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Equi'V'alence theorems for corn.plex

affine hypersurfaces .

Barbara Opozda (.)

Inhoduction. In this paper we study equivalence of complex hypersur­

faces in Cn
+ l,where Cn

+ 1 is considered as a homogeneous space under

the action of the group AGL(n+ LC).

Depending on the ehoice of transversal vector fields one gets various

approaches to complex affine differential geometry of complex hypersur­

faces in Cn
+ 1. Assume we have a complex hypersurface f: M ~ Cn

+ 1. If

~ is an arbitrary (Le. real of class C·) transversal vector field for f on so­

me open set U c M , then it induees on U ( by formulas (1.1), (1.2) in SecHon

1) a complex torsion - free eonnection 'V, asymmetrie C - bi linear form h.

calted the seeond fundamental form, a (LI) - tensor field S (in general nei-

ther complex nor anti - complex), called the shape operator. and a C - va ­

lued R - linear 1 - form t. These objects determine f and ~ modulo AGL(

n + l,C), see Theorem 2.1. One ean consider holomorphic transversal vec­

tor fields, but t hen the induced connection is not Kähler unless it is flat.

With the aim of getting affine geometry compatible wi th Kähler geometry

K.Nomizu, U. Pinkall and F. Podesta introduced in [NPP] the nation of affine

Kähler connection and affine Kähler hypersurface. Namely a complex

torsion - free connec tion on a complex manifold M is called affine Kähler

if its curvature tensor R satisfies the eondition R(JX,JY) = R(X,Y) for any

X,Y, where J is the complex structure on M. A complex hypersurface is

called affine Kähler if it is endowed with an anti - holomorphic transversal

vector field ~. The connection induced by an anti - holomorphic transver ­

sal vector field is affine Kähler.

(.) The 'Work is supported by an Alexander von Humboldt research fel-

lo'Wship at Universität zu Köln and Max - Planck - Institut für Mathematik.

Sonn.
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Instead of anti - holomorphic transversal vector fields, however, we

propose to consider transversal vector fields for which the corresponding

shape operator is anti - complex. It turns out that metric transversal vector

fields as well as anti - holomorphic ones have this property. Ametrie

transversal vector field is never anti - holomorphic unless the given hy­

persurface is part of a hyperplane in Cn
+ 1. The anti - complexi ty of the

shape operator is , in fact, a property of the complex transversal vector

bundle spanned by ~. The connection induced by such a transversal vec­

tor field is affine Kähler. Conversely, if rkh > 1 at some point of M and the

induced connection is affine - Kähler, then the corresponding shape opera­

tor is anti - complex at each point of M, see Lemma 3.1.

In Section2 we prove two basic theorems (Theorems 2.1.,2.2,) for hyper­

surfaces endowed wi th arbi trary transversal vector fie lds. From the affine

point of view the most important object induced on a hypersurface is the

induced connection. In Section 3 we shall prove some results in which the

equality only of the ihduced connections implies affine equivalence. In

particular, a complex affine analogue ot the Ki lling - Beez theorem is gi­

yen (Theorem3.2). Except for this theorem Section 3 deals with hypersurfa­

ces endowed with transversal vector fields whose shape operators are an­

ti - complex. We prove, for instance, that if for two complex hypersurfaces

equipped with such transversal vector fields the induced connections are

equal and non - ftat, then the hypersurfaces are affine equivalent (Theo­

rems 3.5.). Using this resutt one easity gels the classical equivalence theo­

rem for Kähler hypersurfaces in Cn + 1 as well as a theorem about ho­

mothetical equivalence of Kähler hypersurfaces (Theorems 3.1., 3.8,).

1. Pre1iminaries. Let M be a connected complex n - dimensional mani­

fold and f : M ... Cn
+ 1 a holomorphic immersion. We shall denote by ] the

complex structure on M as well as the standard one in Cn
+ 1. The tangent

space TxM has a natural structure of a complex vector space where the

multiplication by i is given by ]. Throughout the paper we shatl use the

notation iX =]X for X tangent to M or XE Cn
+ 1. Let ~ be an arbitrary (Le.

of etass e- - in the real sense) vector field transversal to f on some open

set U c M. We can write the farmulas of Gauss and Weingarten:
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e1.1> DXf. Y = f.V'XY + heX,Y)~.

Cl.2) DX~ = - f. SX + teX)~

where D is the standard conneetion on C n
+ 1 and X.Y are tangent to M. For

any transversal vector neId ~ the V' is a torsion-free eomplex eLe. V'j = 0)

eonneetion. h is asymmetrie C - valued, C - linear 2 - form. 5 an R - line­

ar Cl.1> - tensor field and t is a C - vatued R - linear 1 - form. Alt the objeets

are of ctass C·. A transversal vector field is holomorphie irf Sj = jS and tj

= it. It is anti - holomorphie if and only if Sj = - j5 and tj = - it. Ir ~. is

another transversal veetor field defined on U. then ~' = f. Z + cp~, where Z

is tangent to M and cp is a nowhere vanishing eomplex valued function of

elass C·. Then

Cl.3) heX.Y) = fPh' ex.y),

e1.4) S'X = cpSX - V'XZ + t'eX)Z

e1.5) cpt'eX) = epteX) + XfP + heX.Z)

where h'. 5' t t' are the objeets induced by ~' . By el,3) it is elear tha t the

rank of a eomptex form h x is independent of the choiee of ~. The rank wi 11

be ealted the type number of f at x and denoted by ffx' Around any point

cf M it is possible to find a hotomorphie transversal vector field ~. Ir ~ is a

holomorphie transversal veetor field on U and Xl"" ,X n is a holomorphie

eomplex frame on U, then the matrix [heXt ,XJ)]l =' Lj =' n is holomorphic and

so are its minors. Henee we have

Lemma 1.1. For every rc IV fhe sef

MT = ( xE M, ffx > rl

is empfy or open and dense in M. in parfjeular, the rank 01 h is eonsfanf

on an open dense subsef 01 M.

Assume that an arbi trary transversal veetor field ~ is gi ven on an open

set U c M. At every point xE M there is a eomptex basis el .... ,en of TxM

sueh that heek.ej) = 0 and heej.e j ) = 1 or 0 for j,k = 1, ....n, j:#: k .. We shalt

order e l ,... ,en in sueh a way that if there are veetors e j for whieh heej.e j )

= 1. then they are at the beginning of the sequenee. Such a basis will be

sai cl to be adapted to h.

As in real affine geometry we have the equations of Gauss • Rieci and

Codazzi:
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Cl.6) R(X,Y)Z = h(Y ,Z)SX' - h(X,Z)SY - Gauss

(1.1) h(X,SY) - h(Y,SX) = 2d t(X,Y) - Ricci

Cl.8) \7h(X,Y,Z) - \7h(Y,X,Z) = h(X,Z)t(Y) - h(Y,Z)t(X) - Codazzi I

(1.9) \7S(X,Y) - \7S(Y,X) = t(X)SY - t(Y)SX - Codazzi II

Cor X.Y.Z E TxM, X.e U.

In what follows we shalt mean by a Cunction a complex valued functi­

on of class C·. Ir a transversal vector field ~ Cor a hypersuface C :M ...

cn
+ 1 is given. then \7, h, S, twill automatica11y denote the objects defi­

ned by Cormulas (1.1), (1.2) Cor the given Cand ~.

2. Basic equivalence theorems. Let fl, f2: M ... Cn
+ 1 be two complex

hypersurfaces. They are said to be affine equivalent if and only if there is

B e AGL(n + l,C) such that f2 = B fl. Since the mappings fl, f2 are holomor­

phic, their affine equivalence on some open subset of M implies their glo­

bal equivalence. Assume now that we have one immersion f: M ... Cn
+ I

and a transversal vector field ~ on a connected open subset U. Let P be

the principal fibre bundle of a11 C - linear frames over U. The projection of

P onto U will be denoted by Tt. Since \71 = 0, \7 is covariant derivation

coming from a connection on P. We define the mapping F: P ... AGL(n+ 1,

C) by

(2.1) F(\) =(dxf 0 l,~.r(7t(l)))

where (dxf. t,~) is the linear part and f(Tt(l)) the translation part of F(\).

Let w' be the Maurer - Cartan form on AGL(n+ l,C). One can check that the

puII back w:= F·w· depends on1y on \7, h, S, t. It can be descri bed in the

following way. We shall use the index range

1 :s; i ,j :s; n + 2 ,

1 :s; cx.ß :s; n.

The i - th rew of the matrix w = (wij)1 ~ i,j ~ n+ 2 wi 11 be denoted by wi and

the j - th co lumn by Wj' It is straightferward to verify

(2.2) (wcxß) cx,ß = the connection form of 'l on P

n+l
(w «)l(Y) = h(1t. Y,eex)' where 1 = (ei'''' ,en ),

n+l 0w n+ 2 = ,
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«&) CXn+ 2) cx = the canonica t form on P,

«&)CI: n + 1 )t(y) = (- t - 1(S 1t. y»CI:, where (y) CI: denotes the Cl - th

coordinate of y E Cn relative to the canonical basis.

«&)n + 1 n+ 1)(Y) = tC1t. Y) ,

We have the foltowing theorem, see for instance [G]:

Lef F 1, F 2 be fwo smoofh mappings 01 a connecfed manilold N info a

Lie group G. Then F 2 =A F 1 lor some A E G il and only il F1 .(,)' =F2· (,)',

where (,)' is fhe Maurer - Carfan lorm on G.

Using this fact and formulas (2.2) we obtain

Theorem 2.1. Lef I 1J 2 : M ..... C n· 1 be complex hypersurlaces and ,1.,2

vecfor fields transversal to I 1, I 2 respecfively on same open set U c M.

Assume that

'V 1= V 2 • h 1=h 2 , S 1 =S 2, t 1 = t 2 ,

where V' j , h J , S i, t i are fhe objecfs defined by lormulas (J.1). (J.2) lor

i=J ,2. Then th~re is BE AGL(n + 1, C) such thaf I 2= BI 1 on M and , 2= B, 1

on U.

Similarly to the real ease (see [0)) we ean' prove the foltowing

Theorem 2.2. Let I 1, I 2: M..... C n + 1 be complex hypersurlaces and tl 1

> 1 at some point 01 M. 11 there exist vector fjelds, 1" 2 transversal to I 1 .

and I 2 on some open set U c M such that

V' 1 = 'V 2 • h 1 = t/Jh 2,

lor some nowhere - vanishing lunction r/J, then there is B =AGL(n + 1, CJ

such that 1 2 = BI 1 on M and ,2= r/J B,l on U.

Praar. At first we assurne that ~ • 1. We set "V = \71 = "V 2 and h = h 1= h 2,

Let x E UnMI and e 1,... , e n be a basis of TxM adapted to h. Then h(e1,e 1) =
h(e 2,e2) = 1 and by the Codazzi equation we get

t 1(ek ) = "Vh(e1,e k ,e1) - "Vh(ek ,e1,e1) = t 2(e
k

)

for k > 1 and

t 1(ei) = "Vh(e2 ,e 1 ,e 2) - \7h(e1 ,e2 ,e2 ) = t 2(e1)·

Sinee h is C -bi linear, we have atso

t 1Cje k ) = "VhCeI'Je k ,e1) - "VhCJek ,e 1 ,e1) = t 2(Jek )

for k > 1 and

t 1(Je1) = \7h(e2 ,Je1 ,e2) - 'Vh(Je1 ,e2 ,e 2 ) = t20e1)·
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Therefore t
l = t

2 at each point of UnMI and so on U. By using the Gauss

equation in a simi lar way we get Si = S2 on U. The assertion now fol­

lows from Theorem. 2.1. In the case where tjJ is not identicatly 1, we can

replace ~1 by lJ.l ~I and use formulas (1.3) - (1.5). The proof is compiete.

By using Theorems 2.1. and 2.2. ons can prove various equivalence the­

0rems depending on properties of transversal vector fields . For instance,

we have

Proposition 2.3. Let f 1,f 2: M _ e n + J be complex hypersurlaces and

(1.~2 vector fields transversal to f 1. I 2 respectively . defined on an open

subset U 01 M. Assurne thai the induced connections V J. V 2 are equal.

Then each 01 the lollowing conditions }) - 4) (holding af each point 01 U)

implies that 1 1J 2 are alfine equivalent.

}) a) S 1 = S 2

b) dime (spanCimS 1) > }

2) a) h 1 = h 2 ,

b) S~ = - JS k for k = 1,2,

J 2 1 2 k k k kc) r 1 = r 1 or r 2 = r 2 ' where r = r J + ir 2 and r j are real va-

lued lorms lor k,j = } ,2.

3) a) ~J,,2 are anti-holomorphic,

bJ h 1 = h 2 .

Praaf. We set 'V = \71 = \72. The curvature tensor of 'V wi tl be denoted

by R. Ir 51 = S2, then we shatl denote both by 5. Similarly, we set h = h l

= h2 if h l = h2
. In the sequal we shatl ami t the case where h I!I O. In this

case both hypersurfaces are totall y geodesic and it is, easy to see that they

are AGL(n + I,C) - equivalent if the induced connections are equal. Accor­

ding to the cases }) - 3) we have

J) The Gauss equation yields

(2.3) hl (Y,Z)5X - hl (X ,Z)5 Y = h2 (Y ,Z)SX - h2 (X,Z)S Y

for any X, Y, Z. Take arbitrary X, Z E TxM, xE U. There is Y E TxM such that

5Y does not belang ta the complex vector tine C' SX. By inserting these X,

Y, Z into (2.3) we abtain h l (X,Z) = h2 eX,Z). In a similar way ane can use the

secand Cadazzi equation to get the equati ty t l = t
2

.

2) Assurne that rk h > 0 on U. Let xE U and let e l , ... ,e n be a basis of TxM
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adapted to h. By the Gauss equation and the assumption b) we obtain
I 22S (je l) :::: R(je l ,el)e l :::: 2S CJe l)

We have also

Si ej :::: RCej ,el)e l :::: S2 ej

for j > 1. Sinee Si and S2 are anti - eomplex. we get Si :::: S2. Simitarly t he

Codazzi equation yields

C2.4)

and
I 2C2.5) t (Je j ):::: 'VhCel,Jej,e l ) - VhC]ej.el.e l ):::: t CJej)

for j > 1. Therefore t l :::: t 2 on the eomplex space spanned by e2 .....e n . Using

the Codazzi equation for 'VhCel .J 8 1 ,ei) - 'VhCJ e l ,ei ,ei) we get

tllCjel) + t l
2Ce l) :::: t 2

l CJe l) + t 2
2 Ce l)

and

112 2t 2C]e l ) - t l Ce l) :::: t 2 (Je l) - t I Ce l )·

Assumption c) now impties: tlCe1) :::: t 2Ce1) and tlCje l) = t 2CJe l l Therefore t 1=

t 2 .

3) As in 2) we assume that rkh > 0 on U. Also as in 2) we have Si :::: 52

on U and t 1x :::: t 2x on the complex spaee spanned by e 2 , ... ,en' where

e l , ... ,en is a basis of TxM adapted to hand x is any point of U. By the Co­

dazzi equation we get

2t I Cje l):::: VhCe1,jel,e l) - VhCJel.el.e l ) :::: 2t2CJe l }

Sinee t l and t 2 are anti - eomplex, we also have tlCe l) :::: t 2Ce1). The proof is

eompleted.

Remark. A transversal vector field ~ defines on its domain a eomplex

volume element ae and areal volume element a by

C2.6) &CCX1 .... 'Xn) = detC(f.XI, ... ,f.Xn'~)

C2.1) &CXI' .. ·.~n):::: detR(f.Xl.···,f.X2n'~ ,J~)

It is elear that if the assumptions of one of the above theorems are satisfied

and there is a point xE M such that &cl :::: &e2 Cresp. 301=&2) at x, then fl. f2

are A5LCn+ l,C) Cresp. AGLCn+ l,C)n ASLC2n+ 2, Rn - equivalent. Therefore.

horn Theorem 2.2. one can easily get complex versions of the classieal

Radon theorem Csee [8] p.l58) about equivalenee of non - degenerate hy­

persurfaees retative to the special affine group.
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3. Equivalence of hypersurraces with the same Induced connection. If R

is the curvature tensor of a complex connection 'V on a comptex manifotd

M, then we set

(3.D imRx ::: spanR {ReX,Y)Z. X,Y,Z E TxM}.

(3.2) ker Rx::: n ker R(X, Y)
X.Ye TxM

Since 'VJ ::: 0, the mapping V - R(X,Y)V is C - linear and hence imRx and

n+ t t hker Rx are complex subspaces of TxM. Let f: M - C be a comp ex y-

persurface and ~ a transversal vector field for f on some open set U c M. If

hand S are the second fundamental form and the shape operator coue­

sponding to ~. then we set

(3.3) ker h x ::: {X E TxM, heX,YJ ::: 0 for every Y E TxM}

(3.4) imCSx ::: spanCimSx

Ctea rly, ker h x is a comptex subspace of TxM. We shall need

Lemma 3.1. Let f: M - C n
+ J be a camplex hypersurface and ~ a trans­

versal vector fjeld for f on U. At every point x of U we have.

(3.5) im Rx c imC S x

(3.6) kerhx c kerRx '

If SxI = - ISx and Sx ~ 0, then the equality holds in (3.6).

If S is anti - complex at each point of U, then t7 is affine Kähler. Con­

versely, if the induced connection is affine Kähler and tf > 1 at some point

of M, then the shape operator is anti - complex at each point of U.

Proof. Inclusions in (3.5) and (3.6) hivially follow from the Gauss equa­

tion. Assume that S is anti - complex. Let Z E ker R, Le. for every X,Y we

have

h(Y,Z)SX - heX,Z)SY ::: 0

h(JY,Z)SX - heX,Z)SjY ::: O.

By multiplying the first equality by and using the complexity of hand

the anti - complexi ty of S we get

ih(Y,Z)SX - ih(X,Z)SY ::: ih(Y,Z)SX + iheX,Z)SY ::: 0.

Since there is X such that SX * 0, we have hCY,Z) ::: ° for every Y.

Ir S is anti - complex. then, by the Gauss equation, the induced connec­

tion is affine Kähler. Assume that the induced connection is affine Kähler

and tft >1. Let xEUnM t and et, ... ,e n be a basis of TxM adapted to h. If
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j > 1, then

Sej = R(e j .e1)e1 = R(je j .}e 1)e 1 :: }5}ej .

We have also

5e = R(e1 .e 2 )e 2 = R(j e 1 .J e 2)e2 = J5j e 1•

which finishes the proof.

The following theorem is a complex analogue of the affine Beez - Ki Hing

theorem proved in [01

Theorem 3.2. Let 11• f 2 : M .... C n + 1 be complex hypersurlaces equip­

ped wi th transversal vector fields ,1, , 2 on an open set U c M. Assume

that \7 1::= \7 2. 11

}) tfl > } at some point 01 M,

2) dime imR 1
> 2 at some point 01 U,

then 11 and 1 2 are AGL(n +},C) - equivalent.

Proof. By assumption 2) and Lemma 3.1. we know that rk C5k > 2 at some

point of U for k = 1,2. We can assurne that 1f1 > 1 and rk C 5k
> 2 at each po­

int of U. Take xE U. We shall prove that any h1 - orthogonal basis of TxM

is also h2
- orthogonal. Let e 1•.... e n be an h1 - orthogonal basis of TxM.

. 2 2 2 2 2
5Ince rk C 5 > 2. at least three of the vectors 5 e 1.···.5 en' 5 }e 1.···.5 Jen

are C - linearly independent. With the aim of proving that el"" ,en is

h 2 - orthogonal it is sufficient to consider two cases:

2 2a) Among 5 e1, ... ,5 e n there exist three C - linearly independent vec-

tors.

2 2
h (eI .82 ) 5 Je 1

1 1 1 1:;: R(e 1.} e 1)e2 :;:; h Oe1 .e2 )5 e1 - h (e 1.e2 ) 5 }e 1 = O.

If k > 2. then by th8 Gauss equation we get
2 2- h (e1.ek )S e 2

1 1 1 1:;:; R(e1.e2)e
k

:;:; h (e2,e
k

)5 e1 - h (e
1
.ek )5 82 :;:; O.

Hence h(e
1

,e
2) :;: O.

2 2h (e 2 .e k )5 8 1

b) 52e1.52e2.52Je1 are C - linearly independent.

Consider case a). Take j.k E {I •.... n}. j :t= k. There is 1 such that 1 1= j and

52e t Et C' (5 2e k)' By the Gauss equation we have
2 2 2 2h (e t .e j )5 e k - h (ek,ej)S e t

- ( - h1( 1 h1 ( ) 5 1 ::- R ek.e l )e j - e l .e j )5 e k ek.e j e t 0
2Hence h (e k .e j ) :;: O. Assume b). The Gauss equation yields

2 2h (je1 ,82) 5 e 1 -
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I I- h (ei ,e l ) S e k = 0

proved that e l , ... e n is

o for k > 2. Using these equatities and the

2 2- h (e l ,e l )S e
k

1 1= R(e l ,ek)e 1 = h (ek ,el)S e l

= 0 for k 1= 1, k,t > 1. Ws have

Therefore h2 (e 2 ,ek ) =
Gauss equation:

2 2h (e
k

,e l )5 8
1

we obtain h2 (e k ,e l )

h2
- orthogonal.

Let jE {I, ... ,n}. Using agai n the Gauss equation we obtain
2 2 _ _ 1 1

h (ej'ej)5 8 k - R(e k ,ej)e - h (e.,ej)S e k

for every k:t j. Ir hl (ej ,e j ) = 0, then we can take k 1= j such tha t S2 ek 1= 0

2 1and we get h (ej ,e j ) = O. Ir h (ej ,e j ) = 0, then we choose k 1= j so that

SI e k 1= O. Then we have h2 (e. ,e.) 1= O.
J J

Assurne now that e l , ... , e n is adapted to h l and rk h l = r. Then the basis

is h 2
- orthogonal, h 2 (e j,ej ) 1= 0 for j ~ rand h2 (ej ,e j) = 0 for j > r. Ir j 1= k and

h l (erej) = h l (ek ,ek ), then h2 (ej ,e j) = h2 (e k ,8k ). Namely, if in the sequence

e1 , ••. e n the vectors e j and e k are replaced by the vectors e j + e k and e k - e j

respecti ve1y. then the new basis is also h l
- orthogonal and hence

h 2
- orthogonaL Thus h2 (ej+ e k , e k - e j) = 0 and consequently h 2 (e j ,e j) =

h2 (ek,ek ). Summing up. we have proved that h2 = Clhl for so me nowhere

vanishing function Cl on U (obvious1y of c1ass t<o). Ta finish the proof it is

sufficient to app1y Theorem 2.2.

From now on ws shatl consider hypersurfaces on which the induced

connection is affine Kähter. We shalt start wi th the fotlowing

Lemma 3.3. Let V be an affine Kähler connection on a complex manifold

M. If R(jX,XJX = 0 for every XE TxM. fhen Rx = O.

Plccf. Since for every X,Y E TxM

o = R( JX + jY,X+ Y)(X+ Y)

=-RC]X,X)Y + RC]Y,Y)X + 2ReJY,X)X + 2RC]X,Y)Y.

we have

(3.T) RC]X,X)Y + 2R(jY,X)X = - RCjY,Y)X - 2RC]X,Y)Y

for every X,Y. After reptacing X by - X in e3.T), the 1eft - hand term re­

mains unchanged and the right - hand ane changes the sign. Thus for eve­

ry X,Y we have
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(3.8) R(jX,X)Y + 2R(jY,X)X = 0

Using the first Bianchi identity and the fact that '1 is affine Kähler we get

frorn (3.8)

(3.9) R(Y,X)jX + 3R(jY,X)X = O.

When WB replace X by JX in (3.9) and use (3.T) and (3.9) we obtain R{JX,

Y)X = 9R(jX,Y)X and consequentty

(3.1 0) R(X,Y)X = 0

for any X,Y. Hence R(X,Y + Z)(Y + Z) = 0 for any X,Y ,2. Using (3.1 0) and the

Bianchi identi ty we obtain R(X,Y)Z = O.

Proposition 3.4. Let fl. f 2 : M _ C n + 1 be camplex hypersurfaces endo­

wed with transversal vector fjelds el , e 2 on U. If the curvature tensors 01

the induced connections are equal and non - zero at a point xE U. and the

corresponding shape operators SI. S 2 are anti - camplex at x , then there

is a non - zero complex number a such that h 1 = a h 2 and S 2 = a S 1.

Proof. By Lemma 3.3. we know that there is a vector X E TxM such that

R(jX,X)X * O. Since SI is anti - cornplex the Gauss equation gives

(3.11) 2hl (X,X)Sl jX = R(jX,X)X = 2 h2 (X,X)S2jX

Hence hl (X,X) * 0, h2 (X,X) * 0, Sl(X) =0, S2(X) * O. There is a basis

e 1, ... , e n of TxM adapted to h1 such that e 1 is proportional to X. By (3.11)

2 I I 2we have S e l = CIS e 1 and h (e 1,e 1) = CIh (ei ,ei) for some non - zero complex

number CI. Ir k > 1, then the Gauss equation yie lds

(3.12) hl (ei ,e1)Sl ek = h2 (e l ,ei )S2ek - h2(el,ek)S2e1

Similarly we obtain
1 1 2 2 2 2h (e1,el )S jek = h (e 1,e l )S jek - h (el'je k )S e l

and consequentty

(3.13) - ih1(e1,el)Slek = - ih2(el,el)S2ek - ih2(el,ek)S2el

Multiplying (3.12) by - i and comparing wi th (3.13) gives
2(3.14) h (ei ,ek) = 0 for every k > 1.

Formuta (3.12) can now be rewritten as
1 1 2 2(3.15) h (ei ,el )S e k = h (ei ,e l )S ek'

Since hl (ei ,ei) = ah2(el .e1). we have S2 ek = CIS I ek' Therefore 52 = CIS l .

If l,k,j are mutuatly distinct, then the Gauss equation gives
2 2 2 2o = R(e l ,ej)ek = h (ej ,ek)S e l - h (ei ,ek)S e j
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Therefore. by (3.14), we have h2 (e j ,8 k ) = 0 for any k,j> 1. k:t; j. Thus

e l , ... ,8n is h2
- orthogonal. Using once again the Gauss equation we get

I )Sl - ) - 2 )5 2h (ek .ek e l - R(e l .ek e k - h (ek ,ek e l
. 2 I I 2for k > 1. Slnce 5 = aS , we get h (ek ,ek) = a h (ek ,ek) and consequently

hl = a h2
. The proof i s completed.

Theorem 3.5. Let I J, I 2: M _ C n + J be complex hypersurlaces endo-

wed with transversal vectol fields (1, ~2 whose corresponding shape ope­

rafors ale anti - complex at each point 01 some open subsef U c M. JI ~ J, ~ 2

induce fhe same connection ~ on U which is non - !lat, i.e. the curvature

tensor 01 ~ is non - zero at same point 01 U, then I 2 = B I 1 lor same BE

AGL(n+ J,CJ.

Proof. We can assume tha t R is not zero at every poin t of U. By Propo­

sition 3.4. we know that there is a nowhere vanishing function a on U

such that hl = Clh
2 and S2 = aS I . Replace now ~I by Cl~I. The shape opera-

tor corresponding to a~1 is anti - complex and, of course, a~1 induces the

connection 'V. Moreover, the shape operators and second fundamental

forms corresponding to cxe and ~2 are respectively equal. Hence we can

assume that Cl 11 I, i .e. h t = h2 = hand 51 = 52 = S. As in the proof of Propo­

sition 3.4. we can find a basis e l , ... ,e n of TxM adapted to h such that

h(e l ,ei) = 1 and Se I :t; O. By the first Codazzi equation we get

(3.16) t l Cje
l

) -itl (e
l
) = 'Vh(e

l
,je

l
,e

l
)- 'Vh(je

l
,e

l
,e

l
) = t 2 Cje l) - it 2(e l)

The second Codazzi equation yields

( i t l (e l ) + t l (j e l ))Se l = 'VS(jel ,ei) - 'VS( e l ,j e l) =( i t 2 (e I) + t 2 (je l))Se
l

5ince Sei :t; 0, we obtain

(3.11) itl(e l ) - it 2(e l ) = t 2 (je l ) - tleje l ).

Formula (3.16) can be rewritten as

(3.18) it 2(e
l
) - itl(e l) = t 2 Cje l) - tlOel)

Compari ng formulas (3.1 T), e3.18) we get

I 2 I 2(3.19) t (ei) = t (ei) and t (j e l) = t (j e I)'

As in the proof of Proposition 2.3. for the case 2) we also obtain t l = t 2 on

the complex space spanned by e 2 , ... ,en , see formulas (2.4), (2.5). Hence t
l =

t 2. The assertion now follows from Theorem 2.1.
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Corollary 3.6. Let I 1, f 2 : M _ C n + 1 be camplex hypersurlaces such

that ff 1 > 1 at a point 01 M. If there are transversal vector fields ~ 1. ~ 2 lor

1 1. 1 2 on some open set U c M, inducing the same connection which is

non - !lat and alfine Kähler, then 1 1
, f 2 are alfine equivalent.

Proor. Sinee ffl > I, we know by Lemma 3.1. that 51 is anti - eomplex at

eaeh point of U. Take a point xE Ml nu. Then 51 x * O. By Lemma 3.1. we

have ker h l x = kerR x ' Sinee rk h l x > I, we get dirn ker Rx:S: n - 2. We have

also the inclusion ker h 2x c ker Rx. Therefore dirn ker 2x :s: n - 2 and conse­

quentty rk h 2x > 1. Hence, by Lemma 3.1, 52 is anti - eomplex. We ean now

apply Theorem 3.5.

Consider now the case of Kähler hypersurfaces. In what follows C n
+ 1

wi II be equipped with the standard Kähler structure. By a Kähler hyper­

surfaces we shaH mean a hypersurfaee endowed with the indueed Kähler

strueture. First we shall prove.

Theorem 3.1. Let I 1 ,f 2 : M _ C n+ 1 be Kähler hypersurlaces . 11 I 1is

non - degenerate at a point 01 M and the Kähler connections induced by
1 2 1 2I and I are equal on some open subset U 01 M, then I = cE! lor some

B E U(n + 1) and cER.

Proal. Let 91 and 9 2 be the metrie tensor fields indueed by fl and f2,

respeetively. Assurne that h k . Sk are the Riemannian second fundamental

forms and second fundamental tensors for fk. k = I, 2, defined on U. Ir h k =
h k 1+ ihk

2 is the deeomposition of h k into the real and imaginary part.

then h k 1CX,Y) = gkCSkX,Y). The shape operators 51, 52 are anti - complex.

Since fl is non - degenerate on a dense open subset of M, we can assurne

that the connection \l is not flat and 51 is non - singular at every point of

U. As in the proof of Theorem 3.5. we get a funetion cx such that h l = cxh2

and 52 = cx 51. Then we have

gl CS 1X.Y) = lcxl 2 g2 CS1X.Y)

Hence gl = Icxl2 g2. Sinee 9 1. 9 2 have the same Levi - Civi ta eonneetion,

the function ICll 2 is constant. Set c = Icxl. If we muttiply the immersion f2

by c, then the new pair of hypersurfaces f 1, f2' = c f2 induce the same

metrie tensor fie ld 9 1 on U. On the other hand. by Theorem 3.5. we know

that fl and f2 are AGLCn+ l,G::) - equivalent and so are fl and (2'. Let fl =
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B f2. Since f2 is not totally geodesic Cbecause "V is non - flaD,there are x,

yE U such that V x = f2·. CTxM ) and Vy = f2'.CT y M) are not parallel. The

transformation B restricted to V x as weil as to Vy preserves the scalar pro­

duct in Cn
+ 1. Thus BE UCn+ 1).

We can also easily get the following classical result.

Corollary 3.8. Let f J J 2 : M _ C n +- J be Kähler hypersurfaces. If the

Jindueed metrie tensor fjelds are equal on some open set U c M. then f

and f 2 are U(n + 1) - equivalen t.

Proof. In the case where the induced connection is non - flat the asser-

tion follows hom Theorem 3.5. and the arguments given at the end of the

proof of Theorem 3.1. Ir V is flat, then fl and f2 are totally geodesic and

henee UCn + I,C) - equivalent.
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