POINCARÉ DUALITY COMPLEXES IN DIMENSION FOUR

HANS JOACHIM BAUES AND BEATRICE BLEILE

ABSTRACT. We describe an algebraic structure on chain complexes yielding algebraic models which classify homotopy types of PD^4 -complexes. Generalizing Turaev's fundamental triples of PD^3 -complexes we introduce fundamental triples for PD^n -complexes and show that two PD^n -complexes are orientedly homotopy equivalent if and only if their fundamental triples are isomorphic. As applications we establish a conjecture of Turaev and obtain a criterion for the existence of degree 1 maps between *n*-dimensional manifolds.

INTRODUCTION

In order to study the homotopy types of closed manifolds, Browder and Wall introduced the notion of Poincaré duality complexes. A Poincaré duality complex, or PD^n -complex, is a CW-complex, X, whose cohomology satisfies a certain algebraic condition. Equivalently, the chain complex, $\hat{C}(X)$, of the universal cover of X must satisfy a corresponding algebraic condition. Thus Poincaré complexes form a mixture of topological and algebraic data and it is an old quest to provide purely algebraic data determining the homotopy type of PD^n -complexes. This has been achieved for n = 3, but, for n = 4, only partial results are available in the literature.

Homotopy types of 3-manifolds and PD³-complexes were considered by Thomas [18], Swarup [17] and Hendriks [9]. The homotopy type of a PD³-complex, X, is determined by its *fundamental triple*, consisting of the fundamental group, $\pi = \pi_1(X)$, the orientation character, ω , and the image in $H_3(\pi, \mathbb{Z}^{\omega})$ of the fundamental class, [X]. Turaev [20] provided an algebraic condition for a triple to be realizable by a PD³-complex. Thus, in dimension 3, there are purely algebraic invariants which provide a complete classification.

Using primary cohomological invariants like the fundamental group, characteristic classes and intersection pairings, partial results were obtained for n = 4 by imposing conditions on the fundamental group. For example, Hambleton, Kreck and Teichner classified PD⁴-complexes with finite fundamental group having periodic cohomology of dimension 4 (see [6], [19] and [7]). Cavicchioli, Hegenbarth and Piccarreta studied PD⁴-complexes with free fundamental group (see [4] and [8]), as did Hillman [11], who also considered PD⁴-complexes with fundamental group a PD³-group [10]. Recently, Hillman [13] considered homotopy types of PD⁴-complexes whose fundamental group has cohomological dimension 2 and one end.

It is doubtful whether primary invariants are sufficient for the homotopy classification of PD⁴-complexes in general and we thus follow Ranicki's approach ([14] and [15]) who assigned to each PDⁿ-complex, X, an algebraic Poincaré duality complex given by the chain complex, $\hat{C}(X)$, together with a symmetric or quadratic structure. However, Ranicki considered neither the realizability of such algebraic Poincaré duality complexes nor whether the homotopy type of a PD^n -complex is determined by the homotopy type of its algebraic Poincaré duality complex.

This paper presents a structure on chain complexes which completely classifies PD^4 -complexes up to homotopy. The classification uses *fundamental triples* of PD^4 -complexes, and, in fact, the chain complex model yields algebraic conditions for the realizability of fundamental triples.

Fundamental triples of formal dimension $n \geq 3$ comprise an (n-2)-type T, a homomorphism $\omega : \pi_1(T) \to \mathbb{Z}/2\mathbb{Z}$ and a homology class $t \in H_n(T, \mathbb{Z}^{\omega})$. There is a functor,

$$\tau_+: \mathbf{PD}_+^n \longrightarrow \mathbf{Trp}_+^n,$$

from the category \mathbf{PD}_{+}^{n} of PD^{n} -complexes and maps of degree one to the category \mathbf{Trp}_{+}^{n} of triples and morphisms inducing surjections on fundamental groups. Our first main result is

Theorem 3.1. The functor τ_+ reflects isomorphisms and is full for $n \geq 3$.

Corollary 3.2. Take $n \ge 3$. Two closed *n*-dimensional manifolds or two PD^{*n*}-complexes, respectively, are orientedly homotopy equivalent if and only if their fundamental triples are isomorphic.

Corollary 3.2 extends results of Thomas [18], Swarup [17] and Hendriks [9] for dimension 3 to arbitrary dimension and establishes Turaev's conjecture [20] on PDⁿ-complexes whose (n-2)-type is an Eilenberg-Mac Lane space $K(\pi_1X, 1)$. Corollary 3.2 is even of interest in the case of simply connected or highly connected manifolds.

Theorem 3.1 also yields a criterion for the existence of a map of degree one between PD^n -complexes, recovering Swarup's result for maps between 3-manifolds and Hendriks' result for maps between PD^3 -complexes.

In the oriented case, special cases of Corollary 3.2 were proved by Hambleton and Kreck [6] and Cavicchioli and Spaggiari [5]. In fact, in [6], Corollary 3.2 is obtained under the condition that either the fundamental group is finite or the second rational homology of the 2–type is non–zero. Corresponding conditions were used in [5] for oriented PD²ⁿ–complexes with (n - 1)–connected universal covers, and Teichner extended the approach of [6] to the non–oriented case in his thesis [19]. Our result shows that the conditions on finiteness and rational homology used in these papers are not necessary.

It follows directly from Poincaré duality and Whitehead's Theorem that the functor τ_+ reflects isomorphisms. To show that τ_+ is full requires work. Given PD^n -complexes Y and X, $n \geq 3$, and a morphism $f : \tau_+ Y \to \tau_+ X$ in Trp^n_+ , we first construct a chain map $\xi : \widehat{C}(Y) \to \widehat{C}(X)$ preserving fundamental classes, that is, $\xi_*[Y] = [X]$. Then we use the category \mathbf{H}_c^{k+1} of homotopy systems of order (k+1) introduced in [1] to realize ξ by a map $\overline{f} : Y \to X$ with $\tau_+(\overline{f}) = f$.

Our second main result describes algebraic models of homotopy types of PD^4 complexes. We introduce the notion of PD^n -chain complex and show that PD^3 chain complexes are equivalent to PD^3 -complexes up to homotopy. In Section 5 we show that PD^4 -chain complexes classify homotopy types of PD^4 -complexes up to 2-torsion. In particular, we obtain **Theorem 5.3.** The functor \widehat{C} induces a 1–1 correspondence between homotopy types of PD^4 -complexes with finite fundamental group of odd order and homotoppy types of PD^4 -chain complexes with homotopy co-commutative diagonal and finite fundamental group of odd order.

To obtain a complete homotopy classification of PD^4 -complexes, we study the chain complex of a 2-type in Section 6. We compute this chain complex up to dimension 4 in terms of Peiffer commutators in pre-crossed modules. This allows us to introduce PD^4 -chain complexes together with a β -invariant, and we prove

Corollary 7.4. The functor \widehat{C} induces a 1–1 correspondence between homotopy types of PD^4 -complexes and homotopy types of β - PD^4 -chain complexes.

Corollary 7.4 highlights the crucial rôle of Peiffer commutators for the homotopy classification of 4–manifolds.

The proofs of our results rely on the obstruction theory [1] for the realizability of chain maps which we recall in Section 8.

1. CHAIN COMPLEXES

Let X^n denote the *n*-skeleton of the CW-complex X. We call X reduced if $X^0 = *$ is the base point. The objects of the category \mathbf{CW}_0 are reduced CW-complexes X with universal covering $p: \widehat{X} \to X$, such that $p(\widehat{*}) = *$, where $\widehat{*} \in \widehat{X}^0$ is the base point of \widehat{X} . Here the *n*-skeleton of \widehat{X} is $\widehat{X}^n = p^{-1}(X^n)$. Morphisms in \mathbf{CW}_0 are cellular maps $f: X \to Y$ and homotopies in \mathbf{CW}_0 are base point preserving. A map $f: X \to Y$ in \mathbf{CW}_0 induces a unique covering map $\widehat{f}: \widehat{X} \to \widehat{Y}$ with $\widehat{f}(\widehat{*}) = \widehat{*}$, which is equivariant with respect to $\varphi = \pi_1(f)$.

We consider pairs (π, C) , where π is a group and C a chain complex of left modules over the group ring $\mathbb{Z}[\pi]$. We write $\Lambda = \mathbb{Z}[\pi]$ and C for (π, C) , whenever π is understood. We call (π, C) free if each $C_n, n \in \mathbb{Z}$, is a free Λ -module. Let aug : $\Lambda \to \mathbb{Z}$ be the augmentation homomorphism, defined by aug(g) = 1 for all $g \in \pi$. Every group homomorphism, $\varphi : \pi \to \pi'$, induces a ring homomorphism $\varphi_{\sharp} :$ $\Lambda \to \Lambda'$, where $\Lambda' = \mathbb{Z}[\pi']$. A chain map is a pair $(\varphi, F) : (\pi, C) \to (\pi', C')$, where φ is a group homomorphism and $F : C \to C'$ a φ -equivariant chain map, that is a chain map of the underlying abelian chain complexes, such that $F(\lambda c) = \varphi_{\sharp}(\lambda)F(c)$ for $\lambda \in \Lambda$ and $c \in C$. Two such chain maps are homotopic, $(\varphi, F) \simeq (\psi, G)$ if $\varphi = \psi$ and if there is a φ -equivariant map $\alpha : C \to C'$ of degree +1 such that $G - F = d\alpha + \alpha d$.

A pair (π, C) is a reduced chain complex if $C_0 = \Lambda$ with generator $*, C_i = 0$ for i < 0 and $H_0C = \mathbb{Z}$ such that $C_0 = \Lambda \to H_0C = \mathbb{Z}$ is the augmentation of Λ . A chain map, $(\varphi, f) : (\pi, C) \to (\pi', C')$, of reduced chain complexes, is reduced if f_0 is induced by φ_{\sharp} , and a chain homotopy α of reduced chain maps is reduced if $\alpha_0 = 0$. The objects of the category \mathbf{H}_0 are reduced chain complexes and the morphisms are reduced chain maps. Homotopies in \mathbf{H}_0 are reduced chain homotopies. Every chain complex (π, C) in \mathbf{H}_0 is equipped with the augmentation $\varepsilon : C \to \mathbb{Z}$ in \mathbf{H}_0 . The ring homomorphism $\mathbb{Z} \to \Lambda$ yields the co-augmentation $\iota : \mathbb{Z} \to C$, where we view $\mathbb{Z} = (0, \mathbb{Z})$ as chain complex with trivial group $\pi = 0$ concentrated in degree 0. Note that $\varepsilon \iota = \mathrm{id}_{\mathbb{Z}}$, and the composite $\iota \varepsilon : C \to C'$ is the trivial map.

For an object X in \mathbf{CW}_0 , the cellular chain complex $C(\hat{X})$ of the universal cover \hat{X} is given by $C_n(\hat{X}) = \mathrm{H}_n(\hat{X}^n, \hat{X}^{n+1})$. The fundamental group $\pi = \pi_1(X)$ acts

on $C(\widehat{X})$, and viewing $C(\widehat{X})$ as a complex of left Λ -modules, we obtain the object $\widehat{C}(X) = (\pi, C(\widehat{X}))$ in \mathbf{H}_0 . Moreover, a morphism $f: X \to Y$ in \mathbf{CW}_0 induces the homomorphism $\pi_1(f)$ on the fundamental groups and the $\pi_1(f)$ -equivariant map $\widehat{f}: \widehat{X} \to \widehat{Y}$ which in turn induces the $\pi_1(f)$ -equivariant chain map $\widehat{f}_*: C(\widehat{X}) \to C(\widehat{Y})$ in \mathbf{H}_0 . As \widehat{f} preserves base points, $\widehat{C}(f) = (\pi_1(f), \widehat{f}_*)$ is a reduced chain map. We obtain the functor

(1.1)
$$\widehat{C}: \mathbf{CW}_0 \longrightarrow \mathbf{H}_0.$$

The chain complex C in \mathbf{H}_0 is 2-realizable if there is an object X in \mathbf{CW}_0 such that $\widehat{C}(X^2) \cong C_{\leq 2}$, that is, $\widehat{C}(X^2)$ is isomorphic to C in degree ≤ 2 . Given two objects X and Y in \mathbf{CW}_0 , their product again carries a cellular structure and we obtain the object $X \times Y$ in \mathbf{CW}_0 with base point (*, *) and universal cover $(X \times Y)^{\widehat{}} = \widehat{X} \times \widehat{Y}$, so that

(1.2)
$$\widehat{C}(X \times Y) = (\pi \times \pi, C(\widehat{X}) \otimes_{\mathbb{Z}} C(\widehat{Y})).$$

For i = 1, 2, let $p_i : X \times X \to X$ be the projection onto the *i*-th factor. A diagonal $\Delta : X \to X \times X$ in \mathbf{CW}_0 is a cellular map with $p_i \Delta \simeq \mathrm{id}_X$ in \mathbf{CW}_0 for i = 1, 2. A diagonal on (π, C) in \mathbf{H}_0 is a chain map $(\delta, \Delta) : (\pi, C) \to (\pi \times \pi, C \otimes_{\mathbb{Z}} C)$ in \mathbf{H}_0 with $\delta : \pi \to \pi \times \pi, g \mapsto (g, g)$, such that $p_i \Delta \simeq \mathrm{id}_C$ for i = 1, 2, where $p_1 = \mathrm{id} \otimes \varepsilon$ and $p_2 = \varepsilon \otimes \mathrm{id}$.

The diagonal (δ, Δ) in \mathbf{H}_0 is homotopy co-associative if the diagram

$$C \xrightarrow{\Delta} C \otimes_{\mathbb{Z}} C$$

$$\downarrow^{\Delta} \qquad \qquad \downarrow^{\text{id}\otimes\Delta}$$

$$C \otimes_{\mathbb{Z}} C \xrightarrow{\Delta \otimes \text{id}} C \otimes_{\mathbb{Z}} C \otimes_{\mathbb{Z}} C$$

commutes up to chain homotopy in \mathbf{H}_0 . The diagonal (δ, Δ) in \mathbf{H}_0 is homotopy co-commutative if the diagram

commutes up to chain homotopy in \mathbf{H}_0 , where T is given by $T(c \otimes d) = (-1)^{|c||d|} d \otimes c$.

By the cellular approximation theorem, there is a diagonal $\Delta : X \to X \times X$ in \mathbf{CW}_0 for every object X in \mathbf{CW}_0 . Applying the functor \widehat{C} to such a diagonal, we obtain the diagonal $\widehat{C}(\Delta)$ in \mathbf{H}_0 . This raises the question of realizability, that is, given a diagonal $(\delta, \Delta) : \widehat{C}(X) \to \widehat{C}(X) \otimes_{\mathbb{Z}} \widehat{C}(X)$ in \mathbf{H}_0 , is there a diagonal Δ in \mathbf{CW}_0 with $\widehat{C}(\Delta) = (\delta, \Delta)$? As $\widehat{C}(\Delta)$ is homotopy co–associative and homotopy co–commutative for any diagonal Δ in \mathbf{CW}_0 , homotopy co–associativity and homotopy co–commutativity of (δ, Δ) are necessary conditions for realizability.

To discuss questions of realizability for a functor $\lambda : \mathbf{A} \to \mathbf{B}$, we consider pairs (A, b), where $b : \lambda A \cong B$ is an equivalence in **B**. Two such pairs are equivalent, $(A, b) \sim (A', b')$, if and only if there is an equivalence $g : A' \cong A$ in **A** with $\lambda g = b^{-1}b'$. The classes of this equivalence relation form the class of λ -realizations of B,

(1.3)
$$\operatorname{Real}_{\lambda}(B) = \{(A, b) \mid b : \lambda A \cong B\} / \sim .$$

We say that B is λ -realizable if $\operatorname{Real}_{\lambda}(B)$ is non-empty. The functor $\lambda : \mathbf{A} \to \mathbf{B}$ is representative if all objects B in \mathbf{B} are λ -realizable. Further, we say that λ reflects isomorphisms, if a morphism f in \mathbf{A} is an equivalence whenever $\lambda(f)$ is an equivalence in \mathbf{B} . The functor λ is full if, for every morphism $\overline{f} : \lambda(A) \to \lambda(A')$ in \mathbf{B} , there is a morphism $f : A \to A'$ in \mathbf{A} , such that $\lambda(f) = \overline{f}$, we then say \overline{f} is λ -realizable.

2. PD-CHAIN COMPLEXES AND PD-COMPLEXES

We start this section with a description of the cap product on chain complexes. We fix a homomorphism $\omega : \pi \to \mathbb{Z}/2\mathbb{Z} = \{0,1\}$ which gives rise to the antiisomorphism $\overline{}: \Lambda \to \Lambda$ of rings defined by $\overline{g} = (-1)^{\omega(g)}g^{-1}$ for $g \in \pi$. To the left Λ -module M we associate the right Λ -module M^{ω} with the same underlying abelian group and action given by $\lambda a = a.\overline{\lambda}$ for $a \in A$ and $\lambda \in \Lambda$. Proceeding analogously for a right Λ -module N, we obtain a left Λ -module ${}^{\omega}N$. We put

$$\mathrm{H}_{n}(C, M^{\omega}) = \mathrm{H}_{n}(M^{\omega} \otimes_{\Lambda} C); \quad \mathrm{H}^{k}(C, M) = \mathrm{H}_{-k}(\mathrm{Hom}_{\Lambda}(C, M)).$$

To define the ω -twisted cap product \cap for a chain complex C in \mathbf{H}_0 with diagonal (δ, Δ) , write $\Delta(c) = \sum_{i+j=n,\alpha} c'_{i,\alpha} \otimes c''_{j,\alpha}$ for $c \in C$. Then

$$\begin{array}{rcl} \cap : \operatorname{Hom}_{\Lambda}(C,M)_{-k} \otimes_{\mathbb{Z}} (\mathbb{Z}^{\omega} \otimes_{\Lambda} C)_{n} & \to & (M^{\omega} \otimes_{\Lambda} C)_{n-k} \\ & \psi \otimes (z \otimes c) & \mapsto & \sum_{\alpha} z \psi(c'_{k,\alpha}) \otimes c''_{n-k,\alpha} \end{array}$$

for every left Λ -module M. Passing to homology and composing with

$$\begin{aligned} \mathrm{H}^{*}(C,M) \otimes_{\mathbb{Z}} \mathrm{H}_{*}(C \otimes_{\mathbb{Z}} C, \mathbb{Z}^{\omega}) & \to \mathrm{H}_{*}(\mathrm{Hom}_{\Lambda}(C,M)) \otimes_{\mathbb{Z}} \big(\mathbb{Z}^{\omega} \otimes_{\Lambda} (C \otimes_{\mathbb{Z}} C)) \big), \\ [\psi] \otimes [y] & \mapsto [\psi \otimes y], \end{aligned}$$

we obtain

(2.1)
$$\cap: \mathrm{H}^{k}(C, M) \otimes_{\mathbb{Z}} \mathrm{H}_{n}(C, \mathbb{Z}^{\omega}) \to \mathrm{H}_{n-k}(C, M^{\omega})$$

A PDⁿ-chain complex $C = ((\pi, C), \omega, [C], \Delta)$ consists of a free chain complex (π, C) in \mathbf{H}_0 with π finitely presented, a group homomorphism $\omega : \pi \to \mathbb{Z}/2\mathbb{Z}$, a fundamental class $[C] \in \mathbf{H}_n(C, \mathbb{Z}^{\omega})$ and a diagonal $\Delta : C \to C \otimes C$ in \mathbf{H}_0 , such that $\mathbf{H}_1 C = 0$ and

(2.2)
$$\cap [C] : \mathrm{H}^{r}(C, M) \to \mathrm{H}_{n-r}(C, M^{\omega}); \quad \alpha \mapsto \alpha \cap [X]$$

is an isomorphism of abelian groups for every $r \in \mathbb{Z}$ and every left Λ -module M. A morphism of PDⁿ-chain complexes $f: ((\pi, C), \omega, [C], \Delta) \to ((\pi', C'), \omega', [C'], \Delta')$ is a morphism $(\varphi, f): (\pi, C) \to (\pi', C')$ in \mathbf{H}_0 such that $\omega = \omega' \varphi$ and $(f \otimes f) \Delta \simeq \Delta' f$. The category \mathbf{PD}_*^n is the category of PDⁿ-chain complexes and morphisms between them. Homotopies in \mathbf{PD}_*^n are reduced chain homotopies. The subcategory \mathbf{PD}_{*+}^n of \mathbf{PD}_*^n is the category consisting of PDⁿ-chain complexes and oriented or degree 1 morphisms of PDⁿ-chain complexes, that is, morphisms $f: C \to D$ with $f_*[C] =$ [D]. Wall [21] showed that it is enough to demand that (2.2) is an isomorphism for $M = \Lambda$. If $1 \otimes x \in \mathbb{Z}^{\omega} \otimes_{\Lambda} C_n$ represents the fundamental class [C], where C_i is finitely generated for $i \in \mathbb{Z}$, then $\cap [C]$ in (2.2) is an isomorphism if and only if

(2.3)
$$\cap 1 \otimes x : C^* = {}^{\omega} \operatorname{Hom}_{\Lambda}(C, {}^{\omega}\!\Lambda) \to \Lambda \otimes_{\Lambda} C = C$$

is a homotopy equivalence of chain complexes of degree n. Here finite generation implies that C^* is a free chain complex.

Lemma 2.1. Every PD^n -chain complex is homotopy equivalent in PD^n_* to a 2-realizable PD^n -chain complex.

Proof. This follows from Proposition III 2.13 and Theorem III 2.12 in [1].

A PDⁿ-complex $X = (X, \omega, [X], \Delta)$ consists of an object X in \mathbf{CW}_0 with finitely presented fundamental group $\pi_1(X)$, a group homomorphism $\omega : \pi_1 X \to \mathbb{Z}/2\mathbb{Z}$, a fundamental class $[X] \in \mathrm{H}_n(X, \mathbb{Z}^{\omega})$ and a diagonal $\Delta : X \to X \times X$ in \mathbf{CW}_0 , such that $(\widehat{C}X, \omega, [X], \widehat{C}\Delta)$ is a PDⁿ-chain complex. A morphism of PDⁿ-complexes $f : (X, \omega, [X], \Delta) \to (X', \omega', [X'], \Delta')$ is a morphism $f : X \to X'$ in \mathbf{CW}_0 such that $\omega = \omega' \pi_1(f)$. The category \mathbf{PD}^n is the category of PDⁿ-complexes and morphisms between them. Homotopies in \mathbf{PD}^n are homotopies in \mathbf{CW}_0 . The subcategory \mathbf{PD}^n_+ of \mathbf{PD}^n is the category consisting of \mathbf{PD}^n -complexes and oriented or degree 1 morphisms of \mathbf{PD}^n -complexes, that is, morphisms $f : X \to Y$ with $f_*[X] = [Y]$.

Remark 2.2. Our PD^n -complexes have finitely presented fundamental groups by definition and are thus finitely dominated by Propostion 1.1 in [23].

Let X be a PDⁿ-complex with $n \geq 3$. We say that X is standard, if X is a CW-complex which is n-dimensional and has exactly one n-cell e^n . We say that X is weakly standard, if X has a subcomplex X' with $X = X' \cup e^n$, where X' is n-dimensional and satisfies $H^n(X', B) = 0$ for all coefficient modules B. In this sense X' is homologically (n - 1)-dimensional. Of course standard implies weakly standard with $X' = X^{n-1}$.

Remark. Every compact connected manifold M of dimension n has the homotopy type of a finite standard PDⁿ-complex.

Remark 2.3. Wall's Theorem 2.4 in [21] and Theorem E in [22] imply that, for $n \ge 4$, every PDⁿ-complex is homotopy equivalent to a standard PDⁿ-complex and, for n = 3, every PD³-complex is homotopy equivalent to a weakly standard PD³-complex.

Let C be a PDⁿ-chain complex with $n \geq 3$. We say that C is *standard*, if C is 2-realizable, $C_i = 0$ for i > n, and $C_n = \Lambda[e_n]$, where $[e_n] \in C_n$. We say that C is *weakly standard*, if C is 2-realizable and has a subcomplex C' with $C = C' \oplus \Lambda[e_n]$, where C' is n-dimensional and satisfies $H^n(C', B) = 0$ for all coefficient modules B.

Remark 2.4. A PD^{*n*}-complex, X, is homotopy equivalent to a finite standard, standard or weakly standard PD^{*n*}-complex, respectively, if and only if the PD^{*n*}-chain complex $\widehat{C}X$ is homotopy equivalent to a finite standard, standard or weakly standard PD^{*n*}-chain complex, respectively.

3. Fundamental triples

Homotopy types of 3-manifolds and PD^3 -complexes were considered by Thomas [18], Swarup [17] and Hendriks [9]. In particular, Hendriks and Swarup provided a criterion for the existence of degree 1 maps between 3-manifolds and PD^3 -complexes, respectively. In this section we generalize these results to manifolds and Poincaré duality complexes of arbitrary dimension n.

Let k-types be the full subcategory of \mathbf{CW}_0/\simeq consisting of CW-complexes X in \mathbf{CW}_0 with $\pi_i(X) = 0$ for i > k. The k-th Postnikov functor

$$P_k: \mathbf{CW}_0 \to k - \mathbf{types}$$

is defined as follows. For X in \mathbb{CW}_0 we obtain $P_k X$ by "killing homotopy groups", that is, we choose a CW-complex $P_k X$ with (k + 1)-skeleton $(P_k X)^{k+1} = X^{k+1}$ and $\pi_i(P_k X) = 0$ for i > k. For a morphism $f: X \to Y$ in \mathbb{CW}_0 we may choose a map $Pf: P_k X \to P_k Y$ which extends the restriction $f^{k+1}: X^{k+1} \to Y^{k+1}$ as $\pi_i(P_k Y) = 0$ for i > k. Then the functor P_k assigns $P_k X$ to X and the homotopy class of Pf to f. Different choices for $P_k X$ yield canonically isomorphic functors P_k . The CW-complex $P_1 X = K(\pi_1 X, 1)$ is an Eilenberg-Mac Lane space and, as a functor, P_1 is equivalent to the functor π_1 of fundamental groups. There are natural maps

$$(3.1) p_k: X \longrightarrow P_k X$$

in \mathbf{CW}_0/\simeq extending the inclusion $X^{k+1}\subseteq P_kX$.

For $n \geq 3$, a fundamental triple $T = (X, \omega, t)$ of formal dimension n consists of an (n-2)-type X, a homomorphism $\omega : \pi_1 X \to \mathbb{Z}/2\mathbb{Z}$ and an element $t \in H_n(X, \mathbb{Z}^{\omega})$. A morphism $(X, \omega_X, t_X) \to (Y, \omega_Y, t_Y)$ between fundamental triples is a homotopy class $\{f\} : X \to Y$ of maps of the (n-2)-types, such that $\omega_X = \omega_Y \pi_1(f)$ and $f_*(t_X) = t_Y$. We obtain the category \mathbf{Trp}^n of fundamental triples T of formal dimension n and the functor

$$\tau : \mathbf{PD}^n_+ / \simeq \longrightarrow \mathbf{Trp}^n, \quad X \longmapsto (P_{n-2}X, \omega_X, p_{n-2*}[X]).$$

Every degree 1 morphism $Y \to X$ in \mathbf{PD}^n_+ induces a surjection $\pi_1 Y \to \pi_1 X$ on fundamental groups, see for example [3], and hence we introduce the subcategory $\mathbf{Trp}^n_+ \subset \mathbf{Trp}^n$ consisting of all morphisms inducing surjections on fundamental groups. Then the functor τ yields the functor

(3.2)
$$\tau_+: \mathbf{PD}_+^n / \simeq \longrightarrow \mathbf{Trp}_+^n.$$

As a main result in this section we show

Theorem 3.1. The functor τ_+ reflects isomorphisms and is full for $n \geq 3$.

As corollaries we mention

Corollary 3.2. Take $n \ge 3$. Two *n*-dimensional manifolds, respectively, two PD^n -complexes, are orientedly homotopy equivalent if and only if their fundamental triples are isomorphic.

Remark. For n = 3, Corollary 3.2 yields the results by Thomas [18], Swarup [17] and Hendriks [9]. Turaev reproves Hendriks' result in the appendix of [20], although the proof needs further explanation. We reprove the result again in a more algebraic way.

Remark. Turaev conjectures in [20] that his proof for n = 3 has a generalization to PDⁿ-complexes whose (n - 2)-type is an Eilenberg-MacLane space $K(\pi, 1)$. Corollary 3.2 proves this conjecture.

Next consider PD^n -complexes X and Y and a diagram

Corollary 3.3. For $n \geq 3$, there is a degree 1 map \overline{f} rendering Diagram (3.3) homotopy commutative if and only if f induces a surjection on fundamental groups, is compatible with the orientations ω_X and ω_Y , that is, $\omega_X \pi_1(f) = \omega_Y$, and

$$f_* p_{n-2*}[Y] = p_{n-2*}[X].$$

Remark. Swarup [17] and Hendriks [9] prove Corollary 3.3 for 3–manifolds and PD³–complexes, respectively.

Remark. For oriented PD⁴-complexes with finite fundamental group and f a homotopy equivalence, the map \overline{f} corresponds to the map h in Lemma 1.3 [6] of Hambleton and Kreck. The reader is invited to compare our proof to that of Lemma 1.3 [6] which shows the existence of h but not the fact that h is of degree 1.

By Remark 2.3, Theorem 3.1 is a consequence of the following Lemmata 3.4 and 3.5.

Lemma 3.4. The functor τ_+ reflects isomorphisms.

Proof. This is a consequence of Poincaré duality and Whitehead's Theorem.

Remark. For $n \geq 3$, let $[\frac{n}{2}]$ be the largest integer $\leq n$. Associating with a PD^{*n*}complex, *X*, the *pre-fundamental triple* $(P_{[\frac{n}{2}]}X, \omega_X, p_{[\frac{n}{2}]*}[X])$, there is an analogue of Lemma 3.4, namely, an orientation preserving map between PD^{*n*}-complexes is a homotopy equivalence if and only if the induced map between pre-fundamental triples is an isomorphism. However, pre-fundamental triples do not determine the homotopy type of a PD^{*n*}-complex as in Corollary 3.2, which is demonstrated by the fake products $X = (S^n \vee S^n) \cup_{\alpha} e^{2n}$, where α is the sum of the Whitehead product $[\iota_1, \iota_2]$ and an element $\iota_1\beta$ with $\beta \in \pi_{2n-1}(S^n)$ having trivial Hopf invariant. Prefundamental triples coincide with the fundamental triple for n = 3 and n = 4. It remains an open problem to enrich the structure of a pre-fundamental triple to obtain an analogue of Corollary 3.2.

Lemma 3.5. Let X and Y be standard PD^n -complexes for $n \ge 4$ and weakly standard for n = 3 and let $f : \tau_+ Y \to \tau_+ X$ be a morphism in Trp_+^n . Then f is τ -realizable by a map $\overline{f} : Y \to X$ in PD_+^n with $\tau \overline{f} = f$.

For the proof of Lemma 3.5, we use

Lemma 3.6. Let $X = X' \cup e^n$ be a weakly standard PD^n -complex. Then there is a generator $[e] \in \widehat{C}_n(X)$, with $\widehat{C}_n X = \widehat{C}_n X' \oplus \Lambda[e]$, corresponding to the cell e^n , such that $1 \otimes [e] \in \mathbb{Z}^{\omega} \otimes_{\Lambda} \widehat{C}_n X$ is a cycle representing the fundamental class [X]. Let $\{e_m\}_{m \in M}$ be a basis of $\widehat{C}_{n-1}X = \widehat{C}_{n-1}X'$. Then the coefficients $\{\underline{a_m}\}_{m \in M}, a_m \in \Lambda$ for $m \in M$, of the linear combination $d_n[e] = \sum a_m[e_m]$ generate $\overline{I(\pi_1 X)}$ as a right Λ -module.

Proof. Poincaré duality implies $H_n(X, \mathbb{Z}^{\omega}) \cong H^0(X, \mathbb{Z}) \cong \mathbb{Z}$. Hence $1 \otimes d$ maps a multiple of the generator $1 \otimes [e]$ of $\mathbb{Z}^{\omega} \otimes_{\Lambda} \widehat{C}_n(X) = \mathbb{Z}^{\omega} \otimes_{\Lambda} \Lambda[e] \cong \mathbb{Z}$ to zero, that is, there is an $n \in \mathbb{N}$ such that

$$0 = 1 \otimes d(n(1 \otimes [e])) = n(1 \otimes d[e]) = n(1 \otimes \sum_{m \in M} a_m[e_m])$$
$$= n \sum 1.a_m \otimes [e_m] = n \sum_{m \in M} \operatorname{aug}(\overline{a_m}) \otimes [e_m].$$

Since $\mathbb{Z}^{\omega} \otimes_{\Lambda} D_{n-1} = \mathbb{Z}^{\omega} \otimes_{\Lambda} \bigoplus_{m \in M} \Lambda[e_m] \cong \bigoplus_{m \in M} \mathbb{Z}^{\omega} \otimes_{\Lambda} \Lambda[e_m] = \bigoplus_{m \in M} \mathbb{Z}$ is free as abelian group, this implies $\operatorname{aug}(\overline{a_m}) = 0$ and hence $\overline{a_m} \in I$ for every $m \in M$. Therefore $1 \otimes d(1 \otimes [e]) = 0$ and $1 \otimes [e] \in \mathbb{Z}^{\omega} \otimes_{\Lambda} D_n$ is a cycle representing a generator of the group $\operatorname{H}_n(X, \mathbb{Z}^{\omega})$. Without loss of generality we may assume that e is oriented such that $1 \otimes e$ represents the fundamental class [X]. Further, Poincaré duality implies $\operatorname{H}^n(X, {}^{\omega}\Lambda) \cong \mathbb{Z}$ and hence $I(\pi) \cong \operatorname{im}(d^*)[e]$. But, for every $\varphi \in {}^{\omega} \operatorname{Hom}_{\Lambda}(C_{n-1}, {}^{\omega}\Lambda)$,

$$(d^*\varphi)[e] = \varphi(d[e]) = \varphi(\sum a_m[e_m]) = \sum a_m\varphi[e_m] = \left(\sum \overline{\varphi[e_m]}\overline{a}_m[e]^*\right)[e],$$

where $[e]^* : \Lambda[e] \to \Lambda, [e] \mapsto 1$. Thus $I(\pi)$ is generated by $\{\overline{a}_m\}_{m \in M}$ as a left Λ -module and hence $\overline{I(\pi)}$ is generated by $\{a_m\}_{m \in M}$ as a right Λ -module \Box

Lemma 3.7. Let $\overline{X} = X' \cup_f e^3$ be a weakly standard PD^3 -complex. Then we can choose a homotopy $f \simeq g$ such that $X = X' \cup_g e^3$ admits a splitting $\widehat{C}_2 X = S \oplus d_3(\widehat{C}_3 X')$ as a direct sum of Λ -modules satisfying $d_3[e] \in S$.

Proof. As X' is homologically 2-dimensional, $\widehat{C}(\overline{X})$ admits a splitting,

$$\widehat{C}_2(\overline{X}) = \operatorname{im} d'_3 \oplus S$$

as a direct sum of Λ -modules, where $d'_3 : \widehat{C}_3(X') \to \widehat{C}_2(X')$. Thus $d_3[e] \in \widehat{C}_2(\overline{X}) = \operatorname{im} d'_3 \oplus S$ decomposes as a sum $d_3[e] = \alpha + \beta$ with $\alpha \in \operatorname{im} d'_3$ and $\beta \in S$. Since α , viewed as a map $S^2 \to X'$, is homotopically trivial in X', there is a homotopy $f \simeq g$, where g represents β , such that $X = X' \cup_g e^3$ has the stated properties. \Box

Proof of Lemma 3.5. Certain aspects of the proof for the case n = 3 differ from that for the case $n \ge 4$. Those parts of the proof pertaining to the case n = 3 appear in square brackets $[\ldots]$. [For n = 3 we assume that $X = X' \cup_g e^3$ is chosen as in Lemma 3.7.]

Given $X = X' \cup_g e^n$ and $Y = Y' \cup_{g'} e'^n$ and a morphism $\varphi = \{f\} : \tau(Y) = (P, \omega_Y, t_Y) \to \tau(X) = (Q, \omega_X, t_X)$ in **Trp**^{*n*}, the diagram

$$\begin{array}{c} X^{n-1} \subseteq X' \subset X \xrightarrow{p} P = P_{n-2}X \\ \hline \eta \\ Y^{n-1} \subseteq Y' \subset Y \xrightarrow{p'} Q = P_{n-2}Y, \end{array}$$

commutes in \mathbb{CW}_0 , where p and p' coincide with the identity morphisms on the (n-1)-skeleta, and where $\overline{\eta}$ is the restriction of f. For $n \geq 4$, we have $X' = X^{n-1}$ and $Y' = Y^{n-1}$. We obtain the following commutative diagram of chain complexes in \mathbf{H}_0

$$\begin{array}{c} \widehat{C}X^{n-1} \subset \widehat{C}X \xrightarrow{p_*} \widehat{C}P \\ \hline \overline{\eta}_* & \uparrow f_* \\ \widehat{C}Y^{n-1} \subset \widehat{C}Y \xrightarrow{p'_*} \widehat{C}Q. \end{array}$$

For $n \ge 4$, we construct a morphism $(\xi, \eta) : r(Y) \to r(X)$ in the category \mathbf{H}_{n-1}^c of homotopy systems of order (n-1) (see Section 8), rendering the diagram

(3.4)
$$\begin{array}{c} r(X) \xrightarrow{r(p)} r(P) \\ (\xi,\eta) & \uparrow \\ r(Y) \xrightarrow{r(p')} r(Q) \end{array}$$

homotopy commutative in \mathbf{H}_{n-1}^c . Here $\xi : \widehat{C}Y \to \widehat{C}X$ and $\eta : Y^{n-2} \to X^{n-2}$ is the restriction of $\overline{\eta}$ above.

[For n = 3, the map $\overline{\eta}$ itself need not extend to a map $Y' \to X'$. But, since Y' is homologically 2-dimensional, there is a map $\eta' : Y' \to X'$ inducing $\pi_1 \eta' = \pi_1 \varphi$. Since we may assume that Q is obtained from Y by attaching cells of dimension ≥ 3 , we can choose f representing φ with $p\eta' = fp'$.]

We write $\pi = \pi_1 X, \pi' = \pi_1 Y, \Lambda = \mathbb{Z}[\pi]$ and $\Lambda' = \mathbb{Z}[\pi']$ and let $[e'] \in \widehat{C}_n Y$ and $[e] \in \widehat{C}_n X$ be the elements corresponding to the *n*-cells e_n and e'_n , respectively, $n \geq 3$. Since $\{f\}$ is a morphism in \mathbf{Trp}^n , we obtain $f_*p'_*[Y] = p_*[X]$ in $\mathrm{H}_n(P, \mathbb{Z}^{\omega})$ and hence

$$f_*p'_*[e'] - p_*[e] \in \operatorname{im}(d:\widehat{C}_{n+1}P \to \widehat{C}_nP) + \overline{I(\pi)}\widehat{C}_nP.$$

Thus there are elements $x \in \widehat{C}_{n+1}P$ and $y \in \overline{I(\pi)}\widehat{C}_nP$ with

(3.5)
$$f_*p'_*[e'] - p_*[e] = dx + y.$$

Let $\{e'_m\}_{m \in M}$ be a basis of $\widehat{C}_{n-1}Y$. By Lemma 3.6,

(3.6)
$$d[e'] = \sum a_m[e'_m],$$

for some $a_m \in \Lambda', m \in M$, where $\{a_m\}_{m \in M}$ generate $\overline{I(\pi')}$ as right Λ' -module. Since $\varphi = f_*$ is surjective, $\overline{I(\pi)}$ is generated by $\{\varphi(a_m)\}_{m \in M}$ as right Λ -module, and we may write

(3.7)
$$y = \sum_{m \in M} \varphi(a_m) z_m,$$

for some $z_m \in \widehat{C}_n P, m \in M$, since there is a surjection $\bigoplus_{m \in M} \Lambda[m] \twoheadrightarrow \overline{I(\pi)}$ of right Λ -modules which maps the generator [m] to $\varphi(a_m)$. Then (3.5) implies $d(f_*p'_*[e'] - p_*[e]) = dy = \sum_{m \in M} \varphi(a_m) dz_m$, and hence

(3.8)
$$p_*d[e] = \sum_{m \in M} \varphi(a_m) f_* p'_*[e'_m] - \sum_{m \in M} \varphi(a_m) dz_m.$$

We define the φ -equivariant homomorphism

(3.9)
$$\overline{\alpha}_n : \widehat{C}_{n-1}Y \to \widehat{C}_nP \quad \text{by} \quad \overline{\alpha}_n([e'_m]) = -z_m.$$

For $n \ge 4$, we define $\xi : \widehat{C}Y \to \widehat{C}X$ by $\xi[e'] = [e]$ and

(3.10)
$$\xi_i = \begin{cases} \widehat{C}_{n-1}(\overline{\eta}) + d\overline{\alpha}_n & \text{for } i = n-1, \\ \widehat{C}_i(\eta) & \text{for } i < n-1. \end{cases}$$

[For n = 3 we use the splitting $\widehat{C}_2 Y = S \oplus d_3 \widehat{C}_3 Y'$ in Lemma 3.7 and define $\xi_i : \widehat{C}_i Y \to \widehat{C}_i X$ by $\xi_3[e'] = [e], \xi_3 |\widehat{C}_3 Y' = \widehat{C}_3 \eta'$, and

$$\begin{aligned} \xi_2 | S &= (\widehat{C}_2 \eta' + d\overline{\alpha}_3) | S, \\ \xi_2 | d_3 \widehat{C}_3 Y' &= \widehat{C}_2 \eta' | d_3 \widehat{C}_3 Y' \\ \xi_i &= \widehat{C}_i \eta \quad \text{for } i < 2. \end{aligned}$$

To ensure that ξ is a chain map, it is now enough to show that $d\xi[e'] = \xi d[e']$. But, for the injection $\widehat{C}(p) = p_*$, we obtain

$$p_*\xi d[e'] = p_*(\widehat{C}_{n-1}(\eta') + d\overline{\alpha}_n)d[e']$$

$$= (p \circ \eta')_{n-1}d[e'] + p_*\left(d\overline{\alpha}_n(\sum_{m \in M} a_m[e'_m])\right)$$

$$= (f \circ p')_{n-1}d[e'] + p_*\sum_{m \in M} \varphi(a_m)d\overline{\alpha}_n[e'_m]$$

$$= \sum_{m \in M} \varphi(a_m)f_*p'_*[e'_m] - p_*\sum_{m \in M} \varphi(a_m)dz_m$$

$$= p_*d[e] = p_*d\xi[e'], \text{ by } (3.8).$$

[For n = 3, Theorem 4.3 now implies that there is a map $\overline{f} : Y \to X$ such that $\widehat{C}(\overline{f}) = \xi$. Then $\tau(\overline{f}) = f, \overline{f}$ is a degree 1 map and the proof is complete for n = 3.]

Now let $n \geq 4$. To check that (ξ, η) is a morphism in \mathbf{H}_{n-1}^c , note that the attaching map satisfies the cocycle condition and hence, by its definition, the map ξ_{n-1} commutes with attaching maps in r(X) and r(Y), since $\widehat{C}_{n-1}\overline{\eta}$ has this property. We must show that Diagram (3.4) is homotopy commutative. But $r(f) = (f_*, \eta)$ and $r(p) = (p_*, j), r(p') = (p'_*, j')$, where j and j' are the identity morphisms on $X^{n-2} = P^{n-2}$ and $Y^{n-2} = Q^{n-2}$, respectively. Hence we must find a homotopy $\alpha : (p_*\xi, \eta) \simeq (f_*p'_*, \eta)$ in \mathbf{H}_{n-1}^c , that is, φ -equivariant maps

$$\alpha_{i+1}: \widehat{C}_i Y \to \widehat{C}_{i+1} P, \ i \ge n-1,$$

such that

(3.11)
$$\{\eta\} + g_{n-1}\alpha_{n-1} = \{\eta\},\$$

(3.12)
$$(p_*\xi)_i - (f \circ p')_i = \alpha_i d + d\alpha_{i+1} \quad \text{for} \quad i \ge n-1$$

where g_{n-1} is the attaching map of (n-1)-cells in P. Define α by $\alpha_{n+1}[e'] = -x$, see (3.5), and

(3.13)
$$\alpha_i = \begin{cases} \overline{\alpha}_n & \text{for } i = n, \\ 0 & \text{for } i < n. \end{cases}$$

Then α satisfies (3.11) trivially. For i = n - 1, we obtain

$$(p_*\xi)_{n-1} - (f \circ p')_{n-1} = \xi_{n-1} - \widehat{C}_{n-1}(f)$$

= $\xi_{n-1} - \widehat{C}_{n-1}(\overline{\eta})$
= $d\alpha_n$, by (3.10) and (3.13).

For i = n, we evaluate (3.12) on [e']. By (3.5),

$$(p_*\xi - f_*p'_*)[e'] = p_*[e] - f_*p'_*[e'] = -dx - y.$$

On the other hand,

$$(d\alpha_{n+1} + \alpha_n d)[e'] = d\alpha_{n+1}[e'] + \alpha_n \sum_{m \in M} a_m[e'_m], \text{ by } (3.6),$$

= $-dx - \sum_{m \in M} \varphi(a_m) z_m, \text{ by } (3.13) \text{ and } (3.9),$
= $-dx - y$ by (3.7).

Hence α satisfies (3.12) and Diagram (3.4) is homotopy commutative.

To construct a morphism $\overline{f}: Y \to X$ in \mathbf{PD}_{+}^{n} with $\tau(\overline{f}) = f$, consider the obstruction $\mathcal{O}(\xi,\eta) \in \mathrm{H}^{n}(Y,\Gamma_{n-1}X)$ (see Section 8) and note that p induces an isomorphism $p_{*}: \Gamma_{n-1}X \to \Gamma_{n-1}P$, see II.4.8 [1]. Hence the obstruction for the composite $r(p)(\xi,\eta)$ coincides with $p_{*}\mathcal{O}(\xi,\eta)$, where p_{*} is an isomorphism. On the other hand, the obstruction for r(f)r(p') vanishes, since this map is λ -realizable. Thus, by the homotopy commutativity of (3.4), $p_{*}\mathcal{O}(\xi,\eta) = \mathcal{O}(r(f)r(p')) = 0$, so that $\mathcal{O}(\xi,\eta) = 0$ and there is a λ -realization $(\xi,\tilde{\eta}')$ of (ξ,η) in \mathbf{H}_{n}^{c} . Since $\mathbf{H}^{n+1}(Y,\Gamma_{n}X) = 0$, there is a λ -realization (ξ,\bar{f}) of $(\xi,\tilde{\eta}')$ in \mathbf{H}_{n+1}^{c} . As $Y = Y^{n}, X = X^{n}$ and ξ is compatible with fundamental classes by construction, $\overline{f}: Y \to X$ is a degree 1 map in \mathbf{PD}_{+}^{n} realizing the map f in \mathbf{Trp}^{n} .

4. PD^3 -complexes

The fundamental triple of a PD³-complex consists of a group π , an orientation ω and an element $t \in H_3(\pi, \mathbb{Z}^{\omega})$. Here we use the standard fact that the homology of a group π coincides with the homology of the corresponding Eilenberg-Mac Lane space $K(\pi, 1)$. In general, it is a difficult problem to actually compute $H_3(\pi, \mathbb{Z}^{\omega})$. The homotopy type of a PD³-complex is characterized by its fundamental triple, but not every fundamental triple occurs as the fundamental triple of a PD³-complex. Via the invariant $\nu_C(t)$ Turaev [20] characterizes those fundamental triples which are realizable by a PD³-complex. Let $\mathbf{Trp}_{+,\nu}^3$ be the full subcategory of \mathbf{Trp}_+^3 consisting of fundamental triples satisfying Turaev's realization condition. Then Theorem 3.1 implies

Theorem 4.1. The functor

$$\tau_+: \mathbf{PD}^3_+ / \simeq \to \mathbf{Trp}^3_+$$

reflects isomorphisms and is representative and full.

Remark. Turaev does not mention that the functor τ_+ is actually full and thus only proves the first part of the following corollary which is one of the consequences of Theorem 4.1.

Corollary 4.2. The functor τ_+ yields a 1–1 correspondence between oriented homotopy types of PD³–complexes and isomorphism types of fundamental triples satisfying Turaev's realization condition. Moreover, for every PD³–complex X, there is a surjection of groups

$$\tau_+ : \operatorname{Aut}_+(X) \to \operatorname{Aut}(\tau(X)),$$

where $\operatorname{Aut}_+(X)$ is the group of oriented homotopy equivalences of X in $\operatorname{PD}^3_+/\simeq$ and $\operatorname{Aut}(\tau(X))$ is the group of automorphisms of the triple $\tau(X)$ in Trp^3_+ which is a subgroup of $\operatorname{Aut}(\pi_1 X)$.

12

As every 3-manifold has the homotopy type of a finite standard PD^3 -complex, the question arises which fundamental triples in \mathbf{Trp}^3_+ correspond to finite standard PD^3 -complexes. While Turaev does not discuss this question, we use the concept of PD^3 -chain complexes (see Section 2) in the category PD^3_* to do so.

Theorem 4.3. The functor $\widehat{C} : \mathbf{PD}^3 / \simeq \longrightarrow \mathbf{PD}^3_* / \simeq$ reflects isomorphisms and is representative and full.

Proof. This follows from Theorems 10.1 and 10.2 in Section 10.

Corollary 4.4. The functor \hat{C} yields a 1–1 correspondence between homotopy types of PD^3 -complexes and homotopy types of PD^3 -chain complexes. Moreover, for every PD^3 -complex X there is a surjection of groups

$$\widehat{C}$$
: Aut $(X) \longrightarrow$ Aut $(\widehat{C}(X))$.

Remark 4.5. Corollary 4.4 implies that the diagonal of every PD³–chain complex is, in fact, homotopy co–associative and homotopy co–commutative.

Connecting the functor \widehat{C} and the functor τ_+ , we obtain the diagram

where τ_+ determines τ_* together with a natural isomorphism $\tau_* \widehat{C} \cong \tau_+$.

Corollary 4.6. All of the functors \widehat{C} , τ_+ and τ_* reflect isomorphisms and are full and representative.

By Remark 2.4, the functor \widehat{C} yields a 1–1 correspondence between homotopy types of finite standard PD³–complexes and finite standard PD³–chain complexes, respectively.

5. Realizability of PD⁴-chain complexes

Given a PD⁴-chain complex C, we define an invariant $\mathcal{O}(C)$ which vanishes if and only if C is realizable by a PD⁴-complex. To this end we recall the *quadratic* functor Γ (see also (4.1) p. 13 in [1]). A function $f : A \to B$ between abelian groups is called a *quadratic map* if f(-a) = f(a), for $a \in A$, and if the function $A \times A \to B$, $(a, b) \mapsto f(a+b) - f(a) - f(b)$ is bilinear. There is a *universal quadratic* map

$$\gamma: A \to \Gamma(A),$$

such that for all quadratic maps $f : A \to B$ there is a unique homomorphism $f^{\Box} : \Gamma(A) \to B$ satisfying $f^{\Box}\gamma = f$. Using the cross effect of γ , we obtain the Whitehead product map

$$\begin{array}{rcl} P:A\otimes A &\longrightarrow & \Gamma(A),\\ a\otimes b &\longmapsto & [a,b]=\gamma(a+b)-\gamma(a)-\gamma(b). \end{array}$$

The exterior product $\Lambda^2 A$ of the abelian group A is defined so that we obtain the natural exact sequence

(5.1) $\Gamma(A) \xrightarrow{H} A \otimes A \longrightarrow \Lambda^2 A \longrightarrow 0,$

 \square

where H maps $\gamma(a)$ to $a \otimes a$ for $a \in A$ (see also p.14 in [1]). The composite $PH : \Gamma(A) \to \Gamma(A)$ coincides with $2id_{\Gamma(A)}$, in fact, PH maps $\gamma(a)$ to $[a, a] = 2\gamma(a)$. Given a CW–complex X, there is a natural isomorphism $\Gamma_3(X) \cong \Gamma(\pi_2 X)$, by an old result of J.H.C. Whitehead [25], where Γ_3 is Whitehead's functor in A Certain Exact Sequence [25].

Theorem 5.1. Let $C = ((\pi, C), \omega, [C], \Delta)$ be a PD⁴-chain complex with homology module $H_2(C, \Lambda) = H_2$. Then there is an invariant

$$\mathcal{O}(C) \in \mathrm{H}_0(\pi, \Lambda^2 H_2^\omega)$$

with $\mathcal{O}(C) = 0$ if and only if there is a PD^4 -complex X such that $\widehat{C}(X)$ is isomorphic to C in PD^4_*/\simeq . Moreover, if $\mathcal{O}(C) = 0$, the group

$$\ker \left(H_*: \mathrm{H}_0(\pi, \Gamma(H_2^{\omega}) \longrightarrow \mathrm{H}_0(\pi, H_2^{\omega} \otimes H_2^{\omega})\right)$$

acts transitively and effectively on the set $\operatorname{Real}_{\widehat{C}}(C)$ of realizations of C in $\operatorname{PD}^4/\simeq$. Here ker H_* is 2-torsion.

Proof. First note that

(5.2)
$$\mathrm{H}^{4}(C, \Lambda^{2}H_{2}) \cong \mathrm{H}_{0}(C, \Lambda^{2}H_{2}^{\omega}) \cong \mathrm{H}_{0}(\pi, \Lambda^{2}H_{2}^{\omega}).$$

By Lemma 2.1, we may assume that C is 2-realizable. By Proposition 8.3, there is thus a 4-dimensional CW-complex X together with an isomorphism $\widehat{C}X \cong (\pi, C)$. The CW-complex X yields the homotopy systems $\overline{\overline{X}}$ in \mathbf{H}_3^c and $\overline{\overline{X}}$ in \mathbf{H}_4^c with $\overline{\overline{X}} = r(X)$ and $\overline{\overline{X}} = \lambda X$. By Theorem 10.1, we may choose a diagonal $\overline{\overline{\Delta}} : \overline{\overline{X}} \to \overline{\overline{X}} \otimes \overline{\overline{X}}$ inducing $\Delta : C \to C \otimes C$, whose homotopy class is determined by Δ . However, $\overline{\overline{\Delta}}$ need not be λ -realizable. Lemma 9.1 shows that there is an obstruction

(5.3)
$$\mathcal{O}' = \mathcal{O}_{\overline{X}, \overline{X} \otimes \overline{X}}(\overline{\overline{\Delta}}) \in \mathrm{H}^4(C, \Gamma_3(\overline{X} \otimes \overline{X}))$$

which vanishes if and only if there is a diagonal $\overline{\Delta} : \overline{X} \to \overline{X} \otimes \overline{X}$ realizing $\overline{\overline{\Delta}}$. Note that \mathcal{O}' is determined by the diagonal Δ on C, since the obstruction depends on the homotopy class of $\overline{\overline{\Delta}}$ only. By Theorem 10.2, the existence of $\overline{\Delta}$ realizing $\overline{\overline{\Delta}}$ also implies the existence of $\Delta : X \to X \times X$ realizing $\overline{\Delta}$. But

$$\begin{split} \Gamma_3(X \otimes X) &\cong & \Gamma(\pi_2(X \otimes X)) \\ &\cong & \Gamma(\pi_2(X \times X)) \\ &\cong & \Gamma(\pi_2 \oplus \pi_2) \quad \text{where } \pi_2 = \pi_2 X. \end{split}$$

Applying Lemma 9.2(1), we see that

$$\mathcal{O}' \in \ker p_{i*} \quad \text{for } i = 1, 2,$$

where $p_i: \pi_2 \oplus \pi_2 \to \pi_2$ is the *i*-th projection. Now

$$\Gamma(\pi_2 \oplus \pi_2) = \Gamma(\pi_2) \oplus \pi_2 \otimes \pi_2 \oplus \Gamma(\pi_2)$$

and hence \mathcal{O}' yields $\mathcal{O}'' \in \mathrm{H}^4(C, \pi_2 \otimes \pi_2)$. While the homotopy type of \overline{X} is determined by C, the homotopy type of \overline{X} is an element of $\mathrm{Real}_{\lambda}(\overline{\overline{X}})$ and the group $\mathrm{H}^4(C, \Gamma(\pi_2))$ acts transitively and effectively on this set of realizations. To describe the behaviour of the obstruction under this action using Lemma 9.3, we first consider the homomorphism

$$\nabla = \Delta_* - \iota_{1*} - \iota_{2*} : \Gamma(\pi_2) \longrightarrow \Gamma(\pi_2 \oplus \pi_2),$$

14

where $\Delta : \pi_2 \to \pi_2 \oplus \pi_2$ maps $x \in \pi_2$ to $\iota_1(x) + \iota_2(x)$. We obtain, for $x \in \pi_2$,

$$\nabla(\gamma(x)) = \gamma(\iota_1(x) + \iota_2(x)) - \gamma(\iota_1(x)) - \gamma(\iota_2(x))$$

= $[\iota_1(x), \iota_2(x)]$
= $x \otimes x \in \pi_2 \otimes \pi_2 \subset \Gamma(\pi_2 \oplus \pi_2),$

showing that ∇ coincides with $H: \Gamma(\pi_2) \to \pi_2 \otimes \pi_2$. Given $\alpha \in \mathrm{H}^4(C, \Gamma(\pi_2))$, the obstruction $\mathcal{O}''_{\alpha} = \mathcal{O}_{\overline{Y}, \overline{Y} \otimes \overline{Y}}(\overline{\overline{\Delta}})$ with $\overline{Y} = \overline{X} + \alpha$ satisfies

$$\mathcal{O}_{\alpha}^{\prime\prime} = \mathcal{O}^{\prime\prime} + H_* \alpha,$$

by Lemma 9.3. The exact sequence

$$\mathrm{H}^{4}(C,\Gamma(\pi_{2}))\longrightarrow \mathrm{H}^{4}(C,\pi_{2}\otimes\pi_{2})\longrightarrow \mathrm{H}^{4}(C,\Lambda^{2}\pi_{2})\longrightarrow 0$$

allows us to identify the coset of $im H_*$ represented by \mathcal{O}'' with an element

$$\mathcal{O} \in \mathrm{H}^4(C, \Lambda^2 H_2)$$

where $H_2 = H_2(C, \Lambda) \cong \pi_2$. By the isomorphisms (5.2), this element yields the invariant

$$\mathcal{O} \in \mathrm{H}_0(\pi, \Lambda^2 H_2^\omega)$$

with the properties stated. Given that \mathcal{O}'' vanishes, the obstruction \mathcal{O}''_{α} vanishes if and only if $\alpha \in \ker H_*$, and Proposition 8.3 yields the result on $\operatorname{Real}_{\widehat{C}}(C)$. We observe that ker H_* is 2-torsion as $H_*(x) = 0$ implies $2x = P_*H_*x = 0$. \Box

Theorem 5.2. Let $C = ((\pi, C), \omega, [C], \Delta)$ be a PD⁴-chain complex for which Δ is homotopy co-commutative. Then the obstruction $\mathcal{O}(C)$ is 2-torsion, that is, $2\mathcal{O}(C) = 0$.

Proof. Lemma 9.2 (2) states

$$\mathcal{O}' \in \ker(\mathrm{id}_* - T_*)_*,$$

where id is the identity on $\pi_2 \oplus \pi_2$ and T is the interchange map on $\pi_2 \oplus \pi_2$ with $T\iota_1 = \iota_2$ and $T\iota_2 = \iota_1$. Thus T induces the map -id on $\Lambda^2\pi_2$ and the result follows.

Remark. Lemma 9.2 (3) concerning homotopy associativity of the diagonal does not yield a restriction of the invariant $\mathcal{O}(C)$.

Theorem 5.3. The functor \hat{C} induces a 1–1 correspondence between homotopy types of PD^4 -complexes with finite fundamental group of odd order and homotoppy types of PD^4 -chain complexes with homotopy co-commutative diagonal and finite fundamental group of odd order.

Proof. Since π is of odd order, the cohomology $H^0(\pi, M)$ is odd torsion and the result follows from Theorem 5.1.

Remark. By Theorem 5.3, every PD⁴–chain complex with homotopy co–commutative diagonal and odd fundamental group has a homotopy co–associative diagonal.

Up to 2-torsion, Theorem 5.1 yields a correspondence between homotopy types of PD^4 -complexes and homotopy types of PD^4 -chain complexes. In Section 7 below we provide a precise condition for a PD^4 -chain complex to be realizable by a PD^4 -complex.

6. The chains of a 2–type

The fundamental triple of a PD⁴-complex X comprises its 2-type $T = P_2 X$ and an element of the homology $H_4(T, \mathbb{Z}^{\omega})$. To compute $H_4(T, \mathbb{Z}^{\omega})$, we construct a chain complex P(T) which approximates the chain complex $\widehat{C}(T)$ up to dimension 4. Our construction uses a presentation of the fundamental group as well as the concepts of *pre-crossed module* and *Peiffer commutator*. To introduce these concepts, we work with right group actions as in [1], and define P(T) as a chain complex of right Λ -modules. With any left Λ -module M we associate a right Λ -module in the usual way by setting $x.\alpha = \alpha^{-1}.x$, for $\alpha \in \pi$ and $x \in M$, and vice versa.

A pre-crossed module is a group homomorphism $\partial : \rho_2 \to \rho_1$ together with a right action of ρ_1 on ρ_2 , such that

$$\partial(x^{\alpha}) = -\alpha + \partial x + \alpha \quad \text{for } x \in \rho_2, \alpha \in \rho_1,$$

where we use additive notation for the group law in ρ_1 and ρ_2 , as in [1]. For $x, y \in \rho_2$, the *Peiffer commutator* is given by

$$\langle x, y \rangle = -x - y + x + y^{\partial x}.$$

A pre-crossed module is a crossed module, if all Peiffer commutators vanish. A map of pre-crossed modules, $(m, n) : \partial \to \partial'$ is given by a commutative diagram

in the category of groups, where m is n-equivariant. Let **cross** be the category of crossed modules and such morphisms. A weak equivalence in **cross** is a map (m, n): $\partial \to \partial'$, which induces isomorphisms coker $\partial \cong \operatorname{coker} \partial'$ and ker $\partial \cong \ker \partial'$, and we denote the localization of **cross** with respect to weak equivalences by **Ho**(**cross**). By an old result of Whitehead–Mac Lane, there is an equivalence of categories

$$\overline{\rho}: 2 - \mathbf{types} \longrightarrow \mathbf{Ho}(\mathbf{cross}),$$

compare Theorem III 8.2 in [1]. The functor $\overline{\rho}$ carries a 2-type T to the crossed module $\partial : \pi_2(T, T^1) \to \pi_1(T^1)$.

A pre-crossed module is totally free, if $\rho_1 = \langle E_1 \rangle$ is a free group generated by a set E_1 and $\rho_2 = \langle E_2 \times \rho_1 \rangle$ is a free group generated by a free ρ_1 -set $E_2 \times \rho_1$ with the obvious right action of ρ_1 . A function $f: E_2 \to \langle E_1 \rangle$ yields the associated totally free pre-crossed module $\partial_f: \rho_2 \to \rho_1$ with $\partial_f(x) = f(x)$ for $x \in E_2$. Let $Pei_n(\partial_f) \subset \rho_2$ be the subgroup generated by n-fold Peiffer commutators and put $\overline{\rho}_2 = \rho_2/Pei_2(\partial_f)$. Let **cross**⁼ be the category whose objects are pairs (∂_f, B) , where ∂_f is a totally free pre-crossed module $\partial_f: \rho_2 \to \rho_1$ and B is a submodule of ker $(\partial:\overline{\rho}_2 \to \rho_1)$. Further, a morphism $m: (\partial_f, B) \to (\partial_{f'}, B')$ in **cross**⁼ is a map $\partial_f \to \partial_{f'}$ which maps B into B'. Then there is a functor

$q: \mathbf{cross}^{=} \longrightarrow \mathbf{cross} \longrightarrow \mathbf{Ho}(\mathbf{cross}),$

which assigns to (∂_f, B) the crossed module $\overline{\rho}_2/B \to \rho_1$, and one can check that q is full and representative. Given any map $g: T \to T'$ between 2-types, we may choose a map $\overline{\overline{g}}: (\partial_f, B) \to (\partial_{f'}, B')$ in **cross**⁼ representing the homotopy class of g via the functor q and the equivalence $\overline{\rho}$. We call $\overline{\overline{g}}$ a map associated with g.

Given an action of the group π on the group M and a group homomorphism $\varphi: N \to \pi$, a φ -crossed homomorphism $h: N \to M$ is a function satisfying

$$h(x+y) = (h(x))^{\varphi(y)} + h(y) \quad \text{for } x, y \in N.$$

By an old result of Whitehead [24], the totally free crossed module $\overline{\rho}_2 \rightarrow \rho_1$ enjoys the following properties.

Lemma 6.1. Let X^2 be a 2-dimensional CW-complex in \mathbf{CW}_0 with attaching map of 2-cells $f: E_2 \to \langle E_1 \rangle = \pi_1(X^1)$. Then there is a commutative diagram

$$\pi_2(X^2, X^1) \xrightarrow{\partial} \pi_1(X^1)$$

$$\| \qquad \|$$

$$\bar{\rho}_2 \xrightarrow{\partial_f} \rho_1,$$

identifying ∂ with the totally free crossed module ∂_f . Moreover, the abelianization of $\overline{\rho}_2$ coincides with $\widehat{C}_2(X^2)$, identifying the kernel of ∂_f with the kernel of $d_2: \widehat{C}_2(X^2) \to \widehat{C}_1(X^2)$, and ∂_f determines the boundary d_2 via the commutative diagram

Here h_2 is the quotient map and h_1 is the $(q : \rho_1 \to \pi_1(X^2))$ -crossed homomorphism which is the identity on the generating set E_1 . Each map $\partial_f \to \partial_{f'}$ induces a chain map $\widehat{C}_2(X^2) \to \widehat{C}_2(X'^2)$ where X^2 and X'^2 are the 2-dimensional CW-complexes with attaching maps f and f', respectively.

In addition to Lemma 6.1, we need the following result on Peiffer commutators, which was originally proved in IV (1.8) of [1] and generalized in a paper with Conduché [2].

Lemma 6.2. With the notation in Lemma 6.1, there is a short exact sequence

$$0 \longrightarrow \Gamma(K) \longrightarrow \widehat{C}_2(X^2) \otimes \widehat{C}_2(X^2) \xrightarrow{\omega} Pei_2(\partial_f)/Pei_3(\partial_f) \longrightarrow 0,$$

where $K = \ker d_2 = \pi_2 X^2$ and ω maps $x \otimes y$ to the Peiffer commutator $\langle \xi, \eta \rangle$ with $\xi, \eta \in \rho_2$ representing x and y, respectively.

Definition 6.3. Given a 2-type T in 2-types, we define the chain complex $P(T) = P(\partial_f, B)$ as follows. Let $f: E_2 \to \langle E_1 \rangle$ be the attaching map of 2-cells in T and put $C_i = \hat{C}_i(T)$. Then the 2-skeleton of P(T) coincides with $\hat{C}(T^2)$, that is, $P_i(T) = C_i$ for $i \leq 2$, and $P_i(T) = 0$ for i > 4. To define $P_4(T)$, let H be the map in (5.1) and put $B = \operatorname{im}(d: C_3 \to C_2)$ and $\nabla_B = B \otimes B + H[B, C_2]$ as a submodule of $C_2 \otimes C_2$. Then $P_4(T)$ is given by the quotient

$$P_4(T) = C_2 \otimes C_2 / \nabla_B.$$

To define $P_3(T)$, we use Lemma 6.1, Lemma 6.2 and the identification $\pi_2 T^2 = \ker(d: C_2 \to C_1)$ and put $\sigma_2 = \rho_2 / Pei_3(\partial_f)$. Then $P_3(T)$ is given by the pull-back

diagram

The chain complex P(T) is determined by the commutative diagram

Clearly, $P(T) = P(\partial_f, B)$ depends on the pair (∂_f, B) only and yields a functor $P : \mathbf{cross}^= \longrightarrow \mathbf{H}_0.$

The homology of P(T) is given by

$$H_i(P(T)) = \begin{cases} 0 & \text{for } i = 1 \text{ and } i = 3 \\ H_2C = \pi_2 T & \text{for } i = 2, \\ \Gamma(\pi_2(T)) & \text{for } i = 4. \end{cases}$$

Lemma 6.4. Given a 2-type T, there is a chain map

$$\overline{\beta}:\widehat{C}(T)\longrightarrow P(T)$$

inducing isomorphisms in homology in degree ≤ 4 . The map $\overline{\beta}$ is natural in T up to homotopy, that is, a map $g: T \to T'$ between 2-types yields a homotopy commutative diagram

$$\begin{array}{c} \widehat{C}(T) & \xrightarrow{g_*} & \widehat{C}(T') \\ \hline \overline{\beta} \\ \downarrow & & \downarrow \overline{\overline{g}} \\ P(T) & \xrightarrow{\overline{g}}_* & \to P(T'), \end{array}$$

where $\overline{\overline{g}}_*$ is induced by a map $\overline{\overline{g}}: \partial_f \to \partial_{f'}$ associated with g.

For a proof of Lemma 6.4, we refer the reader to diagram (1.2) in Chapter V of [1]. In order to compute the fourth homology or cohomology of a 2-type T with coefficients, choose a pair (∂_f, B) representing T and a free chain complex C together with a weak equivalence of chain complexes

$$C \xrightarrow{\sim} P(\partial_f, B).$$

Then, for right Λ -modules M and left Λ -modules N,

$$\begin{aligned} \mathrm{H}_4(T,M) &= \mathrm{H}_4(C\otimes M), \\ \mathrm{H}^4(T,N) &= \mathrm{H}^4(\mathrm{Hom}_\Lambda(C,N)) \end{aligned}$$

).

This allows for the computation of H_4 in terms of chain complexs only, as is the case for the computation of group homology in Section 4. Of course, it is also possible to compute the homology of T in terms of a spectral sequence associated with the fibration

$$K(\pi_2(T), 2) \longrightarrow T \longrightarrow K(\pi_1(T), 1).$$

18

However, in general, this yields non-trivial differentials, which may be related to the properties of the chain complex $P(\partial_f, B)$.

7. Algebraic models of PD^4 -complexes

Let X be a 4-dimensional CW-complex and let

$$p_2: X \longrightarrow P_2 X = T$$

be the map to the 2-type of X, as in (3.1). Then p_2 yields the chain map

$$\beta:\widehat{C}(X) \xrightarrow{p_{2*}} \widehat{C}(T) \xrightarrow{\beta_*} P(T) = P(\partial_f, B),$$

were ∂_f is given by the attaching map of 2-cells in X and $B = \operatorname{im}(d_3 : \widehat{C}_3(X) \to \widehat{C}_2(X))$. We call the chain map β the cellular boundary invariant of X.

Lemma 7.1. Let X and X' be 4-dimensional CW-complexes. A chain map φ : $\widehat{C}(X) \to \widehat{C}(X')$ is realizable by a map $g: X \to X'$ in \mathbf{CW}_0 , that is, $\varphi = g_*$, if and only if the diagram

$$\begin{array}{ccc} \widehat{C}(X) & & \xrightarrow{\varphi} & \widehat{C}(X') \\ & \beta & & & & & & \\ \beta & & & & & & \\ \varphi & & & & & & \\ P(\partial_f, B) & & & \xrightarrow{\overline{\varphi}} & & P(\partial_{f'}, B') \end{array}$$

commutes up to homotopy. Here $\overline{\overline{\varphi}} : \partial_f \to \partial_{f'}$ is a map in $\operatorname{cross}^=$ inducing $\varphi_{\leq 2} : \widehat{C}(X^2) \to \widehat{C}(X'^2)$ as in Lemma 6.1.

Proof. By Lemma 6.4, the diagram

is homotopy commutative, where g is given by $q(\overline{g})$ in **Ho**(**cross**). Since p_{2*} and g_* are realizable, the obstruction $\mathcal{O}_{X,X'}(\varphi)$ vanishes.

Definition 7.2. A β -PD⁴-chain complex is a PD⁴-chain complex $((\pi, C), \omega, [C], \Delta)$ together with a totally free pre-crossed module ∂_f inducing $d_2 : C_2 \to C_1$ and a chain map

$$\beta: C \longrightarrow P(\partial_f, B)$$

which is the identity in degree ≤ 2 . Here $B = im(d_3 : C_3 \to C_2)$, the diagram

$$\begin{array}{c|c} C & \xrightarrow{\Delta} & C \otimes C \\ \beta & & & & \\ \beta & & & & \\ P(\partial_f, B) & \xrightarrow{\overline{\Delta}_*} & P(\partial_{f \otimes f}, B^{\otimes}) \end{array}$$

commutes up to homotopy and β is the cellular boundary invariant β_{σ} of a totally free quadratic chain complex σ defined in V(1.8) of [1]. Further, β^{\otimes} is the cellular boundary invariant of the quadratic chain complex $\sigma \otimes \sigma$ defined in Section IV 12 of [1], and there is an explicit formula expressing β^{\otimes} in terms of β , which we do not recall here. The function $f \otimes f$ is the attaching map of 2-cells in the product $X^2 \times X^2$, where X^2 is given by f, and B^{\otimes} is the image of d_3 in $C \otimes C$. The map $\overline{\overline{\Delta}}$ in **cross**⁼ is chosen such that $\overline{\overline{\Delta}}$ induces Δ in degree ≤ 2 as in Lemma 7.1.) Let $\mathbf{PD}^4_{*,\beta}$ be the category whose objects are β -PD⁴-chain complexes and whose morphisms are maps φ in \mathbf{PD}^4_* such that the diagram

$$\begin{array}{c|c} C & \xrightarrow{\varphi} & C' \\ \beta & & & \downarrow \beta' \\ P(\partial_f, B) & \xrightarrow{\overline{\varphi}} & P(\partial_{f'}, B') \end{array}$$

is homotopy commutative, where $\overline{\overline{\varphi}}$ induces $\varphi_{\leq 2}$ as in Lemma 7.1.

Theorem 7.3. The functor \widehat{C} yields a functor

$$\widehat{C}: \mathbf{PD}^4/\simeq \longrightarrow \mathbf{PD}^4_{*,eta}/\simeq$$

which reflects isomorphisms and is representative and full.

Proof. Since C is 2-realizable, there is a 4-dimensional CW-complex X with $\widehat{C}(X) = C$ and cellular boundary invariant β . By Lemma 7.1, the diagonal Δ is realizable by a diagonal $X \to X \times X$, showing that X is a PD⁴-complex. By Lemma 7.1, a map φ is realizable by a map $X \to X'$.

Corollary 7.4. The functor \widehat{C} induces a 1–1 correspondence between homotopy types of PD^4 -complexes and homotopy types of β - PD^4 -chain complexes.

The functor τ in Section 3 yields the diagram of functors

(7.1)
$$\mathbf{PD}_{+}^{4} / \simeq \xrightarrow{\widehat{C}} \mathbf{PD}_{*+,\beta}^{4} / \simeq$$
$$\xrightarrow{\tau_{+}} \mathbf{Trp}_{+}^{4}$$

where τ_+ determines τ_* together with a natural isomorphism $\tau_* \widehat{C} \cong \tau_+$. Corollary 7.5. The functor τ_* in (7.1) reflects isomorphisms and is full.

8. Homotopy systems of order (K+1)

To investigate questions of realizability, we work in the category \mathbf{H}_{c}^{k+1} of homotopy systems of order (k+1). Let \mathbf{CW}_{0}^{k} be the full subcategory of \mathbf{CW}_{0} consisting of k-dimensional CW-complexes. A 0-homotopy H in \mathbf{CW}_{0} , denoted by \simeq^{0} , is a homotopy for which H_{t} is cellular for each $t, 0 \leq t \leq 1$.

Let $k \geq 2$. A homotopy system of order (k + 1) is a triple $X = (C, f_{k+1}, X^k)$, where X^k is an object in \mathbf{CW}_0^k , C is a chain complex of free $\pi_1(X^k)$ -modules, which coincides with $\widehat{C}(X^k)$ in degree $\leq k$, and where f_{k+1} is a homomorphism of left $\pi_1(X^k)$ -modules such that

$$C_{k+1} \xrightarrow{f_{k+1}} \pi_k(X^k)$$

$$\downarrow j$$

$$C_k \xleftarrow{h_k} \pi_k(X^k, X^{k-1})$$

commutes. Here d is the boundary in C,

$$h_k: \pi_k(X^k, X^{k-1}) \xrightarrow{p_*^{-1}} \pi_k(\widehat{X}^k, \widehat{X}^{k-1}) \xrightarrow{h} \operatorname{H}_k(\widehat{X}^k, \widehat{X}^{k-1})$$

given by the Hurewicz isomorphism h and the inverse of the isomorphism on the relative homotopy groups induced by the universal covering $p: \hat{X} \to X$. Moreover, f_{k+1} satisfies the *cocycle condition*

$$f_{k+1}d(C_{k+2}) = 0.$$

For an object X in \mathbf{CW}_0 , the triple $r(X) = (\widehat{C}(X), f_{k+1}, X^k)$ is a homotopy system of order (k+1), where X^k is the k-skeleton of X, and

$$f_{k+1}: \widehat{C}_{k+1}(X) \cong \pi_{k+1}(X^{k+1}, X^k) \xrightarrow{\partial} \pi_k(X^k)$$

is the attaching map of (k+1)-cells in X. A morphism or map between homotopy systems of order (k+1) is a pair

$$(\xi, \eta) : (C, f_{k+1}, X^k) \to (C', g_{k+1}, Y^k),$$

where $\eta: X^k \to Y^k$ is a morphism in \mathbf{CW}_0/\simeq^0 and the $\pi_1(\eta)$ -equivariant chain map $\xi: C \to C'$ coincides with $\widehat{C}_*(\eta)$ in degree $\leq k$ such that

$$C_{k+1} \xrightarrow{\xi_{k+1}} C'_{k+1}$$

$$\downarrow f_{k+1} \qquad \qquad \downarrow g_{k+1}$$

$$\pi_k(X^k) \xrightarrow{\eta_*} \pi_k(Y^k)$$

commutes. We also write $\pi_1 X = \pi_1(X^k)$ for an object $X = (C, f_{k+1}, X^k)$ in \mathbf{H}_{k+1}^c . To define the homotopy relation in \mathbf{H}_{k+1}^c , we use the action (see ??? in [1])

$$(8.1) \qquad [X^k, Y]_{\varphi} \times \widehat{\mathrm{H}}^k(X^k, \varphi^* \pi_k Y) \to [X^k, Y]_{\varphi}, \quad (F, \{\alpha\}) \mapsto F + \{\alpha\}$$

where $[X^n, Y]_{\varphi}$ is the set of elements in $[X^n, Y]$ which induce φ on the fundamental groups. Two morphisms

$$(\xi,\eta), (\xi',\eta'): (C, f_{k+1}, X^k) \to (C', g_{k+1}, Y^k)$$

are homotopy equivalent in \mathbf{H}_{k+1}^c if $\pi_1(\eta) = \pi_1(\eta') = \varphi$ and if there are φ -equivariant homomorphisms $\alpha_{j+1}: C_j \to C'_{j+1}$ for $j \ge k$ such that

$$\{\eta\} + g_{k+1}\alpha_{k+1} = \{\eta'\} \quad \text{and}$$

$$\xi'_i - \xi_i = \alpha_i d + d\alpha_{i+1}, \quad i \ge k+1,$$

where $\{\eta\}$ denotes the homotopy class of η in $[X^k, Y^k]$ and + is the action (8.1). Given homotopy systems $X = (C, f_{k+1}, X^k)$ and $Y = (C', g_{k+1}, Y^k)$, consider

$$X \otimes Y = (C \otimes_{\mathbb{Z}} C', h_{k+1}, (X^k \times Y^k)^k),$$

where we choose CW–complexes X^{k+1} and Y^{k+1} with attaching maps f_{k+1} and g_{k+1} , respectively, and h_{k+1} is given by the attaching maps of (k+1)–cells in $X^{k+1} \times Y^{k+1}$. Then $X \otimes Y$ is a homotopy system of order (k+1), and

$$\otimes: \mathbf{H}_{k+1}^c \times \mathbf{H}_{k+1}^c \to \mathbf{H}_{k+1}^c$$

is a bi-functor, called the *tensor product of homotopy systems*. The projections $p_1 : X \otimes Y \to X$ and $p_2 : X \otimes Y \to Y$ in \mathbf{H}_{k+1}^c are given by the projections of

the tensor product and the product of CW-complexes. Similarly, we obtain the inclusions $\iota_1 : X \to X \otimes Y$ and $\iota_2 : Y \to X \otimes Y$. Then $p_1 \iota_1 = \mathrm{id}_X$ and $p_2 \iota_2 = \mathrm{id}_Y$, while $p_1 \iota_2$ and $p_2 \iota_1$ yield the trivial maps.

There are functors

(8.2)
$$\mathbf{CW}_0 \xrightarrow{r} \mathbf{H}_{k+1}^c \xrightarrow{\lambda} \mathbf{H}_k^c \xrightarrow{C} \mathbf{H}_0$$

for $k \geq 3$, with $r(X) = (\widehat{C}(X), f_{k+1}, X^k)$ such that $r = \lambda r$. We write $\lambda X = \overline{X}$ for objects X in \mathbf{H}_{k+1}^c . As $\overline{X \otimes Y} = \lambda(X \otimes Y) = \overline{X} \otimes \overline{Y}$, the functor λ , and also r and C, is a monoidal functor between monoidal categories. There is a homotopy relation defined on the category \mathbf{H}_{k+1}^c such that these functors induce functors between homotopy categories

$$\mathbf{CW}_0/\simeq \xrightarrow{r} \mathbf{H}_{k+1}^c/\simeq \xrightarrow{\lambda} \mathbf{H}_k^c/\simeq \xrightarrow{C} \mathbf{H}_0/\simeq.$$

For $k \geq 3$, Whitehead's functor Γ_k factors through the functor $r : \mathbf{CW} \to \mathbf{H}_k^c$, so that the cohomology $\widehat{\mathrm{H}}_m(\overline{X}, \varphi^*\Gamma_k(\overline{Y})) = \mathrm{H}^m(C, \varphi^*\Gamma_k(\overline{Y}))$ is defined, where $\varphi : \pi_1 \overline{X} \to \pi_1 \overline{Y}$ and \overline{X} and \overline{Y} are objects in \mathbf{H}_k^c .

To describe the obstruction to realizing a map $f = (\xi, \eta) : \overline{X} \to \overline{Y}$ in \mathbf{H}_k^c , where $\overline{X} = \lambda X$ and $\overline{Y} = \lambda Y$, by a map $X \to Y$ in \mathbf{H}_{k+1}^c for objects $X = (C, f_{k+1}, X^k)$ and $Y = (C', g_{k+1}, Y^k)$, choose a map $F : X^k \to Y^k$ in \mathbf{CW}/\simeq^0 extending $\eta : X^{k-1} \to Y^{k-1}$ and for which $\widehat{C}_* F$ coincides with ξ in degree $\leq n$. Then

$$C_{k+1} \xrightarrow{\xi_{k+1}} C'_{k+1}$$

$$\downarrow^{f_{k+1}} \qquad \downarrow^{g_{k+1}}$$

$$\pi_k(X^k) \xrightarrow{F_*} \pi_k(Y^k)$$

need not commute and the difference $\mathcal{O}(F) = -g_{k+1}\xi_{k+1} + F_*f_{k+1}$ is a cocycle in $\operatorname{Hom}_{\varphi}(C_{k+1}, \Gamma_k(\overline{Y}))$. Theorem II 3.3 in [1] implies

Proposition 8.1. The map $f = (\xi, \eta) : \overline{X} \to \overline{Y}$ in \mathbf{H}_k^c can be realized by a map $f_0 = (\xi, \eta_0) : X \to Y$ in \mathbf{H}_{k+1}^c if and only if $\mathcal{O}_{X,Y}(f) = \{\mathcal{O}(F)\} \in \widehat{\mathrm{H}}^{k+1}(\overline{X}, \varphi^*\Gamma_k\overline{Y})$ vanishes. The obstruction \mathcal{O} is a derivation, that is, for $f : \overline{X} \to \overline{Y}$ and $g : \overline{Y} \to \overline{Z}$,

(8.3)
$$\mathcal{O}_{X,Z}(gf) = g_*\mathcal{O}_{X,Y}(f) + f^*\mathcal{O}_{Y,Z}(g)$$

and $\mathcal{O}_{X,Y}(f)$ depends on the homotopy class of f only.

Denoting the set of morphisms $X \to Y$ in $\mathbf{H}_{k+1}^c / \simeq$ by [X, Y], and the subset of morphisms inducing φ on the fundamental groups by $[X, Y]_{\varphi} \subseteq [X, Y]$, there is a group action

$$[X,Y]_{\varphi} \times \widehat{\mathrm{H}}^{k}(\overline{X},\varphi^{*}\Gamma_{k}\overline{Y}) \xrightarrow{+} [X,Y]_{\varphi},$$

where $\overline{X} = \lambda X$ and $\overline{Y} = \lambda Y$. Theorem II 3.3 in [1] implies

Proposition 8.2. Given morphisms $f_0, f'_0 \in [X, Y]_{\varphi}$, then $\lambda f_0 = \lambda f'_0 = f$ if and only if there is an $\alpha \in \widehat{H}^k(\overline{X}, \varphi^* \Gamma_k \overline{Y})$ with $f'_0 = f_0 + \alpha$. In other words, $\widehat{H}^k(\overline{X}, \varphi^* \Gamma_k \overline{Y})$ acts transitively on the set of realizations of f. Further, the action satisfies the linear distributivity law

(8.4)
$$(f_0 + \alpha)(g_0 + \beta) = f_0 g_0 + f_* \beta + g^* \alpha.$$

For the functor λ in (8.2), Theorem II 3.3 in [1] implies

Proposition 8.3. For all objects X in \mathbf{H}_{k+1}^c and for all $\alpha \in \widehat{\mathbf{H}}^{k+1}(\overline{X}, \Gamma_k \overline{X})$, there is an object X' in \mathbf{H}_{k+1}^c with $\lambda(X') = \lambda(X) = \overline{X}$ and $\mathcal{O}_{X,X'}(\operatorname{id}_{\overline{X}}) = \alpha$. We then write $X' = X + \alpha$.

Now let Y be an object in \mathbf{H}_{k}^{c} . Then the group $\widehat{\mathrm{H}}^{k+1}(Y, \Gamma_{k}Y)$ acts transitively and effectively on $\mathrm{Real}_{\lambda}(Y)$ via +, provided $\mathrm{Real}_{\lambda}(Y)$ is non-empty. Moreover, $\mathrm{Real}_{\lambda}(Y)$ is non-empty if and only if an obstruction $\mathcal{O}(Y) \in \widehat{\mathrm{H}}^{k+2}(Y, \Gamma_{k}Y)$ vanishes.

For objects X and Y in \mathbf{H}_{k+1}^c and a morphism $f: \overline{X} \to \overline{Y}$ in \mathbf{H}_k^c , Propositions 8.1 and 8.3 yield

(8.5)
$$\mathcal{O}_{X+\alpha,Y+\beta}(f) = \mathcal{O}_{X,Y}(f) - f_*\alpha + f^*\beta$$

for all $\alpha \in \widehat{\mathrm{H}}^{k+1}(\overline{X}, \Gamma_k \overline{X})$ and $\beta \in \widehat{\mathrm{H}}^{k+1}(\overline{Y}, \Gamma_k \overline{Y})$. Given another object Z in \mathbf{H}_{k+1}^c with $\lambda Z = \overline{Z}$,

(8.6)
$$\mathcal{O}_{X\otimes Z,Y\otimes Z}(f\otimes \mathrm{id}_{\overline{Z}}) = \overline{\iota}_{1*}\overline{p}_1^*\mathcal{O}_{X,Y}(f),$$

(8.7) $\mathcal{O}_{Z\otimes X, Z\otimes Y}(\mathrm{id}_{\overline{Z}}\otimes f) = \overline{\iota}_{2*}\overline{p}_2^*\mathcal{O}_{X,Y}(f),$

where $\overline{\iota}_1 : \overline{X} \to \overline{X} \otimes \overline{Z}$ and $\overline{p}_1 : \overline{X} \otimes \overline{Z} \to \overline{X}$ are the inclusion of and projection onto the first factor and $\overline{\iota}_2$ and \overline{p}_2 are defined analogously. We obtain

(8.8)
$$(X+\alpha)\otimes(Y+\beta) = (X\otimes Y) + \overline{\iota}_{1*}\overline{p}_1^*\alpha + \overline{\iota}_{2*}\overline{p}_2^*\beta.$$

9. Obstructions to the diagonal

Let $k \geq 2$. A diagonal on $X = (C, f_{k+1}, X^k)$ in \mathbf{H}_{k+1}^c is a morphism, $\Delta : X \to X \otimes X$, such that, for i = 1, 2, the diagram

commutes up to homotopy in \mathbf{H}_{k+1}^c . Applying the functor $r : \mathbf{CW}_0 \to \mathbf{H}_k^c$ to a diagonal $\Delta : X \to X \times X$ in \mathbf{CW}_0 , we obtain the diagonal $r(\Delta) : r(X) \to r(X) \otimes r(X)$ in \mathbf{H}_k^c .

Lemma 9.1. Let X be an object in \mathbf{H}_{k+1}^c . Then every λ -realizable diagonal $\overline{\Delta}$: $\overline{X} = \lambda X \to \overline{X} \otimes \overline{X}$ in \mathbf{H}_k^c / \simeq has a λ -realization $\Delta : X \to X \otimes X$ in $\mathbf{H}_{k+1}^c / \simeq$ which is a diagonal in \mathbf{H}_{k+1}^c .

Proof. Suppose $\Delta' : X \to X \otimes X$ is a λ -realization of $\overline{\Delta}$ in \mathbf{H}_{k+1}^c . The projection $p_{\ell} : X \to X \otimes X$ realizes the projection $\overline{p}_{\ell} : \overline{X} \to \overline{X} \otimes \overline{X}$ and hence $p_{\ell} \Delta'$ realizes $\overline{p}_{\ell} \overline{\Delta}$ for $\ell = 1, 2$. Now the identity on X realizes the identity on \overline{X} and $\overline{p}_{\ell} \Delta$ is homotopic to the identity on \overline{X} by assumption. Hence $p_{\ell} \Delta'$ and the identity on X realize the same homotopy class of maps for $\ell = 1, 2$. As the group $\widehat{H}^k(\overline{X}, \Gamma_k \overline{X})$ acts transitively on the set of realizations of this homotopy class by Proposition 8.2, there are elements $\alpha_{\ell} \in \widehat{H}^k(\overline{X}, \Gamma_k \overline{X})$ such that

$$\{p_{\ell}\Delta'\} + \alpha_{\ell} = \{\mathrm{id}_X\} \quad \text{for } \ell = 1, 2,$$

where $\{f\}$ denotes the homotopy class of the morphism f in \mathbf{H}_{k+1}^c . We put

$$\{\Delta\} = \{\Delta'\} + \iota_1 \alpha_1 + \iota_2 \alpha_2.$$

By Proposition 8.2,

$$\{p_{\ell}\Delta\} = \{p_{\ell}\}(\{\Delta'\} + \iota_1\alpha_1 + \iota_2\alpha_2)$$

=
$$\{p_{\ell}\Delta'\} + \overline{p}_{\ell*}\iota_1\alpha_1 + \overline{p}_{\ell*}\iota_2\alpha_2$$

=
$$\{p_{\ell}\Delta'\} + \alpha_{\ell} = \{\operatorname{id}_X\}.$$

Lemma 9.2. For X in \mathbf{H}_{k+1}^c , let $\Delta_{\overline{X}} : \overline{X} \to \overline{X} \otimes \overline{X}$ be a diagonal on $\overline{X} = \lambda X$ in \mathbf{H}_k^c . Then we obtain, in $\mathbf{H}^{k+1}(\overline{X}, \Gamma_k(\overline{X} \otimes \overline{X}))$,

- (1) $O_{X,X\otimes X}(\Delta_{\overline{X}}) \in \ker \overline{p}_{i*}$ for i = 1, 2,
- (2) $\mathcal{O}_{X,X\otimes X}(\Delta_{\overline{X}}) \in \ker(\operatorname{id}_{\overline{X}*} T_*)_*$ if $\Delta_{\overline{X}}$ is homotopy commutative and
- (3) $\mathcal{O}_{X,X\otimes X}(\Delta_{\overline{X}}) \in \ker(\overline{\iota}_{1,2*} \overline{\iota}_{2,3*} + (\Delta_{\overline{X}} \otimes \operatorname{id}_{\overline{X}})_* (\operatorname{id}_{\overline{X}} \otimes \Delta_{\overline{X}})_*)_* \text{ if } \Delta_{\overline{X}} \text{ is homotopy associative.}$

Proof. By definition, $\overline{p}_i \Delta_{\overline{X}} \simeq \operatorname{id}_{\overline{X}}$ for i = 1, 2. As the identity on \overline{X} is realized by the identity on X and $\overline{p}_i : \overline{X} \otimes \overline{X} \to \overline{X}$ is realized by $p_i : X \otimes X \to X$, Proposition 8.1 implies $\mathcal{O}_{X,X \otimes X}(\operatorname{id}_{\overline{X}}) = 0$ and $\mathcal{O}_{X \otimes X,X}(\overline{p}_i) = 0$. Since \mathcal{O} is a derivation, we obtain

$$0 = \mathcal{O}_{X,X}(\overline{p}_i \Delta_{\overline{X}}) = \overline{p}_{i*}\mathcal{O}_{X,X \otimes X}(\Delta_{\overline{X}}) + \Delta_{\overline{X}}^* \mathcal{O}_{X \otimes X,X}(\overline{p}_i) = \overline{p}_{i*}\mathcal{O}_{X,X \otimes X}(\Delta_{\overline{X}}),$$

and hence $O_{X,X\otimes X}(\Delta_{\overline{X}}) \in \ker \overline{p}_{i*}$ for i = 1, 2. If $\Delta_{\overline{X}}$ is homotopy commutative, then

$$\mathcal{O}_{X,X\otimes X}(\Delta_{\overline{X}}) = \mathcal{O}_{X,X\otimes X}(T\Delta_{\overline{X}}) = T_*\mathcal{O}_{X,X\otimes X}(\Delta_{\overline{X}}),$$

since $\mathcal{O}_{X\otimes X,X\otimes X}(T) = 0$, as T is λ -realizable. Hence $\mathcal{O}_{X,X\otimes X}(\Delta_{\overline{X}}) \in \ker(\operatorname{id}_{\overline{X}_*} - T_*)_*$. For $1 \leq k < \ell, \leq 3$, let $\iota_{k,\ell} : X \otimes X \to X \otimes X \otimes X$ denote the inclusion of the k-th and ℓ -th factors and suppose $\Delta_{\overline{X}}$ is a homotopy commutative diagonal in \mathbf{H}_k^c . Then $\mathcal{O}_{X,X\otimes X\otimes X}((\Delta_{\overline{X}} \otimes \operatorname{id}_{\overline{X}})\Delta_{\overline{X}}) = \mathcal{O}_{X,X\otimes X\otimes X}((\operatorname{id}_{\overline{X}} \otimes \Delta_{\overline{X}})\Delta_{\overline{X}})$, as the obstruction depends on the homotopy class of a morphism only, and

by (8.6) and (8.7). Omitting the objects in the notation for the obstruction, we obtain

$$\begin{aligned} \mathcal{O}((\Delta_{\overline{X}} \otimes \operatorname{id}_{\overline{X}})\Delta_{\overline{X}}) &= & \Delta_{\overline{X}}^* \mathcal{O}(\Delta_{\overline{X}} \otimes \operatorname{id}_{\overline{X}}) + (\Delta_{\overline{X}} \otimes \operatorname{id}_{\overline{X}})_* \mathcal{O}(\Delta_{\overline{X}}) \\ &= & \Delta_{\overline{X}}^* \overline{\iota}_{1,2*} \overline{p}_1^* \mathcal{O}(\Delta_{\overline{X}}) + (\Delta_{\overline{X}} \otimes \operatorname{id}_{\overline{X}})_* \mathcal{O}(\Delta_{\overline{X}}) \\ &= & \overline{\iota}_{1,2*} (\overline{p}_1 \Delta_{\overline{X}})^* \mathcal{O}(\Delta_{\overline{X}}) + (\Delta_{\overline{X}} \otimes \operatorname{id}_{\overline{X}})_* \mathcal{O}(\Delta_{\overline{X}}) \\ &= & \overline{\iota}_{1,2*} \mathcal{O}(\Delta_{\overline{X}}) + (\Delta_{\overline{X}} \otimes \operatorname{id}_{\overline{X}})_* \mathcal{O}(\Delta_{\overline{X}}). \end{aligned}$$

Similarly, we obtain

$$\mathcal{O}((\mathrm{id}_{\overline{X}}\otimes\Delta_{\overline{X}})\Delta_{\overline{X}})=\overline{\iota}_{2,3*}\mathcal{O}(\Delta_{\overline{X}})+(\Delta_{\overline{X}}\otimes\mathrm{id}_{\overline{X}})_*\mathcal{O}(\Delta_{\overline{X}}),$$

which proves (3).

Question. Given a λ -realizable object \overline{X} with a diagonal $\Delta_{\overline{X}} : \overline{X} \to \overline{X} \otimes \overline{X}$ in \mathbf{H}_{k}^{c} , is there an object X with $\lambda X = \overline{X}$ and a diagonal $\Delta_{X} : X \to X \otimes X$ in \mathbf{H}_{k+1}^{c} such that $\lambda \Delta_{X} = \Delta_{\overline{X}}^{c}$?

24

Let X in \mathbf{H}_{k+1}^c be a λ -realization of \overline{X} . By Proposition 8.3, any λ -realization X' of \overline{X} is of the form $X' = X + \alpha$ for some $\alpha \in \widehat{\mathrm{H}}^{k+1}(\overline{X}, \Gamma_k \overline{X})$. By (8.8), $X' \otimes X' = (X \otimes X) + \overline{\iota}_{1*} \overline{p}_1^* \alpha + \overline{\iota}_{2*} \overline{p}_2^* \alpha$ and as the obstruction \mathcal{O} is a derivation, we obtain

$$\mathcal{O}_{X',X'\otimes X'}(\Delta_{\overline{X}}) = \mathcal{O}_{X+\alpha,(X+\alpha)\otimes(X+\alpha)}(\Delta_{\overline{X}})$$

= $\mathcal{O}_{X,X\otimes X}(\Delta_{\overline{X}}) - \Delta_{\overline{X}*}\alpha + \Delta_{\overline{X}}^*(\overline{\iota}_{1*}\overline{p}_1^*\alpha + \iota_{2*}\overline{p}_2^*\alpha)$
= $\mathcal{O}_{X,X\otimes X}(\Delta_{\overline{X}}) - (\Delta_{\overline{X}*} - \overline{\iota}_{1*} - \overline{\iota}_{2*})\alpha,$

since $\Delta^* \overline{\iota}_{i*} \overline{p}_i^* = \overline{\iota}_{i*} (\overline{p}_i \Delta)^* = \overline{\iota}_{i*}$, for i = 1, 2.

Lemma 9.3. For X in \mathbf{H}_{k+1}^c , let $\Delta_{\overline{X}} : \overline{X} \to \overline{X} \otimes \overline{X}$ be a diagonal on $\overline{X} = \lambda X$ in \mathbf{H}_k^c and let $X' = X + \alpha$ for some $\alpha \in \widehat{\mathrm{H}}^{k+1}(\overline{X}, \Gamma_k \overline{X})$. Then we obtain, in $\mathrm{H}^{k+1}(\overline{X}, \Gamma_k(\overline{X} \otimes \overline{X}))$,

 $\mathcal{O}_{X',X'\otimes X'}(\Delta_{\overline{X}}) = \mathcal{O}_{X,X\otimes X}(\Delta_{\overline{X}}) - (\Delta_{\overline{X}*} - \overline{\iota}_{1*} - \overline{\iota}_{2*})\alpha.$

10. PDⁿ-homotopy systems

A PDⁿ-homotopy system $X = (X, \omega_X, [X], \Delta_X)$ of order (k + 1) consists of an object $X = (C, f_{k+1}, X^k)$ in \mathbf{H}_{k+1}^c , a group homomorphism $\omega_X : \pi_1 X \to \mathbb{Z}/2\mathbb{Z}$, a fundamental class $[X] \in \mathbf{H}_n(C, \mathbb{Z}^{\omega})$ and a diagonal $\Delta : X \to X \otimes X$ in \mathbf{H}_{k+1}^c such that $(C, \omega_X, [X], \Delta_X)$ is a PDⁿ-chain complex. A map $f : (X, \omega_X, [X], \Delta_X) \to$ $(Y, \omega_Y, [Y], \Delta_Y)$ of PDⁿ-homotopy systems of order (k+1) is a morphism in \mathbf{H}_{k+1}^c such that $\omega_X = \omega_Y \pi_1(f)$ and $(f \otimes f) \Delta_X \simeq \Delta_Y f$, and we thus obtain the category $\mathbf{PD}_{[k+1]}^n$ of PDⁿ-homotopy systems of order (k+1). Homotopies in $\mathbf{PD}_{[k+1]}^n$ are homotopies in \mathbf{H}_{k+1}^c , and restricting the functors in (8.2), we obtain, for $k \geq 3$, the functors

(10.1)
$$\mathbf{PD}^{n} \xrightarrow{r} \mathbf{PD}^{n}_{[k+1]} \xrightarrow{\lambda} \mathbf{PD}^{n}_{[k]} \xrightarrow{C} \mathbf{PD}^{n}_{*}.$$

These functors induce functors between homotopy categories

$$\mathbf{PD}^n/\simeq \xrightarrow{r} \mathbf{PD}^n_{[k+1]}/\simeq \xrightarrow{\lambda} \mathbf{PD}^n_{[k]}/\simeq \xrightarrow{C} \mathbf{PD}^n_*/\simeq.$$

Theorem 10.1. The functor $C : \mathbf{PD}^n_{[3]} / \simeq \longrightarrow \mathbf{PD}^n_* / \simeq$ is an equivalence of categories for $n \ge 3$.

Proof. The functor C is full and faithful by Theorem III 2.9 and Theorem III 2.12 in [1]. By Lemma 2.1, every PD^n -chain complex, $\overline{X} = (D, \omega, [D], \overline{\Delta})$, in \mathbf{PD}_*^n is 2-realizable, that is, there is an object X^2 in CW_0^2 such that $\widehat{C}(X^2) = D_{\leq 2}$, and we obtain the object $X = (D, f_3, X^2)$ in \mathbf{H}_3^c . As C is monoidal, full and faithful, the diagonal $\overline{\Delta}$ on \overline{X} is realized by a diagonal Δ on X and hence $(X, \omega, [D], \Delta)$ is an object in $\mathbf{PD}_{[3]}^n$ with $C(X) = \overline{X}$.

Theorem 10.2. For $n \geq 3$, the functor $r : \mathbf{PD}^n / \simeq \longrightarrow \mathbf{PD}^n_{[n]} / \simeq$ reflects isomorphisms, is representative and full.

Proof. That r reflects isomorphisms follows from Whitehead's Theorem.

Poincaré duality implies $\widehat{\mathbf{H}}^{n+1}(Y, \Gamma_n Y) = \widehat{\mathbf{H}}^{n+2}(Y, \Gamma_n Y) = 0$, for every object $Y = (Y, \omega_Y, [Y], \Delta_Y)$ in $\mathbf{PD}^n_{[n]}$. Hence, by Proposition 8.3, $Y = \lambda(X)$ for some object X in \mathbf{H}^c_{n+1} , and, by Proposition 8.1, the diagonal Δ_Y is λ -realizable. Thus Lemma 9.1 guarantees the existence of a diagonal $\Delta_X : X \to X \otimes X$ in \mathbf{H}^c_{n+1} with

 $\lambda \Delta_X = \Delta_Y$. The homomorphism ω_Y and the fundamental class [Y] determine a homomorphism $\omega_X : \pi_1 X \to \mathbb{Z}/2\mathbb{Z}$ and a fundamental class $[X] \in H_n(C, \mathbb{Z}^{\omega})$, such that $X = (X, \omega_X, [X], \Delta_X)$ is an object in $\mathbf{PD}_{[n+1]}^n$. Inductively, we obtain an object $(X_k, \omega_{X_k}, [X_k], \Delta_{X_k})$ realizing $(Y, \omega_Y, [Y], \Delta_Y)$ in $\mathbf{PD}_{[k]}^n$ for k > n, and in the limit an object $X = (X, \omega_X, [X], \Delta_X)$ in \mathbf{PD}^n with r(x) = Y.

Proposition 8.1 together with the fact that, by Poincaré duality, $\dot{\mathrm{H}}^{k}(X,B) = 0$ for k > n and every Λ -module B, implies that r is full.

References

- H.J. Baues, Combinatorial Homotopy and 4-Dimensional Complexes, De Gruyter Expositions in Mathematics, (1991).
- H.J. Baues, D. Conduché, The central series for Peiffer commutators in groups with operators, J. of Algebra 133 (1990), 1–34.
- [3] W. Browder, Poincaré Spaces, Their Normal Fibrations and Surgery, Inventiones math. 17 (1972), 191–202.
- [4] A. Cavicchioli, F. Hegenbarth, On 4-manifolds with free fundamental group, Forum Math. 6 (1994), 415-429.
- [5] A. Cavicchioli, F. Spaggiari, On the homotopy type of Poincaré Spaces, Annali di Math. 180 (2001), 331-358.
- [6] I. Hambleton and M. Kreck, On the Classification of Topological 4-Manifolds with Finite Fundamental Group, Mathematische Annalen, 280 (1988), 85–104.
- [7] I. Hambleton, M. Kreck, P. Teichner Topological 4-Manifolds with Geometrically 2dimensional Fundamental Groups, arXiv:0802.0995 (2008).
- [8] F. Hegenbarth and S. Piccarreta, On Poincaré four-complexes with free fundamental groups, Hiroshima Math. J. 32 (2002), 145–154.
- [9] H. Hendriks, Obstruction Theory in 3-Dimensional Topology: An Extension Theorem, Journal of the London Mathematical Society (2) 16 (1977), 160–164.
- [10] J.A. Hillman, PD₄-complexes with fundamental group a PD₂-group, Topology and its Applications 142 (2004), 49–60.
- [11] J.A. Hillman, PD₄-complexes with free fundamental group, Hiroshima Math. J. 34 (2004), 295–306.
- [12] J.A. Hillman, PD₄-complexes with strongly minimal models, Topology and its Applications 153 (2006), 2413–2424.
- [13] J.A. Hillman, Strongly minimal PD⁴-complexes, preprint (2008).
- [14] A. Ranicki, The algebraic theory of surgery, Proc. Lond. Math. Soc. 40 (3) (1980), I. 87–192, II. 193–287.
- [15] A. Ranicki, Algebraic Poincaré cobordism, Contemp. Math. 279 (2001), 213–255.
- [16] F. Spaggiari, Four-manifolds with π_1 -free second homotopy, manuscripta math. **111** (2003), 303-320.
- [17] G.A. Swarup, On a Theorem of C.B. Thomas, Journal of the London Mathematical Society (2) 8 (1974), 13–21.
- [18] C.B. Thomas, The Oriented Homotopy Type of Compact 3-Manifolds, Proceedings of the London Mathematical Society (3) 19 (1969), 31-44.
- [19] P. Teichner, Topological Four-Manifolds with Finite Fundamental Group, Dissertation, Johannes Gutenberg Uniersität Mainz (1992).
- [20] V.G. Turaev, Three-Dimensional Poincaré Complexes: Homotopy Classification and Splitting, Russ. Acad. Sci., Sb., Math. 67 (1990), 261–282.
- [21] C.T.C. Wall, Poincaré Complexes: I, Annals of Mathematics 2nd Ser. 86 (1967), 213–245.
- [22] C.T.C. Wall, Finiteness Conditions for CW-Complexes, Annals of Mathematics 2nd Series 81 (1965), 56–69.
- [23] C.T.C. Wall, Poincaré Duality in Dimension 3, Proceedings of the Casson Fest, Geometry and Topology Monographs, Vol. 7 (2004), 1–26.
- [24] J.H.C. Whitehead, Combinatorial Homotopy II, ???.
- [25] J.H.C. Whitehead, A Certain Exact Sequence, Annals of Mathematics 2nd Ser., 52 (1950), 51–110.

Max–Planck–Institut für Mathematik Vivatsgasse 7 D–53111 Bonn, Germany baues@mpim-bonn.mpg.de bleile@mpim-bonn.mpg.de

The second author's home institution is School of Science and Technology University of New England NSW 2351, Australia bbleile@une.edu.au