Finite Generation of Canonical Rings
 and Flip Conjecture
 (detailed version)

Hajime Tsuji

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Starsse 26
W-5300 Bonn3
Federal Republic of Germany

Tokyo Metropolitan University
Department of Mathemaiics
Minamiohsawa Hachiôji
Tokyo
Japan

Since

$$
\log \frac{\left(\hat{\omega}_{t}+\sqrt{-1} \partial \bar{\partial} v\right)^{n}}{\left(\hat{\omega}_{t}+\sqrt{-1} \partial \bar{\partial} \psi_{c}\right)^{n}}=\int_{0}^{1} \dot{\Delta}_{a}\left(v-\psi_{c}\right) d a
$$

where $\dot{\Delta}_{a}$ is the Laplacian with respect to the Kähler form

$$
\hat{\omega}_{t}+\sqrt{-1} \partial \bar{\partial}\left\{(1-a) \phi_{c}+a v\right\}
$$

, by the maximum principle, we obtain

$$
v \geq \psi_{c} \quad \text { on } K \times[0, T)
$$

On the other hand, trivially

$$
\hat{\Delta}_{t} v \geq-n \text { on } K \times[0, T)
$$

holds, where $\hat{\Delta}_{t}$ is the Laplacian with respect to the Kähler form $\hat{\omega}_{t}$. Let h be the C^{∞}-function on $\bar{K} \times[0, T)$ such that

$$
\left\{\begin{array}{lll}
\hat{\Delta}_{t} h & =-n & \text { on } K \times[0, T) \\
h & =0 & \text { on } \partial K \times[0, T)
\end{array}\right.
$$

Then by the maximum principle, we have

$$
v \leq h \quad \text { on } K \times[0, T)
$$

Hence we have

$$
\begin{equation*}
\psi_{c} \leq v \leq h \text { on } K \times[0, T) \tag{12}
\end{equation*}
$$

Now to fix C^{k}-norms on $X_{\nu}-D$, we shall construct a complete KählerEinstein form on $X_{\nu}-D$.

We quote the following theorem.
Theorem 4.3 ([18]) Let \bar{M} be a nonsingular projective manifold and let B be an effective divisor with only simple normal crossings. If $K_{\bar{M}}+B$ is ample, then there exists a unique (up to constant multiple) complete Kähler-Einstein form on $M=\bar{M}-B$ with negative Ricci curvaure.

By the construction of D, D is a divisor with simple normal crossings and $K_{X_{\nu}}+D$ is ample. Hence by Theorem 4.3, there exists a complete Kähler-Einstein form ω_{D} on $X_{\nu}-D$ such that

$$
\omega_{D}=-\operatorname{Ric}_{\omega_{D}}
$$

Then we have

$$
\|d v\| \leq \max \left\{\|d h\|,\left\|d \psi_{c}\right\|\right\} \text { on } \partial K \times[0, T)
$$

where \| \| is the pointwise norm with respect to ω_{D}. To make this estimate independent of K, we need to use special properties of ω_{D}.

Finite Generation of Canonical Rings and Flip Conjecture

Hajime Tsuji
dedicated to Professor T. Nagano
on the occasion of his 60 -th birthday

Abstract

We prove the finite generation of canonical rings of projective varieties of general type and the flip conjecture in all dimension. As a consequence we prove the minimal model conjecture up to dimension 4 which is previously known to be true up to dimension 3 by Mori ([19]).

Contents

1 Introduction 2
2 Preliminaries 4
2.1 Zariski decomposition 5
2.2 Structure of d-closed positive $(1,1)$-currents 7
3 Deformation of Kähler form I 13
3.1 Hamilton's equation 13
3.2 Reduction to the parabolic Monge-Ampère equation 13
$3.3 C^{0}$-estimate 14
$3.4 C^{2}$-estimate 15
4 Deformation of Kähler form II 18
4.1 Kähler-Einstein currents 18
4.2 Kodaira's Lemma 19
4.3 Construction of a suitable ample divisor 21
4.4 The Dirichlet problem 22
$4.5 \quad C^{0}$-estimate 23
$4.6 \quad C^{1}$-estimate on ∂K 25
4.7 $\quad C^{1}$-estimate on K 29
$4.8 \quad C^{2}$-estimate on ∂K 30
$4.9 \quad C^{2}$-estimate on K 36
4.10 Costruction of Kähler-Einstein currents 38
4.11 Finite orderness of the Kähler-Einstein current ω_{E} 43
$5 \quad L^{2}$-vanishing theorem 49
$5.1 \quad L^{2}$-estimate on a complete Kähler manifold 49
5.2 Relation between the asymptotic behavior of the base locus of the pluricanonical system and the Lelong number of the Kähler-Einstein current ω_{E} 51
5.3 Use of the argument of Benveniste-Kawamata-Shokurov 55
6 Zariski Decomposition of Canonical Divisor 62
6.1 An algorithm to construct a Zariski decomposition 62
6.2 Termination of the algorithm 64

1 Introduction

The classification theory of algebraic varieties is the attempt to study all algebraic varieties by decomposing them into 3 kinds of particles :

1. varieties with negative K_{X},
2. varieties with numerically trivial K_{X},
3. varieties with positive K_{X}
and their fibre spaces. In this sense the classification theory of algebraic varieties can be considered as a higher dimensional generalization of Riemann's uniformization theorem in the one dimensional case.

In 1976 S.-T. Yau solved the Calabi's conjecture([28]) (We should note that T. Aubin has also contributed to the solution independently in the case of the negative first Chern class ([2]). But his analysis seems to be less geometric than in [28]). This breakthrough gave me a confidence that there is a strong relation between the classification theory of algebraic varieties and Kähler-Einstein metrics. Roughly speaking [28] enables us to translate properties of the canonical bundle of any compact Kähler manifold to propeties
of the Ricci curvature of a Kähler metric constructed by using a partial differential equation of Monge-Ampère type. In fact [28] gives a new prool for Riemann's uniformization theorem although [28] is difficult.

As for the particles of the 1 -st kind, S . Mori invented his cone theorem ([20]) to single out these particles. The purpose of this article is to single out the particles of the 3-rd kind globally (the existence of canonical model) and locally (the flip conjecture). In comparison with Mori's theory, the method in the present paper is quite transcendental in nature. In my opinion it seems to be very difficult to obtain the results in this paper by a purely algebraic method because the canonical ring of an algebraic variety seems to be a quite transcendental object.

As for the 2nd particles, there are no essential ways to single out these particles at present. This problem is called the abundance conjecture. Our method does not work to single out the particles of 2 nd kind.

The following conjecture is one of the central problem in the classification theory of algebraic varieties.

Conjecture 1.1 (Minimal Model Conjecture) Let X be a normal projective variety. Assume that X is not uniruled. Then there exists a minimal projective variety $X_{\min }$ (cf. Definition 2.5) which is birational to X.

This conjecture is trivial in the case of an algebraic curve and is known to be true classically in the case of $\operatorname{dim} X=2$. Recently S. Mori solved the conjecture in the case of $\operatorname{dim} X=3([19])$. His method depends on the close study of 3 -dimensional terminal singularities and it seems to be difficult to generalize his method to the case of higher dimensional varieties. I hope that the present paper will give a perspective of the conjecture in all dimension because our method is independent of the dimension of the variety. In fact, we prove the Flip Conjecture(existence of flip) in all dimension in this paper. Hence to prove the minimal model conjecture, we only need to prove the termination of flips. In particular since the termination of flips is known in the case of $\operatorname{dim} X \leq 4([16])$, we have a solution of Minimal Model Conjecture in the case of $\operatorname{dim} X \leq 4$.

In this paper all varieties and morphisms are defined over \mathbf{C}.
The the following theorems are main results in this paper.
Theorem 1.1 Let X be a smooth projective variety of general type. Then the canonical ring

$$
R\left(X, K_{X}\right)=\oplus_{\nu \geq 0} H^{0}\left(X, \mathcal{O}_{X}\left(\nu K_{X}\right)\right)
$$

is finitely generated. Hence the canonical model

$$
X_{c a n}=\operatorname{Proj} R\left(X, K_{X}\right)
$$

exists.

In the case of $\operatorname{dim} X=2$, this theorem was proved by D. Mumford([30, appendix]) and recently S . Mori proved Theorm 1.1 in the case of $\operatorname{dim} X=3$ in terms of the existence of minimal models of 3 -folds ([19]).

The following conjecture is essential in the construction of minimal models in the case of dimension greater than 2.

Conjecture 1.2 (Flip Conjecture) Let X be a projective variety with only terminal singularities. Let $\varphi: X \longrightarrow X^{\prime}$ be a birational contraction of an extremal ray (cf.[15, 20]). Then

$$
R\left(X / X^{\prime}, K_{X}\right)=\oplus_{\nu \geq 0} \varphi_{*} \mathcal{O}_{X}\left(\left[\nu K_{X}\right]\right)
$$

is finitely generated as an $\mathcal{O}_{X^{\prime}}$-algebra.
As a corollary of Theorem 1.1, we have:
Theorem 1.2 Flip conjecture holds in all dimensions.
This theorem implies the existence of a minimal model in the case of $\operatorname{dim} X \leq 4$.

Theorem 1.3 Let X be a normal projective variety of dimension ≤ 4. If X is not uniruled, then there exists a minimal algebraic variety $X_{\text {min }}$ which is birational to X.

The proof of Theorem 1.1 is closely related to the cone theorem of Mori and Kawamata([20, 14]) although it is purely analytic in nature. Mori proved his cone theorem by his method bend and break curves. Instead of curves we bend and break Kähler forms by Hamilton's heat flow.

Our method depends on the analysis of complex Monge-Ampère equations in $[28,4]$.

In the course of writing up this paper, I received many valuable suggestions and remarks from Professors S. Bando, T. Fujita, Y. Kawamata, R. Kobayashi, B. Shiffman, Y.-T. Siu and others. I would like to express my hearty thanks to them. In particular during my visit to U.S. from Noevember to December in 1990, I enjoyed very helpful and valuable discussions with Professors Y.-T. Siu and B. Shiffman.

This work has been completed during my stay at Max-Planck-Institut für Mathematik. The last but not least, I would like to express my hearty thanks to the institute for the hospitality.

2 Preliminaries

In this section, we fix the basic notations and introduce basic notions. We shall prove some results about the structure of d-closed positive (1,1)-currents for the later use.

2.1 Zariski decomposition

Let X be a normal projective variety of dimension n. We denote by $Z_{n-1}(X)$ (resp. $\operatorname{Div}(X)$), the group of Weil (resp. Cartier) divisor on X. The canonical divisor K_{X} is defined by

$$
K_{X}=i_{*} \Omega_{X_{r e q}}^{n},
$$

where $X_{\text {reg }}$ denote the regular part of X and $i: X_{\text {reg }} \longrightarrow X$ is the canonical injection. K_{X} is an element of $Z_{n-1}(X)$. An R -divisor D is an element of $Z_{n-1}(X) \otimes \mathbf{R}$, i.e. $D=\sum d_{j} D_{j}$ (finite sum). where $d_{j} \in \mathbf{R}$ and the D_{j} are mutually distinct prime divisor on X.

If $D \in \operatorname{Div}(X) \otimes \mathbf{R}$, we say that D is \mathbf{R}-Cartier. We define round up $\lceil D\rceil$, the integral part $[D]$, the fractional part $\{D\}$ and the round off $\langle D\rangle$ by

$$
\begin{array}{r}
\lceil D\rceil=\sum\left\lceil d_{j}\right\rceil D_{j},[D]=\sum\left[d_{j}\right] D_{j} \\
\{D\}=\sum\left\{d_{j}\right\} D_{j},\langle D\rangle=\sum\left(d_{j}\right\rangle D_{j}
\end{array}
$$

where $\lceil r\rceil,[r]$ and $\langle r\rangle$ for $r \in \mathbf{R}$ are integers such that

$$
\begin{gathered}
r-1<[r] \leq r \leq\lceil r\rceil<r+1 \\
r-\frac{1}{2} \leq\langle r\rangle<r+\frac{1}{2}
\end{gathered}
$$

and

$$
\{r\}=r-[r] .
$$

Definition 2.1 $D \in \operatorname{Div}(X) \otimes \mathbf{R}$ is said to be nef if $D \cdot C \geq 0$ holds for every effective curve on X.

Definition 2.2 Let X be a normal projective variety. We say that X has only canonical (resp. terminal) singularities, if K_{X} is Q -Cartier, i.e. $K_{X} \in$ $\operatorname{Div}(X) \otimes \mathbf{Q}$ and there is a resolution of singularity $\mu: Y \longrightarrow X$ such that the exceptional locus F of μ is a divisor with normal crossings and

$$
K_{Y}=\mu^{*}\left(K_{X}\right)+\sum a_{j} F_{j},
$$

where $a_{j} \geq 0\left(\right.$ resp $\left.a_{j}>0\right)$.
The following definition is more general.
Definition 2.3 A pair (X, Δ) for $\Delta \in Z_{n-1}(X) \otimes Q$ is said to be logcanonical (resp. logterminal) if the following conditions are satisfied.

1. $[\Delta]=0$ and $K_{X}+\Delta \in \operatorname{Div}(X) \otimes \mathbf{Q}$.
2. There is a resolution of singularity $\mu: Y \longrightarrow X$ such that the union F of the exceptional locus of μ and the inverse image of the support of Δ is a divisor with normal crossings and

$$
K_{Y}=\mu^{*}\left(K_{X}+\Delta\right)+\sum a_{j} F_{j}, a_{j} \geq-1(\text { resp. }>-1) .
$$

Definition 2.4 A normal projective variety X is said to be Q -factorial, if every Weil divisor is \mathbf{Q}-Cartier.

In this paper, we use the notion of minimal varieties in the following sense.

Definition 2.5 Let X be a normal projective variety. X is said to be minimal, if the following condition is satisfied.

1. X has only terminal singularities.
2. K_{X} is nef.
3. X is Q -factorial.

Definition 2.6 $D \in \operatorname{Div}(X) \otimes \mathbb{Q}$ is said to be big, if $\kappa(X, D)=\operatorname{dim} X$
Now we shall define Zariski decomposition.
Definition 2.7 And expression $D=P+N,(D, P, N \in \operatorname{Div}(X) \otimes \mathbf{R})$ is called a Zariski decomposition of D if the following conditions are satisfied.

1. D is big.
2. P is nef.
3. N is effective.
4. The natural homomorphisms

$$
H^{0}\left(X, \mathcal{O}_{X}([m P])\right) \longrightarrow H^{0}\left(X, \mathcal{O}_{X}([m D])\right)
$$

are bijective for all positive integers m.
Conjecture 2.1 Let X be a smooth projective variety of general type. Then there exists a modification

$$
f: \tilde{X} \longrightarrow X
$$

such that $f^{*} K_{X}$ has a Zariski decomposition.
By [14] to prove Theorem 1.1 it is sufficient to solve Conjecture 2.1. In this paper we shall prove Theorem 1.1 by solving Conjecture 2.1.

2.2 Structure of d-closed positive (1,1)-currents

To solve Conjecture 2.1, we shall use the theory of currents which is considered to be a generalization of the notion of subvarieties.

Let M be a complex manifold of dimension n.
Definition 2.8 The current $\mathcal{D}^{p, q}(M)$ of type (p, q) are the continuous linear functional on the compactly supported C^{∞} forms of type $(n-p, n-q)$, $A_{c}^{n-p, n-q}(M)$ with the C^{∞}-topology.

$$
\partial: \mathcal{D}^{p, q}(M) \longrightarrow \mathcal{D}^{p+1, q}(M), \bar{\partial}: \mathcal{D}^{p, q}(M) \longrightarrow \mathcal{D}^{p, q+1}(M)
$$

are defined by

$$
\partial T(\varphi)=(-1)^{p+q+1} T(\partial \varphi), \bar{\partial} T(\varphi)=(-1)^{p+q+1} T(\bar{\partial} \varphi)
$$

for $T \in \mathcal{D}^{p, q}(M)$ and we set $d=\partial+\bar{\partial} . \mathrm{A}(p, p)$-current T is real in case $T=\bar{T}$ in the sense that $\overline{T(\varphi)}=T(\bar{\varphi}) \mathrm{v}$ for all $\varphi \in A_{c}^{n-p, n-p}(M)$ and a real current T is positive in case

$$
(\sqrt{-1})^{p(p-1) / 2} T(\eta \wedge \bar{\eta}) \geq 0, \eta \in A_{c}^{n-p, 0}(M)
$$

Let V be a subvariety of codimension p in M. Then

$$
V(\varphi)=\int_{V} \varphi, \quad \varphi \in A_{c}^{n-p, n-p}(M)
$$

is a d-closed positive (p, p)-current. Hence we can consider subvarieties as d-closed positive currents. On the other hand, every $C^{\infty}(p, p)$-form ψ on M defines a (p, p)-current T_{ψ} by

$$
T_{\psi}(\varphi)=\int_{M} \psi \wedge \varphi, \quad \varphi \in A_{c}^{n-p, n-p}(M)
$$

The current of this type is called a smooth current. As we explain below, a general d-closed positive current is basically somewhere between the smooth currents and those supported by analytic varieties.

Now we shall introduce an important invariant for d-closed positive (p, p) currents. Let T be a d-closed positive (p, p)-current on M. For each point $x \in M$ we define a number

$$
\Theta(T, x)
$$

defined as follows. Let (U, z) be a local coordinate around $x(z(x)=O)$. We set

$$
\begin{aligned}
B[r] & =\{y \in U \mid\|z(y)\|<1\}, \\
\omega & =\frac{\sqrt{-1}}{2} \sum_{i=1}^{n} d z_{i} \wedge d \bar{z}_{i},
\end{aligned}
$$

$\chi[r]$: the characteristic function of $B[r]$.
We define $\Theta(T, x)$ by

$$
\Theta(T, x)=\lim _{r\rfloor 0} \frac{1}{\pi^{n-p_{r}}{ }^{2 n-2 p}} T\left(\chi[r] \omega^{n-p}\right)
$$

and call it the Lelong number of T at x. The Lelong number exists and finite for all d-closed positive (p, p)-current (cf. [9, pp.390-391]) and it is independent of the choice of the coordinate ([23]).

We shall summarize the basic properties of the Lelong number.
It is easy to see that the Lelong number is upper semicontinuous as a function on the manifold. And clearly if T is a smooth d-closed positive (p, p)-current, $\Theta(T, x)=0$ for every $x \in M$. On the other hand we have:

Theorem 2.1 ([9, p. 391]) Let $V \subset M$ be a subvariety of codimension p in M. Then we have

$$
\Theta(V, x)=m u l t_{x} V
$$

The following theorem describes the positive Lelong number locus of a d-closed positive (p, p)-current.

Theorem 2.2 ([23]). Let T be a d-closed positive (p, p)-current on M. Then for every positive number ε

$$
S_{\varepsilon}(T)=\{x \in M \mid \Theta(T, x) \geq \varepsilon\}
$$

is a subvariety of codimension $\geq p$.
The following example shows that $S_{\varepsilon}(T)$ may have a large codimension in general.

Example 2.1 Let T be a d-closed positive (1,1)-current on \mathbf{C}^{n} defined by

$$
T=\frac{\sqrt{-1}}{2 \pi} \partial \ddot{\partial} \log \left(\sum_{i=1}^{n}\left|z_{i}\right|^{2}\right)
$$

Then

$$
\Theta(T, x)= \begin{cases}1 & \text { if } x=O \\ 0 & \text { otherwise }\end{cases}
$$

To define the pullback of a d-closed positive (1,1)-current we need the following Poincaré lemma.

Lemma 2.1 ($\partial \bar{\partial}$ Poincaré lemma). Let T be a d-closed positive $(1,1)$ current defined on the unit ball $B=B(1)$ in C^{n} with center O Then there exists a plurisubharmonic function F on B such that

$$
T=\sqrt{-1} \partial \bar{\partial} F
$$

and the difference of two such F is a pluriharmonic function on B.
The above lemma states every d-closed positive (1,1)-current has locally a plurisubhamonic potential. The set where a potential takes $-\infty$ is independent of the choice of the potential. We call the set the pluripolar set of the d-closed positive $(1,1)$-current. It is well known the pluripolar set is alway of measure 0 .

Let $f: X \longrightarrow Y$ be a morphism between two connected complex manifolds. Let S be a d-closed positive (1,1)-current on Y. Suppose that $f(X)$ is not contained in the pluripolar set of S. Then we can define the pullback $f^{*} S$ by using $\partial \bar{\partial}$ Poincaré lemma as follows.

Let $\mathcal{U}=\left\{U_{\alpha}\right\}$ be a sufficiently fine open covering of Y such that for every U_{α} there exists a plurisubharmonic function F_{α} on U_{α} such that

$$
S \mid U_{\alpha}=\sqrt{-1} \partial \bar{\partial} F_{\alpha}
$$

Then we define the pullback $f^{*} S$ by

$$
f^{*} S \mid f^{-1}\left(U_{\alpha}\right)=\sqrt{-1} \partial \bar{\partial}\left(f^{*} F_{\alpha}\right)
$$

This definition is well defined and independnet of the choice of \mathcal{U} and $\left\{F_{\alpha}\right\}$.
Theorem 2.2 describes the positive Lelong number locus of a d-closedpositive (p, p)-current. On the other hand the following lemma describes the basic property of the zero Lelong number locus of a d-closed positive (1,1)-current.

Lemma 2.2 Let X be a projective manifold of dimension n and let L be a line bundle on X. Suppose that there exists a d-closed positive $(1,1)$-current T on X such that $c_{1}(L)=[T]$, where $[T]$ is the de Rham cohomology class of T. Let x be a point on X such that $\Theta(T, x)=0$ and let C be an arbitrary irreducible reduced curve through x. Then the intersection number $c_{1}(L) \cdot C$ is nonnegative.

Proof. Let ω be a smooth Kähler form on X and let r_{x} be thedistance function from x with respect to ω. Then there exists a neighbourhood U of x such that $\log r_{x}$ is strictly plurisubharmonic on U. Let ρ be a nonnegative C^{∞}-function on U with compact support which is identically 1 on some neighbourhood of x. We set

$$
\psi=(2 n+2) \rho \log r_{x}
$$

Let (H, h) be a hermitian line bundle on X such that

$$
\sqrt{-1} \partial \bar{\partial} \psi-\sqrt{-1} \partial \bar{\partial} \log h>\alpha \omega
$$

holds for some $c>0$. By the $\partial \bar{\partial}$-Poincaré lemma for d-closed positive $(1,1)$ currents, there exists a singular hermitian metric a on L such that

$$
-\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log a=T
$$

Let σ, τ be local holomorphic generators around x of H and L respectively. By taking U small enough, we may assume that σ and τ are defined on U. Let m be an arbitrary fixed positive integer and we set

$$
F=\bar{\partial}\left(\rho \sigma \otimes \tau^{\otimes m}\right)
$$

Since $\Theta(T, x)=0$ by Lemma 2.1, we have

$$
F \in L_{(0,1)}^{2}\left(X, H \otimes L^{\otimes m}\right)
$$

where $L_{(p, q)}^{2}\left(X, H \otimes L^{\otimes m}\right)$ denote the Hilbert space of the $H \otimes L^{\otimes m}$ valued L^{2} forms of type (p, q) with respect to the singular hermitian metric $e^{-\psi} h \otimes a^{\otimes m}$. By Hörmander's L^{2} estimates for $\bar{\partial}$-operator, there exists $\varphi \in L_{(0,0)}^{2}(X, H \otimes$ $L^{\otimes m}$) such that

$$
\bar{\partial} \varphi=F .
$$

Then

$$
\mu=\rho \sigma \otimes \tau^{\otimes m}-\varphi
$$

is a global holomorphic section of $H \otimes L^{\otimes m}$. Let a_{0} be a smooth hermitian metric on L. Since $T=-\sqrt{-1} \partial \bar{\partial} \log a$ is positive, a / a_{0} is bounded from below by a positive constant on X. This implies that

$$
\mu(x)=\left(\sigma \otimes \tau^{\otimes m}\right)(x)
$$

holds by the definition of ψ. Hence

$$
c_{1}\left(H \otimes L^{\otimes m}\right) \cdot C>0
$$

holds. Since m is an arbitrary positive integer, we have

$$
c_{1}(L) \cdot C \geq 0 .
$$

This completes the proof of the lemma. Q.E.D.
Remark 2.1 The original form of Lemma 2.2 was Cororally 2.1 below. To polish up this lemma into the present form the discussion with Professor B. Shiffman was very helpful. I would like to express my thank here.

Cororally 2.1 Let X, L, T be as in Lemma 2.2. Suppose that $\Theta(T, x)=0$ holds for all $x \in X$. Then L is nef.

Remark 2.2 Professor S. Bando kindly informed me that one may use the smoothing by heat deformation of currents to prove this lemma. In particular his proof implies that every d-closed positive (1,1)-current with vanishing Lelong number on a compact Kähler manifold represents a cohomology class on the closure of the Kähler cone of the manifold.

Remark 2.3 After I finished up writing this paper, Professor S. Bando kindly sent me the preprints of J.-P. Demailly ([6, 7]). These works are closely related to Lemma 2.2, Cororally 2.1 and also Section 5 below.

The Lelong number of a d-closed positive (1,1)-current indicates the growth of a local potential function of the current around a point.

Lemma 2.3 ([23, p.85, Lemma 5.3]) Let φ be an arbitrary plurisubharmonic function on an open subset U of C^{n} and let x be a point in U. Let

$$
T=\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \varphi
$$

Then the followings are true.

1. If $\Theta(T, x)<1$, then $e^{-\varphi}$ is locally integrable at x.
2. If $\Theta(T, x) \geq n$, then $e^{-\varphi}$ is not locally integrable at x.

The above lemma is not enough for our purpose because the two cases are not complement each other. But the following lemma is well known.

Lemma 2.4 ([29, p.95, Lemma 7.5]). Let T be a d-closed positive (1,1)current on $B(r)=\left\{z \in \mathrm{C}^{n} \mid\|z\|<r\right\}$ for some $r>0$. Let us consider P^{n-1} as a parameter space which parametrizes complex line through the origin O. Then for every $L \in \mathbf{P}^{n-1}$ such that the restriction $T \mid B(r) \cap L$ is well defined,

$$
\Theta(T, O) \leq \Theta(T \mid L \cap B(r), O)
$$

holds. And for almost all such L (in the sense of Lebesgue measure on \mathbf{P}^{n-1}),

$$
\Theta(T, O)=\Theta(T \mid L \cap B(r), O)
$$

holds.

The following lemma is fundamental for consideration of the behavior of the Lelong number under a modification of the variety. Although the author does not know any references, it seems to be standard.

Lemma 2.5 Let X be a complex manifold and let T be a d-closed positive (1,1)-current on X. Let $f: \tilde{X} \longrightarrow X$ be the blowing up with a smooth center Y. Then for every $p \in \tilde{X}$, we have

$$
\Theta\left(f^{*} T, p\right) \geq \Theta(T, f(p))
$$

Moreover for a general point $p \in f^{-1}(Y)$,

$$
\Theta\left(f^{*} T, p\right)=\Theta(T, f(p))
$$

holds, where "general" means that p is outside of a set of measure 0 with respect to the Lebesgue measure on $f^{-1}(Y)$ associated with an arbitrary hermitian metric on $f^{-1}(Y)$.
Proof. If $f(p)$ is not in Y, then it is clear that $\Theta\left(f^{*} T, p\right)=\Theta(T, f(p))$ holds. Let (U, x_{1}, \ldots, x_{n}) be a local coordinate around p. Then for almost every line L through p (with respect to this coordinate), $f^{*} T \mid L$ is well defined and

$$
\Theta\left(f^{*} T \mid L, p\right)=\Theta\left(f^{*} T, p\right)
$$

holds. If we take such L generally, we may assume that $f(L)$ is smooth at $f(p)$. Then with respect to a suitable local coordinate $\left(y_{1}, \ldots, y_{n}\right)$ around $f(x), f(L)$ is a line and by Lemma 2.4, we have

$$
\Theta(T, f(x)) \leq \Theta(T \mid f(L), f(x))=\Theta\left(f^{*} T \mid L, x\right)=\Theta\left(f^{*} T, x\right)
$$

This completes the proof of the lemma. Q.E.D.

The following example shows that the Lelong number of a d-closed positive (1,1)-current is not invariant under a modification in general.
Example 2.2 Let T be ad-closed positive (1,1)-current on C^{2} defined by

$$
T=\frac{\sqrt{-1}}{2 \pi} \partial \partial \partial \log \left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2 m}\right)
$$

where m is a positive integer. Let $f: \tilde{\mathrm{C}}^{2} \longrightarrow \mathbf{C}^{2}$ be a blowing up with center O. Let E be the exceptional divisor of f and let p_{0} be the intersection of E and the strict transform of z_{2}-axis. Then

$$
\Theta(T, p)= \begin{cases}m & \text { if } p=p_{0} \\ 1 & \text { if } p \in E-\left\{p_{0}\right\} \\ 0 & \text { otherwise }\end{cases}
$$

The following lemma will be used in Section 6.
Lemma 2.6 ([23, p.87, Lemma 6.2]) Suppose T is a d-closed positive (1,1)current on a complex manifold M and V is a divisor in M. Let c be a nonnegative number. Suppose $\Theta(T, x) \geq c$ for every $x \in V$. Then $T-c V$ is a d-closed positive (1,1)-current on M.

3 Deformation of Kähler form I

In this section we shall consider Hamilton's equation on a smooth projective variety of general type and determine the maximal existence time for the smooth solution. This section is more or less independent from the other sections. Hence a reader who is familiar with Monge-Ampère equation may skip this section. But the basic method of the estimate of parabolic MongeAmpère equations is introduced in this section.

3.1 Hamilton's equation

Let X be a smooth projective variety of general type and let $n=\operatorname{dim} X$. Let ω_{0} be a C^{∞}-Kähler form on X. We consider the initial value problem:

$$
\begin{array}{r}
\frac{\partial \omega}{\partial t}=-\operatorname{Ric}_{\omega}-\omega \text { on } X \times[0, T) \\
\omega=\omega_{0} \text { on } X \times\{0\} \tag{2}
\end{array}
$$

where

$$
\mathrm{Ric}_{\omega}=-\sqrt{-1} \partial \bar{\partial} \log \omega^{n}
$$

and T is the maximal existence time for C^{∞}-solution.
Since

$$
\begin{aligned}
\frac{\partial}{\partial t}(d \omega) & =-d \omega \text { on } X \times[0, T) \\
d \omega_{0} & =0 \text { on } X \times\{0\}
\end{aligned}
$$

we have that $d \omega=0$ on $X \times[0, T)$, i.e., the equation preserves the Kähler condition.

3.2 Reduction to the parabolic Monge-Ampère equation

Let ω denote the de Rham cohomology class of ω in $H_{D R}^{2}(X, \mathbf{R})$. Since $-(2 \pi)^{-1} \mathrm{Ric}_{\omega}$ is a first Chern form of K_{X}, we have

$$
\begin{equation*}
[\omega]=(1-\exp (-t)) 2 \pi c_{1}\left(K_{X}\right)+\exp (-t)\left[\omega_{0}\right] . \tag{3}
\end{equation*}
$$

Let Ω be a C^{∞}-volume form on X and let

$$
\omega_{\infty}=-\operatorname{Ric} \Omega=\sqrt{-1} \partial \partial \partial \log \Omega
$$

We set

$$
\begin{equation*}
\omega_{t}=(1-\exp (-t)) \omega_{\infty}+\exp (-t) \omega_{0} . \tag{4}
\end{equation*}
$$

Since $[\omega]=\left[\omega_{t}\right]$ on $X \times\{t\}$ for every $t \in[0, T)$, there exists a C^{∞}-function u on $X \times[0, T)$ such that

$$
\begin{equation*}
\omega=\omega_{t}+\sqrt{-1} \partial \bar{\partial} u \tag{5}
\end{equation*}
$$

By (1), we have

$$
\frac{\partial}{\partial t}\left(\omega_{t}+\sqrt{-1} \partial \bar{\partial} u\right)=\sqrt{-1} \partial \bar{\partial} \log \left(\omega_{t}+\sqrt{-1} \partial \partial{ }_{\partial} u\right)^{n}-\left(\omega_{t}+\sqrt{-1} \partial \partial{ }_{\partial} u\right)
$$

Hence

$$
\begin{array}{r}
\exp (-t)\left(\omega_{\infty}-\omega_{0}\right)+\sqrt{-1} \partial \bar{\partial}\left(\frac{\partial u}{\partial t}\right) \\
=\sqrt{-1} \partial \bar{\partial} \log \left(\omega_{t}+\sqrt{-1} \partial \bar{\partial} u\right)^{n}-\omega_{\infty}+\exp (-t)\left(\omega_{\infty}-\omega_{0}\right) .
\end{array}
$$

Then (1) is equivalent to the initial value problem:

$$
\begin{align*}
\frac{\partial u}{\partial t} & =\log \frac{\left(\omega_{t}+\sqrt{-1} \partial \bar{\partial} u\right)^{n}}{\Omega}-u \text { on } X \times[0, T) \\
u & =0 \text { on } X \times\{0\} . \tag{6}
\end{align*}
$$

Let

$$
A(X)=\{[\eta] \mid \eta: \text { Kähler form on } X\} \subset H_{D R}^{2}(X, \mathbf{R})
$$

be the Kähler cone of X. Since $[\omega]$ moves on the segument connecting [ω_{0}] and $\left[\omega_{\infty}\right]=2 \pi c_{1}\left(K_{X}\right)$, we cannot expect T to be ∞, unless $2 \pi c_{1}\left(K_{X}\right)$ is on the closure of $A(X)$ in $H_{D R}^{2}(X, \mathbf{R})$. We shall determine T. It is standard to see that $T>0([11])$.

Theorem 3.1 If $\omega_{0}-\omega_{\infty}$ is a Kähler form, then T is equal to

$$
T_{0}=\sup \left\{t>0 \mid\left[\omega_{t}\right] \in A(X)\right\}
$$

The proof of Theorem 3.1 is almost parallel to that of [25, p.126, Theorem 3].

$3.3 \quad C^{0}$-estimate

Lemma 3.1 If $\omega_{0}-\omega_{\infty}$ is a Kähler form, then there exists a constant C_{0} such that

$$
\frac{\partial u}{\partial t} \leq C_{0} \exp (-t)
$$

Proof.

$$
\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial t}\right)=\Delta_{\omega} \frac{\partial u}{\partial t}-\frac{\partial u}{\partial t}-\exp (-t) t r_{\omega}\left(\omega_{0}-\omega_{\infty}\right)
$$

holds by defferentiating (5) by t. By the maximum principle, we have

$$
\frac{\partial u}{\partial t} \leq\left(\max \log \frac{\omega_{0}^{n}}{\Omega}\right) \exp (-t)
$$

Q.E.D.

To estimate u from below, we modify (6) as

$$
\begin{align*}
\frac{\partial u}{\partial t} & =\log \frac{\left(\omega_{t}+\sqrt{-1} \partial \bar{\partial} u\right)^{n}}{\omega_{t}^{n}}+f_{t}-u \text { on } X \times\left[0, T_{1}\right) \\
u & =0 \text { on } X \times\{0\} \tag{7}
\end{align*}
$$

where

$$
\begin{equation*}
f_{t}=\log \frac{\omega_{t}^{n}}{\Omega} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{1}=\min \left\{\sup \left\{t>0 \mid \omega_{t}>0\right\}, T\right\} \tag{9}
\end{equation*}
$$

If $t \in\left[0, T_{1}\right.$), we have

$$
\log \frac{\left(\omega_{t}+\sqrt{-1} \partial \bar{\partial} u\right)^{n}}{\omega_{t}^{n}}=\int_{0}^{1} \frac{d}{d s} \log \frac{\left(\omega_{t}+\sqrt{-1} s \partial \bar{\partial} u\right)^{n}}{\omega_{t}^{n}} d s=\int_{0}^{1} \Delta_{s} u d s
$$

where Δ_{s} is the Laplacian with respect to the Kähler form $\omega_{t}+\sqrt{-1} s \partial \bar{\partial} u$. Then by the minimum principle, (7) and Lemma 2.2, we have

Lemma 3.2

$$
u \geq-C_{0} \exp (-t)+\min _{X} f_{t} \text { on } X \times\{t\}, t \in\left[0, T_{1}\right)
$$

We note that this estimate is depending on t and C_{0} is independent of the choice of Ω.

3.4 C^{2}-estimate

For the next we shall obtain a C^{2}-estimate of u.
Lemma 3.3 ([28, p.351, (2.22)]) Let M be a compact Kähler manifold and let $\omega, \tilde{\omega}$ be Kähler forms on M. Assume that there exists a C^{∞}-function φ such that

$$
\tilde{\omega}=\omega+\sqrt{-1} \partial \bar{\partial} \varphi .
$$

We set

$$
f=\log \frac{\tilde{\omega}^{n}}{\omega^{n}}
$$

Then for every positive constant such that

$$
C+\inf _{i \neq j} R_{i i j j}>1,
$$

$$
\begin{gathered}
\exp (C \varphi) \tilde{\Delta}(\exp (-C \varphi)(n+\Delta \varphi)) \geq \\
\left(\Delta f-n^{2} \inf _{i \neq j} R_{i i j j}\right)-C n(n+\Delta \varphi) \\
+\left(C+\inf _{i \neq j} R_{i i j j}\right)(n+\Delta \varphi)^{\frac{n}{n-1}} \exp \left(-\frac{f}{n-1}\right)
\end{gathered}
$$

holds, where
$R_{i i j j}$: the bisectional curvature of ω,
Δ : the Laplacian with respect to ω.
Applying this lemma to ω_{t} and $\omega=\omega_{t}+\sqrt{-1} \partial \bar{\partial} u$, we have:
Lemma 3.4 For every $C>0$ depending only on $t \in\left[0, T_{1}\right)$ such that

$$
\begin{gathered}
C+\inf _{i \neq j} R_{i i j j}(t)>1 \quad \text { on } X \times\{0\}, \\
\exp (C u)\left(\Delta_{\omega}-\frac{\partial}{\partial t}\right)\left(\exp (-C u) t r_{\omega_{t}} \omega\right) \geq \\
-\left(\Delta_{t} \log \frac{\omega_{t}^{n}}{\Omega}+n^{2} \inf _{i \neq j} R_{i \pi j}(t)+n\right) \\
-C\left(n-\frac{1}{C}-\frac{\partial u}{\partial t}\right) t r_{\omega_{t}} \omega-\exp (-t) t r_{\omega_{t}}\left(\left(\omega_{0}-\omega_{\infty}\right) \cdot \sqrt{-1} \partial \bar{\partial} u\right) \\
+\left(C+\inf _{i \neq j} R_{i i j j j}(t)\right) \exp \left(\frac{1}{n-1}\left(-\frac{\partial u}{\partial t}-u+\log \frac{\omega_{t}^{n}}{\Omega}\right)\right)\left(t r_{\omega_{t}} \omega\right)^{\frac{n}{n-1}}
\end{gathered}
$$

holds, on $X \times\{t\})\left(t \in\left[0, T_{1}\right)\right.$, where
Δ_{t} : Laplacian with respect to ω_{t}, $R_{i i j j}(t)$: the bisectional curvature of ω_{t}
and $\operatorname{tr}_{\omega_{t}}\left(\left(\omega_{0}-\omega_{\infty}\right) \cdot \sqrt{-1} \partial \bar{\partial} u\right)$ denotes the trace (with respect to $\left.\omega_{t}\right)$ of the product of the endomorphisms $A, B \in \operatorname{End}(T X)$ defined by

$$
\begin{aligned}
& \omega_{t}\left(A\left(Z_{1}\right) \wedge \bar{Z}_{2}\right)=\left(\omega_{0}-\omega_{\infty}\right)\left(Z_{1} \wedge \bar{Z}_{2}\right) \\
& \omega_{t}\left(B\left(Z_{1}\right) \wedge \bar{Z}_{2}\right)=(\sqrt{-1} \partial \bar{\partial} u)\left(Z_{1} \wedge \bar{Z}_{2}\right)
\end{aligned}
$$

where the pair $\left(Z_{1}, Z_{2}\right)$ runs in $T X \times_{X} T X$.
Proof. Let

$$
f=\log \frac{\omega^{n}}{\omega_{t}^{n}}=\frac{\partial u}{\partial t}+u-\log \frac{\omega_{t}^{n}}{\Omega} .
$$

Then by Lemma 3.3, we have

$$
\begin{array}{r}
\quad \exp (C u) \Delta_{\omega}\left(\exp (-C u) t r_{\omega_{t}} \omega\right) \\
\geq\left(\Delta_{t} f-n^{2} \inf _{i \neq j} R_{i \pi j j}(t)\right)-C n\left(n+\Delta_{t} u\right) \\
+\left(C+\inf _{i \neq j} R_{i i j j}\right)\left(t r_{\omega_{t}} \omega\right)^{\frac{n}{n-1}} \exp \left(-\frac{f}{n-1}\right) .
\end{array}
$$

Since

$$
\begin{gathered}
\Delta_{t} f=\Delta_{t}\left(\frac{\partial u}{\partial t}+u-\log \frac{\omega_{t}^{n}}{\Omega}\right) \\
=\Delta_{t} \frac{\partial u}{\partial t}+t r_{\omega_{t}} \omega-n-\Delta_{t} \log \frac{\omega_{t}^{n}}{\Omega}
\end{gathered}
$$

and

$$
\begin{gathered}
\exp (C u) \frac{\partial}{\partial t}\left(\exp (-C u) t r_{\omega_{t}} \omega\right) \\
=-C \frac{\partial u}{\partial t} t r_{\omega_{t}} \omega+t r_{\omega_{t}} \frac{\partial \omega}{\partial t}-t r_{\omega_{t}} \frac{\partial \omega_{t}}{\partial t} \cdot \omega \\
=-C \frac{\partial u}{\partial t} \operatorname{tr}_{\omega_{t}} \omega+\Delta_{t} \frac{\partial u}{\partial t}-\exp (-t) t r_{\omega_{t}}\left(\omega_{0}-\omega_{\infty}\right)+\exp (-t) t r_{\omega_{t}}\left(\omega_{0}-\omega_{\infty}\right) \cdot \omega,
\end{gathered}
$$

we obtain the lemma. Q.E.D.

Let ε be an arbitrary small positive number. We set

$$
T_{1}(\varepsilon)=\min \left\{\sup \left\{t>0 \mid \omega_{t}>0\right\}-\varepsilon, T\right\}
$$

and let C be a positive number such that

$$
C+\inf _{i \neq j} R_{i i j j}(t)>1
$$

for all $t \in\left[0, T_{1}(\varepsilon)\right]$. Then since the function $x \exp (-x)$ is bounded on $[0, \infty)$, by the maximum principle and Lemma 3.4, we have that if $\exp (-C u) t t_{\omega_{t}} \omega$ take its maximum at $\left(x_{0}, t_{0}\right) \in X \times\left[0, T_{0}(\varepsilon)\right]$, we have

$$
t r_{\omega_{\mathrm{t}}} \omega\left(x_{0}, t_{0}\right)<C_{e}
$$

for some $C_{\varepsilon}>0$ depending only on ε. Then by the C^{0}-estimate of u, Lemma 3.1 and Lemma 3.2, by the maximum principle for parbolic equations we have that there exists a positive constant $C_{1, \varepsilon}^{\prime}$ such that

$$
t r_{\omega_{t}} \omega<C_{1, \varepsilon}^{\prime}
$$

Hence we obtain:
Lemma 3.5 There exists a positive constant $C_{1, \varepsilon}$ depending only on $T_{1}(\varepsilon)$ such that

$$
\|u\|_{C^{2}(X)} \leq C_{2, \varepsilon}
$$

for every $t \in\left[0, T_{1}(\varepsilon)\right)$, where $\left\|\|_{C^{r}(X)}\right.$ is the C^{2}-norm with repsect to ω_{0}.

Now by [26], for every $r \geq 2$ there exists a positive constant $C_{r, t}$ depending only on $T_{1}(\varepsilon)$ such that

$$
\|u\|_{C^{r}(X)} \leq C_{r, e}
$$

Letting ε tend to 0 , we have that

$$
T \geq T_{1}
$$

holds. Since $\left[\omega_{T_{0}}\right]$ is on the closure of the Kähler cone $A(X)$, by changing Ω properly, we can make $T_{0}-T_{1}>0$ arbitarary small. Hence we conclude that $T=T_{0}$. This completes the proof of Theorem 3.1. Q.E.D.

4 Deformation of Kähler form II

In this section we shall construct a Kähler-Einstein form on a Zariski open subset of X by using a initial value problem similar to (1) in the last section. In this section we use the same notation as in the last section.

4.1 Kähler-Einstein currents

To state our theorem we need the following definitions.
Definition 4.1 Let D be a \mathbf{R}-Cartier divisor on a projective variety Y. Then the stable base locus of D is defined by

$$
S B s(D)=\cap_{\nu>0} S u p p B s|[\nu D]| .
$$

Definition 4.2 Let D be a Cartier divisor on a projective variety Y and let $\Phi_{|D|} ; Y \rightarrow \cdots \rightarrow \mathbf{P}^{N(\nu)}$ be the rational map associated with $|\nu D|_{\tilde{X}}$ Let $\mu_{\nu}: Y_{\nu} \longrightarrow Y$ be a resolution of the base locus of $|\nu D|$ and let $\tilde{\Phi}_{|\nu D|} ; \tilde{X} \longrightarrow$ $\mathbf{P}^{N(\nu)}$ be the associated morphism. We set

- $E(\nu D)=\overline{\mu_{\nu}(\tilde{E}(\nu D) \cap(Y-S u p p B s|\nu D|)}$ (Zariski closure)
and call it the exceptional locus of $|\nu D|$. It is easy to see that $E(\nu D)$ is independent of the choice of the resolution of the base locus μ_{ν}. We set

$$
S E(D)=\cap_{\nu>0} E(\nu D)
$$

and call it the stable exceptional locus of D.

We set

$$
S=\operatorname{SBs}\left(K_{X}\right) \cup S E\left(K_{X}\right)
$$

The main result in this section is the following theorem.

Theorem 4.1 There exists a d-closed positive $(1,1)$-current ω_{E} on X such that

1. ω_{E} is smooth on a nonempty Zariski open subset U of X.
2. $-R i c_{\omega_{E}}=\omega_{E}$ holds on U.
3. $\left[\omega_{E}\right]=2 \pi c_{1}\left(K_{X}\right)$.

The following remark will be important in differential geometry.
Remark 4.1 As an immediate consequence of Theorem 1.1, we can take U to be $X-S$ by using the result in [24]. But to prove Theorem 1.1, we do not need to take U to be $X-S$.

4.2 Kodaira's Lemma

The following lemma of Kodaira is well known and fundamental in the proof of Theorem 4.1.

Lemma 4.1 (Kodaira's lemma) Let D be a big divisor (cf. Definition 2.6) on a smooth projective variety M. Then there exists an effective \mathbf{Q}-divisor E such that $D-E$ is an ample \mathbf{Q}-divisor.

Proof. Let H be a very ample divisor on M. Then

$$
0 \rightarrow H^{0}\left(M, \mathcal{O}_{M}(m D-H)\right) \rightarrow H^{0}\left(M, \mathcal{O}_{M}(m D)\right) \rightarrow H^{0}\left(H, \mathcal{O}_{H}(m D \mid H)\right)
$$

is exact. Since D is big, for a sufficiently large $m,|m D-H|$ is nonempty. This completes the proof of the lemma. Q.E.D.

The following cororally is trivial by Lemma 4.1 and Kleiman's criterion for ampleness([17]).

Cororally 4.1 ([13, Lemma 3 and 4]) Let D be a nef and big divisor an a smooth projective variety M. Then there extists an effective Q -divisor E such that for every sufficiently small positive rational number $\varepsilon, D-\varepsilon E$ is an ample Q -divisor on M.

Let ν be a sufficiently large positive integer such that

1. $\left|\nu K_{X}\right|$ gives a birational rational map from X into a projective space.
2. Supp $\operatorname{Bs}\left|\nu K_{X}\right|=\operatorname{SBs}\left(K_{X}\right)$.

Let $f_{\nu}: X_{\nu} \rightarrow X$ be a resolution of the base locus of $\left|\nu K_{X}\right|$ and let

$$
F_{\nu}=\sum_{i} b_{i}^{\nu} F_{i}^{\nu}
$$

be the fixed part of $\left|f_{\nu}^{*}\left(\nu K_{X}\right)\right|$. We take f_{ν} so that F^{ν} is a divisor with normal crosssings. We set

$$
\tilde{b}_{i}^{\nu}=b_{i}^{\nu} / \nu
$$

Let σ_{i}^{ν} be a global holomorphic section of $\mathcal{O}_{X_{\nu}}\left(F_{i}^{\nu}\right)$ with divisor F_{i}^{ν}. Then there exist hermitian metrics $\left\|\|\right.$ on $\mathcal{O}_{X_{\nu}}\left(F_{i}^{\nu}\right)$'s such that

$$
\omega_{\infty}^{\nu}=f_{\nu}^{*} \omega_{\infty}+\sum \sqrt{-1 b_{i}^{\nu}} \partial \partial \bar{\partial} \log \left\|\sigma_{i}^{\nu}\right\|^{2}
$$

is positive on $f_{\nu}^{-1}(X-S)$, if ν is sufficiently large. We may assume

$$
\log \left\|\sigma_{i}^{\nu}\right\| \leq 0
$$

holds for every i. We set
By Lemma 4.1, there exists an effective Q-divisor

$$
R_{\nu}=\sum r_{j}^{\nu} R_{j}^{\nu}
$$

on X_{ν} such that

$$
f_{\nu}^{*}\left(K_{X}\right)-\sum \tilde{b}_{i}^{\nu} F_{i}^{\nu}-R^{\nu}
$$

is an ample \mathbf{Q}-divisor on X_{ν}. We note that εR_{ν} has the same property as R_{ν} for $\varepsilon \in[0,1]$. Let τ_{j}^{ν} be a global section of $\mathcal{O}_{X_{\nu}}\left(R_{j}^{\nu}\right)$ with divisor R_{j}^{ν}. Then there exists hermitian metrics $\left\|\|\right.$ on $\mathcal{O}_{X_{\nu}}\left(R_{j}^{\nu}\right)$ such that

$$
\omega_{\infty}^{\nu}+\sum_{j} \sqrt{-1} r_{j}^{\nu} \partial \bar{\partial} \log \left\|\tau_{j}^{\nu}\right\|^{2}
$$

is a smooth Kähler form on X_{ν} and $\left\|\tau_{j}^{\nu}\right\| \leq 1$ holds on X_{ν} for all j. We set

$$
\delta_{\nu}=\sum_{j} \sqrt{-1} r_{j}^{\nu} \log \left\|\tau_{j}^{\nu}\right\|^{2}
$$

Then for every $\varepsilon \in[0,1]$,

$$
\omega_{\infty}^{\nu}+\varepsilon \sqrt{-1} \partial \bar{\partial} \delta^{\nu}
$$

is a smooth Kähler form on X_{ν}.
We set

$$
\xi_{\nu}=\sum_{i} \tilde{b}_{i}^{\nu} \log \left\|\sigma_{i}^{\nu}\right\|^{2}
$$

4.3 Construction of a suitable ample divisor

To construct Kähler-Einstein current on X, we use the Dirichlet problem for parabolic Monge-Ampère equation. Hence we shall construct a strongly pseudoconvex convex exhaustion of a Zariski open subset of X_{ν} with certain properties. We fix sufficiently large ν hereafter. Let

$$
\Phi: X_{\nu} \longrightarrow \mathbf{P}^{N}
$$

be a embedding of X_{ν} into a projective space. Let

$$
\pi_{\alpha} ; X_{\nu} \longrightarrow \mathbf{P}^{n}(\alpha=1, \ldots m)
$$

be generic projections and we set

$$
W_{\alpha}: \text { the ramification divisor of } \pi_{\alpha}, H_{\alpha}:=\pi_{\alpha}^{*}\left(\left\{z_{0}=0\right\}\right),
$$

where $\left[z_{0}: \ldots: z_{n}\right]$ be the homogeneous coordinate of P^{n}. For simplicity we shall denote the support of a divisor by the same notation as the one, if without fear of confusion. If m is sufficiently large, we may assume the following conditions:

1. $\cap_{\alpha=1}^{m}\left(W_{\alpha}+H_{\alpha}\right)=\phi$,
2. $D:=F_{\nu}+\sum_{\alpha=1}^{m}\left(W_{\alpha}+H_{\alpha}\right)$ is an ample divisor with normal crossings.
3. D contains $S \cup R_{\nu}$.
4. $K_{X_{\nu}}+D$ is ample.

Then $X_{\nu}-D$ is strongly pseudoconvex and the following lemma is necessary for our purpose.

Lemma 4.2 There exists a positive strongly plurisubharmonic exhaustion function φ of $X_{\nu}-D$ such that $\omega_{\varphi}=\sqrt{-1} \partial \bar{\partial} \varphi$ is a complete Kähler form on $X_{\nu}-D$.

Proof. Let $D=\sum_{k} D_{k}$ be the irreducible decomposition of D and let λ_{k} be a global holomorphic section of $\mathcal{O}_{X_{\nu}}\left(D_{k}\right)$ with divisor D_{k}. Then there exist hermitian metrics \|\|'s on $\mathcal{O}_{X_{\nu}}\left(D_{k}\right)$'s such that

$$
-\sum_{k} \sqrt{-1} \partial \ddot{\partial} \log \left\|\lambda_{k}\right\|^{2}
$$

is a smooth Kähler form on X_{ν}. We set for a positive number ι

$$
\varphi=-\sum_{k} \log \left\|\lambda_{k}\right\|-\iota \log \log \frac{1}{\left\|\lambda_{k}\right\|}
$$

Then if we choose ι sufficiently small, then

$$
\omega_{\varphi}=\sqrt{-1} \partial \partial \varphi
$$

is a complete Kähler form on $X_{\nu}-D$. Clearly by adding a sufficiently large positive number, we can make the exhuastion φ to be positive on $X_{\nu}-D$. Q.E.D.

Remark 4.2 As one see in Lemma 4.8 below, ω_{φ} has a bounded Poincaré growth.

4.4 The Dirichlet problem

We set for $c>0$,

$$
K_{c}=\left\{x \in X_{\nu}: \varphi(x) \leq c\right\} .
$$

It is easy to see that we may assume that there exists a positive constant c_{0} such that the boundary ∂K_{c} is smooth for every $c \geq c_{0}$. We fix such c and set

$$
K:=K_{c}
$$

for simplicity.
In the estimate of u, we try to make the estimate independent of $c \geq c_{0}$ for the later use.

Since $X_{\nu}-D$ is canonically biholomorphic to a Zariski open subset of X, we may consider K as a compact subset of X. We consider the following Dirichlet problem for a parabolic Monge-Ampèrc equation.

$$
\begin{cases}\left.\frac{\partial u}{\partial t}=\log \frac{\left(\omega_{z}+\sqrt{-1} \partial \delta_{u}\right.}{\Omega}\right)^{n}-u & \text { on } K \times[0, T) \\ u=\left(1-e^{-t^{4}}\right) \xi_{\nu} & \text { on } \partial K \times[0, T)(10) \\ u=0 & \text { on } K \times\{0\}\end{cases}
$$

where ω_{t}, Ω are the same as in the last section and T is a maximal existence time for the smooth solution on \bar{K} (the closure in the usual topology). We shall assume that

$$
\omega_{0}^{n}=\Omega
$$

holds. It is easy to find such ω_{0} and Ω by using the solution of Calabi's conjecture ([28]). By multiplying a common sufficiently large positive number to ω_{0} and Ω, if neceessary, we may assume that

$$
\omega_{0}+\operatorname{Ric} \Omega=\omega_{0}-\omega_{\infty}>0
$$

holds. Please do not confuse u with the one in the last section. We use the same notation for simplicity. For the first we shall show

Theorem 4.2 T is infinite and

$$
u_{\infty}=\lim _{t \rightarrow \infty} u
$$

exists in C^{∞}-topology on \bar{K}.

4.5 C^{0}-estimate

We note that by the above choice of ω_{0}, Ω and the Dirichlet condition, the Dirichlet problem (10) is compatible up to 3 -rd order on the corner $\partial K \times\{0\}$.

Hence by the standard implicit function theorem, we see that T is positive. Suppose T is finite. Then if $\lim _{t \rightarrow T} u$ exist on K in C^{∞}-topology, then this is a contradiction. Because again by the implicit function theorem, we can continue the solution a little bit more. Hence to prove Theorem 4.2, it is sufficient to obtain an estimate of C^{k}-norm of u on K which is independent of t.

We begin with C^{0}-estimate.
Lemma 4.3 There exists a constant C_{0}^{+}such that

$$
\frac{\partial u}{\partial t} \leq C_{0}^{+} e^{-t} \text { on } K \times[0, T)
$$

holds.
Proof We set

$$
\omega=\omega_{t}+\sqrt{-1} \partial \bar{\partial} u
$$

and

$$
\tilde{\Delta}=\operatorname{tr}_{\omega} \sqrt{-1} \partial \bar{\partial}
$$

As in the proof of Lemma 3.1, we have

$$
\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial t}\right)=\tilde{\Delta} \frac{\partial u}{\partial t}-\frac{\partial u}{\partial t}-e^{-t} t r_{\omega}\left(\omega_{0}-\omega_{\infty}\right)
$$

holds on $K \times[0, T)$. Since

$$
u=\left(1-e^{-t^{4}}\right) \xi_{\nu} \text { on } \partial K \times[0, T)
$$

and $\omega_{0}-\omega_{\infty}$ is a Kähler form on X, by maximal principle

$$
\frac{\partial u}{\partial t} \leq C_{0}^{+} e^{-t} \text { on } K \times[0, T)
$$

holds for

$$
C_{0}^{+}=\max \left\{\max _{x \in K} \log \frac{\omega_{0}^{n}}{\Omega}(x), \max _{x \in \partial K} \xi_{\nu}(x)\right\}
$$

Q.E.D.

We set

$$
\begin{gathered}
v=u-\left(1-e^{-t^{4}}\right) \xi_{\nu} \\
\Omega_{\nu}=\exp \left(\xi_{\nu}\right) \Omega
\end{gathered}
$$

and

$$
\hat{\omega}_{t}=\omega_{t}+\left(1-e^{-t^{4}}\right) \sqrt{-1} \partial \bar{\partial} \xi_{\nu}
$$

Then v satisfies the equation:

$$
\begin{cases}\frac{\partial v}{\partial t}=\log \frac{\left(\omega_{t}+\sqrt{-1} \partial \partial v\right)^{n}}{\Omega_{\nu}}-v & \text { on } K \times[0, T) \\ v=0 & \text { on } \partial K \times[0, T)(11) \\ v=0 & \text { on } K \times\{0\}\end{cases}
$$

We note that $\hat{\omega}_{t}$ is a Kähler form on $\left(X_{\nu}-D\right) \times[0, \infty]$ and $\hat{\omega}_{\infty}=\omega_{\infty}^{\nu}$. Then since

$$
\log \frac{\left(\hat{\omega}_{t}+\sqrt{-1} \partial \bar{\partial} v\right)^{n}}{\hat{\omega}_{t}^{n}}=\int_{a=0}^{1} \tilde{\Delta}_{a} v,
$$

where $\tilde{\Delta}_{a}$ is the Laplacian with respect to the Kähler form

$$
\hat{\omega}_{t}+a \sqrt{-1} \partial \bar{\partial} v
$$

by maximum principle and Lemma 4.2 , we have that

$$
v \geq \min \left\{\min _{x \in K} \log \frac{\hat{\omega}_{t}^{n}}{\Omega_{\nu}}(x)-C_{0}^{+} e^{-t}, 0\right\} \text { on } K \times[0, T)
$$

holds. Hence we have

Lemma 4.4

$$
u \geq C_{0}^{-}+\left(1-e^{-t^{4}}\right) \xi_{\nu} \text { on } K \times[0, T)
$$

where

$$
C_{0}^{-}=\min \left\{\inf _{(x, t) \in K \times[0, \infty)} \log \frac{\hat{\omega}_{t}^{n}}{\Omega_{\nu}}(x, t), 0\right\}-C_{0}
$$

We note that C_{0}^{-}may depend on K because $\log \left(\hat{\omega}^{n} / \Omega_{\nu}\right)$ may not be bounded from below on $X_{\nu}-D$. To obtain the C^{0}-estimate from below which is independent of K, we shall consider for $\varepsilon \in(0,1]$,

$$
v_{\varepsilon}=u-\left(1-e^{-t^{4}}\right)\left(\xi_{\nu}+\varepsilon \delta_{\nu}\right) .
$$

Then by the same argument, we have

Lemma 4.5 Let $\varepsilon \in(0,1]$. Then there exists a constant $C_{0}^{-}(\varepsilon)$ which is independent of K such that

$$
u \geq C_{0}^{-}(\varepsilon)+\left(1-e^{-t^{4}}\right)\left(\xi_{\nu}+\varepsilon \delta_{\nu}\right) \text { on } K \times[0, T)
$$

The reason why $C_{0}^{-}(\varepsilon)$ is independent of K is simply because

$$
\hat{\omega}_{\infty}+\varepsilon \sqrt{-1} \partial \bar{\partial} \delta_{\nu}
$$

on $X_{\nu}-D$ extends to a smooth Kähler form on X_{ν} and

$$
\exp \left(\xi_{\nu}+\varepsilon \delta_{\nu}\right) f_{\nu}^{*} \Omega
$$

is a smooth semipositive (n, n) form on X_{ν}.

4.6 $\quad C^{1}$-estimate on ∂K

Hereafter we estimate derivatives of v basically by using the method in [4]. But our estimates is a little bit more complicated because we are working on a quasi-projective variety which cannot admits a global flat Kähler metric. We set

$$
\psi_{c}=b(\varphi-c)
$$

where b is a positive constant. We note that

$$
\psi_{c}=0 \text { on } \partial K
$$

and

$$
\psi_{c}<0 \text { on } K
$$

Then since ω_{φ} is a complete Kähler form of Poincareé growth, if we take b sufficiently large

$$
\log \frac{\left(\hat{\omega}_{t}+\sqrt{-1} \partial \bar{\partial} \psi_{c}\right)^{n}}{\Omega_{\nu}}-\psi_{c} \geq 0 \text { on } K \times[0, \infty)
$$

holds. It is easy to see that we can take b independent of c and t. Then we have

$$
\begin{cases}\frac{\partial\left(v-\psi_{c}\right)}{\partial t} \geq \log \frac{\left(\hat{\omega}_{t}+\sqrt{-1} \partial \bar{\partial} v\right)^{n}}{\left(\hat{\omega}_{t}+\sqrt{-1} \partial \partial \psi_{c}\right)^{n}}-\left(v-\psi_{c}\right) & \text { on } K \times[0, T) \\ v-\psi_{c}=0 & \\ v=\psi_{c}=-\psi_{c} & \text { on } K K \times[0, T) \\ v \times\{0\}\end{cases}
$$

Since

$$
\log \frac{\left(\hat{\omega}_{t}+\sqrt{-1} \partial \bar{\partial} v\right)^{n}}{\left(\hat{\omega}_{t}+\sqrt{-1} \partial \bar{\partial} \psi_{c}\right)^{n}}=\int_{0}^{1} \dot{\Delta}_{a}\left(v-\psi_{c}\right) d a
$$

where $\dot{\Delta}_{a}$ is the Laplacian with respect to the Kähler form

$$
\hat{\omega}_{t}+\sqrt{-1} \partial \bar{\partial}\left\{(1-a) \phi_{c}+a v\right\}
$$

, by the maximum principle, we obtain

$$
v \geq \psi_{c} \text { on } K \times[0, T)
$$

On the other hand, trivially

$$
\hat{\Delta}_{t} v \geq-n \text { on } K \times[0, T)
$$

holds, where $\hat{\Delta}_{t}$ is the Laplacian with respect to the Kähler form $\hat{\omega}_{t}$. Let h be the C^{∞}-function on $\bar{K} \times[0, T)$ such that

$$
\left\{\begin{array}{lll}
\hat{\Delta}_{t} h & =-n & \text { on } K \times[0, T) \\
h & =0 & \text { on } \partial K \times[0, T)
\end{array}\right.
$$

Then by the maximum principle, we have

$$
v \leq h \text { on } K \times[0, T)
$$

Hence we have

$$
\begin{equation*}
\psi_{c} \leq v \leq h \text { on } K \times[0, T) \tag{12}
\end{equation*}
$$

Now to fix C^{k}-norms on $X_{\nu}-D$, we shall construct a complete KählerEinstein form on $X_{\nu}-D$.

We quote the following theorem.
Theorem 4.3 ([18]) Let \bar{M} be a nonsingular projective manifold and lel B be an effective divisor with only simple normal crossings. If $K_{\bar{M}}+B$ is ample, then there exists a unique (up to constant multiple) complete Kähler-Einslein form on $M=\bar{M}-B$ with negative Ricci curvaure.

By the construction of D, D is a divisor with simple normal crossings and $K_{X_{\nu}}+D$ is ample. Hence by Theorem 4.3, there exists a complete Kähler-Einstein form ω_{D} on $X_{\nu}-D$ such that

$$
\omega_{D}=-\operatorname{Ric}_{\omega_{D}}
$$

Then we have

$$
\|d v\| \leq \max \left\{\|d h\|,\left\|d \psi_{c}\right\|\right\} \text { on } \partial K \times[0, T)
$$

where \| \| is the pointwise norm with respect to ω_{D}. To make this estimate independent of K, we need to use special properties of ω_{D}.

Definition 4.3 Let V be an open set in C^{n}. A holomorphic map from V into a complex manifold M of dimension n is called a quasi-coordinate map iff it is of maximal rank everywhere on $V .\left(V ;\right.$ Euclidean coordinate of $\left.\mathrm{C}^{n}\right)$ is called a local quasi-coordinate of M.

Lemma 4.6 (cf. [18, p.405, Lemma 2 and pp. 406-409]) There exists a family of local quasi-coordinates $\mathcal{V}=\left\{\left(V ; v^{1}, \ldots, v^{n}\right)\right\}$ of $X_{\nu}-D$ with the following properties.

1. $X_{\nu}-D$ is covered by the images of $\left(V ; v^{1}, \ldots, v^{n}\right)$'s.
2. The completment of some open neighbourhood of D is covered by a finite number of $\left(V, v^{1}, \ldots, v^{n}\right)$'s which are local coordinate in the usual sense.
3. Each V, as an open subset of the complex Euclidean space C^{n}, contains a ball of radius $1 / 2$.
4. There exists positive constants c_{D} and $\mathcal{A}_{k}(k=0,1,2, \ldots)$ independent of V 's such that at each $\left(V, v^{1}, \ldots v^{n}\right)$, the inequalities:

$$
\begin{aligned}
& \quad \frac{1}{c_{D}}\left(\delta_{i j}\right)<\left(g_{i j}^{D}\right)<c_{D}\left(\delta_{i j}\right), \\
& \quad\left|\left(\partial^{|p|+|q|} / \partial v^{p} \partial \bar{v}^{q}\right) g_{i j}^{D}\right|<\mathcal{A}_{|p|+|q|}, \text { for any multiindices } p \text { and } q \\
& \text { hold, where } g_{i j}^{D} \text { denote the components of } \omega_{D} \text { with respect to } v^{i} \text { 's. }
\end{aligned}
$$

Definition $4.4(\bar{M}, B)$ be a pair of smooth projective variety of dimension n and a divisor with simple normal crossings on it. A complete Kähler metric ω_{M} on $M=\bar{M}-B$ is said to have bounded Poincaré growth on (M, B) if for any polydisk $\Delta^{n}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathrm{C}^{n} \| z_{\mathfrak{i}} \mid<1(1 \leq i \leq n)\right\}$ in \bar{M} such that

$$
\Delta^{n} \cap B=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \Delta^{n} \mid \quad z_{1} \cdots z_{k}=0\right\}(k \leq n),
$$

$\omega_{M} \mid \Delta^{n}$ is quasi-isometric to

$$
\omega_{P}=\sum_{i=1}^{k} \frac{\sqrt{-1} d z_{i} \wedge d \bar{z}_{i}}{\left|z_{i}\right|^{2}\left(\log \left|z_{i}\right|\right)^{2}}+\sum_{i=k+1}^{n} \sqrt{-1} d z_{i} \wedge d \bar{z}_{i}
$$

on every compact subset of Δ^{n} and every covariant derivative of $\omega_{M} \mid \Delta^{n}$ is bounded on every compact subset of Δ^{n}.

Then by the construction of ω_{D}, we have:
Lemma 4.7 ([18, pp.400-409]) ω_{D} has bounded Poincaré growth. on $\left(X_{\nu}, B\right)$.

Remember the definition of φ in Lemma 4.2. Then the following lemma is trivial.

Lemma $4.8 \varphi^{-1}\|d \varphi\|$ is uniformly bounded on $X_{\nu}-D$.
We note that v satisfies the following differential inequality.

$$
\Delta_{D} v \geq-t r_{\omega_{D}} \hat{\omega}_{t} \text { on } K \times[0, T)
$$

where Δ_{D} is the Laplacian with respect to ω_{D}. Let h_{D} be the solution of the Dirichlet problem

$$
\left\{\begin{array}{lll}
\Delta_{D} h_{D} & =-t r_{\omega_{D}} \hat{\omega}_{t} & \\
\text { on } K \times[0, T) \\
h_{D} & =0 & \\
\text { on } \partial K \times[0, T)
\end{array}\right.
$$

Then by the maximum principle, we have

$$
v \leq h_{D}
$$

holds on $K \times[0, T)$. Hence

$$
\psi_{c} \leq v \leq h_{D}
$$

holds on $K \times[0, T)$ by (12). Hence by the maximum principle, we have

$$
\|d v\| \leq \max \left\{\left\|d \psi_{c}\right\|,\left\|d h_{D}\right\|\right\} \text { on } \partial K \times[0, T)
$$

By the standard boundary estimate for the second order linear ellptic equations (cf. [10]), we see that h_{D} is smooth on \bar{K}. By using the standard elliptic estimate and Lemma 4.6, it is easy to obtain an estimate for $\left\|d h_{D}\right\|$ on K. But in this case, since $\omega_{\varphi}=\sqrt{-1} \partial \bar{\partial} \varphi$ is a complete Kähler form of Poincar/'e growth, we can find a negative constant b^{\prime} independent of c and t such that

$$
b^{\prime} \Delta_{D}(\varphi-c) \leq-t r_{\omega_{D}} \hat{\omega}_{t}
$$

holds. Then by the maximum principle, we see that

$$
h_{D} \leq b^{\prime}(\varphi-c) \quad \text { on } K
$$

holds.
Then since b and b^{\prime} are independent of c and t, by Lemma 4.8, we have:
Lemma 4.9 There exists a positive constant C_{1}^{\prime} independent of $c \geq c_{0}$ such that

$$
\|d v\| \leq C_{1}^{\prime} c \quad \text { on } \partial K \times[0, T)
$$

where \|\| is the norm with respect to the Kähler form ω_{D}.
Remark 4.3 As you have seen above, in the proof of Lemma 4.9, the use of h_{D} is not unnecessary. We can use a $b^{\prime} \psi_{c}$ instead of h_{D} from the first. The reason why we have used h_{D} here is that the method can be applicable more general situations.

4.7 C^{1}-estimate on K

Let $\pi_{\alpha}: X_{\nu} \longrightarrow \mathrm{P}^{n}$ be the generic projection constructed in 4.3. And let

$$
Z=\operatorname{Re}\left(\sum_{i} \beta_{i} \frac{\partial}{\partial\left(z_{i} / z_{0}\right)}\right)
$$

where $\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbf{C}^{n}-\{O\}$. Then

$$
\theta=\pi_{\alpha}^{*}(Z)
$$

is a holomorphic differential operator on $X_{\nu}-D$ which is meromorphic on X_{ν}. By operating θ to (11), we have

$$
\left\{\begin{array}{lll}
\frac{\partial(\theta v)}{\partial t}=\tilde{\Delta}(\theta v)-\theta v+\theta \log \frac{\dot{\omega}^{n}}{\Omega_{\nu}} & & \text { on } K \times[0, T) \\
\theta v & =\theta v & \\
\theta v & =0 & \\
\theta \times[0, T) \\
\text { on } \partial K \times\{0\}
\end{array}\right.
$$

where $\tilde{\Delta}$ is the Laplacian with repect to

$$
\omega=\hat{\omega}+\sqrt{-1} \partial \bar{\partial} v
$$

Then by the maximam principle and Lemma 4.8, we get

$$
\|\theta v\| \leq C_{1}(\theta, K)
$$

where

$$
C_{1}(\theta, K)=\max \left\{\sup _{\partial K \times[0, T)}\|0 v\|, \sup _{K \times[0, T)}\left\|\theta \log \frac{\hat{\omega}^{n}}{\Omega_{\nu}}\right\|\right\}
$$

Then since $\left\|d \log \left(\hat{\omega}^{n} / \Omega_{\nu}\right)\right\|$ is bounded on $X_{\nu}-D$, if we take m sufficiently large and $\pi_{\alpha}(1 \leq \alpha \leq m)$ properly, we get :
Lemma 4.10 There exists a positive constant $C_{1}(K)$ which depends on $c \geq$ c_{0} such that

$$
\|d v\| \leq C_{1}(K) \quad \text { on } K \times[0, T)
$$

holds.

The estimate is getting worse if the point goes far from the boundary because θ has a pole along D.

We set

$$
K_{c}(\varepsilon)=K_{c}-K_{c-\varepsilon} .
$$

Then by the above argument and the construction of D in 4.3 , we obtain the following estimate.
Lemma 4.11 There exists positive constants C_{1} and A_{1} independent of $c \geq$ c_{0} such that

$$
\|d v\| \leq C_{1} c \text { on } K\left(e^{-A_{1} c}\right) \times[0, T)
$$

Remark 4.4 This idea is inspired by the idea in [8].

$4.8 \quad C^{2}$-estimate on ∂K

In this subsection, we follow the argument in [4, pp. 218-223] and prove:
Lemma 4.12 There exists a positive constant C_{2}^{\prime} independent of $c \geq c_{0}$ such that

$$
\|\sqrt{-1} \partial \bar{\partial} v\| \leq \exp \left(C_{2}^{\prime} c\right) \text { on } \partial K \times[0, T)
$$

Let P be a point on ∂K. Choose a coordinates z_{1}, \ldots, z_{n} with origin at P such that

1. $d g_{i j}^{D}(P)=0$ and $g_{i j}^{D}(P)=\delta_{i j}$.
2. There exists a positive number \hat{b} such that

$$
r=\hat{b}(\varphi-c)
$$

satisfies $r_{z_{\alpha}}(0)=0$ for $\alpha<n, r_{y_{n}}(0)=0, r_{x_{n}}=-1$, where

$$
z_{\alpha}=x_{\alpha}+\sqrt{-1} y_{\alpha}
$$

and

$$
r_{z_{\alpha}}=\frac{\partial r}{\partial z_{\alpha}}
$$

and so on.
We set $s_{1}=x_{1}, s_{2}=y_{1}, \ldots, s_{2 n-3}=x_{n-1}, s_{2 n-2}=y_{n-1}, s_{2 n-1}=y_{n}=$ $s, s^{\prime}=\left(s_{1}, \ldots, s_{2 n-1}\right)$. By $\partial \ddot{\partial}$-Poincaré lemma, we choose a smooth function ϕ defined on a open neighbourhood U of P such that

$$
\hat{\omega}_{t}=\sqrt{-1} \partial \bar{\partial} \phi
$$

holds on U. Let g be a function defined by

$$
g=\phi+v .
$$

It is clear that to estimate $\sqrt{-1} \partial \bar{\partial} v(P)$ is equivalent to $\sqrt{-1} \partial \bar{\partial} g(P)$ because $\hat{\omega}_{t}$ is uniformly bounded with respect to ω_{D} on $X_{\nu}-D$ by a constant independent of t. . Moreover by Lemma 4.7, the convariant derivatives of $\hat{\omega}_{t}$ of any order with respect to ω_{D} is uniformly bounded with respect to the norm defined by ω_{D} on $X_{\nu}-D$ by a constant independent of t. Then by Lemma 4.6 , we may assume that U contains a ball of radius $1 / 2 c_{D}$ with center P and any derivatives of ϕ of a fixed order with respect to $\left(z_{1}, \ldots, z_{n}\right)$ is bounded by a constant independent of $c \geq c_{0}$, if we allow $\left(U, z_{1}, \ldots, z_{n}\right)$ to be a quasi-coordinate. Since the estimate is completely local, this does not cause any trouble in our estimate in this subsection. Hence the C^{2}-estimate of v on ∂K is reduced completely to the C^{2}-estimate of g on ∂K.

Sublemma 4.1 There exists a positive constant \dot{C}_{2} independent of $c \geq c_{0}$ such that

$$
\left|g_{s_{i} s_{j}}(0)\right| \leq \dot{C}_{2} \quad i, j \leq 2 n-1
$$

For r near 0 we may represent g as

$$
g=\phi+\sigma r
$$

Then

$$
g_{x_{n}}(0)=\phi_{x_{n}}-\sigma(0),
$$

so that by Lemma 4.9, $\sigma(0) \leq C_{1}^{\prime} c$. Hence

$$
g_{s_{i} s_{j}}(0)=\phi_{s_{i} s_{j}}+\sigma(0) r_{s_{i} j_{j}}
$$

holds. We note that $r_{s_{i} s_{j}}=O(1 / c)$ because of the normalization. Hence we get the sublemma.

Sublemma 4.2 There exists a positive constant \ddot{C}_{2} independent of $c \geq c_{0}$ such that

$$
\left|g_{s_{i} x_{n}}(0)\right| \leq \exp \left(\ddot{C}_{2} c\right)
$$

holds.
The proof of Sublemma 4.2 is a little bit technical.
Writing the Taylor expansion of r up to second order we obtain:

$$
r=\operatorname{Re}\left(-z_{n}+\sum a_{i j} z_{i} z_{j}\right)+\sum b_{i j} z_{i} \bar{z}_{j}+O\left(|z|^{3}\right)
$$

Introducing new coordinates of the form

$$
\begin{aligned}
& z_{n}^{\prime}=z_{n}-\sum a_{i j} z_{i} z_{j}, \\
& z_{k}^{\prime}=z_{k} \text { for } k \leq n-1,
\end{aligned}
$$

we can write

$$
\begin{equation*}
r=-\operatorname{Re}\left(z_{n}^{\prime}\right)+\sum c_{i j} z_{i}^{\prime} z_{j}^{\prime}+O\left(|z|^{3}\right) \tag{13}
\end{equation*}
$$

It is clear that $\left(c_{i j}\right)$ is positive definite.
We define T_{i} in a neighbourhood of 0 by

$$
T_{i}=\frac{\partial}{\partial s_{i}}-\frac{r_{s_{i}}}{r_{x_{n}}} \frac{\partial}{\partial x_{n}}, \text { for } i=1, \ldots, 2 n-1
$$

then $T_{i} r=0$ nad we have $T_{i}(g-\phi)=0$ on $r=0$.
We show that for suitable $\varepsilon>0$, in the region

$$
S_{\varepsilon}=\left\{x \in U \mid r(x) \leq 0, x_{n} \leq \varepsilon\right\}
$$

where U is a neighbourhood of the origin, we set

$$
w= \pm T_{i}(g-\phi)+\left(g_{s}-\phi_{s}\right)^{2}-A x_{n}+B|z|^{2}
$$

We claim :
(a) For B sufficiently large, $\tilde{L} w \geq 0$;
(b) On ∂S_{ε}, if A is sufficiently large, $w \leq 0$ holds.

To prove (a) set

$$
a=-r_{s_{i}} / r_{x_{n}}
$$

and consider (we use summation convention)

$$
\begin{equation*}
\tilde{L}\left(T_{i} g\right)=T_{i} \log \Psi(z, g(z))+g^{p \bar{q}} a_{p} g_{x_{n} \bar{q}}+g^{p \bar{q}} a_{\bar{q}} g_{x_{n}, p}+g^{p \bar{q}} a_{p \bar{q}} g_{x_{n}}, \tag{14}
\end{equation*}
$$

where

$$
\tilde{L}=\tilde{\Delta}-\frac{\partial}{\partial t},
$$

and

$$
\Psi(z, g(z))=\frac{\Omega_{\nu}}{(\sqrt{-1})^{n} d z_{1} \wedge d \bar{z}_{1} \wedge \ldots \wedge d z_{n} \wedge d \bar{z}_{n}} \exp (-g \phi)
$$

Obeserve that $g^{p \bar{q}} g_{n \bar{q}}=\delta_{n}^{p}$ and that

$$
\frac{\partial}{\partial x_{n}}=2 \frac{\partial}{\partial z_{n}}+\sqrt{-1} \frac{\partial}{\partial s}
$$

so that

$$
g_{x_{n} \bar{q}}=2 g_{n \bar{q} \bar{q}}+\sqrt{-1} g_{\bar{s} \bar{q}} .
$$

Thus the second term on the right-hand side of (14) is of the form

$$
a_{n}+g^{p \bar{q}} a_{p} g_{t \bar{q}}=O\left(1+\left(\sum g^{i \bar{q}}\right)^{1 / 2}\left(g^{p \bar{q}} g_{p s} g_{\bar{q} s}\right)^{1 / 2}\right)
$$

A similar estimate holds for the third term on the right of (14) while the forth term is $O\left(\sum g^{i i}\right)$. Thus by Lemma 4.3 and the arithmetic-geometric mean inequality, we have

$$
\pm \tilde{L} T_{i} g \leq-C \Psi^{-1 / n}-g^{p \bar{q}} g_{p s} g_{\bar{q} s}
$$

Further

$$
\begin{aligned}
\tilde{L}\left(g_{s}-\phi_{s}\right)^{2} & =2 g^{p \bar{q}} g_{p s} g_{\bar{q} s}+2\left(g_{s}-\phi_{s}\right)\left(\partial_{s} \log \Psi-\tilde{L} \phi_{s}\right) \\
& \geq 2 g^{p \bar{q}} g_{p s} g_{\bar{q} s}-C \Psi^{-1 / n}
\end{aligned}
$$

holds on S_{e} by the C^{1}-estimate (Lemma 4.11) and the arithmetic-geometric mean inequality (if we take ε sufficiently small). Hence we find

$$
\begin{aligned}
\tilde{L} w & \geq B \sum g^{i \hbar}-C \Psi^{-1 / n} \\
& \geq 0 \text { on } S_{\varepsilon} \times[0, T)
\end{aligned}
$$

if B is sufficiently large. B depends on the C^{1} estimate of v on $S_{\varepsilon} \times[0, T)$ and which is uniform with the weight φ by Lemma 4.10. This completes the proof of (a).

To prove (b), consider first $\partial S_{e} \cap \partial K$. Here we write $x_{n}=\rho\left(s_{1}, \ldots, s_{2 n-1}\right)$ and from (13), we deduce that

$$
\begin{equation*}
\rho(t)=\sum_{i j<2 n} b_{i j} s_{i} s_{j}+O\left(\left|s^{\prime}\right|^{3}\right) \tag{15}
\end{equation*}
$$

with ($b_{i j}$) positive definite. Thus on ∂K near O we have

$$
x_{n} \geq a|z|^{2}
$$

where a is uniformly bounded from below by a positive constant times $1 / c$ where by the construction of K. Also,

$$
g(s, \rho(s))=\phi(s, \rho(s))
$$

so that

$$
\left|g_{s}-\phi_{s}\right|^{2} \leq C|s|^{2} \leq C \rho
$$

Taking A large we obtain (b). By Lemma 4.11, if we take a positive constant \ddot{C}_{2} sufficiently large, we may assume that A is bounded from above by a constant times $\exp \left(\vec{C}_{2} c\right)$ for some positive constant \vec{C}_{2} independent of $c \geq c_{0}$. By the maximum principle and (a),(b),

$$
w \leq 0 \quad \text { on } S_{\varepsilon}
$$

holds.
In view of the maximum principle, we have

$$
\left|\left(T_{i} g\right)_{x_{n}}(0)\right| \leq A
$$

This completes the proof of Sublemma 4.2.
Using, still the special coordinate above we see that to finish our proof of Lemma 4.12 , we have only to establish the estimate

$$
\begin{equation*}
\left|g_{x_{n} x_{n}}(O)\right| \leq \exp \left(\dot{C}_{2} c\right) \tag{16}
\end{equation*}
$$

for some constant \dot{C}_{2} independent of $c \geq c_{0}$. By the previous estimates:

$$
\begin{aligned}
&\left|g_{s_{i} j}(O)\right| \leq \dot{C}_{2} \quad(1 \leq i, j \leq 2 n-1) \\
&\left|g_{s_{i} x_{n}}\right| \leq \exp \left(\ddot{C}_{2} c\right)(1 \leq i \leq 2 n-1)
\end{aligned}
$$

it suffices to prove

$$
\left|g_{n \bar{n}}(O)\right| \leq \exp \left(C_{2}^{\prime} c\right)
$$

for some \hat{C}_{2} independent of $c \geq c_{0}$. We may solve the equation

$$
\operatorname{det}\left(g_{i j}\right)(O)=\frac{\Omega_{\nu}}{\omega_{D}^{n}}(O)
$$

for $g_{n \bar{n}}(O)$. Then since there exists a positive constant C^{b} such that

$$
\exp \left(-C^{b} c\right) \leq \frac{\omega_{D}^{n}}{\Omega_{\nu}} \leq \exp \left(C^{b} c\right)
$$

holds on $X_{\nu}-D$, we see that (16) follows from (17) provided we know the following sublemma.

Sublemma 4.3 ([4, pp. 221-223]) The $(n-1)$ by $(n-1)$ matrix

$$
\left(g_{z_{\alpha} \bar{z}_{\rho}}(O)\right)_{\alpha, \beta<n} \geq C_{3}\left(\frac{\Omega_{\nu}}{\omega_{D}^{n}}\right)^{\frac{1}{n}} \frac{1}{c} I
$$

for some C_{3}; here I is the $(n-1)$ by $(n-1)$ identity matrix. C_{3} is independent of $c \geq c_{0}$

The proof of this sublemma is very technical.
After subtraction of a linear function we may assume that $\phi_{s_{j}}(O)=0, j \leq$ $2 n-1$. To prove Sublemma 4.3, it suffices to prove

$$
\sum_{\alpha, \beta<n} \gamma_{\alpha} \bar{\gamma}_{\beta} g_{z_{\alpha} \bar{z}_{\beta}}(O) \geq C_{3}|\gamma|^{2}
$$

which we shall do for $\gamma=(1,0, \ldots, 0)$. We shall show that

$$
\begin{equation*}
g_{1 \overline{1}}(O) \geq C_{4} \tag{17}
\end{equation*}
$$

where C_{4} is a positive constant. Let $\tilde{g}=g-\lambda x_{n}$ with λ so chosen that

$$
\left(\frac{\partial^{2}}{\partial s_{1}^{2}}+\frac{\partial^{2}}{\partial s_{2}^{2}} \tilde{g}\left(s_{1}, \ldots, s_{2 n-1}, \rho\left(s_{1}, \ldots, s_{2 n-1}\right)\right)=0 \quad \text { at } O\right.
$$

i.e.

$$
\begin{equation*}
0=g_{1 \overline{1}}(O)+\tilde{g}_{x_{n}}(O) \rho_{1 \overline{1}}(O)=g_{1 \overline{1}}(O)+\left(g_{x_{n}}(O)-\lambda\right) \rho_{1 \overline{1}}(O) \tag{18}
\end{equation*}
$$

Using the fact that any real homogeneous cubic polynomial in $\left(s_{1}, s_{2}\right)$ admits the unique decomposition

$$
\operatorname{Re}\left(\alpha\left(s_{1}+\sqrt{-1} s_{2}\right)^{3}+\beta\left(s_{1}+\sqrt{-1} s_{2}\right)\left(s_{1}+\sqrt{-1} s_{2}\right)^{2}\right)
$$

we find on expanding $\left.\tilde{g}\right|_{\partial K \cap U}$ in a Taylor series, in $s_{1}, \ldots, s_{2 n-1}$,

$$
\begin{aligned}
\left.\tilde{g}\right|_{\partial K \cap U}=\operatorname{Re} \sum_{2}^{n-1} a_{j} z_{1} \bar{z}_{j}+\operatorname{Re}\left(a z_{1} s\right) & +\operatorname{Re}\left(p\left(z_{1}, \ldots, z_{n-1}\right)+\beta z_{1}\left|z_{1}\right|^{2}\right) \\
& +O\left(s_{3}^{2}+\ldots+s_{2 n-1}^{2}\right),
\end{aligned}
$$

where p is a holomorphic cubic polynomial.
With the aid of (13), we may replace the term $\beta z_{1}\left|z_{1}\right|^{2}$ to $\left(\rho_{z_{1} \bar{z}_{1}}(O)\right)^{-1} \beta z_{1} x_{n}$, if we change the a_{j}, a and p. Thus by changing the a_{j}, a and p appropriately we may obtain the inequality:

$$
\left.\tilde{g}\right|_{\partial K \cap U} \leq \operatorname{Re} p(z)+\operatorname{Re} \sum_{2}^{n} a_{j} z_{1} \bar{z}_{j}+C \sum_{j=2}^{n}\left|z_{j}\right|^{2} .
$$

Let $\check{g}=\tilde{g}-\operatorname{Re} p(z)$ and observe that \check{g} satisfies

$$
\operatorname{det}\left(\check{g}_{j \bar{k}}\right)=\operatorname{det}\left(\tilde{g}_{j \bar{k}}\right)=\Psi(z, g(z))
$$

Recall that $\Psi(z, g(z)) \geq \delta>0$ on a neighbourhood of O, where δ depends on $\Omega_{\nu} / \omega_{D}^{n}(O)$ and the C^{1}-estimate of v on the neighbourhood. With ε small we see that in the set S_{c}, we have $\Psi(z, g(z)) \geq \delta$. Let

$$
h=-\delta_{0} x_{n}+\delta_{1}|z|^{2}+\frac{1}{B} \sum_{2}^{n}\left|a_{j} z_{1}+B z_{j}\right|^{2} .
$$

We wish to show that with the suitable choice of $\delta_{0}, \delta_{1}, B>0$ we have $h \geq \check{g}$ on ∂S_{e}. First observe that if B is sufficiently large and δ_{0} so small that $-\delta_{0} x_{n}+\delta_{1}|z|^{2} \geq 0$ on $\partial S_{c} \cap \partial K$ (the dependence of δ_{0} and δ_{1} is controlled by the Levi form of ∂K). By Lemma 4.11, if we take B sufficiently large, we have

$$
\check{g} \leq h \quad \text { on } \partial S_{\varepsilon}
$$

The function h is plurisubharmonic and the lowest eigenvalues of the complex Hessian ($h_{i j}$) are bounded independently by δ_{1} while the other eigenvalues are bounded independently of δ_{1}.

Hence choosing δ_{1} equal to small const. times $\delta^{1 / n}$

$$
\operatorname{det}\left(h_{i j}\right) \leq \delta \text { in } S_{\varepsilon}
$$

holds. By the mximum principle

$$
\check{g} \leq h \quad \text { on } S_{\varepsilon}
$$

holds. Hence by the maximum principle

$$
\dot{g}_{x_{n}}(O) \leq h_{x_{n}}(O)=-\delta_{0} .
$$

The desired inequality follows from (19). This completes the proof of Lemma
4.12 .

$4.9 \quad C^{2}$-estimate on K

Using the C^{2}-estimate on ∂K, we shall obtain a C^{2}-estimate inside K. The method here is the same as in [25].

Let H be a smooth function on $X_{\nu}-D$ defined by

$$
H=\exp \left(\delta_{\nu}\right)\left(\prod_{k}\left\|\lambda_{k}\right\| \prod_{k}\left(\log \frac{1}{\left\|\lambda_{k}\right\|}\right)^{-1}\right)^{\varepsilon}
$$

where δ_{ν} is the one in 4.2 and $\left\|\lambda_{k}\right\|$'s are the ones in 4.6 and ε is a sufficiently small positive number such that

$$
\omega_{H}=\omega_{t}+\sqrt{-1} \partial \bar{\partial} \log H
$$

is a complete Kähler form on $\left(X_{\nu}-D\right) \times[0, \infty]$ which is quasi-isometric to ω_{D} on $X_{\nu}-D$, i.e., there exists a positive constant $C(D, H)>1$ such that

$$
\frac{1}{C(D, H)} \omega_{H} \leq \omega_{D} \leq C(D, H) \omega_{I I}
$$

holds on $X_{\nu}-D$. We note that ω_{H} have bounded Poincaré growth so that the bisectional curvature of ω_{H} is bounded between two constants uniformly on $\left(X_{\nu}-D\right) \times[0, \infty]$.

We set

$$
\begin{gathered}
v_{H}=v-\log H=u-\left(1-e^{-t^{4}}\right) \xi_{\nu}-\log H, \\
\Omega_{H}=H \cdot \Omega_{\nu} .
\end{gathered}
$$

Then v_{H} satisfies the equation

$$
\frac{\partial v_{H}}{\partial t}=\log \frac{\left(\omega_{H}+\sqrt{-1} \partial \bar{\partial} v_{H}\right)^{n}}{\Omega_{H}}-v_{H} \quad \text { on } K \times[0, T)
$$

By Lemma 4.3 and Lemma $4.5 v_{H}$ satisfies the C^{0}-estimate:
Lemma 4.13 For every sufficiently small positive number ε

$$
\begin{aligned}
& v_{H} \geq C_{0}^{-}(\varepsilon)-\log H+\left(1-e^{-t^{4}}\right) \varepsilon \delta_{\nu} \\
& v_{H} \leq C_{0}^{+}\left(1-e^{-t}\right)-\left(1-e^{-t^{4}}\right) \xi_{\nu}-\log H
\end{aligned}
$$

holds on $K \times[0, T)$, where $C_{0}^{+}, C_{0}^{-}(\varepsilon)$ are constants in Lemma 4.3 and 4.5 respectively.

We have the following lemma.

Lemma 4.14 ([25, Lemma 3.2])

$$
\begin{gathered}
H^{-C} e^{C v}\left(\tilde{\Delta}-\frac{\partial}{\partial t}\right)\left(e^{-C v} H^{C} \operatorname{tr}_{\omega_{H}} \omega\right) \geq \\
\left(-\Delta_{H} \log \frac{\omega_{H}^{n}}{\Omega_{H}}-n^{2} \inf _{i \neq j} R_{i t j j}^{H}-n\right)+C\left(n-\frac{1}{C}-\frac{\partial v_{H}}{\partial t}\right) t r_{\omega_{H}} \omega- \\
e^{-t} t r_{\omega_{H}}\left(\left(\omega_{0}-\omega_{\infty}\right) \cdot \omega\right)+\left(C+\inf _{i \neq j} R_{i t i j j}^{H}\right) \exp \left(\frac{1}{n-1}\left(-\frac{\partial v_{H}}{\partial t}-v_{H}+\log \frac{\omega_{H}^{n}}{\Omega}\right)\right)\left(t r_{\omega_{H}} \omega\right)^{\frac{n}{n-1}},
\end{gathered}
$$

holds on $K \times[0, T)$, where $\operatorname{tr}_{\omega_{H}}\left(\left(\omega_{0}-\omega_{\infty}\right) \cdot \omega\right)$ is defined as in Lemma 3.4, $\inf _{\mathrm{i} \neq j} R_{\mathrm{i} i j j}^{H}$ denotes the infimum of the bisectional curvarue of ω_{H} on $\left(X_{\nu}-\right.$ D) $\times[0, \infty]$ and C is a positive constant such that

$$
C+\inf _{i \neq j} R_{i i j j}^{H}>1
$$

holds.

The proof of this lemma is the same as one of Lemma 3.2 in [25]. Hence we omit it.

Lemma 4.15 If we take C sufficiently large, then there exists a positive constant C_{2} independent of $c \geq c_{0}$ such that

$$
H^{C} t r_{\omega_{D}} \omega \leq C_{2} \text { on } K \times[0, T)
$$

holds.
Proof. By the definition H has zero of order at least $r_{j}^{\nu} / 2$ along R_{j}^{ν} (cf. 4.2). Then by Lemma 4.12 , if we take C sufficiently large, there exists a constant \tilde{C}_{2} independent of $c \geq c_{0}$ such that

$$
H^{C} t r_{\omega_{D}} \omega \leq \tilde{C}_{2} \text { on } \partial K \times[0, T)
$$

holds. Suppose $e^{-C v} H H^{C} t r_{\omega_{H}} \omega$ takes its maximum at $P_{0} \in K \times\left\{t_{0}\right\}\left(t_{0} \in\right.$ $[0, T)$) then by Lemma 4.14, we have

$$
\left(\operatorname{tr}_{\omega_{H}} \omega\right)\left(P_{0}\right) \leq \hat{C}_{2}
$$

for a positive constant \hat{C}_{2} independent of $c \geq c_{0}$ and C (if it is sufficiently large). Hence in this case we have

$$
\left(H^{C} \operatorname{tr}_{\omega_{H}} \omega\right)(P) \leq H^{C}\left(P_{0}\right) \exp \left(-C\left(v\left(P_{0}\right)-v(P)\right)\right) \hat{C}_{2} \quad \text { on } K \times[0, T)
$$

holds. By Lemma 4.13 (since in Lemma 4.13, we can take ε arbitrarily small), $H \exp (-v)=\exp \left(-v_{H}\right)$ is uniformly bounded from above on $X_{\nu}-D$.

Hence if we change \hat{C}_{2}, if necessary, by the maximum principle for parabolic equations, we may assume that

$$
\left(H^{C} \operatorname{tr}_{\omega_{H}} \omega\right)(P) \leq \exp (C v(P)) \hat{C}_{2}
$$

holds on $K \times[0, T)$. We note that ω_{D} and ω_{H} are quasi-isometric on $X_{\nu}-D$. Hence by Lemma 4.5, if we take C sufficiently large, there exists a positive constant C_{2} independent of $c \geq c_{0}$ such that

$$
H^{C} t r_{\omega_{D}} \omega \leq C_{2} \text { on } K \times[0, T)
$$

holds. Q.E.D.

By [26], the higher order interior estimate on $K \times[0, T)$ follows. As for the boundary estimate of u, we just need to follow the argument in [4]. This completes the proof of Theorem 4.2.

4.10 Costruction of Kähler-Einstein currents

Let u_{∞} be as in Theorem 4.2. Then by the construction

$$
\omega_{K}=\omega_{\infty}+\sqrt{-1} \partial \bar{\partial} u_{\infty}
$$

is a Kähler-Einstein form on $\bar{K}=\bar{K}_{c}$. We may assume that $c>1$. Let us take the exahustion $\left\{K_{l c}\right\}_{l=1}^{\infty}$ of $X_{\nu}-D$ and let

$$
\omega_{l}^{\nu}=\omega_{K_{l c}} .
$$

Then by Lemma 4.3 and Lemma 4.15 and the regularity theorem in [26], we have the following lemma.

Lemma 4.16 There exists a subsequence of $\left\{\omega_{l}^{\nu}\right\}_{l=1}^{\infty}$ which converges uniformly on every compact subset of $X_{\nu}-D$ in C^{∞}-topology to a KählerEinstein form ω^{ν} on $X_{\nu}-D$.

Although ω^{ν} is a Kähler-Einstein form, it is not enough good for our purpose.

Let us consider the linear system $\left|m!\nu K_{X}\right|$ and construct $\xi_{m!\nu}$ as before. We denote $\xi_{m!\nu}$ by $\xi^{(m)}$ for simplicity. Since $X_{m!\nu}-F^{m!\nu}$ are all biholomorphic to $X-\operatorname{SBs}\left(K_{X}\right)$, we may consider $\left\{\xi^{(m)}\right\}$ as a family of functions on $X_{\nu}-D$. Let us denote $X_{m!\nu}$ by $X^{(m)}$ for simplicity and define $X_{(1)}=X$.

Lemma 4.17 We can construct $\left\{\xi^{(m)}\right\}$ so that

$$
\xi^{(1)} \leq \xi^{(2)} \leq \ldots \leq \xi^{(m)} \leq \xi^{(m+1)} \leq \ldots
$$

holds on $X_{\nu}-D$.
Proof. Let \mathcal{I}_{μ} denote the ideal sheaf of the base scheme Bs $\left|\mu K_{X}\right|$. Then clearly

$$
\mathcal{I}_{\mu_{1}+\mu_{2}} \hookrightarrow \mathcal{I}_{\mu_{1}} \otimes \mathcal{O}_{X} \mathcal{I}_{\mu_{2}}
$$

holds. Hence inductively we can construct a morphism

$$
\mu_{m}: X_{(m)} \longrightarrow X_{(m-1)}^{\prime}(m \geq 2)
$$

such that

1. $f_{(m)}:=\mu_{m} \circ \cdots \circ \mu_{1}: X_{(m)} \longrightarrow X_{(0)}(=X)$ is a resolution of Bs $\left|m!\nu K_{X}\right|$.
2. The fixed part of $\left|f_{(m)}^{*}\left(m!K_{X}\right)\right|$ is a divisor with normal crossings on $X_{(m)}$.

An explicit construction of $\left\{\xi^{(m)}\right\}_{m=1}^{\infty}$ is as follows. Let $V^{(1)}=\left\{\eta_{i}^{(1)}\right\}_{i=0}^{N(1)}$ be a basis of $H^{0}\left(X, \mathcal{O}_{X}\left(\nu K_{X}\right)\right)$. By induction for each $m \geq 1$, we can construct a finite subset

$$
V^{(m)}=\left\{\eta_{1}^{(m)}, \ldots, \eta_{N(m)}^{(m)}\right\}
$$

in $H^{0}\left(X, \mathcal{O}_{X}\left(m!\nu K_{X}\right)\right)$ with the following properties.

1. $V^{(m)}$ spans $H^{0}\left(X, \mathcal{O}_{X}\left(m!\nu K_{X}\right)\right)$.
2. $V^{(m)}$ contains all the elements of the form:

$$
\begin{array}{r}
\left(\eta_{i_{1}}^{(m-1)}\right)^{\otimes a_{1}} \otimes \cdots \otimes\left(\eta_{i_{m}}^{(m-1)}\right)^{\otimes a_{m}} \\
\sum_{i=1}^{m} a_{i}=m, a_{i} \geq 0,0 \leq i_{1}<\ldots<i_{m} \leq N(m-1)
\end{array}
$$

Now we set

$$
\xi^{(m)}=\frac{1}{m!\nu} \log \left(\sum_{i=0}^{N(m)} \frac{(\sqrt{-1})^{m!\nu n^{2}} \eta_{i}^{(m)} \wedge \bar{\eta}_{i}^{(m)}}{\Omega^{m!\nu}}\right) .
$$

We may consider $\xi^{(m)}$ as a function on $X_{\nu}-D$. Then by the construction

$$
\xi^{(1)} \leq \xi^{(2)} \leq \ldots \leq \xi^{(m)} \leq \ldots
$$

holds and

$$
\omega_{\infty}+\sqrt{-1} \partial \bar{\partial} \xi^{(m)}
$$

is a smooth semipositive form on $X_{(m)}$ and positive on $X_{\nu}-D$. This completes the proof of the lemma. Q.E.D.

Now we consider the following Dirichlet problem.

$$
\left\{\begin{array}{lll}
\frac{\partial u^{(m)}}{\partial t}=\log \frac{\left(\omega_{t}+\sqrt{-1} \partial \delta u^{(m)}\right)^{n}}{\Omega}-u^{(m)} & & \text { on } K \times\left[0, T_{m}\right) \\
u^{(m)}=\left(1-e^{-t^{4}}\right) \xi^{(m)} & & \text { on } \partial K \times\left[0, T_{m}\right) \\
u^{(m)}=0 & & \text { on } K \times\{0\},
\end{array}\right.
$$

where T_{m} is the maximal existence time for smooth solution on \bar{K}.
Lemma 4.18 The followings are true.

1. T_{m} is infinite and $u_{\infty}^{(m)}=\lim _{t \rightarrow \infty} u^{(m)}$ exists in C^{∞}-topology on \bar{K}.
2. $\omega_{1}^{(m)}:=\omega_{\infty}+\sqrt{-1} \partial \bar{\partial} u_{\infty}^{(m)}$ is a Kähler-Einstein form on K.
3. If we define a sequence of Kähler-Einstein forms $\left\{\omega_{l}^{(m)}\right\}_{l=1}^{\infty}$ in the same manner as the definition of $\left\{\omega_{l}^{\nu}\right\}_{l=1}^{\infty}$ above, then there exists a subsequence of $\left\{\omega_{i}^{(m)}\right\}$ which converges uniformly on every compact subset of $X_{\nu}-D$ uniformly in C^{∞}-topology.

Proof. The only difference between the above equation and the equation (10) is that $\nabla^{k} \xi^{(m)}(k \geq 1)$ is bounded with respect to ω_{D} with weights different from before. It is easy to find such weights. In fact, there exists a positive constant $C(m, k)$ depending only on m and k such that $H^{C(m, k)}\left\|\nabla^{k} \xi^{(m)}\right\|$ is bounded by a positive constant on $X_{\nu}-D$. Hence the previous argument is valid with some weight with respect to H. Hence the first assertion is trivial.

Then by replacing K to $K_{l c}$, we get a sequence of Kähler-Einstein form $\left\{\omega_{i}^{(m)}\right\}_{l=1}^{\infty}$ which are defined on $K_{l c}$ respectively $\left(\omega_{l}^{(1)}=\omega_{l}^{\nu}\right)$.

We would like to find a subsequence of $\left\{\omega_{l}^{(m)}\right\}_{l=1}^{\infty}$ which converges in C^{∞} topology on every compact subset of $X_{\nu}-D$.

For the first, replacing ξ_{ν} by $\xi^{(m)}$, completely analogous estimate as Lemma 4.5 holds for $u^{(m)}$ with the perturbation $\delta^{(m)}$ completely analogous to δ_{ν}. As for the C^{2}-estimate, by the proof of Lemma 4.18, Lemma 4.15 also holds for ω_{l}^{m} if we replace C and C_{2} to appropriate constants independent of l. The rest of the proof is the same as in the proof of Lemma 4.16. Q.E.D.

Taking subsequence, if necessary, we obtain a Kähler-Einstein form $\omega^{(m)}$ as before, where $\omega^{(1)}=\omega^{\nu}$.

We shall consider $\omega^{(m)}$ as ' a d-closed positive (1,1)-current on X by

$$
\omega^{(m)}:=\omega_{\infty}+\sqrt{-1} \partial \bar{\partial} \log \frac{\left(\omega^{(m)}\right)^{n}}{\Omega}
$$

where $\partial \bar{\partial}$ is taken in the sense of a current. This definition is well defined by the C^{0}-estimate (Lemma 4.5) and clearly

$$
\left[\omega^{(m)}\right]=2 \pi c_{1}\left(K_{X}\right)
$$

holds. Now we want to show that

Proposition 4.1

$$
\omega_{E}=\lim _{m \rightarrow \infty} \omega^{(m)}
$$

exists in the sense of a d-closed positive (1,1)-current on X_{ν}.

Lemma 4.19

$$
\left(\omega^{(m)}\right)^{n} \leq \omega_{D}^{n} \quad \text { on } X_{\nu}-D
$$

holds.
Proof. Since both ω_{D} and $\omega^{(m)}$ are Kähler-Einstein forms on $X_{\nu}-D$ and ω_{D} is a complete Kähler-Einstein form on $X_{\nu}-D$, by applying Yau's Schwarz lemma ([29]) to the holomorphic map

$$
i d:\left(X_{\nu}-D, \omega^{(m)}\right) \leq\left(X_{\nu}-D, \omega_{D}\right)
$$

we obtain the lemma. Q.E.D.

Hence $\left\{\left(\omega^{(m)}\right)^{n}\right\}$ is uniformly bounded from above. For the next we shall show:

Lemma 4.20 For every $m \geq 1$, we have that

$$
\left(\omega^{(m)}\right)^{n} \leq\left(\omega^{(m+1)}\right)^{n} \quad \text { on } X_{\nu}-D
$$

holds.
Proof. $u^{(m+1)}-u^{(m)}$ satisfies the following equations:

$$
\begin{cases}\frac{\left.\partial u^{(m+1)}-u^{(m)}\right)}{\partial t}=\log \frac{\left(\omega_{t}+\sqrt{-1} \partial \bar{\partial}^{(m+1)}\right)^{n}}{\left(\omega_{t}+\sqrt{-1} \partial \delta u^{(m)}\right)^{n}}-\left(u^{(m+1)}-u^{(m)}\right) & \text { on } K \times[0, \infty) \\ u^{(m+1)}-u^{(m)}=\left(1-e^{-t}\right)\left(\xi^{(m+1)}-\xi^{(m)}\right) & \text { on } \partial K \times[0, \infty) \\ u^{(m+1)}-u^{(m)}=0 & \text { on } K \times\{0\}\end{cases}
$$

Since

$$
\log \frac{\left(\omega_{t}+\sqrt{-1} \partial \bar{\partial} u^{(m+1)}\right)^{n}}{\left(\omega_{t}+\sqrt{-1} \partial \bar{\partial} u^{(m)}\right)^{n}}=\int_{0}^{1} \Delta_{a}^{(m, m+1)}\left(u^{(m+1)}-u^{(m)}\right) d a
$$

where $\Delta_{a}^{(m, m+1)}(a \in[0,1])$ is the Laplacian with respect to the Kähler form

$$
\omega_{t}+\sqrt{-1} \partial \bar{\partial}\left\{(1-a) u^{(m)}+a u^{(m+1)}\right\}
$$

we see that this equation is of parabolic type. We note that $\xi^{(m+1)} \geq \xi^{(m)}$ on $X_{\nu}-D$ by the construction. Then by the maximum principle we obtain

$$
u^{(m)} \leq u^{(m+1)} \text { on } K \times[0, \infty) .
$$

We set

$$
u_{\infty}^{(m)}=\lim _{t \rightarrow \infty} u^{(m)}
$$

Then we have

$$
\omega_{1}^{(m)}=\omega_{\infty}+\sqrt{-1} \partial \bar{\partial} u_{\infty}^{(m)}
$$

and

$$
\left(\omega_{1}^{(m)}\right)^{n}=\exp \left(u_{\infty}^{(m)}\right) \Omega
$$

on K. Hence we see that

$$
\left(\omega_{1}^{(m)}\right)^{n} \leq\left(\omega_{1}^{(m+1)}\right)^{n}
$$

holds on K. By replacing K to $K_{l c}$ and repeating the same argument, we see that

$$
\left(\omega_{l}^{(m)}\right)^{n} \leq\left(\omega_{l}^{(m+1)}\right)^{n}
$$

holds on $K_{l c}$. By letting l tend to infinifty, we completes the proof of the lemma. Q.E.D.

Hence $\left\{\left(\omega^{(m)}\right)^{n}\right\}_{m=1}^{\infty}$ is monotone increasing and bounded from above uniformly on every compact subset of $X_{\nu}-D$

$$
\omega_{E}^{n}:=\lim _{m \rightarrow \infty}\left(\omega^{(m)}\right)^{n}
$$

exists.
We shall define a d-closed positive $(1,1)$ current ω_{E} on X by

$$
\omega_{E}=\omega_{\infty}+\sqrt{-1} \partial \bar{\partial} \log \frac{\omega_{E}^{n}}{\Omega} .
$$

ω_{E} is well defined by the C^{0}-estimates in the last subsection. Then it is clear that $\left[\omega_{E}\right]=2 \pi c_{1}\left(K_{X}\right)$.

4.11 Finite orderness of the Kähler-Einstein current ω_{E}

We shall prove that ω_{E} is smooth on a Zariski open subset of X and satisfies some growth condition near the singular set. The method used here is a modification of the one in [28].

Definition 4.5 Let T be a d-closed positive (1,1)-current on a projective maifold M which is smooth on a Zariski open subset U of M. Let S denote $M-U$ and consider S as a reduced subvariety of M. Let \mathcal{I}_{S} denote the ideal sheaf of $S . T$ is said to be of finite order on M along S, if there exists a positive integer m such that for every point of $s \in S$ and $\sigma \in\left(\mathcal{I}_{S}^{\otimes m}\right)_{\text {, }}$, there exists a neighbourhood V of s such that σ is defined on V and

$$
|\sigma|^{2}(T \mid U \cap V)
$$

extends locally as a bounded form on V.
Lemma $4.21 \omega_{E}$ is smooth on $X_{\nu}-D$ (remember we can identify $X_{\nu}-D$ with a Zariski open subset of X) and has finite order along D.

To prove this lemma, by Lemma 4.15 it is sufficient to prove the following. Lemma $4.22 \omega^{(m)}=\omega^{(1)}$ for all $m \geq 1$. Hence in particular $\omega_{E}=\omega^{(1)}$.

Proof. Let m be a fixed positive integer. Let $d V$ be the volume form on K defined by

$$
d V=\frac{\left(\omega_{1}^{(1)}\right)^{n}}{n!}
$$

and let w be the fuction on K defined by

$$
w=\log \frac{\left(\omega_{1}^{(m)}\right)^{n}}{\left(\omega_{1}^{(\mathrm{I})}\right)^{n}}
$$

By Lemma $4.20, w \geq 0$ on K. Then by Stokes' theorem we have

$$
\int_{K} \Delta_{1}^{(1)}\left(w^{2}\right) d V=\int_{\partial K} \frac{\partial}{\partial \mathrm{n}}\left(w^{2}\right) d S
$$

where $\Delta_{1}^{(1)}$ is the Laplacian with respect to $\omega_{1}^{(1)}, \partial / \partial \mathrm{n}$ is the derivation with respect to the unit outer normal vector field on ∂K and $d S$ is the volume form on ∂K with respect to the Kähler form $\omega_{1}^{(1)}$. On the other hand noting that $w \geq 0$ on K, we have

$$
\begin{array}{ll}
\frac{1}{2} \int_{K} \Delta_{1}^{(1)}\left(w^{2}\right) d V=\int_{K}|\nabla w|^{2} d V+\int_{K} w \Delta_{1}^{(1)} w d V & \\
\geq \int_{K} w \cdot n\left(\exp \left(\frac{1}{n} w\right)-1\right) d V & \text { by algebro-geometric mean inequality, } \\
\geq \int_{K} w^{2} d V & \text { by } e^{x} \geq x+1
\end{array}
$$

Hence we obtain the inequality:

$$
\begin{equation*}
\int_{\partial K} \frac{\partial}{\partial \mathbf{n}}\left(w^{2}\right) d S \geq 2 \int_{K} w^{2} d V \tag{19}
\end{equation*}
$$

By Lemma 4.3 and its proof, we obtain the following sublemma.
Sublemma 4.4 There exists a positive constant $C_{0}^{(m)}$ independent of c such that

$$
\left(\omega_{1}^{(m)}\right)^{n} \leq C_{0}^{(m)} \Omega \quad \text { on } K
$$

holds.
We define a C^{∞}-function $u^{(m)}$ on $\bar{K} \times[0, \infty]$ by

$$
\begin{cases}\frac{\partial u^{(m)}}{\partial t}=\log \frac{\left(\omega_{t}+\sqrt{-1} \partial \delta_{u}(m)\right)^{n}}{\Omega}-u^{(m)} & \text { on } K \times[0, \infty), \\ u_{l}^{(m)}=\left(1-e^{-t^{4}}\right) \xi^{(m)} & \text { on } \partial K \times[0, \infty), \\ u^{(m)}=0 & \text { on } K \times\{0\}\end{cases}
$$

as before. We note that by Lemma 4.18,

$$
u_{\infty}^{(m)}=\lim _{t \rightarrow \infty} u^{(m)}
$$

exists in C^{∞}-topology on \bar{K}.
Sublemma 4.5 Let C be a positive number. If we replace $\xi^{(m)}$ to $\xi^{(m)}+C$, $\omega^{(m)}$ will be unchanged.

Proof. Let $u_{C}^{(m)}$ be the solution of the Dirichlet problem:

$$
\begin{cases}\frac{\partial u_{C}^{(m)}}{\partial t}=\log \frac{\left(\omega_{t}+\sqrt{-1} \partial \tilde{\partial}_{C}^{(m)}\right)^{n}}{\Omega}-u_{C}^{(m)} & \text { on } K \times[0, \infty), \\ u_{C}^{(m)}=\left(1-e^{-t^{4}}\right)\left(\xi^{(m)}+C\right) & \text { on } \partial K \times[0, \infty) \\ u_{C}^{(m)}=0 & \text { on } K \times\{0\}\end{cases}
$$

We set

$$
w_{C}^{(m)}=\lim _{t \rightarrow \infty}\left(u_{C}^{(m)}-u^{(m)}\right)
$$

Then as in the proof of Lemma 4.20, we have

$$
w_{C}^{(m)} \geq 0 \quad \text { on } K
$$

As before, we have

$$
\begin{align*}
\int_{\partial K} \frac{\partial}{\partial \mathrm{n}(m)}\left(w_{C}^{(m)}\right)^{2} d S_{(m)} & =C \int_{\partial K} \frac{\partial}{\partial \mathrm{n}(m)} w_{C}^{(m)} d S_{(m)} \\
& \geq 2 \int_{K}\left(w_{C}^{(m)}\right)^{2} \frac{\left(\omega^{(m)}\right)^{n}}{n!} \tag{20}
\end{align*}
$$

where $\mathrm{n}(m)$ is the unit outer normal vector field on ∂K with respect to $\omega_{1}^{(m)}$ and $d S_{(m)}$ is the volume form of ∂K induced from $\omega_{1}^{(m)}$. Then we have

$$
\left\{\begin{aligned}
\log \frac{\left(\omega_{1}^{(m)}+\sqrt{-1} \partial \partial w_{c}^{(m)}\right)^{n}}{\left(\omega_{1}^{(m)}\right)^{n}} & =w_{C}^{(m)} \\
& \text { on } K \\
w_{C}^{(m)} & =C \quad \text { on } \partial K
\end{aligned}\right.
$$

Let us take a positve number ε such that

$$
\log \frac{\left(\omega_{1}^{(m)}+\varepsilon \sqrt{-1} \partial \bar{\partial} \varphi\right)^{n}}{\left(\omega_{1}^{(m)}\right)^{n}}-\varepsilon(\varphi-c)-C \geq 0 \text { on } K
$$

holds. Then as in 4.6 by the maximum principle, we have

$$
\begin{equation*}
w_{C}^{(m)} \geq \varepsilon(\varphi-c)+C \tag{21}
\end{equation*}
$$

Since $\omega_{\varphi}=\sqrt{-1} \partial \bar{\partial} \varphi$ is a complete Kähler form of Poincaré growth, by Sublemma 4.4, it is easy to see that we can take ε such that

$$
\begin{equation*}
\varepsilon=O\left(\frac{1}{c}\right) \tag{22}
\end{equation*}
$$

By the completely analogous estimate as Sublemma 4.1 we have the following sublemma.

Sublemma 4.6 Let $T(\partial K)_{\mathbf{C}}$ be the complex tangent bundle of the CR-manifold ∂K. Let us fix a complete Kähler form $\omega_{D}^{(m)}$ of Poincaré growth on $X_{(m)}-F^{m!\nu}$. Then the norm of the restriction of $\omega_{1}^{(m)}$ to $T(\partial K)_{\mathrm{C}}$ with respect to $\omega_{D}^{(m)}$ is bounded by a constant independent of c.

Then by Sublemma 4.6, we see that

$$
\begin{equation*}
\left\|\frac{\partial}{\partial \mathbf{n}(m)} \otimes d S_{(m)}\right\|=O(c) \tag{23}
\end{equation*}
$$

holds, where $\left\|\|\right.$ is the norm with respect to $\omega_{D}^{(m)}$. Combining (21),(22),(23) and (24), letting c tend to infinity, we see that

$$
\lim _{c \rightarrow \infty} w_{C}^{(m)}=0
$$

holds on K. This completes the proof of Sublemma 4.5. Q.E.D.

Sublemma 4.7 Let $\tilde{\xi}^{(m)}$ be a function such that
1.

$$
\omega_{\infty}+\sqrt{-1} \partial \bar{\partial} \tilde{\xi}^{(m)}
$$

is a C^{∞}-semipositive form on $X_{(m)}$ and positive on $X_{\nu}-D$.
2. There exists a positive constant C such that

$$
\xi^{(m)}-C \leq \tilde{\xi}^{(m)} \leq \xi^{(m)}+C
$$

holds.
Then if we replace $\xi^{(m)}$ to $\tilde{\xi}^{(m)}, \omega^{(m)}$ will be unchanged.
Proof. Let $\tilde{u}^{(m)}$ be the solution of the Dirichlet problem :

$$
\begin{cases}\frac{\partial \tilde{u}^{(m)}}{\partial t}=\log \frac{\left(\omega_{t}+\sqrt{-1} \partial \partial \tilde{u}^{(m)}\right)^{n}}{\Omega}-\tilde{u}^{(m)} & \text { on } K \times[0, \infty) \\ \tilde{u}^{(m)}=\left(1-e^{t^{4}}\right) \tilde{\xi}^{(m)} & \text { on } \partial K \times[0, \infty) \\ \tilde{u}^{(m)}=0 & \text { on } K \times\{0\}\end{cases}
$$

Then by the maximum principle, we see that

$$
u_{-C}^{(m)} \leq \tilde{u}^{(m)} \leq u_{C}^{(m)} \text { on } K \times[0, \infty)
$$

holds. Then by Sublemma 4.5, this completes the proof. Q.E.D.

We set for $\varepsilon>0$,

$$
\xi_{\varepsilon}^{(m)}=\frac{1}{m!\nu} \log \left(\exp \left(m!\nu \xi^{(1)}\right)+\varepsilon \exp \left(m!\nu \xi^{(m)}\right)\right)
$$

Then $\xi_{e}^{(m)}$ has the following properties.
1.

$$
\omega_{\infty}+\sqrt{-1} \partial \bar{\partial} \xi_{e}^{(m)}
$$

is a C^{∞}-semipositive form on $X_{(m)}$ and positive on $X_{\nu}-D$.
2.

$$
\lim _{\varepsilon \not 0} \xi_{\varepsilon}^{(m)}=\xi^{(1)} \quad \text { on } X_{\nu}-D
$$

holds.
3.

$$
\xi_{e}^{(m)} \geq \xi^{(1)} \text { on } X_{\nu}-D
$$

holds.
4. There exists a positive constant C_{e} depending on ε such that

$$
\xi^{(m)}-C_{\varepsilon} \leq \xi_{\varepsilon}^{(m)} \leq \xi^{(m)}+C_{\varepsilon} \quad \text { on } X_{\nu}-D
$$

holds.
Let $u_{e}^{(m)}$ be the solution of Dirichlet problem:

$$
\begin{cases}\frac{\partial u^{(m)}}{\partial t}=\log \frac{\left(\omega_{t}+\sqrt{-1} \partial \partial u_{s}^{(m)}\right)^{n}}{\Omega}-u_{\varepsilon}^{(m)} & \text { on } K \times[0, \infty) \\ u^{(m)}=\left(1-e^{t^{4}}\right) \xi_{e}^{(m)} & \text { on } \partial K \times[0, \infty) \\ u_{\varepsilon}^{(m)}=0 & \text { on } K \times\{0\}\end{cases}
$$

We set

$$
w_{\varepsilon}=\lim _{t \rightarrow \infty}\left(u_{e}^{(m)}-u^{(m)}\right) .
$$

By Lemma 4.18 and the maximum principle, we see that w_{ε} exists and C^{∞} on \bar{K} and is nonnegative on K. Then as (20), we have the inequality:

$$
\begin{equation*}
\int_{\partial K} \frac{\partial}{\partial \mathrm{n}}\left(w_{\varepsilon}\right)^{2} \cdot d S \geq 2 \int_{K} w_{\varepsilon}^{2} d V \quad \text { on } K . \tag{24}
\end{equation*}
$$

Sublemma 4.8 Let $d S_{D}$ be the volume form of ∂K induced from the Kähler form ω_{D}. Then there exists a positive constant \hat{C}_{m} independent of c and ε such that

$$
\frac{\partial w_{e}^{(m)}}{\partial \mathbf{n}} d S \leq \hat{C}_{m} c \cdot d S_{D}
$$

holds.
Proof. We note that by Sublemma 4.7 (taking m to be 1)

$$
\left\|\frac{\partial}{\partial \mathbf{n}} \otimes d S\right\|
$$

is bounded by a constant independent of c, where $\|\|$ denote the the norm with respect to ω_{D}. Then by Lemma 4.9 , it is suficient to prove that there exists a positive constant \tilde{C}_{m} independent of c such that

$$
\frac{\partial u_{\varepsilon \infty}^{(m)}}{\partial \mathbf{n}} d S \leq \tilde{C}_{m} c \cdot d S_{D}
$$

holds, where

$$
u_{e \infty}^{(m)}=\lim _{t \rightarrow \infty} u_{\varepsilon}^{(m)}
$$

($u_{e \infty}^{(m)}$ exists and C^{∞} on \bar{K} by Lemma 4.18). We set

$$
\hat{\omega}_{\varepsilon \infty}^{(m)}=\omega_{\infty}+\sqrt{-1} \partial \bar{\partial} \xi_{\varepsilon}^{(m)}
$$

and

$$
v_{\varepsilon \infty}^{(m)}=u^{(m)}-\xi_{\varepsilon}^{(m)} .
$$

We note that by the construction $\hat{\omega}_{\epsilon \infty}^{(m)}$ is a smooth semipositive form on $X_{(m)}$. Since $\omega_{\varphi}=\sqrt{-1} \partial \bar{\partial} \varphi$ is a complete Käjhler form of Poincaré growth on $X_{\nu}-D$, it is easy to find a positive number α independent of c and ε such that

$$
\log \frac{\left(\hat{\omega}_{e \infty}^{(m)}+\sqrt{-1} \alpha \partial \bar{\partial} \varphi\right)^{n}}{\Omega}-\alpha(\varphi-c) \geq 0 \text { on } K
$$

holds. Then as in the proof of Lemma 4.9, by the maximum principle, we see that

$$
v_{\varepsilon \infty}^{(m)} \geq \alpha(\varphi-c) \text { on } K
$$

holds. By Lemma 4.10, we see that there exists a positive constant \dot{C}_{m} independent of c and ε such that

$$
\frac{\partial v_{\varepsilon \infty}^{(m)}}{\partial \mathbf{n}} d S \leq \dot{C}_{m} c \cdot d S_{D} \quad \text { on } \partial K
$$

holds. On the other hand by direct calculation, (by identifying $X_{\nu}-D$ as a Zariski open subset of $X_{(m)}$, using Sublemma 4.7, we see that there exists a postive constant \dot{C}_{m}^{\prime} independent of c and ε such that

$$
\frac{\partial \xi_{e}^{(m)}}{\partial \mathbf{n}} d S \leq \dot{C}_{m}^{\prime} c \cdot d S_{D} \quad \text { on } \partial K
$$

holds. Combining the above estimates, we obtain the sublemma. Q.E.D.

We note that $\xi_{\varepsilon}^{(m)}$ and $\xi^{(1)}$ have very slow growthes ("logarithmic growth") along D respectively and the volume of ∂K with respect to ω_{D} is bounded by a constant times $1 / c$ because ω_{D} is a complete Kähler form of Poincare growth on $X_{\nu}-D$. Then since there exists a subvariety $V_{(m)}$ of $X_{(m)}$ of codimension ≥ 2 such that $\xi_{\varepsilon}^{(m)}-\xi^{(1)}$ is locally bounded on $X_{(m)}-V_{(m)}$, by Sublemma 4.8, we see that

$$
\int_{\partial K}\left(\xi_{\varepsilon}^{(m)}-\xi^{(1)}\right) \frac{\partial w_{\varepsilon}}{\partial \mathbf{n}} d S
$$

is bounded from above by a positive constant which is independent of c. Since $V_{(m)}$ is of codimension at least 2 in X_{ν}, by Sublemma 4.8, we see that

$$
\begin{equation*}
\limsup _{\varepsilon\lfloor 0, c \rightarrow \infty} \int_{\partial K}\left(\xi_{\varepsilon}^{(m)}-\xi^{(1)}\right) \frac{\partial w_{\varepsilon}}{\partial \mathrm{n}} d S=0 \tag{25}
\end{equation*}
$$

holds. By (25),(26) and Sublemma 4.7, we obtain the equality:

$$
\left(\omega^{(1)}\right)^{n}=\left(\omega^{(m)}\right)^{n} \quad \text { on } X_{\nu}-D .
$$

Since $\omega^{(1)}$ and $\omega^{(m)}$ are both Kähler-Einstein form with the same constant Ricci curvature, we have

$$
\omega^{(1)}=\omega^{(m)} \quad \text { on } X_{\nu}-D
$$

This completes the proof of Lemma 4.22. Q.E.D.

$5 \quad L^{2}$-vanishing theorem

In the last section we constructed a Kähler-Einstein current ω_{E} on X. In this section we shall prove the following theorem.

Theorem 5.1 Let $f: Y \longrightarrow X$ be an arbitrary modification from a smooth projective variety. Then $\left\{\Theta\left(f^{*} \omega_{E}, y\right) \mid y \in Y\right\}$ is a finite set.

5.1 $\quad L^{2}$-estimate on a complete Kähler manifold

We shall briefly review the L^{2}-estimate on a complete Kähler manifold.
Let (M, ω) be a complete Kähler manifold of dimension m and let (L, h) be a hermitian line bundle on M. Let $A_{c}^{0, p}(M, L)(0 \leq p \leq n)$ denote the space of L-valued smooth ($0, p$) form on M with compact support. $A_{c}^{0, p}(M, L)$ has a natural pre-Hilbert space structure with respect to the hermitian metric h and the Kähler form ω. Let

$$
\bar{\partial}: A_{c}^{0, p}(M, L) \longrightarrow A_{c}^{0, p+1}(M, L)
$$

be the natural $\bar{\partial}$ operator and let

$$
\vartheta: A_{c}^{0, p}(M, L) \longrightarrow A_{c}^{0, p-1}(M, L)
$$

be the formal adjoint of $\bar{\partial}$ Let $\mathcal{L}^{0, p}(M, L)$ denote the space obtained by taking the form closure with respect to the graph norm

$$
A_{c}^{0, p}(M, L) \ni f \mapsto\|f\|^{2}+\|\bar{\partial} f\|^{2}+\|\vartheta f\|^{2}
$$

We define the L^{2}-cohomology group $H_{2}^{p}\left(M, \mathcal{O}_{M}(L)\right)$ by

$$
H_{(2)}^{p}\left(M . \mathcal{O}_{M}(L), h\right)=\frac{\operatorname{ker} \bar{\partial} \mid \mathcal{L}^{0, p}(M, L)}{\bar{\partial} A_{\mathrm{c}}^{0, p-1}(M . L)},
$$

where the closure is taken with respect to the graph norm. By Hörmander's L^{2}-estimate, we obtain:

Theorem 5.2 ([12]) Assume that there exists a positive constant c such that

$$
R i c_{\omega}-\sqrt{-1} \partial \bar{\partial} \log h \geq c \omega
$$

Then we have

$$
H_{(2)}^{p}\left(M, \mathcal{O}_{M}(L), h\right)=0
$$

holds for all $p \geq 1$.
The following trivial cororally is important for our purpose.
Cororally 5.1 Assume that there exists a volume form Ω on M and a positive constant c such that

$$
\operatorname{Ric} \Omega-\sqrt{-1} \partial \bar{\partial} \log h \geq c \omega .
$$

Then we have

$$
H_{(2)}^{p}\left(M, \mathcal{O}_{M}(L), \tilde{h}\right)=0 \text { for } p>0
$$

where the L^{2}-cohomology is taken with respect to the twisted hermitian metric

$$
\tilde{h}=h \otimes \frac{\Omega}{\omega^{n}} .
$$

As an example of the most typical application of Theorem 5.1 to algebraic geometry, we shall prove the well known Kawamata-Viehweg vanishing theorem for ample \mathbf{R}-divisors.

Theorem 5.3 ([27, 16]) Let M be a smooth projective variety and let D be an ample \mathbf{R}-divisor on M such that $S u p p\{D\}$ is a divisor with normal crossings. Then

$$
H^{p}\left(M, \mathcal{O}_{M}\left(K_{M}+\lceil D\rceil\right)\right)=0
$$

holds for $p \geq 1$.
Let $\{D\}=\sum a_{i} D_{i}$ be the irreducible decomposition of $\{D\}$ and let σ_{i} be the section of $\mathcal{O}_{M}\left(D_{i}\right)$ with divisor D_{i}. Let $\|\|=\|\|_{i}$ be a hermitian metric on $\mathcal{O}_{X}\left(D_{i}\right)$ such that $\left\|\sigma_{i}\right\|<1$ on M. Then by the assumption, there exists a hermitian metric h on $\mathcal{O}_{M}([D])$ such that

$$
-\sqrt{-1} \partial \bar{\partial} \log h-\sum a_{i} \sqrt{-1} \partial \bar{\partial} \log \left\|\sigma_{\mathrm{i}}\right\|^{2}
$$

is a smooth Kähler form on M. Let us define a singular hermitian metric \hat{h} on $\mathcal{O}_{X}([D])$ by

$$
\hat{h}=\left(\prod_{i}\left\|\sigma_{i}\right\|^{2 a_{i}}\left(\log \frac{1}{\left\|\sigma_{i}\right\|}\right)^{\varepsilon}\right) h
$$

where ε is a positive constant. Then by easy direct calculation, we see that if we take ' ε sufficiently small,

$$
\omega=-\sqrt{-1} \partial \bar{\partial} \log \hat{h}
$$

is a complete Kähler form on $N=M-\operatorname{Supp}\{D\}$. Let Ω be a smooth volume form on M. Then by Theorem 5.1, we have

$$
H_{(2)}^{p}\left(N, \mathcal{O}_{N}\left(K_{M}+[D] \mid N\right)\right)=0
$$

holds for $p \geq 1$, where the L^{2} cohomology is taken with respect to the volume form Ω and the hermitian metric $\hat{h} \otimes \Omega^{-1}$. We note that

$$
H^{p}\left(M, \mathcal{O}_{M}\left(K_{M}+\lceil D\rceil\right)\right)
$$

is isomorphic to the corresponding Dolbeault cohomology for all p. Then by the L^{2}-regularity theorem for $\bar{\partial}$-operator, we get the canonical injection

$$
\left.H^{p}\left(M, \mathcal{O}_{M}\left(K_{M}+\lceil D\rceil\right)\right) \hookrightarrow H_{(2)}^{p}\left(N, \mathcal{O}_{N}\left(K_{M}+[D]\right) \mid N\right)\right)
$$

for every p. Since the right-hand side vanishes for $p \geq 1$. This completes the proof of the theorem. Q.E.D.

5.2 Relation between the asymptotic behavior of the base locus of the pluricanonical system and the Lelong number of the Kähler-Einstein current ω_{E}

Now we shall relate the Lelong number of ω_{E} and the multiplicity of the base scheme Bs $\left|\nu K_{X}\right|$.

Lemma 5.1. There exists a positive integer ν_{0} such that for every positive integer ν and $x \in X$,

$$
\operatorname{mult}_{x} B s\left|\nu K_{X}\right| \geq \nu \Theta\left(\omega_{E}, x\right)
$$

holds.
Proof. Let $\omega^{(m)}$ be as in 4.10. We set

$$
\hat{u}^{(m)}=\log \frac{\left(\omega^{(m)}\right)^{n}}{\Omega}
$$

Then for every sufficiently small positive number ε, there exists a constant $C_{0, \varepsilon}^{-}(m)$ such that

$$
\hat{u}^{(m)} \geq C_{0, \varepsilon}^{-}(m)+\xi^{(m)}+\varepsilon \delta^{(m)}
$$

holds, where $\delta^{(m)}=\delta_{m!\nu}$ be a function on $X^{(m)}=X_{m!\nu}$ defined as in 4.2. Then by Lemma 2.3 and 2.5 and the definition of $\xi^{(m)}=\xi^{m!\nu}$, letting ε tend to 0 , we have

$$
m!\nu \Theta\left(\omega^{(m)}, x\right) \leq \text { mult }_{x} \mathrm{Bs}\left|m!\nu K_{X}\right|
$$

holds for all $x \in X$. On the other hand by the construction, $\left\{\hat{u}^{(m)}\right\}_{m=1}^{\infty}$ is monotone increasing by Lemma 4.20 (as we have seen Lemma 4.22 the sequence is stable actually). Hence we have

$$
\Theta\left(\omega_{E}, x\right) \leq \Theta\left(\omega^{(m)}, x\right)
$$

and

$$
m!\nu \Theta\left(\omega_{E}, x\right) \leq \operatorname{mult}_{x} \mathrm{Bs}\left|m!\nu K_{X}\right|
$$

holds for all $x \in X$. Since mult ${ }_{x} \mathrm{Bs}\left|a b K_{X}\right| \leq a$ mult $_{x} \mathrm{Bs}\left|b K_{X}\right|$ holds for all positive integers a, b, this completes the proof of the lemma. Q.E.D.

More generally we have:
Lemma 5.2 Let $f: Y \longrightarrow X$ be an arbitrary modification from a smooth projective variety. Then for a sufficiently large ν

$$
m^{m u l t_{y} B s}\left|f^{*}\left(\nu K_{X}\right)\right| \geq \nu \Theta\left(f^{*} \omega_{E}, y\right)
$$

holds for all $y \in Y$.
Proof. Let $Y^{(m)}$ be a resolution of the fibre product $Y \times_{X} X^{m}$ and let $g_{(m)}: Y^{(m)} \longrightarrow X$ be the natural morphism. Then by the same argument as above, we have

$$
m!\nu \Theta\left(g_{(m)}^{*} \omega_{E}, y\right) \leq \text { mult }_{y} \mathrm{Bs}\left|g_{(m)}^{*}\left(m!\nu K_{X}\right)\right|
$$

holds for all $y \in Y^{(m)}$. Since m is an arbitrary positive integer, by Lemma 2.5 and the same argument as in the proof of Lemma 5.1, we obtain the lemma. Q.E.D.

Definition 5.1 Let Y be a projective variety and let D be a \mathbf{R}-Cartier divisor on Y. We set

$$
\Xi(D, y)=\liminf _{\nu \rightarrow \infty} \nu^{-1} \text { mult }_{y} B s|[\nu D]|
$$

and call it the limit base multiplicity of D.

As a cororally of the above lemma, we have
Cororally 5.2 Let $f: Y \longrightarrow X$ be an arbitrary modification from a smooth projective variety. Then

$$
\Theta\left(f^{*} \omega_{E}, y\right) \leq \Xi\left(f^{*} K_{X}, y\right)
$$

holds for all $y \in Y$.
But the following theorem holds.
Theorem 5.4 Let $f: Y \longrightarrow X$ be an arbitrary modification from a smooth projective variety. Then

$$
\Theta\left(f^{*} \omega_{E}, y\right)=\Xi\left(f^{*} K_{X}, y\right)
$$

holds for all $y \in Y$.
Proof. Let ν_{0} be a positive integer such that $\left|\nu K_{X}\right|$ gives a birational rational map from X into a projective space. Let $f: Y \longrightarrow X$ be an arbitrary resolution of $\mathrm{Bs}\left|\nu K_{X}\right|$. Let

$$
f^{*}\left(\nu K_{X}\right)=L+F
$$

be the decompositin into the free part L and the fixed part F and let $F=$ $\sum a_{i} F_{i}$ be the irreducible decomposition of F. We set

$$
e_{i}=\inf _{y \in F_{i}} \Theta\left(f^{*} \omega_{E}, y\right) .
$$

Since L is big by the construction, by Lemma 4.1, there exists an effective Q -divisor $R=\sum r_{j} R_{j}$ such that $L-R$ is an ample \mathbf{Q}-divisor on Y. Let y_{0} be a point on $F_{i_{0}}$ such that $\Theta\left(f^{*} \omega_{E}, y_{0}\right)=e_{i_{0}}$. Let ω be a Kähler form on Y and let r_{0} denote the distance function from y_{0} with respect to the Kähler form ω. Then there exists an open neighbourhood U such that $\log r_{0} \mid U$ is a plurisubharmonic function on U. Let ρ be a nonnegative smooth function with compact support on U such that ρ is identically 1 on a neighbourhood of y_{0}. We set

$$
\psi=\left(2 n+2+2 e_{i_{0}}\right) \rho \log r_{0}
$$

Let m be a positive integer such that

1. $H=m(L-R)$ is an ample Cartier divisor on Y.
2. There exists a hermitian metric h on $\mathcal{O}_{Y}(H)$ and a positive constant c_{0} such that

$$
-\sqrt{-1} \partial \partial \log \left(e^{-\psi} h\right) \geq c_{0} \omega
$$

Let M be the complement of Supp $F \cup \operatorname{Supp} R$ in Y. Let us define a hermitian metric h_{ν} on $\mathcal{O}_{M}\left(f^{*}\left(\nu K_{X}\right) \mid M\right)\left(\nu \geq m \nu_{0}\right)$ by

$$
h_{\nu}=h \otimes\left(f^{*} \omega_{E}^{n}\right)^{\left(\nu-m \nu_{0}\right)} .
$$

Let σ_{i} be section of $\mathcal{O}_{Y}\left(F_{i}\right)$ with divisor F_{i} and let τ_{j} be a section of $\mathcal{O}_{Y}\left(R_{j}\right)$ with divisor R_{j}. Let $\left\|\|\right.$ denote hermitian metrics on $\mathcal{O}_{Y}\left(F_{i}\right)$'s and $\mathcal{O}_{Y}\left(R_{j}\right)$'s. Then for a sufficiently small positive number ε

$$
\hat{\omega}=\omega-\varepsilon \sqrt{-1} \partial \bar{\partial} \sum_{i} \log \log \frac{1}{\left\|\sigma_{i}\right\|}-\varepsilon \sqrt{-1} \partial \bar{\partial} \sum_{j} \log \log \frac{1}{\left\|\tau_{j}\right\|}
$$

and
$\breve{\omega}=-\sqrt{-1} \partial \bar{\partial} \log h_{\nu}-\varepsilon \sqrt{-1} \partial \bar{\partial} \sum_{i} \log \log \frac{1}{\left\|\sigma_{i}\right\|}-\varepsilon \sqrt{-1} \partial \bar{\partial} \sum_{j} \log \log \frac{1}{\left\|\tau_{j}\right\|}$
are both complete Kähler forms on M. And by the construction there exists a positive constant c such that

$$
\breve{\omega} \geq c \hat{\omega} .
$$

Let us define a hermitian metric on $\mathcal{O}_{M}\left(f^{*}\left(\nu K_{X} \mid M\right)\right)$ by

$$
\hat{h}_{\nu}=\left(\prod_{i} \log \frac{1}{\left\|\sigma_{\mathrm{i}}\right\|} \prod_{j} \log \frac{1}{\left\|\tau_{j}\right\|}\right)^{c} h_{\nu}
$$

Then the curvature form of \hat{h}_{ν} is nothing but $\breve{\omega}$. Let Ω denote the volume form $f * \omega_{E}^{n}$ on M. Then by Cororally 5.1 , we have

$$
H_{(2)}^{p}\left(M, \mathcal{O}_{M}\left(f^{*}\left(\nu K_{M}\right)\right)=0\right.
$$

for $\nu \geq m \nu_{0}+1$ and $p \geq 1$, where the L^{2}-cohomology is taken with respect to the twisted hermitian metric

$$
\begin{aligned}
\breve{h}_{\nu} & =\hat{h}_{\nu} \otimes\left(\frac{\Omega}{\hat{\omega}^{n}}\right) \\
& =\hat{h}_{\nu} \otimes \frac{f^{*} \omega_{E}^{n}}{\hat{\omega}^{n}}
\end{aligned}
$$

and the complete Kähler form $\hat{\omega}$. Let σ be a local section of

$$
\mathcal{L}=\mathcal{O}_{Y}\left(H+f^{*}\left(\left(\nu-m \nu_{0}\right) K_{X}\right)-\sum_{i}\left[\left(\nu-m \nu_{0}\right) e_{i}\right] F_{i}\right)
$$

around y_{0} such that $\sigma\left(y_{0}\right) \neq 0$. We may assume without loss generality that σ is defined on U. Then since $\Theta\left(f^{*} \omega_{E}, y_{0}\right)=e_{i_{0}}$, there exists an open neighbourhood V of y in U and a nonnegative smooth function $\tilde{\rho}$ of compact support on U such that

1. $\tilde{\rho}$ is identically 1 on V.
2. $G:=\bar{\partial}(\tilde{\rho} \sigma) \mid U \cap M$ is a L^{2}-form on M with respect to the hermitian metric \mathscr{h}_{ν} and the complete Kähler form $\hat{\omega}$.
Then by Theorem 5.1, we see that there exists $u \in L_{(0,0)}^{2}\left(M, f^{*}\left(\nu K_{X}\right), \breve{h}_{\nu}\right)$ such that

$$
\bar{\partial} u=G .
$$

We set

$$
\mu=\tilde{\rho} \sigma-u
$$

Then since $\mu \in H_{(2)}^{0}\left(M, \mathcal{O}_{M}\left(f^{*}\left(\nu K_{X}\right)\right)\right.$, by Lemma 2.2 and Lemma 2.3, we have

$$
\mu \in H^{0}(Y, \mathcal{L})
$$

We note that by the definition of \breve{h}_{ν} (see the definition of ψ),

$$
\mu\left(y_{0}\right)=\sigma\left(y_{0}\right) \neq 0 .
$$

Since there exists a canonical injection $\mathcal{O}_{Y}(H) \hookrightarrow \mathcal{O}_{Y}\left(f^{*}\left(\nu_{0} K_{X}\right)\right)$, by letting ν tend to infinity, we have

$$
\Xi\left(f^{*} K_{X}, y_{0}\right) \geq \Theta\left(f^{*} \omega_{E}, y_{0}\right)
$$

Hence by Cororally 5.1, we have

$$
\Xi\left(f^{*} K_{X}, y_{0}\right)=\Theta\left(f^{*} \omega_{E}, y_{0}\right)
$$

Let y be an arbitray point on Y. Let us with center y. Then repeating the same argument with repect to a general point on the exceptional divisor, by Lemma 2.5 we obtain

$$
\Xi\left(f^{*} K_{X}, y\right)=\Theta\left(f^{*} \omega_{E}, y\right)
$$

This completes the proof of the theorem for this special $f: Y \rightarrow X$.
To prove the theorem for a general $f: Y \longrightarrow X$, we shall take the resolution $g: Y^{\prime} \longrightarrow X$ of Bs $\left|\nu K_{X}\right|$ such that g factors through f. We have already known that the theorem holds for $g: Y^{\prime} \longrightarrow X$. Then we see that the theorem also holds also for $f: Y \longrightarrow X$ by Lemma 2.5. Q.E.D.

5.3 Use of the argument of Benveniste-KawamataShokurov

Combining L^{2}-vanihing theorem and the argument of Benveniste-KawamataShokurov ($[3,15,22]$), we shall prove the following theorem.

Theorem 5.5 Let $\mu: Z \longrightarrow X$ be a modification from a nonsingular projective variety. Then for every point $z \in Z$ there exists a positive integer $\nu(z)$ d epending on z) such that

$$
\operatorname{mult}_{z} B s\left|\nu(z) \mu^{*} K_{X}\right|=\nu(y) \Theta\left(\mu^{*} \omega_{E}, z\right)
$$

holds. In particular $\Theta\left(\mu^{*} \omega_{E}, z\right)$ is a rational number for every $z \in Z$.
Proof. Let ν be a positive integer such that

1. $\left|\nu K_{X}\right|$ defines a birational rational map from X into a projective space.
2. Supp Bs $\left|\nu K_{X}\right|=\mathrm{SB}\left(K_{X}\right)$.

We construct a birational morphism

$$
f: Y \longrightarrow X
$$

such that

1. There exists a divisor $F=\sum F_{i}$ with only normal crossings.
2. $K_{Y}=f^{*} K_{X}+\sum a_{i} F_{i}$ for some $a_{i} \in \mathbf{Z}$ with $a_{i} \geq 0$ for all i.
3. We set $e_{i}=\inf _{y \in F_{i}} \Theta\left(f^{*} \omega_{E}, y\right)$.

$$
H=f^{*} K_{X}-\sum e_{i} F_{i}
$$

Then

$$
|\lceil\nu H\rceil|=|L|+\sum r_{i} F_{i}
$$

where $|L|$ is the free and $\sum r_{i} F_{i}$ is effective (We do not assume $|L|$ the "full" free part).
4. $L-\sum \delta_{i} F_{i}$ is ample for some $\delta_{i} \in \mathbf{Q}$ with $0<\delta_{i} \ll 1$.

The existence of such f follows from Hironaka resolution and Cororally 4.1.
Let us choose an arbitrary irreducible component say F_{0} of F and fix it. We set

$$
c=\frac{\left(a_{0}+e_{0}+1-\delta_{0}\right)}{r_{0}}+\delta,
$$

where δ is a sufficiently small positive number which we will specify later. If δ is sufficiently small,

$$
\left\lceil-c r_{0}+a_{0}+e_{0}-\delta_{0}\right\rceil=-1
$$

holds. We set

$$
A=\sum_{i \neq 0}\left(-c r_{i}+a_{i}+e_{i}-\delta_{i}\right) F_{i}
$$

and

$$
B=-\left(-c r_{0}+a_{0}+e_{0}-\delta_{0}\right) F_{0} .
$$

We consider

$$
\begin{aligned}
M & =b^{\prime} H+A-B-K_{Y} \\
& =\left(c L-\sum \delta_{i} F_{i}\right)+\left(b^{\prime} H-c\lceil\nu H\rceil-f^{*} K_{X}+\sum e_{i} F_{i}\right) \\
& =\left(c L-\sum \delta_{i} F_{i}\right)+c\{-\nu H\}+\left(b^{\prime}-c \nu-1\right) H,
\end{aligned}
$$

where b^{\prime} is a positive integer which will be specified later. If we replace $\left\{\delta_{i}\right\}$ to $\left\{\varepsilon \delta_{i}\right\}$ for a suffuciently small positive number ε, we may assume that $c L-\sum \delta_{i} F_{i}$ is ample. And multiplying a suitable positive integer to ν (to make $\{-\nu H\}$ small) if necessary, we may assume that

$$
c L-\sum \delta_{i} F_{i}+c\{-\nu H\}
$$

is ample (to do this operation we do not assume that $|L|$ is the full free part of | $\lceil\nu H\rceil|\mid$. Let h be a hermitian metric on \mathbf{R}-line bundle associated with the \mathbf{R}-divisor $c L-\sum \delta_{i} F_{i}+c\{-\nu H\}$ such that the curvarure form $-\sqrt{-1} \partial \bar{\partial} \log h$ is a smooth Kähler form on Y (we note that the \mathbf{R}-line bundle does not make actual sense but the hermitian metric makes sense). Let σ_{i} be a global section of $\mathcal{O}_{Y}\left(F_{i}\right)$ with divisor F_{i}. Let $\left\|\|\right.$ be a hermitian metric of $\mathcal{O}_{Y}\left(F_{i}\right)$ such that $\left\|\sigma_{i}\right\|<1$ holds on Y respectively. Then for a sufficiently small positive number ε

$$
\omega=-\sqrt{-1} \partial \bar{\partial} \log h+\varepsilon \sum_{i} \sqrt{-1} \partial \partial \overline{l o g} \frac{1}{\left\|\sigma_{i}\right\|}
$$

is a complete Kähler form (of Poincaré growth) on $Y-F$. We consider $Y-F$ as a complete Kähler manifold $(Y-F, \omega)$ hereafter. Let us define a singular hermitian metric h_{M} on $\mathcal{O}_{Y}\left(b^{\prime} K_{Y}\right)$ by

$$
h_{M}=h \otimes\left(f^{*} \omega_{E}^{n}\right)^{-\otimes\left(b^{\prime}-c \nu\right)} \otimes \prod_{i}\left(\log \frac{1}{\left\|\sigma_{i}\right\|}\right)^{\varepsilon}
$$

Then we have by Theorem 5.1,

$$
H^{p}\left(Y-F, \mathcal{O}_{Y-F}\left(b^{\prime} K_{Y} \mid Y-F\right), \hat{h}\right)=0 \quad \text { for } p \geq 1
$$

where \hat{h} is a hermitian metric on $\mathcal{O}_{Y}\left(b^{\prime} K_{Y}\right)$ defined by

$$
\hat{h}=h_{M} \otimes \frac{f^{*} \omega_{E}^{n}}{\omega^{n}} .
$$

Let us define a presheaf \mathcal{F} on Y by

$$
\mathcal{F}(U)=\left\{\sigma \in \Gamma\left(U, \mathcal{O}_{Y}\left(b^{\prime} K_{Y}\right)\right) \mid \int_{U} \hat{h}(\sigma, \sigma) \omega^{n}<\infty\right\}
$$

where U is an arbitrary open subset of Y. We denote the sheaf associated with this presheaf also by $\mathcal{F} . \mathcal{F}$ is the sheaf of germs of local L^{2} holomorphic
sections of $\mathcal{O}_{Y}\left(b^{\prime} K_{Y}\right)$. By Hörmander's L^{2}-estimate for $\bar{\partial}$-operator, using the isomorphism between the Dolbeaut cohomology and the Cěch cohomology we get the canonical injection :

$$
H^{p}(Y, \mathcal{F}) \hookrightarrow H_{(2)}^{p}\left(Y-F, \mathcal{O}_{Y-F}\left(b^{\prime} K_{Y} \mid Y-F\right), \hat{h}\right)
$$

for all p. Hence we get:

Sublemma 5.1

$$
H^{p}(Y, \mathcal{F})=0
$$

holds for $p \geq 1$.
To prove Theorem 5.5, it is necessary to modify $f: Y \longrightarrow X$. We need the following sublemma.

Sublemma 5.2 There exists a point y_{i} on F_{i} such that

1. $y_{i} \in F_{\text {reg }}\left(F_{\text {reg }}\right.$ denote the regualar part of $\left.F\right)$.
2. $\Theta\left(f^{*} \omega_{E}, y_{i}\right)=e_{\mathrm{i}}$.
3. Let $\pi_{i}: Y_{i} \longrightarrow Y$ be the blowing up with center y_{i} and let E_{i} be the exceptional divisor. Then for every $y \in E_{i}$,

$$
\Theta\left(\pi_{i}^{*}\left(f^{*} \omega_{E}-\sum_{k} e_{k} F_{k}\right), y\right)=0
$$

holds.
We note that $f^{*} \omega_{E}-\sum_{k} e_{k} F_{k}$ is a d-closed positive $(1,1)$ current on Y by Lemma 2.6.

Proof. The existence of such y_{i} follows from Theorem 5.4. In fact by Theorem 2.2 , for every $\varepsilon>0$

$$
F_{i}(\varepsilon):=\left\{y \in F_{i} \mid \Theta\left(f^{*} \omega_{E}, y\right) \geq e_{i}+\varepsilon\right\}
$$

is a proper subvariety of F_{i}. In particular $U_{m \geq 1} F_{i}\left(1 / 2^{m}\right)$ is a countable uniton of proper subvarieties of F_{i}. Let y_{i} be a point in $F_{i}-\cup_{m \geq 1} F\left(1 / 2^{m}\right)-\cup_{j \neq i} F_{j}$ such that we do not need any blowing up with center containing y_{i} to resolve the base locus of $\left|m!\nu f^{*} K_{X}\right|$ for all m. Such y_{i} form a complement of a countable union of proper subvarieties of F_{i}. Then by the costruction $\Theta\left(f^{*} \omega_{E}, y_{i}\right)=e_{i}$ and by Theorem 5.4, for every point $y \in E_{i}$, $\Theta\left(\pi_{i} *\left(f^{*} \omega_{E}-e_{i} F_{i}\right), y\right)=0$ holds. Q.E.D.

Let $y_{0} \in F_{0}$ be as in Sublemma 5.2 and let $\pi_{0}: Y_{0} \longrightarrow Y$ be the blowing up with centre y_{0}. We choose y_{0} as in the proof of Sublemma 5.2. Let E_{0} denote the exceptional divisor.

Let F_{0}^{\prime} be the strict transform of F_{0} in Y_{0}. Let $\pi_{0}^{1}: Y_{0}^{1} \longrightarrow Y_{0}$ be the blowing up with centre $E_{0} \cap F_{0}^{\prime}$ and let F_{0}^{1} be the exceptional divisor. Let E_{0}^{1} be the strict transform of E_{0} in Y_{0}^{1}. Let $\pi_{0}^{2}: Y_{0}^{2} \longrightarrow Y_{0}^{1}$ be the blowing up with centre $E_{0}^{1} \cap F_{0}^{1}$ and let F_{0}^{2} be the exceptional divisor. Let E_{0}^{2} be the strict transform of E_{0}^{1} in Y_{0}^{2}. Repeating this process m-times we get successive blowing ups

$$
\tilde{\pi}_{0}: Y_{0}^{m} \rightarrow Y_{0}^{m-1} \rightarrow \cdots \rightarrow Y_{0}^{1} \rightarrow Y_{0} \rightarrow Y .
$$

Let J denote the exceptional divisor of $\tilde{\pi}_{0}$. Let F^{\prime} be the strict transform of F in Y_{0}^{n}.

We shall replace $f: Y \longrightarrow X$ to $f \circ \tilde{\pi}_{0}: Y_{0}^{m} \longrightarrow X$ and F to $J+F^{\prime}$. Then it is easy to see $J+F^{\prime}$ has the same properties as F. Hence we may assume that $Y=Y_{0}^{m}$ and $F=J+F^{\prime}$ for the first. By changing the order, if necessary we may assume that $F_{0}=E_{0}^{m}, F_{1}=F_{0}^{m}$, and $F_{m+1}=F_{0}^{\prime}$ (the strict transform of "the old" $\left.F_{0}\right)$. Then since $r_{1}=(m+1) r_{0}$ and $e_{1}=(m+1) e_{0}$, we see that if we take m sufficiently large and $\left\{\delta_{i}\right\}$'s sufficiently small,

$$
\begin{equation*}
c=\frac{a_{0}+e_{0}+1-\delta_{0}}{r_{0}}<\frac{a_{1}+e_{1}+1-\delta_{1}}{r_{1}} \tag{26}
\end{equation*}
$$

holds by the construction. In fact

$$
\lim _{m \rightarrow \infty} a_{1} / m=a_{0}+1
$$

holds.
We note that F_{0} is biholomorphic to the one point blowing up of P^{n-1} and $F_{0} \cap F_{1}$ is the exceptional divisor in F_{0}. It is easy to see that if $\left\{b^{\prime} e_{0}\right\}$ is sufficiently small, then the restriction $\mathcal{O}_{Y}\left(\left[b^{\prime} H\right\rceil\right) \mid F_{0}$ is trivial. We assume that $\left\{b^{\prime} e_{0}\right\}$ is sufficiently small. Let σ be a nontrivial section of

$$
H^{0}\left(F_{0}, \mathcal{O}_{F_{0}}\left(\left\lceil b^{\prime} H\right\rceil\right)\right) \simeq H^{0}\left(F_{0}, \mathcal{O}_{F_{0}}\right) \simeq \mathbf{C}
$$

Let U be a sufficiently small open neighbourhood of F_{0} in Y and let

$$
\tilde{\sigma} \in \Gamma\left(U, \mathcal{O}_{Y}\left(\left\lceil b^{\prime} H\right\rceil\right)\right)
$$

be a holomorphic extension of σ to U. Let V be an open neighbourhood of F_{0} and let ρ be a nonnegative C^{∞}-function on Y such that

1. ρ has a compact support in U.
2. ρ is identically 1 on V.

And we set

$$
G=\bar{\partial}(\rho \tilde{\sigma})
$$

Then G is a $\left.\mathcal{O}_{Y}\left(\left\lceil b^{\prime} H\right\rceil\right)\right)$-valued C^{∞}-(0,1)-form. By (27) if we take δ sufficiently small and m large,

$$
\left\lceil-c r_{1}+a_{1}+e_{1}-\delta_{1}\right\rceil \geq 0
$$

holds. Hence by the construction of F_{0} (cf. Sublemma 5.2), Lemma 2.3 and the upper semicontinuity of Lelong numbers, if we take U sufficiently small we see that

$$
G \in L_{(0,1)}^{2}\left(Y, \mathcal{O}_{Y}\left(b^{\prime} K_{Y}\right), \hat{h}\right)
$$

holds. Hence G represents a cohomology class in $H^{1}(Y, \mathcal{F})$ which is zero by Sublemma 5.1. This implies that if we take δ sufficiently small and take b^{\prime} so that $\left\{b^{\prime} e_{0}\right\}$ is sufficiently small and $b^{\prime}-c \nu-1>0$, there exists a section $\hat{\sigma} \in H^{0}\left(Y, \mathcal{O}_{Y}\left(\left\lceil b^{\prime} H\right\rceil+\lceil A\rceil\right)\right)$ such that

$$
\hat{\sigma} \mid F_{0}=\sigma
$$

(we note that there is a canonical injection $\mathcal{O}_{Y}\left(\left\lceil b^{\prime} H+A\right\rceil\right) \hookrightarrow$ $\left.\mathcal{O}_{Y}\left(\left\lceil b^{\prime} H\right\rceil+\lceil A\rceil\right)\right)$. Let I denote the union of the index i such that $e_{i}=0$ and define a divisor \dot{A} by

$$
\begin{aligned}
\dot{A} & =\sum_{i \in I}\left(-c r_{i}+a_{i}+e_{i}-\delta_{i}\right) F_{i} \\
& =\sum_{i \in I}\left(-c r_{i}+a_{i}-\delta_{i}\right) F_{i} .
\end{aligned}
$$

Since $f_{*}\lceil\dot{A}\rceil=0$, if we take b^{\prime} sufficiently large, by the birational invariance of plurigenra, we see that $\hat{\sigma}$ defines a element $\tau \in H^{0}\left(Y, \mathcal{O}_{Y}\left(f^{*}\left(b^{\prime} K_{X}\right)\right)\right)$ such that

$$
\operatorname{mult}_{y} D(\tau) \leq b^{\prime} e_{0} \quad \text { for } y \in F_{0} \cap F_{r e g}
$$

where $D(\tau)$ denotes the member of $\left|f^{*}\left(b^{\prime} K_{X}\right)\right|$ defined by τ. On the other hand, by Lemma 5.2 , we have

$$
\operatorname{mult}_{y} D(\tau) \geq b^{\prime} e_{0} \quad \text { for } y \in F_{0}
$$

Hence we have the equality:

$$
\operatorname{mult}_{y} D(\tau)=b^{\prime} e_{0} \quad \text { for } y \in F_{0} \cap F_{\text {reg }} .
$$

Hence e_{0} is a rational number and there exists a nonempty Zariski open subset $U_{0}=F_{0} \cap F_{\text {reg }}$ of F_{0} such that

$$
\Theta\left(f^{*} \omega_{E}, y\right)=e_{0} \quad \text { for } y \in U_{0}
$$

and

$$
\operatorname{SBs}(H) \cap U_{0}=\phi
$$

hold. By the construction of F_{0}, there exists a nonempty Zariski open subset U_{m+1} of F_{m+1} such that

$$
\Theta\left(f^{*} \omega_{E}, y\right)=e_{m+1}\left(=e_{0}\right) \quad \text { for } y \in U_{m+1}
$$

and

$$
\operatorname{SBs}(H) \cap U_{m+1}=\phi
$$

hold. Hence by continuing this process, we see that for every i, e_{i} is a rational number and there exists a nonempty Zariski open subset U_{i} of F_{i} such that

$$
\Theta\left(f^{*} \omega_{E}, y\right)=e_{i} \quad \text { for every } y \in U_{i}
$$

and

$$
\operatorname{SBs}(H) \cap U_{i}=\phi .
$$

Let $\mu: Z \longrightarrow X$ be an arbitrary modification from a nonsingular projective variety and let $z \in Z$ be an arbitrary point. Let $\pi_{z}: Z_{z} \longrightarrow Z$ be the blowing up at z and let E be the excepsional divisor. Let $g: Z_{z} \longrightarrow X$ denote the composition $\mu \circ \pi_{z}$. By Lemma 2.5 , for almost every point p on E

$$
\Theta\left(g^{*} \omega_{E}, p\right)=\Theta\left(\mu^{*} \omega_{E}, z\right) .
$$

holds as in the proof of Sublemma 5.2. Hence by taking $f: Y \longrightarrow X$ so that f factors through $g: Z_{z} \longrightarrow X$, we see that there exists a nonempty Zariski open subset U of E such that

$$
\Theta\left(g^{*} \omega_{E}, p\right)=\Theta\left(\mu^{*} \omega_{E}, z\right) \quad \text { for every } p \in U
$$

and

$$
\operatorname{SBs}\left(g^{*} K_{X}-\Theta\left(\mu^{*} \omega_{E}, z\right) E\right) \cap U=\phi
$$

This implies that there exists a positive integer $\nu(z)$ depending on z such that

$$
\operatorname{mult}_{z}\left|\nu(z) \mu^{*} K_{X}\right|=\nu(z) \Theta\left(\mu^{*} \omega_{E}, z\right)
$$

holds. This completes the proof of Theorem 5.5. Q.E.D.
Cororally 5.3 Let $f ; Y \longrightarrow X$ be an arbitrary modification from a smooth projective variety Y. We set

$$
S\left(f^{*} \omega_{E}\right)=\left\{y \in Y \mid \Theta\left(\omega_{E}, x\right)>0\right\} .
$$

Then $S\left(f^{*} \omega_{E}\right)=\operatorname{SBs}\left(f^{*} K_{X}\right)$.
Proof. By Lemma 5.2, we have that $S\left(f^{*} \omega_{E}\right) \subseteq \operatorname{SBs}\left(f^{*} K_{X}\right)$. On the other hand, by Theorem 5.5 , we have that $\operatorname{SBs}\left(f^{*} K_{X}\right) \subseteq S\left(f^{*} \omega_{E}\right)$. Q.E.D.

Now we shall prove Theorem 5.1.

Proof of Theorem 5.1. Let $f: Y \longrightarrow X$ be as in Theorem 5.1 and let $S\left(f^{*} \omega_{E}\right)$ be as in Cororally 5.3. Let

$$
S\left(f^{*} \omega_{E}\right)=\sum_{\alpha} S_{\alpha}
$$

be the decomposition of $S\left(\omega_{E}\right)$ into the irreducible components. Let

$$
e_{\alpha}=\inf _{y \in S_{\alpha}} \Theta\left(\omega_{E}, y\right) .
$$

By Cororally 5.3 , we see that $e_{\alpha}>0$ for every α.
Theorem 5.5 implies that there exists a nonempty Zariski open subset U_{α} of S_{α} such that

$$
\Theta\left(f^{*} \omega_{E}, y\right)=e_{\alpha}
$$

for every $y \in U_{\alpha}$. Then by Noetherian induction, we conclude that

$$
\left\{\Theta\left(f^{*} \omega_{E}, y\right) \mid y \in Y\right\}
$$

is a finite set. This completes the proof of Theorem 5.1. Q.E.D.

6 Zariski Decomposition of Canonical Divisor

In this section we shall prove Conjecture 2.1.

6.1 An algorithm to construct a Zariski decomposition

By the results of the previous sections, we can define an algorithm to construct a Zariski decomposition of K_{X}.

We set $Y_{0}=X, P_{0}=\omega_{E}$. We shall construct inductively sequences of smooth projective varieties $\left\{Y_{m}\right\}, d$-closed positive (1,1)-current $\left\{P_{m}\right\}$, and divisors N_{m} on Y_{m} for $m \geq 0$ as follows.

1. Set

$$
S_{m}=\left\{y \in Y_{m} \mid \Theta\left(P_{m}, y\right)>0\right\}
$$

S_{m} is a subvariety of Y_{m} by Theorem 5.1 and Theorem 2.2. We decompose S_{m} into the irreducible components:

$$
S_{m}=S_{m}^{1} \cup \ldots \cup S_{m}^{l_{m}}
$$

We set

$$
n_{m}^{i}=\inf _{y \in S_{m}^{i}} \Theta\left(P_{m}, y\right)
$$

By changing the order, if necessary, we may assume that

$$
0<n_{m}^{1} \leq \ldots \leq n_{m}^{l_{m}}
$$

holds.
2. Take an embedded resolution $p_{m}^{1}: \tilde{Y}_{m}^{1} \longrightarrow Y_{m}$ of S_{m}^{1} and let \hat{S}_{m}^{1} be the strict transform of S_{m}^{1}.
3. Let $\pi_{m}^{1}: Y_{m}^{1} \longrightarrow \tilde{Y}_{m}^{1}$ be the blow up with center \hat{S}_{m}^{1} and set

$$
N_{m}^{1}=\left(\pi_{m+1}^{1}\right)^{-1}\left(\hat{S}_{m}^{1}\right)
$$

(π_{m}^{1} is the identity morphism, if \hat{S}_{m}^{1} is a divisor) and $f_{m}^{1}=p_{m} \circ \pi_{m}$.
4. Let \hat{S}_{m}^{2} be the strict transform of S_{m}^{2} in Y_{m}^{1} and repeat the same process by replacing S_{m}^{1} by \hat{S}_{m}^{2}. Then we obtain smooth projective variety Y_{m}^{2}, a morphism $f_{m}^{2}: Y_{m}^{2} \longrightarrow Y_{m}^{1}$ and a divisor N_{m}^{2} as in 3 .
5. Repeating this process we obtain sequences of smooth projective varieties $\left\{Y_{m}^{l}\right\}_{l=1}^{l_{m}}$ and morphisms

$$
f_{m}^{l}: Y_{m}^{l} \longrightarrow Y_{m}^{l-1}\left(1 \leq l \leq l_{m}\right)
$$

(where we have defined $Y_{m}^{0}:=Y_{m}$) and divisors $\left\{N_{m}^{l}\right\}\left(1 \leq l \leq l_{m}\right)$ on Y_{m}^{l}.
6. We set $Y_{m+1}:=Y_{m}^{l_{m}}$ and

$$
f_{m+1}:=f_{m}^{l_{m}} \circ \cdots \circ f_{m}^{1}: Y_{m+1} \longrightarrow Y_{m} .
$$

7. We define a divisor on Y_{m+1} by

$$
N_{m+1}=\sum n_{m}^{l} \hat{N}_{m}^{l}+\sum_{k} e_{m}^{k} E_{m}^{k}
$$

where
\hat{N}_{m}^{l} the strict transform of N_{m}^{l} in Y_{m+1},
$\left\{E_{m}^{k}\right\}$: irreducible components of the strict transforms of the exceptional divisors which appear in the embedded resolutions $p_{m}^{l}: \tilde{Y}_{m}^{l} \longrightarrow$ Y_{m}^{l} 's,
$e_{m}^{k}:=\inf _{y \in E_{m}^{k}} \Theta\left(f_{m+1}^{*} P_{m}, y\right)$.
We define a d-closed positive (1,1)-current P_{m+1} by

$$
P_{m+1}=f_{m+1}^{*}\left(P_{m}\right)-N_{m+1}
$$

(P_{m+1} is a d-closed positive current by Lemma 2.6).

Lemma 6.1 Suppose that there exists a positive integer m such that S_{m} is empty. Then if we set

$$
N:=\sum_{i=0}^{m} \tilde{N}_{i},
$$

where \tilde{N}_{i} is the total transform of N_{i} in Y_{m},

$$
P:=F^{*} K_{X}-N
$$

and

$$
F:=f_{1} \circ \cdots \circ f_{m}
$$

the expression

$$
F^{*} K_{X}=P+N \quad(P, N \in \operatorname{Div}(\tilde{X}) \otimes \mathbb{Q})
$$

is a Zariski decomposition of $F^{*} K_{X}$. Hence Conjecture 2.1 is true under the assumption.

Proof. We set $Y=Y_{m}$ for notational simplicity. By the definition of N, N is effective. For the next, we shall prove that P is numerically effective.

We have already seen that $P_{m}=F^{*} \omega_{E}-N$ is a d-closed positive $(1,1)$ current. Since S_{m} is empty, the Lelong number of P_{m} is 0 everywehere on Y. Hence P is numerically effective by Cororally 2.1.

On the other hand by Lemma 5.2, we have a natural inclusion:

$$
0 \rightarrow H^{0}\left(Y, \mathcal{O}_{Y}\left(\nu F^{*} K_{X}\right)\right) \rightarrow H^{0}\left(Y, \mathcal{O}_{Y}([\nu P])\right)
$$

for all $\nu \geq 0$. Because of the converse inclusion is trivial, we see that

$$
H^{0}\left(Y, \mathcal{O}_{Y}([\nu P])\right) \simeq H^{0}\left(Y, \mathcal{O}_{Y}\left(\nu F^{*}\left(K_{X}\right)\right)\right)
$$

holds for all positive integer ν. This completes the proof of Lemma 6.1. Q.E.D.

6.2 Termination of the algorithm

We shall prove Conjecture 2.1 by using the algorithm in 6.1 .
Theorem 6.1 Let X be a smooth projective variety of general type. Then there exists a modification $f: Y \longrightarrow X$ such that $f^{*} K_{X}$ has a Zariski decomposition.

Proof. By Lemma 6.1, it is sufficient to prove that there exists m such that S_{m} is empty. By Lemma 4.21, ω_{E} has finite order along $S=\mathrm{SBs}\left(K_{X}\right) \cup$ $S E\left(K_{X}\right)$. We need the following lemma.

Lemma 6.2 Let T be a d-closed positive (1,1)-current on the unit polydisk $\Delta^{k}=\left\{\left(z_{1}, \ldots, z_{k}\right) \in \mathrm{C}^{k}| | z_{i} \mid<1(1 \leq i \leq k)\right\}$ in $\mathrm{C}^{k}(k \geq 2)$. Suppose that the following conditions are satisfied.

1. $T \mid \Delta^{*} \times \Delta^{k-1}$ is smooth $\left(\Delta^{*}=\Delta-\{0\}\right)$.
2. We shall express $T \mid \Delta^{*} \times \Delta^{k-1}$ as

$$
T \mid \Delta^{*} \times \Delta^{k-1}=\sqrt{-1} \sum_{i j} a_{i j} d z_{i} \wedge d \bar{z}_{j}
$$

Then $a_{i j}$'s are uniformly bounded on $\Delta^{*} \times \Delta^{k-1}$ for all $i, j \geq 2$.
Then $\Theta(T)$ is constant along $\{0\} \times \Delta^{k-1}$.
Proof. By Theorem 2.2, $\Theta(T, x)$ is constant say a almost everywhere on $\{O\} \times \Delta^{k-1}$ with respect to the usual Lebesgue measure on Δ^{k-1}. By Lemma 2.1, there exists a plurisubharmonic function φ such that

$$
T=\sqrt{-1} \partial \bar{\partial} \varphi \quad \text { on } \Delta^{k} .
$$

Let $c \in \Delta^{*}$ be an arbitrary number and let $B(x, r)$ denote the ball of radius r with center x in C^{k-1} such that $B(x, r) \subset \Delta^{k-1}$. Then by Stokes's theorem

$$
\int_{\partial B(x, r)} \frac{\partial \varphi}{\partial \mathrm{n}}(c, y) d S_{y}=\int_{B(x, r)} \Delta \varphi(c, y) d V_{y}
$$

where
$d V_{y}$: the Euclidean volume form on $B(x, r)$,
$d S_{y}$: the usual volume form on $\partial B(x, r)$,
\mathbf{n} : the outer unit normal vector field on $\partial B(x, r)$, and
Δ : the Laplacian with respect to the Euclidean metric of Δ^{k-1}.
Since $\Delta \varphi$ is uniformly bounded on Δ^{k-1} by a constant independent of c by the assumption, we have for every $r \in(0,1-\|x\|)$,

$$
\varphi(c, x)=(\operatorname{vol} \partial B(x, r))^{-1} \int_{\partial B(x, r)} \varphi(c, y) d S_{y}+O(1)
$$

and

$$
\begin{equation*}
\varphi(c, x)=(\operatorname{vol} B(x, r))^{-1} \int_{B(x, r)} \varphi(c, y) d V_{y}+O(1) \tag{27}
\end{equation*}
$$

hold, where $O(1)$'s denote functions which are uniformly bounded with respect to x and c respectively.

We note that if we add some positive multiple of $\log \left|z_{1}\right|$ to φ, we may assume that φ is negative on Δ^{k}. Let us fix $x \in B(O, 1 / 2)$ and let ε be a small positive number such that $B(x, 1 / 2+\varepsilon) \subset \Delta^{k-1}$. Let x^{\prime} be a point in $B(x, \varepsilon)$. Then the trivial inequality

$$
\begin{equation*}
\int_{B(x, 1 / 2)} \varphi(c, y) d V_{y} \geq \int_{B\left(x^{\prime}, 1 / 2+\varepsilon\right)} \varphi(c, y) d V_{y} \tag{28}
\end{equation*}
$$

holds. By Lemma 2.4 we can find parallel lines L and L^{\prime} passsing through $(0, x)$ and $\left(0, x^{\prime}\right)$ respectively such that $T \mid L$ and $T \mid L^{\prime}$ are well defined and

$$
\begin{array}{ll}
\Theta(T \mid L,(0, x)) & \geq \Theta(T,(0, x)), \\
\Theta\left(T \mid L^{\prime},\left(0, x^{\prime}\right)\right) & =\Theta\left(T,\left(0, x^{\prime}\right)\right)
\end{array}
$$

hold. Then by (27),(28) and Lemma 2.3, we see that

$$
\Theta(T \mid L,(0, x)) \leq(1+2 \varepsilon)^{2 k-2} \Theta\left(T \mid L^{\prime},\left(0, x^{\prime}\right)\right)=(1+2 \varepsilon)^{2 k-2} \Theta\left(T, x^{\prime}\right)
$$

holds. Since $\Theta(T)=a$ almost everywhere on $\{0\} \times \Delta^{k-1}$, letting ε tend to 0 , we obtain

$$
\Theta(T,(0, x)) \leq \Theta(T \mid L,(0, x)) \leq a
$$

Hence $\Theta(T)$ is identically a on $\{0\} \times B(O, 1 / 2)$.
Now it is clear that $\Theta(T,(0, x))=a$ holds for every $x \in \Delta^{k-1}$. Q.E.D.

The proof of the following cororally is completely analogous to the proof of Lemma 6.2. Hence we omit it.

Cororally 6.1 Let T be a d-closed positive (1,1)-current on Δ^{2}. Suppose that the following conditions are satisfied.

1. T is smooth on $\Delta^{*} \times \Delta^{*}$.
2. For every $c \in \Delta^{*}$, we consider $T \mid\{c\} \times \Delta$ as a d-closed positive $(1,1)$-current T_{c} on Δ. Then the Lelong number of T_{c} is everywhere 0 .
3. $\lim _{c \rightarrow 0} T_{c}=0$ holds.

Then $\Theta(T)$ is constant along $\{0\} \times \Delta$.
Remark 6.1 It is easy to generalize Cororally 6.1 to the higher dimensional case.

Lemma 6.3 There exists a positive integer m such that $S_{m}=\phi$.
Proof. We claim that for a fixed k, there exists some $m \geq k$ such that

$$
F_{m}\left(\operatorname{Supp} N_{m}\right) \neq F_{k}\left(\operatorname{Supp} N_{k}\right)
$$

holds. Suppose the contrary. We note that the inclusion

$$
F_{m}\left(\operatorname{Supp} N_{m}\right) \subset F_{k}\left(\operatorname{Supp} N_{k}\right)
$$

is clear by the construction of the algorithm.

Hereafter for simplicity we denote the divisor and its support by the same notation, if without fear of confusion. Suppose that for all $m \geq k$

$$
F_{m}\left(\operatorname{Supp} N_{m}\right)=F_{k}\left(\operatorname{Supp} N_{k}\right)
$$

hold.
For simplicity, for the first we shall consider the case $\operatorname{dim} X=2$. Let us look at the asymptotic behavior of the pull-back of ω_{E} along the fibre of $f_{m}^{l}: Y_{m}^{l} \longrightarrow Y_{m}^{l-1}\left(1 \leq l \leq l_{m}\right)$ as a form. Then by Lemma 4.21, if m is sufficiently large, for every point $p \in N_{m}^{l}$, there exists a unit polydisk $\Delta^{2}=\left\{\left(z_{1}, z_{2}\right)| | z_{i} \mid<1(i=1,2)\right\}$ such that

1 .

$$
\Delta^{2} \cap N_{m}^{l}=\left\{\left(z_{1}, z_{2}\right) \in \Delta^{2} \mid z_{1}=0\right\}
$$

2. If we express the restriction T of the pullback of ω_{E} to $\Delta^{*} \times \Delta^{*}$ as

$$
T:=\sqrt{-1} \sum_{\mathbf{i}, j=1}^{2} a_{i j} d z_{i} \wedge d \bar{z}_{j}
$$

then T is smooth and extends to a d-closed positive (1,1)-current on Δ^{2} by

$$
T(\eta)=T\left(\eta \mid \Delta^{*} \times \Delta^{*}\right) \quad\left(\eta \in A_{c}^{n-1, n-1}\left(\Delta^{2}\right)\right)
$$

And T satisfies the conditions of Lemma 6.2 or Cororally 6.1.
Hence we see that if m is sufficiently large, there exists an irreducible component A of N_{m} and an irreducible component B of the strict transform of N_{m-1} such that

1. $A \cap B \neq \phi$,
2. $\inf _{y \in A} \Theta\left(F_{m}^{*} \omega_{E}, y\right)=\inf _{y \in B} \Theta\left(F_{m}^{*} \omega_{E}, y\right)$
hold by Lemma 6.2 and Cororally 6.1. This contradicts the definition of the algorithm (note that n_{m}^{l} 's are all positive). Hence there exists some $m \geq k$ such that

$$
F_{m}\left(\operatorname{Supp} N_{m}\right) \neq F_{k}\left(\operatorname{Supp} N_{k}\right)
$$

holds. In the case of $\operatorname{dim} X \geq 3$, by slicing N_{m-1} by a suitable surface and considering the strict transform of it in Y_{m}, one can get the same contradiction by using Lemma 2.4.

Then by the definition of the algorithm, using Noetherian induction, we see that there exists a positive integer m such that S_{m} is empty. Q.E.D.

By Lemma 6.1, this completes the proof of Theorem 6.1. Q.E.D.

Now Theorem 1.1 follows from the following theorem.

Theorem 6.2 ([14, p.425, Theorem 1]) Let $f: X \longrightarrow S$ be a proper surjective morphism of normal algebraic varieties, let \triangle be a Q -divisor on X such that the pair (X, Δ) is log-terminal. Assume that $K_{X}+\triangle$ is f-big, i.e. $\kappa\left(X_{\eta}, K_{X_{\eta}}+\Delta_{\eta}\right)=\operatorname{dim} X_{\eta}$, where X_{η} is the generic fibre of f and $\triangle_{\eta}=\triangle \mid X_{\eta}$, and that there exists the Zariski decomposition

$$
K_{X}+\Delta=P+N \quad \text { in } \operatorname{Div}(X) \otimes \mathbf{R}
$$

of $K_{X}+\triangle$ relative to f. Then the positive part P is f-semiample. i.e., $m P \in \operatorname{Div}(X)$ and the natural homomorphism

$$
f^{*} f_{*} \mathcal{O}_{X}(m P) \rightarrow \mathcal{O}_{X}(m P)
$$

is surjective for some positive integer m. Thus the relative log-canonical ring

$$
R\left(X / S, K_{X}+\triangle\right)=\sum_{m \geq 0} f_{\cdot} \mathcal{O}_{X}\left(\left[m\left(K_{X}+\triangle\right)\right]\right)
$$

is finitely generated as an $\mathcal{O}_{S^{-}}$algebra.
Theorem 1.2 follows from Theorem 1.1 easily because the problem is completely local (for the proof see [21, p.479, Proposition 4.4]). Since the termination of flips is known up to dimension 4 ($[16$, p.337, Theorem 5.15]), we have Theorem 1.3.

References

[1] Andreotti, A.- Tomassini, G., Some remarks on pseudoconcave manifolds, Essays on Topology and Related Topics, dedicated to G. de Rham, ed. by Haefliger and R. Narasimhan, 85-104, springer-Verlag (1970).
[2] Aubin, T., Equations du type Monge-Ampère sur les variétés kählerienne compactes, Bull. Sc. Math. France 102 (1978), 63-95.
[3] Benveniste, X., Variétés de type général de dimension 3, Thesis, Univ. Paris Sud, (1984).
[4] Caffarelli, L.-Kohn J.J.-Nirenberg L.-Spruck J., The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex MongeAmpère, and uniformly elliptic equations, Comm. Pure and Appl. Math. 38, 209-252 (1985).
[5] Carlson, J.-Griffith, P.H., A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. of Math. 95 (1972), 557-584.
[6] Demailly, J.-P., Singular hermitian metrics on positive line bundles, preprint (1990).
[7] Demailly, J.-P., A numerical criterion for very ample line bundes, preprint (1990).
[8] Faltings, G., Diophantine approximation on abelian varieties, preprint (1989).
[9] Griffith, P.A.-Harris, J., Priciples of Algebraic Geometry, John Wiley and Sons (1980).
[10] Gilberg -Trudinger, N.S., Elliptic partial differential equations of 2nd order, 2nd edition, Springer-Verlag.
[11] Hamilton, R.S., Three manifolds with positive Ricci curvature, J. Diff. Geom. 17, 255-306 (1982).
[12] Hörmander, L., An Introduction to Complex Analysis in Several Variables 3 -rd ed., North-Holland (1990).
[13] Kawamata, Y., A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann. 261 (1982), 43-46.
[14] Kawamata, Y., The Zariski Decomposition of Log Canonical Divisors, Proc. of Symp. in Pure Math. 46 (1987), 425-433.
[15] Kawamata, Y., The cone of curves of algebraic varieties, Ann. of Math. 119, 603-633 (1984).
[16] Kawamata, Y.-Matsuda, K.-Matsuki, K., Introduction to the Minimal Model Problem, Adv. Studies in Pure Math. 10, Algebraic Geometry Sedai 1985, 283-360 (1987).
[17] Kleiman, S., Toward a numerical theory of ampleness, Ann. of Math. 84 (1966), 293-344.
[18] Kobayashi R., Einstein Kähler metrics on an open algebraic manifold, Osaka J of Math. 21 (1984), 399-418.
[19] Mori, S., Flip conjecture and the existence of minimal models for 3 -folds, Jour. of Amer. Math. Soc. 1 (1988), 117-253.
[20] Mori, S., Three folds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982),133-176.
[21] Moriwaki, A., Semi-ampleness of the numerically effective part of Zariski decomposition, J. Math. Kyoto Univ. 26 (1986), 465-481.
[22] Shokurov, V.V., The nonvanishing theorem, Izv. Akad. Nauk SSSR Izv. 26, 591-604 (1986).
[23] Siu, Y.-T., Analyticity of sets associted to Lelong numbers and the extension of closed positive currents, Invent. Math. 27, 53-156 (1974).
[24] K. Sugiyama, Einstein-Kähler metrics on projevtive varieties of general type with canonical singularities, tp appear.
[25] Tsuji. H.: Existence and Degeneration of Kähler-Einstein Metrics on Minimal Algebraic Varieties of General Type, Math. Ann. 281, 123-133 (1988).
[26] Trudinger, N.S.: Fully nonlinear elliptic equation under natural structure conditions, Trans. Am. Math. Soc. 272, 751-769 (1983).
[27] Viehweg, E., Vanishing theorems, J. Reine Angew. Math. 335, 1-8 (1982).
[28] Yau, S.-T., On the Ricci curvature of a compact Kähler manifold and the complex Monge Ampere equation I. Comm. Pure Appl. Math. 31, 339-411 (1978).
[29] Yau, S.-T., A general Schwarz lemma for Kähler manifolds, Amer. J. of Math. 100, 197-203 (1978).
[30] Zariski, O. The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface, Ann. of Math. 76, 560-615 (1962).

Author's address: Hajime Tsuji
Max-Planck-Institut für Mathematik, Gottfried-Claren-Strasse 26, 5300 Bonn 3, Germany
and
Department of Mathematics, Tokyo Metropolitan University
Minami Ohsawa, Hachiôji, Tokyo, Japan

