limit taken in the sup-norm topology on @.

Proof (122) Choose an orthonormal framing {vizr,ﬂ)} of n over the
ray {(r,0/0 s r g ¢}. Extend this to a framing {vi(r,e)} by parallel
translation around the circles JR. Then, Vavi =0, vi(r,ﬂ) =
vi(r,O)og(r,ﬂ) for some g(r,4) € G. In particular, vi(r,zr) =
vi(r,O).g(r) for some g(r) = g(r,27) € G. The hypothesis implies

that for small €, the element g(r) is close to the identity so that



g(r) = exp (h(r)) for some h(r) € 8. Let ¢ : [0,2x] > [0,1] be a
smooth function which vanishes near ¢ and is 1 near 27. Then
wi(r,ﬂ) = vi(r,ﬂ)oexp(—v(ﬁ)h(r)) is a smooth orthonormal framing of 7
i =

i

< Vawi,wj > =< [VG(VioeXD(*P(ﬂ)h(r))],Wj >=-¢'(9)h(r)5ij. Hence |A0|

over B2—{0}. In this framing the connection form is: (Aﬁ)

Sclh(r){ L0 as r | 0.

(2-1). This follows from standard O.D.E. estimates on integrating the

parallel transport equation for each horizontal lift of £ Q.E.D.

R

Remark 1.1.: Thus condition H(1) implies that the bundle 7 is
.. 2

trivial over BR - {0}.

0
1.b. The Auxiliary Gauge

We will give in Section 3 a gauge-independent proof that under the

conditions of Theorem M, the curvature F is actually in LP(BR) for
l1<p<wo if R 1is small enough, in any smooth gauge over BR ~ {0}.

This estimate, coupled with the existence of an “"auxillary" gauge in

which the connection form A is Lp - norm close to zero (flat

connection), will enable us to use a new gauge-fixing argument [U3] of
Uhlenbeck to build a Coulomb gauge over BR - {0}, bypassing the

original broken Hodge gauge argument of [Ul]. Thus this paper is much'
simplified compared to the author’s Max-Planck preprint [S] which
preceded it. .

In this section we construct the "auxillary” gauge and show that

the Lp - norm of the induced connection form is small.

Lemma 1.1.: Under the conditions of Theorem 1.1, let the

connection satisfy condition H(2). Then, there exists a local
trivialization in which the connection induces the local co-variant
derivative D = d+A, A::Ar(r,ﬁ)dr + Aa(r,ﬁ)dﬂ and we have:



. . d
lim A_(r,0) =0, lim A,(r,8) = 0, lim 5= (A, (r,8)) = 0.
0 T 0 4 0 dr ‘78

Proof: We start with the orthonormal framing v, over the standard
ray Lﬂ used in the beginning of the proof of Theorem 1.1. We use

this framing to give a local trivialization for the bundle restricted
to have the standard ray as a base space. The connection restricts and

we denote the restricted connection by Vr' This connection defines

{Z;(r,o)}; = < Vrvi(r,o), vj(r,O) >. Now we define g(r) € G as the

solution to: Q§L11 = ;X (r O)Q(r) g(R ) =1, 3 0 <R, <1. Now
. dr r ’ 0 ’ RO' 0 :

define Gi(r,o) = vi(r,O) o s(r).
Note that
A
ds(r)
T

~ i o= - Al T AL ALl
{Ar(r,o)}j.- <Vrvi(r,0),vj(r,0)> =3 (r)Ar(r,O)s(r)+s (r) ]

and thus; lim {K(r,o)}% =0 = lin < VrVi(r,O), v.(r,0) >.
-0 ] -0 SRR

Now carry out the proof of Theorem 1.1 with {vi} replaced by

{;j}. Note that in the gauge constructed for which lim Aa(r,o) =0
- -0

we have

lim {A (r,O)}% = lim < V_w.(r,0),w.(r,0)>= lim < V_v.(r,0),v.(r,0)>=0
=0 r ] r=0 ri J 0 ri ]

Note also that; lim {E%{Aa(r,ﬁ))}% = lim(h’(r)w’(ﬂ)ﬁ..) =0 by -
=0 J -0 1)

condition H(2); since this follows from the formula for (Ae(r,p));

(line 8 of the Proof (1-2)) in the proof of Theorem 1.1. Q.E.D.



Definition 1.3.: We call the gauge defined by Lemma 1.1 the

auxiliary gauge.

Lemma 1.2.: Let the conditions of Theorem 1.1 hold. Let the

connection satisfy condition H(2). Let the curvature be in LP(BR )
0

1 <P <® Then in the auxiliary gauge we have: jg[Ar(r,B)[Prdr <o 0
<R < RO'

Proof: In the auxiliary gauge we have:

P
oA oA, IF,

1 2r-0
0 "3 talhrdgl S Frgend Jolly —pm e rdrdd SRl P e
: 0
Fix S, 0 < S < RO and integrate:
OA
9 78
A (S,0) = A_(S,0) + jo 7= (S, t)dt

19 g : |
- Ejo [A_(S,), Ay(S,t)1dt - J"O F, 4(S,b)dt

0<0 <2r
Thus:

IWERY

8
|4_(5,0)] < [A_(5,0)] +-j0 |—— lat

9 8
. folFr'g(S,t)ldt + zjo |4,(8,t)] |45(5,8)| dt for all s;

0 <S < RO'

Thus, by Lemma 1.1 and since F € LP’ 1 <P <wm We obtain (by

elementary computations):

P ) P P
[A_(S,8)|7SdS < O(R) + k| | [A_(S,t)[ SdS|s]A,(S,t) ]| dt,
'Przlz r Io [szfz r ] 6

0 <R < RO’ with K independent of R.



Now, apply Gronwall’s inequality, pg. 189 [AMR], to get:

(*) P g P
IEIZ[Ar(s,9)| dS < 0(R) exp[K-IOIAa(S,t)I dt}

<K+ O0R), 0<R< Ry,

with K and K independent of R, since lim |A8(S.t)| = 0.
S50

Now applying (*) with R replaced by Rf2m. m=1,2,... and summing we

obtain:

I§|AT(S,0)|PSdS < 0(R) Q.E.D.

Lemma 1.3: Under the hypothesis of Lemma 1.2. in the auxilliary gauge

we have [|A[l p <0(R), 1 <P <o.
L (BR—{O})
Proof: Apply Lemma 1.1 to estimate ”Ag” P and Lemma 1.2 to
L (Bp-{0})
estimate [lA || , . ' Q.E.D.
L (BRf{O))
2. Some Improvements on Morrey’'s Theorem

In this section we state some improved versions of Morrey’s
theorem in 2-dimensions that will be used later.
First we state Morrey’s theorem in 2-dimensions.

Theorem 2.1. {(Morrey’s theorem in 2-dimensions) [MO]. Let

u € Hé(ﬂ) with u 2 0 and suppose that: I is a locally Lipshitz



=10~

domain in R2, and thuV$+fou dx £ 0 for all non-negative
£ € Cg(ﬂ). Let f satisfy the Morrey Condition:

£ ez < o R for all Bp €A and some ¢,4 >0 then

JB, cn
2 ¢ 2

sup | u(x) |“s=J | u(y) |“dy for all
B(XO,P) a2 B(xo,p+a)
B(xo,p) cC B(xo,p+a) c .
Proof: Identical to the proof of Theorem 5.3.1 of [MO], pg. 137,
except that we need our somewhat stronger Morrey condition because
the inequality fg[w|2 < cn[f | Vw l2 dx + [ |g |n/2dx] fails in
2-dimensions due to critical Sobolov exponents.

We would now like to note that if u € C°(Q) we can state an
, , : : K
improvement of Morrey’s estimate involving 3 fﬁ(xo,p+a)]u(y)[dy.

This improvement follows from an iteration argument of E. Bombieri.
See [BO], pg. 66.
Theorem 2.2. (Bombieri). Let (1 be compact. Let ue CC in 0

and let u > 0. Let u satisfy:

sup (u(x))2 < ;ZIB u2dx for all concentric BR’ B C1,
B (R-p) R P
p
¢ .
0 < p <R. Then sup u(x) g 3 fﬁR u dx vwhere BR and Bp are
Bp (R-p)
as above.'
Proof: Use the iteration at the top of pg. 66 of [B0O]. Q.E.D.

3. A Regularity Theorem for the Higgs Field

In this section we assume that the Higgs field is a c®

solution of the field equation:
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1>

(nm2) D*Dé = 2 (|4)2 - n¥)

[ ]

in the punctured unit ball B” - {0}. As in [Sb2] the assumptions on

¢ near the origin depend on the sign of A.

Because of the criticality of the Sobolev exponent %%5 for L2

functions in 2-dimensions, we require several technical changes from
the argument in [SB2]. This is where we use the estimates of
section 2.

The main result of this section is:
Theorem 3.1. Let ¢ be a c® solution of (YMH2) in 82 - {0} in

R2. We assume:

(a), pe H;(Bz) if A>0

(b) o€ H;(Bzf if A=0

(¢) pe€ L2+€(Bz) for some £ > 0 and

1= lot®
£0 BI/Bt > > 1 =0, if A < 0.
| x| “10g”(

—

Then ¢ € ﬂm(Bz—{O}).
Remark 3.1: That condition (c¢) is natural follows by considering the

case when the structure group is commutative (i.e., the real numbers)

and looking at the scalar inequality

M o+ u3 $.0.

then, u = -In r+r 1is an unbounded function satisfying the above

inequality and -In Tt+r is in all P 1 < p< ® Also note fhat, if

r is small enough, the function - v¥-ln r+r = u also satisfies the

above inequality and is in all LP 1 < p <.
Also note that our condition (c) is weaker than

1/2 1/2
| el

o = o(|log|xf|"’“) and that ¢ € 0(|log | ) is weaker than

(c).
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Similarly, we see that conditions (b) and (a) are natural by

considering Au = 0 'in B2 - {0}. Then u = lnELglJ is an unbounded

solution of Au + u3 <0 with u¢ H;(Bz).

To prove 7.1 we make strong use of the fact that w = [p| is a
weak solution in BZ - (0} of: (Alpl) 2 % (]cp|2 - m2)|p|, where A

is the ordinary Laplacian on functions. This follows from
Weitzenblock - like identities and details may be found in [Sbh2]
(formula 2 and Lemma 1.2).

At no loss of generality we assume u 2 1.

For example, in case (b) the function |¢| is subharmonic.

¥We dispose of case (b).

Proof:(case (b)). First we show that u is a weak solution of

I 2Vu.Vndx < 0 for all n e Cg(Bz), n>0. Let £ > 0. Let ¢3 be
B

in. &38% with ¥, = ¢ (]x]) ¥, =

i
[

on Be' ¥ =0 on BZE’ ¥

€ £

™ |

monotone decreasing in |[x], |V¢€| . We multiply Au > 0 by nwe

IA

to obtain: [ ,(VauWmy dx < o/f]Val2dx o/T|%|%ax.
B SUPP Ve qupp v,

Let € ) 0 and note that the right hand side tends to zero. By

Lebesques dominated convergence theorem we have:
J ,(Vu « Vn)dx 5 0.
2
B
Now, we apply the argument of [Giag] p. 119 and the "reverse”

Sobolev estimate [Giaq] p. 122, or equivalently apply Theorem 2.1, pg.

( 2 2

136 of [Giaq] to get Vu € L B 1/9

. 1 2
9re ). Since u € H2 (B CR

Sobolev’s embedding theorem gives u € L2+E(Bf/2). Now extend u to G
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A ‘
where u is defined in Bf with compact support and with

).

A 2
|]u||H1+ (B]) < Klull1 (B, ,,

2+¢ 2+€
Thus, by the Sobolev embedding theorem and the inequality of [GT]
pg. 155 we have:

A A
suplu| < suplil < C ISl gy S KM, (5 )

2 2 1/2
Bl/2 B1 2+¢€ 2+¢€
Since u is bounded in Bg - B?/2 we see that wu 1is bounded in
2
Bz. Q.E.D.

We now dispose of Case (a).
Proof: (Case (a)). In Case (a) we have that u = |¢| solves

Au > % (u2 - mz)u with A > 0. Thus: Au 2 %—(u2 - mz)u. Now
consider the two sets.

A

(x e 82 - {0} such that u < m},

B=({xe 82 - {0} such that u > m}.

These sets are pairwise disjoint. Now, because u € ¢® on B2 - {0},
the set B 1is open.

Cover B by a countable collection of small balls, each
contained in B. Then on any such small ball in B we have Au 2 0

and by the estimate above used in the proof of case (b) we obtain:

supu g K| ulfl,1,.2 _
. Hy(B - (0)).
Now on A, u is bounded above by m. Hence u is bounded on

8% - (0). | Q.E.D.
We now prove case (¢). This requires some work because the

proof of Proposition 2.3 of [Sb2] fails in 2-dimensions. The main

problem is that when n = 2 inequality (1.14), page 7 of [Sb2],
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fails since %%5 = ® and ¢, = ® when n = 2. Nevertheless we

establish the same estimate as in the conclusion of Proposition 2.3
of [Sb2] using a modified technique.

First we prove the following proposition.
"Proposition 3.1. (cf. Prop. 2.3 of [Sb21). If condition (¢) is

satisfied, either we have:

S 1 |ul?ax < &S, |Vn|%u®dx
B B2

for all test funections 7 in Cg(B2) or u is bounded.
Proof: We use a sequence & of test functions that vanish for

tends to zero and such that

[x[ < 3 tend to 1 as €

Vn 24x » 0 as K- ®. These are defined cf. [(G] pg. 547 bottom,
K
by:

0 for |[x| g ¢

x
ﬁxzﬁ (|x])=¢ 1 for [x| >1 q
—L . 10 [_lx_l] for &, < |x| <1
£ K
1 K
\ log (T ) )
K

Remark 3.2: Note that our growth condition in case (c¢) is chosen

exactly to insure that jé |u|2|VﬁK| >0 as K. - .
2

Now let n be Cg and let 1 be a ¢® function vanishing in

a neighborhood of the origin. Use the test function r = (nﬁ)z(u)
as ¢ in: [VueVédx. g [huédx for all non-negative ¢ € Cg (B2 -
%)

{0}). where h = - % (|qa[2 -n°) and u = |p|. We get: Jy(m =
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K [ (nﬁ)2|Vu|2dx s flzmVui V(m)u] dx + [(nmh w? dx = I+ 1.

Now, I, < gf(nﬁ)2|Vu[2dx + C(ﬂ)f|V(nﬁ)|2|u|2dx and the first
term on the right may be absorbed into the left hand side. Also,
] Vi |2u2dx < K[f|Vn[2u2dx + [ |Vn] 20%3x1. Note that

SIvil%dx > 0 if we set 7 =7, and let K-> . Do this. Thus in

the limit as Koo, I, < [ [Wn|%|ul?dx. Now, I, =S (n7?hu’ax

s/ (nﬁ)zhuzdx_. Since A £ 0 we have h = %ﬁ.(|¢|2 _ mz)
supn (] supn

s2AUeD. 1, xS 2812l = 4y,
supp 7 ] supp 7

We now estimate J2:'

Remark: The estimate of 12 in the proof of proposition 2.3, pg. 11

of [Sb2], is based on the inequality: j'ngdx < Cn”anlzf]lezdx
which is proved using Sobolev’s inequality. This inequality

estimataes 12 from above by a sum of terms, the first of which is

proportional to ([¢[| ,. Then use is made of conformal scaling to
L

make |[i¢{| , small.
L
In two dimensions however, the Sobolev estimate has a critical
exponent and constant . corresponding to this exponent is
infinite. Thus we need a new argument. This new estimate is

contained in the proof of the following sublemma.

Sublemma 3.1. Let B2 -{0} D22 supp 7 (] supp 7. Then: J2 <

CLplg1 2axTe L) ®dx + S| V) ®ax].

Remark: The idea of the proof is that V = |¢|2 is a weak
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sub-solution (in fact a CFn solution) of an elliptic equation on

supp 7 [] supp 7 = ﬂo. Thus by a Morrey-like estimate (Bombieri’s

lemma) we can estimate  sup ¢l < % f ¢2dx ]1/2. The sublemma
B(R)C no B(2R)C ﬂo ‘

then follows from a covering theorem. We do it now.

Let V = ¢2, let all balls B(r) be contained in fl.

Choose the balls B so that BR C B2

R CB

R 3R C ﬂo. Then ﬂo is

/
covered by a finite number of such balls. Since u 1is c® in Qo we
can at no loss of generality assume that u 2 1 on ﬂo. (If no such

0, exists then u is bounded.) Recall that u = |#| is a subsolution
of Au 2 % (|u[2 - m2)|u] 2 % ([u|2)|u| in N since A < 0. Thus
Au —-% |u|3 >0 in ﬂo. Now since ux1, u e on ﬂo, we have:

A(|u|2} = 2ulu + 2|Vu|2 2 Mx. Thus V = |u|2 is a C* subsolution

in 0 of AV + ( %A |u[)V 2 0. Note that ( %A'[u|) is in

L (by our growth assumption ¢ € L2+e(B2))‘ Now we apply

l+¢€, 3£’€>0

Theorem 6.1 (Morrey’s Theorem in 2-dimensions) and Theorem 6.2

(Bombieri’s lemma) to get

C 1 o
sup Vs f |Iv]™ dx, V. concentric in Q.
BR)IC A,  R:BERCH, B(R),B(2R) o

Thus -
1/2

2 [aamEn, o
sup ¢ S 3 dx

We now use the above inequality and Holder's inequality to

achieve our estimate of J2. Using Holder’s inequality with
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p=1+ E. q= 2%5 we get:
2¢& 2+¢€ £ C2+€
Now extend nmu to B,z Vith the extension E(nmu)
_ A -
equal to zero on B,./B,, and |[[Eqmul| < K||mmul| . We can
4R" “3R H1 B H1 B
2 4R 2 2R
do this by Theorem 3.4.3 pg. 74(M0]. Thus:
2¢ 2 2+¢€ € .1
= — 2(==); 2(z=)5 «2
2+¢ 2] 2+¢ - € 2+€6°2
Tys [fa sup 8] 2 [fp o | B[Sy Ew ]
37 LB Bp Br
Now use Sobolev’s inequality in the form:
1/t 1/2
[fﬁ utdx] s cr?/® [fB [Vu|2dx] where t > 2
4R 4R
1 . -
for u € H2(B4R) with u=0 on B4R/BSR' We let u = E(nmu) and
t = (2(2+€))/€e to get:
2(2+¢) £ 2¢€

I LEC I I RS s, et ax]

and thus
2¢€

2.2-2 2 2+e - 52
bt ¢°“n“n” udx g (sup, ) “TCe|f  |VE(npmu)|“dx| »
BRC nO BR [ B4R - ]

2, 1 ToE [ 20
[IBR“"] et

Recall that sup, ¢ < (K/R)[jﬁ ¢2dx]1/2. Thus combining all our

Bp 2R

estimates we get:
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26 2L

2 2- 2 [0} 2 1/2) = 2+¢€

J ¢“n"m s[—(f $“dx) 2+e.[ca ].

BeC 0, R -B,p ]
2

[fBR ¢2dx] 2+e .[fh4R|V(Enﬁu)|2dx].

= 2 = 12 ~ 2
< K[_['B . é dx] [fB4R(E(nnu)) dx + j‘B4R|V(Em—,u)| dx]

2

x[fBR #ax) [fBZR(nﬁu)zdx " jBZR|V(nﬁu) 12dx].

IA

Now using Besocovitch’s covering lemma and changing constants

appropriately we have jh¢2(nﬁ)250[fh¢2][fh(nﬁu)zdx + jh{V(nﬁu)lzdx.
This completes the proof of the sublemma.
Q.E.D. Sublemma

Now we return to the main proof and use the sublemma. We have,

using the sublemma and recalling that conformal invariance implies

that we may choose [f&zdxlllz <~ (where ~+ may chosen small) that
(11):

3, = K )% Wl %ax < folWn|aPax + g(0) + e (|0, | 2ax)

+ C(fhl(nﬁku)lzdx)] with e(4) L 0 if 420 and ;iz g(k) = 0.

Note that:

(111) [l Vom0 | 2dx < 2fn®72|u) 2ax + zfn1V(ﬁk)|2u2dx so from

(II) and (III) we obtain

(1) i) % | dx 5 [l %lax + g(k) + 20 Up?e| Vu| 2z
+ 2|, | PuPdx] + GO R f(r 0) 2]

Now. choosing <+ small enough we absorb the term 2C(7)fﬁ[nﬁk|2|Vu|2dx

in the left hand side of (IV) and we get:
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W Bflm, % Val?dx < g0 + f19n] %0’

+ C(ﬁ)[2jh|Vnﬁk]2u2 + th(nﬁku)zdx.

Now using growth condition ¢, we have

Sl )1 a®dx s 2f]9n| %uax + 2fn?(|97, ) %u%ax < 2/ Tn| s
+ 2fu?|vg, |2 . sup 1 210 }2u2dx + h(k)
where h(k) | 0 as k= @ . Using this in (V) we obtain
=12 2 o 2.2 = 12
(V1) th[nnk| |Vu|%dx < h(k) + g(k) + Kf|Vn|"u"dx + KC(W)]h(nﬂku) dx
with C(v4) L 0 if - 0. But
- 2 = 12 2 - 2 2 2-2
fh(nnku) dx = jgz(nnk) u“dx g 2]52]V(nnk)| udx + 2j£2n nk]Vulzdx.
Thus
- 2 2 = 2 2
(VII) Kf olmm |7|Vu|"dx < h(k)+ g(k) + Kf o1Vn|%lu]“dx
B B
+ 2K( [ 2]V(nﬁk)|2u2dx + 2K(y) [ 2n25i]Vu|2dx
B ‘B

(again with K(y) L 0 as . 0.)
Now choose < small enough and absorb the last right hand term
on the left hand side.

(VIIT) Kf zlnﬁk|2|Vu[2dx < h(k) + g(k) + K[ 2|Vn|2u2dx
B ‘ B

+ 2K [ ,|90n,) |Padx.
B

But, f£2[V(nﬁk)[2u2dx = fhlV(nﬁk)2u2dxA= A (we have already shown

A s_2jh]Vn|2u2dx + h(k), with h(k) | 0 as %k = ®. Thus combining
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terms we obtain
(IX) KJ _|m |2|Vu|2dx s m(k) + Ef |Vn|2u2dx
B2 k B2
with m(k) L 0 if k- o.
Now, let k - ® and we get:

(X) J 2|n|2|Vu|2dx s Kf 2|Vn|2u2dx with K independent of u.
B B

Q.E.D.

Now we prove Theorem 3.1.
Proof: Theorem 3.1 now follows from De-Georgi iteration, pg. 76 [LU]

which uses the estimate of Proposition 3.1 as its basic inequality.
Q.E.D.

We now conclude this section with a final corollary.

Corollary 3.1. Under the hypothesis of Theorem 3.1, D is in L2(B2).

Proof: This is the same as the proof of Corollary 2.4 of [Sb2].

Q.E.D.
4. A Growth Estimation for F

We show F 1is actually in LP for all 1 €« P < ®, in any smooth

gauge over BR - {0}, 0<Rc«< RO'

Theorem 4.1: Under the conditions of theorem M, F is in any LP,
1 <P <o in any smooth gauge over BR - {0}, 0<R < RO.
Proof: Since *F is a smooth function on the punctured ball it

follows from inequality 6.7, pg. 269 of [JT] and from YMHI that :
ld[*F| |} , < 2 MAX|p| |IDp|| , < @ by our estimates on p. Now, since
L L

FelLl it follows that *F is in Wi(BR—{O}). Thus by Sobolev’s

theorem F is in L2(BR-{0}). Now, we have F € H; (BR—{O}) and
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Sobolev’s embedding theorem gives that F € LP(BR—{O}) for all P,

1 <P <. Q.E.D.

5. Proof of the Main Theorem

Corollary 5.1: (F, ) is a weak solution of the field equations

in the full ball BR' 0 <R < RO'

Proof: Same as Corollary 5.3 of [Sb2].

Lemma 5.1: f |Dpldr < kR, 0 <R < Ry

Proof: Dp € L2(BR); apply Holders inequality. Q.E.D.

Theorem 5.1: Under the conditions of theorem M, there exists a smooth

gauge over BR ~ {0} in which the induced covariant derivative is
0

d+A and A€H\(By) withq< 2.

4 %
Proof: By lemma 1.3 we have an auxillary gauge in which the induced
covariant derivative is d + A  _ and ”Aaux”LP(BR - (o} SOR); 0<R<

R., 1 < p <® As in the proof of Corollary 4.3 of [U3] we solve (by

0’
now this is standard): d‘(g—ldg + g-lAauxg) = 0 for g 1in the space
Lp(B*-{0}, CCO(BR - {0}, G); if P> 2. Let P> 4. Note, in this

0 .
gauge, the connection form, (again denoted by A4), is in LP(BR -{0}) =
0

LP(BR ). Now, in this gauge, as in Prop. 5.4 [Sb2], we have dA = F -
0

% [A,A)] = > dA € LP,Z(BRO). Since 6A = 0 in BRO- (0} we have

P/2 1 0 o
VAel (BR ). Thus A € Hq(BRO) CC (BRO), with q > 2. Q.E.D.

0
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Remark: Note that for clarity and consistency we have followed the

function space notation in [Sb2]. In more precise notation

Ae LP( 2),

x
~ (0}) would be A e LP(BR - {0}, 5o Al R
0 0

Bp

»
Ae H;(BRO) would be A € H;(BRO, g e Al Rz), etc.

-

Theorem 5.2: Under the conditions of Theorem M, there exists a smooth

gauge over BR in which the induced curvature form F and the
0

induced connection from A satisfy:
1) §A=0

2) Ae H;'(BRO) with q > 2

3) Jlall < CIF| -
Hy (Bp L%(Bg )
0 0

Proof: Using the gauge given by Theorem 5.1, apply Lemma 1.3 of [Ul].

Note that ||F|| < k(n) as required in Lemma 1.3, if R. is small
a,Bp 0
0
enough, since F € LP(BR ) for all 1 <P < ® (apply Holder’s
0

inequality). Q.E.D.

At this point, the proof of Theorem M follows exactly the proof
on the last two pages of [pg. 15-16] of [Sb2]. Q.E.D.

We are finished.



-23-

REFERENCES

[AMR] Abraham, R., Marsden, J., Rativ, T. Manifolds, Tensor Analysis
and Applications, Addison Wesley, 1983.

[BO] Bombieri, E. An Introduction to Minimal Currents and
Parametric Variational Problems. Proc. Beijing Conference on
PDE and Geometry, 1980.

{Giaq] Giaquintia M. Multiple Integrals in the Calculus of
Variations. Princeton Press, 1985.

[GS] Gidas, B., Spruck, J. Global and Local Behavior, Comm. Pure
Appl. Math. 4 (1981), 525-598.

[GT] Gilbarg D., Trudinger, Neal, Quasilinear Elliptic P.D.E.,
Springer Verlag (Second edition), 1983.

[H] Hartman, P. Ordinary Differential Equations, Birkhauser
(1982).

[JT] Jaffe, A.J., Taubes, C. Vortices and Monopoles, Progress in
Physics 2, Birkhauser, Boston, 1980.

[{EN1] EKobayashi, S., Nomizo, K. Foundations of Diff. Geo., Wiley,
1963.

[LU] Ladyzenskya, N., Uralaltizva, N. Quasi'Linear Elliptiec

Equations, Academic Press, 1968,

[MO] Morrey, C. B. Multiple Integrals in the Calculus of
Varjations., Springer, New York (1966).

(P] Parker, T. Gauge Theories on Foar Dimensional Manifolds.
Comm. Math. Phys., 85, 1982.



[Sbl]

[Sb2]

[(Sb3]

[SM]

{u1]

fu2]

(U3l

(UF]

-24 -

Sibner, L.M. Removable Singularities of Yang-Mills Fields in

RS, Composito Math. 53 (1984), 91-104.

Sibner, L. M., R.J. Sibner. Removable Singularitiss of Coupled

Yang-Mills Fields in R°, Comm. Math. Physics, 93, 1984, 1-17.

Sibner, L.M. The Isolated Point Singularity Problem for the
Yang-Mills Equations in Higher Dimensions, Math. Ann. 1985. To

appear.

Smith, P.D. Removable Singularities for the Yang-Mills Higgs
equation in 2 dimensions, Max Planck Institute Preprint
MPI/87-35.

Uhlenbeck, K. Removable Singularities in Yang-Mills Fields,
Comm. Math. Phys. 83 (1982), 11-29.

Uhlenbeck, K. Connections with LP

Math. Physies, 83 (1982), 31-42.

Bounds on Curvature. Comm.

Uhlenbeck, K. The Chern Classes of Sobolev Connections. Comm.

Math. Physics 101. (1985) 449-457.

Uhlenbeck, K., Freed, D. Instantons and Four Manifolds, MSRI
Publications, Springer (1984).



