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1. Introduction

Let G be a linear reductive real Lie G with Lie algebra g. Let us fix
a maximal compact subgroup K of G. The representation theory of G
admits an algebraic underpinning encoded in the notion of a Harish-
Chandra module.

By a Harish-Chandra module we shall understand a finitely gener-
ated (g, K)-module with finite K-multiplicities. Let us denote by HC
the category whose objects are Harish-Chandra modules and whose
morphisms are linear (g, K)-maps. By a globalization of a Harish-
Chandra module V we understand a representation (π, E) of G such
that the K-finite vectors of E are isomorphic to V as a (g, K)-module.

Let us denote by SAF the category whose objects are smooth ad-
missible Fréchet representations of G with continuous linear G-maps
as morphisms. We consider the functor:

F : SAF → HC, E 7→ EK := {K − finite vectors of E} .
The Casselman-Wallach theorem ([3] or [9], Sect. 11) asserts that F

is an equivalence of categories. To phrase it differently, each Harish-
Chandra module V admits a unique smooth Fréchet globalization (π, V ∞).
Moreover,

V∞ = π(S(G))V

where S(G) is the Schwartz-algebra of rapidly decreasing functions on
G, and π(S(G))V stands for the vector space spanned by π(f)v for
f ∈ S(G), v ∈ V .

One objective of this paper is to give an elementary proof of this
fact. Our strategy goes as follows. We first consider spherical principal
series representations of G with their canonical Hilbert-globalizations
as subspaces of L2(K). For such representations we define a Dirac-
type sequence and establish uniform lower bounds for K-finite matrix
coefficients (see Theorem 4.5 below). The Casselman-Wallach theorem
for these type of represesentations is an immediate consequence. The
case of arbitrary Harish-Chandra modules will be reduced to this case.

We wish to emphasize that our lower bounds are locally uniform in
representation parameters which allows us to prove a version of the
Casselman-Wallach theorem with holomorphic dependance on repre-
sentation parameters (see Section 7). This for instance is useful for the
theory of Eisenstein series.

Acknowledgment: We wish to thank Birgit Speh and Henrik Schlichtkrull
for several very useful discussions.
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2. Basic representation theory

In this section we collect some basic notions of representation theory.

2.1. Representations on topological vector spaces

Throughout this whole article topological vector spaces are under-
stood to be Hausdorff, locally convex and complete.

Let G be a Lie group and E a topological vector space. By a repre-
sentation of G on E we understand a homomorphism π : G→ GL(E)
such that the resulting action G×E → E is continuous. For an element
v ∈ E we shall denote by

γv : G→ E, g 7→ π(g)v

the corresponding orbit map.
If E is a Banach, resp. Hilbertian, space then we speak of a Ba-

nach, resp. Hilbertian, representation of G. We call (π, E) a Fréchet
representation if there exists a countable family of semi-norms (ρn)n∈N

which define the topology of E and such that for all n ∈ N the action
G× (E, ρn) → (E, ρn) is continuous.

Remark 2.1. (a) If (π, E) is a Fréchet representation, then E is a
Fréchet space as E is required to be complete and the the topology defin-
ing family (ρn)n∈N is countable.

(b) In the literature one sometimes encounters the notion Fréchet
representation for a continuous action on a Fréchet space. This notion
is weaker as our notion. In the Appendix we will show that that our
notion of Fréchet representation is equivalent to the notion of moderate
growth in [3], p. 391.

If (π, E) is a Fréchet representation, then we call a semi-norm ρ on
E a continuous semi-norm, if G× (E, ρ) → (E, ρ) is continuous.

Let (π, E) be a representation of G. We call a vector v ∈ E smooth if
γv is a smooth map and denote by E∞ the space of all smooth vectors.
Note that U(g), the universal enveloping algebra of the Lie algebra g

of G, acts naturally on E∞. We topologize E∞ as follows: If (pi)i∈I

denotes a family of semi-norms which define the topology of E and if
u1, u2, . . . is a basis for U(g), then

pi,n(v) := pi(dπ(un)v) (i ∈ I, n ∈ N, v ∈ E∞)

is a family of semi-norms which turn E∞ into a locally convex, Haus-
dorff complete vector space. As a result π induces a representation on
E∞.
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We call a representation (π, E) smooth if E = E∞ as topological
vector spaces.

Example 2.2. Suppose that (π, E) is a Banach representation. Then
E∞ is a Fréchet space and (π, E∞) is a smooth Fréchet representation
of G.

2.2. Integration of representations

We fix a left Haar measure dg on G and write L1(G) for the Banach
space of integrable functions onG. Note that L1(G) is a Banach algebra
with multiplication given by convolution:

f ∗ h(x) =

∫

G

f(g)h(g−1x) dg (x ∈ G)

for f, h ∈ L1(G). We write C∞
c (G) < L1(G) for the subalgebra of test

function on G.
If (π, E) is representation of G then we denote by by Π the corre-

sponding algebra representation of C∞
c (G):

Π(f)v =

∫

G

f(g)π(g)v dg (f ∈ C∞
c (G), v ∈ E) .

Note that the defining vector valued integral actually converges as E
is complete.

Depending on the type of the representation (π, E) larger algebras
as C∞

c (G) might act on E. For instance if (π, E) is a bounded Banach
representation, then Π extends to a representation of L1(G). The nat-
ural algebra acting on a Fréchet representation is the algebra of rapidly
decreasing functions R(G) and the natural algebra acting on a smooth
Fréchet representation is the Schwartz algebra S(G).

In order to define R(G) and S(G) we need the notion of a norm on
G, see [8], Sect. 2.A.2. From now on we assume that G is a linear
reductive group. We fix a faithful representation ι : G→ Gl(n,R) and
define a norm on G by:

‖g‖ := max{‖ι(g)‖, ‖ι(g−1)‖} .
The norm satisfies the following properties:

• ‖g‖ ≥ 1 for all g ∈ G.
• ‖g‖ = ‖g−1‖ for all g ∈ G.
• ‖g1g2‖ ≤ ‖g1‖ · ‖g2‖ for all g1, g2 ∈ G.
• {g ∈ G | ‖g‖ ≤ r} is a compact subset of G for all r ≥ 0.
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• ‖ exp(tX)‖ = ‖ exp(X)‖t for all semi-simple elements X ∈ g

and t ≥ 0.

Let us emphasize the dependence of ‖ · ‖ on the chosen embedding
ι: if ι′ : G → Gl(n′,R) is another faithful realization and ‖ · ‖′ the
corresponding norm, then there exists r1, r2 > 0 such that ‖ · ‖r1 ≤
‖ · ‖′ ≤ ‖ · ‖r2.

Having the notion of a norm on G we define the space of rapidly
decreasing functions by

R(G) = {f ∈ C(G) | ∀n ∈ N sup
g∈G

‖g‖n|f(g)| <∞} .

Let us point out that R(G) is a Fréchet subalgebra of L1(G) which is
independent of the choice of the particular norm on G.

We write L×R for the regular representation of G×G functions on
G:

(L×R)(g1, g2)f(g) := f(g−1
1 gg2)

for g, g1, g2 ∈ G and f ∈ C(G). For u ∈ U(g) we will abbreviate
Lu := dL(u) and likewise Ru for the derived representations.

We note that (L × R,R(G)) is a Fréchet representation of G × G
whose smooth vectors constitute the Schwartz space

S(G) := {f ∈ C∞(G) |∀u, v ∈ U(g), ∀n ∈ N

sup
g∈G

‖g‖n|LuRvf(g)| <∞} .

It is clear that S(G) is a Fréchet subalgebra of R(G) (see [8], Sect. 7.1
for a discussion in a wider context).

Remark 2.3. For a function f ∈ R(G) the following assertions are
equivalent: (1) f is S(G), i.e. f is L×R-smooth; (2) f is R-smooth; (3)
f is L-smooth. In fact, a left derivative Lu at a point g ∈ G is the same
as a right derivative RAd(g)−1u at g. Now observe that ‖Ad(g)‖ ≤ ‖g‖r

for all g ∈ G and a fixed r > 0.

Finally let us explain how R(G) acts on Fréchet representations.
First observe that the Banach-Steinhaus theorem implies for a Banach
representation (π, E) that ‖π(g)‖ is locally bounded. This, together
with the sub-multiplicativity of the norm on G, yields the existence of
a constant r > 0 such that ‖π(g)‖ ≤ ‖g‖r for all g ∈ G (cf. [8], Lemma
2.A.2.2). As a consequence we obtain that R(G) acts naturally on all
Fréchet representations. Likewise one obtains that S(G) acts on all
smooth Fréchet representations.
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Remark 2.4. (a) If E is a smooth representation, then one has

Π(R(G))E = Π(S(G))E = E .

In fact, by Dixmier-Malliavin [4] one has Π(C∞
c (G))E = E. With

S(G) ⊃ C∞
c (G) and R(G) ∗ C∞

c (G) ⊂ S(G) the assertions follow.
(b) Let V be a Harish-Chandra module and (π, E) a Banach globaliza-
tion. Then

Π(R(G))V = Π(S(G))V .

In order to see that we use a result of Harish-Chandra which asserts
that for each v ∈ V there exists a K × K-finite h ∈ C∞

c (G) such
that Π(h)v = v. As R(G) ∗ C∞

c (G) ⊂ S(G) the asserted equality is
established.

2.3. Harish-Chandra modules

Let us fix a maximal compact subgroup K of G. It is no loss of
generality to assume that the norm ‖ ·‖ on G is K×K-invariant. Like-
wise we may request that all continuous semi-norms on the considered
G-modules E are K-invariant.

We call a representation (π, E) of G admissible if for all irreducible
representations (τ,W ) ofK the multiplicity space HomK(W,E) is finite
dimensional.

By a (g, K)-module V we understand a module for g and K such
that:

• The actions are compatible, i.e.

k ·X · v = Ad(k)X · k · v
for all k ∈ K, X ∈ g and v ∈ V .

• The K-action is algebraic, i.e. V is a union of finite dimen-
sional algebraic K-modules.

Note that if f (π, E) is an admissible Banach representation of G,
then the space of K-finite vectors of E, say EK , consists of smooth
vectors and is stable under g – in other words EK is an admissible
(g, K)-module.

Let us emphasize that a K-admissible (g, K)-module is not necessary
finitely generated as a g-module. For example the tensor product of two
infinite dimensional highest weight modules for sl(2,R) is admissible
but not finitely generated as a g-module. This brings us to the notion
of a Harish-Chandra module by which we understand a (g, K)-module
V such that one of the following equivalent conditions hold:

(i) V is finitely generated as a g-module and K-admissible.
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(ii) V is K-admissible and Z(g)-finite. Here Z(g) denotes the
center of U(g).

(iii) V is finitely generated as an n-module, where n is a maximal
unipotent subalgebra of g.

Given a Harish-Chandra module V we say that a representation
(π, E) of G is a globalization of V , if the K-finite vectors EK of E
are smooth and isomorphic to V as a (g, K)-module.

Remark 2.5. We caution the reader that there exists irreducible Ba-
nach representation (π, E) of G which are not admissible [6]. However,
if (π,H) happens to be unitary irreducible representation, then Harish-
Chandra has shown that π is admissible.

3. Smooth Fréchet globalizations of Harish-Chandra

modules

This section is devoted to a general study of smooth Fréchet global-
izations (SF-globalizations for short) of Harish-Chandra modules.

Let us introduce a preliminary notion and call a Harish-Chandra
module V good if it admits a unique smooth Fréchet globalization.
Equivalently V is good if and only if for any SF-globalization (π, E)
one has Π(S(G))V = E. Eventually it will turn out that all Harish-
Chandra modules are good (Casselman-Wallach).

The main objective of this section is to show that Harish-Chandra
modules are good if and only if they feature certain lower bounds for
matrix coefficients which are uniform in the K-type (see Proposition
3.4 and Lemma 3.5).

In order to discuss good Harish-Chandra modules it is useful to in-
troduce two other preliminary notions, namely minimal and maximal
SF-globalizations.

3.1. Minimal and maximal smooth globalizations

This paragraph is devoted to a general discussion of the extremal
SF-topologies on a Harish-Chandra module.

Let us first remark that any Harish-Chandra module V admits an
SF-globalization. In fact, one can embed V into a smooth principal
series module I∞ = C∞(G×Pmin

U) where Pmin = MAN is a minimal
parabolic subgroup and U is a finite dimensional module for Pmin/N
(Casselman’s Theorem, see [8], Sect. 4). Taking the closure of V in I∞

yields an SF-globalization of V .
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An SF-globalization, say V ∞, of an Harish-Chandra module V will
be called minimal if the following universal property holds: if (π, E) is
an SF-globalization of V , then there exists a continuous G-equivariant
map V ∞ → E which extends the identity morphism V → V .

It is clear that minimal globalizations are unique. Let us show that
they actually exist. For that let us fix an SF-globalization (π, E) of V .
Let v = {v1, . . . , vk} be a set of generators of V and consider the map

S(G)k → E, f = (f1, . . . , fk) 7→
k∑

j=1

Π(fj)vj .

This map is linear, continuous and G-equivariant (with S(G)k consid-
ered as a module for G under the left regular representation). Let us
write

S(G)v := {f ∈ S(G)k |
k∑

j=1

Π(fj)vj = 0}

for the kernel of this linear map. Note that S(G)v is a closed G-
submodule of S(G)k which is independent of the choice of the particular
SF-globalization (π, E). Moreover it is clear that S(G)/S(G)v is an SF-
module for G and in addition a globalization of V . By construction
S(G)/S(G)v is the minimal globalization V ∞.

Lemma 3.1. Let V be a good Harish-Chandra module and V ∞ its
unique SF-globalization. Let W ⊂ V be a submodule and U := V/W .
Let W be the closure of W in V ∞. Then U∞ = V∞/W .

Proof. Let us write (πU , V
∞/W ) for the quotient representation ob-

tained from (π, V ∞). Then Π(S(G))V = V ∞ implies that ΠU(S(G))U =
V∞/W and hence the assertion. �

Let us call an SF-globalization of V , say V ∞
max, maximal if for any

SF-globalization (π, E) of V there exist a continuous linear G-map
E → V∞

max sitting above the identity morphism V → V .
It is clear that maximal globalizations are unique provided they ex-

ists. The existence is obtained by duality. Let us provide the details.
Let V be Harish-Chandra module and V ∗ the corresponding dual

Harish-Chandra module. Then V = U ∗ with U = V ∗. Let U∞ be the
minimal SF-globalization of U . If (U∞)∗ denotes the strong topological
dual of U∞, then we define the maximal SF-globalization of V by

Vmax := ((U∞)∗)∞ .
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At this point we need to verify that Vmax is indeed a Fréchet represen-
tation for G. But this is seen as follows: we first view U as a quotient of
some minimal principal series module say U = I/W . As the G-smooth
structure on I∞ is the same as the K-smooth structure, the same holds
for U . From this one deduces that Vmax is indeed an SF-globalization
(smooth distributions on a compact manifold are smooth functions).

Let us show that Vmax has the universal property: Let (π, E) be
an SF-globalization of V . As E∗ is a module for S(G), we obtain
a continuous G-morphism U∞ → E∗. Dualizing yields a continuous
G-map E∗∗ → (U∞)∗. Taking the smooth vectors we get continuous
G-morphisms E → (E∗∗)∞ → V∞

max.
With the notion of maximal globalization we readily obtain the dual

version of the previous Lemma.

Lemma 3.2. Let V be a good Harish-Chandra module and V ∞ its
unique SF-globalization. Let W ⊂ V be a submodule and Let W be the
closure of W in V ∞. Then W = W∞

max.

Let us note that a Harish-Chandra module V is good if and only if
V∞ = V ∞

max. Further, V is good if and only if V ∗ is good.
We conclude this paragraph with an observation which will be fre-

quently used later on.

Lemma 3.3. Let V1 ⊂ V2 ⊂ V3 be an inclusion chain of Harish-
Chandra modules. Suppose that V2 and V3/V1 are good. Then V2/V1 is
good.

Proof. Let V3 be an SF-globalization of V3. Let V 1, V2 be the closures
of V1,2 in V 3. By our first assumption we have V2 = V ∞

2 and thus
Lemma 3.1 implies that V2/V1 = (V2/V1)

∞. Our second assumption
gives (V3/V1)

∞ = V3/V1 and Lemma 3.2 then yields that V2/V1 =
(V2/V1)

∞
max. �

3.2. Lower bounds for matrix coefficients

Let us denote by K̂ the set of equivalence classes of irreducible
unitary representations of K. We often identify an equivalence class
[τ ] ∈ K̂ with a representative τ . If V is a K-module, then we denote
by V [τ ] its τ -isotypical part.

If t ⊆ k is a maximal torus, then we often identify τ with its highest
weight in it∗ (with respect to a fixed positive system). In particular,
|τ | ≥ 0 will refer to the Cartan-Killing norm of the highest weight of
τ .
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Proposition 3.4. Suppose that V is a cyclic good Harish-Chandra
module. Let 0 6= ξ ∈ V ∗ be a cyclic vector. Then for all continuous
norms q on V ∞, there exits constants c1, c2, c3 > 0 such that for all
τ ∈ K̂ and v ∈ V [τ ] there exist a gτ ∈ G such that ‖gτ‖ ≤ (1 + |τ |)c1

and

|ξ(π(gτ)v)| ≥
c2

(1 + |τ |)c3
· q(v) .

Proof. By assumption there exists an n ∈ N and c > 0 such that

|ξ(π(g)v)| ≤ c · ‖g‖nq(v)

for all v ∈ V ∞ and g ∈ G. With

Cn(G) := {f ∈ C(G) | |f(g)| << ‖g‖n}
we obtain an embedding

V ∞ → Cn(G), v 7→ (g 7→ (ξ(π(g)v))) .

For N ≥ n we write EN for the Banach completion of V ∞ with respect
to the norm

pN(v) := sup
g∈G

|ξ(π(g)v)|
‖g‖N

.

As V is good, we obtain that

(3.1) V∞ = E∞
N = E∞

N ′

for all N,N ′ ≥ n. The Banach globalizations EN have the property
that a vector v ∈ EN is smooth if and only if it is smooth for the
representation restricted to K (this is a consequence of Lemmas 8.2
and 8.3 in the appendix). Let us denote by ∆k the Casimir element of
k and define for s ∈ R

pN,s(v) := pN((1 + ∆k)
s
2v)

for all v ∈ V ∞. For N ′ = N+ l with l > 0 and N ≥ n we thus conclude
from (3.1) the existence of an s > 0 such that

(3.2) pN (v) ≤ pN ′,s(v)

for all v ∈ V ∞.
Let us fix τ ∈ K̂, v ∈ V [τ ] and gτ ∈ G such that g 7→ |ξ(π(g)v)|

‖g‖N′

becomes maximal at gτ . We conclude from (3.2) that
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|ξ(π(gτ)v)|
‖gτ‖N

≤ (1 + |τ + ρk|2 − |ρk|2)
s
2 · |ξ(π(gτ)v)|

‖gτ‖N+l

for all v ∈ V [τ ], i.e.

‖gτ‖ ≤ (1 + |τ + ρk|2 − |ρk|2)
s
2l .

Here ρk ∈ it∗ is the usual half sum ρk = 1
2
tr adk.

On the other hand (3.1) implies likewise that there exists an s′ > 0
such that

q(v) ≤ pN ′,s′(v)

for all v ∈ V ∞. For v ∈ V [τ ] we then get

|ξ(π(gτ)v)| ≥
‖gτ‖N ′

(1 + |τ + ρk|2 − |ρk|2)
s′

2

· q(v) .

All assertions follow. �

For later reference we record the following converse of the lower
bound in the proposition above.

Lemma 3.5. Let (π, E) be an SF-globalization of a Harish-Chandra
module V . Suppose that there exists a continuous K-invariant Hilbert
semi-norm q on E, ξ ∈ V ∗ and constants c1, c2 > 0 such that for all
v ∈ V [τ ] there exists an gτ ∈ G such that ‖gτ‖ ≤ (1 + |τ |)c1 and

|ξ(π(gτ)v)| ≥
1

(1 + |τ |)c2
· q(v) .

Suppose in addition that the same holds for the dual representation
(π∗, E∗) with repect to the dual norm q∗, i.e. there exists ξ∗ ∈ V ,
constants c′1, c

′
2 > 0 such that for all v∗ ∈ V ∗[τ ] there exists an g′τ ∈ G

‖g′τ‖ ≤ (1 + |τ |)c′1 and

|ξ∗(π∗(g′τ )v
∗)| ≥ 1

(1 + |τ |)c′2
· q∗(v∗) .

Then V is good.

Proof. Let (π̃, Ẽ) be an SF-globalization of V . We have to show that
E ' Ẽ.

Let p be a continuous semi-norm on Ẽ. It is no loss of generality to
assume that p is a K-invariant norm and that Ẽ consists of the smooth
vectors of the Banach completion of V with respect to p.
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Write ql, resp. pl, for the l-th K-Sobolev norm of q, resp. p (defined
as in the proof of the preceding proposition). By assumption, there
exists an k < 0 such that

(3.3) sup
g∈G

‖g‖≤|τ |c1

|ξ(π(g)v)| ≥ c2 · qk(v)

vor all v ∈ V [τ ].
We claim that there exist a constant C > 0 and an s, t ∈ R such

that

(3.4) pt(v) ≥ C · qs(v)
for all v ∈ V . It is no loss of generality to assume that p is a K-
invariant. Suppose that (3.4) is verified for all v ∈ V [τ ] with τ ∈ K̂ for
some t = 0. Then it holds for all v ∈ V by rising t.

Write E∗ for the topological dual of E and (π∗, E∗) for the corre-
sponding dual representation. Let p∗ be the norm dual to p. Note
that

ξ(π(g)v) = ξ(π̃(g)v)

for all g ∈ G. By the continuity of p there exists an N ∈ N such that

|ξ(π̃(g)v)| ≤ p∗(ξ)p(π(g)v) ≤ p∗(ξ) · p(v) · ‖g‖N

for all g ∈ G. The claim follows from (3.3).
Applying the above reasoning for the dual representation we arrive

at constants C ′ > 0 and j, l ∈ R such that

p∗j(v
∗) ≥ C ′ · q∗l (v∗)

for all v∗ ∈ V ∗. Dualizing this inequality then yields

C ′ · q−l(v) ≤ p−l(v)

for all v ∈ Vλ. It follows that we can squeeze p between two Sobolev
norms of q. Consequently E ' Ẽ. �

4. Spherical principal series representation

This section is devoted to a thorough study of spherical principal
series representation of G. We will introduce a Dirac-type sequence for
such representations and establish lower bounds for matrix-coefficients
which are uniform in the K-types. These lower bounds are essentially
sharp, locally uniform in the representation parameter, and stronger
than the more abstract estimates in Proposition 3.4.
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The lower bounds established give us a constructive method for find-
ing Schwartz-functions representing a given smooth vector.

Let us write G = NAK for an Iwasawa decomposition of G. Ac-
cordingly we decompose elements g ∈ G as

g = ñ(g)ã(g)k̃(g)

with ñ(g) ∈ N , ã(g) ∈ A and k̃(g) ∈ K. Set M = ZK(A) and define a
minimal parabolic subgroup of G by Pmin = NAM .

The Lie algebras of A,N and K shall be denoted by a, n and k.
Complexification of Lie-algebras are indicated with a C-subscript, i.e.
gC is the complexification of g etc. As usually we define ρ ∈ a∗ by
ρ(Y ) := 1

2
tr(adn Y ) for Y ∈ a.

The smooth spherical principal series with parameter λ ∈ a∗
C

is de-
fined by

H∞
λ := {f ∈ C∞(G) |(∀nam ∈ Pmin, ∀g ∈ G)

f(namg) = aρ+λf(g)}
We note that R defines a smooth representation of G on H∞

λ which
we denote henceforth by πλ. The restriction map to K defines a K-
isomorphism:

ResK : H∞
λ → C∞(K\M), f 7→ f |K .

The resulting action of G on C∞(M\K) is given by

[πλ(g)f ](Mk) = f(Mk̃(kg))ã(kg)λ+ρ .

This action lifts to a continuous action on the Hilbert completion Hλ =
L2(M\K) of C∞(M\K). We note that this representation is unitary
provided that λ ∈ ia∗.

We denote by Vλ the K-finite vectors of πλ and note that Vλ =
C[M\K] as K-module..

4.1. K-expansion of smooth vectors

We recall K̂, the set of equivalence classes of irreducible unitary
representations of K. If [τ ] ∈ K̂ we let (τ, Uτ ) be a representative.

Further we write K̂M for the subset of M -spherical equivalence classes,
i.e.

[τ ] ∈ K̂M ⇐⇒ UM
τ := {u ∈ Uτ | τ(m)u = u ∀m ∈M} 6= {0} .
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Given a finite dimensional representation (τ, Uτ ) of K we denote

by (τ ∗, U∗
τ ) its dual representation. With each [τ ] ∈ K̂M comes the

realization mapping

rτ : Uτ ⊗ (U∗
τ )M → L2(M\K), u⊗ η 7→ (Mk 7→ η(τ(k)u)) .

Let us fix a K-invariant inner product on Uτ . This inner product
induces aK-invariant inner product on U ∗

τ . We obtain an inner product
on Uτ ⊗ (U∗

τ )M which is independent of the chosen inner product on
Uτ . If we denote by d(τ) the dimension of Uτ , then Schur-orthogonality
implies that

1

d(τ)
‖u⊗ η‖2 = ‖rτ (u⊗ η)‖2

L2(M\K) .

Taking all realization maps together we arrive at a K-module isomor-
phism

C[M\K] =
∑

τ∈K̂M

Uτ ⊗ (U∗
τ )M .

Let us fix a maximal torus t ⊂ k and a positive chamber C ⊂ it∗.
We often identify τ with its highest weight in C and write |τ | for the
Cartan-Killing norm of the highest weight. As d(τ) is polynomial in τ
we arrive at the following characterization of the smooth functions:

C∞(M\K) =
{ ∑

τ∈K̂M

cτuτ |cτ ∈ C, uτ ∈ Uτ ⊗ (U∗
τ )M , ‖uτ‖ = 1

(∀N ∈ N)
∑

τ∈K̂M

|cτ |(1 + |τ |)N <∞
}

.

Let us denote by δMe the point-evaluation of C∞(M\K) at the base
point Me. We decompose δMe into K-types:

δMe =
∑

τ∈K̂M

δτ

where

δτ = d(τ)

l(τ)
∑

i=1

ui ⊗ u∗i

with u1, . . . , ul(τ) any basis of UM
τ and u∗1, . . . , u

∗
l(τ) its dual basis. For

1 ≤ i ≤ l(τ) we set

δi
τ :=

√

d(τ)ui ⊗ u∗i
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and record that δτ =
√

d(τ)
∑l(τ)

i=1 δ
i
τ . Note the following properties of

δτ and δi
τ :

• ‖δi
τ‖∞ = δi

τ (Me) =
√

d(τ).
• ‖δi

τ‖L2(M\K) = 1.
• δτ ∗ δτ = δτ .
• δτ ∗ f = f for all f ∈ L2(M\K)τ := im rτ .

4.2. Non-compact model

We have seen that the restriction map ResK realizes H∞
λ as a function

space on M\K. Another standard realization will be useful for us. Let
us denote by N the opposite of N . Here, n stands for the Lie algebra of
N . As NAMN is open and dense in G we obtain a faithful restriction
mapping:

ResN : H∞
λ → C∞(N), f 7→ f |N .

Note that this map is not onto. The transfer of compact to non-
compact model is given by

ResN ◦Res−1
K : C∞(M\K) → C∞(N),

f 7→ F ; F (n) := ã(n)λ+ρf(k̃(n))

The transfer of the Hilbert space structure on Hλ = L2(M\K) re-
sults in the L2-space L2(N, ã(n)−2 Re λdn) with dn an appropriately
normalized Haar measure on N . In the sequel we also write Hλ for
L2(N, ã(n)−2 Re λdn) in the understood context. The full action of G in
the non-compact model is not of relevance to us, however we will often
use the A-action which is much more transparent in the non-compact
picture:

[πλ(a)f ](n) = aλ+ρf(a−1na)

for all a ∈ A and f ∈ L2(N, ã(n)−2 Re λdn).
The fact that ResK is an isomorphism follows from the geometric

fact that Pmin\G ' M\K. Now N embeds into Pmin\G = M\K as
an open dense subset. In fact the complement is algebraic and we are
going to describe it explicitly.

Let (σ,W ) be a finite dimensional faithful irreducible representation
of G. We assume that W is K-spherical, i.e. W admits a non-zero
K-fixed vector, say vK . It is known that σ is K-spherical if and only
if there is a real line L ⊂ W which is fixed under Pmin = MAN . Let
L = Rv0 and µ ∈ a∗ be such that σ(a)v0 = aµ ·v0 for all a ∈ A, in other
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words: v0 is a lowest weight vector of σ and µ is the corresponding
lowest weight.

Let now 〈·, ·〉 be an inner product on W which is θ-covariant: if
g = k exp(X) for k ∈ K and X ∈ p and θ(g) := k exp(−X), then
covariance means

〈σ(g)v, w〉 = 〈v, σ(θ(g)−1)w〉
for all v, w ∈ W and g ∈ G. Such an inner product is unique up to
scalar by Schur’s Lemma. Henceforth we request that v0 is normalized
and we fix vK by 〈v0, vK〉 = 1. Consider on G the function

fσ(g) := 〈σ(g)v0, v0〉 .
The restriction of fσ to K is also denoted by fσ.

Let now n ∈ N and write n = ñ(n)ã(n)k̃(n) according to the Iwa-

sawa decomposition. Then k̃(n) = n∗ã(n)−1n for some n∗ ∈ N . Con-
sequently

fσ(k̃(n)) = ã(n)−µ .

If (nj)j is a sequence in N such that k̃(nj) converges to a point in

M\K − k̃(N) =: M\K −N , then ã(nj)
−µ → 0. Hence

M\K −N ⊂ {Mk ∈M\K | fσ(k) = 0} .
As fσ is non-negative one obtains for all regular σ that equality holds:

M\K −N = {Mk ∈M\K | fσ(k) = 0}
(this reasoning is not new and goes back to Harish-Chandra). Let us
fix such a σ now.

We claim that the mapping n→ fσ(n) is the inverse of a polynomial
mapping, i.o.w. the map

N → R, n 7→ ã(n)µ

is a polynomial map. But his follows from

ã(n)µ = 〈σ(n)vK , v0〉
by means of our normalizations.

In order to make estimates later on we introduce coordinates on N .
For that we first write n as semi-direct product of a-root vectors:

n = RX1 n (RX2 n (. . .n RXn) . . .) .

Accordingly we write elements of n as X :=
∑n

j=1 xjXj with xi ∈ R.
We note the following two facts:
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• The map

Φ : n → N, X 7→ n(X) := exp(x1X1) · . . . · exp(xnXn)

is a diffeomorphism.
• One can normalize the Haar measure dn of N in such a way

that:

Φ∗(dn) = dx1 · . . . · dxn .

We introduce a norm on n by setting

‖X‖2 :=

n∑

j=1

|xj|2 (X ∈ n) .

Finally we set

fσ(X) := fσ(k̃(n(X))) = ã(n(X))−µ

and summarize our discussion.

Lemma 4.1. Let m > 0. Then there exists C > 0 and a finite dimen-
sional K-spherical representation (σ,W ) of G such that:

(i) M\K −N = {Mk ∈ M\K | fσ(k) = 0}.
(ii) |fσ(X)| ≤ C · (1 + ‖X‖)−m for all X ∈ n.

4.3. Dirac type sequences

Dirac sequences do not exist for Hilbert representations as they are
features of an L1-theory. However, rescaled they exist for the Hilbert
representations we shall consider.

Some additional terminology is of need. We fix an element Y ∈ a

such that α(Y ) ≥ 1 for all roots α ∈ Σ(a, n). For t > 0 we put

at := exp((log t)Y ) .

Note that for η ∈ a∗
C

one has

aη
t = tη(Y ) .

In the sequel we will often abbreviate and simply write tη for tη(Y ).
Recall our function fσ on K. We let ξ = ξσ the corresponding

function transferred to N ' n, i.e.

ξ(X) := ã(n(X))ρ+λfσ(k̃(n(X))) = ã(n(X))ρ+λ−µ .

Note that ξ is a K-finite vector. We choose µ (and hence m > 0) to be
large enough so that ξ is integrable and write ‖ξ‖1 for the corresponding
L1(N)-norm. Then, for λ real, ξ is a positive function and
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(

aρ−λ
t

‖ξ‖1
· πλ(at)ξ

)

t>0

forms a Dirac sequence for t → ∞. If λ is not real, then the ξ is
oscillating and we have to be more careful.

We recall that ξ(X) satisfies the inequality

ξ(X) ≤ C · (1 + ‖X‖)−m

where we can choose m as large as we wish (provided σ is sufficiently
regular and large). Record the normalization ξ(0) = 1.

Recall the generating functions δi
τ ∈ L2(M\K)τ , 1 ≤ i ≤ l(τ) for

τ ∈ K̂M . In the sequel we abbreviate and set d := d(τ), l := l(τ).

Let Di
τ (n) = ã(n)ρ+λδi

τ (k̃(n)) the transfer of δi
τ to the non-compact

model. We also set Di
τ (X) := Dτ (n(X)) for X ∈ n. Let us note that

|Di
τ(0)| =

√
d and , in case where Reλ is dominant, ‖Di

τ‖∞ = |Di
τ (0)|.

The goal of this section is to control the spread of πλ(at)ξ over the
K-types. For that we set:

di(τ, t) := 〈πλ(at)ξ,D
i
τ〉 .

It is our goal to estimate di(τ, t) from below.

Lemma 4.2. Fix λ ∈ a∗
C

and let γ > 1. Then there exist a choice of ξ
and constants c1, c2, c3 > 0, s ∈ R such that for t(τ) := (c1 · |τ |)γ and
all 1 ≤ i ≤ l:

|di(τ, t(τ))| ≥ c2 · |τ |s
for all τ with |τ | ≥ c3.

In dependence of λ and γ, the vector ξ and the constants c1, c2, c3, s
can be chosen locally constant. Moreover, s is such that

|τ |s ≤ C ·
√
d · a−ρ+Re λ

t(τ)

holds for all τ and a fixed constant C > 0.

Proof. Fix t0 > 0 and set t = t−γ
0 for some γ > 1. In the sequel we let

t→ ∞. Let 1 ≤ i ≤ l. Define

di
1(τ, t) :=

∫

{‖X‖≥t0}

(πλ(at)ξ)(X) ·Dτ (X) · ã(n(X))−2 Re λ dX .

In our first step of the proof we wish to estimate di
1(τ, t). For that let

C1, q1 > 0 be such that

ã(n(X))−2Re λ ≤ C1 · (1 + ‖X‖)q1 .

Likewise, by the definition of Di
τ we obtain constants C2, q2 > 0 such

that
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|Di
τ (X)| ≤ C2 ·

√
d(1 + ‖X‖)q2

for all τ and 1 ≤ i ≤ l. Set q := q1 + q2 and C ′ := C1C2.
In the following computations we use the notation

dX := dx1 · . . . · dxn

for X =
∑n

j=1 xjXj. From the definitions and the inequalities just
stated we arrive at our starting point:

|di
1(τ, t)| ≤

√
d · C ′ · tRe λ+ρ

∫

{‖X‖≥·t0}

|ξ(Ad(at)
−1X)| · (1 + ‖X‖)q dX .

As |ξ(X)| ≤ C ′′ · (1 + ‖X‖)−m for some constants C ′′, m > 0 we thus
get with C := C ′C ′′ that

|di
1(τ, t)| ≤

√
d · C · tRe λ+ρ

∫

{‖X‖≥·t0}

(1 + ‖X‖)q

(1 + ‖Ad(at)−1X‖)m
dX .

By the definition of at we get that ‖Ad(at)
−1X‖ ≥ t‖X‖ and hence

|di
1(τ, t)| ≤

√
d · C · tRe λ+ρ

∫

{‖X‖≥·t0}

(1 + ‖X‖)q

(1 + t‖X‖)m
dX .

Now we are in the situation to use polar coordinates for X:

|di
1(τ, t)| ≤ C ·

√
d · tRe λ+ρ

∫ ∞

t0

rn(1 + r)q

(1 + tr)m

dr

r

= C ·
√
d · tn−γ(Re λ+ρ)

0

∫ ∞

1

rn(1 + t0r)
q

(1 + tt0r)m

dr

r

= C ·
√
d · tn−γ(Re λ+ρ)

0

∫ ∞

1

rn(1 + t0r)
q

(1 + t1−γ
0 r)m

dr

r

= C ·
√
d · tn−γ(Re λ+ρ)+m(γ−1)

0

∫ ∞

1

rn(1 + t0r)
q

(tγ−1
0 + r)m

dr

r

≤ C ·
√
d · tn−γ(Re λ+ρ)+m(γ−1)

0

∫ ∞

1

rn+q−m dr

r
.

Henceforth we request that m > n+ q+1. Further as γ > 1 we gain
a constant C1, only depending on m, such that:

|di
1(τ, t)| ≤ C1 ·

√
d · tn−γ(Re λ+ρ)+m(γ−1)

0 .

We have to choose t in relationship to |τ |. From the definition of
δτ and basic finite dimensional representation theory we gain for every
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ε > 0 a constant c1 > 0 such that for all τ and ‖X‖ ≤ (c1 · |τ |)−1 the
following estimate holds:

(4.1)
1√
d
· |Di

τ (X) −Di
τ (0)| ≤ ε

2
.

This brings us to our choice of t0, namely

t0(τ) := (c1 · |τ |)−1 .

Then for every m′ > 0 there exist a choice of ξ and a constant C2 > 0
such that

|di
1(τ, t(τ))| ≤ C2 · |τ |−m′

.

Write now di(τ, t) = di
0(τ, t) + di

1(τ, t). We have just seen that main
contribution to di(τ, t) for t → ∞ will likely come from di

0(t, τ). This
is indeed the case.

Let us assume for a moment that λ is imaginary. Define I ∈ C and
I ′ > 0 by

I :=

∫

n

ξ(X) dX

I ′ :=

∫

n

|ξ(X)| dX

The first obstacle we face is that I might be zero. However as ξ(X) =
ã(n(X))ρ+λ−µ, there are for each µ in the “half line” Nµ infinitely
many lowest weights for which I 6= 0 (apply Carleman’s theorem, see

[7], 3.71). So for any m′ we find such a I. Set now ε := |I|
I′
> 0.

In the following computation we will use the simple identity:

∫

n

πλ(at)f(X) dX = tλ−ρ

∫

n

f(X) dX

for all integrable functions f .
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|di(τ, t(τ))| =

∣
∣
∣
∣

∫

{‖X‖≤t0}

(πλ(at)ξ)(X) ·Dτ (X) dX

∣
∣
∣
∣
+O

(
1

|τ |m′

)

≥
√
d

∣
∣
∣
∣

∫

{‖X‖≤t0}

(πλ(at)ξ)(X) dX

∣
∣
∣
∣

−
∣
∣
∣
∣

∫

{‖X‖≤t0}

(πλ(at)ξ)(X) · (Dτ (X) −Dτ (0)) dX

∣
∣
∣
∣

+O

(
1

|τ |m′

)

≥
√
d · t−ρ · I − ε/2 ·

√
d

∫

{‖X‖≤t0}

|(πλ(at)ξ)(X)| dX

+O

(
1

|τ |m′

)

≥
√
d · t−ρ · I − ε/2 · d · t−ρ · I ′ +O

(
1

|τ |m′

)

=
√
d · t−ρ · I/2 +O

(
1

|τ |m′

)

and the theorem for λ imaginary follows.
The case of arbitrary generic λ is similar to the situation above: We

replace dX by ã(n(X))−2Re λ dX in the formulas before. Now at the
change of variables we have to be slightly more careful as:

∫

n

[πλ(at)f ](X) ã(n(X))−2Re λ dX =

= aλ−ρ
t

∫

n

f(X) ã(n(Ad(at)X))−2 Re λ dX .

In order to proceed as above we simply have to observe that

ã(n(Ad(at)X))−2 Re λ → 1

uniformly on compacta for t→ ∞.
�

For k ∈ R we denote by Sk a k-th Sobolev norm for the representation
(πλ,Hλ).
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Corollary 4.3. Let Q ⊂ a∗
C

be a compact subset. Then there exists
ξ ∈ C[M\K], constants c1, c2, c3 > 0 such that

sup
g∈G

‖g‖≤|τ |c1

|〈πλ(g)ξ, v〉| ≥ c2
1

(|τ | + 1)c3
‖v‖

for all λ ∈ Q, τ ∈ K̂M and v ∈ Vλ[τ ]. In particular there exist a k ∈ R

such that
sup
g∈G

‖g‖≤|τ |c1

|〈πλ(g)ξ, v〉| ≥ c2Sk(v)

for all λ ∈ Q, τ ∈ K̂M and v ∈ Vλ[τ ].

Note V ∗
λ ' V−λ. Thus Lemma 3.5 in conjunction with the above

Corollary yields the Casselman-Wallach Theorem for spherical princi-
pal series:

Corollary 4.4. Let λ ∈ a∗
C

and Vλ the Harish-Chandra module of
the corresponding spherical principal series. Then Vλ admits a unique
smooth Fréchet globalization.

For an element v ∈ L2(M\K) and τ ∈ K̂M we write vτ for the
τ -isotypical part.

If we raise γ > 1 in the Lemma above appropriately, we obtain the
following result.

Theorem 4.5. Let Q ⊂ a∗
C

be a compact subset and N > 0. Then there

exists ξ ∈ C[M\K] and constants c1, c2 > 0 such that for all τ ∈ K̂M ,
λ ∈ a∗

C
, there exists aτ ∈ A, independent of λ, with ‖aτ‖ ≤ (1 + |τ |)c1

and numbers d(λ, τ) ∈ C such that

‖[πλ(aτ )ξ]τ − d(λ, τ)δτ‖ ≤ 1

(|τ | + 1)N+c2

and

|d(λ, τ)| ≥ 1

(|τ | + 1)c2
.

Proof. The proof is a small modification of the proof of Lemma 4.2.
Let us emphasize the crucial points. Let Dij

τ =
√

d(τ)uj ⊗ u∗i . Then

(4.2) [πλ(at)ξ]τ =
∑

ij

dijD
ij
τ

For i 6= j we know that Dij
τ (0) = 0. Thus raising γ and employing the

analogous estimate as in (4.1) we can obtain on the right hand side
of (4.2) any domination of polynomial type of the off diagonal terms
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against a diagonal term. Finally observe that Dii
τ (X) ≈

√

d(τ) for
X ∈ {‖X‖ < t0} with t0 as in the proof of Lemma 4.2. The assertion
follows. �

4.4. Constructions in the Schwartz algebra

Let us fix a relatively compact open neighborhood Q ⊂ a∗
C
. We

choose the K-finite element ξ ∈ C[M\K] such that the conclusion of
Theorem 4.5 is satisfied.

Lemma 4.6. Let U be an Ad(K)-invariant neighborhood of 1 in G
and F(U) the space of Ad(K)-invariant test functions supported in U .
Then there exists a holomorphic map

Q→ F(U), λ 7→ hλ

such that Πλ(hλ)ξ = ξ.

Proof. Let Vξ ⊂ C[M\K] be the K-module generated by ξ. Let n :=
dimVξ. Let U0 be a Ad(K)-invariant neighborhood of 1 ∈ G such that
Un

0 ⊂ U .
Note that any h ∈ F(U0) induces operators

T (λ) := Πλ(h)|Vξ
∈ End(Vξ) .

The compactness ofQ allows us to employ uniform Dirac-approximation:
we can choose h such that

Q→ Gl(Vξ), λ 7→ T (λ)

is defined and holomorphic. Let n := dimVξ. By Cayley-Hamilton
T (λ) is a zero of its characteristic polynomial and hence

idVξ
=

1

detT (λ)

n∑

j=1

cj(λ)T (λ)j

with cj(λ) holomorphic. Set now

hλ :=
1

detT (λ)

n∑

j=1

cj(λ) hλ ∗ . . . ∗ hλ
︸ ︷︷ ︸

j-times

.

Then Q 3 λ 7→ hλ ∈ F(U) is holomorphic and Πλ(hλ)ξ = ξ. �
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For a compactly supported measure ν on G and f ∈ S(G) we define
ν ∗ f ∈ S(G) by

ν ∗ f(g) =

∫

G

f(x−1g) dν(x) .

For an element g ∈ G we denote by δg the Dirac delta-distribution at
g. Further we view δτ as a compactly supported measure on G via the
correspondence δτ ↔ δτ (k) dk.

For each τ ∈ K̂M we define hλ,τ ∈ S(G) by

(4.3) hλ,τ := δτ ∗ δat(τ)
∗ hλ .

Call a sequence (cτ )τ∈K̂M
rapidly decreasing if

sup
τ

|cτ |(1 + |τ |)R <∞

for all R > 0.

Lemma 4.7. Let (cτ )τ be a rapidly decreasing sequence (cτ )τ and hλ,τ

defined as in (4.3). Then

Hλ :=
∑

τ∈K̂M

cτ · hλ,τ

is in S(G) and the assignment Q 3 λ→ Hλ ∈ S(G) is holomorphic.

Proof. Fix λ ∈ Q. For simplicity set H = Hλ, hλ,τ = hτ .
It is clear that the convergence of H is uniform on compacta and

hence H ∈ C(G). For u ∈ U(g) we record

Ru(hτ ) = δτ ∗ δat(τ)
∗Ru(h)

and as a result H ∈ C∞(G). So we do not have to worry about right
derivatives. To show that H ∈ S(G) we employ Remark 2.3: it remains
to show that H ∈ R(G), i.e.

(4.4) sup
g∈g

‖g‖r · |H(g)| <∞

for all r > 0. Fix r > 0. Write g = k1ak2 for some a ∈ A, k1, k2 ∈ K.
Then

‖g‖r|hτ (g)| ≤ ‖a‖r · sup
k,k′∈K

|h(a−1
t kak′)| .

Let Q ⊂ A be a compact set with logQ convex and W-invariant and
such that supp h ⊂ KQK. We have to determine those a ∈ A with
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(4.5) a−1
t Ka ∩KQK 6= ∅ .

DefineQt ⊂ A through logQt being the convex hull of W(log at+logQ).
Then (4.5) implies that

a ∈ Qt .

But this means that ‖a‖ << |τ |c for some c > 0, independent of τ .
Hence (4.4) is verified and H is indeed in S(G).

Finally the fact that the assignment λ 7→ Hλ is holomorphic follows
from the previous Lemma. �

Theorem 4.8. Let Q ⊂ a∗
C

be a compact subset. Then there exist a
continuous map

Q× C∞(M\K) → S(G), (λ, v) 7→ f(λ, v)

which is holomorphic in the first variable, linear in the second and such
that

Πλ(f(λ, v))ξ = v .

In particular, Πλ(S(G))Vλ = H∞
λ for all λ ∈ a∗

C
.

Proof. Let v ∈ H∞
λ . Then v =

∑

τ cτvτ with vτ normalized and (cτ )τ

rapidly decreasing. As S(G) is stable under left convolution with
C−∞(K) we readily reduce to the case where vτ = 1√

d(τ)
δτ .

In order to explain the idea of the proof let us first treat the case
where the Harish-Chandra module is a multiplicity free K-module.
This is precisely the case when G is locally a product of real rank
one groups.

Recall the definition of d(λ, τ) and define

Hλ :=
∑

τ

cτ
d(λ, τ)

hλ,τ .

It follows from Lemma 4.2 and the Lemma above that Q 3 λ→ Hλ ∈
S(G) is defined and holomorphic. By multiplicity one we get that

Πλ(Hλ) =
∑

τ

cτδτ .

and the assertion follows for the multiplicity free case.
Let us move to the general case. For that we employ the more general

approximation in Theorem 4.5 and set

H ′
λ =

∑

τ∈K̂M

cτ
d(λ, τ)

hλ,τ .
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Then
Πλ(H

′
λ) =

∑

τ∈K̂M

cτδτ +R

where, given k > 0, we can assume that ‖Rτ‖ ≤ |cτ | · (|τ | + 1)−k for
all τ (choose N in Theorem 4.5 big enough). Finally we remove the
remainder Rτ by left convolution with C−∞(K). �

5. Reduction steps I: extensions, tensoring and in-

duction

In this section we will show that “good” is preserved by induction,
tensoring with finite dimensional representations and as well by exten-
sions. We wish to emphasize that these results are not new can be
found for instance in [9], Sect. 11.7.

5.1. Extensions

Lemma 5.1. Let
0 → U → L→ V → 0

be an exact sequence of Harish-Chandra modules. If U and V are good,
then L is good.

Proof. Let (π, L) be a smooth Fréchet globalization of L. Define a
smooth Fréchet globalization (πU , U) of U by taking the closure of U
in L. Likewise we define a smooth Fréchet globalization (πV , V ) of
V = L/U by V := L/U . By assumption we have U = ΠU(S(G))U and
V = ΠV (S(G))V . As 0 → U → L → V → 0 is exact, we deduce that
Π(S(G))L = L, i.e. L is good. �

As Harish-Chandra modules admit finite composition series we con-
clude:

Corollary 5.2. In order to show that all Harish-Chandra modules are
good it is sufficient to establish that all irreducible Harish-Chandra mod-
ules are good.

5.2. Tensoring with finite dimensional representations

This subsection is devoted to tensoring a Harish-Chandra module
with a finite dimensional representation.

Let V be a Harish-Chandra module and V ∞ its minimal globaliza-
tion. Let (σ,W ) be a finite dimensional representation of G. Set
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V := V ⊗W

and note that V is a Harish-Chandra module as well. It is our goal to
show that the minimal globalization of V is given by V ∞ ⊗W .

Let us fix a covariant inner product 〈·, ·〉 on W . Let w1, . . . , wk be
a corresponding orthonormal basis of W . With that we define the
C∞(G)-valued k × k-matrix

S := (〈σ(g)wi, wj〉)1≤i,j≤k

and record the following:

Lemma 5.3. With the notation introduced above, the following asser-
tions hold:

(i) The map

S(G)k → S(G)k, f = (f1, . . . , fk) 7→ S(f)

is a linear isomorphism.
(ii) The map

[C∞
c (G)]k → [C∞

c (G)]k, f = (f1, . . . , fk) 7→ S(f) .

is a linear isomorphism.

Proof. First, we observe that the determinant of S is 1 and hence S

is invertible. Second, all coefficients of S and S−1 are of moderate
growth, i.e. dominated by a power of ‖g‖. Both assertions follow. �

Lemma 5.4. Let V be a Harish-Chandra module and (σ,W ) be a finite
dimensional representation of G. Then

V∞ = V∞ ⊗W .

Proof. We denote by π̃ = π ⊗ σ the tensor representation of G on
V∞ ⊗W . It is sufficient to show that v ⊗ wj lies in Π̃(S(G))V for all
v ∈ V ∞ and 1 ≤ j ≤ k.

Fix v ∈ V ∞. It is no loss of generality to assume that j = 1. By
assumption we find ξ ∈ V and f ∈ S(G) such that Π(f)ξ = v.

We use the previous lemma and obtain an f = (f1, . . . , fk) ∈ S(G)k

such that
St(f) = (f, 0, . . . , 0) .

We claim that

k∑

j=1

Π̃(fj)(ξ ⊗ wj) = v ⊗ w1 .

In fact, contracting the left hand side with w∗
i = 〈·, wi〉 we get that
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(id ⊗ w∗
i )

(
k∑

j=1

Π̃(fj)(ξ ⊗ wj)

)

=

k∑

j=1

∫

G

fj(g)〈σ(g)wj, wi〉π(g)ξ dg

= δ1i ·
∫

G

f(g)π(g)ξ dg = δ1i · v

and the proof is complete. �

5.3. Induction

Let P ⊃ Pmin be a parabolic subgroup with Langlands decomposition

P = NPAPMP .

Note that AP < A, MPAP = ZG(AP ) and N = NP o (MP ∩ N). For
computational purposes it is useful to recall that parabolics P above
Pmin are parameterized by subsets F of the simple roots Π in Σ(a, n).
We then often write PF instead of P , AF instead of AP etc. The
correspondence F ↔ PF is such that

AF = {a ∈ A | (∀α ∈ F ) aα = 1} .
We make an emphasis on the two extreme cases for F , namely: P∅ =
Pmin and PΠ = G.

In the sequel we write aP , nP for the Lie algebras of AP and NP

and denote by ρP ∈ a∗
P the usual half sum. Note that KP := K ∩MP

is a maximal compact subgroup of MP . Let Vσ be a Harish-Chandra
module for MP and (σ, V ∞

σ ) its minimal SF-globalization.
For λ ∈ (aP )∗

C
we define as before the smooth principal series with

parameter (σ, λ) by

Eσ,λ = {f ∈ C∞(G, V∞
σ )) |(∀ nam ∈ P ∀ g ∈ G)

f(namg) = aρP +λσ(m)f(g)} .
and representation πσ,λ by right translations in the arguments of func-
tions in Eσ,λ.

In this context we record:

Proposition 5.5. Let P ⊇ Pmin be a parabolic subgroup with Lang-
lands decomposition P = NPAPMP . Let Vσ be a good Harish-Chandra
module for MP . Then for all λ ∈ (aP )∗

C
the induced Harish-Chandra

module Vσ,λ is good. In particular, V ∞
σ,λ = Eσ,λ.

Note that V ∗
σ,λ = Vσ∗,−λ is induced from the good module V ∗

σ . Hence
it is sufficient to establish lower bounds (Lemma 3.5). We will do this
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later in greater generality with dependence on parameters in Theorem
7.6 below.

6. Reduction steps II: deformations and discrete se-

ries

The goal of this section is to show that all Harish-Chandra modules
are good. Note that all Harish-Chandra modules V can be written as
a quotient U/H where U is good. Suppose that H is in fact a kernel of
an intertwiner I : U → W with W good. Suppose in addition that we
can deform I : U → W holomorphically (as to be made precise in the
following section). Then, provided U and W are good we will show that
im I ' U/H is good. Finally we will show that every irreducible Harish-
Chandra module V is a direct summand of im I where I : U → W is a
deformable intertwiner of good modules.

6.1. Deformations

For a complex manifold D and a Harish-Chandra module U we write
O(D,U) for the space of maps f : D → U such that for all ξ ∈ U ∗ the
contraction ξ ◦ f is holomorphic. Henceforth we will use D exclusively
for the open unit disc.

By a holomorphic family of Harish-Chandra modules (parameterized
by D) we understand a family of Harish-Chandra modules (Us)s∈D such
that:

(i) For all s ∈ D one has Us = U0 =: U as K-modules.
(ii) For all X ∈ g, v ∈ U and ξ ∈ U ∗ the map s 7→ ξ(Xs · v) is

holomorphic. Here we use Xs for the action of X in Us.

Given a holomorphic family (Us)s∈D we form U := O(D,U) and
endow it with the following (g, K)-structure: for X ∈ g and f ∈ U we
set

(X · f)(s) := Xs · f(s) .

Of particular interest are the Harish-Chandra modules Uk := U/skU
for k ∈ N. To get a feeling for this objects let us discuss a few examples
for small k.

Example 6.1. (a) For k = 1 the constant term map

U1 → U, f + sU 7→ f(0)

is an isomorphism of (g, K)-modules.
(b) For k = 2 we observe that the map
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U2 → U ⊕ U, f + s2U 7→ (f(0), f ′(0))

provides an isomorphism of K-modules. The resulting g-action on the
right hand side is twisted and given by

X · (u1, u2) = (Xu1, Xu2 +X ′u1)

where

X ′u :=
d

ds

∣
∣
∣
s=0

Xs · u .
Let us remark that X ′ = 0 for all X ∈ k.

We notice that U2 features the submodule sU/s2U which corresponds
to {0} ⊕ U in the above trivialization. The corresponding quotient
(U/s2U)/(sU/s2U) identifies with U ⊕ U/{0} ⊕ U ' U . In particu-
lar U/s2U is good if U is good by the extension Lemma 5.1.

From the previous discussion it follows that Uk is good for all k ∈ N0

provided that U is good.
Let now W be another Harish-Chandra module and W a holomor-

phic deformation of W as above. By a morphism I : U → W we
understand a family of (g, K)-maps Is : Us → Ws such that for all
u ∈ U and ξ ∈ W ∗ the assignments s 7→ ξ(Is(u)) are holomorphic. Let

us write I for I0 set I ′ := d
ds

∣
∣
∣
s=0

Is etc. We set H := ker I.

We now make two additional assumptions on our holomorphic family
of intertwiners:

• Is is invertible for all s 6= 0.
• There exists a k ∈ N0 such that J(s) := skI−1

s is holomorphic
on D.

If these conditions are satisfied, then we call I : U → W holomor-
phically deformable.

For all m ∈ N we write Im : Um → Wm for the intertwiner induced
by I. Likewise we define Jm.

Example 6.2. In order to get a feeling for the intertwiners Im let us
consider the example I2 : U2 → W2. In triviliazing coordinates this
map is given by

I2(u1, u2) = (I(u1), I(u2) + I ′(u1)) .

We set Hm := ker Im ⊂ Um. For m < n we view Um as a K-
submodule of Un via the inclusion map

Um → Un, f + smU 7→
m−1∑

j=0

f (j)(0)

j!
sj + snU .
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We write pn,m : Un → Um for the reverting projection (which are
(g, K)-morphisms).

The following Lemma is related to an observation of Casselman as
recorded in [9], 11.7.9.

Lemma 6.3. The morphism

I2k|Hk+skU/s2kU : Hk + skU/s2kU → skW/s2kW
is onto. Moreover, its kernel is given by skHk ⊂ skU/s2kU .

Proof. Clearly, I−1
2k (skW/s2kW) ⊂ Hk + skU/s2kU and hence the map

is defined. Let us check that it is onto. Let [w] ∈ skW/s2kW and
w ∈ skW be a representative. Note that s−kJ |skW : skW → U is
defined. Set u := s−kJ (w) and write [u] for its equivalence class in
U2k. Then I2k([u]) = [w] and the map is onto.

A simple verification shows that skHk lies in the kernel. Hence by
considering the surjective map K-type by K-type we arrive that it
equals the kernel by dimension count. �

If we set V3 := Hk + skU/s2kU , V2 := skU/s2kU and V1 := skHk, the
previous Lemma implies an inclusion chain

V1 ⊂ V2 ⊂ V3

with

V2/V1 ' Uk/Hk, V2 ' Uk and V3/V1 ' Wk .

Hence in combination with the squeezing Lemma 3.3 we obtain that
Uk/Hk is good if U and W are good.

We wish to show that U/H is good. This follows now by iteration
and it is enough to consider the case k = 2 in more detail. Write
H2,1 := p2,1(H2) for the projection of H2 to U1 ' U . Note that H2,1 is
a submodule of H. We arrive at the exact sequence

0 → U/H ' sU/sH → U2/H2 → U/H2,1 → 0 .

But U/H is a quotient of U/H2,1. Thus putting an SF-topology on U
we get one on H, U2, H2, U2/H2 and U/H2,1. As a result the induced
topology on U/H is both a sub and a quotient of the good topology on
U2/H2. Hence U/H is good.

We summarize our discussion.

Proposition 6.4. Suppose that I : U → W is an intertwiner of good
Harish-Chandra modules which allows holomorphic deformations I :
U → W. Then im I is good.
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6.2. All Harish-Chandra modules are good

In this subsection we will prove that all Harish-Chandra modules are
good. In view of the deformation result (Prop. 6.4) and the Langlands
classification we are readily reduced to the case of discrete series rep-
resentation. Our present proof uses certain upper bound for matrix
coefficients as found in [8].

Lemma 6.5. All Harish-Chandra modules are good.

Proof. Let V be a Harish-Chandra module. We have to show that V is
good. In view of Corollary 5.2, we may assume that V is irreducible.
Next we use Langland’s classification (see [5],Ch. VIII, Th. 8.54) and
commbine it with our Proposition 6.4 on deformation. This reduces to
the case where V is tempered. However, the case of tempered readily
reduces to square integrable ([8], Ch. 5, Prop. 5.2.5). Fortunately the
case of square integrable is handled in [9], 11.7.4 under the use of the
upper bound 4.3.5 in [8]. �

Remark 6.6. We intend to return to the subject of this subsection via
the theory of Jacquet modules.

7. Applications

7.1. Lifting (g, K)-morphisms

Let (π, E) be an SF-representation of G. Note that we do not assume
that E is admissible. Typical examples we have in mind are smooth
functions of moderate growth on certain homogeneous spaces. Let us
mention a few.

Example 7.1. (a) Let Γ < G be a lattice, that is a discrete subgroup
with cofinite volume. Reduction theory (Siegel sets) allows us to control
“infinity” of the quotient Y := Γ\G and leads to a natural notion of
moderate growth. The smooth functions of moderate growth C∞

mod(Y )
become an SF-module for the right regular action of G. The space of
K and Z(g)-finite elements in C∞

mod(Y ) is referred to as the space of
automorphic forms on Y .
(b) Let H < G be a symmetric subgroup, i.e. an open subgroup of the
fixed point set of an involutive automorphism of G. We refer to X :=
H\G as a semisimple symmetric space. The Cartan-decomposition of
X allows us to control growth on X and yields the SF -module C∞

mod(X)
of smooth functions with moderate growth.
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If (π1, E1), (π2, E2) are two SF-represesentations, then we denote by
HomG(E1, E2) for the space of continuous G-equivariant linear maps
from E1 to E2.

Proposition 7.2. Let V be a Harish-Chandra module and V ∞ its
unique SF -globalization. Then for any SF-representation (π, E) of G
the linear map

HomG(V ∞, E) → Hom(g,K)(V,EK), T∞ 7→ T := T∞|V
is a linear isomorphism.

Proof. It is clear that the map is injective and move on to onto-ness.
Let us write λ for the representation of G on V ∞. Let v ∈ V ∞. Then
we find f ∈ S(G) such that v = Λ(f)w for some w ∈ V . We claim that

T∞(v) := Π(f)T (w)

defines a linear operator. In order to show that this definition makes
sense we have to show that T∞(v) = 0 provided that Λ(f)w = 0. Let
ξ ∈ (E∗)K and µ := ξ ◦ T ∈ V ∗. We consider two distributions on G,
namely

Θ1(φ) := ξ(Π(φ)T (w)) and Θ2(φ) := µ(Λ(φ)w) (φ ∈ C∞
c (G)) .

We claim that Θ1 = Θ2. In fact, both distributions are Z(g)− and
K × K-finite. Hence they are represented by analytic functions on G
and thus uniquely determined by their derivatives on K. The claim
follows.

It remains to show that T is continuous. We recall the construction of
the minimal SF-globalization of V , namely V ∞ = S(G)/S(G)v within
the notation of Subsection 3.1. Continuity becomes clear. �

7.2. Automatic continuity

If V is a Harish-Chandra module, then we write V ∗
alg for its algebraic

dual. Note that V ∗
alg is naturally a module for g.

If h < g is a subalgebra, then we write (V ∗
alg)

h, resp. (V ∗
alg)

h−fin, for
the space of h-fixed, resp. h-finite, algebraic linear functionals on V .

We call a sublagebra h < g a (strong) automatic continuity subalge-
bra ((S)AC-subalgebra for short) if for all Harish-Chandra modules V
one has

(V ∗
alg)

h ⊂ (V∞)∗ resp. (V ∗
alg)

h−fin ⊂ (V∞)∗ .
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Problem 7.3. (a) Is it true that h is AC if and only if 〈exp h〉 < G
has an open orbit on G/Pmin.
(b) Is it true that h is SAC if [h, h] is AC?

The following examples of (S)AC-subalgebras are known:

• n, the Lie algebra of an Iwasawa N -subgroup, is AC and a+n,
the Lie algebra of an Iwasasaw AN -subgroup, is SAC. (Cas-
selman).

• Symmetric subalgebras, i.e. fixed point sets of involutive au-
tomorphisms of g, are AC (Brylinski, Delorme, van den Ban;
cf. [2], [1]).

Here we only wish to discuss Casselman’s result. We recall the def-
inition of the Casselman-Jacquet module j(V ) =

⋃

k∈N0
(V/nkV )∗ and

note that j(V ) = (V ∗
alg)

a+n−fin.

Theorem 7.4. (Casselman) Let n be the Lie algebra of an Iwasawa N-
subgroup of G and a + n the Lie algebra of an Iwasawa AN-subgroup.
Then n is an AC and a+n is SAC. In particular, for all Harish-Chandra
modules V one has j(V ) ⊂ (V ∞)∗.

Proof. Let us first prove that a+n is SAC. Let V be a Harish-Chandra
module and 0 6= λ ∈ j(V ). By definition there exists a k ∈ N such that
λ ∈ (V/nkV )∗. Write (σ, Uσ) for the finite dimensional representation
of Pmin on V/nkV and denote by Iσ the corresponding induced Harish-
Chandra module. Note that I∞σ = C∞(G×Pmin

Uσ).
Applying Frobenius reciprocity to the identity morphism V/nkV →

U yields a non-trivial (g, K)-morphism T : V → Iσ (cf. [8], 4.2.2).
Now T lifts to a continuous G-map T∞ : V∞ → I∞σ by Proposition
7.2. If ev : I∞σ → Uσ denotes the evaluation map at the identity, then
λ∞ := λ ◦ ev ◦ T∞ provides a continuous extension of λ to V ∞.

The proof that n is AC goes along the same lines. �

7.3. Lifting of holomorphic families of (g, K)-maps

We wish to give a version of lifting (cf. Proposition 7.2) which de-
pends holomorphically on parameters.

Theorem 7.5. Let P = NPAPMP be a parabolic subgroup and Vσ a
Harish-Chandra module of an SAF-representation of MP . Let (π, E)
be an SF-representation. Suppose that there is a family of (g, K)-
intertwiners Tλ : Vσ,λ → EK such that for all v ∈ C[K ×KP

Vσ] and
ξ ∈ E∗ the assignments λ 7→ ξ(Tλ(v)) are holomorphic. Then for all
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v ∈ C∞(K ×KP
V ∞

σ ) and ξ ∈ E∗, the maps

(aP )∗C 3 λ 7→ ξ(T∞
λ (v)) ∈ C

are holomorphic.

The proof is an immediate consequence of the analogue to Theorem
4.5 and Theorem 4.8 for the induced family considered.

In the sequel we will use the notation introduced in Subsection
4.5. We let P = NPAPMP be a parabolic above Pmin. We fix an
SAF-representation (σ, V ∞

σ ) of MP and write Vσ for the corresponding
Harish-Chandra module.

As K-modules we identify all Vσ,λ with V := C[K×KP
Vσ]. Note that

Vσ is a KP -quotient of some C[M\KP ]m, m ∈ N. Double induction
gives an identification of V as a K-quotient of C[M\K]m. Note that
C∞(M\K)m induces the unique SF-topology on V ∞. For each τ we
write Dσ,τ for the orthogonal projection of (δτ , . . . , δτ )

︸ ︷︷ ︸

m−times

to V [τ ], the

τ -isotypical part of V .

Theorem 7.6. Let P = NPAPMP be a parabolic subgroup and Vσ an
irreducible unitarizable Harish-Chandra module for MP . Let Q ⊂ (aP )∗

C

be a compact subset and N > 0. Then there exists ξ ∈ C[Vσ ×KP
K]

and constants c1, c2 > 0 such that for all τ ∈ K̂, λ ∈ (aP )∗
C
, there

exists aτ ∈ A, independent of λ, with ‖aτ‖ ≤ (1 + |τ |)c1 and numbers
dσ(λ, τ) ∈ C such that

‖[πσ,λ(aτ )ξ]τ − dσ(λ, τ)Dσ,τ‖2 ≤
1

(|τ‖ + 1)N+c2

and

|dσ(λ, τ)| ≥
1

(|τ | + 1)c2
.

Here ‖·‖2 refers to the continuous norm on V induced by the realization
of V as a quotient of C[K]m ⊂ L2(K)m.

Proof. Let us first discuss the case where P = Pmin and σ is finite
dimensional. Here the assertion is a simple modification of Theorem
4.5.

As for the general case we identify Vσ as a quotient of a minimal
principal series for MP . Using double induction we can write the Vσ,λ’s
consistently as quotients of such minimal principal series. The assertion
follows. �

As a consequence we get an extension of Theorem 4.8.
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Theorem 7.7. Let Q ⊂ (aP )∗
C

be a compact subset. Then there exist
a continuous map

Q× C∞(K ×KP
V ∞

σ ) → S(G), (λ, v) 7→ f(λ, v)

which is holomorphic in the first variable, linear in the second and such
that

Πσ,λ(f(λ, v))ξ = v .

8. Appendix

8.1. Representations of moderate growth

Let us first recall Casselman’s definition of a moderate growth rep-
resentation, [3] p. 391. A representation (π, E) is called of moderate
growth, if

• E is a Fréchet space.
• For every semi-norm p on E there exists a semi-norm q on E

and an integer N > 0 such that

p(π(g)v) ≤ ‖g‖Nq(v)

for all g ∈ G.

Lemma 8.1. A representation (π, E) is Fréchet if and only if it is of
moderate growth.

Proof. Recall for Banach-representations the following fact: if (π, F ) is
a Banach representation, then there there exista a constant r > 0 such
that ‖π(g)‖ ≤ ‖g‖r for all g ∈ G (cf. [8], Lemma 2.A.2.2). Hence a
Fréchet representation is of moderate growth.

Conversely, assume that (π, E) is of moderate growth and let p, q
and N > 0 be as in the definition above. Then

p̃(v) := sup
g∈G

p(π(g)v)

‖g‖N

defines a semi-norm on E such that

• p ≤ p̃ ≤ q.
• p̃(π(g)v) ≤ ‖g‖N p̃(v) for all g ∈ G.

The first bulleted item implies that the p̃ define the topology on E and
the second bulleted item yields that G× (E, p̃) → (E, p̃) is continuous.
�
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8.2. Weighted L2-spaces

This paragraph is concerned with embeddings of Fréchet representa-
tions in weighted L2-spaces.

For n > 0 we define the weighted Hilbert-space L2(G)n := L2(G, ‖g‖ndg)
and the weighted Banach-space C(G)n := {f ∈ C(G) | pn(f) :=

supg∈G
|f(g)|
‖g‖n < ∞}. We view both as modules for G under the right

regular representation.
Let k > 0 be such that

∫

G
‖g‖−k dg < ∞. Then for all n > 0 one

obtains a continuous embedding

(8.1) C(G)(n+k)/2 → L2(G)n .

Lemma 8.2. For all N > 0 one has
⋂

n≥N

C(G)∞n =
⋂

n≥N

L2(G)∞n .

Proof. The inclusion ′′ ⊆′′ follows from (8.1).
For the converse one notes that we can control the derivatives of a

smoothenig of ‖ · ‖ and the reverse inclusion is implied by the Sobolev-
Lemma. �

Let now (π, E) be an SF-globalization of a Harish-Chandra module
V . Let q be a continuous semi-norm on E and N > 0 be such that

q(π(g)v) ≤ ‖g‖Nq(v)

for all v ∈ E.
For ξ ∈ V ∗ and v ∈ V we define the matrix coefficient

mv,ξ(g) := ξ(π(g)v) (g ∈ G) .

By assumption, we have

|mv,ξ(g)| ≤ q∗(ξ) · q(v) · ‖g‖N .

Let us assume now that ξ ∈ V ∗ is cyclic. Then, for n ≤ N , the map

φξ : E → C(G)n, v 7→ mv,ξ

defines a G-equivariant continuous embedding. Likewise if (n+k)/2 ≤
N then φξ induces a continuous G-equivariant embedding ψξ : E →
L2(G)n. Write En for the closure of φξ(E) in C(G)n and Hn for the
closure ψξ(E) in L2(G)n. It is straightforward that En, resp. Hn, is a
Banach (resp. Hilbertian) globalization of V .
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Lemma 8.3. Within the notation introduced above, the smooth vectors
in Hn coincide with the K-smooth vectors.

Proof. The proof is not hard and can be found in (5) on p. 91 of [9].
It will not be repeated here.

�
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