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Introduction. In this paper we study equivalence of complex hypersur-
faces in €"*!,where €™*! is considered as a homogeneocus space under
the action of the group AGL(n+1,C).

Depending on the choice of transversal vector fields one gets various
approaches to complex affine differential geometry of complex hypersur-
faces in C€™*!, Assume we have a complex hypersurface : M - €™"! It
E is an arbitrary (i.e. real of class €%) transversal vector field for { on so-
me open set Uc M , then it induces on U ( by formulas (1.1), (1.2) in Section
1) a complex torsion - free connection V, a symmetric 'C- bilinear form h,
called the second fundamental form, a (1,1)- tensor field S (in general nei-
ther complex nor anti - complex), called the shape operator, and a €-va-
lued R - linear ! - form 1. These objects determine f and £ modulo AGL(
n+1,C), see Theorem 2.1. One can consider holomorphic transversal vec-
tor fields, but then the induced connection is not Kdhler unless it is flat.
With the aim of getting affine geometry compatible with Kéhler geometry
K.Nomizu, U.Pinkall and F.Podesta introduced in [NPP] the notion of affine
Kahler connection and affine K&hler hypersurface. Namely a complex
torsion - free connection on a complex manifold M is called affine Kahler
if its curvature tensor R satisfies the condition R{(X,]Y) = RX.,Y) for any
XY, where ] is the complex structure on M. A complex hypersurface is
called affine Ké&hler if it is endowed with an anti - holomorphic transversal
vector field . The connection induced by an anti- holomorphic transver-

sal vector field is affine K&hler.

(*) The work is supported by an Alexander von Humboldt research fel-
lowship at Universitit zu Kéln and Max- Planck - Institut fir Mathematik,

Bonn.



Instead of anti- holomorphic transversal vector fields, however, we
propose to consider transversal vector fields for which the corresponding
shape operator is anti - complex. It turns out that metric transversal vector
fields as well as anti- holomorphic ones have this property. A metric
transversal vector field is never anti- holomorphic unless the given hy-
persurface is part of a hyperplane in €™ ! The anti-complexity of the
shape operator is , in fact, a property of the complex transversal vector
bundle spanned by E. The connection induced by such a transversal vec-
tor field is affine Kdhler. Conversely, if rkh >1 at some point of M and the
induced connection is affine - Kédhler, then the corresponding shape opera-
tor is anti - complex at each point of M, see Lemma3.1.

In Section2 we prove two basic theorems (Theorems 2.1.,2.2.) for hyper-
surfaces endowed with arbitrary transversal vector fields. From the affine
point of view the most important object induced on a hypersurface is the
induced connection. In Section3 we shall prove some results in which the
equality only of the induced connections implies affine equivalence. In
particular, a complex affine analogue ot the Killing - Beez theorem is gi-
ven (Theorem3.2). Except for this theorem Section3 deals with hypersurfa-
ces endowed with transversal vector fields whose shape operators are an-
ti - complex. We prove, for instance, that if for two complex hypersurfaces
equipped with such transversal vector fields the induced connections are
equal and non - flat, then the hypersurfaces are affine equivalent (Theo -
rems 3.5.). Using this result one easily gets the classical equivalence theo-
rem for Kahler hypersurfaces in c™*! as well as a theorem about ho-

mothetical equivalence of Kahler hypersurfaces (Theorems 3.T., 3.8.).

1. Preliminaries. Let M be a connected complex n- dimensional mani-
fold and f : M » €™*! a holomorphic immersion. We shall denote by | the
complexl structure on M as well as the standard one in € !. The tangent
space T,M has a natural structure of a complex vector space where the
multiplication by i is given by J. Throughout the paper we shall use the

notation iX = JX for X tangent to M or Xe ¢™*!

. Let € be an arbitrary (i.e.
of class €% - in the real sense) vector field transversal to f on some open

set Uc M. We can write the formulas of Gauss and Weingarten:



(1.1) Dyf, Y = {,VyY + h(X,Y)E,

(1.2) DyE = -{,5X + t(X)E
where D is the standard connection on €™*! and X,Y are tangent to M. For
any transversal vector field £ the V is a torsion-free complex (i.e. V] = 0)
connection, h is a symmetric € - valued, C- linear 2- form, S an R - line-
ar (1,13~ tensor field and t is a €- valued R - linear | - form. All the objects
are of class €®. A transversal vector field is holomorphic iff S] = JS and 1]
= jt. It is anti- holomorphic if and only if §] = -JS and tJ = -it. If £ is
another transversal vector field defined on U, then &' = {,Z + @, where Z
is tangent to M and ¢ is a nowhere vanishing complex valued function of
class €°. Then

(1.3) h{X,Y) = ph"(X,Y),

(1.4 8'X = @5X - VyZ +1(X)Z

(1.5) 1’ (X) = @t(X) + X + h(X,2)
where h', §', t' are the objects induced by £’ . By (1.3) it is clear that the
rank of a complex form h, is independent of the choice of £ The rank will
be called the type number of { at x and denoted by ff,. Around any point
of M it is possible b find a holomorphic transversal vector field §. If § is a

holomorphic transversal vector field on U and X,,...,X_ is a holomorphic

n
complex frame on U, then the matrix [h(Xi.Xj)]1 < 1,j< n i5 holomorphic and
so are its minors. Hence we have

Lemma l.l. For every r€ IN the set

M= { xeM, tf,>r}

is empty or open and dense in M. In particular, the rank of h is constant
on an open dense subset of M.

Assume that an arbitrary transversal vector field & is given on an open
set Uc M. At every point x€ M there is a complex basis e,...e_ of T,M
such that h(e, .e) = O and h(ej.ej) =1]lor Oforjk =1,.,n j* k. We shall

J

order e,,...e_ in such a way that if there are vectors & for which h(ej,ej)

n
= |, then they are at the beginning of the sequence. Such a basis will be
said to be adapted to h.

As in real affine geometry we have the equations of Gauss , Ricci and

Codazzi:



(1.6) R(IX,Y)Z = h(Y,Z2)SX - h(X,2)5Y - Gauss
(1.7 hX,SY) - h(Y,SX) = 2d(X,Y) = Ricci
(1.8) VhX,Y,Z) - Vh(Y,X,2) = h(X,2)t«(Y) - h(Y,2)1(X) - Codazzil
(1.9) VS(X,Y) - VS(Y,X) = «(X)SY - «(Y)SX - Codazzi Il

for X.Y.Ze T,:M, xe U.

In what follows we shall mean by a function a complex valued functi-
on of class €7. If a transversal vector field £ for a hypersuface [ :M —
cn* ! s given, then V, h, 5, t will automatically denote the objects defi-
ned by formulas (1.1, (1.2) for the given f and &.

2. Basic equivalence theorems. Let f!, > M — ¢™*!

be two complex
hypersurfaces. They are said to be affine equivalent if and only if there is
Be AGL(n+1,0) such that {2 = B f'. Since the mappings f!, {2 are holomor -
phic, their affine equivalence on some open subset of M implies their glo-
bal equivalence. Assume now that we have one immersion f: M - cn!
and a transversal vector field £ on a connected open subset U. Let P be
the principal fibre bundle of all € - linear frames over U. The projection of
P onto U will be denoted by =. Since V] = 0, V is covariant derivation
coming from a connection on P. We define the mapping F: P = AGL(n+1,
C) by
(2.1) FQ) =(d,f ¢ LE(m(LDN

where (d,f ¢ L) is the linear part and {(m(1)) the translation part of F(D.
Let o' be the Maurer- Cartan form on AGL(n+1,C). One can check that the
pull back w:= F*0’ depends only on V, h, S, 1. It can be described in the
following way. We shall use the index range

1 £ i,jsn+2,

! sa,fps<n

The i-th row of the matrix w = (mi-)l <i,js n+ 2 Will be denoted by w! and

]
the j- th column by - It is straightforward to verify

(2.2 (maﬁ) @B the connection form of V on P
(W™ ) = h(n,Ye,),  where | = (e;,....e,).
w™* 2 =0,

! = 0,
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(w the canonical form on P,

n+2)u =

(0™ WYY = (- 1" HSn, YN, where (y) * denotes the a-th

n+1

coordinate of y € C" relative to the canonical basis.

™! . XD = wx, M.

We have the following theorem, see for instance [G]:

n+1

Let F !, F 2 be two smooth mappings of a connected manifold N into a
Lie group G. Then F 2 = A F! for some A€ G if and only if F,"w’ = F,'w’,
where w’ is the Maurer - Cartan form on G.

Using this fact and formulas (2.2) we obtain

Theorem2.l. Let f!,f 2: M - € **! be complex hypersurfaces and £!,£?
vector fields transversal to f1, f 2 respectively on some open set Uc M.
Assume that

vi= v2 hnl=h% sl=52 ¢! =2
where V1, h', % ¢t are the objects defined by formulas (1.1), (1.2) for
i=1,2. Then there is Be AGL(n+1,€) such that f %= Bf ! on M and g 2=Bf¢ !
on U.

Similarly to the real case (see[OD we can prove the following

Theorem 2.2. Let f ., f %M » € ™% be complex hypersurfaces and tf !
> | at some point of M. If there exist vector fields £ 1, F Ztransversal to £ '
and f 2 on some open set Uc M such that

vi=vZ, nl=yn?
for some nowhere - vanishing function ¢, then there is B€ AGL(n+1,C)
such that f 2= Bf ! on M and £ 2= ¢ BE! on U.

Proof. At first we assume that ¢ =1, We set V = V'= V2 and h = h'= n%
Let x € UNM! and e,,...,e_ be a basis of T,M adapted to h. Then hle,,e,) =
h(e,e;) =1 and by the Codazzi equation we get

t'(e,) = Vhie,.e,.e,) - Vhle, e ) = tXe,)
for k>1 and

tl(el) = Vh(e,,e, .e;) - Vhie, e,,8,) = 1:2(31).
Since h is C-bilinear, we have also

t'(Je,) = Vhle, Je,.e) - Vh(e,e, .e) = 12(e,)
for k>1 and

t'(Jey) = Vhie,.Je, e,) - Vh(e, e .e,) = 1%(e)).



Therefore t!= 12 at each point of UNM! and so on U. By using the Gauss
equation in a similar way we get s = 52 on U.The assertion now fol-
lows from Theorem . 2.1. In the case where ¢ is not identically |, we can
replace El by q.aEl and use formulas (1.3)- (1.5). The proof is complete.

By using Theorems 2.1. and 2.2. one can prove various equivalence the -
orems depending on properties of transversal vector fields . For instance,
we have

Proposition 2.3. Let f!,f2: M - € "*! be complex hypersurfaces and
& E2 vector fields transversal to I r2 respectively , defined on an open
subset U of M. Assume that the induced connections V !,v Zare equal.
Then each of the following conditions 1)- 4) (holding at each point of U)
implies that £1,f% are affine equivalent.

D ast=s?

b) dimg(spangpimS™) > 1

2 a) n' =R

B) SN = -JS¥ for k = 1,2

2 1 2

1 _ _ k
c)rl—rjortz—rz

, where t~ = rkf + itkz and r k} are real va-
lued forms for k,j = 1,2.

3 a (;‘1.52 are anti-holomorphic,

b) h' = hZ

Proof. We set V = V! = V2 The curvature tensor of V will be denoted
by R. If s! = 5%, then we shall denote both by 5. Similarly, we set h = n!
= h? if k! = h%. In the sequal we shall omit the case where he 0. In this
case both hypersurfaces are totally geodesic and it is-easy to see that they
are AGL(n+1,C)- equivalent if the induced connections are equal. Accor-
ding to the cases /}- 3) we have

1) The Gauss equation yields

23 RY,2)SX - h(X,2)SY = KA(Y,Z)SX ~ h*(X,2)SY
for any X, Y, Z. Take arbitrary X, Z€ T M, x€ U. There is Y& T,M such that
SY does not belong to the complex vector line €-SX. By inserting these X,
Y. Z into (2.3) we obtain h'(X,2) = h2(X,Z). In a similar way one can use the
2

second Codazzi equation to get the equality ¢! = t°.

2) Assume that rkh >0 on U. Let x€ U and let €p,.., 8 be a basis of TxM



adapted to h. By the Gauss equation and the assumption b) we obtain
25'Je) = R(e, ,)e, = 25%(e)
We have also
1 _ - a2l
S e; = R(ej e)e; =35 e
for j>1. Since s'and s? are anti - complex, we get s! = 52 Similarly the
Codazzi equation yields
(2.4) 1l = Vhie e e)) - Vhe e ) = t26)
and
2.5  t'(e;) = Vhie, Je;.e)) - Vh{e e e) = t°(e)

for j> 1. Therefore t'= 12

on the complex space spanned by e, ,...e.. Using
the Codazzi equation for Vhie, Je,.e;) - Vh(e e .e) we get
tll(]el) + tlz(el) = t21(]el) + 1:22(el)
and
ey - ditep = P dep - tFlep.
Assumption ¢) now implies: tl(el) = tz(el) and 'r.l(Jel) = ':2(]e1). Therefore t'=
2.
3 As in 2) we assume that rtkh >0 on U. Also as in 2) we have S' = s?
1 2

on U and t = 1

X on the complex space spanned by e,,..,e. where

X
e,.....e_ is a basis of T,M adapted to h and x is any point of U. By the Co-
dazzi equation we get '
2t'(Je)) = Vhie, Je,.e,) - Vh(e,.e,.e,) = 2t°(e,).

Since t and t2 are anti-~ complex, we also have tl(el) = tz(e]). The proof is
completed.

Remark. A transversal vector field £ defines on its domain a complex
volume element 3 and a real volume element § by

(2.6) 9, (X,,...X ) = deteU X,.....f , X _.D

2.1 $X| ... X ) = detp (X, ... T, X5 ., ]8)
It is clear that if the assumptions of one of the above theorems are satisfied
and there is a point x€ M such that 3cl= Scz (resp. 9'=8%) at x, then f', 12
are ASL(n+1,€) (resp. AGL(n+1,C)(VASL(2n+ 2,R)) - equivalent. Therefore,
from Theorem2.2. one can easily get complex versions of the classical

Radon theorem (see [B] p.158) about equivalence of non- degenerate hy -

persurfaces relative to the special affine group.



3. Equivalence of hypersurfaces with the same induced connection. If R
is the curvature tensor of a complex connection V on a complex manifold

M, then we set

(3.1 imR, = spang {R(X,Y)Z, X,Y.Z€ T, M}.
(3.2) kerRy, = (N kerR(X.Y)
X.Ye T, M

Since V] = O, the mapping V = R(X,Y)V is C- linear and hence imR, and

"*1 be a complex hy-

kerR, are complex subspaces of T,M. Let {: M - C
persurface and [ a transversal vector field for { on some open set Uc M. If
h and 5 are the second fundamental form and the shape operator corre-
sponding to £, then we set

(3.3 kerh,= {X€ T,M; h(X,Y) = O for every Y€ T,M}

3.4 imCSx = spanCime
Clearly, kerhy is a complex subspace of T,M. We shall need

Lemma 3.. Lef : M - €' be a complex hypersurface and § a trans-
versal vector field for f on U. At every point x of U we have.

(3.5 imR,cimg S,

(3.6) kerhy c kerR,, .

If5,] = -JS, and S, # O, then the equality holds in (3.6).

If 5 is anti-complex at each point of U, then V is affine Kdhler. Con -
versely, if the induced connection is affine Kihler and tf>1 at some point
of M, then the shape operator is anti - complex at each point of U.

Proof. Inclusions in (3.5) and (3.6) trivially follow from the Gauss equa-
tion. Assume that S is anti- complex. Let Z€ kerR, i.e. for every XY we
have

h(Y,Z)SX - h(X,2)SY = O

h{(jY,2)3X - h(X,2)S]JY = O.
By multiplying the first equality by i and using the complexity of h and
the anti - complexity of 5 we get

ih(Y,Z2)SX - ih(X,Z2)5Y = ih(Y,Z2)SX + ih(X,Z2)8Y = 0.
Since there is X such that SX # O, we have h(Y,Z) = O for every Y.

If S is anti- complex, then, by the Gauss equation, the induced connec-
tion is affine Kadhler. Assume that the induced connection is affine K&hler

and tf! >1. Let x€ UNM' and e,,...e_ be a basis of T,M adapted to h. If



j>1, then

Sej = R(ej,el)e1 = R(]ej,Jc-:-l)e1 = IS]ej.
We have also

Se = R(el,ez)e2 = R(Je1 .]ez)e2 = ]S]el.
which finishes the proof.

The following theorem is a complex analogue of the affine Beez- Killing
theorem proved in [O]

Theorem 3.2. Let f!, 2 : M - € ""! be complex hypersurfaces equip -
ped with transversal vector fields £!, £ 2 on an open set Uc M. Assume
that V1= v 2 [f

1) tfr! > | at some point of M,

2) dimgimR'> 2 at some point of U,
then f! and % are AGL(n+1,C) - equivalent.

Proof. By assumption 2) and Lemma 3.1. we know that rk CSk > 2 at some
point of U for k = 1,2. We can assume that #! >1 and rkCSk > 2 at each po-
int of U. Take x€ U. We shall prove that any h! - orthogonal basis of T,M
is also hz-orthogonal. Let e,,...e_ be an hl-orthogonal basis of T,M.
Since rkC52>2, at least three of the vectors Szel....,Szen, 52]6.-1....,52]&n
are C-linearly independent. With the aim of proving that e ...e s
h? - orthogonal it is sufficient to consider two cases:

a) Among Szel....,Szen there exist three €- linearly independent vec-
tors.

b) 5%,.5%,,5%e, are C€- linearly independent.

Consider case a). Take jke€ {I, ...,n}, j £ k. There is 1 such that 1#j and
52el ¢ C- (Szek). By the Gauss equation we have
hz(el.ej)Szek - lrtzte-k.te:j)Sze1
= Riey.e)e; = hiee)S'e, - hl(e, epS'e = 0
Hence hz(ek ,ej) = 0. Assume b). The Gauss equation yields
h2(Je, e,)5%e, - h°(e, .e,)5%]e,
= Ree, Je,de, = h'(Je, .e,)5'e, - h'(e,.e,)S'Je, = O.
Hence hle, ,e,) = 0. If k> 2, then by the Gauss equation we get
h2(e,.e,)5%, - h (e e 5%,

= Rle,,e)e, = h'(e,e,)S'e, - W (e .e)8'e, = 0.
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Therefore hz(ez.ek) = hz(el,ek) = 0 for k> 2. Using these equalities and the
Gauss equation:

h%Ce, 5%, - h%e,.e)5%

= Rle,,e) de, = hl(ek.el)Sle1 - K (e, .el)Sle]'c =0
we obtain h%(e, ) = O for k*1, k,l>1. We have proved that e ,..e_ is
h? - orthogonal.
Let je {i,....n}. Using again the Gauss equation we obtain

h®(e;e)S%, = Rle,.e)e; = h'(e e)S'e,
for every k#j. If hl(ej‘ej) = 0, then we can take k #j such that Szekt 0
and we get hz(ej.ej) = 0. If hl(ej.ej) = 0, then we choose k#j so that
st e, #* 0. Then we have hz(ej.ej) ¥ 0.

Assume now that e ,...e_ is adapted to h' and rkh' = 1. Then the basis
is h? - orthogonal, h’(ese) # 0 for j< 1 and h®(ej.ep) = O for j>r. If j* k and
hl(ej,ej) = hl(ek,ek), then h2(ej,ej) = hz(ek,ek). Namely, if in the sequence
e,...e_ the vectors e; and e, are replaced by the vectors et ey and e, - e;
respectively, then the new basis is also h' - orthogonal and hence
hz-orthogonal. Thus hz(ej+ e, ek-ej) = 0 and consequently hztej,ej) =
hz(ek.ek). Summing up, we have proved that h? = «h! for some nowhere

vanishing function a on U (obviously of cltass €*). To finish the proof it is

sufficient to apply Theorem 2.2.

From now on we shall consider hypersurfaces on which the induced
connection is affine Kdhler. We shall start with the following
Lemma 3.3. Lef V be an affine Kdhler connection on a complex manifold
M. If RX.X)X = O for every X€ T, M, then R, = 0. |
Proof. Since for every X, Y€ T,M
0 =ROJX + JY, X+ YXX+Y)
= ROX,X)Y + ROY, V)X + 2R(JY, X)X + 2R(X,Y)Y.
we have
3.0 RX,X)Y + 2R(JY.X)X = -ROY,Y)X - 2Z2RUX.Y)Y
for every X,Y. After replacing X by -X in (3.T), the teft- hand term re-
mains unchanged and the right - hand one changes the sign. Thus for eve-

ry X.Y we have



(3.8) RUX,X)Y + 2RJYX)X = O
Using the first Bianchi identity and the fact that V is affine Kahler we get
from (3.8)

(3.9 R(Y,XDJX + 3RY, X)X = O.

When we replace X by JX in (3.9) and use (3.T) and (3.9) we obtain R(X,
X = 9R(X,Y)X and consequently

GBI RXK,YIX =0
for any X,Y. Hence R(X,Y+ Z}Y+ Z)
Bianchi identity we obtain R(X,Y)Z

O for any X,Y.Z. Using (3.10) and the
0.

Proposition3.4. Lef flfr2: M- ™! pe complex hypersurfaces endo -
wed with transversal vector fields EI, I3 2 on U. If the curvature tensors of
the induced connections are equal and non- zero at a point x€ U, and the

2 are anti- complex at x , then there

corresponding shape operators sts
is a non - zero complex number « such that h! = @ h? and S 2-.a5'
Proof. By Lemma 3.3. we know that there is a vector X € T .M such that
R(JX, X)X # 0. Since S! is anti- complex the Gauss equation gives
3.1 2R (X X)SMIX = RUX. XX = 2 h2(X.X)S%X
Hence h'(X.X)*0, h(X,X) # 0, s'X) =0, SAX)* 0. There is a basis

e of T,M adapted to h! such that e, is proportional to X. By (3.1D

L
we have 82el = cm:Sle1 and h' (e,.e) = ozhz(el.el) for some non- zero complex
number «. If k > 1, then the Gauss equation yields

(3.12) h'(e,.e,)S'e, = h?(e,.e,)52%, - h2(e e )S%,
Similarly we obtain

h' (e, ,e,)5'Je, = MP(e,.e,)5%e, - hZ(e,Je )5%,

and consequently

(3.13) - ih'(e 028 e, = - ih’(e,.e)5%, - ihP(e, e, )5%,
Multiplying (3.12) by -1 and comparing with (3.13) gives

(3.14) h?(e,.e,) = O for every k> 1.
Formula (3.12) can now be rewritten as

1 1 _ 1.2 2

(3.15)  h'(e,.e)5°e, = h(e,,e)5%,.
Since h (e,.e)) = ah®(e,.e;), we have S%e, = aS'e,. Therefore 5%= as'.
If 1,k,j are mutually distinct, then the Gauss equation gives

O = Rle,.epe, = h’ee,)5%, - hi(e,.e,)5%

ik 3



Therefore, by (3.14), we have h’(e;e,) = O for any kj>1. k#j Thus
€,...,0  is h? - orthogonal. Using once again the Gauss equation we get

h'(e, .e )S'e, = Rle,.e, e, = hi(e, e, )S%,
for k > 1. Since S2% = aS!, we get hl(ek.ek) =« hz(ek.ek) and consequently
h' = ah?. The proof is completed.

Theorem 3.5. Let £, 1 2: M - € ™*! be complex hypersurfaces endo -
wed with transversal vector fields f’, 52 whose corresponding shape ope -
rators are anti - complex at each point of some open subset UcM. If £ ! & 2
induce the same connection V on U which is non- flat, i.e. the curvature
tensor of V is non- zero at some point of U, then f 2 =B r! for some Be
AGL(n+1,0).

Proof. We can assume that R is not zero at every point of U. By Propo-

sition 3.4. we know that there is a nowhere wvanishing function a« on U

such that h' = ah® and $2 = aS'. Replace now & by ak'. The shape opera-

tor corresponding to a&l is anti- complex and, of course, aEl induces the
connection V. Moreover, the shape operators and second fundamental
forms corresponding to aEl and Ez are respectively equal. Hence we can
assume that a= l,i.e. h' = h? = h and §! = $%2= S. As in the proof of Propo-

sition 3.4. we can find a basis e,....e of T,M adapted to h such that

n
h(e,,e;) =1 and Se, * O. By the first Codazzi equation we get

(316) t'Ce) -i‘l:l(el) = Vhie Je . )~ Vh(e e ) = ?ge) - it%Ce)
The second Codazzi equation yields
Cit'te,) + t'(Je, NSe, = VS(Je . e,) - VS(e, Je) =(it’(e) + t°(eNSe,
Since Se; * O, we obtain

GID  itleep -it¥e) = t¥Uep - t'de).
Formula (3.16) can be rewritten as

(3.18) i‘t2(el) - itl(el) = 1:2(]e1) - tl(Jel)
Comparing formulas (3.1T), (3.18) we get

(319 tlte) = t*e) and 1'Je) = t°(e).
As in the proof of Proposition 2.3. for the case 2) we also obtain t = % on

the complex space spanned by e,.....e_, see formulas (2.4), (2.5). Hence o=

2. The assertion now follows from Theorem 2.1.
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2. M- ¢ "' be complex hypersurfaces such

Corollary 3.6. Let f Lr
that tf ! > 1 at a point of M. If there are transversal vector fields £'. £ 2 for
! 2 on some open set Uc M, inducing the same connection which is
non - flat and affine Kihler, then 1, f? are affine equivalent.

Proof. Since #' >1, we know by Lemma 3.1. that s' is anti - complex at
each point of U. Take a point x€ M!NU. Then Slxt 0. By Lemma 3.1. we
have kerh', = kerR,. Since rkh', >1, we get dimkerR,< n-2. We have
also the inclusion kerhzx c kerRy. Therefore dimkerzxs n-2 and conse-
quently rk hzx > 1. Hence, by Lemma 3.1, 32 is anti- complex. We can now
apply Theorem3.5.

Consider now the case of Kahler hypersurfaces. In what follows cnt!
will be equipped with the standard Kahler structure. By a Kahler hyper-
surfaces we shall mean a hypersurface endowed with the induced Kahler
structure. First we shall prove.

Theorem 3.T. Let £ 2 : M~ € ™*! be Kihler hypersurfaces . If f lis
non - degenerate at a point of M and the Kahler connections induced by
! and f? are equal on some open subset U of M, then t'=cBr? for some
Be Un+1) and c€ R.

Proof. Let g1 and 92 be the metric tensor fields induced by ' and f?,
respectively. Assume that h¥, S¥ are the Riemannian second fundamental
forms and second fundamental tensors for f*, k = 1, 2, defined on U. If h¥=
hkl'l-ihk2 is the decomposition of h¥ into the real and imaginary part,
then hkl X,Y) = gk(SkX.Y). The shape operators st 52 are anti - complex.
Since f' is non- degenerate on a dense open subset of M, we can assume
that the connection V is not flat and $' is non- singular at every point of
U. As in the proof of Theorem 3.5. we get a function a such that h! = ah®
and S? = «S'. Then we have

g's'%X. 1) = lal® g%'X.)
Hence g1 = laf? gz. Since gl, 92 have the same Levi- Civita connection,
the function l«|? is constant. Set ¢ = |a|. If we multiply the immersion 2
by c, then the new pair of hypersurfaces £, %2z cf? induce the same

metric tensor field g! on U. On the other hand, by Theorem 3.5. we know

that f' and {2 are AGL(n+1,0)- equivalent and so are f! and 2. Let ' =
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Bf?. Since f* is not totally geodesic (because V is non- flat),there are x,

y €U such that V, = {*,(TyM) and V_ = {* (T M) are not parallel. The

transformation B restricted to V, as well as to Vyypreserves the scalar pro-
duct in €™* !, Thus Be Utn+ D).

We can also easily get the following classical result.

Corollary 38. Let £ f 2.M~ ¢ ™! pe Kihler hypersurfaces. If the
induced metric tensor fields are equal on some open set Uc M, then f !
and £ are Utn+ 1)~ equivalent.

Proof. In the case where the induced connection is non- flat the asser-
tion follows from Theorem 3.5. and the arguments given at the end of the

proof of Theorem 3.T. If V is flat, then f'and 1% are totally geodesic and

hence U(n+1,0)- equivalent.
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