POINCARÉ DUALITY COMPLEXES IN DIMENSION FOUR

HANS JOACHIM BAUES AND BEATRICE BLEILE

Abstract

We describe an algebraic structure on chain complexes yielding algebraic models which classify homotopy types of PD^{4}-complexes. Generalizing Turaev's fundamental triples of PD^{3}-complexes we introduce fundamental triples for PD^{n}-complexes and show that two PD^{n}-complexes are orientedly homotopy equivalent if and only if their fundamental triples are isomorphic. As applications we establish a conjecture of Turaev and obtain a criterion for the existence of degree 1 maps between n-dimensional manifolds.

Introduction

In order to study the homotopy types of closed manifolds, Browder and Wall introduced the notion of Poincaré duality complexes. A Poincaré duality complex, or PD^{n}-complex, is a CW-complex, X, whose cohomology satisfies a certain algebraic condition. Equivalently, the chain complex, $\widehat{C}(X)$, of the universal cover of X must satisfy a corresponding algebraic condition. Thus Poincaré complexes form a mixture of topological and algebraic data and it is an old quest to provide purely algebraic data determining the homotopy type of PD^{n}-complexes. This has been achieved for $n=3$, but, for $n=4$, only partial results are available in the literature.

Homotopy types of 3 -manifolds and PD^{3}-complexes were considered by Thomas [18], Swarup [17] and Hendriks [9]. The homotopy type of a PD^{3}-complex, X, is determined by its fundamental triple, consisting of the fundamental group, $\pi=$ $\pi_{1}(X)$, the orientation character, ω, and the image in $\mathrm{H}_{3}\left(\pi, \mathbb{Z}^{\omega}\right)$ of the fundamental class, $[X]$. Turaev [20] provided an algebraic condition for a triple to be realizable by a PD^{3}-complex. Thus, in dimension 3 , there are purely algebraic invariants which provide a complete classification.

Using primary cohomological invariants like the fundamental group, characteristic classes and intersection pairings, partial results were obtained for $n=4$ by imposing conditions on the fundamental group. For example, Hambleton, Kreck and Teichner classified PD^{4}-complexes with finite fundamental group having periodic cohomology of dimension 4 (see [6], [19] and [7]). Cavicchioli, Hegenbarth and Piccarreta studied PD^{4}-complexes with free fundamental group (see [4] and [8]), as did Hillman [11], who also considered PD^{4}-complexes with fundamental group a PD^{3}-group [10]. Recently, Hillman [13] considered homotopy types of PD^{4}-complexes whose fundamental group has cohomological dimension 2 and one end.

It is doubtful whether primary invariants are sufficient for the homotopy classification of PD^{4}-complexes in general and we thus follow Ranicki's approach ([14] and [15]) who assigned to each PD^{n}-complex, X, an algebraic Poincaré duality complex given by the chain complex, $\widehat{C}(X)$, together with a symmetric or quadratic
structure. However, Ranicki considered neither the realizability of such algebraic Poincaré duality complexes nor whether the homotopy type of a PD^{n}-complex is determined by the homotopy type of its algebraic Poincaré duality complex.

This paper presents a structure on chain complexes which completely classifies PD^{4}-complexes up to homotopy. The classification uses fundamental triples of PD^{4}-complexes, and, in fact, the chain complex model yields algebraic conditions for the realizability of fundamental triples.

Fundamental triples of formal dimension $n \geq 3$ comprise an ($n-2$)-type T, a homomorphism $\omega: \pi_{1}(T) \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ and a homology class $t \in \mathrm{H}_{n}\left(T, \mathbb{Z}^{\omega}\right)$. There is a functor,

$$
\tau_{+}: \mathbf{P D}_{+}^{n} \longrightarrow \operatorname{Tr}_{+}^{n}
$$

from the category $\mathbf{P D}_{+}^{n}$ of PD^{n}-complexes and maps of degree one to the category $\operatorname{Tr}_{+}^{n}$ of triples and morphisms inducing surjections on fundamental groups. Our first main result is

Theorem 3.1. The functor τ_{+}reflects isomorphisms and is full for $n \geq 3$.
Corollary 3.2. Take $n \geq 3$. Two closed n-dimensional manifolds or two $\mathrm{PD}^{n}-$ complexes, respectively, are orientedly homotopy equivalent if and only if their fundamental triples are isomorphic.

Corollary 3.2 extends results of Thomas [18], Swarup [17] and Hendriks [9] for dimension 3 to arbitrary dimension and establishes Turaev's conjecture [20] on PD^{n}-complexes whose $(n-2)$-type is an Eilenberg-Mac Lane space $K\left(\pi_{1} X, 1\right)$. Corollary 3.2 is even of interest in the case of simply connected or highly connected manifolds.

Theorem 3.1 also yields a criterion for the existence of a map of degree one between PD^{n}-complexes, recovering Swarup's result for maps between 3-manifolds and Hendriks' result for maps between PD^{3}-complexes.

In the oriented case, special cases of Corollary 3.2 were proved by Hambleton and Kreck [6] and Cavicchioli and Spaggiari [5]. In fact, in [6], Corollary 3.2 is obtained under the condition that either the fundamental group is finite or the second rational homology of the 2-type is non-zero. Corresponding conditions were used in [5] for oriented $\mathrm{PD}^{2 n}$-complexes with $(n-1)$-connected universal covers, and Teichner extended the approach of [6] to the non-oriented case in his thesis [19]. Our result shows that the conditions on finiteness and rational homology used in these papers are not necessary.

It follows directly from Poincaré duality and Whitehead's Theorem that the functor τ_{+}reflects isomorphisms. To show that τ_{+}is full requires work. Given PD^{n}-complexes Y and $X, n \geq 3$, and a morphism $f: \tau_{+} Y \rightarrow \tau_{+} X$ in $\operatorname{Trp}_{+}^{n}$, we first construct a chain map $\xi: \widehat{C}(Y) \rightarrow \widehat{C}(X)$ preserving fundamental classes, that is, $\xi_{*}[Y]=[X]$. Then we use the category $\mathbf{H}_{\underline{c}}^{k+1}$ of homotopy systems of order $(k+1)$ introduced in [1] to realize ξ by a map $\bar{f}: Y \rightarrow X$ with $\tau_{+}(\bar{f})=f$.

Our second main result describes algebraic models of homotopy types of $\mathrm{PD}^{4}-$ complexes. We introduce the notion of PD^{n}-chain complex and show that $\mathrm{PD}^{3}-$ chain complexes are equivalent to PD^{3}-complexes up to homotopy. In Section 5 we show that PD^{4}-chain complexes classify homotopy types of PD^{4}-complexes up to 2 -torsion. In particular, we obtain

Theorem 5.3. The functor \widehat{C} induces a 1-1 correspondence between homotopy types of PD^{4}-complexes with finite fundamental group of odd order and homotoppy types of PD^{4}-chain complexes with homotopy co-commutative diagonal and finite fundamental group of odd order.

To obtain a complete homotopy classification of PD^{4}-complexes, we study the chain complex of a 2 -type in Section 6. We compute this chain complex up to dimension 4 in terms of Peiffer commutators in pre-crossed modules. This allows us to introduce PD^{4}-chain complexes together with a β-invariant, and we prove

Corollary 7.4. The functor \widehat{C} induces a $1-1$ correspondence between homotopy types of PD^{4}-complexes and homotopy types of $\beta-\mathrm{PD}^{4}$-chain complexes.

Corollary 7.4 highlights the crucial rôle of Peiffer commutators for the homotopy classification of 4-manifolds.

The proofs of our results rely on the obstruction theory [1] for the realizability of chain maps which we recall in Section 8.

1. Chain complexes

Let X^{n} denote the n-skeleton of the CW-complex X. We call X reduced if $X^{0}=*$ is the base point. The objects of the category $\mathbf{C W}_{0}$ are reduced CWcomplexes X with universal covering $p: \widehat{X} \rightarrow X$, such that $p(\widehat{*})=*$, where $\widehat{*} \in \widehat{X}^{0}$ is the base point of \widehat{X}. Here the n-skeleton of \widehat{X} is $\widehat{X}^{n}=p^{-1}\left(X^{n}\right)$. Morphisms in $\mathbf{C W}_{0}$ are cellular maps $f: X \rightarrow Y$ and homotopies in $\mathbf{C W}_{\mathbf{0}}$ are base point preserving. A map $f: X \rightarrow Y$ in $\mathbf{C W}_{\mathbf{0}}$ induces a unique covering map $\widehat{f}: \widehat{X} \rightarrow \widehat{Y}$ with $\widehat{f}(\widehat{*})=\widehat{*}$, which is equivariant with respect to $\varphi=\pi_{1}(f)$.

We consider pairs (π, C), where π is a group and C a chain complex of left modules over the group ring $\mathbb{Z}[\pi]$. We write $\Lambda=\mathbb{Z}[\pi]$ and C for (π, C), whenever π is understood. We call (π, C) free if each $C_{n}, n \in \mathbb{Z}$, is a free Λ-module. Let aug : $\Lambda \rightarrow \mathbb{Z}$ be the augmentation homomorphism, defined by $\operatorname{aug}(g)=1$ for all $g \in \pi$. Every group homomorphism, $\varphi: \pi \rightarrow \pi^{\prime}$, induces a ring homomorphism φ_{\sharp} : $\Lambda \rightarrow \Lambda^{\prime}$, where $\Lambda^{\prime}=\mathbb{Z}\left[\pi^{\prime}\right]$. A chain map is a pair $(\varphi, F):(\pi, C) \rightarrow\left(\pi^{\prime}, C^{\prime}\right)$, where φ is a group homomorphism and $F: C \rightarrow C^{\prime}$ a φ-equivariant chain map, that is a chain map of the underlying abelian chain complexes, such that $F(\lambda c)=\varphi_{\sharp}(\lambda) F(c)$ for $\lambda \in \Lambda$ and $c \in C$. Two such chain maps are homotopic, $(\varphi, F) \simeq(\psi, G)$ if $\varphi=\psi$ and if there is a φ-equivariant map $\alpha: C \rightarrow C^{\prime}$ of degree +1 such that $G-F=d \alpha+\alpha d$.

A pair (π, C) is a reduced chain complex if $C_{0}=\Lambda$ with generator $*, C_{i}=0$ for $i<0$ and $\mathrm{H}_{0} C=\mathbb{Z}$ such that $C_{0}=\Lambda \rightarrow \mathrm{H}_{0} C=\mathbb{Z}$ is the augmentation of Λ. A chain map, $(\varphi, f):(\pi, C) \rightarrow\left(\pi^{\prime}, C^{\prime}\right)$, of reduced chain complexes, is reduced if f_{0} is induced by φ_{\sharp}, and a chain homotopy α of reduced chain maps is reduced if $\alpha_{0}=0$. The objects of the category \mathbf{H}_{0} are reduced chain complexes and the morphisms are reduced chain maps. Homotopies in \mathbf{H}_{0} are reduced chain homotopies. Every chain complex (π, C) in \mathbf{H}_{0} is equipped with the augmentation $\varepsilon: C \rightarrow \mathbb{Z}$ in \mathbf{H}_{0}. The ring homomorphism $\mathbb{Z} \rightarrow \Lambda$ yields the co-augmentation $\iota: \mathbb{Z} \rightarrow C$, where we view $\mathbb{Z}=(0, \mathbb{Z})$ as chain complex with trivial group $\pi=0$ concentrated in degree 0 . Note that $\varepsilon \iota=\mathrm{id}_{\mathbb{Z}}$, and the composite $\iota \varepsilon: C \rightarrow C^{\prime}$ is the trivial map.

For an object X in $\mathbf{C W}_{0}$, the cellular chain complex $C(\widehat{X})$ of the universal cover \widehat{X} is given by $C_{n}(\widehat{X})=\mathrm{H}_{n}\left(\widehat{X}^{n}, \widehat{X}^{n+1}\right)$. The fundamental group $\pi=\pi_{1}(X)$ acts
on $C(\widehat{X})$, and viewing $C(\widehat{X})$ as a complex of left Λ-modules, we obtain the object $\widehat{C}(X)=(\pi, C(\widehat{X}))$ in \mathbf{H}_{0}. Moreover, a morphism $f: X \rightarrow Y$ in $\mathbf{C W} \mathbf{W}_{0}$ induces the homomorphism $\pi_{1}(f)$ on the fundamental groups and the $\pi_{1}(f)$-equivariant map $\widehat{f}: \widehat{X} \rightarrow \widehat{Y}$ which in turn induces the $\pi_{1}(f)$-equivariant chain map $\widehat{f}_{*}: C(\widehat{X}) \rightarrow$ $C(\widehat{Y})$ in \mathbf{H}_{0}. As \widehat{f} preserves base points, $\widehat{C}(f)=\left(\pi_{1}(f), \widehat{f}_{*}\right)$ is a reduced chain map. We obtain the functor

$$
\begin{equation*}
\widehat{C}: \mathbf{C W}_{0} \longrightarrow \mathbf{H}_{0} \tag{1.1}
\end{equation*}
$$

The chain complex C in \mathbf{H}_{0} is 2-realizable if there is an object X in $\mathbf{C W}{ }_{0}$ such that $\widehat{C}\left(X^{2}\right) \cong C_{\leq 2}$, that is, $\widehat{C}\left(X^{2}\right)$ is isomorphic to C in degree ≤ 2. Given two objects X and Y in $\mathbf{C} \mathbf{W}_{0}$, their product again carries a cellular structure and we obtain the object $X \times Y$ in $\mathbf{C W}_{0}$ with base point $(*, *)$ and universal cover $(X \times Y)^{\wedge}=\widehat{X} \times \widehat{Y}$, so that

$$
\begin{equation*}
\widehat{C}(X \times Y)=\left(\pi \times \pi, C(\widehat{X}) \otimes_{\mathbb{Z}} C(\widehat{Y})\right) \tag{1.2}
\end{equation*}
$$

For $i=1,2$, let $p_{i}: X \times X \rightarrow X$ be the projection onto the i-th factor. A diagonal $\Delta: X \rightarrow X \times X$ in $\mathbf{C W}_{0}$ is a cellular map with $p_{i} \Delta \simeq \mathrm{id}_{X}$ in $\mathbf{C W}_{0}$ for $i=1,2$. A diagonal on (π, C) in \mathbf{H}_{0} is a chain map $(\delta, \Delta):(\pi, C) \rightarrow\left(\pi \times \pi, C \otimes_{\mathbb{Z}} C\right)$ in \mathbf{H}_{0} with $\delta: \pi \rightarrow \pi \times \pi, g \mapsto(g, g)$, such that $p_{i} \Delta \simeq \operatorname{id}_{C}$ for $i=1,2$, where $p_{1}=\mathrm{id} \otimes \varepsilon$ and $p_{2}=\varepsilon \otimes \mathrm{id}$.

The diagonal (δ, Δ) in \mathbf{H}_{0} is homotopy co-associative if the diagram

commutes up to chain homotopy in \mathbf{H}_{0}. The diagonal (δ, Δ) in \mathbf{H}_{0} is homotopy co-commutative if the diagram

commutes up to chain homotopy in \mathbf{H}_{0}, where T is given by $T(c \otimes d)=(-1)^{|c||d|} d \otimes c$.
By the cellular approximation theorem, there is a diagonal $\Delta: X \rightarrow X \times X$ in $\mathbf{C W}_{0}$ for every object X in $\mathbf{C W}_{0}$. Applying the functor \widehat{C} to such a diagonal, we obtain the diagonal $\widehat{C}(\Delta)$ in \mathbf{H}_{0}. This raises the question of realizabilty, that is, given a diagonal $(\delta, \Delta): \widehat{C}(X) \rightarrow \widehat{C}(X) \otimes_{\mathbb{Z}} \widehat{C}(X)$ in \mathbf{H}_{0}, is there a diagonal Δ in $\mathbf{C W}_{0}$ with $\widehat{C}(\Delta)=(\delta, \Delta)$? As $\widehat{C}(\Delta)$ is homotopy co-associative and homotopy cocommutative for any diagonal Δ in $\mathbf{C W}_{0}$, homotopy co-associativity and homotopy co-commutativity of (δ, Δ) are necessary conditions for realizability.

To discuss questions of realizability for a functor $\lambda: \mathbf{A} \rightarrow \mathbf{B}$, we consider pairs (A, b), where $b: \lambda A \cong B$ is an equivalence in \mathbf{B}. Two such pairs are equivalent, $(A, b) \sim\left(A^{\prime}, b^{\prime}\right)$, if and only if there is an equivalence $g: A^{\prime} \cong A$ in \mathbf{A} with $\lambda g=b^{-1} b^{\prime}$. The classes of this equivalence relation form the class of λ-realizations of B,

$$
\begin{equation*}
\operatorname{Real}_{\lambda}(B)=\{(A, b) \mid b: \lambda A \cong B\} / \sim \tag{1.3}
\end{equation*}
$$

We say that B is λ-realizable if $\operatorname{Real}_{\lambda}(B)$ is non-empty. The functor $\lambda: \mathbf{A} \rightarrow \mathbf{B}$ is representative if all objects B in \mathbf{B} are λ-realizable. Further, we say that λ reflects isomorphisms, if a morphism f in \mathbf{A} is an equivalence whenever $\lambda(f)$ is an equivalence in \mathbf{B}. The functor λ is full if, for every morphism $\bar{f}: \lambda(A) \rightarrow \lambda\left(A^{\prime}\right)$ in \mathbf{B}, there is a morphism $f: A \rightarrow A^{\prime}$ in \mathbf{A}, such that $\lambda(f)=\bar{f}$, we then say \bar{f} is λ-realizable.

2. PD-CHAIN COMPLEXES AND PD-COMPLEXES

We start this section with a description of the cap product on chain complexes. We fix a homomorphism $\omega: \pi \rightarrow \mathbb{Z} / 2 \mathbb{Z}=\{0,1\}$ which gives rise to the antiisomorphism ${ }^{-}: \Lambda \rightarrow \Lambda$ of rings defined by $\bar{g}=(-1)^{\omega(g)} g^{-1}$ for $g \in \pi$. To the left Λ-module M we associate the right Λ-module M^{ω} with the same underlying abelian group and action given by $\lambda \cdot a=a \cdot \bar{\lambda}$ for $a \in A$ and $\lambda \in \Lambda$. Proceeding analogously for a right Λ-module N, we obtain a left $\Lambda-$ module ${ }^{\omega} N$. We put

$$
\mathrm{H}_{n}\left(C, M^{\omega}\right)=\mathrm{H}_{n}\left(M^{\omega} \otimes_{\Lambda} C\right) ; \quad \mathrm{H}^{k}(C, M)=\mathrm{H}_{-k}\left(\operatorname{Hom}_{\Lambda}(C, M)\right) .
$$

To define the ω-twisted cap product \cap for a chain complex C in \mathbf{H}_{0} with diagonal (δ, Δ), write $\Delta(c)=\sum_{i+j=n, \alpha} c_{i, \alpha}^{\prime} \otimes c_{j, \alpha}^{\prime \prime}$ for $c \in C$. Then

$$
\begin{aligned}
\cap: \operatorname{Hom}_{\Lambda}(C, M)_{-k} \otimes_{\mathbb{Z}}\left(\mathbb{Z}^{\omega} \otimes_{\Lambda} C\right)_{n} & \rightarrow\left(M^{\omega} \otimes_{\Lambda} C\right)_{n-k} \\
\psi \otimes(z \otimes c) & \mapsto \sum_{\alpha} z \psi\left(c_{k, \alpha}^{\prime}\right) \otimes c_{n-k, \alpha}^{\prime \prime}
\end{aligned}
$$

for every left Λ-module M. Passing to homology and composing with

$$
\begin{gathered}
\left.\mathrm{H}^{*}(C, M) \otimes_{\mathbb{Z}} \mathrm{H}_{*}\left(C \otimes_{\mathbb{Z}} C, \mathbb{Z}^{\omega}\right) \rightarrow \mathrm{H}_{*}\left(\operatorname{Hom}_{\Lambda}(C, M)\right) \otimes_{\mathbb{Z}}\left(\mathbb{Z}^{\omega} \otimes_{\Lambda}\left(C \otimes_{\mathbb{Z}} C\right)\right)\right), \\
{[\psi] \otimes[y] \mapsto[\psi \otimes y]}
\end{gathered}
$$

we obtain

$$
\begin{equation*}
\cap: \mathrm{H}^{k}(C, M) \otimes_{\mathbb{Z}} \mathrm{H}_{n}\left(C, \mathbb{Z}^{\omega}\right) \rightarrow \mathrm{H}_{n-k}\left(C, M^{\omega}\right) \tag{2.1}
\end{equation*}
$$

A PD^{n}-chain complex $C=((\pi, C), \omega,[C], \Delta)$ consists of a free chain complex (π, C) in \mathbf{H}_{0} with π finitely presented, a group homomorphism $\omega: \pi \rightarrow \mathbb{Z} / 2 \mathbb{Z}$, a fundamental class $[C] \in \mathrm{H}_{n}\left(C, \mathbb{Z}^{\omega}\right)$ and a diagonal $\Delta: C \rightarrow C \otimes C$ in \mathbf{H}_{0}, such that $\mathrm{H}_{1} C=0$ and

$$
\begin{equation*}
\cap[C]: \mathrm{H}^{r}(C, M) \rightarrow \mathrm{H}_{n-r}\left(C, M^{\omega}\right) ; \quad \alpha \mapsto \alpha \cap[X] \tag{2.2}
\end{equation*}
$$

is an isomorphism of abelian groups for every $r \in \mathbb{Z}$ and every left Λ-module M. A morphism of PD^{n}-chain complexes $f:((\pi, C), \omega,[C], \Delta) \rightarrow\left(\left(\pi^{\prime}, C^{\prime}\right), \omega^{\prime},\left[C^{\prime}\right], \Delta^{\prime}\right)$ is a morphism $(\varphi, f):(\pi, C) \rightarrow\left(\pi^{\prime}, C^{\prime}\right)$ in \mathbf{H}_{0} such that $\omega=\omega^{\prime} \varphi$ and $(f \otimes f) \Delta \simeq \Delta^{\prime} f$. The category $\mathbf{P D}_{*}^{n}$ is the category of PD^{n}-chain complexes and morphisms between them. Homotopies in $\mathbf{P D}_{*}^{n}$ are reduced chain homotopies. The subcategory $\mathbf{P D}_{*+}^{n}$ of $\mathbf{P D}_{*}^{n}$ is the category consisting of PD^{n}-chain complexes and oriented or degree 1 morphisms of PD^{n}-chain complexes, that is, morphisms $f: C \rightarrow D$ with $f_{*}[C]=$ $[D]$. Wall [21] showed that it is enough to demand that (2.2) is an isomorphism for $M=\Lambda$. If $1 \otimes x \in \mathbb{Z}^{\omega} \otimes_{\Lambda} C_{n}$ represents the fundamental class [C], where C_{i} is finitely generated for $i \in \mathbb{Z}$, then $\cap[C]$ in (2.2) is an isomorphism if and only if

$$
\begin{equation*}
\cap 1 \otimes x: C^{*}={ }^{\omega} \operatorname{Hom}_{\Lambda}\left(C,{ }^{\omega} \Lambda\right) \rightarrow \Lambda \otimes_{\Lambda} C=C \tag{2.3}
\end{equation*}
$$

is a homotopy equivalence of chain complexes of degree n. Here finite generation implies that C^{*} is a free chain complex.

Lemma 2.1. Every PD^{n}-chain complex is homotopy equivalent in $\mathbf{P D}_{*}^{n}$ to a 2 realizable PD^{n}-chain complex.
Proof. This follows from Proposition III 2.13 and Theorem III 2.12 in [1].
A PD^{n}-complex $X=(X, \omega,[X], \Delta)$ consists of an object X in $\mathbf{C W}_{0}$ with finitely presented fundamental group $\pi_{1}(X)$, a group homomorphism $\omega: \pi_{1} X \rightarrow \mathbb{Z} / 2 \mathbb{Z}$, a fundamental class $[X] \in \mathrm{H}_{n}\left(X, \mathbb{Z}^{\omega}\right)$ and a diagonal $\Delta: X \rightarrow X \times X$ in $\mathbf{C W}_{0}$, such that $(\widehat{C} X, \omega,[X], \widehat{C} \Delta)$ is a PD^{n}-chain complex. A morphism of PD^{n}-complexes $f:(X, \omega,[X], \Delta) \rightarrow\left(X^{\prime}, \omega^{\prime},\left[X^{\prime}\right], \Delta^{\prime}\right)$ is a morphism $f: X \rightarrow X^{\prime}$ in $\mathbf{C W}_{0}$ such that $\omega=\omega^{\prime} \pi_{1}(f)$. The category $\mathbf{P D}^{n}$ is the category of $\mathrm{PD}^{\mathrm{n}}-$ complexes and morphisms between them. Homotopies in $\mathbf{P D}^{n}$ are homotopies in $\mathbf{C W}_{0}$. The subcategory $\mathbf{P D}_{+}^{n}$ of $\mathbf{P D}^{n}$ is the category consisting of PD^{n}-complexes and oriented or degree 1 morphisms of PD^{n}-complexes, that is, morphisms $f: X \rightarrow Y$ with $f_{*}[X]=[Y]$.
Remark 2.2. Our PD^{n}-complexes have finitely presented fundamental groups by definition and are thus finitely dominated by Propostion 1.1 in [23].

Let X be a PD^{n}-complex with $n \geq 3$. We say that X is standard, if X is a CW-complex which is n-dimensional and has exactly one n-cell e^{n}. We say that X is weakly standard, if X has a subcomplex X^{\prime} with $X=X^{\prime} \cup e^{n}$, where X^{\prime} is n-dimensional and satisfies $\mathrm{H}^{n}\left(X^{\prime}, B\right)=0$ for all coefficient modules B. In this sense X^{\prime} is homologically $(n-1)$-dimensional. Of course standard implies weakly standard with $X^{\prime}=X^{n-1}$.
Remark. Every compact connected manifold M of dimension n has the homotopy type of a finite standard PD^{n}-complex.
Remark 2.3. Wall's Theorem 2.4 in [21] and Theorem E in [22] imply that, for $n \geq 4$, every PD^{n}-complex is homotopy equivalent to a standard PD^{n}-complex and, for $n=3$, every PD^{3}-complex is homotopy equivalent to a weakly standard PD^{3}-complex.

Let C be a PD^{n}-chain complex with $n \geq 3$. We say that C is standard, if C is 2 -realizable, $C_{i}=0$ for $i>n$, and $C_{n}=\Lambda\left[e_{n}\right]$, where $\left[e_{n}\right] \in C_{n}$. We say that C is weakly standard, if C is 2-realizable and has a subcomplex C^{\prime} with $C=C^{\prime} \oplus \Lambda\left[e_{n}\right]$, where C^{\prime} is n-dimensional and satisfies $\mathrm{H}^{n}\left(C^{\prime}, B\right)=0$ for all coefficient modules B.
Remark 2.4. A PD^{n}-complex, X, is homotopy equivalent to a finite standard, standard or weakly standard PD^{n}-complex, respectively, if and only if the $\mathrm{PD}^{n}-$ chain complex $\widehat{C} X$ is homotopy equivalent to a finite standard, standard or weakly standard PD^{n}-chain complex, respectively.

3. Fundamental triples

Homotopy types of 3 -manifolds and PD^{3}-complexes were considered by Thomas [18], Swarup [17] and Hendriks [9]. In particular, Hendriks and Swarup provided a criterion for the existence of degree 1 maps between 3 -manifolds and PD^{3} complexes, respectively. In this section we generalize these results to manifolds and Poincaré duality complexes of arbitrary dimension n.

Let k-types be the full subcategory of $\mathbf{C W}_{0} / \simeq$ consisting of CW-complexes X in $\mathbf{C W}_{0}$ with $\pi_{i}(X)=0$ for $i>k$. The k-th Postnikov functor

$$
P_{k}: \mathbf{C W}_{0} \rightarrow k \text {-types }
$$

is defined as follows. For X in $\mathbf{C W}_{0}$ we obtain $P_{k} X$ by "killing homotopy groups", that is, we choose a CW-complex $P_{k} X$ with $(k+1)$-skeleton $\left(P_{k} X\right)^{k+1}=X^{k+1}$ and $\pi_{i}\left(P_{k} X\right)=0$ for $i>k$. For a morphism $f: X \rightarrow Y$ in $\mathbf{C W}_{0}$ we may choose a map Pf: $P_{k} X \rightarrow P_{k} Y$ which extends the restriction $f^{k+1}: X^{k+1} \rightarrow Y^{k+1}$ as $\pi_{i}\left(P_{k} Y\right)=0$ for $i>k$. Then the functor P_{k} assigns $P_{k} X$ to X and the homotopy class of $P f$ to f. Different choices for $P_{k} X$ yield canonically isomorphic functors P_{k}. The CW-complex $P_{1} X=K\left(\pi_{1} X, 1\right)$ is an Eilenberg-Mac Lane space and, as a functor, P_{1} is equivalent to the functor π_{1} of fundamental groups. There are natural maps

$$
\begin{equation*}
p_{k}: X \longrightarrow P_{k} X \tag{3.1}
\end{equation*}
$$

in $\mathbf{C W}_{0} / \simeq$ extending the inclusion $X^{k+1} \subseteq P_{k} X$.
For $n \geq 3$, a fundamental triple $T=(X, \omega, t)$ of formal dimension n consists of an $(n-2)$-type X, a homomorphism $\omega: \pi_{1} X \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ and an element $t \in \mathrm{H}_{n}\left(X, \mathbb{Z}^{\omega}\right)$. A morphism $\left(X, \omega_{X}, t_{X}\right) \rightarrow\left(Y, \omega_{Y}, t_{Y}\right)$ between fundamental triples is a homotopy class $\{f\}: X \rightarrow Y$ of maps of the $(n-2)$-types, such that $\omega_{X}=\omega_{Y} \pi_{1}(f)$ and $f_{*}\left(t_{X}\right)=t_{Y}$. We obtain the category Trp^{n} of fundamental triples T of formal dimension n and the functor

$$
\tau: \mathbf{P D}_{+}^{n} / \simeq \longrightarrow \operatorname{Tr}^{n}, \quad X \longmapsto\left(P_{n-2} X, \omega_{X}, p_{n-2 *}[X]\right)
$$

Every degree 1 morphism $Y \rightarrow X$ in $\mathbf{P D}_{+}^{n}$ induces a surjection $\pi_{1} Y \rightarrow \pi_{1} X$ on fundamental groups, see for example [3], and hence we introduce the subcategory $\operatorname{Tr}_{+}^{n} \subset \operatorname{Trp}^{n}$ consisting of all morphisms inducing surjections on fundamental groups. Then the functor τ yields the functor

$$
\begin{equation*}
\tau_{+}: \mathbf{P D}_{+}^{n} / \simeq \longrightarrow \operatorname{Tr}_{+}^{n} . \tag{3.2}
\end{equation*}
$$

As a main result in this section we show
Theorem 3.1. The functor τ_{+}reflects isomorphisms and is full for $n \geq 3$.
As corollaries we mention
Corollary 3.2. Take $n \geq 3$. Two n-dimensional manifolds, respectively, two PD^{n}-complexes, are orientedly homotopy equivalent if and only if their fundamental triples are isomorphic.

Remark. For $n=3$, Corollary 3.2 yields the results by Thomas [18], Swarup [17] and Hendriks [9]. Turaev reproves Hendriks' result in the appendix of [20], although the proof needs further explanation. We reprove the result again in a more algebraic way.

Remark. Turaev conjectures in [20] that his proof for $n=3$ has a generalization to PD^{n}-complexes whose $(n-2)$-type is an Eilenberg-Mac Lane space $K(\pi, 1)$. Corollary 3.2 proves this conjecture

Next consider PD^{n}-complexes X and Y and a diagram

Corollary 3.3. For $n \geq 3$, there is a degree 1 map \bar{f} rendering Diagram (3.3) homotopy commutative if and only if f induces a surjection on fundamental groups, is compatible with the orientations ω_{X} and ω_{Y}, that is, $\omega_{X} \pi_{1}(f)=\omega_{Y}$, and

$$
f_{*} p_{n-2 *}[Y]=p_{n-2 *}[X]
$$

Remark. Swarup [17] and Hendriks [9] prove Corollary 3.3 for 3-manifolds and PD^{3}-complexes, respectively.
Remark. For oriented PD^{4}-complexes with finite fundamental group and f a homotopy equivalence, the map \bar{f} corresponds to the map h in Lemma 1.3 [6] of Hambleton and Kreck. The reader is invited to compare our proof to that of Lemma 1.3 [6] which shows the existence of h but not the fact that h is of degree 1.

By Remark 2.3, Theorem 3.1 is a consequence of the following Lemmata 3.4 and 3.5.

Lemma 3.4. The functor τ_{+}reflects isomorphisms.
Proof. This is a consequence of Poincaré duality and Whitehead's Theorem.
Remark. For $n \geq 3$, let $\left[\frac{n}{2}\right]$ be the largest integer $\leq n$. Associating with a $\mathrm{PD}^{n}-$ complex, X, the pre-fundamental triple $\left(P_{\left[\frac{n}{2}\right]} X, \omega_{X}, p_{\left[\frac{n}{2}\right] *}[X]\right)$, there is an analogue of Lemma 3.4, namely, an orientation preserving map between PD^{n}-complexes is a homotopy equivalence if and only if the induced map between pre-fundamental triples is an isomorphism. However, pre-fundamental triples do not determine the homotopy type of a PD^{n}-complex as in Corollary 3.2, which is demonstrated by the fake products $X=\left(S^{n} \vee S^{n}\right) \cup_{\alpha} e^{2 n}$, where α is the sum of the Whitehead product [ι_{1}, ι_{2}] and an element $\iota_{1} \beta$ with $\beta \in \pi_{2 n-1}\left(S^{n}\right)$ having trivial Hopf invariant. Prefundamental triples coincide with the fundamental triple for $n=3$ and $n=4$. It remains an open problem to enrich the structure of a pre-fundamental triple to obtain an analogue of Corollary 3.2.

Lemma 3.5. Let X and Y be standard PD^{n}-complexes for $n \geq 4$ and weakly standard for $n=3$ and let $f: \tau_{+} Y \rightarrow \tau_{+} X$ be a morphism in $\operatorname{Tr}_{+}^{n}$. Then f is τ-realizable by a map $\bar{f}: Y \rightarrow X$ in PD_{+}^{n} with $\tau \bar{f}=f$.

For the proof of Lemma 3.5, we use
Lemma 3.6. Let $X=X^{\prime} \cup e^{n}$ be a weakly standard PD^{n}-complex. Then there is a generator $[e] \in \widehat{C}_{n}(X)$, with $\widehat{C}_{n} X=\widehat{C}_{n} X^{\prime} \oplus \Lambda[e]$, corresponding to the cell e^{n}, such that $1 \otimes[e] \in \mathbb{Z}^{\omega} \otimes_{\Lambda} \widehat{C}_{n} X$ is a cycle representing the fundamental class $[X]$. Let $\left\{e_{m}\right\}_{m \in M}$ be a basis of $\widehat{C}_{n-1} X=\widehat{C}_{n-1} X^{\prime}$. Then the coefficients $\left\{a_{m}\right\}_{m \in M}, a_{m} \in \Lambda$ for $m \in M$, of the linear combination $d_{n}[e]=\sum a_{m}\left[e_{m}\right]$ generate $\overline{I\left(\pi_{1} X\right)}$ as a right ^-module.

Proof. Poincaré duality implies $\mathrm{H}_{n}\left(X, \mathbb{Z}^{\omega}\right) \cong H^{0}(X, \mathbb{Z}) \cong \mathbb{Z}$. Hence $1 \otimes d$ maps a multiple of the generator $1 \otimes[e]$ of $\mathbb{Z}^{\omega} \otimes_{\Lambda} \widehat{C}_{n}(X)=\mathbb{Z}^{\omega} \otimes_{\Lambda} \Lambda[e] \cong \mathbb{Z}$ to zero, that is, there is an $n \in \mathbb{N}$ such that

$$
\begin{aligned}
0 & =1 \otimes d(n(1 \otimes[e]))=n(1 \otimes d[e])=n\left(1 \otimes \sum_{m \in M} a_{m}\left[e_{m}\right]\right) \\
& =n \sum 1 \cdot a_{m} \otimes\left[e_{m}\right]=n \sum_{m \in M} \operatorname{aug}\left(\overline{a_{m}}\right) \otimes\left[e_{m}\right]
\end{aligned}
$$

Since $\mathbb{Z}^{\omega} \otimes_{\Lambda} D_{n-1}=\mathbb{Z}^{\omega} \otimes_{\Lambda} \bigoplus_{m \in M} \Lambda\left[e_{m}\right] \cong \bigoplus_{m \in M} \mathbb{Z}^{\omega} \otimes_{\Lambda} \Lambda\left[e_{m}\right]=\bigoplus_{m \in M} \mathbb{Z}$ is free as abelian group, this implies $\operatorname{aug}\left(\overline{a_{m}}\right)=0$ and hence $\overline{a_{m}} \in I$ for every $m \in M$. Therefore $1 \otimes d(1 \otimes[e])=0$ and $1 \otimes[e] \in \mathbb{Z}^{\omega} \otimes_{\Lambda} D_{n}$ is a cycle representing a generator of the group $\mathrm{H}_{n}\left(X, \mathbb{Z}^{\omega}\right)$. Without loss of generality we may assume that e is oriented such that $1 \otimes e$ represents the fundamental class $[X]$. Further, Poincaré duality implies $\mathrm{H}^{n}\left(X,{ }^{\omega} \Lambda\right) \cong \mathbb{Z}$ and hence $I(\pi) \cong \operatorname{im}\left(d^{*}\right)[e]$. But, for every $\varphi \in{ }^{\omega} \operatorname{Hom}_{\Lambda}\left(C_{n-1},{ }^{\omega} \Lambda\right)$,

$$
\left(d^{*} \varphi\right)[e]=\varphi(d[e])=\varphi\left(\sum a_{m}\left[e_{m}\right]\right)=\sum a_{m} \varphi\left[e_{m}\right]=\left(\sum \overline{\varphi\left[e_{m}\right]} \bar{a}_{m}[e]^{*}\right)[e]
$$

where $[e]^{*}: \Lambda[e] \rightarrow \Lambda,[e] \mapsto 1$. Thus $I(\pi)$ is generated by $\left\{\bar{a}_{m}\right\}_{m \in M}$ as a left Λ-module and hence $\overline{I(\pi)}$ is generated by $\left\{a_{m}\right\}_{m \in M}$ as a right Λ-module

Lemma 3.7. Let $\bar{X}=X^{\prime} \cup_{f} e^{3}$ be a weakly standard PD^{3}-complex. Then we can choose a homotopy $f \simeq g$ such that $X=X^{\prime} \cup_{g} e^{3}$ admits a splitting $\widehat{C}_{2} X=$ $S \oplus d_{3}\left(\widehat{C}_{3} X^{\prime}\right)$ as a direct sum of Λ-modules satisfying $d_{3}[e] \in S$.
Proof. As X^{\prime} is homologically 2-dimensional, $\widehat{C}(\bar{X})$ admits a splitting,

$$
\widehat{C}_{2}(\bar{X})=\operatorname{im} d_{3}^{\prime} \oplus S
$$

as a direct sum of Λ-modules, where $d_{3}^{\prime}: \widehat{C}_{3}\left(X^{\prime}\right) \rightarrow \widehat{C}_{2}\left(X^{\prime}\right)$. Thus $d_{3}[e] \in \widehat{C}_{2}(\bar{X})=$ $\operatorname{im} d_{3}^{\prime} \oplus S$ decomposes as a sum $d_{3}[e]=\alpha+\beta$ with $\alpha \in \operatorname{imd} d_{3}^{\prime}$ and $\beta \in S$. Since α, viewed as a map $S^{2} \rightarrow X^{\prime}$, is homotopically trivial in X^{\prime}, there is a homotopy $f \simeq g$, where g represents β, such that $X=X^{\prime} \cup_{g} e^{3}$ has the stated properties.

Proof of Lemma 3.5. Certain aspects of the proof for the case $n=3$ differ from that for the case $n \geq 4$. Those parts of the proof pertaining to the case $n=3$ appear in square brackets [...]. [For $n=3$ we assume that $X=X^{\prime} \cup_{g} e^{3}$ is chosen as in Lemma 3.7.]

Given $X=X^{\prime} \cup_{g} e^{n}$ and $Y=Y^{\prime} \cup_{g^{\prime}} e^{\prime n}$ and a morphism $\varphi=\{f\}: \tau(Y)=$ $\left(P, \omega_{Y}, t_{Y}\right) \rightarrow \tau(X)=\left(Q, \omega_{X}, t_{X}\right)$ in Tr^{n}, the diagram

commutes in $\mathbf{C W}_{0}$, where p and p^{\prime} coincide with the identity morphisms on the ($n-1$)-skeleta, and where $\bar{\eta}$ is the restriction of f. For $n \geq 4$, we have $X^{\prime}=X^{n-1}$ and $Y^{\prime}=Y^{n-1}$. We obtain the following commutative diagram of chain complexes in \mathbf{H}_{0}

For $n \geq 4$, we construct a morphism $(\xi, \eta): r(Y) \rightarrow r(X)$ in the category \mathbf{H}_{n-1}^{c} of homotopy systems of order $(n-1)$ (see Section 8), rendering the diagram

homotopy commutative in \mathbf{H}_{n-1}^{c}. Here $\xi: \widehat{C} Y \rightarrow \widehat{C} X$ and $\eta: Y^{n-2} \rightarrow X^{n-2}$ is the restriction of $\bar{\eta}$ above.
[For $n=3$, the map $\bar{\eta}$ itself need not extend to a map $Y^{\prime} \rightarrow X^{\prime}$. But, since Y^{\prime} is homologically 2 -dimensional, there is a map $\eta^{\prime}: Y^{\prime} \rightarrow X^{\prime}$ inducing $\pi_{1} \eta^{\prime}=\pi_{1} \varphi$. Since we may assume that Q is obtained from Y by attaching cells of dimension ≥ 3, we can choose f representing φ with $p \eta^{\prime}=f p^{\prime}$.]

We write $\pi=\pi_{1} X, \pi^{\prime}=\pi_{1} Y, \Lambda=\mathbb{Z}[\pi]$ and $\Lambda^{\prime}=\mathbb{Z}\left[\pi^{\prime}\right]$ and let $\left[e^{\prime}\right] \in \widehat{C}_{n} Y$ and $[e] \in \widehat{C}_{n} X$ be the elements corresponding to the n-cells e_{n} and e_{n}^{\prime}, respectively, $n \geq 3$. Since $\{f\}$ is a morphism in Trp^{n}, we obtain $f_{*} p_{*}^{\prime}[Y]=p_{*}[X]$ in $\mathrm{H}_{n}\left(P, \mathbb{Z}^{\omega}\right)$ and hence

$$
f_{*} p_{*}^{\prime}\left[e^{\prime}\right]-p_{*}[e] \in \operatorname{im}\left(d: \widehat{C}_{n+1} P \rightarrow \widehat{C}_{n} P\right)+\overline{I(\pi)} \widehat{C}_{n} P
$$

Thus there are elements $x \in \widehat{C}_{n+1} P$ and $y \in \overline{I(\pi)} \widehat{C}_{n} P$ with

$$
\begin{equation*}
f_{*} p_{*}^{\prime}\left[e^{\prime}\right]-p_{*}[e]=d x+y \tag{3.5}
\end{equation*}
$$

Let $\left\{e_{m}^{\prime}\right\}_{m \in M}$ be a basis of $\widehat{C}_{n-1} Y$. By Lemma 3.6,

$$
\begin{equation*}
d\left[e^{\prime}\right]=\sum a_{m}\left[e_{m}^{\prime}\right] \tag{3.6}
\end{equation*}
$$

for some $a_{m} \in \Lambda^{\prime}, m \in M$, where $\left\{a_{m}\right\}_{m \in M}$ generate $\overline{I\left(\pi^{\prime}\right)}$ as right $\Lambda^{\prime}-$ module. Since $\varphi=f_{*}$ is surjective, $\overline{I(\pi)}$ is generated by $\left\{\varphi\left(a_{m}\right)\right\}_{m \in M}$ as right Λ-module, and we may write

$$
\begin{equation*}
y=\sum_{m \in M} \varphi\left(a_{m}\right) z_{m}, \tag{3.7}
\end{equation*}
$$

for some $z_{m} \in \widehat{C}_{n} P, m \in M$, since there is a surjection $\bigoplus_{m \in M} \Lambda[m] \rightarrow \overline{I(\pi)}$ of right Λ-modules which maps the generator [m] to $\varphi\left(a_{m}\right)$. Then (3.5) implies $d\left(f_{*} p_{*}^{\prime}\left[e^{\prime}\right]-p_{*}[e]\right)=d y=\sum_{m \in M} \varphi\left(a_{m}\right) d z_{m}$, and hence

$$
\begin{equation*}
p_{*} d[e]=\sum_{m \in M} \varphi\left(a_{m}\right) f_{*} p_{*}^{\prime}\left[e_{m}^{\prime}\right]-\sum_{m \in M} \varphi\left(a_{m}\right) d z_{m} \tag{3.8}
\end{equation*}
$$

We define the φ-equivariant homomorphism

$$
\begin{equation*}
\bar{\alpha}_{n}: \widehat{C}_{n-1} Y \rightarrow \widehat{C}_{n} P \quad \text { by } \quad \bar{\alpha}_{n}\left(\left[e_{m}^{\prime}\right]\right)=-z_{m} \tag{3.9}
\end{equation*}
$$

For $n \geq 4$, we define $\xi: \widehat{C} Y \rightarrow \widehat{C} X$ by $\xi\left[e^{\prime}\right]=[e]$ and

$$
\xi_{i}= \begin{cases}\widehat{C}_{n-1}(\bar{\eta})+d \bar{\alpha}_{n} & \text { for } i=n-1 \tag{3.10}\\ \widehat{C}_{i}(\eta) & \text { for } i<n-1\end{cases}
$$

[For $n=3$ we use the splitting $\widehat{C}_{2} Y=S \oplus d_{3} \widehat{C}_{3} Y^{\prime}$ in Lemma 3.7 and define $\xi_{i}: \widehat{C}_{i} Y \rightarrow \widehat{C}_{i} X$ by $\xi_{3}\left[e^{\prime}\right]=[e], \xi_{3} \mid \widehat{C}_{3} Y^{\prime}=\widehat{C}_{3} \eta^{\prime}$, and

$$
\begin{aligned}
& \xi_{2}\left|S=\left(\widehat{C}_{2} \eta^{\prime}+d \bar{\alpha}_{3}\right)\right| S \\
& \xi_{2}\left|d_{3} \widehat{C}_{3} Y^{\prime}=\widehat{C}_{2} \eta^{\prime}\right| d_{3} \widehat{C}_{3} Y^{\prime}, \\
& \left.\xi_{i}=\widehat{C}_{i} \eta \quad \text { for } i<2 .\right]
\end{aligned}
$$

To ensure that ξ is a chain map, it is now enough to show that $d \xi\left[e^{\prime}\right]=\xi d\left[e^{\prime}\right]$. But, for the injection $\widehat{C}(p)=p_{*}$, we obtain

$$
\begin{aligned}
p_{*} \xi d\left[e^{\prime}\right] & =p_{*}\left(\widehat{C}_{n-1}\left(\eta^{\prime}\right)+d \bar{\alpha}_{n}\right) d\left[e^{\prime}\right] \\
& =\left(p \circ \eta^{\prime}\right)_{n-1} d\left[e^{\prime}\right]+p_{*}\left(d \bar{\alpha}_{n}\left(\sum_{m \in M} a_{m}\left[e_{m}^{\prime}\right]\right)\right) \\
& =\left(f \circ p^{\prime}\right)_{n-1} d\left[e^{\prime}\right]+p_{*} \sum_{m \in M} \varphi\left(a_{m}\right) d \bar{\alpha}_{n}\left[e_{m}^{\prime}\right] \\
& =\sum_{m \in M} \varphi\left(a_{m}\right) f_{*} p_{*}^{\prime}\left[e_{m}^{\prime}\right]-p_{*} \sum_{m \in M} \varphi\left(a_{m}\right) d z_{m} \\
& =p_{*} d[e]=p_{*} d \xi\left[e^{\prime}\right], \quad \text { by }(3.8) .
\end{aligned}
$$

[For $n=3$, Theorem 4.3 now implies that there is a map $\bar{f}: Y \rightarrow X$ such that $\widehat{C}(\bar{f})=\xi$. Then $\tau(\bar{f})=f, \bar{f}$ is a degree 1 map and the proof is complete for $n=3$.]

Now let $n \geq 4$. To check that (ξ, η) is a morphism in \mathbf{H}_{n-1}^{c}, note that the attaching map satisfies the cocycle condition and hence, by its definition, the map ξ_{n-1} commutes with attaching maps in $r(X)$ and $r(Y)$, since $\widehat{C}_{n-1} \bar{\eta}$ has this property. We must show that Diagram (3.4) is homotopy commutative. But $r(f)=\left(f_{*}, \eta\right)$ and $r(p)=\left(p_{*}, j\right), r\left(p^{\prime}\right)=\left(p_{*}^{\prime}, j^{\prime}\right)$, where j and j^{\prime} are the identity morphisms on $X^{n-2}=P^{n-2}$ and $Y^{n-2}=Q^{n-2}$, respectively. Hence we must find a homotopy $\alpha:\left(p_{*} \xi, \eta\right) \simeq\left(f_{*} p_{*}^{\prime}, \eta\right)$ in \mathbf{H}_{n-1}^{c}, that is, φ-equivariant maps

$$
\alpha_{i+1}: \widehat{C}_{i} Y \rightarrow \widehat{C}_{i+1} P, i \geq n-1,
$$

such that

$$
\begin{align*}
& \{\eta\}+g_{n-1} \alpha_{n-1}=\{\eta\} \tag{3.11}\\
& \left(p_{*} \xi\right)_{i}-\left(f \circ p^{\prime}\right)_{i}=\alpha_{i} d+d \alpha_{i+1} \quad \text { for } \quad i \geq n-1 \tag{3.12}
\end{align*}
$$

where g_{n-1} is the attaching map of $(n-1)$-cells in P. Define α by $\alpha_{n+1}\left[e^{\prime}\right]=-x$, see (3.5), and

$$
\alpha_{i}= \begin{cases}\bar{\alpha}_{n} & \text { for } i=n \tag{3.13}\\ 0 & \text { for } i<n\end{cases}
$$

Then α satisfies (3.11) trivially. For $i=n-1$, we obtain

$$
\begin{aligned}
\left(p_{*} \xi\right)_{n-1}-\left(f \circ p^{\prime}\right)_{n-1} & =\xi_{n-1}-\widehat{C}_{n-1}(f) \\
& =\xi_{n-1}-\widehat{C}_{n-1}(\bar{\eta}) \\
& =d \alpha_{n}, \quad \text { by }(3.10) \text { and }(3.13) .
\end{aligned}
$$

For $i=n$, we evaluate (3.12) on $\left[e^{\prime}\right]$. By (3.5),

$$
\left(p_{*} \xi-f_{*} p_{*}^{\prime}\right)\left[e^{\prime}\right]=p_{*}[e]-f_{*} p_{*}^{\prime}\left[e^{\prime}\right]=-d x-y
$$

On the other hand,

$$
\begin{aligned}
\left(d \alpha_{n+1}+\alpha_{n} d\right)\left[e^{\prime}\right] & =d \alpha_{n+1}\left[e^{\prime}\right]+\alpha_{n} \sum_{m \in M} a_{m}\left[e_{m}^{\prime}\right], \quad \text { by }(3.6) \\
& =-d x-\sum_{m \in M} \varphi\left(a_{m}\right) z_{m}, \quad \text { by }(3.13) \text { and }(3.9), \\
& =-d x-y \quad \text { by }(3.7)
\end{aligned}
$$

Hence α satisfies (3.12) and Diagram (3.4) is homotopy commutative.
To construct a morphism $\bar{f}: Y \rightarrow X$ in $\mathbf{P D}_{+}^{n}$ with $\tau(\bar{f})=f$, consider the obstruction $\mathcal{O}(\xi, \eta) \in \mathrm{H}^{n}\left(Y, \Gamma_{n-1} X\right)$ (see Section 8) and note that p induces an isomorphism $p_{*}: \Gamma_{n-1} X \rightarrow \Gamma_{n-1} P$, see II.4.8 [1]. Hence the obstruction for the composite $r(p)(\xi, \eta)$ coincides with $p_{*} \mathcal{O}(\xi, \eta)$, where p_{*} is an isomorphism. On the other hand, the obstruction for $r(f) r\left(p^{\prime}\right)$ vanishes, since this map is λ-realizable. Thus, by the homotopy commutativity of (3.4), $p_{*} \mathcal{O}(\xi, \eta)=\mathcal{O}\left(r(f) r\left(p^{\prime}\right)\right)=0$, so that $\mathcal{O}(\xi, \eta)=0$ and there is a λ-realization $\left(\xi, \tilde{\eta}^{\prime}\right)$ of (ξ, η) in \mathbf{H}_{n}^{c}. Since $\mathrm{H}^{n+1}\left(Y, \Gamma_{n} X\right)=0$, there is a λ-realization (ξ, \bar{f}) of $\left(\xi, \tilde{\eta}^{\prime}\right)$ in \mathbf{H}_{n+1}^{c}. As $Y=$ $Y^{n}, X=X^{n}$ and ξ is compatible with fundamental classes by construction, \bar{f} : $Y \rightarrow X$ is a degree 1 map in $\mathbf{P D}_{+}^{n}$ realizing the map f in $\boldsymbol{T r}^{n}$.

4. PD^{3}-COMPLEXES

The fundamental triple of a PD^{3}-complex consists of a group π, an orientation ω and an element $t \in \mathrm{H}_{3}\left(\pi, \mathbb{Z}^{\omega}\right)$. Here we use the standard fact that the homology of a group π coincides with the homology of the corresponding EilenbergMac Lane space $K(\pi, 1)$. In general, it is a difficult problem to actually compute $\mathrm{H}_{3}\left(\pi, \mathbb{Z}^{\omega}\right)$. The homotopy type of a PD^{3}-complex is characterized by its fundamental triple, but not every fundamental triple occurs as the fundamental triple of a PD^{3}-complex. Via the invariant $\nu_{C}(t)$ Turaev [20] characterizes those fundamental triples which are realizable by a PD^{3}-complex. Let $\operatorname{Tr}_{+, \nu}^{3}$ be the full subcategory of $\operatorname{Tr}_{+}^{3}$ consisting of fundamental triples satisfying Turaev's realization condition. Then Theorem 3.1 implies
Theorem 4.1. The functor

$$
\tau_{+}: \mathbf{P D}_{+}^{3} / \simeq \rightarrow \operatorname{Tr}_{+, \nu}^{3}
$$

reflects isomorphisms and is representative and full.
Remark. Turaev does not mention that the functor τ_{+}is actually full and thus only proves the first part of the following corollary which is one of the consequences of Theorem 4.1.

Corollary 4.2. The functor τ_{+}yields a 1-1 correspondence between oriented homotopy types of PD^{3}-complexes and isomorphism types of fundamental triples satisfying Turaev's realization condition. Moreover, for every PD^{3}-complex X, there is a surjection of groups

$$
\tau_{+}: \operatorname{Aut}_{+}(X) \rightarrow \operatorname{Aut}(\tau(X)),
$$

where $\operatorname{Aut}_{+}(X)$ is the group of oriented homotopy equivalences of X in $\mathbf{P D}_{+}^{3} / \simeq$ and $\operatorname{Aut}(\tau(X))$ is the group of automorphisms of the triple $\tau(X)$ in $\operatorname{Tr}_{+}^{3}$ which is a subgroup of $\operatorname{Aut}\left(\pi_{1} X\right)$.

As every 3 -manifold has the homotopy type of a finite standard PD^{3}-complex, the question arises which fundamental triples in $\operatorname{Tr}_{+}^{3}$ correspond to finite standard PD^{3}-complexes. While Turaev does not discuss this question, we use the concept of PD^{3}-chain complexes (see Section 2) in the category $\mathbf{P D}_{*}^{3}$ to do so.
Theorem 4.3. The functor $\widehat{C}: \mathbf{P D}^{3} / \simeq \longrightarrow \mathbf{P} \mathbf{D}_{*}^{3} / \simeq$ reflects isomorphisms and is representative and full.
Proof. This follows from Theorems 10.1 and 10.2 in Section 10.
Corollary 4.4. The functor \widehat{C} yields a 1-1 correspondence between homotopy types of PD^{3}-complexes and homotopy types of PD^{3}-chain complexes. Moreover, for every PD^{3}-complex X there is a surjection of groups

$$
\widehat{C}: \operatorname{Aut}(X) \longrightarrow \operatorname{Aut}(\widehat{C}(X))
$$

Remark 4.5. Corollary 4.4 implies that the diagonal of every PD^{3}-chain complex is, in fact, homotopy co-associative and homotopy co-commutative.

Connecting the functor \widehat{C} and the functor τ_{+}, we obtain the diagram

where τ_{+}determines τ_{*} together with a natural isomorphism $\tau_{*} \widehat{C} \cong \tau_{+}$.
Corollary 4.6. All of the functors \widehat{C}, τ_{+}and τ_{*} reflect isomorphisms and are full and representative.

By Remark 2.4, the functor \widehat{C} yields a $1-1$ correspondence between homotopy types of finite standard PD^{3}-complexes and finite standard PD^{3}-chain complexes, respectively.

5. Realizability of PD^{4}-Chain complexes

Given a PD^{4}-chain complex C, we define an invariant $\mathcal{O}(C)$ which vanishes if and only if C is realizable by a PD^{4}-complex. To this end we recall the quadratic functor Γ (see also (4.1) p. 13 in [1]). A function $f: A \rightarrow B$ between abelian groups is called a quadratic map if $f(-a)=f(a)$, for $a \in A$, and if the function $A \times A \rightarrow B,(a, b) \mapsto f(a+b)-f(a)-f(b)$ is bilinear. There is a universal quadratic map

$$
\gamma: A \rightarrow \Gamma(A)
$$

such that for all quadratic maps $f: A \rightarrow B$ there is a unique homomorphism $f^{\square}: \Gamma(A) \rightarrow B$ satisfying $f^{\square} \gamma=f$. Using the cross effect of γ, we obtain the Whitehead product map

$$
\begin{aligned}
P: A \otimes A & \longrightarrow \Gamma(A), \\
a \otimes b & \longmapsto
\end{aligned}[a, b]=\gamma(a+b)-\gamma(a)-\gamma(b) .
$$

The exterior product $\Lambda^{2} A$ of the abelian group A is defined so that we obtain the natural exact sequence

$$
\begin{equation*}
\Gamma(A) \xrightarrow{H} A \otimes A \longrightarrow \Lambda^{2} A \longrightarrow 0 \tag{5.1}
\end{equation*}
$$

where H maps $\gamma(a)$ to $a \otimes a$ for $a \in A$ (see also p. 14 in [1]). The composite $P H: \Gamma(A) \rightarrow \Gamma(A)$ coincides with $2 \mathrm{id}_{\Gamma(A)}$, in fact, $P H$ maps $\gamma(a)$ to $[a, a]=2 \gamma(a)$. Given a CW-complex X, there is a natural isomorphism $\Gamma_{3}(X) \cong \Gamma\left(\pi_{2} X\right)$, by an old result of J.H.C. Whitehead [25], where Γ_{3} is Whitehead's functor in A Certain Exact Sequence [25].
Theorem 5.1. Let $C=((\pi, C), \omega,[C], \Delta)$ be a PD^{4}-chain complex with homology module $\mathrm{H}_{2}(C, \Lambda)=H_{2}$. Then there is an invariant

$$
\mathcal{O}(C) \in \mathrm{H}_{0}\left(\pi, \Lambda^{2} H_{2}^{\omega}\right)
$$

with $\mathcal{O}(C)=0$ if and only if there is a PD^{4}-complex X such that $\widehat{C}(X)$ is isomorphic to C in $\mathbf{P D}_{*}^{4} / \simeq$. Moreover, if $\mathcal{O}(C)=0$, the group

$$
\operatorname{ker}\left(H_{*}: \mathrm{H}_{0}\left(\pi, \Gamma\left(H_{2}^{\omega}\right) \longrightarrow \mathrm{H}_{0}\left(\pi, H_{2}^{\omega} \otimes H_{2}^{\omega}\right)\right)\right.
$$

acts transitively and effectively on the set $\operatorname{Real}_{\widehat{C}}(C)$ of realizations of C in $\mathbf{P D}^{4} / \simeq$. Here ker H_{*} is 2-torsion.

Proof. First note that

$$
\begin{equation*}
\mathrm{H}^{4}\left(C, \Lambda^{2} H_{2}\right) \cong \mathrm{H}_{0}\left(C, \Lambda^{2} H_{2}^{\omega}\right) \cong \mathrm{H}_{0}\left(\pi, \Lambda^{2} H_{2}^{\omega}\right) \tag{5.2}
\end{equation*}
$$

By Lemma 2.1, we may assume that C is $2-$ realizable. By Proposition 8.3 , there is thus a 4-dimensional CW-complex X together with an isomorphism $\widehat{C} X \cong(\pi, C)$. The CW-complex X yields the homotopy systems \bar{X} in \mathbf{H}_{3}^{c} and \bar{X} in \mathbf{H}_{4}^{c} with $\bar{X}=$ $r(X)$ and $\overline{\bar{X}}=\lambda X$. By Theorem 10.1, we may choose a diagonal $\overline{\bar{\Delta}}: \overline{\bar{X}} \rightarrow \overline{\bar{X}} \otimes \overline{\bar{X}}$ inducing $\Delta: C \rightarrow C \otimes C$, whose homotopy class is determined by Δ. However, $\overline{\bar{\Delta}}$ need not be λ-realizable. Lemma 9.1 shows that there is an obstruction

$$
\begin{equation*}
\mathcal{O}^{\prime}=\mathcal{O}_{\bar{X}, \bar{X} \otimes \bar{X}}(\overline{\bar{\Delta}}) \in \mathrm{H}^{4}\left(C, \Gamma_{3}(\bar{X} \otimes \bar{X})\right) \tag{5.3}
\end{equation*}
$$

which vanishes if and only if there is a diagonal $\bar{\Delta}: \bar{X} \rightarrow \bar{X} \otimes \bar{X}$ realizing $\overline{\bar{\Delta}}$. Note that \mathcal{O}^{\prime} is determined by the diagonal Δ on C, since the obstruction depends on the homotopy class of $\overline{\bar{\Delta}}$ only. By Theorem 10.2, the existence of $\bar{\Delta}$ realizing $\overline{\bar{\Delta}}$ also implies the existence of $\Delta: X \rightarrow X \times X$ realizing $\bar{\Delta}$. But

$$
\begin{aligned}
\Gamma_{3}(\bar{X} \otimes \bar{X}) & \cong \Gamma\left(\pi_{2}(\bar{X} \otimes \bar{X})\right) \\
& \cong \Gamma\left(\pi_{2}(X \times X)\right) \\
& \cong \Gamma\left(\pi_{2} \oplus \pi_{2}\right) \quad \text { where } \pi_{2}=\pi_{2} X
\end{aligned}
$$

Applying Lemma 9.2 (1), we see that

$$
\mathcal{O}^{\prime} \in \operatorname{ker} p_{i *} \quad \text { for } i=1,2
$$

where $p_{i}: \pi_{2} \oplus \pi_{2} \rightarrow \pi_{2}$ is the i-th projection. Now

$$
\Gamma\left(\pi_{2} \oplus \pi_{2}\right)=\Gamma\left(\pi_{2}\right) \oplus \pi_{2} \otimes \pi_{2} \oplus \Gamma\left(\pi_{2}\right)
$$

and hence \mathcal{O}^{\prime} yields $\mathcal{O}^{\prime \prime} \in \mathrm{H}^{4}\left(C, \pi_{2} \otimes \pi_{2}\right)$. While the homotopy type of $\overline{\bar{X}}$ is determined by C, the homtopy type of \bar{X} is an element of $\operatorname{Real}_{\lambda}(\overline{\bar{X}})$ and the group $\mathrm{H}^{4}\left(C, \Gamma\left(\pi_{2}\right)\right)$ acts transitively and effectively on this set of realizations. To describe the behaviour of the obstruction under this action using Lemma 9.3, we first consider the homomorphism

$$
\nabla=\Delta_{*}-\iota_{1 *}-\iota_{2 *}: \Gamma\left(\pi_{2}\right) \longrightarrow \Gamma\left(\pi_{2} \oplus \pi_{2}\right)
$$

where $\Delta: \pi_{2} \rightarrow \pi_{2} \oplus \pi_{2}$ maps $x \in \pi_{2}$ to $\iota_{1}(x)+\iota_{2}(x)$. We obtain, for $x \in \pi_{2}$,

$$
\begin{aligned}
\nabla(\gamma(x)) & =\gamma\left(\iota_{1}(x)+\iota_{2}(x)\right)-\gamma\left(\iota_{1}(x)\right)-\gamma\left(\iota_{2}(x)\right) \\
& =\left[\iota_{1}(x), \iota_{2}(x)\right] \\
& =x \otimes x \in \pi_{2} \otimes \pi_{2} \subset \Gamma\left(\pi_{2} \oplus \pi_{2}\right)
\end{aligned}
$$

showing that ∇ coincides with $H: \Gamma\left(\pi_{2}\right) \rightarrow \pi_{2} \otimes \pi_{2}$. Given $\alpha \in \mathrm{H}^{4}\left(C, \Gamma\left(\pi_{2}\right)\right)$, the obstruction $\mathcal{O}_{\alpha}^{\prime \prime}=\mathcal{O}_{\bar{Y}, \bar{Y} \otimes \bar{Y}}(\overline{\bar{\Delta}})$ with $\bar{Y}=\bar{X}+\alpha$ satisfies

$$
\mathcal{O}_{\alpha}^{\prime \prime}=\mathcal{O}^{\prime \prime}+H_{*} \alpha,
$$

by Lemma 9.3. The exact sequence

$$
\mathrm{H}^{4}\left(C, \Gamma\left(\pi_{2}\right)\right) \longrightarrow \mathrm{H}^{4}\left(C, \pi_{2} \otimes \pi_{2}\right) \longrightarrow \mathrm{H}^{4}\left(C, \Lambda^{2} \pi_{2}\right) \longrightarrow 0
$$

allows us to identify the coset of $\operatorname{im} H_{*}$ represented by $\mathcal{O}^{\prime \prime}$ with an element

$$
\mathcal{O} \in \mathrm{H}^{4}\left(C, \Lambda^{2} H_{2}\right)
$$

where $H_{2}=\mathrm{H}_{2}(C, \Lambda) \cong \pi_{2}$. By the isomorphisms (5.2), this element yields the invariant

$$
\mathcal{O} \in \mathrm{H}_{0}\left(\pi, \Lambda^{2} H_{2}^{\omega}\right)
$$

with the properties stated. Given that $\mathcal{O}^{\prime \prime}$ vanishes, the obstruction $\mathcal{O}_{\alpha}^{\prime \prime}$ vanishes if and only if $\alpha \in \operatorname{ker} H_{*}$, and Proposition 8.3 yields the result on Real $\widehat{C}^{(C)}$. We observe that ker H_{*} is 2 -torsion as $H_{*}(x)=0$ implies $2 x=P_{*} H_{*} x=0$.

Theorem 5.2. Let $C=((\pi, C), \omega,[C], \Delta)$ be a PD^{4}-chain complex for which Δ is homotopy co-commutative. Then the obstruction $\mathcal{O}(C)$ is 2 -torsion, that is, $2 \mathcal{O}(C)=0$.

Proof. Lemma 9.2 (2) states

$$
\mathcal{O}^{\prime} \in \operatorname{ker}\left(\mathrm{id}_{*}-T_{*}\right)_{*},
$$

where id is the identity on $\pi_{2} \oplus \pi_{2}$ and T is the interchange map on $\pi_{2} \oplus \pi_{2}$ with $T \iota_{1}=\iota_{2}$ and $T \iota_{2}=\iota_{1}$. Thus T induces the map -id on $\Lambda^{2} \pi_{2}$ and the result follows.

Remark. Lemma 9.2 (3) concerning homotopy associativity of the diagonal does not yield a restriction of the invariant $\mathcal{O}(C)$.
Theorem 5.3. The functor \widehat{C} induces a 1-1 correspondence between homotopy types of PD^{4}-complexes with finite fundamental group of odd order and homotoppy types of PD^{4}-chain complexes with homotopy co-commutative diagonal and finite fundamental group of odd order.

Proof. Since π is of odd order, the cohomology $\mathrm{H}^{0}(\pi, M)$ is odd torsion and the result follows from Theorem 5.1.
Remark. By Theorem 5.3, every PD^{4}-chain complex with homotopy co-commutative diagonal and odd fundamental group has a homotopy co-associative diagonal.

Up to 2-torsion, Theorem 5.1 yields a correspondence between homotopy types of PD^{4}-complexes and homotopy types of PD^{4}-chain complexes. In Section 7 below we provide a precise condition for a PD^{4}-chain complex to be realizable by a PD^{4}-complex.

6. The chains of a 2 -TyPE

The fundamental triple of a PD^{4}-complex X comprises its 2-type $T=P_{2} X$ and an element of the homology $\mathrm{H}_{4}\left(T, \mathbb{Z}^{\omega}\right)$. To compute $\mathrm{H}_{4}\left(T, \mathbb{Z}^{\omega}\right)$, we construct a chain complex $P(T)$ which approximates the chain complex $\widehat{C}(T)$ up to dimension 4. Our construction uses a presentation of the fundamental group as well as the concepts of pre-crossed module and Peiffer commutator. To introduce these concepts, we work with right group actions as in [1], and define $P(T)$ as a chain complex of right Λ-modules. With any left Λ-module M we associate a right Λ-module in the usual way by setting $x . \alpha=\alpha^{-1} . x$, for $\alpha \in \pi$ and $x \in M$, and vice versa.

A pre-crossed module is a group homomorphism $\partial: \rho_{2} \rightarrow \rho_{1}$ together with a right action of ρ_{1} on ρ_{2}, such that

$$
\partial\left(x^{\alpha}\right)=-\alpha+\partial x+\alpha \quad \text { for } x \in \rho_{2}, \alpha \in \rho_{1}
$$

where we use additive notation for the group law in ρ_{1} and ρ_{2}, as in [1]. For $x, y \in \rho_{2}$, the Peiffer commutator is given by

$$
\langle x, y\rangle=-x-y+x+y^{\partial x}
$$

A pre-crossed module is a crossed module, if all Peiffer commutators vanish. A map of pre-crossed modules, $(m, n): \partial \rightarrow \partial^{\prime}$ is given by a commutative diagram

in the category of groups, where m is n-equivariant. Let cross be the category of crossed modules and such morphisms. A weak equivalence in cross is a map (m, n) : $\partial \rightarrow \partial^{\prime}$, which induces isomorphisms coker $\partial \cong \operatorname{coker} \partial^{\prime}$ and $\operatorname{ker} \partial \cong \operatorname{ker} \partial^{\prime}$, and we denote the localization of cross with respect to weak equivalences by Ho(cross). By an old result of Whitehead-Mac Lane, there is an equivalence of categories

$$
\bar{\rho}: 2 \text { - types } \longrightarrow \mathbf{H o}(\text { cross }),
$$

compare Theorem III 8.2 in [1]. The functor $\bar{\rho}$ carries a 2 -type T to the crossed module $\partial: \pi_{2}\left(T, T^{1}\right) \rightarrow \pi_{1}\left(T^{1}\right)$.

A pre-crossed module is totally free, if $\rho_{1}=\left\langle E_{1}\right\rangle$ is a free group generated by a set E_{1} and $\rho_{2}=\left\langle E_{2} \times \rho_{1}\right\rangle$ is a free group generated by a free ρ_{1}-set $E_{2} \times \rho_{1}$ with the obvious right action of ρ_{1}. A function $f: E_{2} \rightarrow\left\langle E_{1}\right\rangle$ yields the associated totally free pre-crossed module $\partial_{f}: \rho_{2} \rightarrow \rho_{1}$ with $\partial_{f}(x)=f(x)$ for $x \in E_{2}$. Let $\operatorname{Pei} i_{n}\left(\partial_{f}\right) \subset \rho_{2}$ be the subgroup generated by n-fold Peiffer commutators and put $\bar{\rho}_{2}=\rho_{2} / P e i_{2}\left(\partial_{f}\right)$. Let cross ${ }^{=}$be the category whose objects are pairs $\left(\partial_{f}, B\right)$, where ∂_{f} is a totally free pre-crossed module $\partial_{f}: \rho_{2} \rightarrow \rho_{1}$ and B is a submodule of $\operatorname{ker}\left(\partial: \bar{\rho}_{2} \rightarrow \rho_{1}\right)$. Further, a morphism $m:\left(\partial_{f}, B\right) \rightarrow\left(\partial_{f^{\prime}}, B^{\prime}\right)$ in cross $^{=}$is a map $\partial_{f} \rightarrow \partial_{f^{\prime}}$ which maps B into B^{\prime}. Then there is a functor

$$
q: \text { cross }=\longrightarrow \text { cross } \longrightarrow \mathbf{H o}(\text { cross }),
$$

which assigns to $\left(\partial_{f}, B\right)$ the crossed module $\bar{\rho}_{2} / B \rightarrow \rho_{1}$, and one can check that q is full and representative. Given any map $g: T \rightarrow T^{\prime}$ between 2 -types, we may choose a map $\overline{\bar{g}}:\left(\partial_{f}, B\right) \rightarrow\left(\partial_{f^{\prime}}, B^{\prime}\right)$ in cross ${ }^{=}$representing the homotopy class of g via the functor q and the equivalence $\bar{\rho}$. We call $\overline{\bar{g}}$ a map associated with g.

Given an action of the group π on the group M and a group homomorphism $\varphi: N \rightarrow \pi$, a φ-crossed homomorphism $h: N \rightarrow M$ is a function satisfying

$$
h(x+y)=(h(x))^{\varphi(y)}+h(y) \quad \text { for } x, y \in N .
$$

By an old result of Whitehead [24], the totally free crossed module $\bar{\rho}_{2} \rightarrow \rho_{1}$ enjoys the following properties.

Lemma 6.1. Let X^{2} be a 2-dimensional CW-complex in $\mathbf{C W}_{0}$ with attaching map of 2-cells $f: E_{2} \rightarrow\left\langle E_{1}\right\rangle=\pi_{1}\left(X^{1}\right)$. Then there is a commutative diagram

identifying ∂ with the totally free crossed module ∂_{f}. Moreover, the abelianization of $\bar{\rho}_{2}$ coincides with $\widehat{C}_{2}\left(X^{2}\right)$, identifying the kernel of ∂_{f} with the kernel of $d_{2}: \widehat{C}_{2}\left(X^{2}\right) \rightarrow \widehat{C}_{1}\left(X^{2}\right)$, and ∂_{f} determines the boundary d_{2} via the commutative diagram

Here h_{2} is the quotient map and h_{1} is the $\left(q: \rho_{1} \rightarrow \pi_{1}\left(X^{2}\right)\right)$-crossed homomorphism which is the identity on the generating set E_{1}. Each map $\partial_{f} \rightarrow \partial_{f^{\prime}}$ induces a chain map $\widehat{C}_{2}\left(X^{2}\right) \rightarrow \widehat{C}_{2}\left(X^{\prime 2}\right)$ where X^{2} and $X^{\prime 2}$ are the 2 -dimensional CW -complexes with attaching maps f and f^{\prime}, respectively.

In addition to Lemma 6.1, we need the following result on Peiffer commutators, which was originally proved in IV (1.8) of [1] and generalized in a paper with Conduché [2].

Lemma 6.2. With the notation in Lemma 6.1, there is a short exact sequence

$$
0 \longrightarrow \Gamma(K) \longrightarrow \widehat{C}_{2}\left(X^{2}\right) \otimes \widehat{C}_{2}\left(X^{2}\right) \xrightarrow{\omega} P e i_{2}\left(\partial_{f}\right) / P e i_{3}\left(\partial_{f}\right) \longrightarrow 0,
$$

where $K=\operatorname{ker} d_{2}=\pi_{2} X^{2}$ and ω maps $x \otimes y$ to the Peiffer commutator $\langle\xi, \eta\rangle$ with $\xi, \eta \in \rho_{2}$ representing x and y, respectively.

Definition 6.3. Given a 2-type T in 2-types, we define the chain complex $P(T)=$ $P\left(\partial_{f}, B\right)$ as follows. Let $f: E_{2} \rightarrow\left\langle E_{1}\right\rangle$ be the attaching map of 2-cells in T and put $C_{i}=\widehat{C}_{i}(T)$. Then the 2-skeleton of $P(T)$ coincides with $\widehat{C}\left(T^{2}\right)$, that is, $P_{i}(T)=C_{i}$ for $i \leq 2$, and $P_{i}(T)=0$ for $i>4$. To define $P_{4}(T)$, let H be the map in (5.1) and put $B=\operatorname{im}\left(d: C_{3} \rightarrow C_{2}\right)$ and $\nabla_{B}=B \otimes B+H\left[B, C_{2}\right]$ as a submodule of $C_{2} \otimes C_{2}$. Then $P_{4}(T)$ is given by the quotient

$$
P_{4}(T)=C_{2} \otimes C_{2} / \nabla_{B} .
$$

To define $P_{3}(T)$, we use Lemma 6.1, Lemma 6.2 and the identification $\pi_{2} T^{2}=$ $\operatorname{ker}\left(d: C_{2} \rightarrow C_{1}\right)$ and put $\sigma_{2}=\rho_{2} / P e i_{3}\left(\partial_{f}\right)$. Then $P_{3}(T)$ is given by the pull-back
diagram

The chain complex $P(T)$ is determined by the commutative diagram

Clearly, $P(T)=P\left(\partial_{f}, B\right)$ depends on the pair $\left(\partial_{f}, B\right)$ only and yields a functor

$$
P: \operatorname{cross}^{=} \longrightarrow \mathbf{H}_{0}
$$

The homology of $P(T)$ is given by

$$
\mathrm{H}_{i}(P(T))= \begin{cases}0 & \text { for } i=1 \text { and } i=3 \\ \mathrm{H}_{2} C=\pi_{2} T & \text { for } i=2 \\ \Gamma\left(\pi_{2}(T)\right) & \text { for } i=4\end{cases}
$$

Lemma 6.4. Given a 2-type T, there is a chain map

$$
\bar{\beta}: \widehat{C}(T) \longrightarrow P(T)
$$

inducing isomorphisms in homology in degree ≤ 4. The map $\bar{\beta}$ is natural in T up to homotopy, that is, a map $g: T \rightarrow T^{\prime}$ between 2-types yields a homotopy commutative diagram

where $\overline{\bar{g}}_{*}$ is induced by a map $\overline{\bar{g}}: \partial_{f} \rightarrow \partial_{f^{\prime}}$ associated with g.
For a proof of Lemma 6.4, we refer the reader to diagram (1.2) in Chapter V of [1]. In order to compute the fourth homology or cohomology of a 2-type T with coefficients, choose a pair $\left(\partial_{f}, B\right)$ representing T and a free chain complex C together with a weak equivalence of chain complexes

$$
C \xrightarrow{\sim} P\left(\partial_{f}, B\right) .
$$

Then, for right $\Lambda-$ modules M and left Λ-modules N,

$$
\begin{aligned}
\mathrm{H}_{4}(T, M) & =\mathrm{H}_{4}(C \otimes M) \\
\mathrm{H}^{4}(T, N) & =\mathrm{H}^{4}\left(\operatorname{Hom}_{\Lambda}(C, N)\right) .
\end{aligned}
$$

This allows for the computation of H_{4} in terms of chain complexs only, as is the case for the computation of group homology in Section 4. Of course, it is also possible to compute the homology of T in terms of a spectral sequence associated with the fibration

$$
K\left(\pi_{2}(T), 2\right) \longrightarrow T \longrightarrow K\left(\pi_{1}(T), 1\right)
$$

However, in general, this yields non-trivial differentials, which may be related to the properties of the chain complex $P\left(\partial_{f}, B\right)$.

7. Algebraic models of PD^{4}-COMPlexes

Let X be a 4 -dimensional CW-complex and let

$$
p_{2}: X \longrightarrow P_{2} X=T
$$

be the map to the 2 -type of X, as in (3.1). Then p_{2} yields the chain map

$$
\beta: \widehat{C}(X) \xrightarrow{p_{2 *}} \widehat{C}(T) \xrightarrow{\bar{\beta}_{*}} P(T)=P\left(\partial_{f}, B\right),
$$

were ∂_{f} is given by the attaching map of 2 -cells in X and $B=\operatorname{im}\left(d_{3}: \widehat{C}_{3}(X) \rightarrow\right.$ $\widehat{C}_{2}(X)$). We call the chain map β the cellular boundary invariant of X.

Lemma 7.1. Let X and X^{\prime} be 4-dimensional CW-complexes. A chain map φ : $\widehat{C}(X) \rightarrow \widehat{C}\left(X^{\prime}\right)$ is realizable by a map $g: X \rightarrow X^{\prime}$ in $\mathbf{C W}_{0}$, that is, $\varphi=g_{*}$, if and only if the diagram

commutes up to homotopy. Here $\overline{\bar{\varphi}}: \partial_{f} \rightarrow \partial_{f^{\prime}}$ is a map in cross ${ }^{=}$inducing $\varphi_{\leq 2}: \widehat{C}\left(X^{2}\right) \rightarrow \widehat{C}\left(X^{\prime 2}\right)$ as in Lemma 6.1.

Proof. By Lemma 6.4, the diagram

is homotopy commutative, where g is given by $q(\bar{g})$ in $\mathbf{H o}$ (cross). Since $p_{2 *}$ and g_{*} are realizable, the obstruction $\mathcal{O}_{X, X^{\prime}}(\varphi)$ vanishes.

Definition 7.2. A $\beta-\mathrm{PD}^{4}$-chain complex is a PD^{4}-chain complex $((\pi, C), \omega,[C], \Delta)$ together with a totally free pre-crossed module ∂_{f} inducing $d_{2}: C_{2} \rightarrow C_{1}$ and a chain map

$$
\beta: C \longrightarrow P\left(\partial_{f}, B\right)
$$

which is the identity in degree ≤ 2. Here $B=\operatorname{im}\left(d_{3}: C_{3} \rightarrow C_{2}\right)$, the diagram

commutes up to homotopy and β is the cellular boundary invariant β_{σ} of a totally free quadratic chain complex σ defined in $\mathrm{V}(1.8)$ of [1]. Further, β^{\otimes} is the cellular boundary invariant of the quadratic chain complex $\sigma \otimes \sigma$ defined in Section IV 12 of [1], and there is an explicit formula expressing β^{\otimes} in terms of β, which we do
not recall here. The function $f \otimes f$ is the attaching map of 2 -cells in the product $X^{2} \times X^{2}$, where X^{2} is given by f, and B^{\otimes} is the image of d_{3} in $C \otimes C$. The map $\overline{\bar{\Delta}}$ in cross ${ }^{=}$is chosen such that $\overline{\bar{\Delta}}$ induces Δ in degree ≤ 2 as in Lemma 7.1.) Let $\mathbf{P D}_{*, \beta}^{4}$ be the category whose objects are $\beta-\mathrm{PD}^{4}$-chain complexes and whose morphisms are maps φ in $\mathbf{P D}_{*}^{4}$ such that the diagram

is homotopy commutative, where $\overline{\bar{\varphi}}$ induces $\varphi_{\leq 2}$ as in Lemma 7.1.
Theorem 7.3. The functor \widehat{C} yields a functor

$$
\widehat{C}: \mathbf{P D}^{4} / \simeq \longrightarrow \mathbf{P D}_{*, \beta}^{4} / \simeq
$$

which reflects isomorphisms and is representative and full.
Proof. Since C is 2-realizable, there is a 4-dimensional CW-complex X with $\widehat{C}(X)=C$ and cellular boundary invariant β. By Lemma 7.1, the diagonal Δ is realizable by a diagonal $X \rightarrow X \times X$, showing that X is a PD^{4}-complex. By Lemma 7.1, a map φ is realizable by a map $X \rightarrow X^{\prime}$.

Corollary 7.4. The functor \widehat{C} induces a $1-1$ correspondence between homotopy types of PD^{4}-complexes and homotopy types of $\beta-\mathrm{PD}^{4}$-chain complexes.

The functor τ in Section 3 yields the diagram of functors

where τ_{+}determines τ_{*} together with a natural isomorphism $\tau_{*} \widehat{C} \cong \tau_{+}$.
Corollary 7.5. The functor τ_{*} in (7.1) reflects isomorphisms and is full.
8. Homotopy systems of order ($\mathrm{K}+1$)

To investigate questions of realizability, we work in the category \mathbf{H}_{c}^{k+1} of homotopy systems of order $(k+1)$. Let $\mathbf{C W}{ }_{0}^{k}$ be the full subcategory of $\mathbf{C W}{ }_{0}$ consisting of k-dimensional CW-complexes. A 0 -homotopy H in $\mathbf{C W}{ }_{0}$, denoted by \simeq^{0}, is a homotopy for which H_{t} is cellular for each $t, 0 \leq t \leq 1$.

Let $k \geq 2$. A homotopy system of order $(k+1)$ is a triple $X=\left(C, f_{k+1}, X^{k}\right)$, where X^{k} is an object in $\mathbf{C W}_{0}^{k}, C$ is a chain complex of free $\pi_{1}\left(X^{k}\right)$-modules, which coincides with $\widehat{C}\left(X^{k}\right)$ in degree $\leq k$, and where f_{k+1} is a homomorphism of left $\pi_{1}\left(X^{k}\right)$-modules such that

commutes. Here d is the boundary in C,

$$
h_{k}: \pi_{k}\left(X^{k}, X^{k-1}\right) \stackrel{p_{*}^{-1}}{\cong} \pi_{k}\left(\widehat{X}^{k}, \widehat{X}^{k-1}\right) \xrightarrow[\cong]{\cong} \mathrm{H}_{k}\left(\widehat{X}^{k}, \widehat{X}^{k-1}\right),
$$

given by the Hurewicz isomorphism h and the inverse of the isomorphism on the relative homotopy groups induced by the universal covering $p: \widehat{X} \rightarrow X$. Moreover, f_{k+1} satisfies the cocycle condition

$$
f_{k+1} d\left(C_{k+2}\right)=0
$$

For an object X in $\mathbf{C W}_{0}$, the triple $r(X)=\left(\widehat{C}(X), f_{k+1}, X^{k}\right)$ is a homotopy system of order $(k+1)$, where X^{k} is the k-skeleton of X, and

$$
f_{k+1}: \widehat{C}_{k+1}(X) \cong \pi_{k+1}\left(X^{k+1}, X^{k}\right) \xrightarrow{\partial} \pi_{k}\left(X^{k}\right)
$$

is the attaching map of $(k+1)$-cells in X. A morphism or map between homotopy systems of order $(k+1)$ is a pair

$$
(\xi, \eta):\left(C, f_{k+1}, X^{k}\right) \rightarrow\left(C^{\prime}, g_{k+1}, Y^{k}\right)
$$

where $\eta: X^{k} \rightarrow Y^{k}$ is a morphism in $\mathbf{C W}_{0} / \simeq^{0}$ and the $\pi_{1}(\eta)$-equivariant chain $\operatorname{map} \xi: C \rightarrow C^{\prime}$ coincides with $\widehat{C}_{*}(\eta)$ in degree $\leq k$ such that

commutes. We also write $\pi_{1} X=\pi_{1}\left(X^{k}\right)$ for an object $X=\left(C, f_{k+1}, X^{k}\right)$ in \mathbf{H}_{k+1}^{c}.
To define the homotopy relation in \mathbf{H}_{k+1}^{c}, we use the action (see ??? in [1])

$$
\begin{equation*}
\left[X^{k}, Y\right]_{\varphi} \times \widehat{\mathrm{H}}^{k}\left(X^{k}, \varphi^{*} \pi_{k} Y\right) \rightarrow\left[X^{k}, Y\right]_{\varphi}, \quad(F,\{\alpha\}) \mapsto F+\{\alpha\} \tag{8.1}
\end{equation*}
$$

where $\left[X^{n}, Y\right]_{\varphi}$ is the set of elements in $\left[X^{n}, Y\right]$ which induce φ on the fundamental groups. Two morphisms

$$
(\xi, \eta),\left(\xi^{\prime}, \eta^{\prime}\right):\left(C, f_{k+1}, X^{k}\right) \rightarrow\left(C^{\prime}, g_{k+1}, Y^{k}\right)
$$

are homotopy equivalent in \mathbf{H}_{k+1}^{c} if $\pi_{1}(\eta)=\pi_{1}\left(\eta^{\prime}\right)=\varphi$ and if there are φ^{-} equivariant homomorphisms $\alpha_{j+1}: C_{j} \rightarrow C_{j+1}^{\prime}$ for $j \geq k$ such that

$$
\begin{gathered}
\{\eta\}+g_{k+1} \alpha_{k+1}=\left\{\eta^{\prime}\right\} \quad \text { and } \\
\xi_{i}^{\prime}-\xi_{i}=\alpha_{i} d+d \alpha_{i+1}, \quad i \geq k+1
\end{gathered}
$$

where $\{\eta\}$ denotes the homotopy class of η in $\left[X^{k}, Y^{k}\right]$ and + is the action (8.1).
Given homotopy systems $X=\left(C, f_{k+1}, X^{k}\right)$ and $Y=\left(C^{\prime}, g_{k+1}, Y^{k}\right)$, consider

$$
X \otimes Y=\left(C \otimes_{\mathbb{Z}} C^{\prime}, h_{k+1},\left(X^{k} \times Y^{k}\right)^{k}\right)
$$

where we choose CW-complexes X^{k+1} and Y^{k+1} with attaching maps f_{k+1} and g_{k+1}, respectively, and h_{k+1} is given by the attaching maps of $(k+1)$-cells in $X^{k+1} \times Y^{k+1}$. Then $X \otimes Y$ is a homotopy system of order $(k+1)$, and

$$
\otimes: \mathbf{H}_{k+1}^{c} \times \mathbf{H}_{k+1}^{c} \rightarrow \mathbf{H}_{k+1}^{c}
$$

is a bi-functor, called the tensor product of homotopy systems. The projections $p_{1}: X \otimes Y \rightarrow X$ and $p_{2}: X \otimes Y \rightarrow Y$ in \mathbf{H}_{k+1}^{c} are given by the projections of
the tensor product and the product of CW-complexes. Similarly, we obtain the inclusions $\iota_{1}: X \rightarrow X \otimes Y$ and $\iota_{2}: Y \rightarrow X \otimes Y$. Then $p_{1} \iota_{1}=\mathrm{id}_{X}$ and $p_{2} \iota_{2}=\mathrm{id}_{Y}$, while $p_{1} \iota_{2}$ and $p_{2} \iota_{1}$ yield the trivial maps.

There are functors

$$
\begin{equation*}
\mathbf{C W}_{0} \xrightarrow{r} \mathbf{H}_{k+1}^{c} \xrightarrow{\lambda} \mathbf{H}_{k}^{c} \xrightarrow{C} \mathbf{H}_{0} \tag{8.2}
\end{equation*}
$$

for $k \geq 3$, with $r(X)=\left(\widehat{C}(X), f_{k+1}, X^{k}\right)$ such that $r=\lambda r$. We write $\lambda X=\bar{X}$ for objects X in \mathbf{H}_{k+1}^{c}. As $\overline{X \otimes Y}=\lambda(X \otimes Y)=\bar{X} \otimes \bar{Y}$, the functor λ, and also r and C, is a monoidal functor between monoidal categories. There is a homotopy relation defined on the category \mathbf{H}_{k+1}^{c} such that these functors induce functors between homotopy categories

$$
\mathbf{C W}_{0} / \simeq \xrightarrow{r} \mathbf{H}_{k+1}^{c} / \simeq \xrightarrow{\lambda} \mathbf{H}_{k}^{c} / \simeq \xrightarrow{C} \mathbf{H}_{0} / \simeq .
$$

For $k \geq 3$, Whitehead's functor Γ_{k} factors through the functor $r: \mathbf{C W} \rightarrow \mathbf{H}_{k}^{c}$, so that the cohomology $\widehat{\mathrm{H}}_{m}\left(\bar{X}, \varphi^{*} \Gamma_{k}(\bar{Y})\right)=\mathrm{H}^{m}\left(C, \varphi^{*} \Gamma_{k}(\bar{Y})\right)$ is defined, where $\varphi: \pi_{1} \bar{X} \rightarrow \pi_{1} \bar{Y}$ and \bar{X} and \bar{Y} are objects in \mathbf{H}_{k}^{c}.

To describe the obstruction to realizing a map $f=(\xi, \eta): \bar{X} \rightarrow \bar{Y}$ in \mathbf{H}_{k}^{c}, where $\bar{X}=\lambda X$ and $\bar{Y}=\lambda Y$, by a map $X \rightarrow Y$ in \mathbf{H}_{k+1}^{c} for objects $X=\left(C, f_{k+1}, X^{k}\right)$ and $Y=\left(C^{\prime}, g_{k+1}, Y^{k}\right)$, choose a map $F: X^{k} \rightarrow Y^{k}$ in $\mathbf{C W} / \simeq^{0}$ extending η : $X^{k-1} \rightarrow Y^{k-1}$ and for which $\widehat{C}_{*} F$ coincides with ξ in degree $\leq n$. Then

need not commute and the difference $\mathcal{O}(F)=-g_{k+1} \xi_{k+1}+F_{*} f_{k+1}$ is a cocycle in $\operatorname{Hom}_{\varphi}\left(C_{k+1}, \Gamma_{k}(\bar{Y})\right)$. Theorem II 3.3 in [1] implies
Proposition 8.1. The map $f=(\xi, \eta): \bar{X} \rightarrow \bar{Y}$ in \mathbf{H}_{k}^{c} can be realized by a map $f_{0}=\left(\xi, \eta_{0}\right): X \rightarrow Y$ in \mathbf{H}_{k+1}^{c} if and only if $\mathcal{O}_{X, Y}(f)=\{\mathcal{O}(F)\} \in \widehat{\mathrm{H}}^{k+1}\left(\bar{X}, \varphi^{*} \Gamma_{k} \bar{Y}\right)$ vanishes. The obstruction \mathcal{O} is a derivation, that is, for $f: \bar{X} \rightarrow \bar{Y}$ and $g: \bar{Y} \rightarrow \bar{Z}$,

$$
\begin{equation*}
\mathcal{O}_{X, Z}(g f)=g_{*} \mathcal{O}_{X, Y}(f)+f^{*} \mathcal{O}_{Y, Z}(g) \tag{8.3}
\end{equation*}
$$

and $\mathcal{O}_{X, Y}(f)$ depends on the homotopy class of f only.
Denoting the set of morphisms $X \rightarrow Y$ in $\mathbf{H}_{k+1}^{c} / \simeq$ by $[X, Y]$, and the subset of morphisms inducing φ on the fundamental groups by $[X, Y]_{\varphi} \subseteq[X, Y]$, there is a group action

$$
[X, Y]_{\varphi} \times \widehat{\mathrm{H}}^{k}\left(\bar{X}, \varphi^{*} \Gamma_{k} \bar{Y}\right) \xrightarrow{+}[X, Y]_{\varphi}
$$

where $\bar{X}=\lambda X$ and $\bar{Y}=\lambda Y$. Theorem II 3.3 in [1] implies
Proposition 8.2. Given morphisms $f_{0}, f_{0}^{\prime} \in[X, Y]_{\varphi}$, then $\lambda f_{0}=\lambda f_{0}^{\prime}=f$ if and only if there is an $\alpha \in \widehat{\mathrm{H}}^{k}\left(\bar{X}, \varphi^{*} \Gamma_{k} \bar{Y}\right)$ with $f_{0}^{\prime}=f_{0}+\alpha$. In other words, $\widehat{\mathrm{H}}^{k}\left(\bar{X}, \varphi^{*} \Gamma_{k} \bar{Y}\right)$ acts transitively on the set of realizations of f. Further, the action satisfies the linear distributivity law

$$
\begin{equation*}
\left(f_{0}+\alpha\right)\left(g_{0}+\beta\right)=f_{0} g_{0}+f_{*} \beta+g^{*} \alpha \tag{8.4}
\end{equation*}
$$

For the functor λ in (8.2), Theorem II 3.3 in [1] implies

Proposition 8.3. For all objects X in \mathbf{H}_{k+1}^{c} and for all $\alpha \in \widehat{\mathrm{H}}^{k+1}\left(\bar{X}, \Gamma_{k} \bar{X}\right)$, there is an object X^{\prime} in \mathbf{H}_{k+1}^{c} with $\lambda\left(X^{\prime}\right)=\lambda(X)=\bar{X}$ and $\mathcal{O}_{X, X^{\prime}}\left(\mathrm{id}_{\bar{X}}\right)=\alpha$. We then write $X^{\prime}=X+\alpha$.

Now let Y be an object in \mathbf{H}_{k}^{c}. Then the group $\widehat{\mathrm{H}}^{k+1}\left(Y, \Gamma_{k} Y\right)$ acts transitively and effectively on $\operatorname{Real}_{\lambda}(Y)$ via + , provided $\operatorname{Real}_{\lambda}(Y)$ is non-empty. Moreover, $\operatorname{Real}_{\lambda}(Y)$ is non-empty if and only if an obstruction $\mathcal{O}(Y) \in \widehat{\mathrm{H}}^{k+2}\left(Y, \Gamma_{k} Y\right)$ vanishes.

For objects X and Y in \mathbf{H}_{k+1}^{c} and a morphism $f: \bar{X} \rightarrow \bar{Y}$ in \mathbf{H}_{k}^{c}, Propositions 8.1 and 8.3 yield

$$
\begin{equation*}
\mathcal{O}_{X+\alpha, Y+\beta}(f)=\mathcal{O}_{X, Y}(f)-f_{*} \alpha+f^{*} \beta \tag{8.5}
\end{equation*}
$$

for all $\alpha \in \widehat{\mathrm{H}}^{k+1}\left(\bar{X}, \Gamma_{k} \bar{X}\right)$ and $\beta \in \widehat{\mathrm{H}}^{k+1}\left(\bar{Y}, \Gamma_{k} \bar{Y}\right)$. Given another object Z in \mathbf{H}_{k+1}^{c} with $\lambda Z=\bar{Z}$,

$$
\begin{align*}
\mathcal{O}_{X \otimes Z, Y \otimes Z}\left(f \otimes \operatorname{id}_{\bar{Z}}\right) & =\bar{\iota}_{1 *} \bar{p}_{1}^{*} \mathcal{O}_{X, Y}(f), \tag{8.6}\\
\mathcal{O}_{Z \otimes X, Z \otimes Y}\left(\mathrm{id}_{\bar{Z}} \otimes f\right) & =\bar{\iota}_{2 *} \bar{p}_{2}^{*} \mathcal{O}_{X, Y}(f), \tag{8.7}
\end{align*}
$$

where $\bar{\iota}_{1}: \bar{X} \rightarrow \bar{X} \otimes \bar{Z}$ and $\bar{p}_{1}: \bar{X} \otimes \bar{Z} \rightarrow \bar{X}$ are the inclusion of and projection onto the first factor and $\bar{\iota}_{2}$ and \bar{p}_{2} are defined analogously. We obtain

$$
\begin{equation*}
(X+\alpha) \otimes(Y+\beta)=(X \otimes Y)+\bar{\iota}_{1 *} \bar{p}_{1}^{*} \alpha+\bar{\iota}_{2 *} \bar{p}_{2}^{*} \beta \tag{8.8}
\end{equation*}
$$

9. Obstructions to the diagonal

Let $k \geq 2$. A diagonal on $X=\left(C, f_{k+1}, X^{k}\right)$ in \mathbf{H}_{k+1}^{c} is a morphism, $\Delta: X \rightarrow$ $X \otimes X$, such that, for $i=1,2$, the diagram

commutes up to homotopy in \mathbf{H}_{k+1}^{c}. Applying the functor $r: \mathbf{C W}_{0} \rightarrow \mathbf{H}_{k}^{c}$ to a diagonal $\Delta: X \rightarrow X \times X$ in $\mathbf{C W}_{0}$, we obtain the diagonal $r(\Delta): r(X) \rightarrow$ $r(X) \otimes r(X)$ in \mathbf{H}_{k}^{c}.
Lemma 9.1. Let X be an object in \mathbf{H}_{k+1}^{c}. Then every λ-realizable diagonal $\bar{\Delta}$: $\bar{X}=\lambda X \rightarrow \bar{X} \otimes \bar{X}$ in $\mathbf{H}_{k}^{c} / \simeq$ has a λ-realization $\Delta: X \rightarrow X \otimes X$ in $\mathbf{H}_{k+1}^{c} / \simeq$ which is a diagonal in \mathbf{H}_{k+1}^{c}.
Proof. Suppose $\Delta^{\prime}: X \rightarrow X \otimes X$ is a λ-realization of $\bar{\Delta}$ in \mathbf{H}_{k+1}^{c}. The projection $p_{\ell}: X \rightarrow X \otimes X$ realizes the projection $\bar{p}_{\ell}: \bar{X} \rightarrow \bar{X} \otimes \bar{X}$ and hence $p_{\ell} \Delta^{\prime}$ realizes $\bar{p}_{\ell} \bar{\Delta}$ for $\ell=1,2$. Now the identity on X realizes the identity on \bar{X} and $\bar{p}_{\ell} \Delta$ is homotopic to the identity on \bar{X} by assumption. Hence $p_{\ell} \Delta^{\prime}$ and the identity on X realize the same homotopy class of maps for $\ell=1,2$. As the group $\widehat{\mathrm{H}}^{k}\left(\bar{X}, \Gamma_{k} \bar{X}\right)$ acts transitively on the set of realizations of this homotopy class by Proposition 8.2, there are elements $\alpha_{\ell} \in \widehat{\mathrm{H}}^{k}\left(\bar{X}, \Gamma_{k} \bar{X}\right)$ such that

$$
\left\{p_{\ell} \Delta^{\prime}\right\}+\alpha_{\ell}=\left\{\operatorname{id}_{X}\right\} \quad \text { for } \ell=1,2
$$

where $\{f\}$ denotes the homotopy class of the morphism f in \mathbf{H}_{k+1}^{c}. We put

$$
\{\Delta\}=\left\{\Delta^{\prime}\right\}+\iota_{1} \alpha_{1}+\iota_{2} \alpha_{2}
$$

By Proposition 8.2,

$$
\begin{aligned}
\left\{p_{\ell} \Delta\right\} & =\left\{p_{\ell}\right\}\left(\left\{\Delta^{\prime}\right\}+\iota_{1} \alpha_{1}+\iota_{2} \alpha_{2}\right) \\
& =\left\{p_{\ell} \Delta^{\prime}\right\}+\bar{p}_{\ell *} \iota_{1} \alpha_{1}+\bar{p}_{\ell *} \iota_{2} \alpha_{2} \\
& =\left\{p_{\ell} \Delta^{\prime}\right\}+\alpha_{\ell}=\left\{\operatorname{id}_{X}\right\}
\end{aligned}
$$

Lemma 9.2. For X in \mathbf{H}_{k+1}^{c}, let $\Delta_{\bar{X}}: \bar{X} \rightarrow \bar{X} \otimes \bar{X}$ be a diagonal on $\bar{X}=\lambda X$ in \mathbf{H}_{k}^{c}. Then we obtain, in $\mathrm{H}^{k+1}\left(\bar{X}, \Gamma_{k}(\bar{X} \otimes \bar{X})\right.$,
(1) $O_{X, X \otimes X}\left(\Delta_{\bar{X}}\right) \in \operatorname{ker} \bar{p}_{i *}$ for $i=1,2$,
(2) $\mathcal{O}_{X, X \otimes X}\left(\Delta_{\bar{X}}\right) \in \operatorname{ker}\left(\mathrm{id}_{\bar{X} *}-T_{*}\right)_{*}$ if $\Delta_{\bar{X}}$ is homotopy commutative and
(3) $\mathcal{O}_{X, X \otimes X}\left(\Delta_{\bar{X}}\right) \in \operatorname{ker}\left(\bar{\iota}_{1,2 *}-\bar{\iota}_{2,3 *}+\left(\Delta_{\bar{X}} \otimes \operatorname{id} \bar{X}\right)_{*}-\left(\operatorname{id} \bar{X} \otimes \Delta_{\bar{X}}\right)_{*}\right)_{*}$ if $\Delta_{\bar{X}}$ is homotopy associative.

Proof. By definition, $\bar{p}_{i} \Delta_{\bar{X}} \simeq \mathrm{id}_{\bar{X}}$ for $i=1,2$. As the identity on \bar{X} is realized by the identity on X and $\bar{p}_{i}: \bar{X} \otimes \bar{X} \rightarrow \bar{X}$ is realized by $p_{i}: X \otimes X \rightarrow X$, Proposition 8.1 implies $\mathcal{O}_{X, X \otimes X}\left(\mathrm{id}_{\bar{X}}\right)=0$ and $\mathcal{O}_{X \otimes X, X}\left(\bar{p}_{i}\right)=0$. Since \mathcal{O} is a derivation, we obtain

$$
0=\mathcal{O}_{X, X}\left(\bar{p}_{i} \Delta_{\bar{X}}\right)=\bar{p}_{i *} \mathcal{O}_{X, X \otimes X}\left(\Delta_{\bar{X}}\right)+\Delta_{\bar{X}}^{*} \mathcal{O}_{X \otimes X, X}\left(\bar{p}_{i}\right)=\bar{p}_{i *} \mathcal{O}_{X, X \otimes X}\left(\Delta_{\bar{X}}\right)
$$

and hence $O_{X, X \otimes X}\left(\Delta_{\bar{X}}\right) \in$ ker $\bar{p}_{i *}$ for $i=1,2$. If $\Delta_{\bar{X}}$ is homotopy commutative, then

$$
\mathcal{O}_{X, X \otimes X}\left(\Delta_{\bar{X}}\right)=\mathcal{O}_{X, X \otimes X}\left(T \Delta_{\bar{X}}\right)=T_{*} \mathcal{O}_{X, X \otimes X}\left(\Delta_{\bar{X}}\right)
$$

since $\mathcal{O}_{X \otimes X, X \otimes X}(T)=0$, as T is λ-realizable. Hence $\mathcal{O}_{X, X \otimes X}\left(\Delta_{\bar{X}}\right) \in \operatorname{ker}\left(\mathrm{id}_{\bar{X} *}-\right.$ $\left.T_{*}\right)_{*}$. For $1 \leq k<\ell, \leq 3$, let $\iota_{k, \ell}: X \otimes X \rightarrow X \otimes X \otimes X$ denote the inclusion of the k-th and ℓ-th factors and suppose $\Delta_{\bar{X}}$ is a homotopy commutative diagonal in \mathbf{H}_{k}^{c}. Then $\mathcal{O}_{X, X \otimes X \otimes X}\left(\left(\Delta_{\bar{X}} \otimes \operatorname{id}_{\bar{X}}\right) \Delta_{\bar{X}}\right)=\mathcal{O}_{X, X \otimes X \otimes X}\left(\left(\mathrm{id}_{\bar{X}} \otimes \Delta_{\bar{X}}\right) \Delta_{\bar{X}}\right)$, as the obstruction depends on the homotopy class of a morphism only, and

$$
\begin{aligned}
\mathcal{O}_{X, X \otimes X \otimes X}\left(\Delta_{\bar{X}} \otimes \mathrm{id}_{\bar{X}}\right) & =\bar{\iota}_{1,2 *} \bar{p}_{1}^{*} \mathcal{O}_{X, X \otimes X}\left(\Delta_{\bar{X}}\right) \\
\mathcal{O}_{X, X \otimes X \otimes X}\left(\operatorname{id}_{\bar{X}} \otimes \Delta_{\bar{X}}\right) & =\bar{\iota}_{2,3 *} \bar{p}_{2}^{*} \mathcal{O}_{X, X \otimes X}\left(\Delta_{\bar{X}}\right.
\end{aligned}
$$

by (8.6) and (8.7). Omitting the objects in the notation for the obstruction, we obtain

$$
\begin{aligned}
\mathcal{O}\left(\left(\Delta_{\bar{X}} \otimes \operatorname{id}_{\bar{X}}\right) \Delta_{\bar{X}}\right) & =\Delta_{\bar{X}}^{*} \mathcal{O}\left(\Delta_{\bar{X}} \otimes \operatorname{id}_{\bar{X}}\right)+\left(\Delta_{\bar{X}} \otimes \operatorname{id}_{\bar{X}}\right)_{*} \mathcal{O}\left(\Delta_{\bar{X}}\right) \\
& =\Delta_{\bar{X}}^{*} \bar{\iota}_{1,2 *} \bar{p}_{1}^{*} \mathcal{O}\left(\Delta_{\bar{X}}\right)+\left(\Delta_{\bar{X}} \otimes \operatorname{id}_{\bar{X}}\right)_{*} \mathcal{O}\left(\Delta_{\bar{X}}\right) \\
& =\bar{\iota}_{1,2 *}\left(\bar{p}_{1} \Delta_{\bar{X}}\right)^{*} \mathcal{O}\left(\Delta_{\bar{X}}\right)+\left(\Delta_{\bar{X}} \otimes \operatorname{id}_{\bar{X}}\right)_{*} \mathcal{O}\left(\Delta_{\bar{X}}\right) \\
& =\bar{\iota}_{1,2 *} \mathcal{O}\left(\Delta_{\bar{X}}\right)+\left(\Delta_{\bar{X}} \otimes \operatorname{id}_{\bar{X}}\right)_{*} \mathcal{O}\left(\Delta_{\bar{X}}\right)
\end{aligned}
$$

Similarly, we obtain

$$
\mathcal{O}\left(\left(\operatorname{id}_{\bar{X}} \otimes \Delta_{\bar{X}}\right) \Delta_{\bar{X}}\right)=\bar{\iota}_{2,3 *} \mathcal{O}\left(\Delta_{\bar{X}}\right)+\left(\Delta_{\bar{X}} \otimes \operatorname{id}_{\bar{X}}\right)_{*} \mathcal{O}\left(\Delta_{\bar{X}}\right)
$$

which proves (3).
Question. Given a λ-realizable object \bar{X} with a diagonal $\Delta_{\bar{X}}: \bar{X} \rightarrow \bar{X} \otimes \bar{X}$ in \mathbf{H}_{k}^{c}, is there an object X with $\lambda X=\bar{X}$ and a diagonal $\Delta_{X}: X \rightarrow X \otimes X$ in \mathbf{H}_{k+1}^{c} such that $\lambda \Delta_{X}=\Delta_{\bar{X}}$?

Let X in \mathbf{H}_{k+1}^{c} be a λ-realization of \bar{X}. By Proposition 8.3, any λ-realization X^{\prime} of \bar{X} is of the form $X^{\prime}=X+\alpha$ for some $\alpha \in \widehat{\mathrm{H}}^{k+1}\left(\bar{X}, \Gamma_{k} \bar{X}\right)$. By (8.8), $X^{\prime} \otimes X^{\prime}=(X \otimes X)+\bar{\iota}_{1 *} \bar{p}_{1}^{*} \alpha+\bar{\iota}_{2 *} \bar{p}_{2}^{*} \alpha$ and as the obstruction \mathcal{O} is a derivation, we obtain

$$
\begin{aligned}
\mathcal{O}_{X^{\prime}, X^{\prime} \otimes X^{\prime}}\left(\Delta_{\bar{X}}\right) & =\mathcal{O}_{X+\alpha,(X+\alpha) \otimes(X+\alpha)}\left(\Delta_{\bar{X}}\right) \\
& =\mathcal{O}_{X, X \otimes X}\left(\Delta_{\bar{X}}\right)-\Delta_{\bar{X} *} \alpha+\Delta_{\bar{X}}^{*}\left(\bar{\iota}_{1 *} \bar{p}_{1}^{*} \alpha+\iota_{2 *} \bar{p}_{2}^{*} \alpha\right) \\
& =\mathcal{O}_{X, X \otimes X}\left(\Delta_{\bar{X}}\right)-\left(\Delta_{\bar{X} *}-\bar{\iota}_{1 *}-\bar{\iota}_{2 *}\right) \alpha,
\end{aligned}
$$

since $\Delta^{*} \bar{\iota}_{i *} \bar{p}_{i}^{*}=\bar{\iota}_{i *}\left(\bar{p}_{i} \Delta\right)^{*}=\bar{\iota}_{i *}$, for $i=1,2$.
Lemma 9.3. For X in \mathbf{H}_{k+1}^{c}, let $\Delta_{\bar{X}}: \bar{X} \rightarrow \bar{X} \otimes \bar{X}$ be a diagonal on $\bar{X}=\lambda X$ in \mathbf{H}_{k}^{c} and let $X^{\prime}=X+\alpha$ for some $\alpha \in \widehat{\mathrm{H}}^{k+1}\left(\bar{X}, \Gamma_{k} \bar{X}\right)$. Then we obtain, in $\mathrm{H}^{k+1}\left(\bar{X}, \Gamma_{k}(\bar{X} \otimes \bar{X})\right.$,

$$
\mathcal{O}_{X^{\prime}, X^{\prime} \otimes X^{\prime}}\left(\Delta_{\bar{X}}\right)=\mathcal{O}_{X, X \otimes X}\left(\Delta_{\bar{X}}\right)-\left(\Delta_{\bar{X} *}-\bar{\iota}_{1 *}-\bar{\iota}_{2 *}\right) \alpha .
$$

10. PD^{n}-HOMOTOPY SYSTEMS

A PD^{n}-homotopy system $X=\left(X, \omega_{X},[X], \Delta_{X}\right)$ of order $(k+1)$ consists of an object $X=\left(C, f_{k+1}, X^{k}\right)$ in \mathbf{H}_{k+1}^{c}, a group homomorphism $\omega_{X}: \pi_{1} X \rightarrow \mathbb{Z} / 2 \mathbb{Z}$, a fundamental class $[X] \in \mathrm{H}_{n}\left(C, \mathbb{Z}^{\omega}\right)$ and a diagonal $\Delta: X \rightarrow X \otimes X$ in \mathbf{H}_{k+1}^{c} such that $\left(C, \omega_{X},[X], \Delta_{X}\right)$ is a PD^{n}-chain complex. A map $f:\left(X, \omega_{X},[X], \Delta_{X}\right) \rightarrow$ $\left(Y, \omega_{Y},[Y], \Delta_{Y}\right)$ of $\mathrm{PD}^{\mathrm{n}}-$ homotopy systems of order $(k+1)$ is a morphism in \mathbf{H}_{k+1}^{c} such that $\omega_{X}=\omega_{Y} \pi_{1}(f)$ and $(f \otimes f) \Delta_{X} \simeq \Delta_{Y} f$, and we thus obtain the category $\mathbf{P D}_{[k+1]}^{n}$ of $\mathrm{PD}^{\mathrm{n}}-$ homotopy systems of order $(k+1)$. Homotopies in $\mathbf{P D}_{[k+1]}^{n}$ are homotopies in \mathbf{H}_{k+1}^{c}, and restricting the functors in (8.2), we obtain, for $k \geq 3$, the functors

$$
\begin{equation*}
\mathbf{P D}^{n} \xrightarrow{r} \mathbf{P D}_{[k+1]}^{n} \xrightarrow{\lambda} \mathbf{P D}_{[k]}^{n} \xrightarrow{C} \mathbf{P D}_{*}^{n} . \tag{10.1}
\end{equation*}
$$

These functors induce functors between homotopy categories

$$
\mathbf{P D}^{n} / \simeq \xrightarrow{r} \mathbf{P D}_{[k+1]}^{n} / \simeq \xrightarrow{\lambda} \mathbf{P D}_{[k]}^{n} / \simeq \xrightarrow{C} \mathbf{P D}_{*}^{n} / \simeq .
$$

Theorem 10.1. The functor $C: \mathbf{P D}_{[3]}^{n} / \simeq \longrightarrow \mathbf{P D}_{*}^{n} / \simeq$ is an equivalence of categories for $n \geq 3$.

Proof. The functor C is full and faithful by Theorem III 2.9 and Theorem III 2.12 in [1]. By Lemma 2.1, every PD^{n}-chain complex, $\bar{X}=(D, \omega,[D], \bar{\Delta})$, in $\mathbf{P D}_{*}^{n}$ is 2 -realizable, that is, there is an object X^{2} in CW_{0}^{2} such that $\widehat{C}\left(X^{2}\right)=D_{\leq 2}$, and we obtain the object $X=\left(D, f_{3}, X^{2}\right)$ in \mathbf{H}_{3}^{c}. As C is monoidal, full and faithful, the diagonal $\bar{\Delta}$ on \bar{X} is realized by a diagonal Δ on X and hence $(X, \omega,[D], \Delta)$ is an object in $\mathbf{P D}_{[3]}^{n}$ with $C(X)=\bar{X}$.

Theorem 10.2. For $n \geq 3$, the functor $r: \mathbf{P D}^{n} / \simeq \longrightarrow \mathbf{P D}_{[n]}^{n} / \simeq$ reflects isomorphisms, is representative and full.

Proof. That r reflects isomorphisms follows from Whitehead's Theorem.
Poincaré duality implies $\widehat{\mathrm{H}}^{n+1}\left(Y, \Gamma_{n} Y\right)=\widehat{\mathrm{H}}^{n+2}\left(Y, \Gamma_{n} Y\right)=0$, for every object $Y=\left(Y, \omega_{Y},[Y], \Delta_{Y}\right)$ in $\mathbf{P D}_{[n]}^{n}$. Hence, by Proposition $8.3, Y=\lambda(X)$ for some object X in \mathbf{H}_{n+1}^{c}, and, by Proposition 8.1, the diagonal Δ_{Y} is λ-realizable. Thus Lemma 9.1 guarantees the existence of a diagonal $\Delta_{X}: X \rightarrow X \otimes X$ in \mathbf{H}_{n+1}^{c} with
$\lambda \Delta_{X}=\Delta_{Y}$. The homomorphism ω_{Y} and the fundamental class [Y] determine a homomorphism $\omega_{X}: \pi_{1} X \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ and a fundamental class $[X] \in \mathrm{H}_{n}\left(C, \mathbb{Z}^{\omega}\right)$, such that $X=\left(X, \omega_{X},[X], \Delta_{X}\right)$ is an object in $\mathbf{P D}_{[n+1]}^{n}$. Inductively, we obtain an object $\left(X_{k}, \omega_{X_{k}},\left[X_{k}\right], \Delta_{X_{k}}\right)$ realizing $\left(Y, \omega_{Y},[Y], \Delta_{Y}\right)$ in $\mathbf{P D}_{[k]}^{n}$ for $k>n$, and in the limit an object $X=\left(X, \omega_{X},[X], \Delta_{X}\right)$ in $\mathbf{P D}^{n}$ with $r(x)=Y$.

Proposition 8.1 together with the fact that, by Poincaré duality, $\widehat{\mathrm{H}}^{k}(X, B)=0$ for $k>n$ and every Λ-module B, implies that r is full.

References

[1] H.J. Baues, Combinatorial Homotopy and 4-Dimensional Complexes, De Gruyter Expositions in Mathematics, (1991).
[2] H.J. Baues, D. Conduché, The central series for Peiffer commutators in groups with operators, J. of Algebra 133 (1990), 1-34.
[3] W. Browder, Poincaré Spaces, Their Normal Fibrations and Surgery, Inventiones math. 17 (1972), 191-202.
[4] A. Cavicchioli, F. Hegenbarth, On 4-manifolds with free fundamental group, Forum Math. 6 (1994), 415-429.
[5] A. Cavicchioli, F. Spaggiari, On the homotopy type of Poincaré Spaces, Annali di Math. 180 (2001), 331-358.
[6] I. Hambleton and M. Kreck, On the Classification of Topological 4-Manifolds with Finite Fundamental Group, Mathematische Annalen, 280 (1988), 85-104.
[7] I. Hambleton, M. Kreck, P. Teichner Topological 4-Manifolds with Geometrically 2dimensional Fundamental Groups, arXiv:0802.0995 (2008).
[8] F. Hegenbarth and S. Piccarreta, On Poincaré four-complexes with free fundamental groups, Hiroshima Math. J. 32 (2002), 145-154.
[9] H. Hendriks, Obstruction Theory in 3-Dimensional Topology: An Extension Theorem, Journal of the London Mathematical Society (2) 16 (1977), 160-164.
[10] J.A. Hillman, PD_{4}-complexes with fundamental group a PD_{2}-group, Topology and its Applications 142 (2004), 49-60.
[11] J.A. Hillman, PD_{4}-complexes with free fundamental group, Hiroshima Math. J. 34 (2004), 295-306.
[12] J.A. Hillman, PD_{4}-complexes with strongly minimal models, Topology and its Applications 153 (2006), 2413-2424.
[13] J.A. Hillman, Strongly minimal PD^{4}-complexes, preprint (2008).
[14] A. Ranicki, The algebraic theory of surgery, Proc. Lond. Math. Soc. 40 (3) (1980), I. 87-192, II. 193-287.
[15] A. Ranicki, Algebraic Poincaré cobordism, Contemp. Math. 279 (2001), 213-255.
[16] F. Spaggiari, Four-manifolds with π_{1}-free second homotopy, manuscripta math. 111 (2003), 303-320.
[17] G.A. Swarup, On a Theorem of C.B. Thomas, Journal of the London Mathematical Society (2) 8 (1974), 13-21.
[18] C.B. Thomas, The Oriented Homotopy Type of Compact 3-Manifolds, Proceedings of the London Mathematical Society (3) 19 (1969), 31-44.
[19] P. Teichner, Topological Four-Manifolds with Finite Fundamental Group, Dissertation, Johannes Gutenberg Uniersität Mainz (1992).
[20] V.G. Turaev, Three-Dimensional Poincaré Complexes: Homotopy Classification and Splitting, Russ. Acad. Sci., Sb., Math. 67 (1990), 261-282.
[21] C.T.C. Wall, Poincaré Complexes: I, Annals of Mathematics 2nd Ser. 86 (1967), 213-245.
[22] C.T.C. Wall, Finiteness Conditions for CW-Complexes, Annals of Mathematics 2nd Series 81 (1965), 56-69.
[23] C.T.C. Wall, Poincaré Duality in Dimension 3, Proceedings of the Casson Fest, Geometry and Topology Monographs, Vol. 7 (2004), 1-26.
[24] J.H.C. Whitehead, Combinatorial Homotopy II, ???.
[25] J.H.C. Whitehead, A Certain Exact Sequence, Annals of Mathematics 2nd Ser., 52 (1950), 51-110.

Max-Planck-Institut für Mathematik
Vivatsgasse 7
D-53111 Bonn, Germany
baues@mpim-bonn.mpg.de
bleile@mpim-bonn.mpg.de
The second author's home institution is School of Science and Technology
University of New England
NSW 2351, Australia
bbleile@une.edu.au

