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1. Introduction

In this paper we prove a removable singularities theorem for the

coupled Yang-Mills-Higgs equations over a two dimensional base

manifold M. This problem is loeal so at no lass of generality we

assume tha~ M=B~~{O}J where B;-{O} i5 the punctured 2-ball of radius

4 centered at the origin. We also a5sume that every connection has

same. gauge in which it i5 Cl over the punctured ball.

Let M be a domain in R2 and ~ be a vector bundle over M

with compact structure group G C O(n) and Lie algebra ~. Let the

metric on G be induced by the trace inner product on O(n) and let

ry have a metric compatible with the action of G. Let d be

exterior differentiation, 5 its adjoint, and let [ , ] denote the

Lie bracket in ~.

A connection determines a covariant derivative> D which within a

local trivialization defines a Lie algebra valued I-form A by D =

*d+A. On p-forms we have locally Dw = dw + [A,w], D w = 5w + *[A,*wJ,

•where D

snd have

i5 the adjoint of D. We denote the curvature 2-form by F
1F = dA + ~A,A] in this Iocal trivialization.

Gauge transformations are seetions of Aut ry whieh aet on

connections· aod eurvature forms aeeording to the transformations:

g -1 -1A = g Ag + g dg

...s! -1
1'''"' =g Fg

The pair (A,F) i8 gauge equivalent to (A,F) iff there is a

gauge transformation g such that A= Ag and F = F" .
We now follow [Sb2] exactly and define the Higgs field ~ using

the' determinant bandie. We denote by L the determinant bundle

raised to the ~ power. Seetions of this bundle are constant in a fixed
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co-ordinate system hut we have weight 1 under scale transformations.

The Higgs field ~ is a section of ~ @ L. Therefore, in a

fixed co-ordinate system ~ may be regarded as a matrix-valued

function. Under scale charges y = rx, p(y) =~ (cf.: [P] [SB2]),
r

The Yang-Mills-Higgs equations are:

(YMH 1)

(YMH 2)

>11

D F = [Dp,p]

>11 A 2 2
D Dp =2(1~1 - m )p ;

where l is a fixed real constant and where m is a section of L
constant in a fixed co-ordinate system hut having weight 1 under scale

changes. Thus under the transformation y = rx we have m' =. m/y.

Tha equations (YMH1,2) are thus invariant under the scale

transformation y = rx.

Certain norms are invariant under scale transformations. For

example IIpll 2
L

ia invariant and if l/J is any p-form 1Il/J1I 2/p
L

is

invariant. We also have an important fact used in [Ul].

Fact [Ul]

Suppose wi th 1I,p11 2/L p
invariant. Then, given a

domain D , R2
In snd i > 0 thera is ametrie conformally

equivalent to the Euclidean metric in which on bounded sets in

.
This fact follows from confonnal invariance- and the continuity of

the LP-norms. See [UF] for details.

l.b. Statement cf the Main Theorem

Now we· s ta te our Main Theorem:
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Theorem M

Let M' =B
2

- {O}4
and let ~ be as above. Let A be a

connection on ~ that satisfies condition H(2), defined in section

1. c. Let F be the curvature form cf A and let F be rfIJ over

M. Let (F,rp) satisfy (YMH1) and (YMH2) over M. Let

F E L1
(B:).

If ,\ ~ 0 let If ,\ < 0 let and

lim SB /B 2 2(1) = O.
t~ 1 t Ix I log t

Then, there exists a continuous'gauge

transformation such that (F,rp) is gauge equivalent to a rfIJ-pair

over B~ and the bundle extends continuously to a bundle over B~.

A theorem of this type was first proved by K. Uhlenbeck for the

pure Yang-Mills equations over R4 in [U1]. Later Parker [P]

extended the result to the coupled Yang-Mills-Higgs equations over

R4 . Papers of L.M. and R.J. Sibner [SB1], [SB2] , [SB3] proved similar

theorems for dimension 3 and for all higher dimensions. This paper

fills the two-dimensional gap in the literature.

We would like to thank L.M. Sibner for suggesting this problem

and C. Taubes for a useful abelian example suggesting that holonomy

.. would be important.

l.c. Auxiliary Ganges

Condition H

We wish to introduce a condition on the connection A that.

insures that the bundle is trivialover the punctured disk M above.

This condition is a nholonomy" condition. We call it condition H.

We use the conventions of [KN1] Vol. 1 pg. 71-72. We first

define same useful paths.
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Definition: 1: [0,1] ~ SR be given by lR : t ~ (R cos 2~t,

Let LO : [0,1] ~ R be given bystandard loop for

R sin 2~t) with Si = (x E R21 Ixl=Rl. We say that lR is the

1
SR'

La : t ~ (Rt,O). We call Ln the standard ray.

For each R, let geR) be the holonomy of A around the Ioop lR'

Definition 1.1.: The map ~: (0,4] ~ G given by R ~ geR) is a

path denoted by CR.

Now, we define condition H(K) and condition H.

Definition (.2: (condition H(K))': If as R.1.o the elements geR)

considered as points on the carrier of the path ~ approach the

identity element in the cK-topology we say the connection satisfies

condition H(K).

Theorem 1.1: The, fo.llowi'ng is equivalent to condition H(l)

TheTa exists a trivialization over a small ball BR - (O}, 3R '
° o·° < Ra S 4 centered at the origin, in which the connection defines a

local co-variant derivative D = d+A, A =Ar(r,D)dr + AO(r,O)d6 with

aod with lim AO(r,O) =0,
~

wi th the 1imi t taken in the' sup-nonn topo logy on ~.

The hypothesis implies

translation around the circles IR'

v.(r,O).g(r,O) for some g(r,O) E G.
1

v.(r,O).g(r) for some ger) = g(r,2~) e G.
1

-
Proof (1~2) Choose an orthonormal framing (v.(r,O)} of ~ over the

1

ray {(r,OIO S r sc}. Extend this to a framing {v.(r,O)} by parallel
1

Then, ~Ov. = 0, v.(r,e) =
1 1

In particular, v.(r,2~) =
1

that for small e, the element ger) is elose to the identity so that



trivialover

-6-

ger) = exp (h(r)) for some her) E~. Let ~: [O,2~] ~ [0,1] be a

smooth function which vanishes near 0 and is 1 near 2~. Then

w.(r,O) = v.(r,O).exp(~(O)h(r)) is a smooth orthonormal framing of ry
1 1

over BZ-{O}. In this framing the connection form is: (Aa); =

< Vaw. ,w. > = < [Va(v .•exp(~(e)h(r))],w. >=~'(O)h(r)S... Henee IAal
1 J 1 J IJ

S elh(r)1 l 0 as r! O.

(2~1). This follows from standard O.D.E. estimates on integrating the

parallel transport equation for aaeh horizontal lift of lR' Q.E.D.

Remark 1.1.: Thus condition H(l) implies that the bundle ry is

2BR - {O}.
o

l.b. The Auxiliary Gauge

We will give in Section 3 a gauge-independent proof that under the

conditions of Theorem M, the curvature F ia actually in Lp(BR) for

1 ~_ p < Q) if R is 5mall eno~h, in any smooth gauge· over B
R

- {al.

This estimate, coupled with the existence of an "auxillary" gaug'e in

which the connection form A is L - norm close to zero (flat
p

connection), will eaable us to use a new gauge-fixing argument [U3]' of

Uhlenbeck to build a Coulomb gauge over Ba - {O}, bypassing the

original broken Hodge gauge argument of [Ul]. Thus this paper is much l

simpiified compared to the· author's Max-Planck preprint [S] which

preceded it.

In this section we coostruct the "auxillary" gauge aod show that

the L - norm of the induced connection form is small.
p

Lemma 1.1.: Under· the· condi ti ons: of Theorem.L.l, 1et the

connection satisfy condition H(2). Then, there exists a local

trivialization in which the connection ioduces the loeal co-variant

derivative D = d+A, A:=Ar(r,O)dr + Aa(r,O)dO and we have:
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Proof: We start with the orthonormal framing v.
1

over the standard

ray LU used in the beginning of the pfoof of Theorem 1.1. We use

this framing to give a loeal trivialization for the bundle restricted

ta have the standard ray aa a base spaee. The connection restriets aod

we denote the restricted conneetion by ~. This connection defines
r

{A (r,O)}~ := < 7 v.(r,O), v.(r,O) >.
r J r 1 J

1\

Now we define s(r) e G as the

solution to:
1\

ds(r)
dr I, 3R ' °< RO < 1.

°
Now

define v.(r,O) := v.(r,O) •. s(r).
.11

Note tha t

- i - - 1\-1 - 1\ 1\-1
{A (r,O)}.:= <7 v.(r,O),v.(r,O» = s (r)A (r,O)s(r)+s (r)

r J r 1 J r

- i --and thus; lim (A(r,O)}. =0 = lim < 7 v.(r,O), v.(r,O) >.
r--+O J r-+O r .1 J

1\
ds ( r ).
dr

Now earry out the praof of Theorem~ with {v. }
1

replaced by

{v.} .
J

Note that in the gauge· constructed for which lim AU(r,O) = 0
r~

we have

lim (Ar(r,O)}J~ = lim < 7 w.(r,O),w.(r,O»= lim < 7 v.(r,O),v.(r,O»=O
r-H) r-+O r 1 J r-+O r 1 J

d .
Note also that; lim (dr(Ae(r,8»}j =

r--+O

,
lim(h'(r)rp (8)8 .. ) = 0 by
r-+O • 1J

condition H(2); since this follows from' the formuls for

(line 8 of the Proof (1-2» in the proof of Theorem 1.1.

i
(AO(r,rp»j

Q.E.D.
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Definition 1.3.: We ca11 the gauge defined by Lemma 1.1 the

auxi1iary gauge.

Lemma 1.2.: Let the conditions of Theorem~ hold. Let the

connection satisfy condition H(2). Let the curvature be in LP(B
R

)
o

1 ~ P < 00. Then in the auxi1iary gauge we have: ~IAr(rJ9)IPrdr < 00, 0

< R < RO'

Proof: In the auxi1iary gauge we have:

aAr 8AO 1 R
[A A] F d r201l'"JoO~ - ~ + 2 r' 0 = r,O an J,

s·,

Fix S, 0 < S ~ RO and integrate:

J
o BAO

A (8,0) = A (S,O) + ~ (S,t)dt
r r 0 ur

_! JO [Ar(S,t), AO(S,t)]dt - JO F . O(S;t)dt
2 0 0 r,

o ~ 8 < 211'"

Thus:

8A (S,t)
!Ar(S,O)! ~ IAr(SJ O)! + JO I °ar Idt

o

+ JOI F 0(S, t) I dt + 2JO IAr (S, t) 11 AO(S, t) I ~ d t fo r allo r, 0

o < 8 < RO'

Tbus, by Lemma 1.1 and since F E LpJ 1 ~ P < 00. We obtain (by

elementary computations):

o < R < RO' with Kindependent of R.
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Naw, apply Granwall's inequality, pg. 189 [AMR], ta get;

-S K • OCR), 0 < R < RO'

-with K and Kindependent of R, since lim IAO(S,t)1 = o.
&+0

Naw applying (*) with R replaced by R/2m, m = 1,2, ... and summing we

abtain:

Q.E.D.

Lemma 1.3: Under the hypothesis of Lemma 1.2. in the auxilliary gauge

we have 11All < 0 (R), 1 :5 P < 00.

LP(~-{O})

Proaf: Apply Lemma 1.1 to estimate IIA 11 aod Lemma 1.2" to
o LP(~-{O})

estimate Q.E.D.

2. Some Improvements on Morrer's Theorem

In this section we state same improved versions of Marrey's

theorem in 2-dimensions that will be used later.

First we state Marrey's theorem in 2-dimensions.

Theorem 2.1. (Marrey's theorem in 2-dimensions) [MO]. Let

U E H~(n) with u ~ 0 aod suppose that: n ia a locally Lipshitz



-10-

domain in R2 , and JnVuVe+feu dx S 0 for all non-negative

e E ~(n). Let f satisfy the Morrey Condition:

IBn c nlfll+Edx ~ c aß far all Bn c n and same E,P> 0 then

sup I u(x) 1
2
~ ~ fB(x p+a) I u(y) 1

2
dy for all

B(xO'p) a 0'

B(xO'p) C B(xO,p+a) C n.

Proof: Identical to the proof of Theorem 5.3.1 of [MO], pg. 137,

except that we need our somewhat stronger Morrey condition because

the inequality J glwl 2
S c [f I Vw 12

dx + J Ig In/ 2dx] fails in
n

2-dimensions due to critical Sobolov exponents.

We would now like to note that if U E ~(n) we can state an

improvement of Morrey's estimate involving K
:2 IB(x p+a)!U(y) ldy.
a 0'

and let u ~ o.

sup (u(x))2 S
B

p

This improvement follows from an iteration argument of E. Bombieri.

See [BO], pg. 66.

Theorem 2.2. (Bombieri). Let n be compaet. Let u E ~ in n
Let u satisfy:

c 2 f B u
2

dx for all concentric
(R-p) R

o < p < R. Then sup u(x) s c 2 IB- u dx
B (R-p)-R

P

where are

as above.

Proof: Use the iteration at the top of pg. 66 of [BO].

3. A Regularity Theorem for the Higgs Field

In this section we assume that the Higgs field is a COO

solution of the field equation:

Q.E.D.
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A I 12 2(YMH2) Dlilncp = 2' (</J - m )</J

in the punetured unit ball B
2

- {O}. As in [Sb2] the assumptions on

~ near the origin depend on the sign of A.

Because of the eritieality of the Sobolev exponent 2n
n-2 for

functions in 2-dimensions, we requira several teehnieal ehanges from

the argument in [SB2]. This is where we use the estimates of

seetion 2.

The main result of this seetion i5:

Theorem 3.1. Let ~ be a COO solution of (YMH2) in B2 - {O} in

R
2

. We assume:

(a). rp E H;{B2) if A> 0

(b) rp E H1(B2)1 if A=02

(e) rp E L2+€{B2) for some E > 0 and

lim JB /B l.E.1_2__ = 0, if .x < O.
t~ 1 t Ixj21og2{t)

Then rp E Loo (B2_{O}).

Remark 3.1: That eondition (e) is natural follows by eonsidering the

ease when the structure group is commutative (i.e., the real numbers)

and looking at the sealar inequality

A•• + u 3 0uu S..

then, u = -In r+r is an unbounded function satisfying the above

inequalityand -ln "T+r is in all LP 1 S p < OL Also note that, if

r ia 5mall enough, the funetion - v-ln r+r =u also satisfies the

above inequality and is in all LP 1 ~ P < 00.

Also note that our eondition (e) is weaker than

rp = o{lloglxIl1 / 2) and that rp E O{llog IxIl1 / 2) i5 weakeT than

(e) .
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Similarly, we see that eonditions (b) aod (a) are natural by

eoosidering ßu = 0 'in B2
- CO}. Then u = 10(-41) is an unbounded

solution of ~u + u3 S 0 with u ~ H~(B2).

To prove 7.1 we make strong use of the fact that u = 1~1 is a

weak solution in B2 - CO} of: (~I~I) ~ i (1~12 - m2)1~1, where ß

is the ordinary Laplaciao on functions. This follows from

Weitzeobloek - like identities and details may be found in [Sb2]

(foTmula 2 aod Lemma 1.2).

At 00 lass of generality we assume u~, 1.

For example, in ease (b) the function I~I is subharmonie.

We dispose cf ease Cb).

Proof:(case (b». First we show that u is a weak solution of

f 2Vu.V~dx ~ 0 for all ~ E ~CB2), ~ ~ O. Let ! > O. Let ~3 be
B

in, ~CB2) with ,pe = 1ft!C!xl) 1ft3 = 1 on Be' 1ft! = 0 on B2!, ,pe

monotone decreasing in lxi, IV~€I 5 ~ We multiply ßu ~ 0 by ~e

Jfl Vu l2dx J flVy, E 12dx.
supp ,pe supp ~

e

Let e t 0 and note that the right hand side tends to zero. By

Lebesques dominated convergence theorem we have:

f 2(7u • 7~)dx S O.
B

Now, we apply the argument of [Giaq] p. 119 aod the "reverse"

Sobolev estimate [Giaq] p. 122, or equivalently apply Theorem 2.1, pg.

136 of [Giaq] to get Vu E L2+e(B21/2)' Since U E H~ (B
2

) C R
2

Sobolev's embedding theorem gives u E L2+e(B~/2)'
A

Now extend u to u
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1\ 2lIu llHl (BI) ~ KllullHl (B1/ 2)·
2+E 2+€

Thus, by the Sobolev embedding theorem and the inequality of [GT]

pg. 155 we have:
1\ 1\

suplul ~ suplul ~ C Ilull 1 (B) ~ Kllull 1 (B ).
Bi/2 Bi H2+E 1 H2+€ 1/2

Since 2 2u is bounded in B2 - B1 / 2 we see that u is bounded in

2B2. Q.E.D.

We now dispose· of Case (a).

Proof: (Gase (a)). In Gase (a) we have that u = I~I solves

..\ 2 2 with ..\ > O. Thus: ..\ 2 2 Now~u ~ '2 (u - m )u du ;;: '2 (u - m )u .

consider the two sets.

A = (x E B
2

- CO) such that U :i m},

B = {x E B
2

- CO} such that u > m}.

These sets are pairwise disjoint. Now, beeause U E rfJ on B
2

- {O},

the set B ia open.

Cover B by a eountable eolleetion of 5mall balls, each

eontained in B. Then on any such small ball in B we have du ~ 0

and by the estimate above used in the proof of ease (b) we obtain:
~'

Now on A, u is bounded above by m. Henee u is bounded on

B2
- CO}. Q.E.D.

We now prove ease (c). This requires some work because the

proof of Proposition 2.3 of [Sb2] fails in 2-dimensions. The main

problem is that when n = 2 inequality (1.14), page 7 of [Sb2],
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establish the same estimate as in the conclusion of Proposition 2.3

of [8b2] using a modified technique.

First we prove the following proposition.

- Proposition 3.1. (cf. Prop. 2.3 of [8b2]). If condition (e) is

satisfied, either we have:

J 2~21Vu12dx ~ KJ 21~~12u2dx
B B

for all test funetions q in ~(B2) cr u is bounded.

Proof: We use a sequenee qK of test functions that vanish for

lxi S lK' tend to 1 aa lK tends to zero and such that

2-
fl~~KI dx ~ 0 as K ~ 0:1. These are defined cf. [G] pg. 547 bottam,

by:

lR
ijK=ij (Ixl)= 1 for lxi ~ 1

1 • log [~;1] for <K < lxi< 1
log (1 )

eK

Remark 3.2: Note that our growth condition in ease (e) is chosen

exactly to insure that SB lul 2 \Vij
K

I ~,O as K, ~ 00.

2

Now let ry be ~ and let ij be a COO function vanishing in

a neighborhood of the origin. Use the test funetion r = (ryij)2(u)

as ein: JVu.Vedx. S Jhuedx for all non-negative e E ~ (B
2 -

A 2 2
{al). where h =- 2 (I~I - m) aod u = I~I· We get: J

1
(ij) =
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K f (ryij)2IVuI2dx S fI2~-Vul ~(~)ul dx + f(qij)h u2 dx = 11 + 12 ,

Now, 1
1

S ~f(~)2IVuI2dx + C(~)fIV(~)12IuI2dx and the first

term on the right may be absorbed into the left hand side. Also,

f I V(~) 12u2dx S K(fl~ryI2U2dx + J IVijl 2u2dxJ . Note that

JlVijl2dx ~ 0 if we set ij = ryK and let K ~ 00 •. Do this. Thus in

s f (~)~u2dx_. Since ASO we have
sUP'1 n SUP'1

S ;~ (1~12). 12 ::; K J (rP7)214>121~12dx = J2·
SUPP 17 n SUPP 17

We now estimate J2:

Remark: The estimate of 12 in the proof of proposition 2.3,·pg. 11

of [Sb2J, is based on the fnequality: f gw2dx S Cnllglln/JIVwl2dx

which is proved using Sobolev's inequality. This inequality

estimates 12 from above by a sum of terms, the first of which is

proportional to 114>11 2' Then use is made of confonnal acaling to
L

make 1It/>1I 2 sma 11 .
L

In two dimensions however, the Sobolev estimate has a critical

exponent and constant c corresponding to this exponent iso
n

infinite. Thus we need a new argument. This new estimate is

contained in the proof of the following sublemma.

Sublemma 3.1. Let B2 -{O} ~ n ~ SUPP ~ nsupp ij. Then: J2 s

C[Jnl4>12dxJ.[Jn(~ijU)2dx + JnIV(~)2dx].

Remark: The idea of the proof ia that V = 14>1
2 is a weak
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sub-solution (in faet a ~ solution) of an elliptic equation on

supp ~ n supp ij =n. Thus by a Morrey-like estimate (Bombieri's
o

lemma) we ean estimate sup I~I ~ ~ [J ~2dx ]1/2. The sublemma
B(R)C n B(2R)C n

o 0

then follows from a eovering theorem. We da it now.

2Let V = ~ , let all balls B(r) be eontained in O.

Choose the balls BR so that BR C B2R C B3R C 00· Then 0 is
0

eovered by a finite number of such balls. Sinee u is ~ in n we
0

ean at no loss of generality assume that u ~ 1 on n . (If no such
0

n exists then u is bounded.) Reeall that u = I~I is a subsolution
o

A 2 2 A 2
of Äu ~ 2 (lul - m )Iul ~ 2 (Iul )Iul in 00 sinee A < O. Thus

A 3 A
Äu - 2 lul ~ 0 in 00. Now since u ~ 1, u E ~ on 0

0
, we have:

Ä(lu[2) = 2uÄu + 2lVul 2 ~ Äu. Thus V = lul 2 is a COO subsolution

in 00 of ÄV + ( ;A lu!)V ~ O. Note that (;A lul) is in

(by our growth assumption Now we apply

Theorem 6.1 (MorreyJs Theorem in 2-dimensions) and Theorem 6.2

(Bombieri's lemma) to get

sup V ~ ~ J ) n IVI 1
dx, VB(R),B(2R) eoncentric in n.

B(R)C n R2 B(2R C 0 0
o

Thus

sup 4>
B(R)C n

o
]

1/2
dx .

We now use the above inequality aod Holder's inequality to

achieve our estimate of J2 . Using Holder's inequality with
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Now extend ~ to B4R with the extension E(~)

equal to zero on B4RJB3R and II~II 1 $ KIl~1I 1 We ean
H2(B4R) H2(B2R)

do this by Theorem 3.4.3 pg. 74[MO]. Thus:

.!L ~ 2(~) 2(_E_)!.2

J
3
~ [J!1t sup 4>] 2H [J!1t4>2 ] 2+e lrB

4R
E(~) E] 2+e 2

Now use Sobolev's inequality in the form:

[
t ]1/t 2/t [ 2 ]1/2f B u dx ~ eR f B IVu I dx

4R 4R
where t ~ 2

for

t =

1
U E H2(B4R) with u =0

(2(2+E»le to get:

We let u = E(71iju) and

2(2+E)

[fB IE(~) I' E

4R

aod thus

E

] 2+E

2e

S. c R
2

+
E [fB I\1E(~) 12dX]

4R

2E

f ).2 2-2 2 2+E [r I - "'1 2 ]ILC n Y' 71 71 u dx ~ (suPB q,) • J B V'E( 1]11U) dx .'
-K 0 R 4R ;'

f 2 1/2Reeall that sUPB- q, ~ (KJR)[ B ~ dx] .
-R 2R

estimates we get:

ThUB combining all our
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2E 2e
J r/J2T/2iju2 ::; [.9. cf 4J2dx) 1/2] 2+E • [C R2+€ ].

BRe no R B4R
2

~B tj>2dx] 2+€ • [Ja IV(Err17u) j2dx].
R 4R

~ K[fB «p2dX] ~B CE( rmu) )2dx + J B IVCErr17u) 12dx]
2R 4R 4R

~ K[JB r/J2 dx) [JB (,p:]u)2dx + SB 1V(rmu) 12dX] .
R 2R 2R

Now using Besocovitch's covering lemma and changing constants

appropriately we have Jn~2(qij)2SC[Jn~2][fnC~u)2dx + fnIV(rmu)12dx.

This completes the proof of the sublemma.

Q.E.D. Sublemma

Now we return to the main proof and use the sublemma. We have,

using the sublemma aod recalling that conformal invariance implies

that we may choose [J~2dx]1/2 < 1 (where i may chosen small) that

(I I) :

J 1 (ijk) = Kfn(~k)21~uI2dx::; fnlVql2U2dx + g(k) + C(1) [(fnIV(ryijku ) 12dx )

aod lim g(k) = O.
k,-+a)

Note that:

(III) fnIV(T/~ku)12dx s 2f0T12ry~IVul2dx + 2fnIV(~k)12u2dX so from

(11) and (IIT) we obtain

(IV) Kfn(qijk)2\VuI2dx s f n lVT/1 2u2dx + g(k) + 2C(j)[fnr2ij~IVuI2dx

+ 2fnl7qijkl2u2dx] + C(1)[Kfn(~ku)2dx].

Now. choosing j small enough we absorb the term 2C(j)Jnl17;]kI21V'uI2dx

in the left hand side of (IV) and we get: .
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(V) Kfnlryijkl21Vuj2dx s g(k) + flVryl2u2dx

+ C(,)[2!nIVryijkI2u2 + Kfn(ryijku)2dx .

Now using growth condition c, we have

fnIV(ryijk)!2U2dx s 2flVryl2u2dx + 2fry2(IVijk l )2u2dx s 2fnlVryl2U2dx

+ 2flu2lVijkl2. sup q S 2flVryl2u2dx + h(k)
n

where h(k)! 0 85 k ~ m. Using this in (V) we obtain

with C(,) t 0 if i ~ O. But

Thus

(VII) Kf 21~k121Vu12dx s h(k)+ g(k) + Kf 2lVryl2!ul2dx
B B

+ 2K(7)f 2IV(~k)12u2dx + 2K(,)! 2q2ij~lvul2dx
B ·B

(again with K(,)! 0 as 1! 0.)

Now choose , small enough and absorb the last right hand term

on the left hand side.

(VIII)

But, f 2IV(qijk)j2u2dx =fnIV(~k)2u2dx. =A (we beve already shown
B

A s. 2fnlV~12u2dx + h(k), with h(k) ! 0 as k ~~. Thus combining
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tenns we obtain

(IX) Kf 21~k121Vu12dX S m(k) + Kf 21V~12u2dx
B B

with m(k) t 0 if k ~ 00.

Now, let k ~ ~ and we get:

(X) J 21~121Vu12dx ~ KJ 21V~12u2dx with Kindependent of u.
B B

Q.E.D.

Now we prove Theorem 3.1.

Proof: Theorem 3.1 now follows from De-Georgi iteration, pg. 76 (LU]

which uses the estimate of Proposition 3.1 as its basic inequality.

Q.E.D.
We now eonelude this section with a final eorol~ary.

Corollary 3.1. linder the hypothesis of Theorem 3.1, ~ i5 in L2(B2).

Proof: This is the same as the proof of Corollary 2.4 of (Sb2].

Q.E.D.
4. A Growth Estimation for F

We show F i5 aetually in Lp for all 1 S P < 00, in any smooth

gauge over Ba - {O}, 0 < R < RO'

Theorem 4.1: Under the eonditions o~ theorem M, F is in any

1 ~ P < =, in any smooth gauge over Ba - {O}, 0 < R < RO'

Proof: Sinee *F i8 a smooth funetion on the punetured ball it

follows from inequality 6.7, pg. 269 of (JT] and from YMHl that :

IId I*F I 11 2 :$ 2 MAX Icp I 110;011 2 < 00 by our es t imates on rp. Now, s inee
L L

F E LI it follows that *F i5 in Thus by Sobolev's

theorem F i5 in L2(Ba-fO}). Now, we have F E H~ (BR-{O}) and



Sobolev's embedding theorem gives that

1 :5 P < 00.

5. Proof of the Main Theorem

PF E L CBa-{O}) for all
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P,

Q.E.D.

Corollary 5.1: CF,~) is a weak solution of the field equations

in the full ball Ba' 0 < R < RO'

Proof: Same as Corollary 5.3 of [Sb2].

Lemma 5.1: J 1~ldr S kR, 0 < R < RO
Ba

Proof: apply Holders inequality. Q.E.D.

Theorem 5.1: Under the conditions of' theorem M, thera exists a smooth

gauge over ~ - CO} in which the induced covariant derivative is
o

d + A and A E H1(~) with q' < 2.
q 0

Proof: By lemma 1.3 we have an auxillary gauge in which the induced

cov8riant derivative is d + Aaux and IIAauxIlLPC~ _ CO}) ::; OCR); 0 < R::;

RO' 1 :5 P < 00. As in the proof of Corollary 4.3 of [U3] we salve Cby

now this is standard): d*Cg-Idg + g-IA g) = 0 for g in the spaceaux

~CB2_{0}, G) C COCBR - CO}"~ G); if P > 2. Let P > 4. Note, in this

°gauge, the connection form, Cagain denoted by A), is in Lp C!1t -(al) =
o

LpCBR ). Now, in this gauge, as in Prop. 5.4 [Sb2] , we have dA = F ­
o

t [A,A] = > dA E Lp/2CBa). Since 8A = 0 in Ba - {O} we have
o 0

P/2 1 0 .
~A E L CBR ). Thus A e H C!1t ) C c C~ ); wlth q > 2. Q.E.D.

o q 0 0
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Remark: Note that for clarity and consistency we have followed the

function space notation in [Sb2]. In more precise notation

..
would be A E LPCBR - {O}, ~ 0 Al R2),

o

would be
...

A E H1CB- , ~ @ Al &2), etc.
q -RO

Theorem 5.2: Under the conditions of Theorem M, thera exists a smooth

gauge over BR in which the induced curvature form Fand the
o

induced connection from A satisfy:

1) 8 A =0

2) A E H1 CR- ) with q > 2
q -HO

3) IIAII 1 :;; c IIFII 2
H2CBR ) L (BR )

o 0

Proof: Using the gauge given" by Theorem 5.1, apply Lemma 1.3 cf [U1J.

Note that IlFllq,I1t < kCn) as required in Lemma 1.3, if RO is sma!l
o .

enough, since F E LpCBa ) for all 1 S P < ~ Capply Holder's
o

inequality) . Q.E.D.

At this point, the proof of Theorem M fol.lows exactly the proof

on the last two pages of [pg. 15-16J of [Sb2]. Q.E.D.
We are finished.
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