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Since _

(L:J't + AV —laav)"
(@ + V=100%c)"
where A, is the Laplacian with respect to the Kahler form

&+ V=T08{(1 = a)de + av)

, by the maximum principle, we obtain

log

= [ Ao - )da,

v>1v. on K x[0,T).
On the other hand, trivially
Aw> —n on K x [0,T)

holds, where A, is the Laplacian with respect to the Kahler form @,. Let A
be the C*®-function on K x {0, T) such that

Ath = —n on K x[0,T)
h =0 ondKx[0,T).
Then by the maximum principle, we have
v<h on K x[0,T).

Hence we have

Y <v<h on Kx[0,T) (12)

Now to fix C*¥-norms on X, — D, we shall construct a complete Kahler-
Einstein form on X, — D.
We quote the following theorem.

Theorem 4.3 ([18]) Let M be a nonsingular projective manifold and let B
be an effective divisor with only simple normal crossings. If Kyr+ B is ample,
then there ezists a unique (up to constant multiple) complete Kdihler-Einstein
form on M = M —~ B with negative Ricci curvaure.

By the construction of D, D is a divisor with simple normal crossings
and Kx, + D is ample. Hence by Theorem 4.3, there exists a complete
Kahler-Einstein form wp on X, — D such that

wp = —R.ijD.
Then we have
| dv ||< max{|| dh |, {| d¥. ||} on 8K x [0,T),

where || || is the pointwise norm with respect to wp. To make this estimate
independent of K, we need to use special properties of wp.
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Abstract

We prove the finite generation of canonical rings of projective va-
rieties of general type and the flip conjecture in all dimension. As a
consequence we prove the minimal model conjecture up to dimension
4 which is previously known to be true up to dimension 3 by Mori

([19]).
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1 Introduction

The classification theory of algebraic varieties is the attempt to study all
algebraic varieties by decomposing them into 3 kinds of particles :

1. varieties with negative Ky,
2. varieties with numerically trivial Ky,
3. vaneties with positive Ky

and their fibre spaces. In this sense the classification theory of algebraic va-
rieties can be considered as a higher dimensional generalization of Riemann’s
uniformization theorem in the one dimensional case.

In 1976 S.-T. Yau solved the Calabi’s conjecture([28]) (We should note
that T. Aubin has also contributed to the solution independently in the case
of the negative first Chern class ([2]). But his analysis seems to be less geo-
metric than in [28]). This breakthrough gave me a confidence that there is
a strong relation between the classification theory of algebraic varieties and
Kéahler-Einstein metrics. Roughly speaking [28] enables us to translate prop-
erties of the canonical bundle of any compact Kahler manifold to propeties
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of the Ricci curvature of a Kahler metric constructed by using a partial dif-
ferential equation of Monge-Ampere type. In fact [28] gives a new prool for
Riemann’s uniformization theorem although [28] is difficult.

As for the particles of the 1-st kind, S. Mori invented his cone theorem
([20]) to single out these particles. The purpose of this article is to single out
the particles of the 3-rd kind globally (the existence of canonical model) and
locally (the flip conjecture). In comparison with Mori’s theory, the method
in the present paper is quite transcendental in nature. In my opinion it seems
to be very difficult to obtain the results in this paper by a purely algebraic
method because the canonical ring of an algebraic variety seems to be a quite
transcendental object.

As for the 2nd particles, there are no essential ways to single out these
particles at present. This problem is called the abundance conjecture. Qur
method does not work to single out the particles of 2nd kind.

The following conjecture is one of the central problem in the classification
theory of algebraic varieties.

Conjecture 1.1 (Minimal Model Conjecture) Let X be a normal projective

variety. Assume that X is not uniruled. Then there exists a minimal projec-
tive vartety X i (cf. Definition 2.5) which is birational to X.

This conjecture is trivial in the case of an algebraic curve and is known to
be true classically in the case of dim X = 2. Recently S. Mori solved the
conjecture in the case of dim X = 3([19]). His method depends on the close
study of 3-dimensional terminal singularities and it seems to be difficult to
generalize his method to the case of higher dimensional varieties. I hope that
the present paper will give a perspective of the conjecture in all dimension
because our method is independent of the dimension of the variety. In fact,
we prove the Flip Conjecture(existence of flip) in all dimension in this paper.
Hence to prove the minimal model conjecture , we only need to prove the
termination of flips. In particular since the termination of flips is known in
the case of dim X < 4 ([16]), we have a solution of Minimal Model Conjecture
in the case of dimX < 4.

In this paper all varieties and morphisms are defined over C.

The the following theorems are main results in this paper.

Theorem 1.1 Let X be a smooth projective variety of general type. Then
the canonical ring

R(X, f(x) = @,,ZOHO(X, Ox(llf(x))
is finitely generated. Hence the canonical model
Xean = ProjR(X, Kx)

exists.



In the case of dimX = 2, this theorem was proved by D. Mumford({30,
appendix]) and recently S. Mori proved Theorm 1.1 in the case of dim X =3
in terms of the existence of minimal models of 3-folds ([19]).

The following conjecture is essential in the construction of minimal models
in the case of dimension greater than 2.

Conjecture 1.2 (Flip Conjecture) Let X be a projective variety with only
terminal singularities. Let ¢ : X — X' be a birational contraction of an

extremal ray (cf.[15, 20]). Then
R(X/X', Kx) = ®u200.0x([vKx])
is finitely generated as an Ox.-algebra.

As a corollary of Theorem 1.1, we have:.
Theorem 1.2 Flip conjecture holds in all dimensions.

This theorem implies the existence of a minimal model in the case of
dim X <4,

Theorem 1.3 Let X be a normal projective variety of dimension < 4. If X
15 not uniruled, then there erists a minimal algebraic variety X,.;, which is
birational to X.

The proof of Theorem 1.1 is closely related to the cone theorem of Mori
and Kawamata(([20, 14]) although it is purely analytic in nature. Mori proved
his cone theorem by his method bend and break curves. Instead of curves we
bend and break Kihler forms by Hamilton’s heat flow.

Our method depends on the analysis of complex Monge- Ampere equations
in [28, 4].

In the course of writing up this paper, I received many valuable sugges-
tions and remarks from Professors S. Bando, T. Fujita, Y. Kawamata, R.
Kobayashi, B. Shiffman, Y.-T. Siu and others. [ would like to express my
hearty thanks to them. In particular during my visit to U.S. from Noevember
to December in 1990, I enjoyed very helpful and valuable discussions with
Professors Y.-T. Siu and B. Shiffman.

This work has been completed during my stay at Max-Planck-Institut
fir Mathematik. The last but not least, I would like to express my hearty
thanks to the institute for the hospitality.

2 Preliminaries

In this section, we fix the basic notations and introduce basic notions. We
shall prove some results about the structure of d-closed positive (1, 1)-currents
for the later use.



2.1 Zariski decomposition

Let X be a normal projective variety of dimension n. We denote by Z,_;(X)
(resp. Div(X)), the group of Weil (resp. Cartier) divisor on X. The canon-
ical divisor Ky is defined by

Ky = i.Q%

reg?

where X,., denote the regular part of X and 7 : X;., — X is the canonical
injection. Ky is an element of Z,_,(X). An R—divisor D is an element of
Zo1(X)®R, 1e. D =73 d;D; (finite sum). where d; € R and the D; are
mutually distinct prime divisor on X.

If D € Div(X)® R, we say that D is R-Cartier. We define round up
[D], the integral part [D)], the fractional part {D} and the round off (D) by

[D} =3 [d;] DJ’[D] >_ld;1D;,
{D} =3 _{d;}D;,(D) = 3_{d;)D;,
where [r],[r] and {r) for r € R are integers such that

r=l<fr]<r<[rl<r+1

1<()< +l
r— = L
2 2

and
{r} =r—[r)

Definition 2.1 D € Diw(X) ® R is said to be nef tf D - C > 0 holds for
every effective curve on X.

Definition 2.2 Let X be a normal projective variety. We say that X has
only canonical (resp. terminal) singularities, if Ky is Q-Cartier, i.e. Kx €
Div(X) ® Q and there is a resolution of singularity y:' Y — X such that
the exceptional locus F of p is a divisor with normal crossings and

Ky = p"(Kx)+ ) a;F;,
where a; > 0 (resp a; > 0).
The following definition is more general.

Definition 2.3 A pair (X, A) for A € Z,_,(X)®Q is said to be logcanonical
(resp. logterminal) if the following conditions are satisfied.

1. [A]=0and Kx + A € Div(X)® Q.



2. There is a resolution of singularity u: Y — X such that the union F

of the exceptional locus of p and the inverse image of the support of A
is a divisor with normal crossings and

Ky =p"(Kx +A)+ > a;Fja; > ~1(resp. > —1).

Definition 2.4 A normal projective variety X is said to be Q-factorial, if
every Weil divisor is Q-Cartier.

In this paper, we use the notion of minimal varieties in the following
sense.

Definition 2.5 Let X be a normal projective variety. X is said to be mini-
mal, if the following condition is satisfied.

1. X has only terminal singularities.
2. Ky is nef.
3. X s Q-factorial.
Definition 2.6 D € Div(X) ® Q is said to be big, if (X, D) =dimX
Now we shall define Zariski decomposition.

Definition 2.7 And ezpression D = P+ N, (D,P,N € Div(X)® R) is
called a Zariski decomposition of D if the following conditions are satisfied.

1. D 1s big.
2. P is nef.
8. N is effective.
4. The natural homomorphisms
HO(X, Ox([mP])) — H(X, Ox([mD]))
are bijective for all positive integers m.

Conjecture 2.1 Let X be a smooth projective variety of general type. Then
there ezists a modification

f:X—X

such that f*Kx has a Zariski decomposition.

By [14] to prove Theorem 1.1 it is sufficient to solve Conjecture 2.1. In
this paper we shall prove Theorem 1.1 by solving Conjecture 2.1.
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2.2 Structure of d-closed positive (1,1)-currents

To solve Conjecture 2.1, we shall use the theory of currents which is consid-
ered to be a generalization of the notion of subvarieties.
Let M be a complex manifold of dimension n.

Definition 2.8 The current DP9 M) of type (p,q) are the continuvous lin-

ear functional on the compactly supported C*® forms of type (n — p,n — q),
AZ=PP=( M) with the C*°-topology.

a: DPYM) — DI M), d: DPIM) —s DPItI( M)
are defined by
BT (g) = (=L T(Bp), BT(g) = (1T (D)

for T € D» (M) and we set d = 0+ 0. A (p,p)-current T is real in case

T = T in the sense that T(y¢) = T(@)v for all p € A?~P"P(M) and a real
current 7" is positive in case

(V=1 (q A7) 2 0,9 € ATPO(M).

Let V be a subvariety of codimension p in M. Then

V(p) = fv% ¢ € A;TPTP(M)

is a d-closed positive (p, p)-current. Hence we can consider subvarieties as
d-closed positive currents. On the other hand, every C*(p, p)-form ¢ on M
defines a (p, p)-current Ty by

Ty(p) = /M¢ N, @ € A77P"TP(M).

The current of this type is called a smooth current. As we explain below, a
general d-closed positive current is basically somewhere between the smooth
currents and those supported by analytic varieties.

Now we shall introduce an important invariant for d-closed positive (p, p)-
currents. Let T be a d-closed positive (p, p)-current on M. For each point
z € M we define a number

O(T, z)

defined as follows. Let (U, z) be a local coordinate around & (2(z) = O). We
set

Blr]={y e Ul 2(y) < 1},
w = gzﬂ:dzi Adf,-,

t=1



x[r] : the characteristic function of B[r].

We define O(T, z) by

O(T,z) = lim

rlo qn—pp2n-2p

T(x[r}w"")

and call it the Lelong number of 7" at z. The Lelong number exists and
finite for all d-closed positive (p, p)-current (cf. [9, pp.390-391]) and it is
independent of the choice of the coordinate ([23]).

We shall summarize the basic properties of the Lelong number.

It is easy to see that the Lelong number is upper semicontinuous as a
function on the manifold. And clearly if T is a smooth d-closed positive
(p, p)-current, (T, z) = 0 for every £ € M. On the other hand we have:

Theorem 2.1 ({9, p. 891]) Let V C M be a subvariety of codimension p in
M. Then we have
O(V,z) = mult, V.

The following theorem describes the positive Lelong number locus of a
d-closed positive (p, p)-current.

Theorem 2.2 ([23]). Let T be a d-closed positive (p, p)-current on M. Then
for every positive number ¢

S.(I={zeM|O(T,z)> ¢}
is a subvariety of codimension > p.

The following example shows that S,(T) may have a large codimension in
general.

Example 2.1 Let T be a d-closed positive (1,1)-current on C" defined by

_ \éjaélog(i 2 [2).

T =1

Then '
G)(T,:c):{ 1 ifz=0

0 otherwise

To define the pullback of a d-closed positive (1,1)-current we need the
following Poincaré lemma.



Lemma 2.1 (89 Poincaré lerﬁma}. Let T be a d-closed positive (1,1)-
current defined on the unit ball B = B(1) tn C™ with center O Then there
exists a plurisubharmonic function F' on B such that

T = /~100F
and the difference of two such F' is a pluriharmonic function on B.

The above lemma states every d-closed positive (1,1)-current has locally
a plurisubhamonic potential. The set where a potential takes —oo is inde-
pendent of the choice of the potential. We call the set the pluripolar set
of the d-closed positive (1,1)-current. It is well known the pluripolar set is
alway of measure 0.

Let f : X — Y be a morphism between two connected complex mani-
folds. Let S be a d-closed positive (1,1)-current on Y. Suppose that f(X)
is not contained in the pluripolar set of S. Then we can define the pullback
f*S by using 89 Poincaré lemma as follows.

Let U = {U,} be a sufficiently fine open covering of ¥ such that for every
U, there exists a plurisubharmonic function F, on U, such that

S| Uy = V-103F,.
Then we define the pullback f*S by
S| fY(Us) = V-180(f"F,).

This definition is well defined and independnet of the choice of I and {F,}.
Theorem 2.2 describes the positive Lelong number locus of a d-closedpositive

(p, p)-current. On the other hand the following lemma describes the basic

property of the zero Lelong number locus of a d-closed positive (1, 1)-current.

Lemma 2.2 Let X be a projective manifold of dimension n and let L be a
line bundle on X. Suppose that there exists a d-closed positive (1,1)-current
T on X such that ¢,(L) = [T), where [T] is the de Rham cohomology class
of T. Let z be a point on X such that O(T,z) =0 and let C be an arbilrary
irreducible reduced curve through . Then the intersection number ¢;,(L) - C
15 nonnegative.

Proof. Let w be a smooth Kahler form on X and let r;, be thedistance function
from z with respect to w. Then there exists a neighbourhood U of z such that
log 75 is strictly plurisubharmonic on U. Let p be a nonnegative C*°-function
on U with compact support which is identically 1 on some neighbourhood of
z. We set

Y =(2n+2)plogr,.
Let (H, h) be a hermitian line bundle on X such that

V—=100¢ — V/-1001og h > cw
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holds for some ¢ > 0. By the 89-Poincaré lemma for d-closed positive (1,1)
currents, there exists a singular hermitian metric @ on L such that

——iaé loga=T.
2T

Let 0,7 be local holomorphic generators around z of H and L respectively.
By taking U small enough, we may assume that ¢ and 7 are defined on U.
Let m be an arbitrary fixed positive integer and we set

F = 8(po @ 7®™).
Since ©(T, z) = 0 by Lemma 2.1 , we have
Fe L(01)(Xa H @ L®¥),

where L(p (X, H® L®™) denote the Hilbert space of the H ® L®™ valued L?
forms of type (p, ¢) with respect to the singular hermitian metric e"¥A®a®™.
By Hormander’s L? estimates for §-operator, there exists ¢ € Lisoy(X, H ®
L®™) such that )
dp=F.
Then
p=po@re" — o

is a global holomorphic section of H ® L®™. Let ao be a smooth hermitian
metric on L. Since T = —+/—100loga is positive, a/ay is bounded from
below by a positive constant on X. This implies that

W) = (0 ® 7°)(z)
holds by the definition of 1. Hence
alH®L®™)-C>0
holds. Since m is an arbitrary positive integer, we have
a(l)-C>0.
This completes the proof of the lemma. Q.E.D.

Remark 2.1 The original form of Lemma 2.2 was Cororally 2.1 below. To
polish up this lemma into the present form the discussion with Professor B.
Shiffman was very helpful. I would like to ezpress my thank here.

Cororally 2.1 Let X,L,T be as in Lemma 2.2. Suppose that ©(T,z) = 0
holds for all z € X. Then L is nef.
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Remark 2.2 Professor S. Bando kindly informed me that one may use the
smoothing by heat deformation of currents to prove this lemma. In particular
his proof implies that every d-closed positive (1,1)-current with vanishing
Lelong number on a compact Kihler manifold represents a cohomology class
on the closure of the Kahler cone of the manifold.

Remark 2.3 After [ finished up wriling this paper, Professor S. Bando
kindly sent me the preprints of J.-P. Demailly ([6, 7]). These works are
closely related to Lemma 2.2, Cororally 2.1 and also Section 5 below.

The Lelong number of a d-closed positive (1,1)-current indicates the
growth of a local potential function of the current around a point.

Lemma 2.3 (23, p.85, Lemma 5.3]) Let ¢ be an arbitrary plurisubharmonic
function on an open subset U of C" and let = be a point in U. Let

= —”—la&p.
2T

Then the followings are true.
1. IfO(T,z) < 1, then ™% s locally integrable at z.

2. If O(T,z) > n, then e~% is not locally integrable at x.

The above lemma is not enough for our purpose because the two cases
are not complement each other. But the following lemma 1s well known.

Lemma 2.4 (28, p.95, Lemma 7.5]). Let T be a d-closed positive (1,1)-
current on B(r) = {z € C* ||| z |i< r} for some r > 0. Let us consider
P™~! as a parameter space which parametrizes complez line through the origin
Q. Then for every L € P™! such that the restriction T | B(r) N L is well
defined,

O(T,0) L (T | LN B(r),0)

holds. And for almost all such L (in the sense of Lebesgue measurc on P*~1),
O(T,0)=06(T | LN B(r),0)
holds.

The following lemma is fundamental for consideration of the behavior of
the Lelong number under a modification of the variety. Although the author
does not know any references, it seems to be standard.
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Lemma 2.5 Let X be a complez manifold and let T be a d-closed positive
(1,1)-current on X. Let f: X — X be the blowing up with a smooth center
Y. Then for every p € X, we have

o(f*T,p) 2 O(T, f(p))-
Moreover for a general point p € f71(Y),

O(f*T,p) = &(T, f(p))

holds, where “general” means that p is outside of a sel of measure 0 with
respect to the Lebesgque measure on f~'(Y) associated with an arbitrary her-
mitian metric on f~'(Y).

Proof If f(p) is not in Y, then it is clear that O(f*T,p) = O(T, f(p)) holds.

Let (U, z1,...,2,) be alocal coordinate around p. Then for almost every line
L through p (with respect to this coordinate), f*T"| L is well defined and

O(f*T| L,p)=O(fT,p)

holds. If we take such L generally, we may assume that f(L) is smooth at
f(p). Then with respect to a suitable local coordinate (yi,...,y,) around
f(z), f(L) is a line and by Lemma 2.4, we have

(T, f(2)) < (T | f(L), f(z)) = ©(ST
This completes the proof of the lemma. Q.E.D.

Lyz)=0(fT,z).

The following example shows that the Lelong number of a d-closed posi-
tive (1,1)-current is not invariant under a modification in general.

Example 2.2 Let T be a d-closed positive (1,1)-current on C* defined by

=1 .
2—35108“ a P+ |z |™),
s
where m is a positive integer. Let f : C? — C? be a blowing up with center
Q. Let E be the exceptional divisor of f and let py be the intersection of I

and the strict transform of zo-azis. Then

T =

m ifp=po
@(T,P)={ 1 ifpe E—{po}

0 otherwise

The following lemma will be used in Section 6.

Lemma 2.6 ([23, p.87, Lemma 6.2]) Suppose T is a d-closed positive (1,1)-
current on a complex manifold M and V 1is a divisor in M. Let ¢ be «
nonnegative number. Suppose &(T,z) > ¢ for everyxz € V. Then T — ¢V is
a d-closed positive (1,1)-current on M.

12



3 Deformation of Kahler form 1

In this section we shall consider Hamilton’s equation on a smooth projective
variety of general type and determine the maximal existence time for the
smooth solution. This section is more or less independent from the other
sections. Hence a reader who is familiar with Monge-Ampere equation may
skip this section. But the basic method of the estimate of parabolic Monge-
Ampere equations is introduced in this section.

3.1 Hamilton’s equation

Let X be a smooth projective variety of general type and let n = dim X. Let
wg be a C*°-Kahler form on X. We consider the initial value problem:

a_wz—-Ricw—w on X x [0,7) (1)

ot
w=uwp on X x {0}, (2)

where )
Ric, = —v/—=1303logw™
and T is the maximal existence time for C'*-solution.
Since 9
E(dw) = —dw on X x [0,7)
dwo =0 on X x {0},

we have that dw = 0 on X x [0,T), i.e., the equation preserves the Kahler
condition.

3.2 Reduction to the parabolic Monge- Ampere equa-
tion

Let w denote the de Rham cohomology class of w in H3gp(X,R). Since
—(27)~'Ric, is a first Chern form of Ky, we have

[w] = (1 — exp(~t))2mer (K x) + exp(~t)[wo). (3)
Let 2 be a C*®-volume form on X and let
Weo = —Ric) = /=180 1og .

We set
wr = (1 — exp(—1))woo + exp{—1t)wo. (4)
Since [w] = [w;] on X x {t} for every t € {0,T), there exists a C*-function u
on X x [0,T) such that B
w = w; + V—190u. (5)

13



By (1), we have

gz(wt + VTT00u) = V=T08 og(we + vV=T08u)" — (wi + V=100u).
Hence
=, Ou
exp(—1)(weo — wo) + V—laa(—a?)
= V=108 log(w; + V—190u)" — weo + exp(—1){weo — wo).
Then (1) is equivalent to the initial value problem:

aa_tt‘ = log (it 5180&) —u on X x [0,7)

u = 0 onX x{0}. (6)

Let
A(X) = {[n] | n : Kahler form on X} C H3x(X,R)

be the Kahler cone of X. Since {w] moves on the segument connecting [wp]

and {we] = 27e1(Kx ), we cannot expect T' to be oo, unless 2we¢;(/{yx) is on
the closure of A(X) in H55(X,R). We shall determine T. It is standard to
see that T' > 0 ([11]).

Theorem 3.1 If wy — we 15 @ Kahler form, then T is equal to

To = sup{t > 0| [w] € A(X)}.

The proof of Theorem 3.1 is almost parallel to that of [25, p.126, Theorem
3].

3.3 (P-estimate

Lemma 3.1 [fwy — wy, ts a Kdhler form, then there exists a constant Cy
such that

Ju
5 < Coexp(—t).
Proof.
0 ,0u Ju Ju

En E) = Aw—aut— ~ exp(—t)iry(wo ~ weo)
holds by defferentiating (5) by ¢. By the maximum principle, we have

du wy
TR (max log 0 )exp(—t)

14



Q.E.D.

To estimate u from below, we modify (6) as

Ou = log (e + —nlaau) + fi—u on X x[0,77)
at Wi
v = 0 on X x {0}, (7)
where N
fi=log = (8)
and
Ty = min{sup{t > 0 | w; > 0}, T}. (9)

If t € [0,T}), we have

log (e —nlaau) - [ ilog (i & v=1580u) ds = /1 A, uds,
0

wy o ds w

where A, is the Laplacian with respect to the Kahler form w, + /=1590u.
Then by the minimum principle, (7) and Lemma 2.2, we have

Lemma 3.2

u > —Coexp(—t) + n/l\';nft on X x {t},t € [0,T)).

We note that this estimate is depending on ¢ and Cj is independent of
the choice of .

3.4 (Z-estimate

For the next we shall obtain a C%-estimate of u.

Lemma 3.3 ([28, p.851, (2.22)]) Let M be a compact Kihler manifold and
let w, © be Kdhler forms on M. Assume thal there exists a C*®-funclion ¢
such that

& =w+V—190p.
We set -~ n
w
= log —
S =log Y

Then for every positive constant such that

C+ 125&;13 > 1,

15



exp(Cp)A(exp(—Co)(n + Ap)) >
(Af—n 1nfR,,3_,) Cn(n + Agp)

+(C + 1nf Riz5)(n+ Acp)" ] exp(—%l)

holds, where

Rii; : the bisectional curvature of w,

A ! the Laplacian with respect to w.

Applying this lemma to w; and w = w; + V—190u, we have:
Lemma 3.4 For every C > 0 depending only on t € [0,T1) such that

C+1nfR,,”( )>1 on X x {0},

exp(Cu)(A, — %)(exp(—Cu)trw,w) >

w )
—(Alog o +n*inf Raj3(t) +n)

—C(n— é — gt;)trwt — exp(—1t)try, ((wo — Weo) - VV—190u)
1 Ou wy _n_
HO + inf Ras(0) expl (22 — -t 10g 5Lt )

holds, on X X {t}) (t € 10,1Y), where

A; : Laplacian with respect to wy,

Ri5;(t) ¢ the bisectional curvature of w,

and tr,,((wo — weo) - V—180u) denotes the trace (with respect to w,) of the
product of the endomorphisms A, B € End(T X) defined by

wt(A(Z1) A Z:Q) = (wo -_ wgo)(Zl A Z_Q)
w(B(Z)) A Zy) = (/=100u)(Z, A Z,),

where the pair (Zy,Z2) runs in TX xx T'X.

Proof. Let o
clog s = ek
f_logw{‘ 8t+u logQ.

Then by Lemma 3.3, we have

exp(Cu) wl(exp(—=Cu)tr,w)
> (Af —n 1nfR~ =(1)) — Cn(n + Au)

tt]]
).

+(C +inl Riz)(trow) =T exp(—

n-—1

16



Since 5u o
w
tf A(a +u—log Q)

—A:g + tr,,w n—Atlog%
and 9
exp(Cu)a(exp(—Cu)trw,w)
= 03 try, w + ir O —1r Qlf-)—t-w
ot “ “e Bt “ ot
Ju Ju
=-C— T —tr,w+ Ay— T exp(—t)try (wo — weo) + exp(—1)try, (wo — weo ) * w,

we obtain the lemma. Q.E.D.

Let € be an arbitrary small positive number. We set
Ti(e) = min{sup{t > 0 | w; > 0} — ¢, T}
and let C be a positive number such that
C + inf Rag3(t) > 1

for all ¢ € [0, T1(¢)}. Then since the function & exp(—z) is bounded on [0, 0o),
by the maximum principle and Lemma 3.4, we have that if exp(—Cu)ir,,w
take its maximum at (zg,%) € X x [0, To(€)], we have

trw:‘-‘-’(moa tD) < Ce

for some C, > 0 depending only on €. Then by the C°%estimate of v , Lemma
3.1 and Lemma 3.2, by the maximum principle for parbolic equations we have
that there exists a positive constant C], such that

!
trow < C),
Hence we obtain:

Lemma 3.5 There ezists a positive constant C,, depending only on T\(c)
such that

|| u ”C"‘(X)S c?,:
for every t € {0, T1(€)), where || |lcr(x) is the C*-norm with repsect to wy.

17



Now by [26], for every r > 2 there exists a positive constant C, . depending
only on Tj(e) such that

” u ”C’"(X)S Cr,e-
Letting € tend to 0, we have that

T>T

holds. Since [wr,] is on the closure of the Kahler cone A(X), by changing Q
properly, we can make Tp — 7 > 0 arbitarary small. Hence we conclude that
T = Ty. This completes the proof of Theorem 3.1. Q.E.D.

4 Deformation of Kahler form II

In this section we shall construct a Kahler-Einstein form on a Zariski open
subset of X by using a initial value problem similar to (1) in the last section.
In this section we use the same notation as in the last section.

4.1 Kahler-Einstein currents

To state our theorem we need the following definitions.

Definition 4.1 Let D be a R-Cartier divisor on a projective variely Y.
Then the stable base locus of D is defined by

SBs(D) = Ny5oSuppBs | [vD] | .

Definition 4.2 Let D be a Cartier divisor on a projective variety Y and
let ®)p;Y — -+ — PN be the rational map associated with | vD |. Lel
iy 2 Y, — Y be a resolution of the base locus of | vD | and let <i>|,,D|; X —
PN be the associated morphism. We set

- E(vD) = p,(E(wD)N(Y — Supp Bs| vD ) (Zariski closure)

and call it the ezceptional locus of | vD |. It is easy to see that E(vD) is
independent of the choice of the resolution of the base locus p,. We set

SE’(D) = ﬂv)DE(VD)

and call it the stable exceptional locus of D.

We set,
S =SBs(Kx)U SE(Kx).

The main result in this section is the following theorem.

18



Theorem 4.1 There ezists a d-closed positive (1,1)-current wg on X such
that

1. wg is smooth on a nonempty Zariski open subset U of X.
2. —Ric,, = wg holds on U.

8. lwg] = 2w (K x).
The following remark will be important in differential geometry.

Remark 4.1 As an immediate consequence of Theorem 1.1, we can take U
to be X — S by using the result in [24]. But to prove Theorem 1.1, we do not
need to take U to be X — S.

4.2 Kodaira’s Lemma

The following lemma of Kodaira is well known and fundamental in the proof
of Theorem 4.1.

Lemma 4.1 (Kodaira’s lemma) Let D be a big divisor (cf. Definition 2.6)
on a smooth projective variety M. Then there exists an effective Q-divisor
E such that D — If is an ample Q-divisor.

Proof. Let H be a very ample divisor on M. Then
0 — H°(M,Op(mD — H)) = H(M,Op(mD)) — H°(H,Ou(mD | H))

is exact. Since D is big, for a sufficiently large m, | mD — H | is nonempty.
This completes the proof of the lemma. Q.E.D.

The following cororally is trivial by Lemma 4.1 and Kleiman’s criterion
for ampleness([17]).

Cororally 4.1 ([18, Lemma 8 and 4]) Let D be a nef and big divisor an
a smooth projective variety M. Then there extists an effective Q-divisor £
such that for every sufficiently small positive rational number ¢, D — el is
an ample Q-divisor on M.

Let v be a sufficiently large positive integer such that

1. | vKx | gives a birational rational map from X into a projective space.

2. Supp Bs| vKx |= SBs(Kx).
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Let f,: X, — X be a resolution of the base locus of | vKx | and let

F, =S bFy

be the fixed part of | fi(vKx) |. We take f, so that F* is a divisor with
normal crosssings. We set

b=
Let of be a global holomorphic section of Ox, (FY) with divisor F¥. Then
there exist hermitian metrics || || on Ox, (F¥)’s such that

wWeo = fweo + 3 V=1b00og || o7 |I*
is positive on f;'(X — 8), if v is sufficiently large. We may assume
log || o} [|< 0

holds for every 1. We set
By Lemma 4.1, there exists an effcctive Q-divisor

R, = ZT;R;'
on X, such that 3
fo(Kx) = 3 biFY — I

is an ample Q-divisor on X,. We note that € R, has the same property as i,
for € € [0,1]. Let 77 be a global section of Ox, () with divisor RY. Then
there exists hermitian metrics || || on Ox, (/) such that

wh, + Z \/-lrfaglog It T/ ||2
7

is a smooth Kahler form on X, and || 7¥ ||< 1 holds on X, for all j. We set
5, = Z V—=1rilog| 7 %
J
Then for every ¢ € [0, 1], .
wh, +eV/—1006"

is a smooth Kahler form on X,.
We set

& =2 Blog ot |
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4.3 Construction of a suitable ample divisor

To construct Kahler-Einstein current on X, we use the Dirichlet problem
for parabolic Monge-Ampere equation. Hence we shall construct a strongly
pseudoconvex convex exhaustion of a Zariski open subset of X, with certain
properties. We fix sufficiently large v hereafter. Let

d: X, — PV
be a embedding of X, into a projective space. Let
To; X, — P @ =1,...m)
be generic projections and we set
W, : the ramification divisor of 7, H, := 7,({z = 0}),

where [zg : ... : z,;] be the homogeneous coordinate of P™. For simplicity
we shall denote the support of a divisor by the same notation as the one,
if without fear of confusion. If m is sufficiently large, we may assume the
following conditions:

L NEo(Wa + Ho) = ¢,

2. D:=F, + ¥ (W, + H,) is an ample divisor with normal crossings.
3. D contains SUR,.

4. Kx, + D 1s ample.

Then X, — D is strongly pseudoconvex and the following lemma is necessary
for our purpose.

Lemma 4.2 There ezists a positive strongly plurisubharmonic ezhaustion
function ¢ of X, — D such that w, = /=100y is a complete Kdahler form
on X, — D,

Proof. Let D =¥, Di be the irreducible decomposition of D and let A; be
a global holomorphic section of Ox, (Dy) with divisor Di. Then there exist
hermitian metrics || ||’s on Ox,(Dk)’s such that

—Z \/——laélog Il Ak ||2
%

is a smooth Kahler form on X,. We set for a positive number ¢

1
= — lo M || —¢elog log ———.
@ Ek: gl Al glog T
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Then if we choose ¢ sufficiently small, then
w, = V—190p

is a complete Kahler form on X, — D. Clearly by adding a sufficiently large
positive number, we can make the exhuastion ¢ to be positive on X, — D.

'Q.E.D.

Remark 4.2 As one see in Lemma 4.8 below, w, has a bounded Poincaré
growth.

4.4 The Dirichlet problem

We set for ¢ > 0,
K.={z € X, :p(z) <c}.

It is easy to see that we may assume that there exists a positive constant cg
such that the boundary 9K, is smooth for every ¢ > ¢;. We fix such ¢ and
set

K =K,

for simplicity.

In the estimate of u, we try to make the estimate independent of ¢ > ¢
for the later use.

Since X, — D is canonically biholomorphic to a Zariski open subset of
X, we may consider K as a compact subset of X. We consider the following
Dirichlet problem for a parabolic Monge-Ampere equation.

’

R logL“ﬁi—‘/ﬁ—mﬂ—u on K x [0,T)
4 4

u = (1—e*), on 0K x [0,7") (10)
v =0 on K x {0},

where w,{) are the same as in the last section and T is a maximal existence
time for the smooth solution on K(the closure in the usual topology). We
shall assume that

wg =
holds. It is easy to find such wy and §2 by using the solution of Calabi’s
conjecture ([28]). By multiplying a common sufficiently large positive number
to wg and €, if neceessary, we may assume that

w0+RicQ=w0—w°°>0

holds. Please do not confuse u with the one in the last section. We use the
same notation for simplicity. For the first we shall show
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Theorem 4.2 T is infinite and

U = lim u
t—o0

ezists in C®-topology on K.

4.5 (CY-estimate

We note that by the above choice of wy,{2 and the Dirichlet condition, the
Dirichlet problem (10) is compatible up to 3-rd order on the corner 0K x {0}.

Hence by the standard implicit function theorem, we see that T is positive.
Suppose T is finite. Then if lim,_7 u exist on K in C*®-topology, then this
is a contradiction. Because again by the implicit function theorem, we can
continue the solution a little bit more. Hence to prove Theorem 4.2, it is
sufficient to obtain an estimate of C*-norm of v on K which is independent,
of i.

We begin with C%estimate.

Lemma 4.3 There exists a constant Cg such that

% < Cfe™ on K x[0,T)

holds.
Proof We set .
w=w; + Vv —laau

and

A = tr/=188.

As in the proof of Lemma 3.1, we have

d 0u, :0u Ou »
a(a)_ — — — — e Hr,(wy — Weo)

ot ot
holds on K x [0,T). Since
u=(1-e"), ondK x0,T)

and wp — Wy 1s a Kahler form on X, by maximal principle

% < Cfe* on K x[0,T)

holds for

n

+ _ “o
Cg' = max{maxlog —-(z), max ¢,(z)}.
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Q.E.D.

We set
v=u—(1-e"),
Q, = exP(fu)Q:
and )
@ = wi + (1 — e )/=100¢,.
Then v satisfies the equation:

(v - logl“’“'—‘/—as")— v on K x[0,T)

at

v =0 on 9K x [0,T) (11)

v =0 on K x {0}

\

We note that &; is a Kahler form on (X, — D) x [0, 00] and we = w¥,. Then

since
log (w¢+ 830 / A v,

where A, is the Laplacian with respect to the Kahler form
&, + av/—100w,

by maximum principle and Lemma 4.2, we have that

v > min{rréill\} log ;—t(m) —Cfe™,0} on K x [0,T)

v

holds. Hence we have
Lemma 4.4

w>C5+(1—e*)E, on K x[0,T),

where
ﬂ.

Cy =min{ inf log o L(z,1),0} — Co

(z,t)€ K x[0,00)

We note that Cy may depend on K because log(@"/€,) may not be
bounded from below on X, — D. To obtain the C%estimate from below
which is independent of K, we shall consider for ¢ € (0, 1],

ve =u—(1—e )&, +€6,).

Then by the same argument, we have
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Lemma 4.5 Let ¢ € (0,1]. Then there exisls a constant Cy(e) which is
independent of K such that

u>Cy(e)+(1—e )&, +€6,) on K x [0,T)

The reason why Cg (€) is independent of K is simply because

oo + V=108,

on X, — D extends to a smooth Kahler form on X, and

exp(¢, +€6,)fQ

is a smooth semipositive (n,n) form on X,.

4.6 (Cl-estimate on 0

Hereafter we estimate derivatives of v basically by using the method in [4].
But our estimates is a little bit more complicated because we are working on
a quasi-projective variety which cannot admits a global flat Kahler metric.
We set

Pe = by — c),
where b is a positive constant. We note that

Y. =0 on 0K
and

Y. <0 on K.

Then since w,, is a complete Kahler form of Poincareé growth, if we take b
sufficiently large

(@ + V=100.)"

log a

— 1. > 0on K x [0,00)

holds. It is easy to see that we can take b independent of ¢ and f. Then we
have

) > log (GRS — (v—1h) on K x [0,T)
vt =0 on 9K x [0,7)

v—1, = —1, on K x {0}
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Since (G + VT00)
G+ VTOG0)
o (60 s VTR~ Dol ¥

where A, is the Laplacian with respect to the Kahler form
@ + V~100{(1 — a)¢. + av}

, by the maximum principle, we obtain

!

v>1, on K x[0,T).
On the other hand, trivially
Aw> —n on K x [0,T)

holds, where A, is the Laplacian with respect to the Kahler form &,. Let A
be the C®°-function on K x [0,T) such that

Ak = —n on K x[0,T)
h =0 ondKx|[0,T).
Then by the maximum principle, we have
v<h on K x[0,7).

Hence we have

Y. <v<h on K x[0,7). (12)

Now to fix C*-norms on X, — D, we shall construct a complete Kahler-
Finstein form on X, — D.
We quote the following theorem.

Theorem 4.3 ([18]) Let M be a nonsingular projective manifold and lel B
be an effective divisor with only stmple normal crossings. If Ky + B is ample,
then there erists a unique {up to constant multiple) complete Kdhler- Einstein
form on M = M — B with negative Ricci curvaure.

By the construction of D, D is a divisor with simple normal crossings
and Kx, + D is ample. Hence by Theorem 4.3, there exists a complete
Kahler-Einstein form wp on X, — D such that

wp = _R’iCWD'
Then we have

I do I|< max{]| dh || . ||} on O x [0,T),

where || || is the pointwise norm with respect to wp. To make this estimate
independent of K, we need to use special properties of wp.
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Definition 4.3 Let V be an open set in C". A holomorphic map from V
into a complez manifold M of dimension n is called a quasi-coordinate map
iff it is of mazimal rank everywhere on V. (V; Fuclidean coordinate of C")
is called a local quasi-coordinate of M.

Lemma 4.6 (cf. [18, p.405, Lemma 2 and pp. 406-409] ) There exists a
family of local quasi-coordinates V = {(V;v!,...,v")} of X, — D with the
following properties.

1. X, — D is covered by the images of (V;v!,...,v")’s.

2. The completment of some open neighbourhood of D is covered by a

finite number of (V,v',...,v")’s which are local coordinate in the usual
sense.

3. FEach 'V, as an open subset of the complexr Fuclidean space C", contains

a ball of radius 1/2.

{. There exists positive constants cp and Ax(k = 0,1,2,...) independent
of Vs such that at each (V,v',...v"), the inequalities:

= (6i5) < (98) < cn(8ij),

| (alpl"'l"l/av”aiq)gg I< Ajpi+lal, for any multiindices p and ¢
hold, where gg denote the components of wp with respect to v*’s.

Definition 4.4 (M, B) be a pair of smooth projective variety of dimension n
and a divisor with simple normal crossings on it. A complete Kahler metric
wpy on M = M — B is said to have bounded Poincaré growth on (M, B) «f
for any polydisk A™ = {(z1,...,2,) € C" || z; |[< 1(1 <7 < n)} in M such
that

AN B={(z1,...,2,) € A" | 21zt = 0}(k < n),

wpr | A™ is quasi-isometric to

k /— R =, n
wp = Z | Ldz; A dz > + Z vV—=1dz; A dz;
=1

z; |* (log | 2 |) i=k+1

on every compact subset of A™ and every covariant derivative of wps | A" is
bounded on every compact subsel of A™.

Then by the construction of wp, we have:

Lemma 4.7 ([18, pp.400-409]) wp has bounded Poincaré growth. on (X,, B).

27



Remember the definition of ¢ in Lemma 4.2. Then the following lemma
is trivial.

Lemma 4.8 ¢~ || dy || is uniformly bounded on X, — D.
We note that v satisfies the following differential inequality.
Apv 2> —tr, w; on K x [0,T),

where Ap is the Laplacian with respect to wp. Let hp be the solution of the
Dirichlet problem

Aphp = —tr & on K x{0,T)
hp =0 on 0K x [0,T)

Then by the maximum principle, we have
v< hp
holds on K x [0,T). Hence
Y. <v<hp
holds on K x [0, T) by (12). Hence by the maximum principle, we have
| dv ||< max{|| di. ||,|| dhp ||}on OK x [0,T).

By the standard boundary estimate for the second order linear ellptic equa-
tions (cf. [10]), we see that hp is smooth on K. By using the standard
elliptic estimate and Lemma 4.6, it is easy to obtain an estimate for || dhp ||
on K. But in this case, since w, = /=199y is a complete Kahler form of
Poincar/’e growth, we can find a negative constant ¥’ independent of ¢ and ¢
such that

VAp(p —¢) € —tr,, &,

holds. Then by the maximum principle, we see that
hp b(p—c) on K
holds.

Then since b and b’ are independent of ¢ and ¢, by Lemma 4.8, we have:

Lemma 4.9 There ezists a positive constant C| independent of ¢ > ¢y such
that

| dv ||< Cic on 0K x[0,T)
where || || is the norm with respect to the Kdhler form wp.
Remark 4.3 As you have seen above, in the proof of Lemma 4.9, the use of
hp ts not unnecessary. We can use a b3 instead of hp from the first. The

reason why we have used hp here is that the method can be applicable more
general situations.
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4.7 (Cl-estimate on K

Let 7w, : X, — P" be the generic projection constructed in 4.3. And let

%)
Z =Re Zﬂ, 2./20))
where (fBy,...,0.) € C* - {O}. Then
0 = 73(2)

is a holomorphic differential operator on X, — D which is meromorphic on
X,. By operating 6 to (11), we have

) = A(v) — Ov+0log 2~ on K x [0,T)
v =0v on 0K x [0,T)

v =0 on 0K x {0},

where A is the Laplacian with repect to
w=0Q+ V—100v.

Then by the maximam principle and Lemma 4.8, we get
I 6v]|< Cu(6, K),

where

C1(6, K) =max{_sup | 0v]], sup ||elog ||}
8K x[0,T) 0,1

Then since || dlog(@™/Q,) || is bounded on )\,, ~ D, if we take m sufficiently
large and 7,(1 € a £ m) properly, we get :

Lemma 4.10 There ezists a positive constant C,(K) which depends on ¢ >
¢y such that
| dv [|[< C1(K) on K x[0,T)

holds.

The estimate is getting worse if the point goes far from the boundary
because 0 has a pole along D.
We set

K.(€) = K. — K._..

Then by the above argument and the construction of I} in 4.3, we obtain the
following estimate.

Lemma 4.11 There ezists positive constants C; and A; independent of ¢ >
co such that
| dv ||< Cic on K(e=#1¢) x [0,T).

Remark 4.4 This idea is inspired by the idea in [8].
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4.8 (%-estimate on OK
In this subsection, we follow the argument in {4, pp. 218-223] and prove:

Lemma 4.12 There ezists a positive constant Cj independent of ¢ > ¢y such
that

|| V=180 ||< exp(Cje) on 8K x [0,T)

Let P be a point on dK. Choose a coordinates zy,..., z, with origin at
P such that

D — D S
1. dg5(P) =0 and g35(P) = &;.
2. There exists a positive number b such that
r=HKp-c
satisfies r,,(0) = 0 for a < n, ry,(0) = 0,7,, = —1, where

2o = To + V—1Y4

and
or
Tr =
o Pz,
and so on.
We set sy = 21,82 = Y, -+ 82m-3 = Tn-1,%m-2 = Un-1,82m-1 = Yn =
5,8 = (s1,...,82n-1). By 00-Poincaré lemma, we choose a smooth function

¢ defined on a open neighbourhood U of P such that
(;)t = v/ ‘—185(}5
holds on U. Let g be a function defined by

g=¢+v.
It is clear that to estimate \/—188v(P) is equivalent to /—198g(P) be-

cause &, is uniformly bounded with respect to wp on X, — D by a constant
independent of {. . Moreover by Lemma 4.7, the convariant derivatives of
w; of any order with respect to wp 1s uniformly bounded with respect to the
norm defined by wp on X, — D by a constant independent of ¢. Then by
Lemma 4.6 , we may assume that U contains a ball of radius 1/2¢p with
center P and any derivatives of ¢ of a fixed order with respect to (zy,..., z,)
is bounded by a constant independent of ¢ > ¢, if we allow (U, zy,...,2,) to
be a quasi-coordinate. Since the estimate is completely local, this does not
cause any trouble in our estimate in this subsection. Hence the C*-estimate
of v on 8K is reduced completely to the C*-estimate of g on 0K.
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Sublemma 4.1 There ezists a positive constant Cp independent of ¢ > ¢
such that

| 95:5;(0) | Cy 1,7 < 2n—1.
For r near 0 we may represent ¢ as

g=¢+or

Then
gzn(O) = ¢zn - U(O)i
so that by Lemma 4.9, 6(0) < Cjc. Hence
gs.-a,'(o) = ¢’s.'a,- + 0‘(0)7‘,“’,

holds. We note that r,,, = O(1/c) because of the normalization. Hence we
get the sublemma.

Sublemma 4.2 There ezists a positive constant Ci'ﬁndependent of ¢ 2 ¢
such that

| ga.‘zn(o) |S exp(ézc)
holds.

The proof of Sublemma 4.2 is a little bit technical.
Writing the Taylor expansion of r up to second order we obtain:

r = Re(—z, + Eaijzizj) + Eb.‘jzifj +O(] = |3)

Introducing new coordinates of the form

z, = zn— 1455225,
zp =zfork<n-1,
we can write
= —Re(z,) + ) c;52i% + O(| z [°). (13)

It is clear that (c,;) is positxve definite.
We define T; in a neighbourhood of 0 by

T,-=i—-i—z—,fori=1,...,2n—l;

then T;r = 0 nad we have Ti(¢g — ¢) =0 on r = 0.
We show that for suitable € > 0, in the region

Se={z€eU|r(z) £0,z, < e},

31



where U is a neighbourhood of the origin, we set
w=+Ti(g— @)+ (9, — ¢,)* — Az + B 2 |*
We claim :

(a) For B sufficiently large, Lw>0;
(b)On 88S., if A is sufficiently large, w < 0 holds.

To prove (a) set
a=—r,[rg,

and consider (we use summation convention)
L(Tig) = Tilog W(z,9(2)) + 970p0205 + 97703050 + 0" g0, (14)
where

L=A-

K

SIS

and
Q,

) = —g¢).
(9(2)) (V=1)rdzy Adz, A ... Adz, A dZ, exp(=9¢)

Obeserve that ¢gP7gn; = 6F and that
9 _,0

0z, - 28;:"

d
+ v-1 7s
s
so that
Jrng = 20ng + V—1gaz.
Thus the second term on the right-hand side of (14) is of the form
an + ¢"apgi5 = O(L + (32 6°) /(67 0ps95) /).

A similar estimate holds for the third term on the right of (14) while the
forth term is O(¥ ¢*). Thus by Lemma 4.3 and the arithmetic-geometric
mean inequality, we have

+LTig < —CY™" — ¢"7g,, g4
Further

z(ga - ¢s)2 = 2gp§gpagt?a + 2(93 - (;5,)(8, |0g - .E(ﬁ,)
> 207 gpagqs — CUV/M

holds on S, by the C'-estimate (Lemma 4.11) and the arithmetic-geometric
mean inequality (if we take ¢ sufficiently small). Hence we find

Lw > BY ¢ - Cy-Vn
>0 on S, x[0,T),
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if B is sufficiently large. B depends on the C!-estimate of v on S, x [0,T)
and which is uniform with the weight ¢ by Lemma 4.10. This completes the
proof of (a).

To prove (b), consider first 35, NJK. Here we write z, = p(sy, ..., San-1)
and from (13), we deduce that

= Y bgsis; +0O(] ' °) (15)

i7<2n
with (b;;) positive definite. Thus on 0K near O we have
T, > alz |,

where a is uniformly bounded from below by a positive constant times 1/c
where by the construction of K. Also,

g(s, p(s)) = (s, p(s)),

so that
| gs— ¢s °’< C | s|’< Cp.

Taking A large we obtain (b). By Lemma 4.11, if we take a positive constant
Cy sufficiently large, we may assume that A is bounded from above by a
constant times exp(Cyc) for some positive constant C; independent of ¢ > cq.
By the maximum principle and (a),(b),

w<0 ondS

holds.
In view of the maximum principle, we have

| (Ti9)=.(0) < A.

This completes the proof of Sublemma 4.2.

Using, still the special coordinate above we sce that to finish our proof of
Lemma 4.12 , we have only to establish the estimate

I grnzn(o) |S exP(C2c) (16)
for some constant Cy independent of ¢ > ¢5. By the previous estimates:

| ga.‘a_,'(o) |S 02 (1 S 2,j S 2n — 1),
| Goizn 1< exp(Cae) (1 <i< 2n—1),

it suffices to prove

| 922(0) |< exp(Cje)
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for some C, independent of ¢ > ¢g. We may solve the equation

det(g5)(0) = —2(0)

- wh
for g,a(O). Then since there exists a positive constant C* such that
exp(—Che) < 22 < exp(CYe)
holds on X, — D, we see that (16) follows from (17) provided we know the
following sublemma.

Sublemma 4.3 ([4, pp. 221-228]) The (n — 1) by (n — 1) matriz

Q,.11
(ghfp(O))a.ﬁ<n 2 03(wB)" EI

for some Cs; here I is the (n~1) by (n—1) identity matriz. Cy is independent
of ¢ 2 ¢o

The proof of this sublemma is very technical.
After subtraction of a linear function we may assume that ¢,.(0) = 0,5 <
2n — 1. To prove Sublemma 4.3, it suffices to prove

E ‘Ya;?ﬁgzuz’g(o) 2 CS | Y 12

o,f<n
which we shall do for v = (1,0,...,0). We shall show that
911(0) 2 C4, (17)
where Cj is a positive constant. Let § = g — Az, with A so chosen that

d* 3*
(525 + 57)3(51 -+ $3mm1 951, 5201)) = 0t O,
1 2

0= g11(0) + 3. (0)m11(0) = 913(0) + (9. (0) = Vpri(0).  (18)

Using the fact that any real homogeneous cubic polynomial in (s1, s3) admits
the unique decomposition

Re(a(s; + vV—189)% + B(s1 + V=152)(s1 + vV —153)%),
we find on expanding § |sxnv in a Taylor series, in sq,..., Sgu-1,

J loknu= Re 37" ajz1Z; + Re(azys) +Re(p(z1,...,2n-1) + B21 | 21 |?)
+O(s3+ - + $3u1)
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where p is a holomorphic cubic polynomial.

With the aid of (13), we may replace the term 8z, | 2, | to (p.,5,(0)) 18212,
if we change the a;, a and p. Thus by changing the a;, a and p appropriately
we may obtain the inequality:

9

n n
axnu< Re p(2) + ReZaszEj + CZ | 2; |2 .
2

=2
Let § = § — Rep(z) and observe that § satisfies

det(g;z) = det(g;z) = ¥(z, 9(2)).

Recall that ¥(z,g(z)) > § > 0 on a neighbourhood of O, where § depends
on 2, /w}(0) and the C'-estimate of v on the neighbourhood. With ¢ small
we see that in the set S,, we have ¥(z, g(z)) > 6. Let

1>
h=—'-6g$n+61|z|2+§E |aj21+BZJ' |2.
2

We wish to show that with the suitable choice of by, §;, B > 0 we have h > §
on 3S,. First observe that if B is sufficiently large and &, so small that
—80Zn + 61 | 2 1*> 0 on 89S, NJK (the dependence of §y and §; is controlled
by the Levi form of 0K). By Lemma 4.11, if we take B sufficiently large, we

have
g<h ondSs,.

The function & is plurisubharmonic and the lowest eigenvalues of the complex
Hessian (h;;) are bounded independently by é; while the other eigenvalues
are bounded independently of 4.

Hence choosing §; equal to small const. times /™

det(h;) < 6 in S,
holds. By the mximum principle
g<h onsS,
holds. Hence by the maximum principle
9z4(0) < b, (0) = —bp.
The desired inequality follows from (19). This completes the proof of Lemma

4.12.
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4.9 (C?-estimate on K

Using the C%-estimate on @K, we shall obtain a C%-estimate inside K. The
method here is the same as in [25].
Let H be a smooth functionon X, — D deﬁned by

H = exp(6 HllAulHlog,m,)‘f

where 6, is the one in 4.2 and || A, ||’s are the ones in 4.6 and ¢ is a sufficiently
small positive number such that

wi =w; + V—100log H

is a complete Kahler form on (X, — D) x [0, co] which is quasi-isometric to
wp on X, — D, i.e., there exists a positive constant C(D, H) > 1 such that

1
—_— < <
C(D,H)wH SWwWp S C(D, H)w”
holds on X, — D. We note that wy have bounded Poincaré growth so that

the bisectional curvature of wy is bounded between two constants uniformly
on (X, — D) x [0, 00].

We set
vp=v—logH =u—(1-e")¢, — log H,
Qu=H-Q,.
Then vy satisfies the equation
/=168v:)"
i = log (n + 9%uu)" _ vg on K x {0,T).
ot Qy

By Lemma 4.3 and Lemma 4.5 vy satisfies the C%-estimate:
Lemma 4.13 For every sufficiently small positive number €

vg > Cy(e)—logH + (1 — e )eé,
vp < CF(l—e)—(1—e")E, ~logH

holds on K x [0,T), where Cf,C5 (€) are constants in Lemma 4.8 and 4.5

respectively.

We have the following lemﬁa.
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Lemma 4.14 (/25, Lemma 3.2)
d

H=CelY(A - E)(e'c"ﬂctrwﬁw) >
1 8vH
(— A;;logﬁ——n 1nfR,m )+C(n——5— 50 ——tr, W —

1 duy

e ttry, ((wo — weo) - w) + (C + 1nfR 72) exp(

i3]

holds on K x [0,T), where tr,,,((wo — weo) - w) is defined as in Lemma 8.4,
infiz; R~3 denotes the infimum of the bisectional curvarue of wy on (X, —
D) x [0, oo] and C is a positive constant such that

C+mfR ->1

lle

holds.

The proof of this lemma is the same as one of Lemma 3.2 in {25]. Hence
we omit it.

Lemma 4.15 [f we take C sufficiently large, then there exists a positive
constant Cy independent of ¢ > ¢y such that

HCtr,,w < Cy on K x[0,T)
holds.

Proof. By the definition H has zero of order at least r§/2 along R (cf. 4.2).
Then by Lemma 4.12, if we take C sufliciently large, there exists a constant
C, independent of ¢ > ¢p such that

Hctrwpw < C, on OK x [0,T).

holds. Suppose e Y HC%r, w takes its maximum at Py € K x {to}(lo €
[0,7)) then by Lemma 4.14, we have

(trwuw)(PO) < é?

for a positive constant C; independent of ¢ > ¢ and C(if it is sufficiently
large). Hence in this case we have

(HCtr,,,w)(P) < HC(Py) exp(—=C(v(Po) — v(P)))C2 on K x [0,T)

holds. By Lemma 4.13 (since in Lemma 4.13, we can take ¢ arbitrarily
small), H exp(—v) = exp(—vy) is uniformly bounded from above on X, — D.
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Hence if we change ég, if necessary, by the maximum principle for parabolic
equations, we may assume that

(HCtr,,,w)(P) < exp(Cu(P))C,

holds on K x{0,7"). We note that wp and wy are quasi-isometric on X, — D.
Hence by Lemma 4.5, if we take C sufficiently large, there exists a positive
constant C, independent of ¢ > ¢ such that

Hctrwpw < Cy on K x{0,7)
holds. Q.E.D.

By [26], the higher order interior estimate on /{ x [0,7") follows. As for
the boundary estimate of u, we just need to follow the argument in [4]. This
completes the proof of Theorem 4.2.

4.10 Costruction of Kahler-Einstein currents

Let uo be as in Theorem 4.2. Then by the construction
WK = Weo + V—100uq,

is a Kahler-Einstein form on K = K.. We may assume that ¢ > 1. Let us
take the exahustion {K;.}§2, of X, — D and let

[
w, — w[{{c.

Then by Lemma 4.3 and Lemma 4.15 and the regularity theorem in [26], we
have the following lemma.

Lemma 4.16 There ezists a subsequence of {w}}2, which converges uni-
formly on every compact subset of X, — D in C*®-topology to a Kihler-
Einstein form w¥ on X, — D.

Although w* is a Kahler-Einstein form, it is not enough good for our
purpose.

Let us consider the linear system | mlv Ky | and construct &,,1, as before.
We denote &1, by f('") for simplicity. Since Xy, —F™" are all biholomorphic
to X —SBs(Kx), we may consider {£0™} as a family of functions on X, — D.
Let us denote X, by X{™ for simplicity and define Xay = X.
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Lemma 4.17 We can construct {£™} so that
(V<< e gemg
holds on X, — D.

Proof. Let I, denote the ideal sheaf of the base scheme Bs ! pKx [. Then
clearly

I.uH-#'z “— Im Rox qu

holds. Hence inductively we can construct a morphism
pm + X(m)y = X(mo1) (m 2 2)
such that

1. fim) = pm 0+ 0 piy : X(m)y — X(o)(= X) is a resolution of
Bs | mlvKyx |.

2. The fixed part of | f(;,)(m!Kx) | is a divisor with normal crossings on
X(m)-

An explicit construction of {£0™}%_ is as follows. Let V(1) = {7;,(1)}?;(3)
be a basis of H°(X,Ox(vKx)). By induction for each m > 1, we can con-

struct a finite subset
V= i)
in H%( X, Ox(m!vKx)) with the following properties.
1. V0™ spans HO(X, Ox(mivKy)).

2. V(™) contains all the elements of the form:

(8 ... @ (V)8

Zai:m,aiZ0,0Sil<...<imSN(m—'l).

=1
Now we set

" 1 N(m) \/__1 m!un’,,]i(m) A ﬁfm)
6( )= log( Z ( ) Qmlv )

!
m! =0

We may consider £0™ as a function on X, — D. Then by the construction
<< <™.,

holds and )
Weo + \/—133{("‘)
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is a smooth semipositive form on X(,,) and positive on X,—D. This completes
the proof of the lemma. Q.E.D.

Now we consider the following Dirichlet problem.

oulm) o LstV=IOBIN _ m) on K x [0, T,)

ot
ul™ = (1 — e t')etm on 9K x [0,7y,)
ulm =0 on K x {0},

where T,, is the maximal existence time for smooth solution on K.

Lemma 4.18 The followings are true.
1. T,, is infinite and ug';‘) = limy—o u™ ezists in C*®-topology on K.
2. w§"" 1= Weo + V—1800ul™ is a Kéihler-Binstein form on K.

8. If we define a sequence of Kdhler-Einstein forms {w,(m)}‘,’il in the same
manner as the definition of {w}}2, above, then there exists a subse-
quence of {w,(m)} which converges uniformly on every compact subset
of X, — D uniformly in C*-topology.

Proof. The only difference between the above equation and the equation (10)
is that V*¢(™)(k > 1) is bounded with respect to wp with weights different
from before. It is easy to find such weights. In fact, there exists a positive
constant C(m, k) depending only on m and & such that HEU™¥) || ¥4¢m) || is
bounded by a positive constant on X, — D. Hence the previous argument is
valid with some weight with respect to H. Hence the first assertion is trivial.

Then by replacing K to K., we get a sequence of Kahler-Einstein form
{w,(m)}f’gl which are defined on K| respectively (w,(]) = wy).

We would like to find a subsequence of {w,(’"’}?gl which converges in C°°-
topology on every compact subset of X, — D.

For the first, replacing & by &™) completely analogous estimate as
Lemma 4.5 holds for u{™ with the perturbation 6™ completely analogous
to 6,. As for the C*-estimate, by the proof of Lemma 4.18, Lemma 4.15 also
holds for w® if we replace C' and C, to appropriate constants independent of
l. The rest of the proof is the same as in the proof of Lemma 4.16. Q.E.D.

Taking subsequence, if necessary, we obtain a Kahler-Einstein form w(™)
as before, where w(!) = w".
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We shall consider w™) as ¢ a d-closed positive (1,1)-current on X by

_ (m)yn
wt™ = Wy +V/—1801og W) a ) ,

where 30 is taken in the sense of a current. This definition is well defined by
the C%estimate (Lemma 4.5) and clearly

[w™) = 27m¢, (Kx)

holds. Now we want to show that
Proposition 4.1
wg = ﬂlinolo w™

exists in the sense of a d-closed positive (1,1)-current on X,.

Lemma 4.19
(W™ < Wb on X, — D
holds.

Proof. Since both wp and w™) are Kihler-Einstein forms on X, — D and wp
is a complete Kahler-Einstein form on X, — D, by applying Yau’s Schwarz
lemma ([29]) to the holomorphic map

id: (X, — D,w™) < (X, - D,wp),

we obtain the lemma. Q.E.D.

Hence {(w(™)"} is uniformly bounded from above. For the next we shall
show:

Lemma 4.20 For every m > 1, we have that
(w(m))n < (w(m-i-l))n on Xy -D
holds.

Proof. u{™*+1) — (™) satisfies the following equations:
[ g(u(m+1) _y(m) we v/ —183u(mt1)yn m m
AT = log IR — (ul™) —ul™) on K x [0, c0)

§ ulmH) - ylm) = (1 = emt)(glmt1) - glm)) on 9K x {0, c0)

wm+) _(m) =g on K x {0}.

\
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Since

og (wt + \/—185?(m+1))n _ /1 A(m'm"'l)(u(m'H) . u(m))da
(Wi + V=18Bulm)r ~ Jo ¢ ’

1

where Al™™+1)(q € [0,1]) is the Laplacian with respect to the Kéahler form
we +vV—=108{(1 — a)u™ 4 qul™*t1)},

we see that this equation is of parabolic type. We note that £+ > ¢(m)
on X, — D by the construction. Then by the maximum principle we obtain

u™ < ul"on K x [0, c0).

We set

wl™ = 1112'10 ul™,

Then we have )
W™ = we + V=100ul)

and
(™) = exp(ulQ

on K. Hence we see that
(W™ < (@™

holds on K. By replacing K to K. and repeating the same argument, we
see that
(™) < (™)

holds on K. By letting ! tend to infinifty, we completes the proof of the
lemma. Q.E.D.

Hence {(w{™)"}2_, is monotone increasing and bounded from above uni-
formly on every compact subset of X, — D

Wi = lim (™)

exists.
We shall define a d-closed positive (1,1) current wg on X by

WE = Weo + V=190 log L‘;I—E

wg is well defined by the C°-estimates in the last subsection. Then it is clcar
that [wg) = 27¢) (K x).
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4.11 Finite orderness of the Kahler-Einstein current
WEg
We shall prove that wg is smooth on a Zariski open subset of X and satisfies

some growth condition near the singular set. The method used here is a
modification of the one in [28].

Definition 4.5 Let T be a d-closed positive (1,1)-current on a projective
maifold M which is smooth on a Zariski open subset U of M. Let S denole
M — U and consider S as a reduced subvariety of M. Let Is denote the ideal
sheaf of S. T 1is said to be of finite order on M along S, if there exists a
positive integer m such that for every point of s € S and o € (I§™),, there
exists a neighbourhood V of s such that o is defined on V and

o 2 (T|UNV)
extends locally as a bounded form on V.

Lemma 4.21 wg is smooth on X, — D (remember we can identify X, — D
with a Zariski open subset of X ) and has finite order along D.

To prove this lemma, by Lemma 4.15 it is sufficient to prove the following.
Lemma 4.22 (™) = (1) for all m > 1. Hence in particular wg = WV,

Proof. Let m be a fixed positive integer. Let dV be the volume form on K
defined by

By Lemma 4.20, w > 0 on K. Then by Stokes’ theorem we have

7,
(M2 = 2
j;{Al (w )dV—/a (w*)dS,

K dn

where AS” is the Laplacian with respect to wgl), 0/0n is the derivation with
respect to the unit outer normal vector field on dK and dS is the volume
form on @K with respect to the Kahler form wil). On the other hand noting
that w > 0 on K, we have

L AP?)dV = [ | Yw[? dV + fx wAPwdv
> [xw - n(exp(iw) —1)dV by algebro-geometric mean inequality,
> [ w?dV by e* > = + 1.
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Hence we obtain the inequality:

)

/BK S-(wh)dS 2 2/}{ whdV. (19)

By Lemma 4.3 and its proof, we obtain the following sublemma.

Sublemma 4.4 There exists a posilive constant C[()m) independent of ¢ such
that

(W <™ on K
holds.

We define a C*°-function u{™ on K x [0, 00| by

Bu(m)

B og lntV=IORIN _(m) on K x [0, 00),
ufm) = (1- et )ém) on 9K x [0, c0),
ulm = 0 on K x {0}

as before. We note that by Lemma 4.18,
ul™ = tlim ™
exists in C*™-topology on K.

Sublemma 4.5 Let C be a positive number. If we replace £ to €0 4 C,
W™ will be unchanged.

Proof. Let ugn) be the solution of the Dirichlet problem:

¢ {(m} . u(m) n m
BT = Jog Lt M on K x [0, o0),
u(c_m) = (1—e )¢t 4 C) on 9K x [0, 00)
L u(cm) = 0 on K x {0}

We set

'U)(Cm)

— 1 (m) _ . (m)
= tl_l.rglo(uc u'™),
Then as in the proof of Lemma 4.20, we have

wi™ >0 on K.
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As before, we have

9 m)a _ 9
-/;JK On(m )(wc )dS(m) - C/ah' 8n( )wc dSm)

> 2/ “’() W (20)

where n(m) is the unit outer normal vector field on 8K with respect to w§m)

and dS(m) is the volume form of 9K induced from wﬁ”‘). Then we have

w(m) - BSw(m) g m

log(1 +(w£\/:1-))nc) = wg) on K,

wi™ = C ondK.

Let us take a positve number ¢ such that
(m) ATPRY !
V~100
log C -{(-s(m)) o) _ glog—c)—C20 on K

wy )" .

holds. Then as in 4.6 by the maximum principle, we have
wg” > e(p— )+ C. (21)

Since w, = /=180y is a complete Kahler form of Poincaré growth, by
Sublemma 4.4, it is easy to see that we can take ¢ such that

e = 0(=). (22)

c

By the completely analogous estimate as Sublemma 4.1 we have the fol-
lowing sublemma.

Sublemma 4.6 Let T(OK)c be the comple:c tangent bundle of the CR-manifold
OK . Let us fiz a complete Kdahler form w( of Poincaré growth on
X(my—F™. Then the norm of the restriction ofwg ™ to T(9K )¢ with respect

to wgn) 1s bounded by a constant independent of c.

Then by Sublemma 4.6, we see that

d
I dn{m)

® dSim 1= O(c) (23)

holds, where || || is the norm with respect to ‘-‘-’D . Combining (21),(22),(23)
and (24) letting c tend to infinity, we see that

Jim wg" =0

holds on K. This completes the proof of Sublemma 4.5. Q.E.D.
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Sublemma 4.7 Let £ be a function such that
1.

Weo + V=108
is a C*®-semipositive form on X(,,) and positive on X, — D.
2. There exists a positive constant C such that
¢m) _ ¢ < Em) < glm) 4 o
holds.
Then if we replace £&™ to £0™) W™ will be unchanged.

Proof Let @™ be the solution of the Dirichlet problem :

3‘28(:1‘) = log (u,+\/-_1035ﬁ(m))n — @™ on K x [0, 0),
alm = (1 = et*)ém on K x [0, c0),
am = 0 on K x {0}.

Then by the maximum principle, we see that
™ < @™ <ol on K x [0, 00)

holds. Then by Sublemma 4.5, this completes the proof. Q.E.D.

We set for € > 0,
1
¢ = T log (exp(m!v€W) + € exp(mlvé™)).

Then £{™ has the following properties.
1.

Weo + \/—-1—3565"')

is a C*-semipositive form on X(m) and positive on X, — D.

l%ﬂm=ﬂnoanJD
holds.
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&M 260 on X, - D
holds.
4. There exists a positive constant C, depending on € such that
tM_c,<em<e™ i, onX,-D
holds.

Let u{™ be the solution of Dirichlet problem:

( Bua(.:"_) = log (w:+\/-_1r;95u(,"‘))" ~ul™ on K x [0,00),
Culm = (1= e )etm on 9K x [0, 0o),
\ ug’") = 0 on K x {0}.

We set,

w, = tl_i'lg(uﬁ'") — u(™),

By Lemma 4.18 and the maximum principle, we see that w, exists and '
on K and is nonnegative on K. Then as (20), we have the inequality:

Y
—(w,)?-dS > 2 / 2d ) 24
/axan(w) ds > KwCV on K (24)
Sublemma 4.8 Let dSp be the volume form of 0K induced from the Kdihler
form wp. Then there exists a positive constant C,, independent of ¢ and €
such that

dw™)

on

dS < C,.c-dSp

holds.

Proof. We note that by Sublemma 4.7 (taking m to be 1)

7,
| 5o @ds |

is bounded by a constant independent of ¢, where || || denote the the norm
with respect to wp. Then by Lemma 4.9, it is suficient to prove that there
exists a positive constant C, independent of ¢ such that

(m) .
Oues 45 < Croc- dSp
on
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holds, where
u("‘) = hm u(’”)

t—00o

(ulm) exists and C* on K by Lemma 4.18). We set
O™ = e + V=100

and
o) = ) gt

We note that by the construction &{m is a smooth semipositive form on
X(my. Since w, = /=190 is a complete Kijhler form of Poincaré growth
on X, — D, it is easy to find a positive number a independent of ¢ and € such

that - ) _
log (wcoo + Vglaaatp)

holds. Then as in the proof of Lemma 4.9, by the maximum principle, we
see that

—afp—¢c)20 on K

vi™ > a(p—¢) on K

holds. By Lemma 4.10, we see that there exists a positive constant Chn
independent of ¢ and € such that

(m)
3;@ dS < C.c-dSp on 9K

holds. On the other hand by direct calculation, (by identifying X, — D as a
Zariski open subset of X(n)), using Sublemma 4.7, we see that there exists a
postive constant C independent of ¢ and ¢ such that

aElm™
on

holds. Combining the above estimates, we obtain the sublemma. Q.E.D.

1c-dSp on K

We note that £{™) and £() have very slow growthes (“logarithmic growth”)
along D respectively and the volume of 0/ with respect to wp is bounded
by a constant times 1/c because wp is a complete Kahler form of Poincaré
growth on X, — D. Then since there exists a subvariety V(. of X, of
codimension > 2 such that {ﬁ’") — ¢ is locally bounded on X(m) — V(m), by
Sublemma 4.8, we see that
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is bounded from above by a positive constant which is independent of c¢.
Since V() is of codimension at least 2 in X, by Sublemma 4.8, we see that

Jw
I (m) _ (1) TWe
sllrg,]cs—lllog aK(E‘ ¢ )c')n

dS=0 (25)
holds. By (25),(26) and Sublemma 4.7, we obtain the equality:
(W) = (™) on X, - D.

Since w® and w{™ are both Kahler-Einstein form with the same constant
Ricei curvature, we have

w =™ on X, - D.

This completes the proof of Lemma 4.22. Q.E.D.

5 L%-vanishing theorem

In the last section we constructed a Kahler-Einstein current wg on X. In
this section we shall prove the following theorem.

Theorem 5.1 Let f: Y — X be an arbitrary modification from a smooth

projective variety. Then {O(f*wg,y) |y € Y} is a finite set.

5.1 L’-estimate on a complete Kihler manifold

We shall briefly review the L%-estimate on a complete Kahler manifold.

Let (M,w) be a complete Kahler manifold of dimension m and let (L, h)
be a hermitian line bundle on M. Let A%?(M, L)(0 < p < n) denote the spacc
of L-valued smooth (0, p) form on M with compact support. A2?(M, L) has

a natural pre-Hilbert space structure with respect to the hermitian metric A
and the Kahler form w. Let

d: AP (M, L) — AYPHY(M, L)
be the natural 0 operator and let
9 AYP(M, L) — A%""Y(M, L)

be the formal adjoint of 8 Let L%P(M, L) denote the space obtained by taking
the form closure with respect to the graph norm

AP(ML) S [l SIP+ N of I+ 19717
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We define the L?-cohomology group HY (M, Op(L)) by

ker 8 | LoP(M, L)
H (M.Opy(L), h) = —mr
(M-Om(L), ) BAS(M.L)

where the closure is taken with respect to the graph norm. By Hormander’s
L%-estimate, we obtain:

Theorem 5.2 ([12]) Assume that there ezists a positive constant ¢ such that
Ric, — v/-1901logh > cw.
Then we have
HE (M, Om(L),h) =0
holds for all p > 1.

The following trivial cororally is important for our purpose.

Cororally 5.1 Assume that there exists a volume form & on M and a pos-
itive constant ¢ such that

Ric —/=108log h > cw.
Then we have N
H(”2)(M, Om(L),h) =0 for p >0,
where the L2-cohomology is taken with respect to the twisted hermitian metric

Q

W’

71:]1@

As an example of the most typical application of Theorem 5.1 to alge-
braic geometry, we shall prove the well known Kawamata-Viehweg vanishing
theorem for ample R-divisors.

Theorem 5.3 (27, 16]) Let M be a smooth projective variety and let D
be an ample R-divisor on M such that Supp{D} is a divisor with normal
crossings. Then

HY(M,Op(Kp + [D])) =0
holds forp > 1.

Let {D} = ¥ a;D; be the irreducible decomposition of { D} and let o; be the
section of Ope(D;) with divisor D;. Let || ||=|| ||; be a hermitian metric on
Ox(D;) such that || o; ||[< 1 on M. Then by the assumption, there exists a
hermitian metric A on Op([D]) such that

—V=188log h = " a;v/-18810g || o; |®
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is a smooth Kahler form on M. Let us define a singular hermitian metric h

on Ox([D]) by .

i!, = ( g, 2a; (log
Lo Cos 2y

where € is a positive constant. Then by easy direct calculation, we see that
if we take ‘ € sufficiently small,

w=—v/=108logh

))h,

is a complete Kahler formon N = M —Supp{D}. Let § be a smooth volume
form on M. Then by Theorem 5.1, we have

HE (N, On(Kp + D] | V) =0

holds for p > 1, where the L? cohomology is taken with respect to the volume
form ) and the hermitian metric A @ 2~!. We note that

HY(M,Om(Kym +[D1))

is isomorphic to the corresponding Dolbeault cohomology for all p. Then by
the L?-regularity theorem for d-operator, we get the canonical injection

HP (M, Op(Kpy + [D])) — H (N, On(Kps + (D)) | N))
for every p. Since the right-hand side vanishes for p > 1. This completes the
proof of the theorem. Q.E.D.

5.2 Relation between the asymptotic behavior of the
base locus of the pluricanonical system and the
Lelong number of the Kahler-Einstein current wg

Now we shall relate the Lelong number of wg and the multiplicity of the base
scheme Bs | vK |.

Lemma 5.1 There ezists a positive integer vy such that for every posilive
inleger v and z € X,

mult,Bs | vKx |> vO(wg, z)
holds.

Proof. Let w(™ be as in 4.10. We set

{(mhn
2™ = log (W) .
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Then for every sufficiently small positive number ¢, there exists a constant
Co.(m) such that

alm > Cor(m) + £0m) 4 ggtm)

holds , where 6™ = §,.,, be a function on X(™ = X,.,, defined as in 4.2.
Then by Lemma 2.3 and 2.5 and the definition of £(™) = ¢™! letting € tend
to 0, we have

mlr®(w'™), ) < mult,Bs | mlvKy |

holds for all z € X. On the other hand by the construction, {a(™}%

m=1
is monotone increasing by Lemma 4.20 (as we have seen Lemma 4.22 the
sequence is stable actually). Hence we have

O(wg, z) < @(w(m), )

and
mlvO(wg, z) < mult,Bs | mlv Ky |

holds for all z € X. Since mult;Bs | abKx |< amult,Bs | 6Ky | holds for all
positive integers a, b, this completes the proof of the lemma. Q.E.D.

More generally we have:

Lemma 5.2 Let f: Y — X be an arbitrary modification from a smooth
projective variety. Then for a sufficiently large v

mult,Bs | f*(vKx) |> vO(f wg,y)
holds for all y € Y.

Proof. Let Y™ be a resolution of the fibre product ¥ xy X™ and let
Gim) * Y™ — X be the natural morphism. Then by the same argument as
above, we have

mlvO(g(mwE, y) < multy,Bs | gi(mlvKx) |

holds for all y € Y{™). Since m is an arbitrary positive integer, by Lemma 2.5
and the same argument as in the proof of Lemma 5.1, we obtain the lemma.

Q.E.D.

Definition 5.1 Let Y be a projective variety and let D be a R-Cartier divi-
sor on' Y. We set

=(D,y) = liminf v~ 'mult,Bs | [v.D
V=00 y

and call it the limit base multiplicity of D.



As a cororally of the above lemma, we have

Cororally 5.2 Let f: Y — X be an arbitrary modification from a smooth
projective variety. Then

O(f‘WE’, y) 5 E(f‘KX, y)
holds for ally € Y.

But the following theorem holds.

Theorem 5.4 Let f: Y — X be an arbitrary modification from a smooth
projective variety. Then

O(f we,y) =E(f"Kx,y)
holds for all y € Y.

Proof. Let vy be a positive integer such that | vKx | gives a birational
rational map from X into a projective space. Let f : ¥ — X be an
arbitrary resolution of Bs | vKx |. Let

frlvKx)=L+F

be the decompositin into the free part L and the fixed part F' and let F =
> a;F; be the irreducible decomposition of F. We set

i = inf O(f"wg,v).

Since L is big by the construction, by Lemma 4.1, there exists an effective
Q-divisor R = ¥ r; R; such that L — R is an ample Q-divisor on Y. Let yqo
be a point on Fj, such that O(f*wg,y0) = €;,. Let w be a Kahler form on Y
and let ry denote the distance function from yy with respect to the Kahler
form w. Then there exists an open neighbourhood U such that logry | U is
a plurisubharmonic function on U. Let p be a nonnegative smooth function
with compact support on U such that p is identically 1 on a neighbourhood
of yo. We set
¥ = (2n + 2 + 2¢;,)plog ro.

Let m be a positive integer such that
1. H =m(L — R) is an ample Cartier divisor on Y.

2. There exists a hermitian metric A on Oy(H) and a positive constant
¢o such that

—v/=100log(e™vh) > cow.
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Let M be the complement of Supp FU Supp Rin Y. Let us define a hermitian
metric h, on Op(f*(vKx) | M)(v 2 muy) by

h, = h @ (frwh)r-mw),

Let o; be section of Oy (F;) with divisor F; and let 7; be a section of Oy (R;)
with divisor B;. Let || || denote hermitian metrics on Oy (F;)’s and Oy (R;)’s.
Then for a sufficiently small positive number ¢

d)=w—s\/—135210g10g —evV— BBZIOglog

1
Il ol |I 7 |l

and

& = —v—-188logh, — eV/-188_ loglog

1
—€ 199 loglo
o]~ 5V 1092 loglogy o

are both complete Kahler forms on M. And by the construction there exists
a positive constant ¢ such that

w > ow.

Let us define a hermitian metric on OM(f'(VKX | M)) by

h—Hlog |Hg

ITJ P

Then the curvature form of b, is nothing but &. Let 2 denote the volume
form f *wg on M. Then by Cororally 5.1 , we have

HE, (M, Op(f*(vKn)) =0,

for v > myy + 1 and p > 1, where the L?*-cohomology is taken with respect
to the twisted hermitian metric

N . Q
h, h, ®(;J—n)
S wE

= hu® -
om

-]

and the complete Kahler form w. Let ¢ be a local section of

L=0y(H+ f"((v—mu)Kx) Z[ (v — mug)e;| Fy)

around yp such that o(yo) # 0. We may assume without loss generality
that o is defined on U. Then since O f*wg, yo) = e, there exists an open
neighbourhood V of ¥ in U and a nonnegative smooth function p of compact
support on U such that
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1. pisidentically 1 on V.

2. G:=0(pc) | UNM is a L*form on M with respect to the hermitian
metric h, and the complete Kihler form .

Then by Theorem 5.1, we see that there exists u € L, (M, f*(vKx), h,)
such that B
Ou =G.

We set
= po—u.

Then since pp € Hiy(M, Om(f*(vKx)), by Lemma 2.2 and Lemma 2.3, we
have

ue HYY, L)
We note that by the definition of 71,,(see the definition of 1),

#(yo) = a(yo) # 0.

Since there exists a canonical injection Oy (H) «— Oy (f*(veKx)), by letting
v tend to infinity, we have

E(f.I(X'J yO) 2 e(f‘(.UE, yO)

Hence by Cororally 5.1, we have

E(f‘-[(x, yO) = e(f-wE) yO)‘

Let y be an arbitray point on Y. Let us with center y. Then repeating the
same argument with repect to a general point on the exceptional divisor, by
Lemma 2.5 we obtain

E(f.I{Xa y) = O(f‘wEa 3/)

This completes the proof of the theorem for this special f: Y — X.

To prove the theorem for a general f : ¥ — X, we shall take the
resolution ¢ : Y/ — X of Bs | vKx | such that g factors through f. We
have already known that the theorem holds for ¢ : Y/ — X. Then we see
that the theorem also holds also for f: Y — X by Lemma 2.5. Q.E.D.

5.3 Use of the argument of Benveniste-Kawamata-
Shokurov

Combining L2-vanihing theorem and the argument of Benveniste-Kawamata-
Shokurov ([3, 15, 22]), we shall prove the following theorem.
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Theorem 5.5 Let p: Z — X be a modification from a nonsingular projec-
tive variety. Then for every point 2 € Z there exists a posilive integer v(z)
d epending on z) such that

mult, Bs | v(z)p*Kx |= v(y)O()"wg, z)
holds. In p&rticular O(p*wg, z) 1s a rational number for every z € Z.

Proof. Let v be a positive integer such that

1. | vKx | defines a birational rational map from X into a projective
space.

2. Supp Bs | vKx |= SB(Kx).
We construct a birational morphism
f:Y—X
such that
1. There exists a divisor F' = ¥ F; with only normal crossings.
2. Ky = f*Kx + Y a;F; for some a; € Z with ¢; > 0 for all 7.
3. We set ¢; = infyer, O(f wE, ).
H=f"Kx-3 ¢fF.

Then
| [vH) |=| L | +Y_niF,

where | L | is the free and J_ r; F; is effective (We do not assume | L |
the “full” free part).

4. L — Y 6;F; is ample for some §; € Q with 0 < §; << 1.

The existence of such f follows from Hironaka resolution and Cororally 4.1.

Let us choose an arbitrary irreducible component say Fy of I and fix it.
We set

c=(a0+60+1_60)+5,

To

where § is a sufficiently small positive number which we will specify later. If
6 is sufficiently small,

[—Cro+ao+eo—50] = -1

holds. We set

A=) (—ci+ai+e—&)F
i#0
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and
B = —(—C?"g + ag 4+ eg — 50)Fg.

We consider

M =VH+A-B- Ky
=(cL - 6F)+ (VH — C[UH] — [*Kx + ¥ e Fy)
=(cL - 6F) + c{—-vH} + (¥ — cv — 1)H,

where b’ is a positive integer which will be specified later. If we replace
{6;} to {€é;} for a suffuciently small positive number ¢, we may assume that
el — Y 6;F; is ample. And multiplying a suitable positive integer to v (to
make {—vH} small) if necessary, we may assume that

cL = 8 F;+ c{—vH}

is ample (to do this operation we do not assume that | L | is the full free part
of | [vH] |). Let h be a hermitian metric on R-line bundle associated with the
R-divisor cL— Y §;F; 4 c{—vH} such that the curvarure form —+/=189 log h
is a smooth Kahler form on Y (we note that the R-line bundle does not make
actual sense but the hermitian metric makes sense). Let o; be a global section
of Oy(F;) with divisor Fi. Let || || be a hermitian metric of Oy (f}) such
that || o; ||< 1 holds on Y respectively. Then for a sufficiently small positive
number €

w=—v- 3alogh+ezv 5310g” T
is a complete Kahler form (of Poincaré growth) on Y —F. We consider Y — F
as a complete Kahler manifold (Y — F,w) hereafter. Let us define a singular
hermitian metric hps on Oy (¥ Ky ) by

hae = h @ (frwp)™o¢ °")®H10g )

|| il

Then we have by Theorem 5.1,
HYY — F,Op_p(bKy | Y — F),h) =0 forp>1,
where A is a hermitian metric on Oy (¥ Ky) defined by

fl=hM®fwnE

Let us define a presheaf F on Y by
F(U) = {7 € (U, 00 (¥Kv)) | [ h(o, o) < oo},

where [/ 1s an arbitrary open subset of Y. We denote the sheaf associated
with this presheaf also by F. F is the sheaf of germs of local L? holomorphic
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sections of Oy (¥ Ky). By Hormander’s L2-estimate for J-operator, using the
isomorphism between the Dolbeaut cohomology and the Céch cohomology
we get the canonical injection :

~

H(Y, F) = Hy(Y = F,Op_p(VKy | Y = F), k)

for all p. Hence we get:

Sublemma 5.1
HY(Y,F) =0
holds for p > 1.

To prove Theorem 5.5, it is necessary to modify f:Y — X. We need
the following sublemma.

Sublemma 5.2 There ezists a point y; on I; such that
1. y; € F,.y (Freq denote the requalar part of F).
2. G(f‘wE: yi) = €.

S Letm: Y, — Y be the blowing up with center y; and let E; be the
exceptional divisor. Then for every y € E;,

O(mi(fws — zk: exFi),y) =0

holds.

We note that f*wp — Y i exFi is a d-closed positive (1,1)current on Y by
Lemma 2.6.

Proof. The existence of such y; follows from Theorem 5.4. In fact by Theorem
2.2, for every e > 0

File):={y € F; | O(f*wg,y) > e; + ¢}

is a proper subvariety of F;. In particular U, F;(1/2™) is a countable uniton
of proper subvarieties of F}. Let y; be a point in [ — Up>1 F(1/27) — U4, F;
such that we do not need any blowing up with center containing y; to resolve
the base locus of | mlyf*Kx | for all m. Such y; form a complement of
a countable union of proper subvarieties of F;. Then by the costruction
O(f*wEg, ¥;) = ¢; and by Theorem 5.4, for every point y € E;,

O(mx(f*wg — €;F;),y) = 0 holds. Q.E.D.
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Let yo € Fy be as in Sublemma 5.2 and let 7y : Yo — Y be the blowing
up with centre yo. We choose yo as in the proof of Sublemma 5.2. Let [
denote the exceptional divisor.

Let Fj be the strict transform of Fp in Y,. Let w} : Yg — Y5 be the
blowing up with centre Ep N Fj and let Fy be the exceptional divisor. Let
E} be the strict transform of Eq in Y. Let #f : Y — Y} be the blowing
up with centre E} N F} and let FZ be the exceptional divisor. Let EZ be
the strict transform of Ej in Y. Repeating this process m-times we get
successive blowing ups

Fo:Yy oY s oY s Y oY

Let J denote the exceptional divisor of #y. Let F' be the strict transform of
Fin Y7 )

We shall replace f: Y — X to fo@p: ¥Yg* — X and F to J + .
Then it is easy to see J + F’ has the same properties as /. Hence we may
assume that Y = Y7® and F = J + F” for the first. By changing the order, if
necessary we may assume that Iy = L', F} = F3*, and F,, 1, = Fj (the strict
transform of “the old” Fy). Then since r; = (m + 1)rg and e; = (m + 1)ep,
we see that if we take m sufficiently large and {§;}’s sufficiently small,

ao+60+1—50< ar+e+1-46

To 1

(26)
holds by the construction. In fact

lim a;/m=ao+1

m-—oo

holds.

We note that Fp is biholomorphic to the one point blowing up of P™~!
and Fp N F} is the exceptional divisor in Fp. It is easy to see that if {6'eq} is
sufficiently small, then the restriction Oy ([6'H]) | Fo is trivial. We assume
that {b'ep} is sufficiently small. Let ¢ be a nontrivial section of

HY(F,, Og([V'H])) ~ H°(Fy,0Op,) ~C
Let U be a sufficiently small open neighbourhood of Fy in ¥ and let
& e T(U,Oy([b'H]))

be a holomorphic extension of o to U. Let V be an open neighbourhood of
F, and let p be a nonnegative C*®-function on Y such that

1. p has a compact support in U.

2. pis identically 1 on V.
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And we set

G = d(p7).
Then G is a Oy ([t H]))-valued C*-(0,1)-form. By (27) if we take é suffi-
ciently small and m large,

[—eri+a1+e1—6]20

holds. Hence by the construction of Fy (cf. Sublemma 5.2), Lemma 2.3 and
the upper semicontinuity of Lelong numbers, if we take U sufficiently small
we see that

G € L},)(Y, Oy (¥ Ky), h)

holds. Hence G represents a cohomology class in H!(Y, F) which is zero by
Sublemma 5.1. This implies that if we take é sufficiently small and take &'
so that {b'eg} is sufficiently small and & — cv — 1 > 0, there exists a section
& € HO(Y,Oy([t'H] + [A])) such that

o | Fg =a

(we note that there is a canonical injection Oy ([V'H + A]) —
Oy([6'H] + [A])). Let I denote the union of the index i such that ¢; = 0
and define a divisor A by

A =Yic—cri+a; + e — §)F;
= Viei(—cri+ai — &) F:.

Since f. [A] = 0, if we take & sufliciently large, by the birational invari-
ance of plurigenra, we see that & defines a element 7 € H(Y, Oy (f*(¥'Kx)))
such that

mult, D(1) < b'eg for y € Fy N Frepy

where D(7) denotes the member of | f*(§'Kx) | defined by 7. On the other
hand, by Lemma 5.2, we have

mult, D(7) > b'ey for y € Fy.
Hence we have the equality:
mult, D(7) = b'eg for y € Fo N Floy.

Hence ey is a rational number and there exists a nonempty Zariski open
subset Uy = F5 N F,,y of Fp such that

O(f'we,y) =e fory e U

and

SBs(H) N U =.¢
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hold. By the construction of Fj, there exists a nonempty Zariski open subset
U1 of Fyq such that

O(f'wE; y) = errl.+1(= 60) for y € Um+l
and
SBS(H) N Um+1 = ¢
hold. Hence by continuing this process, we see that for every ¢, e; is a rational
number and there exists a nonempty Zariski open subset U; of F; such that
O(f'we,y) = e; forevery y € U;
and
SBs(H)NU; = ¢.

Let p : Z — X be an arbitrary modification from a nonsingular pro-
jective variety and let z € Z be an arbitrary point. Let x, : Z, — Z be
the blowing up at 2 and let £ be the excepsional divisor. Let g: Z, — X
denote the composition u o w,. By Lemma 2.5, for almost every point p on

E
O(g"wg, p) = O(p"wg, 2).

holds as in the proof of Sublemma 5.2. Hence by taking f: Y — X so that
f factors through ¢ : Z, — X, we see that there exists a nonempty Zariski
open subset U of E such that

O(¢"wg,p) = O(p*wg,z) foreverype U

and
SBs(¢*Kx — O(p'wg,2)EYNU = ¢.

This implies that there exists a positive integer v(2) depending on 2 such
that

mult, | v(2)p*Kx |= v(2)0(p wg, 2)
holds. This completes the proof of Theorem 5.5. Q.E.D.

Cororally 5.3 Let f;Y — X be an arbitrary modification from a smooth
projective variety Y. We set

S(ffwg) ={y €Y | O(wg,z) > 0}.
Then S(f*wg) = SBs(f*Kx).

Proof. By Lemma 5.2, we have that S(f*wg) C SBs(f*Kx). On the other
hand, by Theorem 5.5, we have that SBs(f*Kx) C S(f*wg). Q.E.D.

Now we shall prove Theorem 5.1.
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Proof of Theorem 5.1. Let f: Y — X be as in Theorem 5.1 and let
S(f*wg) be as in Cororally 5.3. Let

S(ffwe) =) Sa
be the decomposition of S(wg) into the irreducible components. Let
€a = ylensfa @(wEa y)

By Cororally 5.3, we see that e, > 0 for every a.
Theorem 5.5 implies that there exists a nonempty Zariski open subset U,
of S, such that

O(f*wEa y) = Ca
for every y € U,. Then by Noetherian induction, we conclude that
{6(f*ws,y) |y € Y}

is a finite set. This completes the proof of Theorem 5.1. Q.E.D.

6 Zariski Decomposition of Canonical Divi-
sor

In this section we shall prove Conjecture 2.1.

6.1 An algorithm to construct a Zariski decomposi-
tion
By the results of the previous sections, we can define an algorithm to con-
struct a Zariski decomposition of K.
We set Yo = X, Py = wg. We shall construct inductively sequences of
smooth projective varieties {Y;,}, d-closed positive (1,1)-current {Pn}, and
divisors N, on Y;, for m > 0 as follows.

1. Set
Sm={y € Y | O(Pr,y) > 0}.

S, 1s a subvariety of Y, by Theorem 5.1 and Theorem 2.2. We decorn-
pose S, into the irreducible components:

Sm=S8U...US8m
We set _
n,, = inf O(Pn,y).

¥ESh
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By changing the order, if necessary, we may assume that
0<nl <...< nlm"‘
holds.

. Take an embedded resolution p, : ¥} — Y, of S1 and let 5! be the
strict transform of S} .

. Let 71 : Y1 — ¥ be the blow up with center 5, and set
Ny = (Wr1n+1)-](5;~.)
(rl is the identity morphism, if S!, is a divisor) and f. = p,, 0 7.

. Let 82 be the strict transform of S% inY,} and repeat the same process
by replacing S? by S%. Then we obtain smooth projective variety Y2,
a morphism f2 : Y2 — Y! and a divisor N as in 3.

. Repeating this process we obtain sequences of smooth projective vari-
eties {¥!}Im and morphisms
flvh — v a<igiy)

m

(where we have defined Y, := Y,,) and divisors {N! }(1 <! < [,) on
yi.

. Weset Y41 1= Y,f{" and
fmgri=for oo fl i Yoy — Yo
. We define a divisor on Y,,,; by

Nm+1 = Eninﬁrln + ZeﬁzEr‘;’n
k

where

N,’n the strict transform of N,‘n in Y4,

{EEX}: irreducible components of the strict transforms of the excep-
tional divisors which appear in the embedded resolutions p!, : Y} —
Y!’s,

ef, = infyepr O(foy1Pm>y)-

We define a d-closed positive (1, 1)-current Py by

Pm+1 = f:;+1(Pm) - Nm+1

(Pm+1 is a d-closed positive current by Lemma 2.6).
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Lemma 6.1 Suppose that there ezists a positive integer m such that S,, is
empty. Then if we set

N := EN,’,

=0
where N; is the total transform of N; in Y,
P:=F'Ky—-N

and
F:=f1°"'°fma

the ezpression
F*I(X =P+ N (P,NEDlU(.)?)®Q)

is a Zariski decomposition of F*Kx. Hence Conjecture 2.1 is true under the
assumption.

Proof. We set Y =Y, for notational simplicity. By the definition of N, N
is effective. For the next, we shall prove that P is numerically effective.

We have already seen that P, = F*wg — N is a d-closed positive (1, 1)-
current. Since S,, is empty, the Lelong number of P,, is 0 everywehere on Y.
Hence P 1s numerically effective by Cororally 2.1.

On the other hand by Lemma 5.2, we have a natural inclusion:

0 — H(Y, Oy(vF*Kx)) = H(Y, Oy([vF]))
for all v > 0. Because of the converse inclusion is trivial, we see that
HO(Y, Oy ([vP])) = H(Y, Oy (vF*(Kx)))

holds for all positive integer ». This completes the proof of Lemma 6.1.

Q.E.D.

6.2 Termination of the algorithm

We shall prove Conjecture 2.1 by using the algorithm in 6.1.

Theorem 6.1 Let X be a smooth projective variety of general type. Then
there ezists a modification f : Y — X such that f*Kx has a Zariski de-
composilion.

Proof. By Lemma 6.1, it is sufficient to prove that there exists m such

that S, is empty. By Lemma 4.21, wg has finite order along S = SBs(Kx)U
SE(Kx). We need the following lemma.
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Lemma 6.2 Let T be a d-closed positive (1,1)-current on the unit polydisk
AF = {(z1,...,2,) €C¥| |z |< 1(1 €1 < k)} in C*(k > 2). Suppose that
the following conditions are satisfied.

1. T| A* x AF is smooth (A" = A — {0}).
2. We shall express T | A* x AF1 a5
T | A* x Ak_] =+-1 Za;_,-dz.- A dfj.
ij

Then a;;’s are uniformly bounded on A* x AF! for all 4,7 > 2.

Then O(T) is constant along {0} x AF-1,

Proof. By Theorem 2.2, O(7,z) is constant say a almost everywhere on
{0} x A*-1 with respect to the usual Lebesgue measure on A*~!. By Lemma
2.1, there exists a plurisubharmonic function ¢ such that

T =+/-180p on A*.

Let ¢ € A* be an arbitrary number and let B(z,r) denote the ball of radius
r with center z in C*~! such that B(z,7) C A¥~'. Then by Stokes’s theorem
Lo, 20, = [ A,

where

dV, : the Euclidean volume form on B(z,r),

dSy : the usual volume form on 0B(z,r),

n : the outer unit normal vector field on dB(z,r), and

A : the Laplacian with respect to the Euclidean metric of A*~!,

Since A¢ is uniformly bounded on A*~! by a constant independent of ¢ by
the assumption, we have for every r € (0,1— || z |}),

¢(c, z) = (vol 8B(z,r))™? /BB(M)go(c,y)a’Sy + 0O(1)

and

o(c, z) = (vol B(z, 7)) /B(s,,)*"@’ y)dV, + 0(1) (27)

hold, where O(1)’s denote functions which are uniformly bounded with re-
spect to = and c respectively.

We note that if we add some positive multiple of log | 2, | to ¢, we may
assume that ¢ is negative on A*. Let us fix z € B(0,1/2) and let € be a
small positive number such that B(z,1/2 +¢) C A*1. Let 2’ be a point in
B(z,€). Then the trivial inequality

dv, > d 2
jB(z,l/z) (e, y)dV, 2 B(z,1/2+¢) wle,y)dv, (28)
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holds. By Lemma 2.4 we can find parallel lines L and L’ passsing through
(0,z) and (0, z') respectively such that T | L and T' | L’ are well defined and

(T | L,(0,z)) = O(T,(0,z)),
®(T|L”(O)$’)) = @(T,(O,:C'))

hold. Then by (27),(28) and Lemma 2.3, we see that
O(T | L,(0,2)) < (14 26)*720(T | L, (0,2")) = (1 + 2¢)*20(T, 2')

holds. Since ©(T) = a almost everywhere on {0} x A*!, letting ¢ tend to
0, we obtain

o(T, (0,2)) < O(T | L,(0,z)) < a.

Hence O(T') is identically « on {0} x B(0O,1/2).
Now it is clear that ©(T, (0, z)) = a holds for every z € A*~!. Q.E.D.

The proof of the following cororally is completely analogous to the proof
of Lemma 6.2. Hence we omit it.

Cororally 6.1 Let T be a d-closed positive (1,1)-current on A% Suppose
that the following conditions are satisfied.

1. T is smooth on A* x A”.

2. For every ¢ € A*, we consider T | {c} x A as a d-closed positive
(1,1)-current T, on A. Then the Lelong number of T, is everywhere 0.

8. lim.o7. =0 holds.
Then ©(T) is constant along {0} x A.

Remark 6.1 [t ts easy to generalize Cororally 6.1 to the higher dimensional
case.

Lemma 6.3 There ezists a positive integer m such that S,, = ¢.
Proof. We claim that for a fixed k, there exists some m > k such that
Fu(Supp Nim) # Fi(Supp N)
holds. Suppose the contrary. We note that the inclusion
Fra(Supp Np) C Fi(Supp Ny)

is clear by.the construction of the algorithm.
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Hereafter for simplicity we denote the divisor and its support by the same
notation, if without fear of confusion. Suppose that for all m > k

Fr(Supp Npm) = Fi(Supp Ny)

hold.

For simplicity, for the first we shall consider the case dim X = 2. Let
us look at the asymptotic behavior of the pull-back of wg along the fibre
of fl 1Yl — V!"1 (1 £1<1,)as aform. Then by Lemma 4.21, if
m is sufficiently large, for every point p € N!, there exists a unit polydisk
A? = {(z1,22) || 2 |[< 1(z = 1,2)} such that

1.

AN N, ={(z1,22) € A? | y =0}

2. If we express the restriction T of the pullback of wg to A* x A* as

2
T.=+v-1 Z a,-jdz,- A df_,‘

1,7=1
then T is smooth and extends to a d-closed positive (1,1)-current on
A? by
T(n)=T(n| A" x A7) (g€ AT "H(AY).
And T satisfies the conditions of Lemma 6.2 or Cororally 6.1.
Hence we see that if m is sufficiently large, there exists an irreducible

component A of N,,, and an irreducible component B of the strict transform
of N,,_1 such that

1. ANB # ¢,
2. infyes O(Frwg,y) = infyep O(Frwp, y)

hold by Lemma 6.2 and Cororally 6.1. This contradicts the definition of the
algorithm (note that n! ’s are all positive). Hence there exists some m > k
such that

Fr(Supp N,,,) # Fi(Supp Ny)
holds. In the case of dimX > 3, by slicing N,,—; by a suitable surface and
considering the strict transform of it in Y,, one can get the same contradic-
tion by using Lemma 2.4.
Then by the definition of the algorithm, using Noetherian induction, we
see that there exists a positive integer m such that S,, is empty. Q.E.D.

By Lemma 6.1, this completes the proof of Theorem 6.1. Q.E.D.

Now Theorem 1.1 follows from the following theorem.
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Theorem 6.2 ({14, p.425, Theorem 1]) Let f : X — S be a proper sur-
jective morphism of normal algebraic varieties, let A be a Q-divisor on X
such that the pair (X, ) is log-terminal. Assume that Kx + A is f-big,
ie. k(X Kx, + A,) = dimX,, where X, is the generic fibre of f and
A, = A | X,, and that there exists the Zariski decomposition

Kx+A=P+N in Di(X)®R

of Kx + A relative to f. Then the positive part P is f-semiample. i.c.,
mP € Div(X) and the natural homomorphism

f"‘f.O,\'(mP) — OX(mP)
1s surjective for some positive integer m. Thus the relative log-canonical ring
R(X/S, Kx +B) = 3 [.0x({m(Kx + A)])
m>0

is finttely generated as an Og-algebra.

Theorem 1.2 follows from Theorem 1.1 easily because the problem is
completely local (for the proof see [21, p.479,Proposition 4.4]). Since the
termination of flips is known up to dimension 4 ([16, p.337,Theorem 5.15]),
we have Theorem 1.3.
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